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Modal decomposition is often applied in elastodynamics and acoustics for the solution of problems

related to propagation of mechanical disturbances in waveguides. One of the key elements of this

method is the solution of an eigenvalue problem for obtaining the roots of the dispersion equation,

which signify the wavenumbers of the waves that may exist in the system. For non-dissipative

media, the wavenumber spectrum consists of a finite number of real roots supplemented by infin-

itely many imaginary and complex ones. The former refer to the propagating modes in the medium,

whereas the latter constitute the so-called evanescent spectrum. This study investigates the signifi-

cance of the evanescent spectrum in structure-waveguide interaction problems. Two cases are ana-

lysed, namely, a beam in contact with a fluid layer and a cylindrical shell interacting with an

acousto-elastic waveguide. The first case allows the introduction of a modal decomposition method

and the establishment of appropriate criteria for the truncation of the modal expansions in a simple

mathematical framework. The second case describes structure-borne wave radiation in an offshore

environment during the installation of a pile with an impact hammer—a problem that has raised se-

rious concerns in recent years due to the associated underwater noise pollution.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4932016]
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I. INTRODUCTION

Modal decomposition is often used for the solution of

problems related to wave propagation in acoustic, elastic, or

acousto-elastic waveguides. The continuous interest in these

problems is created by numerous applications of practical in-

terest in the field of non-destructive material characterisa-

tion,1,2 structural acoustics,3,4 geophysics,5,6 and seismology.7

The solution to the system of equations describing propaga-

tion of mechanical disturbances in waveguides requires the si-

multaneous satisfaction of a system of equations of motion

together with a number of boundary and interface conditions.

It is well-known that a non-trivial solution exists for discrete

values of the wavenumber k, which being a function of the ex-

citation frequency x, describes the propagation or decay par-

allel to the boundaries of the waveguide. These values of k
can be found by solving a classical eigenvalue problem.

Whereas the solution of such eigenvalue problems is

rather straightforward for acoustic waveguides,8 this is not

the case for elastic or porous layered media. The main diffi-

culty in the latter cases arises from the fact that complex

eigenvalues do exist even for the undamped media.9 When

wave propagation in layered media is considered, there is

first the challenge that infinitely many roots exist and, sec-

ond, that these roots are closely spaced in the complex plane.

To date, the focus is almost solely placed on the real-valued

roots which correspond to propagating modes in the wave-

guide. Consequently, investigations into the significance of

the evanescent spectrum for structure-waveguide interaction

problems are scarce. This study aims to fill this gap.

In the literature, numerous publications exist in which

the propagation of mechanical disturbances in waveguides is

treated in detail, but only a few of them investigate the com-

plete wave spectrum. Achenbach9 has investigated the com-

plete wave spectrum of an elastic layer with stress-free

surfaces, pointing out the existence of complex-valued roots

even for the undamped medium. Karp and Durban10 exam-

ined the complete wave field of a pre-stretched hyperelastic

plate focusing on the numerical findings for the complex

wavenumbers associated with evanescent waves. In the field

of non-destructive material characterisation, the modal

decomposition is often favoured. Shkerdin and Glorieux1,2

have investigated Lamb mode propagation through a com-

posite plate consisting of two parallel layers of different

materials with a finite length delamination. The method to

calculate the transmitted and reflected fields was based on a

modal expansion of each field in terms of propagating and

evanescent modes. The adopted solution method allowed for

an error estimation based on the number of evanescent

modes considered in the modal expansions. In a more recent

paper, Shkerdin and Glorieux11 treated the interaction of

Lamb modes in a steel plate with a thin inclusion and

reported the importance of the evanescent spectrum. Nennig

et al.12 applied a mode matching method for predicting the

transmission loss of a cylindrically shaped dissipative si-

lencer partially filled with a poroelastic foam. The method of

solution was very similar to that of Shkerdin and Glorieux,1

but the integral formulation was obtained by using arbitrarily

chosen weighting functions rather than the orthogonality

relation of the modal expansions. Modal methods have also

been extensively used in the field of geophysics and seismol-

ogy. In one of the few publications in which the completea)Electronic mail: a.tsouvalas@tudelft.nl
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wave spectrum is considered, Stange and Friederich5,6 inves-

tigated wave propagation in waveguides with sharp lateral

heterogeneities using a modal decomposition approach.

Their work highlighted the importance of the evanescent

modes for the satisfaction of the displacement and stress

continuity at the various interfaces.

The examples discussed above consider wave propaga-

tion in waveguides with several internal discontinuities. To

this end, the source of the radiated wave field is usually sim-

ple and a priori defined. On the contrary, the present study

focuses on a modal decomposition method applied in

structure-waveguide interaction problems in which a structure

that is in full contact with the waveguide is subjected to a

dynamic excitation. In such systems, the dynamic behaviour

of the structure and the accuracy of the solution to the coupled

problem define the actual source mechanism that is responsi-

ble for the radiated field into the waveguide. In this context,

the contribution of the evanescent field seems to be more pro-

nounced. Two systems are investigated: (i) a beam in contact

with a fluid layer and (ii) a cylindrical shell embedded in a

layered acousto-elastic waveguide. The modal decomposition

method is applied for each subsystem, i.e., the structural do-

main and the waveguide. The modal coefficients are then

determined by an appropriate combination of the kinematic

conditions at the interface of the two domains and the use of

the orthogonality relations of each set of eigenmodes. Thus,

the solution to the problem is semi-analytical and the only

approximation employed is on the truncation of the modal

expansions to reduce the infinite set of linear algebraic equa-

tions. This study focuses on the choice of a proper truncation

scheme that is based on the contribution of the evanescent

spectrum on the resulting displacements and stresses in the

structure and in the waveguide.

The paper is structured as follows. Section II introduces

the theoretical background of the method by examining the

vibrations of a beam in contact with a fluid layer. The signifi-

cance of the evanescent spectrum is emphasised together with

the establishment of appropriate truncation criteria of the

modal expansions. In Sec. III, the case of a cylindrical shell in

contact with an acousto-elastic medium is analysed. Finally,

Sec. IV focuses on the practical case of a steel pile being

driven into the soil offshore. This particular example is cho-

sen here because it recently received the attention of the

acoustic specialists throughout the world.13–16 Sound radia-

tion generated during the installation of piles emits strong im-

pulsive sounds into the seawater column, which can be

harmful for the marine ecosystem. With today’s increasing

concern regarding the environmental impact of such opera-

tions, it is of high importance to provide engineering tools for

reliable predictions of the underwater noise levels.

II. THEORETICAL BACKGROUND

The theoretical background is introduced with the help

of a one-dimensional continuum coupled to an acoustic

layer. The chosen example is shown in Fig. 1 and consists of

an elastically supported beam in contact with a fluid layer.

The beam is of finite length, i.e., 0 � x � L, and the fluid

occupies the region y � 0 and 0 � x � L. EI, qb, and kd

define the bending stiffness, the mass per unit of length of

the beam, and the spring constant, respectively. In the fluid

region, qf and cf define the density and wave speed, respec-

tively. At x ¼ 0; L, the displacement of the beam along the

y– direction is restrained and the rotation is free. Finally, the

fluid layer is bounded by a pressure release surface at x¼ 0

and by a rigid bottom at x¼L. Other boundary conditions

can also be treated within the framework of the present

method, but the simplest possible choice is adopted here for

the purpose of this study.

