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Abstract

As the electrical grid becomes more constrained and grid reinforcement/expansion is no longer the only
viable solution, electric flexibility is slowly becoming a more practical approach. Additionally, with the
increasingly greater share of flexible devices being deployed, there is immense potential to solve this
problem. While flexibility provision is already an implemented market mechanism, it mostly revolves
around large industries that have more predictable behavior. At the residential or distribution level, said
flexibility is harder to harvest due to the unpredictability and heterogeneity of the systems and actors
involved.

This report’s focus is creating a protocol facilitating the flexibility exchange between asset owners and
the grid operator. In order to bridge these two actors, an aggregator program is created with the task
of managing in a responsible way these exchanges. The protocol has used The Green Village, an
aggregate of smart residential housing located on the TU Delft campus, as a physical system to base
the protocol and program. Although The Green Village has been used as a reference, the protocol
and program should be versatile for any application. The main goal, when developing the protocol,
was to have the aggregator program take in as many tasks related to flexibility exchanges as possible
to increase compatibility (interoperability). The protocol and aggregator program were also designed
to facilitate modifications and upgrades (plug-and-play) while preventing communication errors (redun-
dancy). To fulfill these requirements, the report takes the following structure.

First, the different methods and frameworks enabling flexibility as well as involved actors are discussed.
Then the protocol and aggregator program are explained in depth. Finally, a validation through simula-
tion is presented and inspected.

11



contents

Preface
Abstract
Nomenclature
1 Introduction
1.1 Context . . . . . . e
1.2 Congestion Management with flexibility . . . . .. ... ... ... ... ... ......
1.3 Research Question and report structure . . . . . ... ... ... ... ..........
2 The importance of standardization
2.1 Standarization . . . . . .. e
21.1 Controlling flexibleassets . . . . . . .. . ... ..
2.1.2 Metrics to evaluate and operate flexibility . . . . . ... ... ... ... ...,
2.1.3 Frameworks for trading flexibility . . . . . ... ... ... .. ... . .......
3 Physical system and actors involved
3.1 Physical system . . . . ..
3.2 Actorsinvolved . . . . . ...
3.2.1 The Distribution System Operator . . . . . . .. ... ... ... ... ...,
3.2.2 The Energy Management System (EMS) . . .. .. ... ... ... .......
3.2.3 The Aggregator (AGR) . . . . . . . . . . . e
3.2.4 Conflict of interest but complementing features and system architecture . . . . .
4 The Trading Framework
4.0.1 USEF Framework and GOPACS . . . . . . . . . . . . . ... . .. .. . ....
4.0.2 PNNL's Transactive energy framework . . . . . .. .. ... ... ... ......
5 The AGR architecture and interactions
5.1 The AGR program architecture . . . . . . . . ... .. ... .
5.1.1 Achitecturalrequirements . . . . . . . ... ..
512 AGRoprogram . . . . . . . . . e
5.2 The AGRinteraction . . . . . . . . . . . . e
5.2.1 The DSO section (DSO-AGR interaction) . . . ... ... ... .. ........
522 The Metricssection . . . . . ... . . .. ... ...
5.2.3 Economics Section . . . . . . ...
5.2.4 The EMS section (EMS-AGR interaction) . . . ... ... ... ... .......
5.2.5 The complete system interaction . . . . . ... ... ... ... ... ......
5.2.6 Rank implementationinprotocol . .. ... ... ... ... .. ... ...,
5.3 Connecting all the actors together . . . . . . . . .. ... ... o
5.3.1 MQTT protocol . . . . . . . . . e
5.3.2 OpenRemote . . . . . . . . . .
6 Validation in simulation and discussion
6.1 Systemanddataavailable . . . . . . .. ... ...
6.1.1 System . . . ..
6.1.2 Dataavailable . . . ... ... ...
6.1.3 Pythoncodestructure . . . . . . . . ... ..
6.2 Simulationresult . . . . . . . ...
6.2.1 Flexbility Tradingoveroneday . . ... ... ... .. .. ... ... .......
6.2.2 Sensitivity analysis of flexibility tradingoveraday . ... ... ... ... .. ..
6.2.3 EMSfeasibilitychecks . . . . . . . ...

11



Contents v

6.24 RankingandRatio . . ... ... ... ... ... 53

6.2.5 Sensitivity analysisof Ranking . . . . . . .. ... o o oo 56

6.3 Future Implementation of the AGR program . . . . . . . . .. ... ... ... .. ... . 58
6.4 Testingwithareal EMS . . . . . . . . . . . . ... . ... e 60
6.4.1 EMSoperationforwinter . . . . . ... ... ... 60

6.4.2 Simulation forthe otherseasons . . . . . . ... ... ... .. ... ...... 62

7 Conclusion and recommendation 66
References 67
A Additional figures 69

B AGR program code 7



Nomenclature

Abbreviations
Abbreviation Definition
AGR Aggregator
TGV The Green Village
EMS Energy Management System
DSO Distribution System Operator
DR Demand Response
MPC Model Predictive Control
DT Digital Twin




Introduction

1.1. Context

In the last decade, the world has focused on transitioning towards a cleaner world. This change has
led to a shift from appliances using gas to electricity resulting in an increase in energy demand from the
electric grid. Additionally, the growth in population and businesses has contributed to supplementary
stress on the grid. In cases such as the northern neighborhood of Buiksloterham-Zuid and Overhoeks
in Amsterdam, large to medium consumers can no longer be accepted as the grid reached its maximum
capacity with expansion plans only scheduled for 2023 [1].

To make things more complicated, more and more decentralized renewable generation is being installed
at the distribution level. This ever-increasing uncontrollable energy source represents a large injection
of energy in the grid when consumption is low, leading to further congestion management issues. This
was the experience for the German grid and photovoltaic integration at the low-voltage grids [2].

To counter this, different solutions are available. Grid reinforcement/expansion is usually a solid solution
as it increases the allowed capacity. For example, the southern German distribution system operators
(DSO) have been upgrading their operating equipment mainly to avoid overloading due to the growth
in PV systems installations [2].

However, such a measure requires time and financial/material resources that are not always available
which is why it is usually perceived as a long-term solution. For example, in the previously mentioned
situation of the neighborhoods of Buiksloterham-Zuid and Overhoeks in Amsterdam, the DSO Aliander
has evaluated that the grid reinforcement/expansion would take 5-7 years. Additionally, the DSO has
concluded that by the time the grid reinforcement would be completed, the demand would have already
outgrown the reinforcement, ending up in the same situation as before [1]. Another solution available
to solve grid congestion is called demand response. It is faster and cheaper to implement with respect
to grid reinforcement and is usually perceived as a temporary solution. One type of demand response
is called demand side flexibility (or flexibility for short) and is defined as the ability to adapt and change
generation and consumption [3]. Flexibility can then be used to make sure that the network capacity is
not surpassed (congestion management) but also for providing energy in parts of the network that may
need but not have enough available, although the former is the focus of this research.
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1.2. Congestion Management with flexibility

Congestion management through flexibility can be done with two methods, namely the implicit and ex-
plicit methods. The implicit method is when the user changes their power consumption in function to
price signals [3] [4]. For example, users will change their consumption more towards the middle of the
day, when typically, there is low consumption and high production of RES leading to a lower energy
cost. On the other hand, explicit flexibility is when flexibility is traded onto an energy market and the
provider receives financial compensation for it [3] [4]. Demand response solutions are interesting be-
cause they can be regarded, to a certain extent, as part of a mandatory transformation happening to
the electric grid. As previously explained, the capacity at the distribution level is continuously growing
which disrupts the traditional electricity grid structure of one-directional centralized power generation
to a bidirectional decentralized model. DSO'’s role is transitioning into a dynamic and essential piece
of the puzzle. The DSO must be able to monitor and efficiently manage the energy flows to avoid set-
backs and down time with demand response becoming an important featured responsibility [5].
Research has shown positive outcomes in using demand response flexibility for congestion manage-
ment [3]. For example, a community battery coupled with an intelligent algorithm proved to be ef-
fective for the reduction in grid congestion [6]. Additionally, a test pilot with an energy community in
Heerhugowaard (EnergieKoplopers) using the USEF framework has shown positive outcomes with the
community preventing congestions both time-wise (congestion lasted a shorter time) as well as height
(gravity of the congestion) [7].

Although the positive outcomes, demand side flexibility and flexibility markets at the distribution level
still have a long journey ahead and need development both on the technical side as well as policies [3]
[6]. Market-based flexibility, albeit maturing, is still defined as a niche practice [8] with still mismatches
in the provided flexibility which makes it suboptimal and hard to rely on [7]. For example, the EnergieKo-
ploper test pilot had one-third of its sold flexibility not served with the main root of the cause being bad
planning and coordination between the flexible assets and actors involved [7].

There are different ways that an asset can offer flexibility, and one of them is through an aggregator.
An aggregator (AGR) is responsible for coordinating the provision of flexibility to the grid. As the name
suggests it aggregates loads that create its flexibility portfolio which, through its know-how, tries to
maximize its revenue by selling the flexibility. The AGR thus represents the energy community in the
flexibility market by bidding flexibility and/or trading it depending on the market mechanism used. In this
study, the aggregator coordinates with an energy community made of residential loads coupled with
local photovoltaic production and storage. To provide flexibility, the aggregator communicates with the
Energy Management System (EMS) of the energy community, a central brain that plans and takeS
decisions on how the community energy assets should operate. The EMS objective is to make sure
that the user’s comfort is not exposed and thus is keener on conserving energy to match the user’s
demand at all times.

There is a conflict of interest between the aggregator that tries to maximize its financial benefits by
extracting flexibility and possibly exposing the user’s comfort and the EMS that tries to do the opposite.

1.3. Research Question and report structure

The goal of this study is to create a protocol that can coordinate the negotiations between the AGR and
the EMS. As the EMS is responsible for tasks that are not directly linked with flexibility, i.e. controlling
the assets to ensure the correct functioning of the system, and does not have any intrinsical aim to pro-
vide flexibility, it makes the most sense to consider the AGR as the missing link for such coordination.
The AGR, as defined previously, takes in the duty of managing the flexibility bids. More details on the
diversity of the tasks will be described later on. Such a requirement partially defines the outline of the
protocol. As a variety of EMS using different control methodologies may be involved, it is crucial that
the protocol can be easily implementable. Together with the proposed protocol, comes a Python code,
called AGR program. Said code computes flexibility from information given by the EMS and sells this
flexibility to the grid operator (in this case DSO). It is important to add that the communication between
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the AGR and the grid operator uses the USEF framework which shapes the way the EMS-AGR inter-
action is designed. Both the protocol and code are made open source in order to boost the usage and
they are by no means considered perfect. In fact, one of the structural requirements of the code is to be
flexible, meaning that parts of it should be interchangeable while staying operational. The purpose of
such design is that any user that decides to implement the code and, if desired, can tailor it to their own
preferences. Such change/addition should be errorless until the foundation of the messages between
the different involved actors is not modified. Eventually, the resulting communication structure should
ease and strengthen the incorporation of flexibility for energy communities through AGR while not under-
mining the users’ preferences. Thus, the research question of this paper revolves around the following:

How to create a protocol that enables aggregators to trade flexibility in a responsible manner?

To do so, the following sub-questions will be treated, each meant to clarify and elaborate the different
processes and actors that are involved in the flexibility exchange. The questions are as such;

First, what are existing methodologies that facilitate flexibility trading?

Second, who are the involved stakeholder and what are their interests?

Third, what are the developed trading protocols?

Fourth, how can the AGR program architecture be created to facilitate usage and modifications?

To answer each of these the body of the report is divided into six chapters. First, the importance of
standardization for flexibility trading is explained. Secondly, the physical system and the actors involved
in the flexibility trading process are described. Then, the trading protocol and more precisely the USEF
Framework is examined. The fifth chapter goes into depth about the protocol working and the different
sections of the AGR programs. Then the sixth chapter discusses the simulation results. Finally, a
conclusion and future recommendations are given about the study.



The importance of standardization

This chapter explains the importance of standardization for the deployment of flexibility. First standard-
ization in controlling flexible assets is discussed, more precisely the s2 protocol and OpenADR. Then
some metrics to evaluate and operate flexibility are explained and compared. Finally, the framework
for flexibility trading is briefly introduced.

At the end of this chapter, the reader will have an overview of the different technics that are involved in
flexibility.

2.1. Standarization

As previously presented, the energy network has many challenges ahead and flexibility seems to be a
compelling solution. With plenty of research and test pilots, it leads to the question of what limits the
implementation of this technology.

During the development of the EnergieKoploper test pilot, extensive research on the flexible asset’s
owner was carried out to understand the need and preferences. An important aspect that had been
determined during the interviews was that consumers were prone to participate until their comfort would
not be affected. The flexibility needed to be achieved without any effort from the consumer, attainable
only with trust in the organization and system. While different factors influence said aspects, standard-
ization plays an important role in obtaining them. As explained in the Energiekoploper test pilot report,
standardization will help to have reliable, uncomplicated, and uniform automatic control of smart de-
vices. This will not only ease the implementation of flexibility in households and other systems but will
also assist to lower investment barriers [7].

Another feature that has great importance is that such standards (and protocols) are also open source
to incentives the use and thus deployment of flexibility. This is particularly important for residential
applications as the impact on grid congestion is greater when more households are involved in the
process. Such logic is valid at any level of the system too. For example, an open standard for an EMS
can allow interoperability between smart devices of different brands enabling scaling up and reusability
of results [9].

2.1.1. Controlling flexible assets

The control of flexible assets has been the focus of TKI Urban Energy and RVO, who published an
investigation paper of standards for communication of smart devices and other assets with central con-
trol (i.e. EMS). As stated in the paper, there is no standardized interface available on the market that
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enables the universal communication between an EMS and assets from different manufacturers each
with their own protocols [9].

The paper then introduces their solution: the S2 protocol which is part of the EN 50491-12, a standard
created by the European Commission that lays out the general requirements for Home and Building
Electronic Systems and Building Automation and Control Systems.

However, before discussing how the S2 protocol works, it is important to understand the two approaches
an EMS can communicate with a smart device to unlock flexibility.

The first one is the direct approach. As the name suggests, the EMS directly communicates with the
smart device to modulate its consumption and deliver flexibility. To do so the EMS uses the device’s
protocol. The struggle with such an approach is that the EMS is likely to interact with various devices
manufactured by different manufacturers that use different protocols. The EMS has then two options:
use devices that operate on the same protocol, drastically constraining the range of flexibility possibil-
ities, or build a polyglot EMS. A polyglot EMS has many protocols implemented and thus can interact
with different devices. However, the problem with such EMS is that some of the protocols may be
proprietary and the owner/company may not want to share it [9].

Figure 2.1 shows the schematic of two systems using the direct approach. One EMS uses only devices
with the same protocol and the other is a polyglot EMS.

Brand
B

Protocol

B

Brand Brand Brand Brand
1 ' ] n
)
Protoco ’O’bn ’ &g

Gy -127‘

Figure 2.1: Schematic of direct approach: one protocol EMS (left) and “polyglot” EMS (right). [9]

The second way is the indirect approach. This approach circumvents the need for using only the same
protocol or a polyglot EMS by introducing a middleman in the system. The EMS does not directly com-
municates with the device but rather with a resource manager (RM) that acts as a connection point
between the EMS and the smart devices. The RM communicates with the smart device with their
protocols and “translates” the messages to the EMS through a standardized protocol namely, the S2
protocol [9]. As a shortcoming, the position of the RM can affect the system performance (i.e. slower
response time due to many layers) but also maintenance issues. This may be an issue as, in the
EnegieKoploper test pilot, often flexibility could not be delivered because the system lagged behind,
although it was reported that the impact is small [7]. Additionally, at the time of writing this paper, the
S2 protocol has not yet been implemented and thus still lacks proof of concept [9].

Figure 2.2 shows the schematic of how the EMS and the flexible/smart devices are connected and
communicate when the S2 protocol with the RM is implemented.
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One standardised Currently available
interface for protocols or device
unlocking flexibility specific protocols
Flexible
+— » | Device-1
e.g. Heatpumps
EMS | Flexible
@ +——» | Device-2
I e.g. EVSE
Flexible
+——— | Device-3

a.q. Solar panals

Figure 2.2: Schematic overview of EMS to device communication via a Ressource Manager [9].

The TKI Urban Energy and RVO document also underlines the importance that the indirect and direct
approaches should not be considered as opposite but rather complement as the RM to smart device
communicate through a direct protocol. [9]

There are other instances of standardized protocols for communication between system actors. An-
other example is the OpenADR which stands for Open Automated Demand Response.

Its goal is to facilitate communication between energy actors such as energy providers, aggregators,
and end users by creating an open flexible data model for common information exchange that anyone
can implement. This helps to have a reliable, repeatable, robust, cost-effective, and automated DR at
the customer level [10].

The message transmission between the involved actors is done by assigning the roles of the virtual top
node (VTN) and the virtual end node (VEN). The VTN is the sender of messages while the VEN is the
receiver and the messages are transmitted over a secured internet connection. An example of a VTN
and VEN communication would be a system operator sending in a flexibility request to an aggregator
that in his turn will send a message to an EMS to activate the flexibility. However, just because one
actor is a VTN does not mean that it cannot become a VEN in another interaction. In the case described
above, the AGR is a VEN when receiving information from the system operator but in the next step,
it becomes the VTN when communicating with the EMS. Figure 2.3 shows the possible relationship
between VTN and VEN.

OpenADR offers a variety of different services and functions used for requesting and activating demand
response. Such services and functions vary based on which profile is used [10]. Nonetheless, such
profiles can be further modified by including more services. An example is the OpenADR and USEF
Foundation partnership where three new DR program templates were added to better fit the frame-
work’s purpose [11]. More detail on the USEF framework operation is given in chapter 4.
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Figure 2.3: Possible relationship of VTN and VEN [10].

2.1.2. Metrics to evaluate and operate flexibility

Standardization research has also been done on how to forecast and evaluate flexibility. If done incor-
rectly, the consequences can be harsh penalties [12] but could eventually also result in grid failure if
the unserved flexibility volume is large and the system operator is unable to fix the failure in time [4].
During the EnergieKoploper test pilot, one-third of the flexibility was not delivered due to (in part) bad
forecasting of load as well as available flexibility [7]. One way that the authors of the report think that
it can be avoided is through highly available information. Metrics have thus been developed with the
intent to facilitate the computation and decision-making of flexibility. This subsection discusses two
metrics and then compares them.

The first paper, Quantification of operational flexibility from a portfolio of flexible energy resources, uses
the simulation of different scenarios to evaluate how a system is expected to serve its flexibility. Using
the metrics proposed by the author, the operator can analyze how the system performs. If it redeems
that too many scenarios have an unacceptable outcome, then it can ease the boundaries of the system,
run again the simulations, and see if the result is acceptable. The metrics used to assist the operators
are the following: the Expected Unserved Flexibility Energy (EUFE), the Expected Duration of Insuffi-
cient Flexibility (EDIF), and the Expected Flexibility Index (EFI).

The EUFE calculates the average expected unserved flexibility over all scenarios. It is expressed as
Watt hours (Wh) and its value is how much the operator should expect its system to not be able to serve
the needed flexibility.

The EDIF is a graphical overlook over the time horizon of the simulation that indicates at which PTUs
the system will not serve its flexibility. It uses a heatmap to distinguish the volume and direction of un-
served flexibility (i.e. yellow is used for a large volume of unserved flexibility). Such graphical overlooks
can help the operator to differentiate the volume and PTUs when the system does not serve flexibility
according to the simulation. The operator can use it to extrapolate patterns and change the boundaries
accordingly to see if it helps to reduce the unserved flexibility.

