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Abstract
Skin contraction is an important biophysical process that takes place during and after
recovery of deep tissue injury. This process is mainly caused by fibroblasts (skin cells)
and myofibroblasts (differentiated fibroblasts which exert larger pulling forces and
produce larger amounts of collagen) that both exert pulling forces on the surround-
ing extracellular matrix (ECM). Modelling is done in multiple scales: agent-based
modelling on the microscale and continuum-based modelling on the macroscale. In
this manuscript we present some results from our study of the connection between
these scales. For the one-dimensional case, we managed to rigorously establish
the link between the two modelling approaches for both closed-form solutions and
finite-element approximations. For the multi-dimensional case, we computationally
evidence the connection between the agent-based and continuum-based modelling
approaches.
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1 Introduction

Wound healing is a spontaneous process for the skin to cure itself after an injury. It is a
complicated combination of various cellular processes that contribute to resurfacing,
reconstituting and restoring of the tensile strength of the injured skin. For superficial
wounds where only the epidermis is damaged, they heal without any issues. However,
for severe injuries, in particular dermalwounds, theymay result in various pathological
problems, such as contractures.

Contractures concur with disabilities and disfunctioning of joints of patients, which
cause a significantly severe impact on patients’ daily life. Contractures are recognized
as excessive and problematic contractions, which occur due to the pulling forces
exerted by the (myo)fibroblasts on their direct environment, i.e. the extra cellular
matrix (ECM). Contractionsmainly start occurring in the proliferation phase of wound
healing: the fibroblasts aremigrating towards thewound and differentiating intomyofi-
broblasts due to the high concentration of transforming growth factor-beta (TGF-beta).
Usually, 5−10% reduction of wound area has been observed in clinical trials. A more
detailed biological description can be found in Enoch and Leaper (2008); Cumming
et al. (2009); Haertel et al. (2014); Martin (1997).

In our previous work (Peng and Vermolen 2020b), a formalism to describe the
mechanism of the displacement of the ECM has been used, which is firstly devel-
oped by Boon et al. (2016) and improved further by Koppenol (2017). To model
skin contraction, which results from the cellular traction forces applied on the ECM,
the momentum balance equation (i.e. the elasticity equation) is combined with the
immersed boundary approach (Ferziger et al. 2002). Regarding the elasticity equation
with point forces, we realized that the solution to the partial differential equation is
singular in the sense that the formal solution does not reside in the same function space
as the finite element solution does for two- and higher dimensional problems. Hence,
we developed various alternatives to improve the accuracy of the solution in Peng and
Vermolen (2020c, 2022).

We have been working with agent-based models so far, which model the cells
as individuals and define the formalism of pulling forces by superposition theory.
However, once the wound scale is larger, the agent-based model is increasingly expen-
sive from a computational perspective, and hence, the cell density model, which is a
continuum-based model, is preferred. In this manuscript, we investigate and discover
the connections between these twomodels, in the perspective of modelling the mecha-
nism of pulling forces exerted by the (myo)fibroblasts. Since the consistency between
the smoothed particle approach (SP approach) and the immersed boundary approach
has been proven both analytically and numerically (Peng and Vermolen 2019a, b), we
select the SP approach here due to its continuity and smoothness, to compare with the
cell density model using finite-element methods.

The objective of this paper is to demonstrate the consistency between the smoothed
particle approach and the cell density approach, therefore, the same physical scale
is considered in the current study. The cell density approach, which amounts to the
continuum scale is mainly considered in scales that are in the order millimeters or
larger. For such scales, the number of cells becomes too large and hence it is no longer
computationally feasible to use individual cells that have sizes that range in the order of
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micrometers or centimeters and hence a continuum-based approach with cell densities
is necessary so that cellular processes such as migration (random walk, chemotaxis
etc.), cell division/proliferation, cell death can be dealt with by the incorporation of
several terms in partial differential equations. For small scales, ranging in magnitudes
that are smaller than millimeters, averaged cell densities no longer make sense and
hence the continuum-based models become less useful and hence partial differential
equations can no longer approximate the dynamics of cellular processes. Another
reason for the use of agent-based models is their formulation in terms of measurable
quantities such as cell forces, cell migration velocities etc. For even smaller scales
that range within nanometers, the partial differential equations that we employ for
the balance of momentum is no longer applicable. Then one has to use molecular
dynamics-based simulations for all processes, including the mechanics.

The manuscript is structured as follows. We start introducing both models in one
dimension in Sect. 2, then in Sect. 3 we extend themodels to two dimensions. Section 4
displays the numerical results in one and two dimensions. Finally, some conclusions
are shown in Sect. 5.

2 Mathematical models in one dimension

This section considers one-dimensional solutions for two models: the smoothed par-
ticle model and the cell density model. Furthermore, convergence of the analytic
solutions of these approaches, as well as convergence of the numerical solution are
considered in this chapter. The treatment of the one-dimensional case is relatively
straightforward due to the simple nature of the exact solutions.

The balance of momentum, is modelled by linear elasticity based on isotropy. In
the Navier-Cauchy equation, inertia is neglected. For a general dimensionality, the
Navier-Cauchy equation consists of Eqs. (16), (17) and (18) that are displayed in
Sect. 3. We consider the one-dimensional version of the Navier-Cauchy equation in
an isotropic and continuous domain, hence, the equations are given by

−dσ

dx
= f , Equation of Equilibrium,

ε = du

dx
, Strain-Displacement Relation,

σ = Eε, Constitutive Equation.