A. Governing equations and analytical solution

The governing equations describing the linear vibrations

of the coupled beam-fluid system in the frequency domain

are

EI
d4 ~w xð Þ

dx4
� x2qb ~w xð Þ þ H x� x1ð Þ

�
�H x� x2ð Þ

�
kd ~w xð Þ

¼ � ~F xð Þ d x� x0ð Þ � ~pf x; y ¼ 0ð Þ; (1)

r2~vðx; yÞ þ j2
f ~vðx; yÞ ¼ 0; (2)

~wðx ¼ 0Þ ¼ ~wðx ¼ LÞ ¼ 0; (3)

d2 ~w xð Þ
dx2

� �
x¼0

¼ d2 ~w xð Þ
dx2

� �
x¼L
¼ 0; (4)

~pf ðx ¼ 0; yÞ ¼ 0! �ixqf ~vðx ¼ 0; yÞ ¼ 0; (5)

~vx x ¼ L; yð Þ ¼ 0!
@~v x; yð Þ
@x

� �
x¼L
¼ 0; (6)

~vy x; y ¼ 0ð Þ ¼ ix~w xð Þ !
@~v x; yð Þ
@y

� �
y¼0

¼ ix~w xð Þ:

(7)

In the equations above, ~wðxÞ is the displacement of the

beam, ~pf ðx; yÞ denotes the pressure of the fluid, ~vðx; yÞ is a

velocity potential and ~vxðx; yÞ; ~vyðx; yÞ are the particle veloc-

ities of the fluid in the vertical and horizontal directions,

respectively. In addition, ~FðxÞ denotes the Fourier transform

of the force F(t) applied at x¼ x0, j2
f ¼ x2=c2

f , and

r2 ¼ @2=@x2 þ @2=@y2. The frequency domain is related to

FIG. 1. Geometry of an elastically supported beam in contact with an acous-

tic fluid. The beam is subjected to a point force at x¼ x0. The beam vibra-

tions excite acoustic waves in the fluid region.
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the time domain through the integral Fourier transform

~gðxÞ ¼
Ðþ1
�1 gðtÞ expð�ixtÞ dx, in which g(t) and ~gðxÞ

denote the quantity of interest in the time and in the fre-

quency domain, respectively.

First, the response of the beam and the fluid are

expressed in terms of modes,17 which satisfy the boundary

conditions at x¼ 0 and x¼L, as well as the condition of

finite response at infinite distance from the source (i.e., y
! þ1 for the fluid layer)

~w xð Þ ¼
X1
n¼1

An sin
n px

L

� �
; (8)

~vðx; yÞ ¼
X1
m¼0

Cm sin ðkx;mxÞ exp ð�i ky;m yÞ; (9)

in which An and Cm are unknown modal coefficients of the

beam and the fluid, respectively, to be determined by the so-

lution of the forced equation. Similarly, kx;m ¼ ð2mþ 1Þp=
2L and ky;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

f � k2
x;m

q
are the vertical and horizontal

wavenumbers in the fluid domain, respectively. For the

wavenumbers in the horizontal direction, we require that

Reðky;mÞ � 0 or Imðky;mÞ � 0, depending on ky;m being real

or imaginary. Obviously, the modal sets for the fluid and the

beam are different.

Second, by using Eq. (7), expanding both the fluid and

beam displacements in terms of Eqs. (8) and (9), multiplying

by another fluid mode, i.e., sin ðkx;kxÞ, and applying the

orthogonality of the fluid modes, the coefficients An and Cm

can be interrelated. Thus, the fluid pressure exerted on the

beam can be expressed in terms of the modal coefficients of

the beam as

~pf x; y ¼ 0ð Þ ¼ ix2qf

X1
n¼1

An

X1
m¼0

Rnm

ky;m
sin kx;mxð Þ; (10)

in which

Rnm ¼
ðL

0

sin
n p�x

L

� �
sin kx;m�xð Þ d�x: (11)

Note that the fluid modes are normalized so thatÐ L
0

sin2ðkx;mxÞ dx ¼ 1. Substituting Eq. (10) into Eq. (1),

multiplying both sides by another beam mode, i.e.,

sin ðl px=LÞ, and applying the orthogonality of beam modes,

yields an infinite set of coupled algebraic equations

X1
n¼1

ðqbðx2
n � x2Þdnl þ Knl � ZnlÞAn ¼ Fl; (12)

in which

Knl ¼ kd

ðx2

x1

sin
n px

L

� �
sin

l px

L

� �
dx; (13)

Znl ¼
X1
m¼0

ix2qf Rlm

ky;m

ðL

0

sin
n px

L

� �
sin kx;mxð Þ dx; (14)

Fl ¼ � ~F xð Þsin
l px0

L

� �
: (15)

In Eq. (12), dnl is the Kronecker delta, Znl denotes the

impedance of the fluid, and xn is the eigenfrequency of the

beam for mode n. Note also that a visco-elastic support (with

cd being the viscous coefficient) can be treated in a similar

way with merely a substitution of kd in Eq. (13) by

kd þ ixcd. Equation (12) can be solved for obtaining the

unknown modal coefficients An. In order to solve the infinite

system of linear equations, the modal expansions of both

subsystems (beam and fluid) need to be truncated. Whereas

for the beam modes an estimation of the upper limit of the

modal expansion can be based on the maximum frequency

of the load, for the fluid modes the choice is not that obvious.

The choice of a proper truncation scheme for the fluid modes

is the subject of discussion in Sec. II B.

B. Truncation of the modal expansions

A numerical example is analysed in this section. The

force is applied at x0 ¼ L=3 with an amplitude of j ~FðxÞj
¼ 106 N s. The geometrical and material properties of the

systems are defined in accordance with Fig. 1: L¼ 10 m,

x1 ¼ 0:2L; x2 ¼ 0:9L, EI¼7.2�106 N m–2, qb ¼ 300 kg m–1,

kd ¼ 105 N m�2, qf ¼ 1000 kg m–3, and cf¼1500 m s–1. In the

results presented hereafter, the number of beam modes con-

sidered in the modal expansion is 100, which is regarded to

be sufficient for the considered range of frequencies

0� f � 500 Hz. The roots of the dispersion equation of the

fluid layer are given by ky;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

f � ðð2mþ 1Þp=2L
q

Þ2, with

m¼ 0;1;…;1. Consequently, the eigenvalues can be either

real (propagating modes) or imaginary (evanescent modes).

In order to illustrate the significance of the evanescent

modes in the solution of the coupled problem, the satisfac-

tion of the kinematic condition at the beam-fluid interface,

i.e., Eq. (7), is first examined. In Figs. 2(a)–2(c), the

modulus of the displacement amplitude of the

beam j~wj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRef~wgÞ2 þ ðImf~wgÞ2

q
and the fluid j~uyj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRef~uygÞ2 þ ðImf~uygÞ2

q
with ~uy ¼ ~vy=ðixÞ, are plotted

together with the mismatch of the two at the interface y¼ 0

at f¼ 0.5 kHz for a varying number of evanescent modes

included in the modal summation. At this frequency, seven

propagating modes exist in the fluid layer. As can be seen,

the inclusion of a small number of evanescent modes suffi-

ces for a substantial improvement of the fit at the interface.