The EFl is a unitless metric that measures the operational flexibility of the system. The metric gives the
percentage of how much of the expected flexibility will be served. The closer the number is to one, the
more flexibility is expected to be served. For example, an EFI equal to 0.9 means that 90% of the total
planned flexibility is expected to be served. As the paper explains, with the outcome of the EUFE and
EFI combined with the graphical overlook of the EDIF, the operator can have a clear understanding of
which DR action plan and policies are more interesting. The metrics evaluate the flexibility of a portfolio
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of assets as well as the consequence of an operational policy [12].

The second paper, Integrating Energy Flexibility in Production Planning and Control - An Energy Flexi-
bility Data Model-Based Approach, introduces the Energy Flexibility Data Model (EFDM).

The EFDM is structured such that it can give clear insights to operators wishing to activate flexibility.
As the paper explains, the EFDM has the intent of “generically describing flexibilities and flexibility mea-
sures using key figures and technical parameters”. In simpler words, the EDFM is used to describe
the flexibility possibilities that a system can undertake by comparing the reference operation and the
possible variation in performance. To do so four classes are used:

The Flexible load, which describes the assets or the interaction between assets that can lead to a
change in energetic performance (i.e. reduction of energy consumption).

The Dependency, correlated to how assets are interdependent from each other. The usage or ramping
up of one asset may affect the operation of another (i.e. the charging of a battery means that it cannot
be used to power another asset).

The Storage, to characterize which assets or interactions can be used to store energy. This refers
to batteries, heat but also inherent energy storage (the latter are more common in industrial settings).
Flexibility load measure, is used to give the concrete power changes within the flexibility space that the
system can withstand by using the 3 classes explained above [13].

While the two paper’s metrics may have the same purpose, to give a clear insight into the system’s
flexibility to operators to ease their decision-making, there are some differences that need to be pointed
out. As explained, the EDFM is used to define the flexibility possibilities. The system knows what its
possibilities and limitations are and then, therefore, plans how the flex can be used. The EUFE, EDIF,
and EFI, on the other hand, focus more on quantifying the lack of flexibility. The metrics are used to
calculate the amount of flexibility that will not be served. From this, the operator can determine how
much it wants to reduce this lack of flexibility by altering the boundaries of how much flexibility the
assets can deliver [12][13].

2.1.3. Frameworks for trading flexibility

Last but not least, the USEF Framework needs to be discussed. It has been already explained that the
framework is employed to coordinate the exchange of flexibility. Through USEF, the grid operator (i.e.
DSO) is able to send a request for flexibility at a specific node. All registered actors (i.e. an aggregate
of prosumers), connected at the node can bid to serve said flexibility, and a local flexibility market.
The USEF Foundation has done extensive research work to create a standardized framework that con-
tains a protocol of communication between the grid operator and the participants. Just as discussed in
the previous examples of standardizations, the USEF Framework has been created to ease and fasten
the deployment of flexibility. [4]

This chapter has highlighted the importance of standardization in different fields. First, it has been
explained that standardization can facilitate the implementation by helping to have reliable, uncompli-
cated, and uniform automatic control of smart devices. This also reduces the financial barriers which
also incentives the installation and usage. The second important aspect of standardization that has
been discussed is that it enables interoperability which can allow scaling up and reuse of previous
data and/or system structures. As an example, the S2 protocol was presented. Through an indirect
approach, it is able to connect and control flexible assets that operate on different protocols, although
with some limitations nonetheless. The importance of open source was also discussed, with the exam-
ple of OpenADR which facilitates the information exchange between energy actors. Thirdly, various
metrics to forecast, plan and evaluate flexibility were discussed. The EUFE, EFI, and EDIF, help to
evaluate how much flexibility a system can provide. The EFDM, helps to understand how activating
flexibility affects the reference operation through the guidance of four classes. While the two sets of
metrics have similar goals, it was explained how the way they tackle the situation is different. Finally,
the standardization of trading protocols was mentioned with the USEF Framework briefly discussed.



Physical system and actors involved

This chapter treats on the physical system used as well as the different actors involved. First, an
explanation is given of the installation’s characteristics that this study is based on. Then the different
actors involved in the flexibility trading are introduced as well as their pros and cons with respect to
flexibility trading. Finally, the structure of the whole system is presented and discussed.

3.1. Physical system

The system used in this research is The Green Village (TGV) developed by TU Delft. Its purpose
is to be a field lab for sustainable innovation and has been modeled with the intent to be an off-grid
neighborhood. The system architecture is composed of centralized self-generation and storage. The
energy generation is done thanks to a solar panels installation with a peak power of 6 kW. While the
storage has a 14 kWh battery as well as 27 cylinders storing 60 kg of H2 under a 300 bar pressure. The
system is also equipped with a 2.3 kW fuel cell that allows the conversion of hydrogen into electricity
but also enables the re-usage of heat. The neighborhood is also equipped with flexible devices such
as heat pumps [14].

The centralized system is operated by an EMS that plans and controls the energy consumption of the
community. The EMS uses a Model Predictive Control (MPC) that forecasts and plans the behavior of
the system over a time horizon, in function of controllable variables [15].

3.2. Actors involved

3.2.1. The Distribution System Operator

Depending on what framework is used for flexibility trading, the involvement of the DSO may differ. As
this study focused on the USEF Framework, it will be taken as the reference model. More explanation
of the Framework is given in chapter 4 but in short, the DSO is responsible for forecasting congestion,
requesting it, and managing the flexibility market (i.e. clearing the market) [4].
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3.2.2. The Energy Management System (EMS)

The EMS is a centralized commanding unit that automates the monitoring, control, and optimization of
the system that it controls to best fulfill the goal that it has been assigned [16].

With respect to flexibility trading, the EMS has the advantage of having a diverse portfolio. For exam-
ple, TGV is equipped with a storage unit, a self-generation asset (i.e. photovoltaic on the rooftop), and
flexible consuming assets like a heat pump. These multitudes of assets give the EMS the possibility
to adapt and change its consumption and generation in a multitude of ways. This means that the EMS
has many different ways that it can supply flexibility to the market.

The other advantage of the EMS is that it directly controls the flexible assets. No third party needs to
be involved to activate the flexibility of the assets as the EMS is the one in charge of operating them.
However, the EMS presents some disadvantages with respect to flexibility trading. The EMS is created
not only to automate the monitoring of a system for more efficient control but to do all while remaining
within the asset owner’s comfort boundaries. The EMS "works” for the asset owner and will try to not
expose the user’s comfort rather than risking it in trading flexibility thus endorsing more of an energy-
conservative mindset. It is important to note that this also depends on what goal and boundaries were
given to the EMS. Furthermore, the EMS manufacturer may not want to implement flexibility trading in
their algorithm for three main reasons.

The first one is latency. Having to include flexibility computation can not only lead to a slower EMS,
which is quite unwanted but might also be out of reach for certain manufacturers. For example, price
forecasting is needed to set a price on the volume of flexibility power bids. This is an expertise that cer-
tain companies fully specialize in (i.e. N-Side’s energy market forecast [17]) and may be out of scope
(or budget) for an EMS manufacturer.

The second reason is impact. A single EMS may control a lot of different flexible assets but only a
small capacity. While it may have many different options to provide flexibility, the impact that one sin-
gle EMS may not be enough to make a difference and thus the EMS manufacturer may not have any
or enough financial incentive to implement trading. Additionally, the market entry criteria creates an
entry barrier for EMS controlling relatively small capacities further disincentivizing the manufacturers
[18]. One of the entry barriers is a minimum resource bid size, varying for each country. In the case
of the Netherlands, a 4 MW resource capacity is needed which hinders the market entry for residen-
tial, commercial, and even small industrial consumers which leaves them excluded from the balancing
market [18]. Depending on the market structure, it can be requested that an actor must be able to do
symmetrical bidding. This means that the actor must be able to provide flexibility by both reducing or
injecting energy into the grid. This further excludes flexible asset owners that may be equipped with an
asset of only one kind (i.e. only PV or only heat pump) [18].

Finally, the third reason is responsibility. As explained previously (and in more detail in chapter 4),
flexibility that has been sold but not served results in a penalty (fine). This can push away EMS manu-
facturers who may not want to take in liabilities for unserved flexibility.

3.2.3. The Aggregator (AGR)

The AGR role is defined by the European Commission as the combination of multiple customer loads
and/or electricity generation for sale, purchase, or auction in an electricity market [19]. There are many
different types of AGR that have varying roles. For example, the integrated AGR takes care of supplying
energy to its clients while as well providing flexibility to the grid [20]. For the case study of this paper,
a contractual AGR is considered, meaning that it is not responsible for providing energy to the clients
but only for coordinating and serving flexibility [20].

The AGR presents advantages with respect to flexibility trading. The first one is that it is an entity that
is fully focused on profit-maximizing and has the know-how to participate in the electricity market [18].
If the market is designed properly and the AGR receives the correct signal, through its portfolio, it can
provide effective flexibility which results in increased economic well-being and efficiency for both the
parties involved (i.e. asset owners) and the power system [20]. This is usually true as market prices
indicate the network status and thus if the assets are coordinated correctly then it will yield an improved
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system condition [20]. The AGR also takes all liabilities for unserved flexibility, leaving the asset owners
free of trouble [21].

On the other hand, there are also some disadvantages. If the AGR is not equipped with a diverse
portfolio, its flexibility possibilities are reduced and it will not be able to deliver efficiently. Thus there
is a need to have enough capacity to be eligible for the market but also that said capacity is diverse
enough to be able to efficiently participate [21]. Additionally, because of its economically driven mindset,
flexibility assets owner’s interest may be neglected, leading to a possible high financial yield but at the
cost of reduced user comfort. This is a condition that can lead to flexible owners not wanting to put at
disposition their assets [21].

3.2.4. Conflict of interest but complementing features and system architecture

From the previous subsection, we have seen how the EMS and AGR can both participate in the bal-
ancing market. On one side there is the EMS, which directly controls flexible assets with the intent
of maximizing the owner’s comfort which leads to being less likely to trade flexibility (conservative ap-
proach) as well as excluded by the regulations (minimum capacity to participate) and driven away by
the practical reasons (EMS manufacture has no incentive to include flexibility trading algorithms).

On the other side, there is the AGR which knows how to trade flexibility and can take liabilities for un-
served flexibility but because of its economically driven mindset, its flexibility bids may not reflect the
flexible asset owner’s preferences.

This leads to a conflict of interest between the AGR which wants to maximize the financial yield and
the EMS which wants to maximize the user’s comfort. Thus a compromise must be found between the
two which is why the architecture is shown in figure 3.1.

ECONOMICS

[ 1] -
EMS — AGR B S -
D D D ﬂ (Energy Community) <——— EMS PROGRAM Grid Operator

The Green Village

METRICS

Figure 3.1: System architecture for flexibility trading

The AGR is placed between the EMS and the DSO and trades flexibility on behalf of the EMS. It
bridges the interaction between the EMS and the DSO. However, the AGR does not have full control
of the flexibility bids but rather it takes care of the following task:

+ Itis in charge of evaluating the flexibility possibilities and creating flexibility bids that can be sub-
mitted to the system operator.

+ Itis legally responsible for serving flexibility. This means that it is liable for any unserved flexibility
and not the EMS.

* Itis responsible to communicate with the EMS and DSO to try to best match each other’s requests.
The EMS is also assigned some tasks:

+ It directly controls the flexible assets. Makes sure to have them deliver flexibility.

+ It administrates the flexibility bidding to make sure that the flexibility bids do not neglect the user
comfort.
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Such system architecture makes sure that each actor performs the tasks that it is most skillful at. On
one side the AGR is concerned with all the computation and legal requirements to provide flexibility
and on the other, the EMS ensures that the flexibility is served and that its provision does not influence
the user’s comfort.

It is important to note that this architecture is not new and aggregation at the residential level is already
happening although large customers (i.e. industrial loads) are the more common practice [20].

This chapter presented the different components that form the system. the Green Village (TGV) was
introduced together with the flexible assets that it has installed and the control algorithm that operates
the assets. Thanks to the MPC EMS, the TGV can plan its consumption and operation Additionally, a
diverse and large storage system, allows it to function off-grid.

The different actors involved in the flexibility trading were also discussed. First, the DSO, although
briefly mentioned, is responsible for forecasting congestion but also managing the flexibility market.
Then the EMS, which controls the flexible assets and, in the case of TGV, has a diverse portfolio.
However, because of a variety of reasons, the EMS is discouraged to take part in flexibility trading.
The AGR on the other hand, does not directly controls the assets but trade flexibility. With a know-how
experience, it can trade flexibility if it has a diverse portfolio. However, its economically driven mindset
can lead to undermining users’ preferences and deter EMS’s willingness to participate.

The AGR and EMS have a conflict of interest but also complementing features. This duality can be
advantageous if each actor is assigned the correct role. In the system architecture discussed, the AGR
is placed in between the EMS and the DSO, bridging the interaction between the two. The AGR is
responsible to evaluate the available flexibility as well as taking all liability for serving it. The EMS
operates the assets so that the flexibility can be provided but also makes sure that the AGR does not
overstress the system and undermine the asset owner’s preferences/comfort.



The Trading Framework

This chapter discusses the trading framework that already exists. The GOPACS and USEF Framework
are discussed, with the latter being explained in more detail. A brief comparison between the two is
given. Then, the PNNL’s Transactive Energy Framework is explained.

4.0.1. USEF Framework and GOPACS

It has been explained that flexibility markets and mechanisms already exist and are active. An example
of a market is GOPACS. Although it is not a market platform on its own, it uses other market platforms
to allow grid operators to coordinate and solve congestions by trading flexibility. When a congestion
happens at a node, the responsible grid operator will send in a sell order which will be met by a buy
order from another grid operator in a non-congested area and thus resolve the congestion [8]. Before
the sell and buy offers are confirmed an algorithm check whether the buy and sell orders do not create
another congestion somewhere else in the network [22] [8].

An example of a mechanism and market is the previously mentioned USEF framework. Such frame-
work creates a communication protocol between the DSO and actors to standardize the exchange
of flexibility between the two. By allowing the communication between the two parties, the DSO can
publish requests of flexibility and the concerned parties can bid their willingness to provide a chosen
volume of said flexibility (either all of it or just a part) and thus creating a flexibility market [4].

To do so the framework describes 5 consecutive phases that map the communication between the AGR
and DSO and the actions that need to be taken.

The first step is the Contract Phase. This phase determines how the AGR will participate in the flexibility
market. It is at this stage for example that bilateral contracts are arranged. This is usually done once
and does not need to be repeated every day. Signing a bilateral contract usually gives the DSO the
possibility to request flexibility during a period. Figure 4.1 shows the UFTP information exchange in
the Contract phase.

13
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Figure 4.1: UFTP information flow in Contract phase [4]

The second step is the Plan Phase. During this phase all actors wishing to participate in the flexibility
market will have to register at the network node they are connected to. The AGR shares a list of which
nodes its assets are connected and equivalently the DSO shares the lists of nodes where flexibility can
be provided. The outcome of this second phase is that the DSO knows the ‘active’ flexibility partici-
pant at each node and the AGR knows which of its assets are connected at a node that could possibly
require flexibility. The flexibility market is therefore set up and all the active actors at each node are
defined. This process needs to be done daily as the assets of an AGR may change, it is also at this
stage that the DSO reserves a volume of flexibility that it may want to employ in case a bilateral con-
tract has been made with an AGR. Figure 4.2 shows the UFTP information exchange in the Plan phase.

Retrieve list congestion points

incl. associated connections i
Retrieve ‘active’ Aggregators
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[optional] FlexReservation Update

‘ - | optimize portfolio

Figure 4.2: UFTP information flow in Plan phase

The third step is the Validate Phase. AGRs need to provide a D-prognosis or baseload for the day ahead
(next full calendar day). The D-prognosis is the load curve (both consumption and production as one)
of each imbalance settlement period (ISP). The DSO will use all the D-prognosis as well as information
about the power flow to understand whether there will be any foreseeable congestions at that node. If a
(or multiple) congestion is apparent, the DSO will send in a request for flexibility known as FlexRequest.
All actors registered and connected to the node can then send an offer with the amount of flexibility that
they are willing to offer. This is called FlexOffer. A FlexOffer can be either a reduction of power or an
injection of power in the grid. The former can be done either by consuming at a different ISP when the
power consumption is not as large and the grid is not congested (this is known by the AGR during the
Plan Phase) or by using storage. Itis up to the DSO to decide which offer it prefers. The DSO will send
in a FlexOrder which will confirm to the AGR that its offer has been accepted. The AGR then must send
a new D-prognosis with the flexibility incorporated. The FlexOffers will normally be determined through
merit order but the DSO still has the last word and can decide however it wants. For day-ahead trading,
the USEF closure time is 2 hours before the gate closure of the national balancing regime, while for the
intra-day trading, the closure is 1h before the first ISP for which the D-prognosis has been calculated
and also includes the D-prognosis of all the remaining ISP of that calendar day [23]. Figure 4.4 shows
the two market closures for both the day-ahead and intraday. Figure 4.1 shows the UFTP information
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exchange in the Validate phase.
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Figure 4.4: The two different USEF market gate closures.

The fourth step is the Operating phase. The day ahead has finally arrived and every time instance has
been planned and validated. Nonetheless, variations in the baseline (or D-prognosis) at the node are
likely to happen and adjustments will be needed. The steps of the Validate Phase are repeated except
within a shorter timeframe as now the FlexOffers and FlexOrders will be determined 1h before the first
ISP to which the D-prognosis applies. This can be regarded as an intraday flexibility market.

Figure 4.5 shows the UFTP information exchange in the Operate phase.
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Figure 4.5: UFTP information flow in Operate phase [4]
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Finally, the fifth step is the Settlement Phase. At the end of each month, the AGR and DSO calculate
the sold and procured flexibility as well as the possible exchanges that were not validated by each
other. If a difference arises, then the two parties can dispute. Figure 4.6 shows the UFTP information

exchange in the Settle phase.
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Figure 4.6: UFTP information flow in Settle phase [4]

These are the different steps that the USEF framework utilizes to enable the coordination between DSO
and actors that can provide flexibility like an AGR. Additional messages may be sent when bilateral con-
tracts are set up beforehand, but this report will not directly address that. The USEF Foundation has
published many different documents to explain the framework. At the time of writing this paper, a clear
statement about the granularity of how much power can be exchanged was found in the literature. Two
instances were found where the granularity was somewhat mentioned. In the document USEF: The
framework explained 2021, it is commented that "Activation is typically expressed in energy (kWh)” [4].
This helps to understand that the magnitude of the exchanges is of kWh but it is unknown whether there
is @ minimum amount (i.e. steps of 5 kWh). Additionally, in the appendix when defining the flexibility
service quantification where it is mentioned: "Determination of the amount of load/generation reduc-
tion/increase in terms of instantaneous power [W] or energy during a certain time interval [Wh].” which
seems that flexibility power can be as small as 1 Watt. The other instance when power granularity is
mentioned is in an older version from 2015 of the same document USEF: The framework explained
2015. The effect of reducing load consumption using a heat pump is explained and the text states
"Reduce peak load in morning hours (5-9) by 1 kW” [24]. With this statement, it would seem that the
framework is able to work with power ratings that are as small as 1 kW but because no statement could
be found, it will be assumed that the granularity can go down to Watts (i.e. a flexibility request of 3 W).

Despite the fact that GOPACS and USEF seem to do the same task, there are some important distinc-
tions that need to be pointed out.

The first one is the nature of the two. GOPACS is a market mechanism that connects different market
platforms together to allow DSO and TSO to coordinate. The USEF framework on the other hand is
a communication protocol between the DSO and a party that can offer flexibility. To some extent, it is
also a market as the DSO sends requests (demand) and the concerned parties send offers (supply)
but it does not use a commercial platform like ETPA like GOPACS does.