By substituting E = 1, the equations above can be combined to Poisson equation in
one dimension:

− d2u

dx2
= f . (1)
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2.1 Smoothed particle approach

In Peng and Vermolen (2019b), a smoothed particle (SP) approach is developed as
an alternative of the Dirac Delta distribution describing the point forces exerted by
the biological cells, in the application of wound healing. By specifying the force
expression f in Eq. (1) and considering Ns cells, the smoothed particle approach
(Peng and Vermolen 2020a, c, 2021) is given by

(BV PSP )

⎧
⎪⎪⎨

⎪⎪⎩

−d2u

dx2
= PSP

Ns∑

i=1

δ′
ε(x − si ), x ∈ (0, L),

u(0) = u(L) = 0,

(2)

where PSP is the magnitude of the forces, δε(x) is the Gaussian distribution with
variance ε and si is the centre position of biological cell i . The boundary conditions
close the problem so that it admits a uniquely defined solution. One can solve the
partial differential equations (PDEs) with finite-element methods. The corresponding
weak form is given by

(WFSP)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find u ∈ H1
0 ((0, L)), such that

∫ L

0
u′φ′dx =

∫ L

0

Ns∑

i=1

PSPδ′
ε(x − si )φdx,

for all φ ∈ H1
0 ((0, L)).

The existence and uniqueness of the H1
0 -solution follows as well from the appli-

cation of the Lax–Milgram theorem (Braess 2007), where it is immediately obvious
that the bilinear form in the left-hand side is symmetric and positive definite.

2.2 Cell density approach

A cell density approach is often used in the large scale, so that the computational
efficiency is much improved compared with the agent-based model. According to
the model in Koppenol (2017), the force in two dimensions is proportional to the
divergence of nc · I , where nc is the local density of the biological cells and I is

the identity tensor. In one dimension, this becomes f = Pden
dnc
dx , the cell density

approach is expressed as:

(BV Pden)

⎧
⎨

⎩

−d2u

dx2
= Pden

dnc
dx

, x ∈ (0, L),

u(0) = u(L) = 0,
(3)
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Fig. 1 A schematic representation of the computational domain (0, L) in one dimension. The subdomain
(a, b) ⊂ (0, L) with 0 < a < b < L where the biological cells (red dots in the figure) are only located is
marked as a blue bar

where Pden is the magnitude of the forces. The corresponding weak form is given by

(WFden)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find u ∈ H1
0 ((0, L)), such that

∫ L

0
u′φ′dx =

∫ L

0
Pdenn

′
sφdx,

for all φ ∈ H1
0 ((0, L)).

2.3 Consistency between twomodels

In the application of wound healing, we assume an artificial wound embedded within
the computational domain. Therefore, for the one-dimensional case, we define the
computational domain as (0, L) as aforementioned, and biological cells are located
in the subdomain (a, b) ⊂ (0, L) where 0 < a < b < L; see Fig. 1 for a schematic
representation.

2.3.1 Analytical solutions with specific locations of biological cells

To express the analytical solution, it is necessary to determine the locations of the
biological cells, such that the cell density can be written as an analytical function of the
positions. We assume that there are Ns cells distributed uniformly in the subdomain
(a, b) of the computational domain (0, L). Hence, the distance between the center
positions of any two adjacent biological cells is constant, which we denote by Δs =
(b − a)/Ns and the first and the Ns-th cell are located at x = a + Δs/2 and x =
b−Δs/2, respectively.With homogeneousDirichlet boundary conditions, and suppose
PSP = PΔs and variance ε = Δs, the boundary value problem of the SP approach is
expressed as

(BV P1
SP )

⎧
⎪⎪⎨

⎪⎪⎩

−d2u1
dx2

= PΔs
Ns∑

i=1

δ′
Δs(x − si ), x ∈ (0, L),

u1(0) = u1(L) = 0,

(4)
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where P is a positive constant and si is the centre position of the biological cells.
Utilizing the superposition principle, the analytical solution (i.e. the displacement at
arbitrary position of the domain) is given by

u1(x) = PΔs
Ns∑

i=1

1

2

{( x

L
− 1

)
erf

(
si√
2Δs

)

+ x

L
erf

(
L − si√
2Δs

)

− erf

(
x − si√
2Δs

)}

, (5)

where erf(x) is the error function defined as erf(x) = 2√
π

∫ x
0 exp(−t2)dt (Weisstein

2010). Note that the solution satisfies the Dirichlet boundary conditions in (BV P1
SP ).

Since the biological cells are uniformly located between a and b (0 < a < b < L),
dnc
dx can be rephrased as

dnc
dx

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

t
, a − t

2
< x < a + t

2
,

− 1

t
, b − t

2
< x < b + t

2
,

0, otherwise,

where t is a small positive constant. In other words, nc(x) increases linearly in (a −
t/2, a+t/2) anddecreases linearly in (b−t/2, b+t/2)—with respect to x—and stays
constant elsewhere 1/t in (a+t/2, b−t/2) and zero for x ∈ (0, a−t/2)∪(b+t/2, L).
Taking t to zero, the above expression converges to nc(x) = δ(x − a) − δ(x − b).
Hence, the boundary value problem of the cell density model can be written as

(BV P1
den)

⎧
⎨

⎩

−d2u2
dx2

= P
dnc
dx

→ P(δ(x − a) − δ(x − b)), x ∈ (0, L),

u2(0) = u2(L) = 0,
(6)

where δ(x) is the Dirac Delta distribution and a and b are the left and right endpoint
of the subdomain (where biological cells are uniformly located) respectively. The
analytical solution (i.e. the displacement at arbitrary position of the domain) is then
expressed as

u2(x) = P(G(x, a) − G(x, b)), (7)

where G(x, x ′) is the Green’s function (Haberman 1983), defined by

G(x, x ′) = (1 − x ′

L
)x − max(x − x ′, 0),

in the computational domain (0, L). Note that the solution satisfies theDirichlet bound-
ary conditions in (BV P1

den).
We will demonstrate the convergence between u1(x) and u2(x) asΔs → 0+. First,

we introduce Chebyshev’s Inequality:
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Lemma 1 (Chebyshev’s Inequality (Olkin and Pratt 1958)) Denote X as a random
variable with finite mean μ and finite variance σ 2. Then for any positive k ∈ R, the
following inequality holds:

P(|X − μ| ≥ k) ≤ σ 2

k2
,

where P(A) is the probability of event A. The above inequality can also be rephrased
as

P(|X − μ| ≤ k) ≥ 1 − σ 2

k2
.