In addition, the convergence of the interface condition

improves monotonically as the number of evanescent

modes increases. The mismatch of the displacements when

only the propagating modes are considered in the modal

summation is large.

Based on these results, a convergence criterion is

adopted for the displacement mismatch error dðxÞ along the

length of the beam, i.e., at y¼ 0,

d xð Þ ¼
~w xð Þ � ~uy x; y ¼ 0ð Þ

~w xð Þ

				
				: (16)
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The average displacement mismatch error can be obtained as

d̂u ¼ hdðxÞi, in which h�i denotes here the average displace-

ment mismatch along the length of the beam. In Fig. 3, d̂u is

plotted as a function of the number of evanescent modes

considered in the modal expansion for frequencies up to

500 Hz. As can be seen, the average displacement error is

larger than 10% when <20 evanescent modes are considered

at all frequencies and drops below 1% only when more than

80 evanescent modes are included. With 100 evanescent

modes, d̂u < 0:5% throughout the frequency range, which

verifies the results shown in Fig. 2(c). In Fig. 4, the distrib-

uted bending moment ~MðxÞ ¼ �EI ðd2 ~wðxÞ=dx2Þ and the

shear force ~VðxÞ ¼ d ~M=dx along the beam length are shown

at f¼ 500 Hz for a varying number of evanescent modes con-

sidered. The convergence of the bending moment and shear

force are rather well represented by the displacement mis-

match error at the interface. In other words, the check of the

displacement convergence at the interface suffices for an

accurate prediction of the bending moment and shear force

in the beam.

Apart from the displacement continuity at the beam-

fluid interface, it is of interest to investigate the influence of

the inclusion of a progressively larger number of evanes-

cent modes on the calculation of the modal coefficients of

propagating modes of the fluid Cm. Since the radiated

acoustic power depends solely on the propagating modes

(the evanescent modes carry no energy through a surface

positioned away from the interface), any error in the esti-

mation of the modal amplitudes of the propagating modes

will be reflected in the energy radiated into the fluid region.

For convenience, we introduce the error dp;m in the estima-

tion of the coefficient of the propagating mode m as

follows:

dp;m ¼
Cm � Ca

m

Ca
m

				
				 ; (17)

FIG. 2. Horizontal displacement mis-

match at the beam-fluid interface at

f¼ 500 Hz for different amounts of

evanescent modes included in the solu-

tion. In (a), only the propagating modes

are included. In (b) and (c), 6 and 100

evanescent modes are included, respec-

tively. The thin line denotes the fluid

displacement, the thick grey line

denotes the beam displacement, and the

dashed line denotes the mismatch of

these two. The inclusion of a larger

number of evanescent modes of the

acoustic layer reduces the mismatch of

the displacements at the beam-fluid

interface.

FIG. 3. Contour plot of the average

displacement error d̂u (%) at the beam-

fluid interface as a function of the

number of the evanescent modes (hori-

zontal axis) and the excitation fre-

quency (vertical axis). The inclusion of

more than 80 evanescent modes limits

the error below 2% at the frequency

range 0 � f � 500 Hz.
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in which dp;m denotes the error in the estimation of the prop-

agating mode coefficient Cm and Ca
m denotes the same coeffi-

cient evaluated by including 200 evanescent modes in the

modal expansion. The average displacement error in the lat-

ter case equals d̂u ’ 0:05% and is considered hereafter as

the exact solution to the problem. In Table I, the error dp;m

with m ¼ 1; 2; :::; 7 (seven propagating modes) is shown for

a varying number of evanescent modes at f¼ 500 Hz. As can

be seen, the convergence of the coefficients of the propagat-

ing modes to within an error of <1% requires the inclusion

of only ten evanescent modes.

The displacement error defined by Eq. (16) is larger

than the error of the propagating modes given by Eq. (17)

when the same number of evanescent modes is considered in

the solution of Eq. (12). The former is associated with the

satisfaction of the displacement continuity at the beam-fluid

interface. On the contrary, the latter is associated with

energy radiation into the fluid for which a correct estimation

of the coefficients of the propagating modes alone suffices.

However, when one is interested in the resulting bending

moments and shear forces in the structure (as well as the

near-field intensity of the acoustic field), the displacement

error criterion seems to be more appropriate since it inher-

ently provides the necessary error estimation in the calcula-

tion of the coefficients of the evanescent modes.

III. CYLINDRICAL SHELL COUPLED TO AN
ACOUSTO-ELASTIC MEDIUM

In Sec. II, the simple case of a beam vibrating in a fluid

column was investigated. The beam-fluid model allowed us

to highlight the importance of the evanescent modes in the

correct determination of the shear forces and bending modes

in the beam, and to develop appropriate criteria for the con-

vergence of the solution. In this section, the case of a cylin-

drical shell in full contact with an acousto-elastic waveguide

is considered. A similar model has been developed for pre-

dictions of structure-borne wave radiation by offshore pile

driving by Tsouvalas and Metrikine.4 In the sequel, an exten-

sion of the original model for a layered system is presented

and the convergence of the solution for various modal trun-

cation schemes is examined.

A. Governing equations and modal decomposition

The total system consists of the shell and the layered

acousto-elastic domain as shown in Fig. 5. The system is

excited by a force applied at the top side of the shell. A lin-

ear high-order shell theory is considered for the description

of the shell dynamics.18 The shell is of finite length and

occupies the domain 0 � z � L. The constants E, v, R, q,

and 2 h correspond to the complex modulus of elasticity in

the frequency domain, the Poisson ratio, the radius of the

mid-surface of the shell, the density, and the thickness of the

shell, respectively. The fluid is modeled as a three-

dimensional inviscid compressible medium with a pressure

release boundary at z¼ z0 and occupies the domain z0 � z

FIG. 4. Bending moment (left) and

shear force (right) in the beam at

f¼ 0.5 kHz. The continuous line corre-

sponds to the case in which only prop-

agating modes are considered. The

dashed line and the thick grey line cor-

respond to the situation in which 4 and

100 evanescent modes are included,

respectively. Again, the inclusion of a

large number of evanescent modes is

required for the correct prediction of

the forces and moments in the beam

structure.

TABLE I. Error dp;m(%) in the estimation of the coefficients of the propa-

gating modes at f¼ 500 Hz. When only propagating modes of the acoustic

layer are considered, the introduced error is large. With the inclusion of a

small fraction of the evanescent spectrum, i.e., ten evanescent modes, the

error in the estimation of the propagating-mode coefficients is limited to a

value <1%.

