BeyondFederated
Truly decentralised edge Al

Master Thesis Computer Science

'i';U Delft Quinten van Eijs

June 2024

BeyondFederated: Truly decentralised edge Al

— MSc. Thesis —

Quinten van Eijs
Delft University of Technology
Delft, The Netherlands

Abstract—Decentralized learning (DL) leverages edge devices
for collaborative model training while enhancing data privacy, as
training data never leaves the device. In this paper, we present
”BeyondFederated: Truly Decentralised Edge Al a novel ap-
proach to overcoming the limitations of traditional Federated
Learning (FL) by eliminating reliance on centralized servers.
Traditional FL, despite its decentralization benefits, still poses
significant privacy and security risks due to its central control
points. Our system leverages edge AI with TensorFlow Lite
and a peer-to-peer gossip network to ensure fully decentralized
learning and data processing. We developed a proof-of-concept to
demonstrate a decentralized alternative to Spotify, incorporating
Web3 YouTube playback, and enabling efficient and accurate
Scalable Nearest Neighbor (ScaNN) searches using vector em-
beddings incorporated into an actual TensorFlow model running
on edge devices. Through various experiments, we evaluated the
system’s performance in real-time search capabilities, embedding
model comparisons, and new data insertion handling. The results
confirm that BeyondFederated maintains high efficiency, scala-
bility, and privacy. This study underscores the potential for truly
decentralized machine learning and sets the stage for more robust
and user-centric decentralized Al applications.

Index Terms—Decentralised learning, Semantic Search, Peer-2-
Peer, Gossip Protocol, Information Retrieval, Distributed systems.

I. INTRODUCTION

In the current digital era, Artificial Intelligence (AI) has
become a critical component of search and recommendation
systems, altering the manner in which we engage with the
extensive data available online. Consider the task of searching
through a vast collection of YouTube videos using queries that
necessitate an exact match of the title, author, or other criteria
that are straightforward for machines to index. Such tasks are
ideally suited for a relational database utilizing a language
such as SQL. However, when it comes to more nuanced
queries like “romantic music,” simple similarity metrics based
on the number of shared words between phrases are insuffi-
cient. For example, the query “climate change” is semantically
closer to “global warming” than to climate control,” despite
not sharing any words with the former and sharing one
word with the latter. AI’s role is crucial in enhancing our
ability to comprehend and cater to user preferences across
various platforms, including Spotify, TikTok[20], Instagram,
and YouTube, in a dynamic and complex manner.

Johan Pouwelse
Delft University of Technology
Delft, The Netherlands

By transforming real-world entities such as text, images, and
audio into mathematical representations called vector embed-
dings, we can capture the nuanced meanings and relationships
within the data, enabling more precise and context-aware
comparisons. For instance, a song’s audio features can be
represented as a high-dimensional vector, allowing for the
calculation of similarity between songs based on their audio
characteristics. This approach, known as embedding-based
search, is essential for answering queries that require semantic
understanding rather than simple indexable properties.

To map queries and database items into a common vector
embedding space, we can train machine learning models that
learn the semantic relationships between the query and the
database items. The distance between embeddings reflects
their semantic similarity, with similar items positioned closer
together. The above mentioned is a well-studied issue in com-
puter science called the nearest neighbor(NN) problem, which
involves identifying the closest item to a given query within a
dataset. It can be computationally expensive and impractical
for large datasets to find the exact nearest neighbor for a
given point. This resulted in the rise of approximate nearest
neighbor(ANN)[2] search algorithms which finds a point that
is close enough (approximate) to the nearest neighbor, trading
off some accuracy for significant improvements in speed and
resource usage. This makes ANN algorithms feasible for
handling the vast and complex datasets typical in modern Al
applications.

Modern Al applications which are known for similarity
search through their complex datasets, such as Google, Face-
book, and Spotify, have developed their own ANN algorithms.
Google has developed ScaNN(Scalable Nearest Neighbor)[24],
Facebook has created FAISS[19], and Spotify has imple-
mented Annoy[21]. The ANN-benchmarks[4] show results of
these different ANN algorithms. However, training ANN based
search models often requires the collection of vast amounts
of personal data, raising significant privacy concerns. As a
response to the challenge, decentralised learning paradigms are
emerging as a promising alternative. By distributing the learn-
ing process across multiple devices, these paradigms offer su-
perior privacy, security, and scalability. Thereby the paradigms
reduce the reliance on centralized data collection and process-
ing. For example, a widely implemented decentralised learning

approach is Federated Learning(FL)[17], which enables the
training of AI models across multiple devices while keeping
data localized.