The second one is the scale where the two operate. GOPACS allows grid operators to connect and
coordinate between themselves to solve congestions while the USEF framework involves actors like
aggregators and grid operators. GOPACS therefore works more on a national grid level both for distri-
bution and transmission while USEF is more local, within the distribution level.
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4.0.2. PNNL's Transactive energy framework

The Pacific Northwest national laboratory has developed a Transactive energy framework that serves
a similar purpose to the USEF Framework. The flexible assets communicate their price-quantity bid
curves forecast for the next 48 hours to the DSO. The forecast is based on preferences set by the user
who can choose for each individual appliance their sensibility to electricity price. The more sensitive
the appliance is, the more it will be willing to change its consumption to moments of low electricity
prices. The DSO is also in charge of forecasting the load curve of the non-flexible devices and clear-
ing the market price for a 48h time window [25]. This market-clearing represents the retail price for
which the consumers within the DSO network are willing to pay for the electricity. The retail market
clearing is then bid in the wholesale market as the energy demand. Thanks to the large time window
of 48h, and to the information that flows in, the flexible devices can communicate to the DSO their
change in operation when the price is greater than their preference [25]. In the transactive energy
framework, the flexible assets are coordinating 24/7 with each other to best fit the demand curve set
by the DSO. In the transactive energy framework, all actors in the distribution network are in continu-
ous communication, whether directly or indirectly, to negotiate with each other about energy cost and
need [26] [27]. The DSO acts as a bridge between the wholesale and retail markets as shown in figure
4.7. This architecture creates a decentralized and scalable system, where the devices are controlled
by the user and not a company, allowing joint market and control to best match demand and supply [27].

Participants Infrastructure Market Operation
r " )8 ,  CenCost& L. Geperator Supply Bids
Generators %’ h”'& oy Constraints
l | | Generation il;:‘u:?lé"ﬂ -E.'I.
scheduling & = co|1;;;raln1 f
# . dispatch = e g
& Transmission . Market Clearin Ay @
ISO ! = ) Constraints 9 - s
\/ °
o DSO =20 Wholes o
. guantity ( ‘l ﬁr:i_r S =
] | | | bids $ =
DSOs yepy's T DSO Demand Bids
%% @ Distribution - =
Constraints > Market Closring i&:'
- N -
Price-quantity [ H_e"'“l 2
r . N | curves ] r'l'ruza"’ E
Participating ;¢ 14 ~ oreeast s
1 ) om M P, stamer .
Customers v I \\% ~2 g;éf;i;:':‘:es » Customer Demand Bids =
[ i [ —
Responsive | | A : =i o
P L I @ Device Jﬁ s =pd “] |
Assets ~ ol v e W Flexibility = - [ 5 -

Figure 4.7: Overview of the wholesale and retail market coordination scheme [25].

The study has decided to implement the USEF Framework rather than the PNNL’s Transactive Energy
Framework. The main reason is because of the greater involvement of the users in the latter framework.
As explained, each user needs to set their preferences which will determine the appliance’s willingness
to participate in the flexibility market. The USEF Framework, on the other hand, does not require that.
The AGR can directly talk with the EMS which encompasses all of the user preferences into one single
data/message (i.e. the baseline). This characteristic also better suits the EMS being developed for
TGV as it was designed to reduce/limit user interaction with the system. Thus, the implementation of
the USEF Framework was preferred over the PNNL’s solution. Nonetheless, implementing the USEF
Framework has some disadvantages. The fact that the baseline for the next 24h is requested can be a
problem as depending on the control methodology implemented by the EMS, such a forecast may not
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be always available. It is stated in the USEF Flexibility Trading Protocol Specifications, that there are
alternative baselines methods [23]. The alternative baseline is assumed and agreed upon by both the
AGR and DSO. However, as stated by the document, the way that the alternative baseline is computed
is out of scope of the USEF Foundation and all documents treat on the default situation described
above.

This chapter has introduced and discussed GOPACS and USEF Framework. An in-depth description of
the USEF Framework was given with its five steps process. Then, GOPACS and USEF were compared
with the main difference being nature, one is a market mechanism while the other is a protocol and the
scale at which the two work (national and local respectively). Finally, the PNNL’s Transactive energy
framework was presented and it was explained why the USEF Framework was preferred over the
PNNL's.



The AGR architecture and interactions

This section looks more into details about the proposed AGR architecture as well as the interaction that
the AGR has with each involved actor (EMS and DSO). First, the AGR program architecture is explained,
then the interactions with the DSO and EMS are examined as well as the computation happening within
the AGR program such as flexibility bid creating and bid advising. Finally, how the system exchanges
information is described by explaining the MQTT messaging protocol and the platform OpenRemote.
At the end of this chapter, the reader will have an understanding of the AGR architecture as well as it
intrinsic functionalities.

5.1. The AGR program architecture

5.1.1. Achitectural requirements

The AGR program has been designed with some architectural requirements. These have been decided
with the intent to make the program as versatile as possible while avoiding any possible error.

The first requirement is EMS interoperability. It is crucial that the AGR program is compatible with as
many EMS as possible. By EMS it is meant that the AGR program should be able to interact with
different control methodologies (other than MPC, used by the EMS of the TGV). The goal is that the
AGR can aggregate with a wide range of EMS which diversifies its portfolio but also increases the
capacity of controllable flexibility. To do so, the AGR should take as many responsibilities as possible
to unburden the EMS and make it easier to implement the protocol.

The second requirement is redundancy, to avoid communication errors that may lead to unserved
flexibility. This is quite crucial for the AGR as an error in planning and serving flexibility means financial
penalties. To do so, safety net processes that double-check and confirm decisions are needed.

The third and final requirement is plug and play. As explained previously in chapter 1, the idea of
the AGR program is that it can be adapted depending on the AGR operator’s wishes. The program
architecture must be such that parts can be upgraded or modified to best fit the desired tasks/role. To
do so, the program workings must be simple and straightforward to ease the modifications. Additionally,
each interaction in the protocol should be clear to users so that when applying modifications or upgrades
to the code the protocol message is respected favoring smooth assimilation of changes.

19
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5.1.2. AGR program

The architectural requirements have influenced the way that the AGR program has been designed. To
best fulfill conditions, the AGR program is divided into 4 sections each responsible of a different stage
of the flexibility bid processing. Figure 5.1 depicts the AGR program architecture division into these
four sections.

ECONOMICS

AGR

METRICS

Figure 5.1: AGR program architecture

The four sections’ role are:

* The DSO section, responsible for the communication between the AGR and the grid operator.
Discussed in more detail in section 5.2.1.

» The Metrics section, responsible for computing the available flexibility and creating flexibility bids.
Discussed in more detail in section 5.2.2.

» The Economics section, responsible for setting a price to the bids, bookkeeping the economic
transaction, and acting as an advisor in the bidding process. Discussed in more detail in section
5.2.3.

» The EMS section, responsible for the communication between the EMS and the AGR.
Discussed in more detail in section 5.2.4.

While the concept is that each section can be interchangeable or modified, it is important to understand
they interact with each other and thus all of them are needed for the correct functioning of the system.

5.2. The AGR interaction

This section goes through the interaction that each of the AGR section has with each other and/or the
involved actors. The purposes are two: a clear definition of the message protocol and an explanation
of each section’s role in the flexibility bidding process. At the end of each AGR section, there is a short
summary of the data that is generated and shared by the section.
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5.2.1. The DSO section (DSO-AGR interaction)

This subsection focuses on the DSO section and the DSO-AGR interaction shown in figure 5.2.
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Figure 5.2: The DSO-AGR interaction

The USEF framework has been explained in more detail in chapter 4 and can be summarized into three
steps: detection of congestion, request and offering of flexibility, and confirmation of an offer.

Detection of congestion: The purpose of this step is for the DSO to forecast whether the network will
be subject to congestion. To do so, it requires every AGR that is connected to a node of the network
to send a forecast of the energy program of its grid consumption for the next 24 hours. This forecast is
called baseline or D-prognosis in the USEF Framework terminology.

Once the DSO receives all the baseline, it adds them up into one and checks whether the power levels
exceed the network limit. This is equivalent to the validate phase in the USEF timeline. Figure 5.3 is a
simplified depiction of this process. The DSO can now estimate when the congestion happens as well
as the volume of excessive energy congesting the network.
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Figure 5.3: Schematic of a congestion detection process
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Request and offer of flexibility: Now that the needed amount of flexibility volume at a specific time
has been determined, the DSO can send flexibility requests (FlexRequest in USEF). Each request is
a volume of power for a specific period. The AGRs at that node can bid on how much of the volume
they are willing to match for what price (FlexOffer in USEF). The AGR has two ways of matching the
flexibility request of the DSO: either load shedding (or peak shaving) or load shifting.

Load shedding or peak shaving is the reduction of power exchange with the grid. This can be done by
either reducing the energy consumption (i.e. an appliance is turned off) or by using local storage. In
the case of TGV that would be using a battery and/or fuel cell with hydrogen.

The other option is through load shifting. The consumption is rescheduled during a period when the
grid is not under stress. To assist this decision-making, the DSO shares the available energy in the non-
congested PTUs. The available energy is the difference between the congestion limit of the network
and the combined baseline. If the load shifting option is chosen, then knowing the margin of available
energy helps to know which PTUs the load can be shifted without causing another congestion. The
build of the AGR program proposed by this paper can only do load shedding and thus load shifting will
not be discussed. The reason is that at the time of this research, the EMS was not fully operational
and some data was lacking to be able to properly evaluate load shifting possibilities.

Figure 5.4 is the baseline at the node (combined baseline of all loads) with the different possible ways
to provide flexibility.
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Figure 5.4: Possible way to provide flexibility
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Confirming a flexibility offer: Once the DSO has accepted a flexibility offer (FlexOrder in USEF), a con-
firmation is sent to the AGR who has offered it. Once confirmed, the AGR must send back an energy
program which is the baseline modified by the flexibility bids. Once this is done, the DSO expects the
actor to respect that energy program otherwise a financial penalty (fine) will be issued. This new energy
program is called the DSO Energy program.

Figure 5.5 shows a simplified process of flexibility requested (upper middle figure), offered (lower mid-
dle figure) and the confirmation of bids (right-hand figure). In this case, the early morning offer is not
accepted while the late evening is.
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Figure 5.5: Simplified schematic of a flexibility request, offer, and confirmation

From this description of the message protocol between the AGR-DSO, it has been possible to highlight
the following message/data:

» A baseline forecast: the energy program for the next 24 hours.

+ Flexibility request: the request for flexibility for a certain volume and period.

+ Flexibility bids/offers: the offer in volume, price and PTU of flexibility that the AGR is willing to
offer.

* Flexibility confirmation: The DSO confirms that it has accepted the bid from the AGR.

» DSO Energy program: the modified baseline after the flexibility changes are taken into consid-
eration. This is the energy program that the DSO expects the AGR to respect with the risk of
otherwise being fined.

Figure 5.6 depicts the schematic of the AGR-DSO interaction. It has been described how this interaction
enables the forecasting of congestion, the requesting and offering of flexibility, and the confirmation of
which bids have been accepted. The next subsection looks into how the AGR program determines the
amount of flexibility that the system can provide.
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€

Figure 5.6: Schematic of the AGR-DSO interaction
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5.2.2. The Metrics section

This subsection treats on the metrics section shown in figure 5.7 and how available flexibility is deter-
mined.

ECONOMICS

EMS AGR DSO
PROGRAM

METRICS

Figure 5.7: AGR program with the Metrics section highlighted

This section of the AGR is reponsible in evaluating the available flexibility and creating flexibility bids or
changement in the baseline and planned operation. As explained in subsection 5.2.1, the AGR build
proposed by this paper can only do load shedding using the storage asset as power source. Nonethe-
less, with the correct data, the code can be extended to that functionality too.

The flexibility is provided through the storage asset by discharging it to power the TGV’s load and reduce
the power exchange with the grid. Such a process is shown in figure 5.8, which depicts the schematic
of the simplified determination of available flexibility. The figure is divided into 2 halves, namely step #1
and step #2. Step #1 is the data that the EMS sends to the AGR. This data is comprised of the baseline
for the next 24h (shown on the upper quadrant of step #1) and the Battery State of Charge (SoC) for
the next 24h (shown on the lower quadrant of step #1). Knowing the SoC for the next 24h, the AGR
can estimate how much energy the storage asset will have throughout the day and thus how much it
can deliver at a specific moment of the day. Step #2 shows how when the peaks of the baseline are
reduced, the SoC level decreases as well.

Step #1 Step #2
?Jl. 'P“
() () A
Power Exchanges /v\
with the grid
% R %t ()
Battery (s;:g'u (S,;:) 4
State of Charge
% () T ()
The EMS's energy program AGR energy program with
(baseline) and flexibility bids included
planned operation (usage of local storage)

Figure 5.8: Schematic of the simplified process to determine available flexibility
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Figure 5.8 shows only the SoC as needed data but in reality, more is being used to determine the
available flexibility. Additionally to the SoC, the rated power for the next 24h is shared which allows
the AGR to understand how the EMS plans to use the storage asset. For example, if the battery asset
has a maximum rated power of 5 kW and the EMS plans to use 3 kW at a moment of needed flexibility.
Then the AGR knows that it has only 2 kW available from the battery that it can use to bid flexibility. The
SoC and power ratings for the next 24h are part of the set of information named Planned Operation.
The asset specifications should also be known to the AGR so that it can evaluate the available pos-
sibilities. For example, the AGR needs to know the capacity of the batteries as the SoC alone is not
relevant information. This build of the AGR program is quite static, and the assets do not change. How-
ever, the purpose of this program is that it can be dynamic and adaptable. This is useful for an EMS in
charge of electric vehicles that are not always plugged in and available for trading. For this reason, a
dictionary containing all the various information should be given to the AGR. This dictionary should be
continuously sent to the AGR as the assets’ availability may differ (i.e. EV plugging in and out). Figure
5.9 shows what the structure of said dictionary would look like. Please note that the parameters are
not the real ones of the assets, the cases were filled up just to give an example.

Asset Outputs E | Storage Capacity | Rated | Range of Ramp up to | Available

(1/0) (1/0) (kWh) Power | Rated rated power | (1/0)
(kW) | Power (%) (MW/h)

Battery | 1 1 50 5 0-100 15 1

Fuel cell 1 1 100 10 0-100 15 1

Heat 0 0 - 5 0-100 5 0

Pump

PV 1 0 - 25 0-100 - 0

System

Figure 5.9: Example of a dictionary structure

The explanation of each column is:

» Outputs E: Allows to know whether the asset generates energy or not. This is helpful to under-
stand whether the congestion will be resolved by using local generation or if it will be by reducing
consumption.

+ Storage: Allows to know whether the assets can intake and store energy.

» Capacity: Capacity of the asset.

» Rated Power: Rated power of the asset.

* Range of Rated Power: How much the rated power can change. This is helpful to know whether
the asset has the functionality of modulating its output. An example of utility is that it can be used
to slowly ramp up and match the flexibility demand curve.

» Ramp up to rated power: Gives information on how fast the ramping is up of the devices is. Helps
to understand how to compute the cumulative flexibility curve (IPP summation) [12].

* Available: Whether the asset can be used for flexibility or not. This is useful for a system that has
assets under maintenance and that are no longer active or for assets that may be active only for
a certain moment of the day (EV gets plugged in) or for the AGR to have an overview of what the
system looks like.
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Now that the data available to the AGR has been explained and discussed, it is time to look into the
way that it determines the available flexibility.

As the possible feasible flexibility varies based on many different factors an optimization problem has
been created to compute how much the AGR program can offer to the DSO. Equation 5.1 shows the
objective function of the optimization.

objective function = min(FR; — Z(PS”’U)) (5.1)
J

Constrains:
Pratedmmj S Psh,ij S Pratedma,,j (52)
Py, < S%i50C '4500“ (5.3)
Pshij S Pratedmawj - Pratedij (54)
0< Pﬂltffdi,batt (55)

with:

» F'R the flexibility request (kW)

* Prated,,,, the maximum rated power of the asset (kW)
* Prated,,,, the minimum rated power of the asset (kW)
» Py, the flexibility power the AGR provides (kW)

» Cap the capacity of the asset (kWh)

» SoC the State of Charge of the asset (%)

* i index of the PTU

+ j index of the asset

The goal of the AGR is to match the flexibility power requests (FR) at every PTU by using the power of
local storage of its different assets (Psh).

Thus, the objective function of this optimization problem is a minimization of the FR and Psh with the
indexes i and j, the PTU and assets index respectively. At every PTU the AGR program will try to match
as much as it can the flexibility request without considering users’ preferences. The outcome of the
optimization is a new energy program called AGR energy program (modified baseline).

As explained, the system is physically constrained by the asset’s limitation as well as the planned op-
eration. Let us break down each of the constraints shown in equation 5.2 to 5.5.

The first constraint, shown in equation 5.2, makes sure that the power remains within the maximum
and minimum limit of the assets. With this constraint, the AGR is sure to use the asset within its power
limits and not bid more power than it can physically deliver.

The second constraint, shown in equation 5.3, relates to the available power. By using the capacity
(Cap) of the asset and the state of charge (SoC) it is possible to compute the amount of energy that the
storage has and thus the amount of power that it could possibly deliver. The reason why the capacity
and SoC are divided by 4 is that each data point represents 15 minutes of operation.

The third constraint, shown in equation 5.3, relates to the amount of rated power (P,.;.q) being used.
If the asset is already being used to power another load, the AGR must know how much power is “left”
to use before the asset reaches its maximum rated power. This prevents the AGR to make a flexible
bid without considering the consumption already happening in the background.

The fourth constraint, shown in equation 5.5, checks that the rated power of the battery is not negative.
If that was the case then the battery could not be discharged. This is not a problem for the hydrogen
storage as the charging and discharging are decoupled.

There is a limitation with the versatility of the optimization that needs to be addressed. As explained
the point of the AGR is to be to adapt to different assets. The concept of the dictionary was introduced.
While receiving information is not a problem for the program, it must be linked to an asset that was
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already defined in the optimization program. To give a more concrete example, if the optimization was
built to work with one battery and one hydrogen storage, through the dictionary, the capacity, max rated
power or availability could be changed in case the assets would be modified (i.e. more hydrogen tanks
are installed and the capacity increases). So in that sense, the dictionary is doing its job correctly as
the system specification are not static. However, if an additional flexible asset would be installed, for
example an EV, then the dictionary alone would not be able to automatically add an decision variable
in the optimization algorithm. Thus the AGR program can be versatile only if the installed assets are
known beforehand and the optimization function has been modified to include them.

It has also been explained before that the AGR program is unable to compute load-shifting flexibility
bids. The reason is the lack of information available from the state of the EMS of TGV at the moment.
Nonetheless, it is quite an important aspect as most EMS that the AGR interacts with are unlikely to
be equipped with a large capacity storage asset like TGV thus not being able to provide flexibility like
these simulation cases. Load shifting is then a resourceful action that should not be ignored in future
iterations of the AGR program.

This optimization problem has been modeled using the Pyomo library. Please refer to the appendix B
for more detail about the code.

From this description of the metrics section, it has been possible to highlight the following message/-
data:

» The Planned Operation: how the asset operation has been planned for the next 24h. This includes
the variation in SoC and rated power.

+ Dictionary: all relevant data of the assets. Ranging from physical specifications to the availability
of the asset.

* AGR energy program: the new grid exchange computed by the AGR program after the optimiza-
tion algorithm.

5.2.3. Economics Section

This subsection discusses the Economics section highlighted in figure 5.10 and its role in flexibility
bidding.

ECONOMICS

PROGRAM

DSO

METRICS

Figure 5.10: AGR program with the Economics section highlighted

The economic section has a variety of roles, each with a different level of importance. The idea behind
this section is that it acts as a price setter, bookkeeper as well as advisor to the AGR operator.
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Its responsibilities range from common financial tasks such as determining the price of each bid to
calculating the revenue and losses based on the served and unserved (offered and accepted bids that
have not been served) flexibility. Other tasks are, ranking bids or creating ratios to more easily extrap-
olate and understand information about the system’s progress.