Evanescent modes dp;1 dp;2 dp;3 dp;4 dp;5 dp;6 dp;7

0 >100 92.62 >100 >100 >100 >100 >100

2 38.69 19.70 26.30 >100 24.28 23.96 >100

4 15.59 7.933 10.56 42.54 9.694 9.536 69.22

6 0.808 0.410 0.543 2.169 0.489 0.477 3.427

8 0.474 0.240 0.319 1.275 0.288 0.281 2.023

10 0.176 0.089 0.118 0.468 0.105 0.101 0.721

20 0.016 0.008 0.010 0.042 0.009 0.008 0.063

100 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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� z1 and r>R. The layered solid domain is described as a

three-dimensional elastic continuum in z1 < z < D and

r>R. The interface at z¼D is substituted by a rigid bound-

ary. All layers are horizontally stratified and are distin-

guished by the index j ¼ 1; 2; :::; n. The constants kj and Gj

define the Lam�e coefficients for each solid layer and qj is the

soil density. The various solid layers are in full contact with

each other at the horizontal interfaces. At the interface with

the fluid only the vertical stress equilibrium and the vertical

displacement continuity are imposed (the shear stresses at

the surface of the upper solid layer are set equal to zero).

The shell structure is extended by a rigid baffle in the region

L< z<D to comply with the homogeneity of the domain

along the z– coordinate at r>R.

The following set of partial differential equations gov-

ern the linear dynamics of the coupled system in the fre-

quency domain for the cylindrically symmetric case:

L~up þ Im~up ¼ �ðHðz� z1Þ � Hðz� LÞÞ~ts

þ ðHðz� z0Þ � Hðz� z1ÞÞ~pf þ ~f ; (18)

Gjr2~uj
s þ ðkj þ GjÞrr � ~uj

s þ x2qj~u
j
s ¼ 0; (19)

r2 ~/f r; z;xð Þ þ
x2

c2
f

~/f r; z;xð Þ ¼ 0: (20)

In the equations above, ~up ¼ ½~up;zðz;xÞ ~up;rðr;xÞ�T is the dis-

placement vector of the mid-surface of the shell, uj
sðr; z;xÞ

¼ ½uj
s;zðr; z;xÞ; uj

s;rðr; z;xÞ�
T

is the displacement vector of

each solid layer, and ~/f ðr; z;xÞ is a velocity potential

introduced for the description of the fluid layer. The subscripts

s and f correspond to the solid and the fluid, respectively. The

operators L and Im are the stiffness and modified inertia matri-

ces of the shell, respectively.4 The term ~pf represents the fluid

pressure exerted at the outer surface of the shell at z0 � z
� z1. The functions Hðz� ziÞ are the Heaviside step functions

which are used here to account for the fact that the soil and the

fluid are in contact with different segments of the shell. The

vector ~f ¼ ½~f rzðz;xÞ ~f rrðz;xÞ�
T

represents the externally

applied force on the surface of the shell. The term ~ts represents

the boundary stress vector that takes into account the reaction

of the soil surrounding the shell at z1 < z < L, i.e.,

~t
j
s ¼ kjr � ~uj

s Iþ Gj ðr~uj
s þ ðr~uj

sÞ
TÞ; (21)

in which j is used here to distinguish between the layers and

I is the identity matrix. The Helmholtz decomposition is

applied, i.e., ~uj
s ¼ r~/

j þr� ~w
j
, in which two potentials

~/
jðr; z;xÞ and ~w

j ¼ ½0; ~w
jðr; z;xÞ; 0�T suffice for determin-

ing the wave field in each solid layer

r2 ~/
jðr; z;xÞ þ k2

L;j
~/

jðr; z;xÞ ¼ 0; (22)

r2 ~w
j

r; z;xð Þ �
~w r; z;xð Þ

r2
þ k2

T;j
~w

j
r; z;xð Þ ¼ 0; (23)

with k2
L;j ¼ x2=c2

L;j and k2
T;j ¼ x2=c2

T;j, in which cL;j and cT;j

denote the speeds of the compressional and shear waves in

layer j, respectively. In addition, a set of boundary condi-

tions at z¼ 0, z¼D and a set of interface conditions between

the adjacent layers should be satisfied, together with the

interface conditions at the shell surface

~pf ðr; z0;xÞ ¼ 0; r � R; (24)

~r1
s;zzðr; z1;xÞ þ ~pf ðr; z1;xÞ ¼ 0; r � R; (25)

~r1
s;zrðr; z1;xÞ ¼ 0; r � R; (26)

~u1
s;zðr; z1;xÞ � ~vf ;zðr; z1;xÞ=ðixÞ ¼ 0; r � R; (27)

rjþ1
s;zi ðr;zj;xÞ�rj

s;ziðr;zj;xÞ ¼ 0 ; 2� j� n�1 ; i¼ z;r;

(28)

~ujþ1
s;i ðr; zj;xÞ� ~uj

s;iðr; zj;xÞ ¼ 0; 2� j� n� 1 ; i¼ z; r;

(29)

~un
s;rðr;D;xÞ ¼ ~un

s;zðr;D;xÞ ¼ 0; (30)

~up;rðz;xÞ � ~vf ;rðR; z;xÞ=ðixÞ ¼ 0; z0 < z < z1; (31)

~up;iðz;xÞ � ~us;iðR; z;xÞ ¼ 0; z1 < z < D ; i ¼ z; r:

(32)

In Eqs. (27) and (31), ~vf ;zðr; z;xÞ and ~vf ;rðr; z;xÞ correspond

to the vertical and radial velocity components of the fluid,

respectively.

A modal decomposition is applied both for the shell

structure and the acousto-elastic waveguide. The modal

expansion of the shell structure is introduced as

FIG. 5. Geometry of a cylindrical shell structure coupled to a layered

acousto-elastic medium. The fluid layer occupies the region z0 < z < z1

and r>R, whereas the solid layers are horizontally stratified in the region

z1 < z < D and r>R. This model can be used for the prediction of the

structure-borne wave radiation during the installation of a pile by an impact

hammer or a vibratory device.
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~up;jðz;xÞ ¼
X1
m¼1

AmUjmðzÞ: (33)

The index j ¼ z; r indicates the corresponding displacement

component, m ¼ 1; 2; :::;1 is the axial order and the vertical

eigenfunctions UjmðzÞ satisfy the chosen boundary condi-

tions at z ¼ 0; L (any boundary conditions are allowed in this

context). The expressions for the displacement and stress

field in the waveguide which inherently satisfy Eqs.

(22)–(30) as well as the condition at r !1 are4

~vf ;zðr; z;xÞ ¼
X1
p¼1

CpH
ð2Þ
0 ðkprÞ~vf ;z;pðzÞ; (34)

~vf ;rðr; z;xÞ ¼
X1
p¼1

CpH
ð2Þ
1 ðkprÞ~vf ;r;pðzÞ; (35)

~pf ðr; z;xÞ ¼
X1
p¼1

CpH
ð2Þ
0 ðkprÞ ~pf ;pðzÞ; (36)

~us;zðr; z;xÞ ¼
X1
p¼1

CpH
ð2Þ
0 ðkprÞ ~us;z;pðzÞ; (37)

~us;rðr; z;xÞ ¼
X1
p¼1

CpH
ð2Þ
1 ðkprÞ ~us;r;pðzÞ; (38)

~rs;zzðr; z;xÞ ¼
X1
p¼1

CpH
ð2Þ
0 ðkprÞ ~rs;zz;pðzÞ; (39)

~rs;zrðr; z;xÞ ¼
X1
p¼1

CpH
ð2Þ
1 ðkprÞ ~rs;zr;pðzÞ; (40)

