

Delft University of Technology

Fast recovery in software-defined networks

van Adrichem, NLM; van Asten, BJ; Kuipers, FA

DOI
10.1109/EWSDN.2014.13
Publication date
2014
Document Version
Accepted author manuscript
Published in
Third European Workshop on Software Defined Networking

Citation (APA)
van Adrichem, NLM., van Asten, BJ., & Kuipers, FA. (2014). Fast recovery in software-defined networks. In
N. Trigoni (Ed.), Third European Workshop on Software Defined Networking (pp. 1-6). Springer.
https://doi.org/10.1109/EWSDN.2014.13

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/EWSDN.2014.13
https://doi.org/10.1109/EWSDN.2014.13

Fast Recovery in Software-Defined Networks

Niels L. M. van Adrichem, Benjamin J. van Asten and Fernando A. Kuipers

Network Architectures and Services, Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands

{N.L.M.vanAdrichem@, B.J.vanAsten@student., F.A.Kuipers@}tudelft.nl

Abstract—Although Software-Defined Networking and its im-
plementation OpenFlow facilitate managing networks and enable
dynamic network configuration, recovering from network failures
in a timely manner remains non-trivial. The process of (a)
detecting the failure, (b) communicating it to the controller
and (c) recomputing the new shortest paths may result in an
unacceptably long recovery time. In this paper, we demonstrate
that current solutions, employing both reactive restoration or
proactive protection, indeed suffer long delays. We introduce a
failover scheme with per-link Bidirectional Forwarding Detection
sessions and preconfigured primary and secondary paths com-
puted by an OpenFlow controller. Our implementation reduces
the recovery time by an order of magnitude compared to related
work, which is confirmed by experimental evaluation in a variety
of topologies. Furthermore, the recovery time is shown to be
constant irrespective of path length and network size.

I. INTRODUCTION

Recently, Software-Defined Networking (SDN) has received

much attention, because it allows networking devices to

exclusively focus on data plane functions and not control

plane functionality. Instead, a central entity, often referred

to as the controller, performs the control plane functionality,

i.e. it monitors the network, computes forwarding rules and

configures the networking nodes’ data planes.

One of the benefits of the central controller entity intro-

duced in SDN is its possibility to monitor the network for

performance and functionality and reprogram when necessary.

Where the controller can monitor overall network health

as granular as observing per-flow characteristics, such as

throughput, delay and packet loss [1], the most basic task is

to maintain end-to-end connectivity between nodes. Hence,

when a link breaks, the controller needs to reconfigure the

network to restore or maintain end-to-end connectivity for

all paths. However, the time-to-restoration of a broken path,

beside the detection time, includes delay introduced by the

propagation time of notifying the event to the controller, path

re-computation, and reconfiguration of the network by the

controller. As a result, controller-initiated path restoration may

take over 100 ms to complete, which is considered too long

for provider networks where at most 50 ms is tolerable [2].

In this paper, we introduce a fast (sub 50 ms) failover

scheme relying on link-failure detection by combining primary

and backup paths configured by a central OpenFlow [3]

controller and implementing per-link failure detection using

Bidirectional Forwarding Detection (BFD) [4], a protocol that

detects failures by detecting packet loss in frequent streams of

control messages.

Our work is organized as follows. In section II, we discuss

several failure detection mechanisms and analyze how network

properties and BFD session configuration influence restoration

time. In section III, we introduce and discuss the details of

our proposed failover mechanism. Section IV presents our

experiments, after which the results are discussed and analyzed

to verify our failover mechanism. Related work is discussed

in section V. Finally, section VI concludes this paper.

II. FAILURE DETECTION MECHANISMS

In this section, we introduce different failure detection

mechanisms and discuss their suitability for fast recovery.

In subsection II-A we analyze and minimize the elements

that contribute to failure detection, while subsection II-B

introduces OpenFlow’s Fast Failover functionality.

Before a switch can initiate path recovery, a failure must be

detected. Depending on the network interface, requirements

for link failure detection are defined for each network layer.