While determining the price is an essential task as the AGR needs it when communicating its bids to
the DSO, the others are less fundamental but can still have a crucial role. This section explains each
of them and discusses their function.

The first task is price setting. The Economics section makes sure to determine an appropriate price
for each flexibility bid depending on which market time horizon the AGR is bidding on (day ahead or
intraday). The AGR can participate in different markets depending on what kind of service it wants to
provide. In this report, it was decided that the AGR would only operate in the balancing market and
thus the price should be determined with respect to that market [4].

This report didn’t dive into the different methods of forecasting but having a reliable prediction of the
market price can be of great advantage for the AGR for two reasons:

» The AGR can correctly price the flexibility it sells to win the flexibility bidding process and maximize
revenue.

» The AGR can plan its operation in the coming hours/days. Deciding to hold its bids to the next
day because it forecasted greater prices.

Overall, the price setting is essential not only because it is required by the AGR to assign one for each
bid to participate in the USEF Framework but because it can increase the efficiency of the bidding pro-
cess and help plan the operation.

The second task is revenue and losses. These are quite straightforward, it is the multiplication of the
volume of power times the price (or penalty) at which it has been sold. There can be two types of rev-
enue and loss, namely the bided revenue and loss and the served revenue and unserved loss. There
is a clear difference between these pairs that needs to be understood.

The first one, bid revenue/loss, refers to the future monetary outcome of selling or not bided flexibility.
This means that a volume of power at a certain price is bid to the DSO and still awaiting a response on
whether it has been accepted or not. The bid loss is a bid that was initially created by the AGR (AGR
Energy program) but then rejected which resulted in a loss in possible revenue.

The second pair, the served revenue and unserved loss refers to the bids that have been accepted by
the DSO and that the AGR has served or not. Serving the planned flexibility results in financial com-
pensation as the AGR has performed the action that was agreed upon (i.e. reducing its own energy
consumption). However, as explained in the first section, there can be instances when the AGR does
not provide flexibility due to complications. If that is the case, then a penalty needs to be paid hence
the name unserved loss.

It is important to state that these two pairs can apply to both day-ahead and intraday market bids.

The relevance of having such metrics is two. The more obvious one is as a bookkeeping function.
Using the served revenue and unserved losses the AGR can keep track of whether its is making profit
or not. The other pair, the bid revenue and loss, has more of an advisory purpose. The more basic
intent would be to use the bid revenue to have an idea of how much the set of bids will yield if accepted.
Another function would be to compare two sets of bids. For example, if the AGR’s proposed bids are
partially refused then the bid revenue and loss can help examine how much of the AGR’s financial
plans have been altered. Overall, they help to monitor how the AGR financial returns.

This leads to the third task, creating a rank. The concept is that it grades each bid based on the revenue
it brings in compared to the maximum revenue possible out of the set of bids. The equation 5.6 shows
how it is calculated with Revenue, the revenue that a bid generates at index i (PTU) and Revenue gz
the maximum revenue that is achievable out of the set of bids analyzed.

R i
Rank; = ——cvenuei (5.6)
Revenueqz
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The rank permits to organize hierarchically each bid based on its importance. This can be of great use
in a situation when a decision must be made for which bid needs to be kept and which needs to be
discarded. It will be demonstrated in section 6.2.4 on how the ranking of bids can have a significant
impact.

The rank has the purpose of both advising and monitoring. Advising because it helps the AGR filter
the bids based on their importance as explained before. Monitoring because the AGR can examine
its performance by keeping track of the ranks of the bids that were either not secured (bid was not
accepted by DSO) or not provided (the flexibility was not served resulting in a penalty). This can help
the AGR operator to investigate and adjust its bidding strategies.

The fourth task is creating ratios. Similarly to the ranks, the ratios have the intent of monitoring the AGR
performance by using a variety of different measurements. For example, a ratio can be done between
the unserved power and the served power as shown in equation 5.7

>~ Unserved Power
>~ Served Power

(5.7)

Ratioserved =

With the ratio, the AGR operator can monitor how its system is performing. If the ratio becomes greater
than one, then it means that more power has been unserved, thus the system is underperforming. The
choice of the timespan that the ratio should cover is up to the operator’s choice. For example, the
operator can choose the timespan of one calendar day. Then at the end of the day, the operator will
have an overview of how the system has performed. Itis up to the operator to decide which combination
to use, depending on which one it finds more suitable.

Here are two other combinations proposed:

» Unserved intraday vs Unserved day ahead: ratio between the unserved power offered in the
intraday market and the unserved power offered in the day ahead. This helps the AGR operator
to monitor how the bidding system performs for the two markets. If the ratio becomes large (i.e.
greater than 1.5 or smaller than 0.5), then it signals the AGR operator that something along the
bidding and serving of flexibility is going incorrectly.

» Losses vs Revenue: ratio between the losses and revenue. Depending on the timespan, it helps
the AGR operator to determine whether the profit margin is positive or negative. For example, if
the ratio is greater than one (the financial losses are greater than the revenue) then the AGR can
decide to bid in a more conservative way to avoid further possible losses, or alternatively bid in a
more aggressive way to recover the costs.

The Ratio was not envisioned as a metric to activate an automated response from the AGR program
but rather to signal the AGR operator. Once the operator has received a signal, it can act according
to what are his plan. However, if the AGR operator clearly defines the course actions that it wants the
program to follow when receiving a certain ratio’s signal then the program can be automated.

It is also important to note that some of the ratio combinations can lead to similar metrics introduced
in section 5.2.2. In fact, both the ratio and rank were created using the same goal set in the paper
Quantification of operational flexibility from a portfolio of flexible energy resources [12] and that is to
make metrics that are intuitive. Through ratios, it is easier to understand the weight of a decision rather
than using an absolute number (i.e. all ranks below 50 €are rejected vs all bids with rank below 0.5 are
rejected).

The choice of the rank and ratio is quite important as chosing the correct one is essential. However,
before explaining how the correct rank is determined and how the ratio affects this outcome, more
aspects of the protocol need to be introduced. The determination of an optimal rank is further explained
in section 5.2.6, once the whole protocol has been explained.

From this description of the economic section, it has been possible to highlight the following
message/data:

* Bid pricing: the forecasted price that should be set for each bid.
» Revenue and Loss: the income and losses due to served and unserved flexibility.
» Ranking and Ratio: metrics used for monitoring and advising the bidding process.

Please note that only the first bullet point "bid pricing” is necessary for the correct functioning of the
protocol. The others are just additional data that can serve as aid.
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5.2.4. The EMS section (EMS-AGR interaction)

This subsection discusses the EMS section and the EMS-AGR interaction highlighted in figure 5.11.

ECONOMICS
D D B — AGR DSO
EMS EMS (USEF)
D D D N PROGRAM
ﬂ (Energy Community)
METRICS

The Green Village

Figure 5.11: The EMS-AGR interaction

This interaction has been chosen to be discussed for last because many of the involved building blocks
have been defined in the previous sections. Thus, it has been considered easier for the reader to
understand it if all previous steps were explained. The previous subsections have been referenced
throughout the text so that the reader can easily go back and clear any confusion.

The role of the EMS-AGR interaction are two. The first one is to share data with the AGR such that
it can correctly evaluate the available flexibility and the second is to make sure that the flexibility bids
created by the AGR are feasible.

As explained in subsection 5.2.2, the AGR will take care of evaluating the flexibility bids based on the
information given by the EMS. Through an optimization algorithm, the AGR program creates flexibility
bids that change the inital baseline forecasted by the EMS, called AGR Energy program. This energy
program tries to fully match the flexibility request within the system physical limitation. This means that
the users’ preferences are not taken in consideration and economic yield is maximized. This leads
to the need of some sort of check that makes sure that the AGR Energy program somehow does not
undermine the user. This is where the EMS comes into play.

The EMS, responsible for how to implement the flexibility, will analyze the AGR Energy program and
decide whether it is feasible to implement the bids. If accepted, the EMS will send the same energy
program back to the AGR. Elsewise, a redacted version of the AGR Energy program is sent back. The
AGR will then know which of the initially computed bids are valid and which ones were rejected. The
program that is sent back by the EMS (either redacted or the same) is called Final Energy program.
tthe AGR will send the Final Energy program to the DSO in the form of an offer and the DSO confirms
which bids it accepts by sending an energy program back. This energy program sent by the DSO is
called DSO Energy program. The AGR will send it to the EMS to confirm which bids have been ac-
cepted and how the baseline needs to be changed. The DSO Energy program can be the same as the
Final Energy program or parts of it as the DSO is not obliged to accept all flexibility bids offered by the
AGR. In case none of the bids are not accepted, then the AGR can compute new bids which will have
to go through the same process again. Figure 5.12 depicts the decision-making process to check the
feasibility of the bids.
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Figure 5.12: Decision-making process for checking flexibility bids feasibility
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Now that a general overview of the timeline and how the interaction takes place, it is time to look more
closely at each steps that are denoted in figure 5.12.

The first step is receiving a baseline. The EMS must be able to give a prediction on how its grid con-
sumption will be like. As explained in 5.2.1, it covers a full calendar day (24h) as the AGR needs to
send it to the DSO so that it can be determined whether there will be any congestion at the node. It is
quite important that the grid load forecast is correct as a deviation from the planned program can result
in a fine [4].

The second step is determining the available flexibility. As explained in 5.2.2, the EMS provides data
that will allow the AGR to determine how much flexibility is available. For example if flexibility is pro-
vided by load shedding using storage, the state of charge and power rating of the storage assets at
every PTU is needed, as the AGR will know the possible changes in planned operation that it can do.
Itis in this step that the AGR Energy program is created.

The third step is checking whether the AGR Energy program is feasible or not. It is up to the EMS to
decide what can and cannot be achievable. Once done the EMS sends what is called the Final En-
ergy program. The EMS can either resend the same energy program that was proposed by the AGR
(if all flex bids have been accepted) or a modified energy program (if the EMS redeems certain bids
unachievable). The EMS can modify the bids by reducing the offered volume either partially or fully.
For example, if the AGR wants to reduce an exchange with the grid by using local storage or load
shedding, then the EMS can only reduce the volume of flexibility offered. This will result in either less
volume of local storage used, less volume load shed or less volume rescheduled. This can be visual-
ized in figure 5.12 at the bottom right part when the EMS has rejected the AGR Energy program. As it
can be seen the usage of storage in the morning peak has been denied.

It is important to also note that when the AGR Energy program is accepted by the EMS and all the bids
have been accepted by the DSO, the EMS can choose how to deploy/implement the program however
it wants, until the energy program is respected. It does not matter if the flexibility was originally planned
to be provided through the battery, but the EMS uses the fuel cell or does load shedding. The AGR
should have no final saying on this matter. All it matters is that the energy program agreed by the DSO
is respected.

Figure 5.13 lists all the messages that are outputted by the EMS (and sent to the AGR) and inputted
to the EMS (sent by the AGR). Please not that the DSO Energy program has been included although
not shown in figure 5.12.

From this description of the EMS-AGR section, it has been possible to highlight the following message/-
data:

» Final Energy program: the redacted AGR Energy program after the feasibility check done by the
EMS.

The reason is only one message is because all the other messages were already defined in the previous
interactions.
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Message Information Goal Timeline Step
Output (EMS to AGR)
Baseline Full day ahead forecast of the | The grid consumption forecast The latest updated version of Step 1
grid load consumption. needs to be sent to every day so | the baseline until the AGR sends
that the DSO can forecast it to the DSO. After this, the
possible congestions. energy program must be
respected as close as possible.
Data Planned operation of the Allows the AGR to compute how | Every 15 minute. Step 2
assets (l.e. SoC & power much flexibility is available to bid
ratings over the 24h). to the DSO.
Dictionary Lists of all the assets present Allows the AGR to understand Every 15 minute. Step 2
in the system as well as their what kind of assets is available
specifications (i.e. maximum
power rating, capacity).
Final Energy Either the same energy Tells the AGR what the EMS can Every time the AGR sends an Step 3
Program program that was initially do. If the energy program is the energy program that is different
proposed by the AGR or a same as the one sent by the AGR | than the baseline.
modified version. then it has been fully accepted.
Otherwise, the AGR needs to
correct its bids.
Input (AGR to EMS)
AGR Energy The new energy program. This is sent by the AGR, and it is Every time the AGR wants to Step 2
Program It is the modification of the supposed to represent the make a bid to the DSO's request.
baseline and the changes in changes in the baseline and asset
the assets planned operation. | operation if the flexibility bids
were to be accepted by the DSO.
D50 Energy The energy program that has | The confirming to the EMS which | Every time the AGR makes a bid, -
program been accepted by the DSO. of the offered bids have been it will receive an answer from

accepted. This way the EMS
knows what energy program it
must follow.

the DSO.

Figure 5.13: Message list for the EMS-AGR interaction
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5.2.5. The complete system interaction

Each interactions have been defined and explained, this next subsection ties them all together to have
the overlook of all interactions and their timeline.

The system interaction can be subdivided into 3 sections shown in figure 5.15

* Fexibility request: where the amount of flexibility needed is determined (arrow 1 to 3).

+ Flexibility bids creation: where the available flexibility is determined and the new energy program
is created (arrow 4 to 6).

+ Flexibility bids approval: where the flexibility bids are sent to the market and approved by the
DSO (arrow 7 to 9).

Figure 5.14 shows the message lists of the whole system interaction. Each message is color graded
depending on which AGR section is involved. Green for the EMS section (message from EMS to AGR
or vice versa), red for the DSO section (message from DSO to AGR or vice versa). The numbering of
each message corresponds to the numbering of each arrow shown in figure 5.15.

# | Name Time Type Content Description
1 | Baseline Every 15min. Dataframe Power exchanged with The energy program forecasted by the EMS for
the grid and local the next 24h. This is all grid exchange between

consumption for every the DSO and TGV.
15min of the next 24h.

2 | USEF Energy Any time before | XML Baseline submitted by the | The AGR submits the energy program
program market gate AGR to the DSO. forecasted by the EMS (baseline) to the DSO.
closure. Every AGR connected at a node and willing to
participate in the local flex market needs to do
this.
3 | USEF network | At the market XML Excess power at every The DSO has forecasted future congestions and
congestion gate closure. PTU. Available power at requests an amount of power at each PTU. The
every PTU. AGR can now bid for how much he is willing to
activate his flexibility.
4 | EMS planned Every 15min. Dataframe Soc (if applicable) and The EMS shares its planned operation for the
operation rated powers of the next 24h. With this information the AGR can
assets, local run an optimization and modify the baseline
consumption. by changing the planned operation and local
consumption.
5 | AGR Energy Any time before | Dataframe Energy program (modified | The AGR sends a proposed energy program that
Program gate closure. baseline) + includes the bids.
changes in planned (modification in baseline, planned operation
operation. and local consumption).
6 | Final Energy Once after Dataframe Corrected energy The EMS checks the feasibility of the AGR
Program receiving the program (modified Energy program and modifies it if needed.
AGR Energy baseline) + If the EMS sends back the same energy program
program. changes in planned as the AGR's one, then the EMS has accepted all
operation. bids/proposed modifications.
7 | AGR bids Any time before | XML Energy program + bids The AGR sends the Final Energy program back to
gate closure. (power, price for the PTU). | the DSO together with the bids.

Each bid contains the amount of power at every
PTU that the AGR is willing to deviate from the
submitted baseline. The financial compensation
for each deviation is also included.

g | DSO Energy Once after XML Confirmation message The DSO confirms with the AGR which bids are
program receiving the with the energy program | accepted and which are not.
AGR bids. that the AGR should
follow.
9 | AGR Once after Dataframe Energy program (modified | The AGR makes medifications to the Final
confirmation receiving the baseline) + Energy program by including only the bids that
DSO bids changes in planned have been accepted by the DSO and sends it
response. operation. back to the EMS.

Figure 5.14: Message list for the complete AGR interaction shown in figure 5.15
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Figure 5.15: Schematic of the complete
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5.2.6. Rank implementation in protocol

Now that every step of the protocol has been explained, the choice of the rank to use can be explained.
The reason why this section is done separately is because of two reasons. The first one is that the
usage of rank filtering and ratios is not essential to the operation of the protocol. This means that the
protocol can be run without implementing it. The second is because the fundamental structure of the
protocol needs to be understood for the rank filtering to make sense.

Rank ratio choice

Filtering through ranking must be done carefully because not all filtering can yield to an advantageous
situation. If the bids are filtered using a rank of high value (i.e. 0.9), then most of the bids will be filtered
and the AGR will not serve much energy. While the amount of energy served is less (pleasing the EMS
preferences), the revenue is most likely smaller than the Final energy program proposed by the EMS.
It makes thus no sense for the AGR to choose the energy program filtered by a high rank as it has a
smaller revenue compared to the EMS’s correction. In that case, the AGR is better off accepting the
correction of the EMS.

The same logic can be applied but this time with a rank that is too low (i.e. 0.2). In that case, the
revenue will be high (as many of the original bids computed in the metric section are kept) but too
much energy is served compared to the energy program after the feasibility check. The EMS is likely
to refuse such an energy program as it requires too much energy and exposes users’ comfort.

Determining the optimal Rank for filtering and proposing the filtered energy program

As explained above, it is clear that choosing the correct rank for the filtering is essential. Doing it man-
ually is not suitable as it can be lengthy especially if many different sets of bids needs to be checked.
It is thus beneficial to have an automated way to compute it.

The procedure is that the AGR would receive the final energy program from the EMS (AGR energy
program after feasibility check), then the AGR would need to compute the optimal rank and do the
filtering accordingly and then propose this rank-filtered energy program to the EMS again to see if it is
feasible. Figure 5.16 shows the system schematics (also previously presented in figure 5.15) with the
addition of where the rank filtering process shown in red. A loop is then created in the 'Flexibility bid
creation’ section of the protocol.

When the term optimal rank is used it is meant as the rank that satisfies both the EMS preferences and
the AGR preference. That is, higher revenue and lesser served energy than the final energy program
computed by the EMS. To find the optimal rank, an automated script has been created named 'Rank-
ing_Automated.py’ which checks whether the rank-filtered energy program has a greater revenue than
the final energy program while also serving less energy. This condition can be expressed as ratios
using the equation 5.7 introduced in section 5.2.3. The ratio that expresses the requirements can be
written as such:

Power served Unranked

(5.8)

Ratioyower =
P Power served Ranked

and

Revenue Unranked
O nue — > 1 -
Ratioreve Revenue Ranked (5.9)

With Power served Unranked and Power served Ranked the power served by the final (EMS) and
rank filtered energy program, respectively. While Revenue Unranked and Revenue Ranked are the
revenue of the final (EMS) and rank-filtered energy program respectively.

The outcome of equation 5.8 needs to be equal or smaller than 1 as the filtered energy program needs
to offer either the same amount or less than what the final energy program. On the other hand, the
outcome of equation 5.9 needs to be equal or greater than 1 as, if the filtered energy program does not
yield a greater revenue, then the AGR should accept the correction done by the EMS during the initial
feasibility check.
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To automate the process, this analysis is encompassed in a while loop that increments the rank of the
filtering by a chosen step until either the conditions are fulfilled or all the ranks have been tested (i.e.
the rank is equal to one, there is no more possible iteration).
Three aspects of this method need to be discussed. The first one is how much the ratio is increased
every time. If at every iteration the rank is incremented by a large step (i.e. 0.1 or more), then it is more
likely that a suboptimal or no optimal rank is found. The reason is that the smaller is step size is, the
more likely the rank found will closely meet the conditions 5.8 and 5.9. A setback with a smaller rank
increment is that it takes more time for the script to determine it. While this is not a huge delay when
communicating with one EMS, the latency increase may be perceived when more EMS are involved
and the AGR needs to find an optimal rank for each of them.
The second aspect is how the AGR communicates with the EMS. At the moment the filtering through
ranking is presented as one interaction, meaning that the AGR determines the optimal rank, filters the
bids with that rank, and proposes the filtered energy program to the EMS. However, the AGR could
also just slowly filter the bids, and propose the filtered energy program to the EMS at every iteration
until it reaches the optimal rank. The intention behind this method is that the AGR losses as few bids as
possible. It is likely that the EMS will refuse those energy programs as they would serve more energy
than the EMS would prefer but more testing (with an operational EMS) is needed to rule it out. However,
the problem of latency explained previously becomes more severe as more interactions are needed.
Finally, the aspect is that filtering through ranking emphasizes the usage of assets at moments of peak
consumption. While the overall amount of served energy flexibility is reduced, the EMS may need that
energy the most at those moments. The whole rank analysis is done without considering the time value
of energy, quite a vital aspect for an EMS as it does not want to run out of energy when the users are
more likely to consume. More testing with an operational EMS is needed to determine the effect of this.
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Figure 5.16: Schematic of the system interaction with rank filtering process.
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5.3. Connecting all the actors together

This section looks at how each actor share the protocol messages with each other.