~rs;rr r; z;xð Þ ¼
X1
p¼1

Cp

�
H 2ð Þ

0 kprð Þ ~rH0

s;rr;p zð Þ

þ 1

r
H 2ð Þ

1 kprð Þ ~rH1

s;rr;p zð Þ
�
: (41)

In the above equations, the following stress eigenfunctions

are used:

~rs;zz;p zð Þ ¼ kpk zð Þ~us;r;p zð Þ þ q zð Þc2
L zð Þ d

~us;z;p zð Þ
dz

; (42)

~rs;zr;p zð Þ ¼ G zð Þ
d~us;r;p zð Þ

dz
� kp~us;z;p zð Þ

� �
; (43)

~rH0
s;rr;p zð Þ ¼ kpq zð Þc2

L zð Þ~us;r;p zð Þ þ k zð Þ
d~us;z;p zð Þ

dz
; (44)

~rH1
s;rr;pðzÞ ¼ �2 GðzÞ~us;r;pðzÞ: (45)

The functions H
ð2Þ
0 ðkprÞ and H

ð2Þ
1 ðkprÞ are the Hankel func-

tions of the second kind of the zeroth and first order, respec-

tively. The vertical eigenfunctions in the summation terms

above, as well as the material constants, are defined explic-

itly over the total thickness of the waveguide by introducing

the z-dependence and, therefore, the subscript index j is

omitted hereafter for simplicity. The term kp denotes the

horizontal wavenumber, which is the solution of the disper-

sion equation formed by the set of equations (24)–(30).

In Eqs. (33)–(41) the only unknowns are the coefficients

of the modal expansions Am and Cp. A system of infinite

algebraic equations with respect to the unknown coefficients

Cp can be obtained by an appropriate combination of Eqs.

(31) and (32) and the use of Eq. (18),4

X1
q¼1

Cq Lqp þ kqH 2ð Þ
1 kqRð ÞCqdqp �

X1
m¼1

RmqQmp

Im

 !

¼
X1
m¼1

FmQmp

Im
: (46)

The coefficients of the shell structure are given by

Am ¼
Fm þ

X1
p¼1

CpRmp

Im
: (47)

The terms Lqp, Cq, Qmp, Rmp, Fm, and Im introduced in Eqs.

(46) and (47), as well as their physical interpretation, are dis-

cussed in Tsouvalas and Metrikine.4 In order to solve the

system of infinite linear equations (46), the modal expan-

sions of both subsystems need to be truncated. The choice of

the truncation scheme is discussed in Sec. III D.

B. The complete wave spectrum of an acousto-elastic
waveguide

The accurate determination of the roots kp of the disper-

sion equation of the acousto-elastic waveguide is a crucial

stage for the solution of the interaction problem. The disper-

sion equation is obtained when the determinant of the coeffi-

cient matrix, formed by the set of equations (24)–(30), is set

equal to zero. In contrast to the acoustic waveguide exam-

ined in Sec. II, the solution of the dispersion equation of an

elastic system has infinitely many closely spaced complex-

valued roots, even for the non-dissipative case.9 The neces-

sity of finding modes in the complex k plane, rather than on

the real or imaginary axis, makes the task of root-finding sig-

nificantly more complicated.19 To avoid any missing

complex-valued roots, application of the Principle of the

Argument is commonly favoured.20–22

A numerical algorithm for obtaining the eigenvalues kp

at each excitation frequency in the acousto-elastic layered

system was written in the programming language Fortran

(Intel Visual Fortran Compiler Release V11.0.062) by the

authors. A detailed discussion of the algorithm falls outside

the scope of the present paper. It needs only to be mentioned

that it is based on the following steps: (i) A line search along

the real and imaginary k-axis for locating the real and imagi-

nary roots, respectively, based on a classical bisection algo-

rithm,8 and (ii) a search in the complex plane to find the

values of k for which the dispersion relation turns out to be

zero. The search is confined to a narrow strip in one of the

four quadrants of the wavenumber plane (due to the isotropy

of each layer’s material properties), which makes the
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algorithm computationally efficient. The search for the

complex-valued roots is based on the Principle of the

Argument.23,24

The roots of the dispersion equation for an acousto-

elastic waveguide with the properties summarised in Table II

are shown in Figs. 6(a) and 6(b) for two frequencies. Only

the complex and imaginary roots in the fourth quadrant of

the wavenumber plane with jImðkÞj � 10 are shown because

the complex eigenvalues occur always in pairs with the same

imaginary part and real parts of opposite sign, i.e., 6a� ib.

Wavenumbers characterised by ImðkpÞ > 0 (upper half of

the wavenumber plane) are also part of the solution but are

ignored in order to comply with the condition of finite

response at infinite distance from the source. The following

observations can be made:

(i) The complete wave spectrum for the acousto-elastic

case consists of a finite number of real roots and an

infinite number of complex-valued and imaginary

roots;

(ii) The real roots are always top-bounded and they corre-

spond to the propagating modes in the waveguide. The

largest real-valued root corresponds to the slowest

wave in the medium. This root is similar to that of the

conventional Scholte wave for sufficiently large fre-

quency (or equivalently large depth of the waveguide);

(iii) The complex-valued roots are positioned close to the

imaginary axis and are clustered into two branches.

The number of branches is equal to the number of the

solid layers compiling the waveguide. This can be

concluded from the vertical eigenfunctions belonging

to wavenumbers of a particular branch which have

the largest amplitude in one of the solid layers. The

two branches are clearly marked only for f¼ 10 Hz.

At higher frequencies, the two branches move closer

to the imaginary axis. At a frequency of 100 Hz the

branches are indistinguishable;

(iv) The majority of the imaginary roots correspond to

evanescent modes which introduce significant motion

in the fluid layer. It has been observed (although not

shown explicitly here) that a few imaginary roots cor-

respond to modes with significant amplitude in the

solid part of the waveguide. These roots are related to

those dispersion curves that (through the complex

wavenumber plane) follow a short path via the imagi-

nary axis for increasing frequency before turning into

propagating modes.

C. The complete wave spectrum of an elastic
waveguide

Although the present paper is perhaps not the most

appropriate place for a complete discussion on the subject, it

is of interest to highlight once the differences between an

elastic and an acousto-elastic waveguide, focusing on the

complete wave spectrum. To investigate the influence of the

presence of the fluid layer on the position of the complex-

valued and imaginary roots, an analysis is performed in

which the fluid layer is absent and the properties of the solid

layers are those given in Table II. The obtained roots for

the elastic and acousto-elastic cases are plotted together in

Fig. 7 for comparison. Complex and imaginary roots with

TABLE II. Properties of the acousto-elastic waveguide consisting of an

inviscid fluid layer overlying a two-layered solid.

Layer Depth q cL cT

(m) (kg m-3) (m s-1) (m s-1)

Fluid (top) 10 1000 1500 —

Solid layer 1 15 1500 1589 142

Solid layer 2 25 1600 2213 171

FIG. 6. Roots of the dispersion equa-

tion for the acousto-elastic waveguide

with the properties given in Table II at

(a) f¼ 10 Hz and (b) f¼ 100 Hz. The

propagating modes are all positioned

on the real axis. The evanescent modes

are positioned either on the imaginary

axis or on the third and fourth quadrant

of the complex wavenumber plane.