Besides the growing rise of decentralised learning, the
computational capabilities of mobile devices are enhancing.
Platforms such as Google’s TensorFlow Lite, now enable run-
ning FL. models directly on mobile devices. This allows mobile
phones to collaboratively learn AI models while keeping all
training data on the device. Despite these advancements, the
current FL. model retains some drawbacks of centralized learn-
ing, primarily due to its reliance on central control. The defin-
ing feature of the internet to fully decentralise central control
can not be achieved with FL[|16]]. This research aims to explore
the feasibility of creating a decentralised Spotify alternative
with real Web3 YouTube playback. By leveraging a ScaNN-
powered Al model and a peer-to-peer architecture, we propose
“BeyondFederated”, a solution in which all participants are
autonomous and self-sovereign, collaborating as equals. In
BeyondFederated, each participant possesses equal power and
supports all features, with no participant temporarily acting as
a leader or coordinator. This decentralised approach ensures
that power and control over the learning process are evenly
distributed, mitigating the risks associated with centralization
and enhancing the robustness and resilience of the system.

Our research contributions are the following:

1) Enabling collaborative learning: Developing robust
communication protocols and efficient algorithms for
peers to share data and model updates, fostering the
collective refinement of knowledge and leading to better,
more consistent models across the network.

2) Facilitating dynamic embedding learning: Implement-
ing mechanisms for peers to dynamically adjust vector
representations based on their local data and interactions,
resulting in contextually relevant and personalized mod-
els that adapt to the evolving data landscape.

3) Ensuring privacy-preserving learning: Exploring
privacy-preserving techniques like FL and homomorphic
encryption to allow peers to contribute to the learning
process without directly sharing sensitive data, thereby
addressing privacy concerns inherent in decentralised
learning.

4) Robustness to node failure: Gracefully handles the
failure of neighboring peers.

The paper is organized as follows: Section 2 outlines the
main problems addressed in this research. Section 3 describes
the design and implementation of the proposed system. Section
4 presents the experimental results and evaluation. Finally,
Section 5 concludes the paper and discusses future work
directions.

II. PROBLEM DESCRIPTION

Traditional FL frameworks consist of a select set of indi-
vidually connected devices refered to as clients. Each client
processes its own raw data locally, ensuring the data remains

private and is not shared with other entities. While processing
the local data, each client trains a model and then shares
only the model parameters with a central server. The central
server aggregates these parameters to integrate the learning
results from all individually connected clients, thereby creating
a global model. Despite its decentralised training approach, FL
remains susceptible to various privacy and security threats[28)]].
Attacks such as the gradient inversion attack, where attackers
reconstruct user data from gradient updates, highlight a sig-
nificant privacy risk. Additionally, the frequent communication
of model updates between clients and the central server can
leak sensitive information, even when raw data remains on
local devices. The centralized server itself poses a security
threat, as it can be targeted by attackers to compromise
the entire system. Moreover, the diverse and heterogeneous
nature of client data and resources complicates the model
aggregation process, potentially leading to inconsistent and
insecure outcomes. These issues collectively undermine the
safety and effectiveness of FL in preserving user privacy and
ensuring robust security.

Fully Decentralised Federated Learning(DFL) is gaining
significant attention as a method to enhance the robustness, pri-
vacy, and scalability of machine learning systems. Numerous
studies[29, |11}, 27]] are actively exploring DFLs potential and
addressing the various challenges it presents. DFL demands
extensive peer-to-peer communication, leading to increased
bandwidth consumption and latency. Efficient communication
protocols are vital to manage the heightened data exchange
without degrading system performance. Additionally, each
node must independently handle the computational load and
storage requirements for local data and model updates. This
can place a significant burden on devices with limited re-
sources, complicating scalability and overall system efficiency.
Ensuring data privacy and security also becomes more chal-
lenging in a decentralised environment. Sophisticated encryp-
tion and privacy-preserving techniques are necessary to protect
against data leakage and malicious attacks.

From a logistical perspective, managing heterogeneous re-
sources across different nodes presents another challenge.
Nodes in a decentralised system often have varying computa-
tional capabilities, network bandwidths, and storage capacities,
making balanced resource management complex. Effective
coordination and orchestration are essential for maintaining ef-
ficient communication and model updates across the network.
This includes peer discovery and task scheduling to ensure
fair and efficient use of resources. Additionally, setting up and
maintaining the infrastructure for a decentralised network in-
volves considerable logistical efforts. Monitoring performance
and managing the health of a decentralised system are more
complex compared to centralized systems, requiring robust
tools and techniques.