The proof of Chebyshev’s Inequality is standard (Olkin and Pratt 1958), and therefore
we do not give it here.

Proposition 1 Let u1(x) as described in Eq. (4) be the exact solution to (BV P1
SP ) and

u2(x) as described in Eq. (6) be the exact solution to (BV P1
den). As Δs → 0+, u1(x)

converges to u2(x).

Proof For the standard Gaussian distribution in one dimension, the cumulative distri-

bution function is given by F(x) = 1

2

(

1 + erf

(
x√
2

))

. Thus, we obtain

erf

(
x√
2

)

= 2F(x) − 1. (8)

By Chebyshev’s Inequality (see Lemma 1), one can conclude that for any positive k,

F(k) − F(−k) ≥ 1 − 1

k2
. (9)

Note that 1− F(k) = F(−k) due to the symmetry of standard Gaussian distribution.
Hence, Eq. (9) implies

F(k) ≥ 1 − 1

k2
+ F(−k) = 1 − 1

k2
+ 1 − F(k)

⇔1 − 1

k2
≤ F(k) ≤ 1,

and analogously, 0 ≤ F(−k) ≤ 1
k2

is implied. Together with Eq. (8), it gives

⎧
⎪⎪⎨

⎪⎪⎩

1 − 1

k2
≤ erf

(
k√
2

)

≤ 1,

− 1 ≤ erf

(

− k√
2

)

≤ −1 + 1

k2
.
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Let k = si
Δs > 0, for any si ∈ (a, b) ⊂ (0, L), i = {1, . . . , Ns}, then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
(

Δs

si

)2

≤ erf

(
si√
2Δs

)

≤ 1,

− 1 ≤ erf

(

− si√
2Δs

)

≤ −1 +
(

Δs

si

)2

.

As it has been defined earlier that Δs = (b − a)/Ns , we obtain

Ns∑

i=1

(

1 −
(

Δs

si

)2
)

Δs ≤
Ns∑

i=1

erf

(
si√
2Δs

)

Δs ≤
Ns∑

i=1

Δs

⇒(b − a) − (Δs)3
Ns∑

i=1

1

s2i
≤

Ns∑

i=1

erf

(
si√
2Δs

)

Δs ≤ (b − a).

Since lim
Δs→0+(Δs)3

Ns∑

i=1

1

s2i
= 0 for any si ∈ (a, b) ⊂ (0, L), the Squeeze Theorem

(Apostol and Ablow 1958) implies that

lim
Δs→0+

Ns∑

i=1

erf

(
si√
2Δs

)

Δs = b − a. (10)

Analogously, we obtain that for any si ∈ (a, b) ⊂ (0, L),

lim
Δs→0+

Ns∑

i=1

erf

(

− si√
2Δs

)

Δs = a − b. (11)

Thus, it can be concluded that for any series of real number {xi } ∈ R
n ,when xi+1−xi =

Δs and xi is either all positive or all negative for any i = {1, · · · , Ns},

lim
Δs→0+

Ns∑

i=1

erf

(
xi√
2Δs

)

Δs = (b − a) sgn(xi ), (12)

where sgn(x) is the sign function defined by

sgn(x) =

⎧
⎪⎨

⎪⎩

1, if x > 0,

0, if x = 0,

− 1, if x < 0.
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We rewrite u1(x) as

u1(x) = P

[
1

2

( x

L
− 1

) Ns∑

i=1

erf

(
si√
2Δs

)

Δs + 1

2

x

L

Ns∑

i=1

erf

(
L − si√
2Δs

)

Δs

−1

2

Ns∑

i=1

erf

(
x − si√
2Δs

)

Δs

]

.

Combining Eqs. (10), (11) and (12), u1(x) is given by

u1(x) = P

[
1

2

( x

L
− 1

)
(b − a) + 1

2

x

L
(b − a) + 1

2
[(x − b) sgn(x − b)

−(x − a) sgn(x − a)]]

= P

[(
x

L
− 1

2

)

(b − a) + 1

2
[(x − b) sgn(x − b) − (x − a) sgn(x − a)]

]

= P

[(
x

L
− 1

2

)

(b − a) + 1

2
[|x − b| − |x − a|]

]

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P
x

L
(b − a), 0 ≤ x ≤ a,

P
x

L
(b − a) − x + a, a < x ≤ b,

P
( x

L
− 1

)
(b − a), b < x ≤ L,

Rewriting u2(x) regarding a general bounded domain gives

u2(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P
x

L
(b − a), 0 ≤ x ≤ a,

P
x

L
(b − a) − x + a, a < x ≤ b,

P
( x

L
− 1

)
(b − a), b < x ≤ L.

Hence, we conclude that u1(x) converges to u2(x) as Δs → 0+. �


2.3.2 Finite-element method solutions with arbitrary locations of biological cells

For the finite-element method, we use piecewise Lagrangian linear basis functions.We
divide the computational domain into Ne mesh elements, with the nodal point x1 = 0
and xNe+1 = L . For the implementation, we define the cell density as the count of
biological cells in every mesh element divided by the length of the mesh element,
hence, it is a constant within every mesh element and it is an interval function over
the mesh elements. In other words, in the mesh element [x j , x j+1], the count of the
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biological cell is defined by

Nc([x j , x j+1]) =
∫ x j+1

x j
nc([x j , x j+1])dx = hnc([x j , x j+1]),

for any j ∈ {1, . . . , Ne}, where h is the size of every mesh element. To clarify the
notations, we use nc([·, ·]) for the cell density functionwhen it is an interval function in
one dimension, and nc(x)when it can be written analytically as a continuous function.
Same settings hold for the function of cell count Nc. Different from (BV P1

SP ) where
Δs is the variance of δε, for finite-element methods, we set ε ≤ h/3, such that the
integration of δε(x − x ′) for any 0 < x ′ < L over any mesh element with size h, is
close to 1 (see Lemma 3, which follows later). With the two approaches, the boundary
value problems with Dirichlet boundary condition are defined by

(BV P2
SP )

⎧
⎪⎪⎨

⎪⎪⎩

−d2u1
dx2

= P
Ns∑

i=1

δ′
ε(x − si ), x ∈ (0, L),

u1(0) = u1(L) = 0,

(13)

and

(BV P2
den)

⎧
⎨

⎩

−d2u2
dx2

= P
dnc
dx

, x ∈ (0, L),

u2(0) = u2(L) = 0,
(14)

where si is the position of biological cells, and Ns is the total number of cells in
the computational domain. The consistency between (BV P2

SP ) and (BV P2
den) can be

verified by the following lemmas and theorem.