Only the complex roots in the fourth

quadrant are shown here because of

symmetry considerations.
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jImðkÞj > 3 are excluded from Fig. 7. The following points

are worth noticing:

(i) The presence of the fluid layer modifies the position

of the real-valued roots. In fact, there is a slight shift

of all wavenumbers toward larger values in the

acousto-elastic case. The phase speed of the Scholte

mode (acousto-elastic waveguide) is smaller than the

one of the Rayleigh mode (elastic waveguide). It can

be shown that at higher frequencies, additional real-

valued roots appear in the acousto-elastic waveguide

which are associated with propagating modes with

significant motion in the fluid layer. Obviously, the

latter ones do not have any counterparts in the elastic

case;

(ii) The presence of the acoustic layer exposes an infinite

set of imaginary roots. Most of these roots correspond

to modes with significant amplitudes in the fluid

layer. In the elastic case, the amount of imaginary

roots is always finite and they correspond to modes

that follow a short path via the imaginary axis for

increasing frequency before turning into propagating

modes (Sec. III B);

(iii) The complex-valued roots correspond to modes with

significant motion induced in the solid layers. The

position of few shallow roots of the outer branch (the

complex ones with a small imaginary part that induce

significant motion in the upper solid layer) are modi-

fied due to the presence of the fluid layer. The position

of the rest of the complex-valued roots remains largely

unaffected by the presence of the fluid.

D. Convergence of the displacement and stress fields

Having analysed the complete wave spectrum of an

acousto-elastic waveguide, the importance of the evanescent

field for the shell-waveguide interaction problem is now

addressed. The material and geometrical properties of the

waveguide are already given in Table II and those of the

shell structure are defined as follows: E¼ 210 000 MPa,

~v ¼ 0:28, q¼ 7850 kg m–3, R¼ 2.7 m, L ¼ D ¼ 58 m, 2h
¼ 0:05 m, z0 ¼ 8 m, z1 ¼ 18 m, and z2 ¼ 33 m. The force

applied at the pile head is equal to j ~FðxÞj ¼ 106 N s. In the

results shown hereafter, the number of shell modes are 400,

which is regarded as sufficient for the frequency range of

interest.

The convergence of the solution is examined in terms of

the displacement mismatch error at the interface r¼R and

along z0 � z � L, i.e.,

dj zð Þ ¼
~up;j z;xð Þ � ~us;f ;j R; z;xð Þ

~up;j z;xð Þ

				
				 ; (48)

with j ¼ r; z for the radial and vertical displacement mis-

match, respectively. The average error along the length of the

shell, i.e., d̂j ¼ hdjðzÞi, is used hereafter as the error criterion

for the convergence of the displacements at the interface. The

error for the radial displacements is examined separately for

the portion of the pile in contact with the fluid layer

(z0 � z � z1) and for the portion embedded into the soil

(z1 < z < L). As explained previously, the majority of the

imaginary roots correspond to evanescent modes with signifi-

cant amplitude in the fluid region, whereas the complex-

valued roots correspond to modes with significant amplitude

in the soil region. It is therefore expected that the convergence

of the solution in the two regions (fluid and solid) will be gov-

erned by a different set of evanescent modes.

In Fig. 8, d̂r and d̂z are plotted versus the number of

evanescent modes at a fixed frequency. In general, d̂z is

lower than d̂r in all cases. The radial displacement continuity

FIG. 7. Roots of the dispersion equation at f¼ 10 Hz for the acousto-elastic

waveguide (empty circles) with the properties given in Table II and for the

elastic one (filled triangles) in which the upper fluid layer is absent. The

position of the real roots and of a few complex-valued roots is modified due

to the presence of the fluid layer; only the complex-valued roots, which

induce significant motion in the upper solid layer, are influenced by the pres-

ence of the fluid layer.

FIG. 8. Mismatch error d̂ j(%) for the different displacement components as a

function of the number of the evanescent modes at f¼ 10 Hz for the case of a

shell coupled to an acousto-elastic waveguide. Similar results are obtained in

other frequencies as well and are omitted here for the sake of brevity. The

inclusion of more than 100 evanescent modes is required to reduce the aver-

age displacement mismatch of all components to a value <10%.
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at the soil and fluid regions converges much slower due to

the error introduced at the horizontal surfaces and interfaces

z¼ z0, z¼ z1, and z¼ z2. In these positions, a sharp change in

the material properties of the waveguide is present (interface

between adjacent layers). Sharp horizontal discontinuities

are difficult to be described by modal approximations and

therefore a large number of evanescent modes are required

for convergence.

In Fig. 9, the displacement of the shell structure and that

of the exterior domain at f¼ 10 Hz are plotted together when

only propagating modes are considered for the waveguide.

Note that for the domain z0 � z � z1 no mismatch is plotted

for the vertical displacements (the fluid is assumed inviscid).

As can be seen, the displacement mismatch at the interface

is satisfactory only for the vertical displacement component.

The predicted radial displacement field in the waveguide is

incorrect when only propagating modes are considered and

is significantly over-predicted (as can be seen in Fig. 10).

In Fig. 10, the same plots are shown but now the evanes-

cent field is accounted for. Clearly, an increasing number of

evanescent modes yields an improved satisfaction of the kine-

matic compatibility at the shell-fluid and shell-soil interface.

The mismatch of the vertical displacement component at the

interface is much smaller compared to the radial mismatch,

but the latter converges as well with the inclusion of an

increasing number of evanescent modes. The displacement

error is mainly governed by the errors introduced at the hori-

zontal surface z¼ z0 and interface z¼ z1. The convergence of

the radial displacements at z¼ z2, i.e., the interface between

the soil layers, is regarded as satisfactory [drðz2Þ � 1%] when

FIG. 9. Displacements of the shell and

of the waveguide at f¼ 10 Hz when

only propagating modes are consid-

ered. The left figure shows the radial

displacement mismatch, whereas the

right figure shows the vertical displace-

ment mismatch. The thin line denotes

the displacement of the waveguide, the

thick (grey) line denotes the displace-

ment of the shell structure, and the

dashed line denotes the mismatch of

these two. The vertical displacement

continuity is satisfactory at the inter-

face. On the contrary, the radial dis-

placements do not match.

FIG. 10. Displacements of the shell

and of the waveguide at f¼ 10 Hz with

the inclusion of 184 evanescent modes

for the acousto-elastic waveguide. The

left figure shows the radial displace-

ment mismatch, whereas the right fig-

ure shows the vertical displacement

mismatch. The thin line denotes the

displacement of the waveguide, the

thick (grey) line denotes the displace-

ment of the shell structure, and the

dashed line denotes the mismatch. The

inclusion of the evanescent regime

improves the satisfaction of the inter-

face conditions.
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more than 100 evanescent modes are included. On the con-

trary, the radial displacement error at z¼ z0 is then on the

order of 10% and converges much slower.

In Figs. 11(a)–11(c), the stresses generated at the pile-

waveguide interface are shown for a varying number of evan-

escent modes considered in the solution. As can be seen, the

convergence of the stress components ~rzr [Fig. 11(a)] and ~rzz

[Fig. 11(b)], as well as the fluid pressure is satisfactory with

the inclusion of a few evanescent modes. On the contrary, the

stress ~rrr converges much slower and requires a large number

of evanescent modes. Again, the slow convergence of the

field in this last case is mainly caused by the sharp change in

the material properties at the horizontal interfaces z¼ z2.