Current OpenFlow implementations are mostly based on Eth-

ernet networks. However, Ethernet was not designed with high

requirements on availability and failure detection. In Ethernet,

the physical layer sends heartbeats with a period of 16±8 ms

over the link when no session is active. If the interface does

not receive a response on the heartbeats within a set interval of

50−150 ms, the link is presumed disconnected [5]. Therefore,

Ethernet cannot meet the sub 50 ms requirement and failure

detection must be performed by higher network protocols.

On the data-link layer multiple failure detection protocols

exist, such as the Spanning Tree Protocol (STP) or Rapid

STP [6], which are designed to maintain the distribution tree

in the network by updating port status in switches. These

protocols, however, can be classified as slow, as detection

windows are in the order of seconds. Instead, in our proposal

and implementation we will use BFD [4], which has proven

to be capable of detecting failures within the required sub 50

ms detection window.

A. Bidirectional Forwarding Detection

The Bidirectional Forwarding Detection (BFD) protocol

implements a control and echo message mechanism to detect

liveliness of links or paths between preconfigured end-points.

Each node transmits control messages with the current state

of the monitored link or path. A node receiving a control

message, replies with an echo message containing its respec-

tive session status. A session is built up with a three-way

handshake, after which frequent control messages confirm

absence of a failure between the session end-points. The

protocol is designed to be protocol agnostic, meaning that it

can be used over any transport protocol to deliver or improve

failure detection on that path. While it is technically possible to

deploy BFD directly on Ethernet, MPLS or IP, Open vSwitch

[7], a popular OpenFlow switch implementation also used in

our experiments, implements BFD using a UDP/IP stream.

The failure detection time Tdet of BFD depends on the

transmit interval Ti and the detection time multiplier M ,

Ti defines the frequency of the control messages, while M

defines the number of lost control packets before a session

end-point is considered unreachable. Hence, the worst-case

failure detection time equals Tdet = (M + 1) · Ti. Typically,

a multiplier of M = 3 is considered appropriate to prevent

small packet loss from triggering false positives. The transmit

interval Ti is lower-bounded by the round-trip-time (RTT) of

the link or path. Furthermore, BFD intentionally introduces a

0 to 25% time jitter to prevent packet synchronization with

other systems on the network.

The minimal BFD transmit interval is given in equations

(1) and (2), where Ti,min is the minimal required BFD

transmit interval, TRTT is the round-trip time, TTrans is the

transmission delay, TProp is the time required to travel a link

in which we include delay introduced by routing table look-

up, L is the number of links in the path and TProc is the

processing time consumed by the BFD end-points.

Ti,min = 1.25 · TRTT (1)

Ti,min = 1.25 · 2 · (TTrans + L · TProp + TProc) (2)

It is difficult to optimize for session RTT by improving

TTrans and TProc as those values are configuration inde-

pendent. However, by using link monitoring (L = 1), the

interval time is minimized and smaller failure detection times

are possible. A great improvement compared to per-path

monitoring, where the number of links L is upper-bound by

the diameter of the network.

An upper-bound for TRTT can easily be determined with

packet analysis, where we assume that the process of process-

ing and forwarding is equal for each hop. On high link loads,

the round-trip-time (RTT) can vary much and might cause

BFD to produce false positives. During the development of

TCP [8], a similar problem was identified in [9], where the re-

transmission interval of lost packets is computed by β ·TRTT .

The constant β accounts for the variation of inter-arrival times,

which we implement in equation (3).

Ti,min = 1.25 · β · TRTT (3)

A fixed and conservative value β = 2 is recommended [10].

B. Liveliness monitoring with OpenFlow

From OpenFlow protocol version 1.1 onwards Group Table

functionality is supported. Group Tables extend OpenFlow

Action

Bucket - 1

Action

Bucket - 2

Action

Bucket - 3

Incoming

Port

L
iv

e
lin

e
s
s

Out-port:

Port P

L
iv

e
lin

e
s
s

Out-port:

Port B

L
iv

e
lin

e
s
s

Out-port:

In-port

Fast Failover Group Table

BFDP BFDB BFDI

Flow Rule Watch

StatusStatus Status

Watch Watch

Monitor Monitor Monitor

Action

Output

Traffic

Fig. 1: OpenFlow Fast Failover Group Table.

configuration rules allowing advanced forwarding and mon-

itoring at switch level. In particular, the Fast Failover Group

Table can be configured to monitor the status of ports and

interfaces and to switch forwarding actions accordingly, in-

dependent of the controller. Open vSwitch implements the

Fast Failover Group Table where the status of the ports is

determined by the link status of the corresponding interfaces.