Lemma 2 Given the Gaussian distribution of mean μ and variance ε2:

δε(x) = 1√
2πε2

exp(− (x − μ)2

2ε2
),

then for any R > 0, it follows that

lim
ε→0

∫ μ+R

μ−R
δε(x)dx = 1.

Proof We use the transformation y2 = (x − μ)2

2ε2
, which transforms the bounds of the

integral, and further changes the integral into

∫ μ+R

μ−R
δε(x)dx = 1√

π

∫ R√
2ε

− R√
2ε

e−y2dy.
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Sending ε −→ 0, makes the bounds tend to infinity, hence

lim
ε−→0

∫ μ+R

μ−R
δε(x)dx = 1√

π

∫ ∞

−∞
e−y2dy = 1,

since it is well known that
∫ ∞

−∞
e−y2dy = √

π.

This concludes the proof. �

In order to quantify the error of ε having a value differing from zero, one can use

the following Empirical Rule:

Lemma 3 (Empirical rule (Pukelsheim (1994))) Given the Gaussian distribution of
mean μ and variance ε2:

δε(x − μ) = 1/
√
2πε2 exp{−(x − μ)2/(2ε2)},

then the following integration can be computed:

1.
∫ μ+ε

μ−ε
δε(x − μ)dx ≈ 0.6827;

2.
∫ μ+2ε
μ−2ε δε(x − μ)dx ≈ 0.9545;

3.
∫ μ+3ε
μ−3ε δε(x − μ)dx ≈ 0.9973.

Theorem 1 Denote uh1(x) and uh2(x) respectively the finite-element solution to

(BV P2
SP ) and (BV P2

den). With Lagrangian linear basis functions for the finite ele-
ment method, uh1(x) converges to uh2(x), as ε → 0+ in the Gaussian distribution of
the SP approach, regardless of the positions of biological cells.

Proof We define vh(x) = uh1(x)− uh2(x), then vh(x) satisfies the following boundary
value problem

(BV P1
v )

⎧
⎪⎪⎨

⎪⎪⎩

−d2vh

dx2
= P

( Ns∑

i=1

δ′
ε(x − si ) − dnc

dx

)

, x ∈ (0, L),

v(0) = v(L) = 0.

(15)

The corresponding Galerkin’s form reads as

(GF1
v )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find vh ∈ H1
0 ((0, L)), such that

∫ L

0

dvh

dx
φ′dx =

∫ L

0
P

( Ns∑

i=1

δ′
ε(x − si ) − dnc

dx

)

φdx,

for all φ ∈ H1
0 ((0, L)).
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Using integration by parts and letting φ = φ j , j ∈ {1, . . . , Ne}, the equation in
(GF1

v ) can be rewritten by

∫ L

0

dvh

dx
φ′
j dx =

∫ L

0
P

( Ns∑

i=1

δ′
ε(x − si ) − dnc

dx

)

φ j dx

=
[

P
Ns∑

i=1

δε(x − si )φ j

]L

0

− [Pncφ j ]L0

−
∫ L

0
P

( Ns∑

i=1

δε(x − si ) − nc

)

φ′
j dx

(Boundary condition) = −
∫ L

0
P

( Ns∑

i=1

δε(x − si ) − nc

)

φ′
j dx

= P
Ne∑

j=1

{∫ x j+1

x j
ncφ

′
j dx −

∫ x j+1

x j

Ns∑

i=1

δε(x − si )φ
′
j dx

}

= P

h

Ne∑

j=1

[∫ x j+1

x j

Ns∑

i=1

δε(x − si )dx − Nc([x j , x j+1])
]

(ε → 0+, Lemma 2) → 0,

since the number of biological cells in [x j , x j+1] for any j ∈ {1, 2, . . . , Ne} can

be defined as Nc([x j , x j+1]) = lim
ε→0+

∫ x j+1

x j

Ns∑

i=1

δε(x − si )dx , where Ns is the total

number of biological cells in the computational domain. We note that if a cell center
is located on a nodal point, such as x j or x j+1, then only half of the unit counts as
ε → 0+. We, further, note that Empirical Rule, Lemma 3, can be used to quantify the
error for ε not being identical zero. �


3 Mathematical models in two dimensions

3.1 Smoothed particle approach and cell density approach

In the multi dimensional case, the Navier-Cauchy equation of conservation of momen-
tumover the computational domainΩ which is an isotropic and homogeneous domain,
without considering inertia, is given by

− ∇ · σ = f . (16)
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Since we consider a linear, homogeneous and isotropic domain, with Hooke’s Law,
the stress tensor σ is defined as

σ = E

1 + ν

{

ε + tr(ε)

[
ν

1 − 2ν

]

I
}

, (17)

where E is the Young’s modulus of the material, ν is Poisson’s ratio and ε is the
infinitesimal strain tensor:

ε = 1

2
[∇u + (∇u)T ]. (18)

Considering a subdomain Ωw ⊂ Ω , where the center positions of the biological
cells are located, then the SP approach and cell density approach with homogeneous
Dirichlet boundary condition are derived by

(BV P3
SP )

⎧
⎪⎪⎨

⎪⎪⎩

−∇ · σ = PSP

Ns∑

i=1

∇δε(x − si ), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(19)

and

(BV P3
den)

{
−∇ · σ = Pden∇ · (nc I), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(20)

where u is the unknown displacement field which is to be found.