5.3.1. MQTT protocol

All the actors involved and the different interactions have been explained but it has not been described
how they would exchange information. The EMS and AGR are two different entities that do not share
the same code and thus the message defined above needs to reach one another. To do so, the MQTT
messaging protocol has been chosen. The protocol is formed of two components: The MQTT clients
and MQTT broker as shown in figure 5.17. The clients have to possibility to either publish or subscribe
to a topic. When publishing, the client sends a message linked to a topic to the broker whose role is to
redirect the message toward the correct client. The broker knows whose client is supposed to receive
the message because said client is subscribed to a topic [28]. In this case, the client would be actors
such as the EMS, AGR, and TGV. For example, the TGV sensor would send the data to the EMS, which
will share it with the AGR. Once the AGR has computed the flexibility bids, it can share it back to the
EMS. The advantage of using the MQTT protocol is that it is very versatile. At the moment there is only
one client of each kind (i.e. one EMS, one TGV) but in the future, more actors may be involved (i.e.
a digital twin). When said actors can be then easily connected to the system by simply publishing or
subscribing to a topic, facilitating scalability.

MQTT Clients MQTT Clients  (53)
Ex: Sensors o Ex: Valve
i \. A0
y “ Y 0\0\‘.’9
I . M=
-4 %ic ';‘ 8 ol o8
mpy- %
e
- et
. \C
| Publish: '65%" MQTT A®
| Topic: “moisture” BrOI(er Ex: Cloud Server
“
ﬂ.sgl

-

e "
\ N‘o\\. e oce\.ﬁ
| o?

Figure 5.17: MQTT messaging protocol structure [28]

Figure 5.18 shows the different specifications of the MQTT messages. For each of them, the topic was
defined as well as the rule (how often the message needs to be sent), the subscriber and sender, and
last but not least the content of the message. It can be also noticed that there is an extra client included
with the initial DT which stands for digital twin.
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Figure 5.18: MQTT message specifications

5.3.2. OpenRemote

To make the connection between each MQTT client, the platform OpenRemote is used. OpenRemote is
an open-source loT platform that facilitates loT device management [29]. Although OpenRemote offers
many services such as asset management, location services, and data visualization, in this research
it was mainly used as an MQTT broker. The reason why OpenRemote was chosen is because of its
open-source characteristic. As explained, one of the requirements of the AGR program (but also the
system) is to be open source to incentivize its usage.

At the moment of this study, the OpenRemote platform is locally hosted. The different actors involved
were created as assets (i.e. the AGR and EMS), each composed of attributes that hold the messages
defined in figure 5.18. Through a python script given in appendix B, it is possible to send JSON files
over to OpenRemote which will distribute them to each of the assets. The platform also has the option
of creating rules that enable certain behavior. For example, a rule has been created such that when
the EMS asset receives a JSON file containing the planned operation, the message is then shared
with the AGR assets. OpenRemote will then send the planned operation to the AGR program (or AGR
python code) so that it can analyze the data to determine the available flexibility. Figure 5.19 shows
the OpenRemote asset manager Ul with the AGR asset opened and the different attributes with the
rule state configuration enabled. This configuration is needed for the rules, shown in figure 5.20, to
function.




5.3. Connecting all the actors together 42

openremote OV oA A e W o

{

“extemal’: {
® v ~ Baseline sson 0" 189721901,
“1"1.90024115,
2" 1.89321761,

{
"local: {
0" 0189721901,
“1" 0.190024115,
2" 0189321761,

-

Figure 5.19: Example of OpenRemote asset with attributes and rule state configuration
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Figure 5.20: Example of OpenRemote rule for exchange of information within assets in OpenRemote

The OpenRemote operations are done through a separate Python script which is structured as such.
First, the MQTT client configurations are set, these comprise the username, password, host, port, and
clientID that have been defined in OpenRemote. These informations allow the Python code to connect
to the OpenRemote session. Then it is the turn of the asset configuration which only includes the asset
ID. With this ID, OpenRemote can know to whom the data is supposed to reach. Once this is done, the
data that is sent to OpenRemote needs to be converted into JSON files. To do so, the data that is sent
over needs to be first saved locally and then uploaded on the script. The data is then converted into a
dictionary which then can be converted into a JSON file. Once this is done, the data can be sent over
through OpenRemote. In the case that the python script needs to receive data then a function called
JSON_2 CSV was created. When the actor subscribes to a topic, the message received is saved into
a JSON file named data. This file is then converted to csv with the function mentioned and transported
to the variables in python so that the code can do its computation. As each actor have different topics
that that they publish to and subscribe to, a OpenRemote python script was created for both the EMS
and AGR named OpenRemote EMS and OpenRemote AGR respectively. They are both identical,
but the messages included that are they can publish and subscribe to have been tailored to figure 5.18.
To then send the info, the script just needs to be called, similarly to the automated ranking process
explained in section 5.2.6.

In this chapter the AGR program was studied in depth. The program’s structure was introduced and
then each section was individually discussed. It has been explained that the program was subdivided
into four sections in order to satisfy the three structural requirements.
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Interoperability, to have an AGR program compatible with as many EMS as possible. This requirement
was satisfied by letting the AGR program handle as many tasks related to the flexibility bidding as possi-
ble. The flexibility request and offers are made through and only the AGR program. The AGR handles
the determination of available flexibility, which creates flexibility bids and assigns a price for each bid.
Nonetheless, the EMS is still needed in the process. The EMS must send a forecast of the baseline for
the next 24h which can be challenging depending on the control methodology used (i.e. not all EMS
may be able to forecast their baseline). The USEF Foundation has found a way to partially counter this
by requesting only the baseline of the flexible assets, which makes the forecast easier as fewer loads
need to be taken into consideration [4]. The EMS also needs to do a feasibility check which similarly
to the baseline forecast can be difficult depending on the control method used by the EMS.

The second requirement was redundancy, to avoid any possible errors. The USEF Framework has
already a set of safety nets implemented to avoid any communication errors and the proposed protocol
uses a similar style. The changes in the baseline are checked and confirmed by sending over the same
energy programs. This method has the goal of double-checking that the two actors are communicating
(i.,e. EMS and AGR) are agreeing on the same changes in operation. The protocol is also built so
that the EMS has the final say which helps to avoid any possible misunderstandings. As eventually,
the EMS is the one that needs to activate the flexibility, it is assumed that any program accept by it is
feasible. If the EMS does not respond to the AGR Energy program proposal, then the AGR is not able
to make any bids. Such a safety net makes sure that the AGR is unable to bid flexibility that was not
double-checked by the EMS.

Finally, the plug-and-play was unlocked by clearly dividing the flexibility bidding into four sections each
responsible for a different task. For each section, the message and data that are needed and gener-
ated were clearly defined so that changes and upgrades are clearly bounded. An example would be to
implement a price forecasting algorithm to set a price for the flexibility bids, or creating a more complex
optimization algorithm that can do other actions such as load shifting.



Validation 1n simulation and
discussion

This chapter treats on the testing of the AGR program.
First the system and data available are introduced. Second, the Python code structure is explained.
Finally, the results of the simulation are shown and discussed.

6.1. System and data available

6.1.1. System

As discussed in the previous chapters the AGR program has been created with the intent of handling
flexibility trades between the assets owners and the grid operator. TGV located on the campus of TU
Delft perfectly fits these requirements as it is equipped with a diverse set of flexible assets that enables
a wide range of flexibility possibilities. The concept is that the AGR program would be connected to
TGV through OpenRemote, an online platform that would allow the AGR program and the EMS of TGV
to share data with each other and/or any other additional actors (i.e. a digital twin).

The study on the AGR program was started after the involvement of the Intelligent Electrical Power
Grids research group at TU Delft whose role is to create an EMS with different modes of operation. For
each mode the EMS operates with a different goal namely, mode 1 for zero power exchange with the
grid, mode 2 for net-zero exchange with the grid, mode 3 for reducing peak consumption, mode 4 to
minimize the CO2 footprint of the grid intake, mode 5 for maximizing profit on the energy market and
finally mode 6 for balancing service to grid operator and external actor. The EMS needs to be set in
mode 6 so that the ARG program can communicate with it. At the time of writting this paper, the EMS
does not yet have this mode installed which hinders the quality of simulation and testing of the AGR
program. It is important that the reader understands the limit of the result.

6.1.2. Data available

In subsection 6.1.1, it has been explained that the system is yet to be operational so no data directly
correlated to TGV exists so other data needed to be used. The data used is a package containing
different types of timeseries of 15 minutes of various European countries. The one used are the load
consumption and forecast in the Netherlands, the German solar generation and the day ahead arket
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price of Austria from 2016 [30]. This data is run through the EMS program which outputs the EMS
baseline and planned operation for the whole year. The EMS program creates a dataframe formed of
the forecasted of the local load, of the SoC and power ratings of the storage assets, of the photovoltaic
production as well as of the exchanges with the grid (baseline) for the whole year. With this data the
AGR program was tested through simulations. As there is a lot of data, and each season has a different
characteristics (i.e. greater consumption in winter), the simulations are divided into these four seasons
each shown in figure 6.1. There are two points that need to be discussed when using this data.
Firstly, the winter season is composed of the month of January to March and then September to De-
cember. These months are stitched together as if they were one but that is not the reality. The EMS
starts its simulation in January as if the system has just be put online. The problem with this is that
the storage assets need to charge so the early winter months may not represent the SoC levels of the
storage assets that the EMS would normally plan to have by that time.

For example the hydrogen storage is planned to be used during the cold months when there is not as
much photovoltaic production [14]. In figure 6.2, the SoC of the storage assets throughout the year
shows that the hydrogen is discharged during winter. However, the SoC is very low in January and
might not represent correctly the start of the winter. For example, at the end of december the SoC is
round 80% and it is likely that in January of the year after the SoC will not be around 30% as it is in this
dataset. If so it would mean that over night the hydrogen storage losses 50% of its charge.

Secondly, it can be seen in figure 6.1 some high peaks appearing in end of Spring and Summer.

No explaination could be found for such peaks, an hypothesis is they are the result of some errors but
it cannot be confirmed.
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Now that these details about the data is organised, the way that it is used needs to be addressed.
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Figure 6.2: SoC of the storage assets throughout the year

The first topic to discuss is that the EMS only has mode 1 operational (no exchange with the grid), the
baseline is then zero. This is a problem as the first step in the flexibility trading is adding up all the
baseline together to see when the grid is congested. To simulate grid exchanges and possible conges-
tion, it is assumed that there are ten other energy communities identical to TGV and all connected at
the same node. Said energy communities have the same consumption pattern of TGV but do not have
storage or generation assets and are thus powered by the grid. This leads to a node baseline shown
in figure 6.3 which depicts the baseline at the node and the local load of TGV.,
It can be seen that the baseline at the node is the same of the TGV local load except ten times greater
in magnitude. As explained in chapter 5 section 5.2.1 all power above the congestion limit is auctioned

to the flexibility m

arket where the AGR can bid.
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Figure 6.3: Baseline at the node and local load of TGV
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Additionally, as the EMS cannot communicate back to the AGR which bids are feasible, it will be done
manually to recreate the communication exchange. The bids that are most likely to be denied are
in the morning or afternoon peaks (i.e. morning peak from 5am to 10am or 12pm to 19pm in figure
6.3). The train of thought is that during those periods TGV consumes the most which means that
providing flexibility at those moments may be the most difficult as the system is self reliant and its
storage powers all consumption. The EMS’s refusal of the peak (either one or both) will be manually
simulated (hardcoded). Furthermore the SoC is also used as an indicator for refusing a bid. For
example, if the SoC reaches a low level then the bids are refused. The problem with this method is to
define an appropriate SoC limit. For the case of the hydrogen, the storage capacity is quite large (the
capacity is 90% of the yearly consumption of TGV), and because of its relatively low maximum rated
power, the SoC does not rapidly decrease unless it is put into extreme situations.

The following simulation is done to display it. The congestion limit is set to 0 kW and only the hydrogen
asset is available for flexibility bidding. Addtionally, the simuation is ran for 3 consecutive days during
the period of 29th to 31st of december which is the moment when the baseline of TGV is the greatest.
This equivalent to say that the hydrogen asset now has to power not only the local consumption that
was initially planned by the EMS but also the node baseline that correspond to 10 times the EMS’s
planned consumption. The point of this test is to drain the hydrogen storage to its limit. Figure 6.4a
shows the amont of power requested by the DSO and the power provided by the AGR. As it can be
seen, the hydrogen asset provides power is at its maximum power rating for the majority of the three
days. Small deviations are the result of the flexibility requested being less than the maximum power
rating of the fuel cell or because the fuel cell is already in use and thus there is only that remaining
amount of power left to be used to match the flexibility request. Figure 6.4b, shows the SoC after the
three consecutive days. The red line is the SoC planned by the EMS or in other words how the SoC
would have changed if not flexbility were to be traded. The blue line on the other hand is the SoC after
the flexibility trading. As it can be seen, the SoC is around 30% which can be defined as a critical
level, however, the point of this simulation is to show that the hydrogen asset must be put into intense
conditions to reach such levels. Such situation is most likely not going to happen as the congestion
limit is not at 0 kW and the EMS will never let the AGR match the flexibility request to its maximum for
three consecutive days.
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As for the battery, the SoC varies a lot as it is used by the EMS to power day to day consumption and
thus it is more likely that the introduction of flexibility trading will make the SoC drop further. A limit of
30% can be implemented such that if the SoC reaches said limit, all bids will be refused below this limit.
This way the EMS’rejection is simulated in two ways. Manually, by removing peaks that are likely to be
rejected and through the SoC.

The second topic is how the flexibility market was simulated. At the time of writting this paper there is
no python code that can replicate the USEF market that is known of. The assumption is that TGV is
the only active AGR in the node and thus he is the only bidder. It is a monopoly situation.

Accurate price forecast is quite important if other actors were involved in the flexibility bidding process.
The AGR would need to offer a market competitive price if it wishes to win the bidding but in this case
it is assumed that the DSO will accept whatever price the AGR offers. The price that the AGR will offer
will be the day ahead electricity market price taken from the timeseries [30].

6.1.3. Python code structure

The python code is structured such that it follows the same step as described in chapter 5 although some
of the interactions cannot be simulated as explained in section 6.1.2. Function have been created and
called on the main.py script for easier reading. This subsection focuses on explaining the step by step
process of the code to facilitate the understanding. Additionnally a list with all the function implemented
is appended in the appendix B.

the first step is to forecast the possible congestion. This is done with the function DA_FR which takes
in the baseline at the node (i.e. baseline computed by the EMS times ten) and the congestion limit. The
function then returns all energy that is above the congestion as a dataframe collumn named FR_PTU
which is the amount of power requested in flexibility for each PTU as well as the available power before
the node baseline reaches the congestion limit.

With the known amount of energy requested, the optimization can be run to evaluate and create the
flexibility bids. This is done using the function Flex_calc which takes as inputs, the EMS’ planned
operation and FR_PTU (flexibility requested). The optimization is done using Pyomo and an abstract
model was chosen to be used. The reason why the abstract model was chosen over a concrete is
because the AGR program should try to be as versatile as possible. Each system that the AGR program
is partnered with may have different assets but the optimization is the same. With an abstract model,
the AGR operator would need to load in the dictionary introduced in section 5.2.2 (or figure 5.9) and the
optimization would be updated with the needed parameters (i.e. capacities and rated powers). At the
moment the code can only accept updates for the battery and hydrogen assets as other parameters
have not be introduced and modelled for the optimization. The output of the optimization is the change in
SoC (SoC_change), the amount of power offered to flexibility (PshFlex), and the AGR energy program
(AGR_E_program).

The amount of revenue can then be computed with the function Financial_calc and the bids can then
be ranked using the function Ranking. Then the EMS will do a feasibility check of the AGR energy
program, as explained in section 6.1.2, and communicate it back to the AGR as the Final Energy
program (Final_E_program). Once the AGR receives the Final Energy program, it will run the script
Ranking_Automated.py whose purpose is to check alternatives to the EMS’s feasibility check energy
program as explained in section 5.2.6. The script is mainly composed of two function; Difference_calc,
that computes how much flexibility power is provided by the rank-filtered energy program compared to
the AGR energy program and Rank_analysis, that calculates the revenue of the rank filtered energy
program. The output of the Ranking_Automated.py script are two dataframes. The first one is named
Analysis_opt which gives the following information: the total amount of power provided and the revenue
of the rank filtered and the EMS feasibility checked energy programs but also the revenue and power
served ratios of the two programs and the optimal rank computed. The second dataframe is Analysis,
and it contains the same information except for each rank up to the optimal rank.
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6.2. Simulation result

6.2.1. Flexbility Trading over one day

In this simulations the congestion limit is set at a 2.30 kW limit. For each season, only one day was
chosen. The choice was made such that a good portion of the baseline is above the congestion limit
so that the AGR program can do bids and the storage assets’ limits are put to the test.

First, the baseline at the node and local load of TGV is examined. Figure 6.5 depicts it for the four
seasons. Although these are singles days, the different characteristics of the four seasons are quite
clear. The hotter months, Spring and Summer, have their local load consumption of smaller magnitude
compared to the colder seasons of Fall and Winter. In fact if the average consumption for season of
this dataset is taken, it yields to an average of 0.239 kW in Spring, 0.244 kW in Summer, 0.257 kW
in Fall and 0.259 kW in Winter. This is quite relevant as the congestion limit has been set to 0.23 kW
meaning that the colder seasons will request more flexibility than the hotter one.
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Figure 6.5: Baseline at node and TGV local load for different seasons.

Figure 6.6 shows the flexibility requested by the DSO (red trace) and the flexibility offered by the AGR
(blue trace). As explained in figure 6.5, the consumption is greater during colder season and thus
a greater amount of flexibility is requested during that time period. In fact this can be seen in this
snapshots where in the hotter months the power requested is on average around 0.50 kW or lower
while for the colder season the power requested is around 0.75 kW and 1.25 kW for Fall and Winter.
For all of the four seasons the AGR has no problem supplying the needed flexibility as the blue trace is
the exact same of the red trace. The area under the blue trace is the amount of energy that is reduced
from the node baseline. That energy is now powered by TGV’s storage and thus the local load will
increase.
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Figure 6.6: Flexibility requested and offered by the AGR for different seasons.

Figure 6.7 shows the energy program and local load proposed by the AGR (red trace) compared to the
baseline and local load that was computed by the EMS (green and blue trace respectively).

When looking at the energy program it can be seen that, once the exchanges with the grid reaches the
congestion limit, the AGR energy program flattens out and stays at that level. This is because all load
is now being powered by the storage unit and not the grid anymore. In fact in the AGR versus EMS
local load plot, the increase in consumption is the result of the flexibility bids and as expected, the local
load experiences a greater increase in the colder seasons compared to the hotter seasons.

The AGR energy program can be sent to the EMS which will verify the feasibility of the bids and com-
municate back to the AGR what bids it is willing to accept. The EMS does not need to know the amount
of power or change in SoC of each asset but only the AGR energy program (change in baseline) as it
will evaluate how close it can match it.