Ideally, the status of BFD should be interpreted by the Group

Table as suggested in figure 1 and implemented by us in

section (IV).

III. PROPOSAL

We propose to divide the recovery process into two steps.

The first step consists of a fast switch-initiated recovery based

on preconfigured forwarding rules guaranteeing end-to-end

connectivity. The second step involves the controller calcu-

lating and configuring new optimal paths. Switches initiate

their backup path after detecting a link failure, meaning that

each switch receives a preconfigured backup path in terms of

Fast Failover rules. Link loss is detected by configuring per-

link - instead of per-path - BFD sessions. Using per-link BFD

sessions introduces several advantages:

1) A lower detection time due to a decreased session round-

trip-time (RTT) and thus lower transmit interval.

2) Decreased message complexity and thus network over-

head as the number of running BFD sessions is limited

to 1 per link, instead of the multiplication of all end-to-

end sessions and their intermediate links.

3) Removal of false positives. As each session spans a

single link, false positives due to network congestion

can be easily removed by prioritizing the small stream

of control packets.

In situations where a switch has no feasible backup path, it will

return packets to the previous switch by crankback routing.

As the incoming-port is part of the packet-matching filter of

OpenFlow, preceding switches have separate rules to process

returned packets and forward them across their backup path.

This implies a recursive returning of packets to preceding

switches until they can be forwarded over a feasible link- or

node-disjoint path. Figure 2 shows an example network with

primary and backup paths, as well as two failover situations.

H1

H2

A

B C

D

E F G

Primary Path

Secondary Path

(a) Topology with broken link resulting in usage of a secondary path.

H1

H2

A

B C

D

E F G

Primary Path

Secondary Path

(b) Topology with broken link resulting in usage of a backup path by crankback.

Fig. 2: A topology showing its primary and secondary paths including two backup scenarios in case of specific link-failures.

Where the first scenario (a) uses a disjoint backup path, the second scenario (b) relies on crankback routing.

By instructing all switches up front with a failover sce-

nario, switches can initiate a failover scenario independent of

the SDN controller or connectivity polling techniques. The

OpenFlow controller computes primary and secondary paths

from every intermediate switch to destination to supply the

necessary redundancy and preconfigures switches accordingly.

Although the preconfigured backup-path may not be optimal at

the time of activation, as in subfigure 2b, it is a functional path

that is applied with low delay. Additionally, once the controller

is informed of the malfunction, it can reconfigure the network

to replace the current backup path by a more suitable path

without traffic interruption as performed in [11].

The transmit interval of BFD is upper-bounded by the

RTT between the session endpoints. Since we are configuring

per-link sessions, the transmit interval decreases greatly. For

example, in our experimental testbeds we have a RTT below

0.5 ms, thus allowing a BFD transmit interval of 1 ms.

Although this might appear as a large overhead, per-link

sessions limit the number of traversing BFD sessions to 1
per link. In comparison, per-path sessions imply O (N ×N)
shortest paths to travel each link. Even though most of them

may be forwarded to their endpoint without inspection, each

node has to maintain O (N) active sessions.

A BFD control packet consists of at most 24 bytes with

authentication, encapsulation in a UDP, IPv4 and Ethernet

datagram results in 24 + 8 + 20 + 38 = 90 bytes = 720 bits.

Sent once every 1 ms, this results in an overhead of 0.067 %

and 0.0067 % in, respectively, 1 and 10 Gbps connections.

IV. EXPERIMENTAL EVALUATION

In this section, we will first discuss our experimental setup

followed by the used measurement techniques, the different

experiments and finally the results.

A. Testbed environments

We have performed our experiments on two types of physi-

cal testbeds, being a testbed of software switches and a testbed

of hardware switches.