3.2 Consistency between two approaches in finite-elementmethod

To prove the consistency between these two approaches, we define that for the triangu-
lar mesh element ek, k ∈ {1, . . . , Ne}, where Ne is the total number of mesh elements
in Ω , the density of biological cells nc(ek) is constant within a mesh element and a
function of the mesh element (hence it is a piecewise constant function), and hence
the count of biological cells Nc(ek) is expressed by

Nc(ek) =
∫

ek
nc(ek)dΩ = A(ek)nc(ek),

where A(ek) is the area of mesh element ek . To indicate that the Gaussian distribution
is a proper replacement of the Dirac Delta distribution as ε → 0 in two dimensions,
we state the following lemma:

Lemma 4 Given the bivariateGaussian distribution centered atmean x′ with variance
ε2:

δε(x, x′) = 1

2πε2
exp(−||x − x′||2

2ε2
),
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then for any ball centered at x′ with radius R, denoted by BR(x′), it follows that
∫

BR(x′)
δε(x, x′)dΩ = 1 − e

− R2

2ε2 .

Hence, for any R > 0, it follows that

lim
ε→0

∫

BR(x′)
δε(x, x′)dΩ = 1.

Proof We use centered polar coordinates, x = x ′ + r cos(θ) and y = y′ + r sin(θ),
and the Jacobian of the transformation, to arrive at

∫

BR(x′)
δε(x, x′)dΩ =

∫ 2π

0

∫ R

0

1

2πε2
exp(− r2

2ε2
)rdrdθ = 1 − e

− R2

2ε2 .

Treating R > 0 as an arbitrary constant, and sending ε to zero, gives

lim
ε→0

∫

BR(x′)
δε(x, x′)dΩ = 1.

This concludes the proof. �

Then, similar to the one dimensional case, we state the following theorem:

Theorem 2 Let uh1 (x) and uh2 (x), respectively, denote the finite-element solution to
(BV P3

SP ) and (BV P3
den) with PSP = Pden = P. With Lagrangian linear basis

functions for the finite element method, uh1 (x) converges to uh2 (x), as ε → 0+ in the
Gaussian distribution of the SP approach, regardless of the positions of biological
cells.

Proof We consider vh(x) = uh1 (x) − uh2 (x), vh(x) satisfies the following boundary
value problem:

(BV P3
v )

⎧
⎪⎪⎨

⎪⎪⎩

−∇ · σ = P

[ Ns∑

i=1

∇δε(x − si ) − ∇ · (nc I)

]

, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω.

(21)

The corresponding Galerkin’s form reads as

(GF3
v )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find vh ∈ H1
0 (Ω), such that

∫

Ω

σ (vh) : ∇φhdΩ =
∫

Ω

P

[ Ns∑

i=1

∇δε(x − si ) − ∇ · (nc I)

]

· φhdΩ,

for all φh ∈ H1
0 (Ω).

123



Upscaling between an agent-based model… Page 15 of 27    25 

With integration by parts and letting φh = φh
k , k ∈ {1, . . . , Ne}, the equation in

(GF3
v ) can be rewritten by

∫

Ω
σ (vh) : ∇φh

k dΩ =
∫

Ω
P

⎡

⎣
Ns∑

i=1

∇δε(x − si ) − ∇ · (nc I)

⎤

⎦ · φh
k dΩ

= P

⎧
⎨

⎩

⎡

⎣

∫

∂Ω

Ns∑

i=1

δε(x − si )φ
h
k · ndΓ −

∫

Ω

Ns∑

i=1

δε(x − si )∇ · φh
k dΩ

⎤

⎦

−
[∫

∂Ω
ncφ

h
k · ndΓ −

∫

Ω
nc∇ · φh

k dΩ

]}

(Boundary condition) = −P
∫

Ω

Ns∑

i=1

δε(x − si )∇ · φh
k − nc∇ · φh

k dΩ

= −P
Ne∑

k=1

∫

ek

Ns∑

i=1

δε(x − si )∇ · φh
k − nc∇ · φh

k dΩ

= −P
Ne∑

k=1

∇ · φh
k

∫

ek

Ns∑

i=1

δε(x − si ) − ncdΩ

= P
Ne∑

k=1

∇ · φh
k

⎡

⎣Nc(ek) −
∫

ek

Ns∑

i=1

δε(x − si )dΩ

⎤

⎦

(ε → 0+, Lemma 4) → 0,

since it can be defined that Nc(ek) = lim
ε→0+

∫

ek

Ns∑

i=1

δε(x− si )dΩ , where Ns is the total

number of biological cells in the computational domain. Note that in two dimensions,
ε needs to be sufficiently small compared to the size of a triangular mesh element.
Korn’s inequality (Braess 2007) and symmetry (boundedness) conclude the theorem.
We note that if cell is located on a face of an element, then its contribution only counts
for a half as ε → 0 . If a cell is located at an element vertex, then its contribution only
counts for the angle of the vertex in the current element divided by 2π as ε → 0. �


We note that Lemma 4 can be used to estimate the error when one wishes to accom-
modate for ε not being identically zero.