In this first subsection, the flexibility trading over one day for four different seasons has been shown.
While one day is just a snipplet and does not represent the whole season, the days were chosen
such to best showcase the characteristics of each. As it could already be seen in figure 6.1, the colder
seasons result in greater consumption compared to the hotter seasons. This means that more flexibility
is requested requiring more energy from the AGR. It has been shown that for the each day of the season
the AGR did not have a problem with supplying flexibility and an AGR energy program was created.
Said program is proposed to the EMS which will assess its feasibility. Subsection 6.2.4, looks into a
rejection from the EMS and what can the AGR do in such case. Itis important to specify that the reason
why the simulation was ran only for one day is because it is very unlikely that the AGR will be allowed
by the EMS to fully match the flexibility request for multiple consecutive days as it would just drain the
storage assets. The simulation over one day is supposed to demonstrate the AGR’s working in different
situations.
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Figure 6.7: AGR and EMS energy program and local load for different seasons.

6.2.2. Sensitivity analysis of flexibility trading over a day

A sensitivity analysis is carried out to test the limits of AGR trading. The goal of this analysis is to see
what conditions are needed for the AGR to not be able to fully provide the flexibility requested. One sit-
uation can be that there is not enough charge in the storage assets (i.e. the storage is fully discharged).
In the section 6.1.2 and figure 6.4b it has been shown how unlikely it is for the hydrogen storage to fully
discharge. It is more likely to happen for the battery as the SoC varies greatly as shown in figure 6.2.
Contrary to the hydrogen asset that has its charging and discharging decoupled, the battery discharg-
ing is halted when the asset is being recharged. This is a limiting factor if the hydrogen asset alone
cannot provide enough power to fully supply the flexibility demand and needs the ’help’ of the battery
asset.

Figure 6.8 shows how the AGR is unable to provide all the flexibility requested. The moment that the
battery goes into charging mode, highlighted by a blue dotted vertical line, the flexibility provided be-
comes constant at 2.3 kW, the maximum rated power of the hydrogen asset. It is only after the battery
is no longer charged that the AGR can once again match the flexibility requested.
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Figure 6.8: Battery charging effect on flexiility provision

6.2.3. EMS feasibility checks

Once the AGR has send its energy program to the EMS, this latter needs to check the feasibility. As
explained in section 6.1.2, the EMS’ decision is simulated by rejecting manually selected sections of
the AGR bis and as well automatically rejecting bids when the storage asset is below 30%. Figure 6.9,
shows the two methods described. On the left in figure 6.9a, the EMS refuses the morning from 5 AM
to 9 AM and the evening bids from 19 PM to 23 PM due to the SoC being too low. Figure 6.9b on the
other hand has the morning peak from 9 AM to 11 AM rejected because that time period was manually

selected.
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(a) Simulation of EMS feasibility check using SoC as an indicator.
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Figure 6.9: The two methods to simulate EMS’s feasibility check in Spring
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An extra simulation is done to show the effect of the SoC limit rule. The system is put under extreme
conditions similar to figure 6.4, with the congestion limit set to zero. This time however, the battery
asset can also be used by the AGR for the flexibility bids. The hydrogen asset alone cannot match the
flexibility request and the battery needs to be used. A section of the data where the battery asset had
a low SoC was also chosen for this simulation.

Figure 6.10 shows how the SoC limit rule comes into play. The figure depicts the AGR proposition (red
trace) which is the changes in the energy program and local load after flexibility bids, the EMS feasibility
check (green trace) which is the response of the EMS to the AGR’s proposition and the battery’s SoC
(blue trace). As shown, when the SoC reaches 30% the EMS refuses all bids until the SoC is back above
the limit. This happens around 5 AM to 12 PM AM and as well at 17:30 PM to 22 PM. From 9:45 AM to
15 PM the AGR is unable to match flexibility bids because the battery asset is being charged making
it unusable and the flexibility power requested is too much for the hydrogen asset to match it on its own.
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Figure 6.10: EMS feasibility check using SoC as an indicator.

6.2.4. Ranking and Ratio

Ranking to maximize revenue

In chapter 5 section 5.2.3, the Rank metric was introduced. As explained, each bid is ranked based
on the revenue. The greater the rank, the more revenue the flexibility bid brings in compared to the
maximum revenue possible for that time horizon (in this case one day). Figure 6.11 showcases the
revenue ranking of all bids for the day in spring shown previously in figure 6.5a. The blue trace is the
power offered as flexibility bids by the AGR while the red bar plots are the ranking on each bid. Only
the bids happening at the exact hour are shown but in reality for every 15 minutes bids the rank is
determined and thus in between hours the ranks can vary. This is intendented to help the reader to
understand the graph with more ease.
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Figure 6.11: Bids ranks for a day in Spring

To show the concept of rank, the situation shown in figure 6.9b is used. The EMS has done its feasibility
check and has decided that from 5:30 AM to 11 AM the AGR’s bids are not accepted.

Table 6.1, lists the amount of energy and revenue for different cases. The AGR E program is the energy
program proposed by the AGR, while the Final E program is the energy program approved by the EMS
after a feasibility check. As it can be seen after the EMS’s correction the AGR is allowed to provide
19.52 kWh compared to 28.18 kWh, that is a 30.73% decrease in energy served leading to revenue
drop of 36.42%.

] Case | Energy served (kWh) | Revenue (€) |

AGR E program 28.18 865.14

Final E program 19.52 550

E program ranked (>0.6) 17.27 581.7
E program ranked (>0.5) 22.94 749.08
E program ranked (>0.7) 8.71 332.45
E program ranked (>0.57) 18.85 631.63

Table 6.1: Energy served and revenue for different cases.

This is where the revenue rank comes into play. As explained in section 5.2.3, the rank serves as
filtering method to choose the bids that bring most revenue and discard the ones that are worth less.
The EMS feasibility check refused the early bids which, as seen in figure 6.11, have a high rank and
thus lead to a high revenue loss.

A test case is done where all bids above 0.6 are selected while the rest is ignored. The resulting energy
program and local load is shown in figure 6.12. The AGR energy program and local load fluctuate as
the bids in very early morning, midday and afternoon have a rank below 0.6.

In table 6.1 it can be seen that filtering of bids through ranks lead to total energy served of 17.27 kWh
which is 11.52% less energy than what the EMS initally wanted to provide after its feasibility correction.
It can also be seen that the total revenue is 581.7 €. This is 87.7 € or 14.85% more revenue than what
the AGR would get if it follows the EMS’s feasibility correction. Thus through filtering it is possible to
find a compromise between the EMS preference, to be energy-conservative mindset as explained in
section 3.2.2, and the AGR preference, maximize economical yield as explained in section 3.2.3. The
amount of energy provided is less than the EMS correction but the revenue is greater.
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As explained in section 5.2.6, chosing the correct rank is important. For example, a case study where
only bids ranking above 0.7 are used. Figure 6.13 shows how the energy program and local load
would look like. Fewer bids are proposed leaving a large portion of the midday to early evening without
any bids offered. Table 6.1, shows that while the amount of energy served is less (pleasing the EMS
preferences) the revenue is smaller than the Final energy program proposed by the EMS. It makes no

sense for the AGR to propose such an energy program as it would yield a smaller revenue compared
to the EMS’s correction.
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Figure 6.13: AGR Energy program and local load with big ranking filtering (>0.7)
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Likewise if the rank filtering is done at a too low rank it is likely that the EMS will not accept it. Figure
6.14, shows the energy program and local load when bids are filtered for ranks above 0.5. In table 6.1,
it can be seen that such filtering yields a larger revenue compared to the EMS’s correction. However,
the amount of energy served is also greater than the feasibility correction which likely will be denied by
the EMS.
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Figure 6.14: AGR Energy program and local load with big ranking filtering (>0.5)

6.2.5. Sensitivity analysis of Ranking

A sensitivity analysis is carried out to see the limitation of the ranking system. In the first analysis,
the ranking process is tested for cases where the EMS decides to reject bids for both morning and
afternoon peaks. This test case denies a lot of flexibility bids from the AGR and thus it is interesting
to see how the ranking process performs under such circumstances. For such test case, the winter
season is used because the bid rank profile during the peak hours, shown in figure 6.15a, are greater
compared to the bid ranks shown in figure 6.11 that has bids with smaller ranks in the evening peak.
Figure 6.15b, shows what the energy program and local load look when the morning and evening peaks
are rejected. As it can be seen, only during the midday the EMS accepts the AGR bids.
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Figure 6.15: other test case for morning and afternoon bid rank test

Different ranks are tested and it is found that there is no rank for which filtering the bids can lead to
greater or equal revenue and lower or equal amount of energy served compared to the EMS’s feasibility
check. In this case, the AGR best offer is the initial Final Energy program of the EMS after the feasibility
check. This is an example of the limitation of rank filtering.
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A sensitivity analysis is also done with regard to rank incrementation. As explained in 5.2.6, the step
that the rank is incremented at every iteration of the automated script can affect the result. The greater
the rank, the more suboptimal the result. In the previous examples, the rank only increases by 0.1. The
script is run with the same data but this time the rank is incremented by 0.01. Table 6.1, shows that
the optimal rank is then 0.57 compared to the previously found 0.6. With a revenue of 631.63 €, 7.9%
greater than the previously found optimal rank, and a total flexibility served of 18.85 kWh. A setback
with a smaller rank increment is that it takes more time for the script to determine it. While this is not a
huge setback when communicating with one EMS, the latency increase may be perceived when more
EMS are involved and the AGR needs to find an optimal rank for each of them.

The price forecast variations are also tested. As explained in section 5.2.3, price forecasting can af-
fect the efficiency of flexibility bidding. Random noise is introduced in the price by using a normal
distribution function. Different deviations are used to simulate possible fluctuations. Three deviations
are used: 10% of the maximum value of the day ahead price, 10% of the mean, and 10% of the min-
imum value, all with a mean of zero. The idea is to expose the price to three different forecasting errors.
The three different price deviations are showcased in figure 6.16. For each case, the Ranking_automated.py
script is run again to find the new optimal rank, power served, and revenue for that optimal rank. Then
the script is run again but this time using the rank that was originally computed using the original price
forecast. As the test is performed using the same price of section 6.2.4, the original optimal rank is
0.57. The goal is to compare the performance of the original optimal rank versus the real one. The
results are presented in table 6.2 and are organized as such. First, the revenue and power served for
the actual optimal rank are listed (optimal) and then the revenue and power served for the originally
computed rank of 0.57 (suboptimal). As it can be expected, the greater the price deviation, the greater
the revenue difference. What can be noted is that as the deviation size increases, the rank decreases.
A reason can be that many bids have a smaller price than forecasted and thus more energy needs to be
provided. The EMS preference is still respected, however, in the case of large and medium deviation,
the AGR would lose a significant portion of its revenue because the rank would be too high (16% and
34% decrease respectively). Only the small deviation did not change and the rank and thus the AGR
original rank forecast would be correct.

More simulations can be run to get a more in-depth understanding of how price deviation can affect the
ranking system. Nonetheless, this highlights how an accurate price forecasting algorithm is essential
to the correct operation of this AGR program. The appendix A shows the bid rank and AGR program
for each case.
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Figure 6.16: Three types of price deviations due to forecasting error.

\ Case | Energy served optimal (kWh) [ Revenue optimal (€) [[ Energy served suboptimal (kWh) | Revenue suboptimal(€) |

Large deviation (>0.48) 18.99 629.35 15.29 539.17
Medium deviation (>0.47) 19.17 649.15 13.24 482.91
Small deviation (>0.57) 18.88 631.56 18.88 631.56

Table 6.2: Energy served and revenue for different price deviation cases.
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6.3. Future Implementation of the AGR program

As previously mentioned, the AGR program still needs to be tested with a real EMS to comprehend the
pros and cons of the protocol and program. While a lot of errors cannot be foreseen, the purpose of
this section is to highlight the possible adversities that will rise when connecting the two actors together.

The one that will affect the AGR program working the most is the EMS feasibility check. At the moment
it is simulated as a yes or no situation where the EMS rejects a part and accepts the rest untouched. In
reality, when the EMS does the feasibility check, it will not only reject some parts but also create some
deviations in the program. The reason for such deviation comes from how flexibility is provided.

In section 5.2.1 it was explained that the AGR program build can only do load shedding (or peak
shaving). While, indeed the AGR program is able to evaluate and create flexibility bids that can only
do load shedding, the EMS may not want to implement it that way. As the storage gets discharged, the
EMS may need to shift some of its production to another time of the day.

Figure 6.17 simulates this effect. For the EMS to match the AGR energy program, its planned operation
changes in an increase in local load from 11 AM to 13 PM and from 17:30 PM to 19 PM delimited by
the red vertical lines shown in figure 6.17b. This is equivalent to a load shift.

As it can also be seen, the deviations only happen for the local load and not the energy program or
the provided power. This means that the EMS is able to match the AGR program by adapting its local
storage usage and consumption at a later time without exchanging power with the grid and effectively
not affecting the flexibility bids.
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Figure 6.17: EMS’s feasibility deviation when power is locally provided
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However, the EMS may decide to match the AGR energy program by exchanging energy with the
grid. In this case, the load shift is not affecting the local load but rather the energy program and power
provided. This effect can be seen in figure 6.18a with the Final Energy program having the increase
in grid consumption during the period delimited in the red vertical lines. Likewise, the flexibility energy
provided, shown in figure 6.18c, now has negative values as now the EMS offers to consume energy
during those periods to match the flexibility requested by the DSO.

AGR E program vs Final E program (with EMS load shift) AGR E program vs Final E program (with EMS load shift)
774 = AGR local load
0.39 | — Finallocal load
2.75 4
= 272 034
2 H
< <
@ 2.70 ]
H g o029
g e a "
2.67 4
0.24
—— AGR E program (grid exchange)
2.65 —— Final E program (grid exchange)
--- Congestion 0.19
12345678 09101112131415161718192021222324 12345678 09101112131415161718192021222324
Time (hours) Time (hours)
(a) EMS’s feasibility check deviation in grid exchange (b) EMS’s feasibility deviation in local load

Flex power requested by DSO

—— Flex power requested

vvvvvvvvvvvvvvvvvvvvvvvv

Flex power offered by the AGR (with EMS load shifting)

—— AGR flex power offered

Power (kW)

vvvvvvvvvvvvvvvvvvvvvvv

12345678 9101112131415161718192021222324
Time (hours)

(c) EMS’s feasibility deviation in power provided

Figure 6.18: EMS’s feasibility deviation when power is grid provided

These deviations are no problem for the AGR program until they do not create other congestion. For-
tunately, as explained in section 5.2.1, the USEF protocol is created such that the network’s available
energy is given. By knowing the margin of available energy the AGR can check whether the devia-
tions are still within the margins of available energy and thus do not create more congestion. These
deviations need to be communicated to the DSO as the energy program that was initially submitted
(baseline) is now different. Indirectly the AGR is now bidding also for load shifting through the EMS.
The following example explains this. A deviation due to the EMS feasibility check results in an increase
in consumption during the middle of the day. At that time, there is still available energy before the grid
is congested and thus the deviation creates no problem. However, when the AGR sends its bids to the
DSO through the USEF protocaol, it has to include the fact that there will be an increase in consumption.
From the DSO perspective, it sees the AGR flexibility bids as a decrease in consumption resulting in
an increase in consumption at a later moment of the day. Effectively, this is the equivalent of a load
shift although the increase may not be of the same quantity as the energy shed as part of it can be
supplied by storage (so a combination of storage and load shifting).

As mentioned, this is not a problem until the deviation does not create another congestion. For it to
happen, there are two conditions that need to be fulfilled. The first one is that the EMS decides that the
load shift will be powered using the grid, and the second is that the magnitude of the load shift is large
enough to affect it. In this scenario there are no other active participants in the grid that can solve the
congestion, meaning that if TGV does not solve it then no one will. In the case other participants are
active then the deviation simply means that the AGR of TGV bids less flexibility. Rank filtering can also
help to avoid more congestion due to deviations. As explained, the bids get filtered with the ranks and
less energy needs to be provided, theoretically making it easier for the EMS to match the AGR energy
program and requiring deviations that are less likely to create new congestion. More testing is needed
to see how it would affect it.
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6.4. Testing with a real EMS

As explained in section 6.1.2, the EMS is not fully operational at the time of writing this report. A first
instance of the EMS program was created to test how the AGR program and EMS would perform. This
section looks at how the EMS tries to match the operational changes proposed by the AGR. The data
used is the four seasons sampled in section 6.1.2 and used for the first simulation validation in section
6.2.1. First, an in-depth look is given on how the EMS matches the winter season flexibility request
and then the other seasons are analyzed.

6.4.1. EMS operation for winter

The EMS has different ways to provide flexibility and in the case of the winter season, all the different
ways are employed which unveils both the range of possibilities but also limitations. Figure 6.19 shows
the local load of the AGR and the EMS after the feasibility check. As it can be seen, the EMS does not
manage to fully match it, and a small margin between the AGR local load and the EMS’s remains. To
understand why this is the case, the way that the EMS decides to provide flexibility needs to be looked
into more detail.
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Figure 6.19: Local load after EMS’s feasibility check in Winter

In figure 6.20, the different ways that the EMS provides flexibility are shown. It can be seen that the
battery is being utilized from the start of the day to 10 AM together with the help of the solar from 8 AM.
It is then the combination of PV production and hydrogen until 14 PM and then again PV production
and battery. At 16:30, the EMS uses the grid to match the flexibility request. Two things need to be
discussed. Between 10 AM and 14 PM, the battery is under charge and the EMS uses the PV produc-
tion to charge it. The PV production is much more than what the battery needs and the EMS uses the
remaining power in combination with the hydrogen to match the flexibility demand. The other detail is
that from 21 PM the battery is again under charge and the hydrogen is discharged. While no definite
reason can be given for this behavior, it is hypothesized that the hydrogen asset is used to charge the
battery. Please take into consideration, this is a supposition.
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Figure 6.20: EMS’s way to match the flexibility request in Winter

Because the EMS uses the grid to match the flexibility request, the bids of the AGR will change and
needs to be communicated to the DSO as explained in section 6.3. Figure 6.21 shows how the flexibility
offer of the AGR will look like. As it can be seen from 16:30 PM to 21 PM, the power is negative as the
AGR would take energy from the grid.
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Figure 6.21: Flexibility bids before and after the feasibility check in Winter

As explained in section 6.3, the deviations are not a major problem until they do not create new con-
gestion. This does not happen when the increase in grid exchange happens if there is available energy
as explained in section 5.2 and shown on figure 5.4. This is not the case for this simulation. The EMS
fully matches the flexibility request of the DSO by using the grid which is not advantageous as the ex-
changes with the grid need to be reduced. Figure 6.22 shows how the energy program changes with
respect to the AGR energy program and the initial node baseline. As it can be seen there is a spike at
16 PM when the EMS starts using the grid to avoid congestion. Not only is the congestion not solved
but even more energy is being exchanged with the grid.



6.4. Testing with a real EMS 62

AGR vs EMS E program

4.00 1'— Node baseline
—— AGR E program

3.75 4 —— EMS E program
3.50 A

i 3.25 A

o

= 3.00 A

o]

a
2.75 A
2.50 A
2251 NS

1234567 8 9101112131415161718192021222324

Time (hours)

Figure 6.22: Energy program after EMS feasibility check in Winter

The next question that should be asked is what can be done to avoid this? The first step is for the
AGR to detect that the bids are fully matched using the grid and remove them. The EMS does not use
the grid exchange for charging any of the storage assets, so the AGR can just delete them and it will
simply not fully match the flexibility request of the DSO. Then, the AGR can calculate the total revenue
of the bids and do a rank filtering to see if there is another viable solution. The problem with these
steps is that at the moment the AGR has no way to detect that some of the flexibility bids are being fully
matched through the grid and thus would try to offer that flexibility bid to the DSO. It is also important
that in this case, the EMS tries to fully match the flexibility bids while it could also by itself refuse to not
fully match it. Finally, it is also important to note that the EMS matches the flexibility bids using a wide
range of methods (storage, PV production, and grid). Each of these methods are based on a forecast
which can have some deviations. For example, the PV production may be less than forecasted, which
in this case would lead to a problem when serving the flexibility.