E. Convergence of the solution in terms of energy
radiation

As discussed in Sec. II, the error in the coefficients of

the propagating modes is related to the error in the energy

radiation into the waveguide. In Fig. 12, the error in the

calculation of the coefficients of the propagating modes, i.e.,

Eq. (17), is shown at f¼ 10 Hz (five propagating modes in

this case). Clearly, a large number of evanescent modes is

required for convergence of coefficient C1. Nevertheless, it

should be noted that jCa
1j is several orders of magnitude

smaller compared to the other coefficients. This implies that

the particular mode is not significantly excited at this fre-

quency. Thus, the introduced error dp;1 is insignificant for

the overall response of the system. An estimation of the

coefficients for the other propagating modes (m ¼ 2; :::; 5)

within an accuracy of <5% requires <100 evanescent

modes. Similar plots are obtained for other frequencies and

are omitted here for the sake of brevity. In general, the exact

satisfaction of the shell-waveguide interface conditions guar-

antees the convergence of the solution in terms of energy

radiation into the surrounding media. In contrast, the conver-

gence of the solution in terms of energy radiation (coeffi-

cients of the propagating modes only) does not per se
guarantee the strict satisfaction of the kinematic conditions

at the shell-waveguide interface. Thus, if accurate predic-

tions of the displacement and stress fields at the interface are

required, one should avoid the adoption of convergence cri-

teria for the truncation of the waveguide modes that are

based solely on energy radiation considerations. Adopting

convergence criteria that are based on the satisfaction of the

kinematic conditions at the shell-waveguide interface seems

to be more appropriate in this context because they provide

the necessary error control in the estimation of the coeffi-

cients of the evanescent modes.

IV. WAVE RADIATION GENERATED BY OFFSHORE
PILE DRIVING

In the present section, the convergence criteria estab-

lished previously are applied to the case of a pile being driven

into the soil offshore. The satisfaction of the displacement

and stress continuity at the pile-waveguide interface, by using

the criteria established in Sec. III, allows for an accurate esti-

mation of the intensity of the acoustic field very close to the

pile surface. The generation and propagation of the waves in

the water-soil domain is examined for the case of impact pile

FIG. 11. Stress field in the waveguide

at r¼R for f¼ 10 Hz. (a) The stress

amplitude ~rzr along the length of the

shell structure is shown. Similarly, (b)

and (c) show the stress components ~rzz

and ~rrr . In each part, the black line

denotes the stress field when only

propagating modes are considered. The

dashed line corresponds to the case in

which 30 evanescent modes are

included. The thick grey line corre-

sponds to the case in which 184 evan-

escent modes are considered. The

stress components ~rzr and ~rzz con-

verge relatively fast [(a) and (b)]. On

the contrary, the stress component ~rrr

requires a large part of the evanescent

spectrum for a satisfactory conver-

gence at z¼ z1.

FIG. 12. Error percentage dp;m(%) for the coefficients of the propagating

modes at f¼ 10 Hz. The amplitude of the each coefficient as obtained by the

exact solution to the problem is shown in the parenthesis. The slow conver-

gence of dp;1 does not influence the resulting displacement and stress fields

due to the small amplitude of the correspondent mode, i.e., the particular

mode is not excited by the load at this frequency. The rest of the coefficients

converge to within an error dp;m � 5% when more than 90 evanescent modes

are included.
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driving. This particular problem is of great importance for the

offshore industry since pile driving and structure-borne wave

radiation into the marine environment are closely related to

underwater noise pollution.13–16 In this context, realistic mod-

els for the prediction of the underwater noise levels are

needed. The theoretical framework of such a model is already

given in Sec. III. A detailed investigation of the dynamics of

the coupled pile-water-soil system for the case of a single soil

layer is discussed in Tsouvalas and Metrikine.4 In the afore-

mentioned publication, the chosen soil properties were based

on an elastic medium with cL=cT � 3, which is not always

representative of an unconsolidated marine sediment. The lat-

ter is typically characterised by larger values of the velocity

ratio due to water saturation.25

The marine sediment is traditionally described by an

equivalent fluid for the modeling of underwater acoustics

generated by pile driving.26–28 More advanced methods for

the description of unconsolidated marine sediments do exist.

These can be divided into three primary groups. The first

group treats the offshore soil as a classical elastic continuum

with modified properties to account for water saturation. The

second group belongs to the so-called grain-shearing model,

indented to represent wave propagation in unconsolidated

granular media, in which the mineral grains are in contact

but unbonded.29 The last group treats the continuum as a

poroelastic medium and is based on the well-established

theory of Biot.30,31

In the case of offshore pile driving, a few points need to

be mentioned additionally. First, it is well known that almost

all marine sediments possess enough shear rigidity to transmit

shear waves, which can be important in underwater sound

propagation because compressional waves can be partially

converted to shear, Scholte, and Stoneley waves at reflection

boundaries. Second, the acoustic approximation for the mod-

eling of a solid can be considered reliable when (i) The energy

is released in the fluid region and only the radiated field in the

fluid domain is required; (ii) The source and receiver are not

positioned close to (or at) the sea bottom, so that the shear

waves and interface modes of propagation do not dominate

the response;32 (iii) The dynamics of the soil region does not

influence the radiating source itself. Obviously, in the case of

pile driving, none of the aforementioned conditions is suffi-

ciently met. Third, a realistic solution of the interaction prob-

lem becomes essential for the correct determination of the

energy distribution among the various subsystems, i.e., pile,

water, and marine sediment. With respect to this last point,

the focus should not only be placed on the description of

wave propagation in the acousto-elastic medium that sur-

rounds the pile, but also on the pile-waveguide interaction

problem. Defining an appropriate model for the former pur-

pose does not per se guarantee the suitableness of that same

model for the latter one. Thus, even though fluid approxima-

tions of the seabed are commonly favoured in computational

acoustics, in the case of pile driving, somewhat more sophisti-

cated models may be required.

Results are presented hereafter in which the marine sedi-

ment is modeled as a layered elastic medium with modified

properties to account for water saturation based on the works

of Hamilton25 and Buckingham.33 The soil sediment is

divided into two layers, namely, an upper layer of fine sand
that overlies a layer compiled of a mixture of sand, clay, and

silt (Table III). The properties of the two layers are obtained

from Tables IB and VIB and Figs. 7 and 16 of Hamilton,25

taking into account the related work of Buckingham.33 The

values ap and as shown in Table III denote the attenuation of

the compressional and shear waves in each layer. The mate-

rial properties of the pile are given in Sec. III with merely a

change of z0 ¼ 5 m and z1 ¼ 23 m. An impulsive force is

applied at the head with a maximum amplitude of 1.2� 108 N

and a pulse duration of �0.005 s. This corresponds, approxi-

mately, to a hammer energy input of 1000 kJ.