4 Simulation results

Simulation results in both one and two dimensions are discussed in this section. Since
the objective of this manuscript is to investigate the consistency and the connections
between the SP approach and the cell density approach, all the parameters are dimen-
sionless. For one and two dimensional simulations, the parameter values are shown in
Tables 1 and 5, respectively.
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Table 1 Model parameter values that are used in one dimensional simulations

Parameter Value Description

E 1 Stiffness of the computational domain (i.e. ECM)

P 0.01 Force magnitude in both approaches as indicated in (BV P1
v ) in Theorem 1

L 7 The right endpoint of the computational domain

a 2 The left endpoint of the subdomain (i.e. the wound region)

b 5 The right endpoint of the subdomain (i.e. the wound region)

Fig. 2 The exact solutions to (BV P1
SP ) and (BV P1

den) are shown, with various values of Δs, which is the
distance between centre positions of any two adjacent biological cells. Blue points are the centre positions
of biological cells. Red curves represent the solutions to (BV P1

SP ) and blue curves represent the solutions

to (BV P1
den)

4.1 One-dimensional results

We show the results by analytical solutions (see Eqs. (5) and (7) for the SP approach
and the cell density approach, respectively) in Fig. 2 with various values of Δs (i.e.
depending on different number of biological cells in the subdomain (a, b)). Here, the
computational domain is (0, 7) with L = 7 and the subdomain where the biological
cells locate uniformly is (2, 5)with a = 2 and b = 5.With the decrease of the variance
in the Gaussian distribution in (BV P2

SP ), the curves gradually overlap, which verifies
the convergence between the analytical solutions to these two approaches.
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Cell density

Cell count in length d

Cell density approach

Cell positions SP approach

Fig. 3 With exact expression of cell density function and the first order derivative of the function exists, cell
density approach is implemented directly. Based on the cell density, the number of cells in a certain region
with length d is determined and subsequently, the center positions of cells can be generalized. Hence, the
SP approach is implemented

Cell positions

Cell count in mesh element

SP approach

Cell density Cell density approach

Fig. 4 Given the center positions of cells, one can directly implement the SP model. Computing the number
of cells in every mesh element and divided by the length of the mesh element results into the cell density.
Subsequently, cell density approach can be implemented

To implement the model, there are two different algorithms shown in Figs. 3 and
4. Depending on different circumstances, the implementation method is elected. The
cell density in one dimension is defined as the number of cells per length unit. In other
words, the cell count in a given domain can be computed by integrating the cell density
over the domain. If the cell density function can be expressed analytically and the first
order derivative of the function exists, then a certain bin length d is chosen and the cell
count in every bin of d length is calculated. Then we generalize the center positions
of cells in every bin of length d, thus, the SP approach can be implemented, as it is
indicated in Fig. 3. However, it is not always straightforward to obtain the analytical
expression of cell density. If the center positions of cells are given, then the SP approach
can be implemented directly, and the number of cells in each mesh element can be
counted. Hence, the cell density will be computed analogously at each mesh points, as
it is shown in Fig. 4. Therefore, the boundary value problem of cell density approach is
solved by numerical methods, for example, the finite-elementmethods. In summary, in
Fig. 3 when the cell density is prescribed and on the basis of this cell density function,
we assign a number of cells in each line element (in one dimension) or triangular
(in two dimensions) element. This amounts to using a constant cell density in each
element (line element or triangular element). The approach shown in Fig. 4 is the
contrary, where cell density cannot be expressed analytically and then the number of
cells in each element is counted and divided by the correspond measure (length in
one dimension and element area in two dimensions) to reconstruct the cell density
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Fig. 5 The cell density function is sine function and using the algorithm in Fig. 3, different simulations
are carried out with various mesh size and the total number of cells. Blue curves represent the solutions
to (BV P2

SP ), and red curves are the solutions to (BV P2
den) with nc(x) = 40| sin(2x)|. In (a)–(c), we set

d = 0.35 and cell positions are fixed. From (d) to (f), we use the same finite-element method settings
(where h is efficiently small with h = 0.07), and we take different values of d

distribution. In both cases, the cell density is piecewise constant over the domain of
computation in which the cell density is constant over each element.

In this manuscript, all the numerical results have been obtained by finite-element
methods with Lagrangian linear basis functions. Regarding the first implementation
method (see Fig. 3), we show the results with a sine function and Gaussian distribution
as cell density functions; see Figs. 5 and 6 , respectively. We start with the simulations
in which we keep the number of cells and the center positions of the cells the same,
then we refine the mesh. In Fig. 5(a)–(c), the bin length d is 0.35, and the mesh size is a
function of d. The results that were obtained using the SP approach become smoother.
With various values of d, the solutions to the approaches are overlapping only when
the factor between the d and mesh size is closer to 1. From Fig. 5(d) to (f), the mesh
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Fig. 6 The cell density function is Gaussian distribution and using the algorithm in Fig. 3, different simula-
tions are carried out with various mesh size and the total number of cells. Blue curves represent the solutions

to (BV P2
SP ), and red curves are the solutions to (BV P2

den) with nc(x) = 50× 1/
√
2π × 0.12 exp{−(x −

3.5)2/(2 × 0.12)}. In (a)–(c), we set d = 0.35 and cell positions are fixed, as h is decreasing. From (d)
to (f), we use the same finite-element method settings (where h is sufficiently small with h = 0.07), and
simulations are carried out with various values of d

is fixed and we vary the value of d. We note that in Fig. 5(f), the solution to the
SP approach is significantly different from the solution to the cell density approach.
This difference is mainly caused by the fact that d is too small and there is barely
any fluctuation with the count of cells in every subdomain with length d, while with
the Gaussian distribution as the cell density function, the majority of the cells are
centered around x = 3.5. Hence, the solution that was obtained from the SP approach
still manages to be comparable with the solution to the cell density approach; see
Fig. 6(f). Numerical results of the simulation in Fig. 6 are displayed in Table 2. There
are some noticeable differences between two approaches, in particular the convergence
rate in the H1-norm: thanks to the given, differentiable cell density function, the cell
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Table 2 Numerical results of two approaches in one dimension, where the cell density function is Gaussian

distribution: nc(x) = 50× 1/
√
2π × 0.12 exp{−(x − 3.5)2/(2× 0.12)}. Here, we define Ns = 88 and the

mesh size h = 0.07. The results are solved by finite-element method with algorithm in Fig. 3

SP Approach Cell Density Approach

L2-norm of the solution u

‖u‖2h
L2((0,L))

0.5419891028287082 0.3581360438718032

‖u‖h
L2((0,L))

0.5441481069175041 0.36197930815501245

‖u‖h/2
L2((0,L))

0.5448668763153627 0.3630629995429662

Convergence rate of L2-norm 1.75281178 1.826378221

‖u‖h
H1(((0,L))

0.9642151731656272 0.871720645462775

Reduction ratio of the subdomain
(a, b) (%)

13.88062 9.52381

Relative ratio of the subdomain
(a, b) after deformation (%)

86.11938 90.47619

Time cost (s) 0.045070 0.0032084

density approach converges faster. In addition, the cell density approach requires less
computational time with a factor of 15.