6.4.2. Simulation for the other seasons

Figure 6.23 shows the local load, energy program, flexibility bids and change in operation after feasibility
checks in the season of Fall. During this season the EMS does not use the grid to match flexibility as
it can be seen in figure 6.23d, and thus does not create any further congestion. On the other hand,
the EMS is over-serving flexibility. This can be seen in figure 6.23a where the EMS energy program
shown in green is smaller than the AGR energy program or equivalently in figure 6.23b with the Final
local load greater than the one proposed by the AGR. This does not make sense as the EMS has no
gain in providing more energy. Furthermore, the DSO will not compensate for this additional flexibility
as it did not request it. The reason for this excess flexibility cannot be justified but it is hypothesized
that it might be an error in the EMS code. Take into consideration that the EMS code that this has been
tested on is a first iteration and thus not a fully optimized version. Such deviation should be spotted
by the AGR and corrected accordingly to avoid the EMS from unnecessarily using its assets. This is
convenient for both the AGR, as it can use the power "saved” for another day and the EMS, as it does
not expose the users to possible discomforts.

Figure 6.24 and 6.25 show the local load, energy program, flexibility bids, and change in operation after
feasibility checks in the season of Summer and Spring respectively. Likewise to the Fall season, the
EMS over serves flexibility again which cannot be explained. Other than that, the EMS does not use
the grid to match the flexibility and thus no complications arise from serving flexibility.
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Figure 6.23: EMS’s local load, energy program, flexibility bids, and change in operation for Fall
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Figure 6.24: EMS’s local load, energy program, flexibility bids, and change in operation for Summer
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Figure 6.25: EMS’s local load, energy program, flexibility bids, and change in operation for Spring

From these simulations, it is clear that the AGR still needs some modifications. In section 6.4.1 it was
shown that the EMS was trying to fully match the flexibility by using the grid creating more congestion.
The AGR program must be able to detect when the grid is being used inefficiently and correct the
bids accordingly. In the Winter case, the AGR program wouldn’t even need to double-check with the
EMS, reducing the message exchange necessary between the two. The AGR program should also
check when too much flexibility is being served. At the moment, the EMS tries to fully match the
flexibility request which seems to create inconvenient situations shown for the season of Fall, Summer,
and Spring. It is surprising how determined is the EMS to fully match the flexibility request. When
developing the AGR program and more precisely the ranking system, it was envisioned that the EMS
would rather reject flexibility bids than go out of its way to match it. From these simulations, it seems
that it is not the case. Additionally, it looks like the EMS has some problems with delivering the correct
amount of power. As seen for the seasons of Fall, Summer and Spring the EMS provides too much
power. This could either be a problem with the EMS code or because of granularity. Either way, it is
imperative that the AGR program is able to detect any excesses and correct the bids accordingly.
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In this chapter the results of the simulations were presented. First, the EMS modes of operations were
introduced and then the data available. The way the data is divided into seasons and how the baseline
at the node and the flexibility request signal is created was then presented together with the Python’s
code structure.

The simulation results were then shown and discussed. One day of each season was run through
the bidding process to give a clear understanding of how the process works in different situations. As
expected, the hotter seasons requested less flexibility compared to the colder ones. As explained, only
one day was chosen to be simulated because the AGR program tries to fully match the flexibility request.
Itis unlikely that the EMS will allow that and thus running the simulation over multiple consecutive days
would have not yielded any insight into the program’s operation. How the EMS’ feasibility check is
simulated was also explained. It was chosen that if the SoC of the storage asset reached 30% then
then EMS would automatically refuse the bids. Additionally, certain time periods would be manually
chosen to be refused by the EMS. These time periods were chosen during peak times as they are most
likely the moments when the EMS wants to conserve energy.

The Ranking process was then introduced. As the EMS’ feasibility check resulted in reduced revenue
for the AGR, the Ranking process showed an alternative way for the AGR to reconsider its flexibility
bids. By selecting an appropriate rank, it has been shown that there is the possibility to satisfy both
the EMS and the AGR preferences. Keeping only high-valued bids, the AGR is able to get a greater
revenue while providing less energy compared to the EMS’ Final Energy program. Nonetheless, such
a condition could only be satisfied if an appropriate rank was chosen. An automated script was created
to find the optimal rank, using the ratios metric as conditions. Two main aspects were discussed. The
first one is that the increment used in the rank automated script affected the findings. The smaller the
increment, the more optimal the rank is. However, this is at the cost of lengthier computational time.
The second is that ranking promotes the usage of flexibility during peak hours which is also the moment
that the EMS has a more energy-conservative approach.

Finally, the AGR program’s limitations were showcased. Starting with being unable to use the battery
when charged and providing flexibility with load shifting. The short timeframe of operation of the AGR
program was also discussed with its inability of planning ahead for future flexibility bids. Some simula-
tion with a first iteration of the EMS code were carried out and showed some possible problems with
integrating it in the flexibility trading.



Conclusion and recommendation

The current critical state of the electric grid was explained and the necessity of flexibility was argued.
As discussed, standardization plays a major role in facilitating and accelerating the deployment of such
technology, which was the goal of the protocol and code developed. While the protocol and code could
be deployed for any type of system, a particular focus was directed at the residential level for two main
reasons. The first one is that TGV is literally an aggregate of residential loads and the second is the
lack of standardization in that domain thus the relevancy of the study.

The actors involved have complementary features that can be exploited to efficiently deploy flexibility
but also conflicting interests that needed to be considered when designing the protocol and AGR pro-
gram. This has led to the research question of how to create a AGR program that can trade flexibility
in a responsible manner. This was tackled by implementing a protocol and AGR program that followed
three structural requirements.

The first requirement is interoperability, to be compatible with as many systems as possible and in-
crease the impact that one AGR can have. As explained in the report this was achieved by unbur-
dening the EMS from as many tasks as possible and making the AGR do most of the computation.
Nonetheless, some actions are still needed by the EMS, and while for an MPC control methodology,
these actions are feasible, it is important in the future to study the compatibility of EMS using other
control methodologies.

The second requirement is redundancy, to avoid possible miscommunications or errors. To do so the
EMS decision was set as the top priority. This means that if the EMS would decide to change or decline
all flexibility, then so be it. The reason for it is that the EMS is the direct owner of the assets (and has
also direct control) and the AGR should not be able to decide without its agreement and shall follow its
decisions. It would be interesting to study how likely it is for the EMS to go rogue and not follow the
agreed energy program. Additionally, the protocol follows a similar strategy to the USEF Framework
of sharing over and over the same information to continuously validate the message.

Finally, the last requirement is the plug-and-play. This was unlocked by creating a clear departmental-
ization of the code so that each section had a clear role and where they stand in the protocol. By doing
s0, anyone interested to modify or upgrade the code knows which part it needs to touch. As this is the
first iteration of the protocol and code, it is interesting to see how future modifications will affect it and
what limitations such structure has.

The validation through simulation has shown what a normal operation would look like, while some sen-
sitivity analyses have displayed some constraints of the code. As explained, because of the timeline
of this project with the one of TGV, the protocol and AGR program could not be thoroughly tested with
a fully operational EMS (also in real-time) and it is thus imperative that more testing with the protocol
counterparts is done to validate its efficiency.
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Additional figures

Additional figures related section 6.2.5.
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Figure A.1: AGR energy program with maximal price deviation

AGR energy program with mean price deviation:
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Figure A.2: AGR energy program with mean price deviation

AGR energy program with minimal price deviation:
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AGR program code

This section contains the codes of the AGR program, Automated Ranking, and plots.

Here below is main script of the AGR program:

# -*x- coding: utf-8 -*-

nnn

Created on Wed Jan 25 13:28:45 2023

@author: carlo

nnn

from pyomo.environ import *

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import math

# import functions:

import Flexibility_FUNC as FR
import Flexibility_FUNC_V2 as FR2
import Flexibility_FUNC_V3 as FR3

# SELECTION

df = pd.read_csv('results.csv')
df _price = pd.read_csv('price.csv')

## Divide the data into different seasons

Winterl = df.iloc[32162:35137,0:12].reset_index(drop=True)

Winter2 = df.iloc[0:5762,0:12].reset_index (drop=True)

Winter = Winterl.append(Winter2, ignore_index=True) # c=2494
Spring = df.iloc[5762:14593,0:12] .reset_index(drop=True) # c=4702
Summer = df.iloc[14594:23425,0:12] .reset_index(drop=True) # c=3262
Fall = df.iloc[23426:32162,0:12] .reset_index(drop=True) # c=3166

# constant used to access values for each seasons

c=4702

EMS = Spring.iloc[c:c+95,1:12] .reset_index(drop=True)

price = df_price.iloc[c:c+95,4].reset_index (drop=True)
penalty = price + 50

congestion_limit= 0.230%10

grid_exchange = EMS.iloc[:,0]*10 #This grid exchange is created to fake exchange between the

TGV and the grid.

71




45
46
47
48
49
50
51
52
53
54
55
56

57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
1)

91
92
93
94
95
96
97
98
99

101
102
103
104
105
106
107
108
109
110
111
112

EMS['external'l grid_exchange

# Computation of the Flexibility request
FR_PTU FR.DA_FR(EMS.external,congestion_limit).fillna(0)

# Optimization results
SoC_change, PshFlex, AGR_E_prog

FR.Flex_calc (EMS, FR_PTU)

# Calculates the difference between the requested flex by the
AGR

PshFlex['TotFlexUnservedAGR'], PshFlex['TotFlexServedAGR']
TotFlex, FR_PTU.Flex_Request, PshFlex.TotFlex)

# Calculates the revenue from the AGR proposed bids
Revenue_AGR, Revenue_AGR_sum

# Calculates the ranks of the revenue of the AGR proposed bids
rank FR.Ranking (Revenue_AGR)

# DataFrames are created for each case (manually rejected bids
Final_Psh pd.DataFrame (index AGR_E_prog.index,
Final_Psh.program AGR_E_prog.program
Final_Psh.local AGR_E_prog.local

# DataFrames are created for each case (SoC rejected bids)
Final_PshManual pd.DataFrame (index AGR_E_prog.index,
Final_PshManual.program AGR_E_prog.program
Final_PshManual.local AGR_E_prog.local

# DataFrames are created for each case (SoC rejected bids)
Final_PshAuto pd.DataFrame (index AGR_E_prog.index, columns
Final_PshAuto.program AGR_E_prog.program

Final_PshAuto.local AGR_E_prog.local

## SIMULATING THE EMS REJECTION

## "Automatice rejection"
SoC_limit_batt 0.3
SoC_limit_H2 0.3
# Simulates the automatic rejection of flexibility bids by the
storage assets is below a certain limit.
for t in range(0,max(EMS.index)):
if SoC_change.battery_soc_new.iloc[t] <= SoC_limit_batt:
Final_PshAuto.program.iloc[t]
Final_PshAuto.local.iloc[t] EMS.load_forecast.iloc[t
if SoC_change.H2_soc_new.iloc[t] <= SoC_limit_H2:
Final_PshAuto.program.iloc[t]
Final_PshAuto.local.iloc[t]

EMS.load_forecast.iloc[t

for t in range (0,max (EMS.index)):
if SoC_change.battery_soc_new.iloc[t] <= SoC_limit_batt:
Final_Psh.program.iloc[t] EMS.external.iloc[t] #+
Final_Psh.local.iloc[t] EMS.load_forecast.iloc[t]
if SoC_change.H2_soc_new.iloc[t] <= SoC_limit_H2:
Final_Psh.program.iloc[t] EMS.external.iloc[t] #+
Final_Psh.local.iloc[t] EMS.load_forecast.iloc[t]

#
#
#
#
#
#
#
# Manual rejection

for i in range(56,95): ## The EMS rejects the flex bids for

Final_PshManual.program.iloc[i] EMS.external.loc[i]
Final_PshManual.local.iloc[i] EMS.load_forecast.loc[i]

H H H

EMS.external.iloc[t] #+

EMS.external.iloc[t] #+

DSO and the flex offered by the

= FR.Difference_calc(PshFlex.

FR.Financial_calc(PshFlex.TotFlex, price)

)

columns=['program','local'])

columns=['program', 'local'])

=['program', 'local'])

EMS when the SoC of the

PshFlex.batt_power[t]
] #- PshFlex.batt_power[t]

PshFlex.H2_power[t]
] #- PshFlex.H2 power[t]

PshFlex.batt_power [t]
#- PshFlex.batt_power[t]

PshFlex.H2_power [t]
#- PshFlex.H2_power[t]

those time moments
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for i in range(17,44):
Final_PshManual.program.iloc[i] = EMS.external.loc[i]
Final_PshManual.local.iloc[i] = EMS.load_forecast.loc[i]

# # Manual rejection

# for i in range(56,95): ## The EMS rejects the flex bids for those time moments
# Final_Psh.program.iloc[i] = EMS.external.loc[i]

# Final_Psh.local.iloc[i] = EMS.load_forecast.loc[il

for i in range(17,40):
Final_Psh.program.iloc[i] = EMS.external.loc[i]
Final_Psh.local.iloc[i] = EMS.load_forecast.loc[i]

PshFlex['TotFlexUnservedUnrank'], PshFlex['TotFlexServedUnrank'] = FR.Difference_calc(

Final_Psh.program, AGR_E_prog.program, PshFlex.TotFlex)

# Ranking filtering process

execfile ("Ranking_Automated.py")

## EMS deviation
simulation

## This section simulates the deviations in the Final Energy program. The deviations are

manually inserted.

# FInal_Psh3 is the EMS's final E prog with deviations

Final_Psh3 = pd.DataFrame(index = AGR_E_prog.index, columns=['program', 'local'l])
Final_Psh3.program = Final_Psh.program

Final_Psh3.local = Final_Psh.local

# Changes in power flex provided if the EMS deviations use the grid
PshFlex3 = pd.DataFrame(index = AGR_E_prog.index, columns=['TotFlex'])
PshFlex3.TotFlex = PshFlex.TotFlex

for i in range (44,48):
Final_Psh3.program.iloc[i] = Final_Psh3.program.iloc[i] + 0.008
Final_Psh3.local.iloc[i] = Final_Psh3.local.iloc[i] #+ 0.008
PshFlex3.TotFlex.iloc[i] = PshFlex3.TotFlex.iloc[i] - 0.008

for i in range(42,44):
Final_Psh3.program.iloc[i] = Final_Psh3.program.iloc[i] + 0.008
Final_Psh3.local.iloc[i] = Final_Psh3.local.iloc[i] #+ 0.008
PshFlex3.TotFlex.iloc[i] = PshFlex3.TotFlex.iloc[i] - 0.008

for i in range(67,74):
Final_Psh3.program.iloc[i] = Final_Psh3.program.iloc[i] + 0.008
Final_Psh3.local.iloc[i] = Final_Psh3.local.iloc[i] #+ 0.008
PshFlex3.TotFlex.iloc[i] = PshFlex3.TotFlex.iloc[i] - 0.008

## Categorizing
results

FlexAnalysis = pd.DataFrame([[0,0,0]], columns=['CumFlex','CumFlexBatt','CumFlexH2'])

FlexAnalysis['CumFlex'] = np.cumsum(PshFlex['batt_power']).max() + np.cumsum(PshFlex['

H2_power']) .max ()
FlexAnalysis['CumFlexBatt'] = np.cumsum(PshFlex['batt_power']) .max()
FlexAnalysis['CumFlexH2'] = np.cumsum(PshFlex['H2_power']) .max()
FlexAnalysis['CumUnservedFlex'] = np.cumsum(PshFlex['TotFlexUnservedRank']) .max()
FlexAnalysis['CumServedFlex'] = np.cumsum(PshFlex['TotFlexServedRank']) .max()

# plots
execfile("plot_v2.py")

print ('\n \n! CODE FINISHED 1)
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Here below are the functions used by the AGR program:

# -*- coding: utf-8 -*-

nnn

Created on Mon Feb 13 14:33:29 2023

Qauthor: carlo

nnn

import pandas as pd

import numpy as np

from pyomo.environ import *
import matplotlib.pyplot as plt

## Calculates bids based on an optimization. The flexibility request (FR) is minimized by

def

bidding power (Psh). obj. function = min{FR-Psh}.
Flex_calc(EMS,FR_PTU): #Inputs: EMS's baseline and Flexibility request.
## CREATING MODEL, SET AND PARAM

model = AbstractModel ()

# Creating sets for each decision variable
model .BATTERY = Set ()
model .HYDROGEN = Set ()

# Creating the different variables that will be used for the constraints
model.BatteryMinPower = Param(model.BATTERY)
model.BatteryMaxPower = Param(model.BATTERY)
model.BatteryCapacity = Param(model.BATTERY)
model.BatterySoC = Param(model.BATTERY)
model.BatteryPrated = Param(model.BATTERY)
model.HydrogenMinPower = Param(model.HYDROGEN)
model.HydrogenMaxPower = Param(model.HYDROGEN)
model.HydrogenCapacity = Param(model.HYDROGEN)
model.HydrogenSoC = Param(model.HYDROGEN)
model.HydrogenPrated = Param(model.HYDROGEN)

# Creating dataframes that will be used for the optimization:

PshFlex = pd.DataFrame(index=EMS.index) # Amount of power provided at each PTU

SoC = pd.DataFrame (index=EMS.index) # The SoC of the different assets

SoC_change = pd.DataFrame(index=EMS.index) # The change in SoC of each assets

P_rated_EMS = pd.DataFrame (index=EMS.index) # How much the asset is already in use duri
the request of power

AGR_E_prog = pd.DataFrame (index=EMS.index) # The energy program proposed by the AGR.

# Assigning the values of the EMS to the respective variables.
# Note: Soc used for defining the parameters of the optimization and SoC_change for
saving the optimization results.

SoC['battery_soc'] = EMS['battery_soc_actual']

SoC['H2_soc'] = EMS['hydrogen_soc_actual']

SoC_change['battery_soc_new'] = SoC['battery_soc'] #This colums will be the altered SoC
after the bidding has been done.

SoC_change['H2_soc_new'] = SoC['H2_soc'] #This colums will be the altered SoC after the
bidding has been done.

P_rated_EMS['Battery_Prated'] = -EMS['battery_actual'l]

P_rated_EMS['H2_disPrated'] = -EMS['hydrogen_actual']

# These are just starting value to initaliaze the model but will be changed later.
PshFlex['batt_power'] = 0 # power used for flex bid

PshFlex['H2 _power'] = 0 # power used for flex bid

FR = 0 # request of power.