Our software switch based testbed consists of 24 physi-

cal, general-purpose, servers enhanced with multiple network

interfaces and software to run as networking nodes. Each

server contains a 64 bit Quad-Core Intel Xeon CPU running

at 3.00GHz with 4.00 GB of main memory and has 6 inde-

pendent 1 Gbps networking interfaces installed and can hence

perform the role of a 6-degree networking node. Links between

nodes are realized using physical Ethernet connections, hence

deleting any measurement inaccuracies introduced by possible

intermediate switches or virtual overlays. OpenFlow switch

capability is realized using the Open vSwitch [7] software im-

plementation, installed on the Ubuntu 13.10 operating system

running GNU/Linux kernel version 3.11.0-12-generic.

The hardware switch based testbed we used was graciously

made available to us by SURFnet, the NREN of the Nether-

lands. The testbed consists of 5 Pica8 P3920 switches, running

firmware release 2.0.4. The switches run in Open vSwitch

mode to deliver OpenFlow functionality, meaning that they

implement the same interfaces as defined by Open vSwitch.

B. Recovery and measurement techniques

We use two complementary techniques to implement our

proposal: (1) We use OpenFlow’s Fast Failover Group Tables

to quickly select a preconfigured backup path in case of

link-failure. The Fast Failover Group Tables continuously

monitor a set of ports, while incoming packets destined for

a specific Group Table are forwarded to the first active and

alive port from its set of monitored ports. Therefore, when link

functionality of the primary output port fails, the Group Table

will automatically turn to the secondary set of output actions.

After restoring link functionality, the Group Tables revert to

the primary path. (2) Link-failure itself is detected using the

BFD protocol. We chose a BFD transmit interval conform

equation (3), with β = 2 to account for irregularities by

queuing. Although the RTT allowed smaller transmit intervals,

the implementation of BFD forced a minimum window of

1 ms. We use a detection multiplier of M = 3 lost control

messages to prevent false positives.

At the time of writing, both BFD and Group Table func-

tionality are implemented in the most recent snapshots from

Open vSwitch’ development repository [12]. Although both

BFD status reports and Fast Failover functionality operate

A

H2

C

B

Capture stream

missing packetsBackup path

H1

Primary path

(a) Simple Network Topology.

A

H1
H2

E

Primary path

B C D

Capture stream

missing packets

Secondary path

(b) Ring Network Topology. (c) USNET Topology.

Fig. 3: Topologies used in our experiments, including functional and failover scenarios in case of specific link-failure.

correctly, we found the Fast Failover functionality did not

include the reported BFD status to initiate the backup sequence

and only acts on (administrative) link down events. To resolve

the former problem, we wrote a small patch for Open vSwitch

to include the reported interface BFD status [13]. Furthermore,

the patch includes minor changes to allow BFD transmit

intervals smaller than 100 ms.

In order to simulate traffic on the network we use the

pktgen [14] packet generator, which can generate packets with

a fixed delay and sequence numbers. We use the missing

sequence numbers of captured packets to determine the start

and recovery time of the failure. Pktgen operates from kernel

space, therefore high timing accuracy is expected and was

confirmed at an interval accuracy of 0.005 ms. In order to

get 0.1 ms timing accuracy, pktgen is configured to transmit

packets at a 0.05 ms interval.

C. Experiments

This subsection describes the performed experiments. We

run baseline experiments using link-failure detection by reg-

ular Loss-of-Signal on both testbeds. Additionally, we run

experiments using link-failure detection by per-link BFD ses-

sions on the software switch testbed to show improvement.

In general, links are disconnected using the Linux ifdown

command. To prevent the administrative interface change to

influence the experiment, the ifdown command is issued from

the switch opposite to the switch performing recovery.

The experiments are executed as follows. We start our

packet generator and capturer at t = 0. At tfailure, a

failure is introduced in the primary path. The packet capture

program records missing sequence numbers, while the failover

mechanism autonomously detects the failure and converts to

the backup path. At trecovery, connectivity is restored, which is

detected by a continuation of arriving packets, the recording of

missing packets is stopped and the recovery time is computed.

Basic functionality: In our first experiment we measure and

compare the time needed to regain connectivity in a simple

network to prove basic functionality. The network is depicted

in figure 3a and consists of two hosts named H1 and H2,

which connect via paths A→ B → C (primary) and A→ C

(backup). In this experiment, we stream data from H1 to H2

and deliberately break the primary path by disconnecting link

A↔ B and measure the time needed to regain connectivity.