We consider cells that are located uniformly in the subdomain (2, 5), which implies
that the derivative of the cell density vanishes inside the subdomain but does not exist
at two endpoints of the subdomain. Since the exact solutions of both approaches are
known as u1(x) in Eq. (5) and u2(x) in Eq. (7), respectively, one can perform root-
mean-square error (RMS) analysis, which is given by

error =
√
∑N

i=1[uexact (xi ) − uh(xi )]2
N

,

where N is the number ofmesh nodal points and xi is the coordinate of i−thmesh nodal
point. Note that the error above is actually L2− error computed in the computational
domain. To obtain the numerical results and since the cell density can be written
analytically, we utilize the implementation method in Fig. 4, as the center positions
of the cells are given, then the local cell density can be calculated per unit area.
Compared with the results shown in Fig. 2, the results in Figs. 7 and 8 show the
solutions to (BV P2

SP ) and (BV P2
den) respectively. Note that, in the finite-element

method solutions, the magnitude of the forces in both approaches are the same, and
the variance of δε(x) is related to h rather than Δs. Furthermore, these figures verify
that the convergence between SP approach and cell density approach is determined
by the mesh size rather than by the distance between any two adjacent cells. Table 3
displays the numerical results of the simulation in Fig. 7, the reduction ratio of the
subdomain and the computational cost. Similarly to the figures, there is no significant
difference between the norms and the deformed length of the subdomain. However, the
simulation time in the cell density approach is much shorter than in the SP approach
with a factor of 35.
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Fig. 7 Thefinite-elementmethod solutions to (BV P2
SP ) and (BV P2

den) are shownwhere cells are uniformly
located. With the fixed positions of cells, the solutions are convergent as h → 0+. Blue points are the centre
positions of biological cells. Red curves represent the solutions to (BV P2

SP ) and blue curves represent the

solutions to (BV P2
den)

4.2 Two-dimensional results

In the multi-dimensional case, we are not able to write the analytical solution to the
boundary value problems. The results are all solved by the use of the finite-element
method applied to (BV P3

SP ) and (BV P3
den). Note that the force magnitude of both

boundary value problems is the same. Following the same implementation methods
as in one dimension, simulations are carried out with two formulas of cell density: (1)
the cell density function is in the form of the standard Gaussian distribution over the

computational domain with nc(x) = 50× 1
2π exp

{
−‖x|2

2

}
; (2) cells are located inside

the subdomain Ωw randomly by the uniform distribution. Implementation methods in
Figs. 3 and 4 are applied respectively in Simulation (1) and (2).

According to the setting of the simulation, we define the cell density function by

nc(x) = 50 × 1

2π
exp

{

−‖x|2
2

}

, in Ω,

which is a Gaussian distribution multiplied by a positive constant. Similarly, in two
dimensions, the cell density is defined by the number of biological cells per unit area.
In other words, the cell count is computed by the local cell density multiplied by the
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Fig. 8 The finite-element method solutions to (BV P2
SP ) and (BV P2

den) are shown with uniform distribu-
tion. Compared to the analytical result, the consistency between two approaches are unrelated to the number
of cells, and the solutions are convergent as h → 0+. Here, we use h = 0.007. Blue points are the centre
positions of biological cells. Red curves represent the solutions to (BV P2

SP ) and blue curves represent the

solutions to (BV P2
den)

Table 3 Numerical results of two approaches in one dimension with biological cells located uniformly.
Here, we define mesh size h = 0.07 and Ns = 50, which means Δs = 0.06. The results are solved by
finite-element method with algorithm in Fig. 4

SP Approach Cell Density Approach
RMS error 6.70984672 × 10−7 0.010295901

L2-norm of the solution u

‖uh‖L2((0,L)) 0.21470072397236404 0.2190152169099139

‖uh/2‖L2((0,L)) 0.2180816688838546 0.2192106132836521

‖uh/4‖L2((0,L)) 0.21897037944459403 0.219296655339645

Convergence rate of L2 − norm 1.927640972 1.831863826

Reduction ratio of the subdomain
(a, b) (%)

7.96908 7.98821

Relative ratio of the subdomain
(a, b) after deformation (%)

92.03092 92.01179

Time cost (s) 0.10391 0.0030458

123



Upscaling between an agent-based model… Page 23 of 27    25 

area of selected region. Here, we assume that the selected region is a 1 × 1 square,
then we generate the center positions of biological cells in every unit square based on
the local number of cells.

In the two-dimensional calculations (see Fig. 9), we consider a square domain for
the tissue. Within this domain, there is an artificial scar, which is also square-shaped
in the current simulations, and which is indicated by the red line segments. The scar,
which is bounded by the red line segments, is populated with cells (fibroblasts) that
exert pulling forces. The cells are positioned randomly in the scar region such that
they do not overlap. In the smoothed particle approach, the gradient of the mollified
Dirac delta distribution, which amounts to a Gaussian distribution, is used to model
the force exerted by each cell, whereas in the cell density approach a cell density field
is reconstructed from the randomized cell positions using the procedure outlined in
(BV P3

SP ) and (BV P3
den); see Sect. 3.1. Summarized, in both cases in Fig. 9, the forces

result from cells that are located in the square-shaped scar region that is enclosed by
the red line segments.