# # Setting up the paramaters. A dictionary type of strucuture is used
# # so that the values can be continuously updated:

data = {None: { #Somehow the Set will not properly create if I don't insert this None.
do not know the reason why :(
'BATTERY': {Nomne: [1]},
'"HYDROGEN': {None: [1]},

ng
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'BatteryMaxPower': {1: 4},
'BatteryMinPower': {1: 0},
'BatteryCapacity': {1: 15.4},

'BatterySoC': {1: SoC.iloc[0,0]},
'BatteryPrated': {1: P_rated_EMS.iloc[0,0]},
'HydrogenMinPower': {1: 0},
'HydrogenMaxPower': {1: 2.3},
'HydrogenCapacity': {1: 1998},
'HydrogenSoC': {1: SoC.iloc[0,1]},
'HydrogenPrated': {1: P_rated_EMS.iloc[0,1]}

# # Decision variable
model.BatteryPsh = Var(model.BATTERY, within=Reals, initialize=0)
model.HydrogenPsh = Var(model.HYDROGEN, within=Reals, initialize=0)

# Objective Function
def objective_rule(model): # For a flexibility request (FR) the power (Psh) of the assets
is used to match it.
return FR - (sum(model.BatteryPsh[i] for i in model.BATTERY) + sum(model.HydrogenPsh[
j] for j in model.HYDROGEN))

# Constraints

def MaxPowerRated_rule_BATT (model,i): # Max rated power limit
return model.BatteryPsh[i] <= model.BatteryMaxPower[i]

def MinPowerRated_rule_BATT(model,i): # Min rated power limit
return model.BatteryMinPower[i] <= model.BatteryPshl[i]

def MaxCapacitylLimits_rule_BATT(model,i): # Checks that the power flex is within the
limits of the storage (discharge limit).
return model.BatteryPsh[i] <= model.BatteryCapacity[i]*model.BatterySoC[i]*4

def MaxPowerAvailable_rule_BATT(model,i): # Checks how much power the asset is already
using at that moment.
return model.BatteryPsh[i] <= model.BatteryMaxPower [i] - model.BatteryPrated[i]

def MinPowerRated_rule_HYDRO(model,i): # Min rated power limit
return model.HydrogenMinPower[i] <= model.HydrogenPsh[i]

def MaxPowerRated_rule_HYDRO(model, i): # Max rated power limit
return model.HydrogenPsh[i] <= model.HydrogenMaxPower [i]

def MaxCapacityLimits_rule HYDRO(model, i): # Checks that the power flex is within the
limits of the storage (discharge limit).
return model.HydrogenPsh[i] <= model.HydrogenCapacity[i]*model.HydrogenSoC[i]*4

def MaxPowerAvailable_rule_HYDRO(model, i):
if (model.HydrogenPrated[i] <= 0): #valid only when the H2 asset is is used. Chargin
and discharging are decoupled and can happen at the same time. # Checks how much
power the asset is already using at that moment.
return model.HydrogenPsh[i] <= model.HydrogenMaxPower[i] - model.HydrogenPrated[i
] #valid only when the H2 asset is is used. Chargin and discharging are
decoupled and can happen at the same time. # Checks how much power the asset
is already using at that moment.
else:
return model.HydrogenPsh([i] <= model.HydrogenMaxPower [i]

def LimitPshFlex_rule_HYDRO(model,i): # Makes sure that the optimization does not provide
more power than what the FR needs. (minimization wil try to reduce it as much as
possible)
return sum(model.HydrogenPsh[i] for i in model.HYDROGEN) <= FR

def LimitPshFlex_rule_BATT(model,i): # Makes sure that the optimization does not provide
more power than what the FR needs. (minimization wil try to reduce it as much as
possible)
return sum(model.BatteryPsh[i] for i in model.BATTERY) <= FR
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# Activating the constraints

model.MaxPowerRated_BATT = Constraint (model.BATTERY, rule=MaxPowerRated_rule_BATT)

model.MinPowerRated_BATT = Constraint (model.BATTERY, rule=MinPowerRated_rule_BATT)

model.MaxCapacityLimits_BATT = Constraint(model.BATTERY, rule=MaxCapacityLimits_rule_BATT
)

model .MaxPowerAvailable_BATT = Constraint (model.BATTERY, rule=MaxPowerAvailable_rule_BATT
)

model.MaxPowerRated_HYDRO = Constraint (model.HYDROGEN, rule=MaxPowerRated_rule_HYDRO)

model .MinPowerRated_HYDRO = Constraint (model.HYDROGEN, rule=MinPowerRated_rule_HYDRO)

model.MaxCapacityLimits_HYDRO = Constraint(model.HYDROGEN, rule=
MaxCapacityLimits_rule_HYDRO)

model.MaxPowerAvailable_HYDRO = Constraint(model.HYDROGEN, rule=
MaxPowerAvailable_rule_HYDRO)

model.LimitPshFlex_BATT = Constraint(model.BATTERY, rule=LimitPshFlex_rule_BATT)

model.LimitPshFlex_HYDRO = Constraint (model.HYDROGEN, rule=LimitPshFlex_rule_HYDRO)

# model.LimitPshFlex = Constraint (model.HYDROGEN, model.BATTERY, rule=LimitPshFlex_rule)

model.PowerProvided = Objective(rule=objective_rule, sense=minimize)
instance = model.create_instance(data)

# For loop for each PTU is created. Within the for loop the model is run through the
optimization and

# the assets change of state is updated for the following PTU. (i.e. battery discharged =
SoC decreases)

for t in range(0,len(EMS.index)-1):

# The values of the SoC and rated power are updated as the for loop iterates.
data = {None: { #Somehow the Set() will not create propery if I don't insert this
None. I do not know the reason why :(
'BATTERY': {Nome: [1]},
"HYDROGEN': {Nome: [1]},
'BatteryMaxPower': {1: 4},
'BatteryMinPower': {1: 0},
'BatteryCapacity': {1: 15.4},
'BatterySoC': {1: SoC.iloc[t,0]},
'BatteryPrated': {1: P_rated_EMS.iloc[t,0]},
'HydrogenMinPower': {1: 0},
'HydrogenMaxPower': {1: 2.3},
'HydrogenCapacity': {1: 1998},
'HydrogenSoC': {1: SoC.iloc[t,1]},
'HydrogenPrated': {1: P_rated_EMS.iloc[t,1]}
o}

# The flexibility requests changes at every iteration.
FR = FR_PTU.loc[t, 'Flex_Request']

# Obejective goal is set
model .PowerProvided = Dbjective(ru1e=objective_rule, sense=minimize)

# The model is created with the updated data
instance = model.create_instance(data)

# Checks that the battery asset is available for usage (not charging). The H2 can
work also during charging because it is formed of a compressor and fuel cell.
if (P_rated_EMS.iloc[t,0] < 1le-4): # If assets is being charged or low in charge then
disable decision variable.
instance.BatteryPsh[1].£fix(0)
elif (P_rated_EMS.iloc[t,0] > 1le-4):
instance.BatteryPsh[1] .unfix ()

# instance.HydrogenPsh[1].fix(0)

# The optimization is runned and solved.
opt = SolverFactory('glpk')
opt.solve(instance)

print('\n \n working... \n \n ')
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def

for i in range(0,2):

if (instance.HydrogenPsh[1].value == FR):
if i ==
PshFlex.iloc[t,i] = O
if i == 1:
PshFlex.iloc[t,i] = instance.HydrogenPsh[1].value
else:
if i ==

if ((instance.HydrogenPsh[1].value + instance.BatteryPsh[1].value) <= FR):
PshFlex.iloc[t,i] = instance.BatteryPsh[1].value
elif ((instance.HydrogenPsh[1].value + instance.BatteryPsh[1].value) > FR)

PshFlex.iloc[t,i] = FR - instance.HydrogenPsh[1].value
if i == 1:
PshFlex.iloc[t,i] = instance.HydrogenPsh[1].value

#Computes the change in SoC happening due to the discharge
SoC_change.loc[t,i] = ( (PshFlex.iloc[t,i]) * 0.25 )/instance.HydrogenCapacity[1]
#Computes the change in SoC happening due to the discharge

if SoC_change.iloc[t,i+2] >= 0: # This if loop is to calculate the SoC change is
load shedding is the chosen option
if t == 0: #At first it uses the value of the origimnal SoC
SoC_change.iloc[t,i] = SoC.iloc[t,i] - SoC_change.iloc[t,i+2] + (SoC.iloc
[t+1,i] - SoC.iloc[t,i]) #The SoC is updated to the new value.
SoC_change.iloc[t+1,i] = SoC_change.iloc[t,i] #The SoC of the next value
is updated for the next iteration/optimization
else: #And then it starts creating its own SoC
SoC_change.iloc[t,i] = SoC_change.iloc[t-1,i] - SoC_change.iloc[t,i+2] +
(SoC.iloc[t+1,i] - SoC.iloc[t,i]) #The SoC is updated to the new
value.
SoC_change.iloc[t+1,i] = SoC_change.iloc[t,i]

# Creates traces of the assets SoC with the deviations from their original planned
operation (for plotting)

SoC_change['battery_shift'] = SoC['battery_soc']l - SoC_change.iloc[:,2]

SoC_change['H2_shift'] = SoC['H2_soc'] - SoC_change.iloc[:,3]

# Adds the power of the provided flex at each PTU to have the total flexibility power.
PshFlex['TotFlex'] = PshFlex['batt_power'] + PshFlex['H2_power']

# Creates trace of the AGR energy program
AGR_E_progl['program'] = EMS.external - PshFlex.TotFlex
AGR_E_progl['local'] = EMS.load_forecast + PshFlex.TotFlex

return SoC_change, PshFlex, AGR_E_prog

PV_curtailment (batt_p, H2_p, H2_on, load, pv_prod):# Inputs: The battery and H2 rated
power, the local load and PV production

## Calculates the amount of PV production that is curtailed (or just unused)
temp_batt = pd.DataFrame (index=1load.index)

for i in range(0,len(load.index)): ## Saves in dataframe the moment when the battery is
charging
if batt_p.loc[i] < O:
temp_batt.loc[i, 'batt'] = -batt_p.loc[i]

temp_batt.batt = temp_batt.batt.fillna(0)

temp_H2 = pd.DataFrame(index=1load.index)
for i in range(0,len(load.index)): ## Saves in dataframe the moment when the H2 is
charging
if H2_on.loc[i] == 1 :
temp_H2.loc[i,'H2'] = H2_p.loc[i]
temp_H2.H2 = temp_H2.H2.fillna(0)

# Checks the difference between the PV production and the total load (batt+H2+local). If
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def

def

def

def

any remains then there is PV overproduction.
pv_curtail = pv_prod - (temp_H2.H2 + temp_batt.batt + load)
return pv_curtail

Financial_calc(Power, price): # Inputs: Power served/unserved and price.
## Calculates the financial turnover. This can be used for calculating the revenue (power
sold times the price)
# but also financial penalties (power not supplied times the penalty) and financial
turnovers for other purposes.

Financial_turnover = pd.DataFrame(index=Power.index, columns=['turnover'])
Financial_turnover = Power*price # Multiplies the provided flex with the price
Financial_turnover_sum = Financial_turnover.cumsum() .max() # Cumulative sum of the

financial turnover
return Financial_turnover, Financial_turnover_sum

Difference_calc (AGR_E_prog, EMS_E_prog, Psh): #Inputs: E prog #1, E prog #2, Power Flex
Offered
## Calculates the difference: E prog #2 - E prog #1. Return the amount of power that
matches but also does not match.
E_prog = pd.DataFrame (index=AGR_E_prog.index, columns=['Unserved', 'Served'])
for i in range(0,len(AGR_E_prog.index)):
if (EMS_E_prog.iloc[i] >= AGR_E_prog.iloc[i]): # Checks if there is a difference
between the two E program.
E_prog.Unserved.loc[i] = (EMS_E_prog.iloc[i] - AGR_E_prog.iloc[i]) # The amount
of power planned but not served
E_prog.Served = Psh - E_prog.Unserved # The amount of power reduced
E_prog = E_prog.fillna(0)
return E_prog.Unserved, E_prog.Served

Ranking (Revenue ,Power=None): #Inputs: Revenue, Dateframe to append the rank to. If none
is assigned then it will return as an independent dataframe.
## Gives a ranking based on the revenue (power time price). The rank is calculated as:
revenue at PTU divided by the greatest revenue of the whole set.
# This should help prioritize certain bids over others
Rank = pd.DataFrame (index=Revenue.index, columns=['rank'])
Rank['rank'] = Revenue/Revenue.max() # Ranks revenue based of the max achievable.
if Power is None:
return Rank
elif Power is not None: #Gives the option to have the rank appended directly to the flex
power dataframe
Rank = pd.merge(Power ,Rank,left_index=True,right_index=True)
return Rank

Rank_analysis (PshFlex, price, penalty): #Inputs: The power unserved and served with no

rank and with rank and the price and penalty.

## Calculates the difference in revenue, loss and volume served between the ranked and
unranked energy programs

Rank_analysis_temp = pd.DataFrame ()

lossUnRanked, lossUnRanked_sum = Financial_calc(PshFlex.TotFlexUnservedUnrank ,penalty)

revUnRanked, revUnRanked_sum = Financial_calc(PshFlex.TotFlexServedUnrank,price)

lossRanked, lossRanked_sum = Financial_calc(PshFlex.TotFlexUnservedRank, penalty)
revRanked, revRanked_sum = Financial_calc(PshFlex.TotFlexServedRank,price)

# Somehow if the _sum variable is used it creates problem when appending it to a
Dataframe. To fix this the cumulative sum of the revenue and loss is computed again.

Rank_analysis_temp['lossUnRanked'] = lossUnRanked.cumsum()
Rank_analysis_temp['revUnRanked'] = revUnRanked.cumsum()
Rank_analysis_temp['lossRanked'] = lossRanked.cumsum()
Rank_analysis_temp['revRanked'] = revRanked.cumsum()

# Only the max is taken as we are interested in the total revenue and loss
Rank_analysis = Rank_analysis_temp.max ()

return Rank_analysis

208 def EMS_package (AGR_E_prog,PshFlex): #Inputs: the EMS dataframe, the AGR dataframe (changes
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after flex bids), the Psh (amount of power bidded for flexibilty)

## Creates a dataframe with the information that need to be passed on to the EMS. Namely:
the change in local load and grid exchange

AGR_proposition = pd.DataFrame(index=PshFlex.index)

AGR_proposition['local']l = AGR_E_prog.local
AGR_proposition['external'] = AGR_E_prog.program
AGR_proposition['trade'] = PshFlex.TotFlex

return AGR_proposition

## NOT NEEDED ONCE THE SYSTEM IS UP AND
RUNNING _ _ _ _ _

# These functions are created just to simulate inputs and outputs so that the AGR code can be
tested

#I.e. Flex request is sent by DSO, or deviations in the actual power that is eventually

provided by the EMS are due to ICT malfunctions or bad forcast.

## Simulates the DSO forecast of when the congestion happens and creates a flex request
def DA_FR(forecast,congestion_limit):
FR_PTU = pd.DataFrame (index=forecast.index, columns=['P_Available', 'Flex_Request'])
for i in range(0,len(forecast)):
if (forecast.iloc[i] >= congestion_limit): # grid use is above grid limit so the flex
is required
FR_PTU.loc[i, 'Flex_Request'] = forecast.iloc[i] - congestion_limit
elif (forecast.iloc[i] < congestion_limit): # grid use is below limit so power
available (for load shift)
FR_PTU.loc[i,'P_Available'] = congestion_limit - forecast.iloc[il
return FR_PTU

Here below is the code for the automated ranking:

import pandas as pd
import numpy as np

# import functions:
import Flexibility _FUNC as FR

pd.options.mode.chained_assignment = None

# Start the ranking process

o =0 # Used to go through the Analysis dataframe

rank_index = 0 # Starts analysis with all the ranks accepted.

Rank_opt = False # Used to exit the While loop.

EMS_best = False # If no rank is found satisfying the conditions then the EMS correction is
the best option left.

rank_increment = 0.01 # How much the rank increases at each iteration

# Initialize dataframes

# Final_Psh2 is the energy program after the rank analysis

Final_Psh2 = pd.DataFrame(index = AGR_E_prog.index, columns=['program','local'])
Final_Psh2.program = AGR_E_prog.program

Final_Psh2.local = AGR_E_prog.local

# temporary dataframe used to store info

Final_Psh_temp = pd.DataFrame(index = AGR_E_prog.index, columns=['program','local'])
Final_Psh_temp.program = AGR_E_prog.program

Final_Psh_temp.local = AGR_E_prog.local

Analysis = pd.DataFrame() # Contains all the analysis results for each ranks
Analysis_opt = pd.DataFrame() # Contains the analysis results of the optimal rank

while (Rank_opt == False):
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rank_index = rank_index + rank_increment

#Bids are now filtered based on the rank
for i in range(0, len(rank.index)): # Energy program is filtered based on the rank
if (rank.loc[i] < rank_index).item():
Final_Psh_temp.program.iloc[i] = EMS.external.loc[i]
Final_Psh_temp.local.iloc[i]l= EMS.load_forecast.loc[i]

# Calculates the difference between the ranked Final E program and the AGR E program (
checks the difference in E)

PshFlex['TotFlexUnservedRank'], PshFlex['TotFlexServedRank'] = FR.Difference_calc(
Final_Psh_temp.program, AGR_E_prog.program, PshFlex.TotFlex)

# Caluclates the revenue and loss between the unranked and ranked E program (the function
Fiancial_calc is applied)

temp = FR.Rank_analysis(PshFlex,price,penalty)

temp = (temp.reset_index()).loc[:,0]

# Conditions for which the optimal rank is accepted.

ratio_Psh = PshFlex['TotFlexServedUnrank'].cumsum() .max()/PshFlex['TotFlexServedRank'].
cumsum () .max ()

ratio_rev = temp.iloc[1]/temp.iloc[3]

for j in range(0,len(temp.index)): # Stores Analysis result into the Analysis dataframe
if (rank_index <= 1):
Analysis.loc[o,j] = temp.iloc[j]
Analysis.loc[o0,0] = PshFlex['TotFlexServedUnrank'].cumsum() .max()
Analysis.loc[o0,2] = PshFlex['TotFlexServedRank'].cumsum() .max ()
Analysis.loc[o, 'ratio_rev'] = ratio_rev
Analysis.loc[o, 'ratio_Psh'] = ratio_Psh
# #checks whether the best ranking scenario has been reached or if more can be done
if (Analysis.ratio_rev.iloc[o-1] <= 1) and (Analysis.ratio_Psh.iloc[o-1] >= 1):

rank_index_opt = o*rank_increment # converts the o step into what rank it represents
Analysis_opt = Analysis.iloc[o-1,:] # Saves the optimal rank into a seperate
dataframe

Rank_opt = True # exits while loop
elif (rank_index >= 1): # all ranks have been tried no need to any further iteration
EMS_best = True
Analysis_opt = Analysis.iloc[o-1,:]
Rank_opt = True
o =o0 + 1 #if none of the conditions are met then next iteration is done

#Rewrite the dataframe to make it more comprehensible
Analysis_opt['TotFlexServed_Unrank'] = Analysis_opt.iloc[0]
Analysis_opt['TotFlexServed_Rank'] = Analysis_opt.iloc[1]
Analysis_opt['Revenue_Unrank'] = Analysis_opt.iloc[4]
Analysis_opt['Revenue_Rank'] = Analysis_opt.iloc[5]
Analysis_opt['Ratio_Revenue'] = Analysis_opt.iloc[2]
Analysis_opt['Ratio_Psh'] = Analysis_opt.iloc[3]

if Analysis.index.max() == 0:
Analysis_opt['Optimal_Rank']

elif Analysis.index.max() != O:
Analysis_opt['Optimal_Rank'] = Analysis.index.max()*rank_increment

1]
o

# Cleans the Analysis_opt dataframe
for i in range(1,7):
Analysis_opt = Analysis_opt.drop(Analysis_opt.index[0])

if EMS_best == False:
print("\n \n \n RESULT OF RANK ANALYSIS: The most optimal index has been found. No more
iteration is needed. \n \n \n ")
else:
print ("\n \n \n RESULT OF RANK ANALYSIS: All rank indexes have been tried and none yield
to an optimal result. \n \n \n ")

# Once the rank has been found, the energy program is filtered so that it can be proposed to
the EMS.
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if EMS_best == False:

for t in range(0,max(EMS.index)):
if rank.iloc[t,0] < Analysis_opt.Optimal_Rank:
Final_Psh2.program.iloc[t] = EMS.external.loc[t]
Final_Psh2.local.iloc[t] = EMS.load_forecast.loc[t]

elif EMS_best == True:

for t in range(0,max (EMS.index)):
Final_Psh2.program.iloc[i]

Final_Psh2.local.iloc[i]

= EMS.external.loc[i]
EMS.load_forecast.loc[il]
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