Crankback: After confirming restoration functionality we

need to confirm crankback functionality. To do so, we intro-

duce a slightly more complicated ring topology in figure 3b,

in which the primary path is set as A→ B → C → D → E.

We break link C ↔ D enforcing the largest crankback path to

activate, resulting in the path A→ B → C → B → A→ E.

Extended experiments: To test scalability, we perform ad-

ditional experiments in which we simulate a real-world net-

work scenario. To do so, we configure our software-switch

testbed in the USNET topology shown in figure 3c. We set

up connections from all East-coast routers to all West-coast

routers, thereby exploiting 20 shortest paths. We configure

each switch to initially forward packets along the shortest path

to destination, as well as a backup path from each intermediate

switch to destination omitting the protected link. At each

iteration we uniformly select a link from the set of links

participating in one or more shortest paths and break it.

D. Results and analysis

Our first set of results, displayed in figure 4, shows baseline

measurements without BFD performed for the simple topology

on both testbeds. This experiment shows link-failure detection

based on Loss-of-Signal implies an infeasibly long recovery

time in both our software and hardware switch testbeds. The

Open vSwitch testbed shows an average recovery time of 4759
ms. Although the hardware switch testbed performs better with

an average recovery time of 1697 ms, the duration of both

recoveries are unacceptable in carrier-grade networks.

In order to determine the time consumed by administrative

processing additional to actual failure detection, we repeated

previous experiments with the exception that we administra-

tively brought down the interface at the switch performing

the recovery. By doing this, we only trigger and measure the

time consumed by the administrative processes managing link

status. We found that Open vSwitch on average needs 50.9 ms

to restore connectivity after detection occurs. Due to this high

value, our patch omits the administrative link status update

and directly checks BFD status instead.

Currently, the firmware of the hardware switches does not

support BFD, therefore we only verified recovery using link-

failure detection by BFD on the software switch testbed.

Figure 5 shows 100 samples of measured recovery delay for

the simple and ring topologies using three different BFD

transmit intervals, namely 15 ms, 5 ms and 1 ms. For the

6000

5000

4000

3000

2000

1000

0

R
e
c
o
v
e
ry

 T
im

e
 (

m
s
)

806040200

Sample t

 Open vSwitch
 Pica8 P3290

Fig. 4: Baseline measurements using

Loss-of-Signal failure detection.

60

40

20

0

R
e

c
o

v
e

ry
 T

im
e

 (
m

s
)

806040200

Sample t

Simple Topology 1 ms 5 ms 15 ms
Ring Topology 1 ms 5 ms 15 ms

Fig. 5: Recovery times for selected BFD

transmit intervals and topologies.

20

18

16

14

12

10

8

R
e

c
o

v
e

ry
 T

im
e

 (
m

s
)

300025002000150010005000

Sample t

 Plot Average 95% CI

Fig. 6: Recovery times for 5 ms transmit

interval in the extended topology.

simple topology, we measure a recovery time that was a

factor between 2.5 and 4.1 ms larger than the configured BFD

transmit interval due to the detection multiplier of M = 3.

As shown in figure 7, for each BFD transmit interval we

measure average and 95% confidence interval recovery times

of 3.4± 0.7 ms, 15.0± 2.2 ms and 42.1± 5.0 ms. The results

show that, especially with links having low RTTs, a great

decrease in recovery time can be reached. At a BFD transmit

interval of 1 ms, we reach a maximal recovery time of 6.7 ms.

For the ring topology, after 100 samples of measuring the

recovery time for three different BFD transmit intervals, figure

7 shows averages and 95% confidence intervals of respectively

3.3±0.8 ms, 15.4±2.7 ms and 46.2±5.1 ms for the different

selected transmit intervals. At a BFD transmit interval of 1 ms,

we reach a maximal recovery time of 4.8 ms. Even though the

ring topology is almost twice as large as the simple topology,

recovery times remain constant due to the per-link discovery

of failures and the failover crankback route.