The pulling forces that are exerted by the cells cause a displacement field over the
entire domain of computation (the entire tissue region). The red line segments, which
indicate the boundary between scar (containing the cells) and undamaged tissue (not
containing cells that exert pulling forces), are displaced as a result of the displacement
field caused by the exertion of pulling forces by the cells. The displaced interface
between the damaged tissue and scar region is indicated by the black curve enclosed
by the red line segments. Since on an average, the cell position is approximately in
the center of the domain, the displacements are, on an average, directed towards the
center. Furthermore, since the displacement is set to zero at the boundaries of the
domain of computation, the magnitude of the displacement vector decreases away
from the center. Since the distance between the center and the positions on the red
line segments is minimal at the midpoints and maximal at the corners of the red line
segments. This causes the contraction and the curved shape of the edge between the
scar and undamaged region (the black curve within the red square). In both cases, the
finite element solution is in H1(Ω) ∩ C0(Ω) due to the mollified force expressions
(gradient of Gaussian distribution), which do not admit any jump discontinuities of
the displacement field, and as a result of the use of C0 Lagrangian elements. If the
forces exerted by the cells cease, then the boundary between the scar and undamaged
region retract back to the red line segments.

Fig. 9 shows the numerical results regarding two approaches. There is no significant
difference if the same mesh resolution is used. As the mesh is refined, the solution to
the SP approach is smoother, since the “ring” in the center becomes more dominant.
In Table 4, it can be concluded that there are no significant differences between the
two approaches except for the computational efficiency and the convergence rate of
H1-norm. If the mesh is not fine enough, then the solution to the SP approach is less
smooth, hence, the determination of the gradient of the solution is less accurate.

For Simulation (2), no analytical expression for (the derivative of) the density
function is available. Therefore, the implementation starts with generating the cell
positions, according to the principles outlined in Fig. 4. In Fig. 10, the displacement
results are displayed. From the figures, hardly any significant differences between the
solutions can be observed, which indicates that these two approaches are numerically
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Fig. 9 The displacement results are shown, which are solved from (BV P3
SP ) and (BV P3

den) when cells

are located according to the cell density function nc(x) = 50 × 1
2π exp{− ‖x|2

2 }. Hence, implementing
algorithm in Fig. 4 is used. There are 440 biological cells in the computational domain. Blue points are
the center positions of biological cells, red curves are the original shapes of the subdomain, and the black
curves represent the deformed boundary of the subdomain
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Table 4 Numerical results of two approaches in two dimensions with Gaussian distribution for the positions
of biological cells. Figure 3 is implemented and there are 440 biological cells in the computational domain

SP Approach Cell Density Approach

L2-norm of the solution u

‖uh‖L2((0,L)) 11.14304909846569 13.188441094735877

‖uh/2‖L2((0,L)) 11.180094316889074 13.248171247805358

‖uh/4‖L2((0,L)) 11.19130107517498 13.264669660152608

Convergence rate of L2 − norm 1.724918322 1.856132219

‖u‖h
H1((0,L))

12.77795210802095 15.533928099123479

Reduction ratio of the subdomain
Ωw (%)

19.65854 20.55949

Relative ratio of the subdomain Ωw

after deformation (%)
80.34146 79.44051

Time cost (s) 0.62347 0.017315

Table 5 Estimated parameter values that are used in one dimensional simulations

Parameter Value Description

E 1 Stiffness of the computational domain (i.e. ECM)

P 10 Force magnitude in both approaches as indicated in (BV P3
v ) in Theorem 2

ν 0.49 Poisson’s ratio of the computational domain (i.e. ECM)

x0 20 The length of the computational domain in x-coordinate

y0 20 The length of the computational domain in y-coordinate

wx 10 The length of the subdomain (i.e. the wound region) in x-coordinate

wy 10 The length of the subdomain (i.e. the wound region) in y-coordinate

Fig. 10 The displacement results are shown, which are solved from (BV P3
SP ) and (BV P3

den) when cells
are randomly located in the subdomain (−5, 5) × (−5, 5). In other words, it is impossible to write the
analytical expression of nc(x), subsequently, the algorithm in Fig. 4 is selected. There are 196 biological
cells in the computational domain. Blue points are the center positions of biological cells, red curves are the
original shapes of the subdomain, and the black curves represent the deformed boundary of the subdomain

123



   25 Page 26 of 27 Q. Peng, F. J. Vermolen

Table 6 Numerical results of two approaches in twodimensionswith randomdistribution for the positions of
biological cells. Due to the nonexistence of divergence or gradient of cell density function, implementation
method in Fig. 4 is used

SP Approach Cell Density Approach

‖uh‖L2((0,L)) 10.105858093727422 12.314518769308366

Reduction ratio of the subdomain Ωw (%) 24.24192 23.33667

Relative ratio of the subdomain Ωw (%) 75.75808 76.66333

Time cost (s) 4.20677 1.77219 × 10−2

consistent. Table 6 displays more details about the two approaches regarding the
numerical analysis: most data are more or less the same. However, as it has been
mentioned earlier, the agent-based model is computationally more expensive than the
continuum-based model; here, the difference is a factor of 240.

5 Conclusions

In this manuscript, we discussed the different models to simulate the pulling forces
exerted by the (myo)fibroblasts depending on different scales of the wound region.
We started from one dimension and later extended the models to two dimensions. In
one dimension, we can write explicitly the analytical solution to the boundary value
problem with specific distribution of the locations of biological cells and we proved
the convergence and the consistency between the solutions to these two approaches in
Sect. 2.3.1. In both one and twodimensions, the numerical solutions delivered byfinite-
element methods with Lagrangian linear basis functions implied that these twomodels
are consistent under certain mesh conditions (when the mesh size is sufficiently small)
and regardless the locations of the biological cells and the implementation methods.
In summary, regarding the displacement of the ECM from the mechanical model, the
agent-based model and the cell density model are consistent from a computational
point of view. This could be used to transfer one type of model to the other one
regarding the force balance in the wound healing model, as the connection between
these two models has been suggested. We want to use the developed insights for the
analysis of upscaling between agent-based and continuum-based model formulations.
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