In Fig. 13, the wave radiation into the soil and into the

water column is shown at several time moments after the

hammer impact. Due to the symmetry of the loading condi-

tions and the geometry, only the r-z plane is shown in Fig. 13,

i.e., the response is cylindrically symmetric. The pressure dis-

tribution in the fluid region is shown in the upper part

(z � 23 m), whereas in the lower part (z> 23 m) the norm of

the particle velocity vector is depicted. The following general

observations need to be mentioned:

(i) The response in the fluid region consists of compres-

sional waves (pressure wave fronts) with an inclina-

tion of �16	 to the vertical. This is in full agreement

with results presented elsewhere;3,26,27

(ii) The response in the soil region consists of both shear

and compressional waves. In the upper soil layer, the

compressional waves have a speed which is larger than

the speed of the bulk waves in the water (cL;1 > cf ) and

therefore a slightly larger inclination to the vertical is

observed. Shear wave fronts are also formed with

almost vertical polarisation due to the large contrast

between the velocity of the compressional waves in the

pile (cp ’ 5400 ms–1) and the shear wave speeds in the

soil (cT � 200 ms–1). At the interface between the two

soil layers, the inclination of the shear fronts increases

in the lower soil medium because cT;1 < cT;2. The

main difference with respect to the cases analysed in

Tsouvalas and Metrikine4 is that in the present case, the

compressional waves in the soil propagate with speeds

that are comparable to the ones of the pressure waves

in the fluid region. At the interface between the two sol-

ids, the wave field is distorted due to the difference in

the shear wave speeds between the two media and the

possible existence of a Stoneley wave;

(iii) Scholte waves are generated at the seabed-water

interface. Their amplitudes decrease with increasing

TABLE III. Acousto-elastic waveguide consisting of three layers (from top

to bottom): water column, fine-sand layer, and a sand-clay-silt layer.

Properties derived from Tables IB and VIB and Figs. 7 and 16 of Hamilton

(Ref. 25), taking into account the related work of Buckingham (Ref. 33).

Layer Depth q cL cT ap as

m kg m-3 m s-1 m s-1 dB m-1 kHz-1 dB m-1 kHz-1

Water 18 1023 1453 — — —

Fine sand 10 1900 1797 113 0.40 15.0

Sand-silt-clay 25 1780 1635 175 0.30 13.0
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distance from the interface and with increasing range

from the pile surface. Nevertheless, it should be

pointed out that even at a distance of 20 m from the

pile surface, the pressure amplitudes induced by the

Scholte wave in the fluid region and in the vicinity of

the seabed level are �80 kPa in this particular case; a

magnitude comparable to the one induced by the fluid

body waves.

The contribution of the Scholte waves for a point posi-

tioned 1 m above the seabed surface is shown in Fig. 14 for

three distances from the surface of the pile. As can be seen,

the radial velocity field for points positioned close to the

seabed consists of two separate contributions. At the initial

moments in time, the pressure cones, traveling with the

speed of sound in the fluid region, contribute to the radial

velocities, whereas at later time moments the Scholte waves

dominate the velocity field close to the seabed. For points

positioned a few wavelengths away from the seabed surface,

the latter contribution can naturally be neglected.

It should also be noted that the energy transferred into

the Scholte wave is smaller when compared to the results of

an equivalent dry soil presented in Tsouvalas and Metrikine4

as pointed out in Lippert and von Estorff.28 However, this

does not imply that the Scholte wave is unimportant in this

context. As discussed, its contribution can be significant,

even at distances of several wavelengths away from the sur-

face of the pile. In addition, it has been observed4 that the

energy carried by the shear and Scholte waves is a function

of several parameters, i.e., the waveguide properties, the

type of dynamic excitation, the diameter of the pile, etc.

Naturally, the contribution of the Scholte waves is restricted

to the vicinity of the seabed-water interface. Nevertheless, to

the best of the authors’ knowledge, it would be very difficult

for one to a priori judge whether this contribution is negligi-

bly small, let alone to define the domain influenced by the

interface waves.

FIG. 13. Pressures in the fluid (z � 23; top) and velocity norm in the soil (z> 23; bottom) for several moments in time after the hammer impact. From left to

right, the time moments are given in 10�3 s: t¼ 8.4; 13.2; 18; 22.8; 27.6; 42; 90; 108. The wave field in the water consists of pressure cones as indicated in the

figure. The field in the soil consists of compressional and shear wave fronts. The compressional waves in the soil propagate with a speed similar to that of the

bulk waves in the fluid region. Scholte waves (indicated by the black circle) are generated at the seabed-water interface and are visible from t > 42� 10�3 s

onward. The Scholte waves induce low-frequency pressure fluctuations close to the seabed.

FIG. 14. Evolution of the radial velocity field with time for a point posi-

tioned 1 m above the seabed surface and at several horizontal positions. The

field consists of two contributions. The early contribution (t< 0.05 s) is

attributed to the bulk waves in the fluid, which are radiated directly from the

vibrations of the shell surface. The second contribution is attributed to the

Scholte waves, which induce low-frequency oscillations close to the seabed-

water interface.
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V. CONCLUDING REMARKS

In this contribution, the significance of the evanescent

spectrum for the solution of structure-waveguide interaction

problems was discussed. The emphasis was placed on the

dynamic response of the structure and on the generated dis-

placement and stress fields at the structure-waveguide inter-

face. Two examples were analysed, namely, a beam in

contact with a fluid layer and a cylindrical shell embedded in

a layered acousto-elastic waveguide. For each of the afore-

mentioned problems, a solution method is presented which

is based on the modal decomposition of the separate fields,

i.e., those in the structure and in the waveguide, into com-

plete sets of orthogonal eigenfunctions. Once the eigenmo-

des of the two subsystems are known, the orthogonality

relations are utilised at their interface for the satisfaction of

the imposed kinematic continuities. This yields an infinite

set of coupled algebraic equations which can be solved only

when the infinite summations are truncated.

Appropriate truncation criteria that guarantee the con-

vergence of the solution to within a predefined error margin

were establishment. Convergence criteria that are based

solely on energy considerations are shown to be inappropri-

ate for the accurate determination of the forces and displace-

ments in the structure due to the fact that they do not reflect

possible calculation errors in the amplitudes of the evanes-

cent modes. In fact, the accurate determination of the ampli-

tudes of the latter is essential for the prediction of the

dynamic response of the coupled system in terms of dis-

placements and stress at the structure-waveguide interface.

In the last section of the manuscript, the wave radiation

into the fluid-soil region generated by a steel monopile being

driven into the soil offshore was discussed. The previously

established truncation criteria allowed the examination of

the generated wave field at the vicinity of the pile surface.

This particular example was analysed to some detail because

it received recently the attention of the scientific community.

Sound radiation generated during the installation of piles

emits strong impulsive sounds into the seawater column,

which can be harmful for the marine ecosystem. In contrast

to other studies, the marine sediment is described as a lay-

ered elastic continuum with modified properties to account

for water saturation. Thus, the co-existence of shear and

compressional waves is allowed together with the associated

interface modes. Once a set of realistic properties for the ma-

rine sediment are defined, the wave field generated by an

impact of the hammer is analysed. The contribution of the

shear and Scholte waves in the overall response of the

coupled pile-water-soil system is emphasised. In contrast to

the common opinion, the presence of the shear and closely

related Scholte waves cannot be neglected in this particular

problem due to their significant contribution to the solution

of the coupled system and their influence on the low-

frequency oscillations at the vicinity of the sea floor.
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