In order to verify the scalability of our implementation, we

repeated the experiments by configuring our software-switch

testbed with the USNET topology, hence simulating a real-

world network. For each iteration, we average the recovery

times experienced by the affected destinations. Figure 6 shows

over 3400 samples taken at a BFD transmit interval of 5 ms, re-

sulting in an average and 95% confidence interval of 13.6±2.6
also shown in figure 7. The high frequency of arriving BFD

and probe packets congested the software implementation

of Open vSwitch, showing the necessity for hardware line

card support of BFD sessions. As a consequence, we were

unable to further decrease the polling frequency and had to

decrease the frequency of probe packets to 1 per ms, slightly

reducing the accuracy of this set of measurements. Although

we experience software system integration issues showing the

need to optimize switches for degree and traffic throughput,

recovery times remain constant independent of path length and

network size, showing our implementation also scales to larger

real-world networks.

Prior to implementing BFD in the Group Tables, the Fast

Failover Group Tables showed a 2 second packet loss when

reverting to the primary path after repair of a failure. With

BFD, switch-over is delayed until link status is confirmed to

be restored and no packet loss occurs, resulting in a higher

stability of the network.

50

40

30

20

10

0

R
e

c
o

v
e

ry
 t

im
e

 (
m

s
)

Simple Topology Ring Topology USNET Topology

 1 ms
 5 ms
 15 ms

Fig. 7: Bar diagram summarizing average recovery times

and 95% confidence interval deviation on our Open vSwitch

testbed using BFD at selected transmit intervals.

V. RELATED WORK

Sharma et al. [15] show that a controller-initiated recovery

needs approximately 100 ms to regain network connectivity.

They propose to replace controller-initiated recovery with a

path-failure detection using BFD and preconfigured backup

paths. The switches executing BFD detect path failure and

revert to previously programmed backup paths without con-

troller intervention resulting in a reaction time between 42

and 48 ms. However, the correctness and speed of detecting

path failure depends highly on the configuration and switch

implementation of BFD. According to [4], a detection time

of 50 ms can be achieved by using an “aggressive session”,

using a transmit interval of 16.7 ms and window multiplier of

3. However, the authors of [15] do not provide details on their

configuration of BFD. The BFD transmit interval is lower-

bounded by the propagation delay between the end-points of

the BFD sessions, therefore we claim a path-failure detection

under-performs compared to a per-link failure detection and

protection scheme as presented in this paper.

Kempf et al. [16][17] propose an alternative OpenFlow

switch design that allows integrated operations, administration

and management (OAM) execution, foremost connectivity

monitoring, in MPLS networks by introducing logical group

ports. Introducing ring topologies in Ethernet-enabled net-

works and applying link-failure detection results to trigger

failover forwarding rules, results in an average failover time of

101.5 ms [18] with few peaks between 140 ms and 200 ms.

However, the introduced logical group ports remain unstan-

dardized and are hence not part of shipped OpenFlow switches.

TABLE I: Summary of results and most important differences compared to related work.

Reference
Avg recovery time

±95% CI

Network

size (N,L)
Detection Mechanism Recovery Mechanism

[15] 42− 48ms (28, 40) Per-path BFD OpenFlow Fast Failover Group Tables using virtual ports

[16][17] 28.2± 0.5 ms N.A. Per LSP OAM + BFD Custom extension of OpenFlow

[18][19] 32.74± 4.17 ms (7, 7) Undocumented Custom auto-reject mechanism

This Paper 3.3± 0.8 ms (24, 43) Per-link BFD Commodity OpenFlow Fast Failover Group Tables

Finally, Sgambelluri et al. [19] perform segment protection

in Ethernet networks depending on OpenFlow’s auto-reject

function to remove flows of failed interfaces. The largest part

of their experimental work involves Mininet emulations, which

is considered inaccurate in terms of timing due to its high

level of virtualization [20]. The experiment performed on a

physical testbed shows a switch-over time of at most 64 ms,

however, the authors do not describe the method of link-failure

detection, which make the results difficult to reproduce.

Table I shows the main differences between the afore-

mentioned proposals and our work. Where the previous best

recovery time was close to 30 ms, section IV showed that our

configuration regains connectivity within a mere 3.3 ms.

VI. CONCLUSION

Key to supporting high availability services in a network

is the network’s ability to quickly recover from failures. In

this paper we have proposed a combination of protection in

OpenFlow Software-Defined Networks through preconfigured

backup paths and fast link failure detection. Primary and sec-

ondary path pairs are configured via OpenFlow’s Fast Failover

Group Tables enabling path protection in case of link failure,

deploying crankback routing when necessary. We configure

per-link, in contrast to the regular per-path, Bidirectional

Forwarding Detection (BFD) sessions to quickly detect link

failures. This limits the number of traversing BFD sessions

to be linear to the network size and minimizes session RTT,

enabling us to further decrease the BFD sessions’ window

intervals to detect link failures faster. By integrating each

interface’s link status into Open vSwitch’ Fast Failover Group

Table implementation, we further optimize the recovery time.

After performing baseline measurements of link failure

detection by Loss-of-Signal on both a software and hardware

switch testbed, we have performed experiments using BFD on

our adapted software switch testbed. In our experiments we

have evaluated recovery times by counting lost segments in

a data stream. Our measurements show we already reach a

recovery time considered necessary for carrier-grade perfor-

mance at a 15 ms BFD transmit interval, being sub 50 ms. By

further decreasing the BFD interval to 1 ms we reach an even

faster recovery time of 3.3 ms, which we consider essential as

network demands proceed to increase. Compared to average

recovery times varying from 28.2 to 48 ms in previous work,

we show an enormous improvement.

Since we perform per-link failure detection and preconfigure

each node on a path with a backup path, the achieved recovery

time is independent of path length and network size, which is

confirmed by experimental evaluation.

ACKNOWLEDGMENT

We thank SURFnet, and in particular Ronald van der Pol, for

allowing us to conduct experiments on their hardware switch

based OpenFlow testbed.

This research has been partly supported by the EU FP7

Network of Excellence in Internet Science EINS (project no.

288021).

REFERENCES

[1] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in Network

Operations and Management Symposium (NOMS), 2014 IEEE.
[2] B. Niven-Jenkins, D. Brungard, M. Betts, N. Sprecher, and S. Ueno,

“Requirements of an MPLS Transport Profile,” RFC 5654 (Proposed
Standard), Internet Engineering Task Force, Sep. 2009.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, 2008.

[4] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),” RFC
5880 (Proposed Standard), Internet Engineering Task Force, Jun. 2010.

[5] L. Wang, R.-F. Chang, E. Lin, and J. C.-s. Yik, “Apparatus for link
failure detection on high availability ethernet backplane,” Aug. 21 2007,
uS Patent 7,260,066.

[6] D. Levi and D. Harrington, “Definitions of Managed Objects for Bridges
with Rapid Spanning Tree Protocol,” RFC 4318 (Proposed Standard),
Internet Engineering Task Force, Dec. 2005.

[7] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.” in Hotnets, 2009.

[8] J. Postel, “Transmission Control Protocol,” RFC 793 (INTERNET
STANDARD), Internet Engineering Task Force, Sep. 1981.

[9] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM

Computer Communication Review, vol. 18, no. 4. ACM, 1988.
[10] D. D. Clark, “Window and acknowledgement strategy in tcp,” 1982.
[11] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates

for software-defined networks: Change you can believe in!” in Proceed-

ings of the 10th ACM Workshop on Hot Topics in Networks, 2011.
[12] “Open vSwitch GIT Web Front-End,” http://git.openvswitch.org, 2014.
[13] N. L. M. van Adrichem, B. J. van Asten, and F. A. Kuipers, https:

//github.com/TUDelftNAS/SDN-OpenFlowRecovery, Jul. 2014.
[14] R. Olsson, “pktgen the linux packet generator,” in Proceedings of the

Linux Symposium, Ottawa, Canada, 2005.
[15] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,

“Openflow: meeting carrier-grade recovery requirements,” Computer

Communications, 2012.
[16] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and P. Skold-

strom, “Scalable fault management for openflow,” in Communications

(ICC), 2012 IEEE International Conference on, 2012.
[17] E. Bellagamba, J. Kempf, and P. Skoldstrom, “Link failure detection and

traffic redirection in an openflow network,” May 19 2011, uS Patent App.
13/111,609.

[18] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,
“Effective flow protection in open-flow rings,” in Optical Fiber Com-

munication Conference. Optical Society of America, 2013.
[19] ——, “Openflow-based segment protection in ethernet networks,” Op-

tical Communications and Networking, IEEE/OSA Journal of, vol. 5,
no. 9, 2013.

[20] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th

ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