It shows that there is insufficient research done to support
the implementation and adoption of DFL techniques while
using mobile devices. Presenting these challenges, decen-
tralised learning remains a nascent field with many open

research questions. None of the implementations found have
yet achieved the full potential of decentralised learning, and
much work is needed to realise the vision to fully decentralise
FL.

III. ARCHITECTURE OF BEYONDFEDERATED

To demonstrate the feasibility of decentralised ANN based
search models that respect user privacy, we present an
overview of the BeyondFederated system architecture in this
section. BeyondFederated is a proof of concept designed. This
proof of concept includes a functional android application cre-
ating the first decentralised Spotify alternative, featuring Web3
YouTube playback integration. Although the implementation
of the architecture focusses on YouTube content to define the
scope, the underlying architecture is versatile enough to handle
any type of content. The proof of concept consists of four
components which include the user interface to let the user
interact with BeyondFederated, the actual pre-trained search
model containing all the learned embeddings, TensorFlow Lite
Support a library to deploy .tflite models onto the mobile
devices and lastly our peer-to-peer gossip network component.

A. User Interface

The BeyondFederated user interface features a simple and
practical design, allowing users to search for YouTube videos
given a query text, which are displayed in a scrollable list. This
list dynamically updates based on events triggered when the
text box content is modified. Users can also play a video from
the list by clicking on a list item, which opens a new page that
loads the YouTube video based on its videoID into the Android
native video player. The video player library used in our
application utilizes YouTube’s own web player to ensure 100%
compliance with YouTube’s terms of service[3|]. Additionally,
users can insert new YouTube videos by providing the title,
author and video URL via the "plus’ icon located in the bottom
right corner. Figure (1] illustrates the three different screens of
the BeyondFederated application.

B. TensorFlow Model

The use of TensorFlow is beneficial due to the release
of TensorFlow Lite, which enables TensorFlow models to
be run on devices which are computationally limited. Each
distribution of BeyondFederated contains a pretrained version
of our TensorFlow model to allowing the user to already start
searching for content when the application is installed. The
model has two important responsibilities. The first one is that
it will transform the search query into a high dimensional
vector which is called an embedding. This is done through
using pretrained models specifically designed for this task.
Secondly the model contains our pretrained ScaNN artifacts
to perform ANN.

Careful consideration must be given to the choice of text
embedding model, as it significantly impacts the accuracy
of the search model. The text embeddings define the vector
space where closely positioned vectors are identified, directly
influencing the relevance and precision of search results. Given

that our system focuses on YouTube content, it is crucial that
the text embeddings effectively capture the semantics of the
search queries. We utilize the titles and authors of YouTube
videos since users commonly search for music on YouTube
by song title and artist. Incorporating more attributes such as
genre, intensity or video description in future research could
further enhance search results. Our embedding data setup is
shown in Table (I} This configuration allows the embeddings to
search for the artist and title of the YouTube video and return
the necessary metadata including the YouTube video ID for our
user interface. This setup ensures that users receive relevant
and precise search results based on their queries, enhancing
their overall experience.

Embedding
{artist} [{title}

Metadata (JSON Formatted)
artist , title, youtubeID

TABLE I: Overview of different pre-trained models and their
trained dataset.

TensorFlow supports various embedding models, includ-
ing BERT-based models[§] and Universal Sentence Encoder
(USE) models[6]. The key differences between these models
lie in their design and application. USE produces a single
embedding for an entire sentence, making it efficient for tasks
requiring a general understanding of sentence semantics. It is
designed to work out-of-the-box for many applications without
needing task-specific adjustments. In contrast, BERT generates
fine-grained, context-sensitive embeddings for each token in
a sentence, with the ability to aggregate these embeddings
for sentence-level tasks. This makes BERT more suited for
applications requiring detailed contextual information and of-
ten requires fine-tuning to achieve optimal performance for
specific tasks. Additionally, custom text embedding models
are supported as long as they have an input text tensor
and at least one output embedding tensor. This flexibility
allows for the integration of specialized models tailored to
specific requirements, enhancing the system’s adaptability and
effectiveness. While large embedding models are known to
provide more accurate results, they also require more compu-
tational resources, making them less suitable for edge devices.
Therefore, the choice of embedding model should strike a
balance between accuracy and efficiency, ensuring optimal
performance on mobile devices.

To find the YouTube songs that are considered to be closest
to our search query, our generated embedding is used during
the ScaNN approximate nearest neighbor search. Therefore,
the model contains the pre-trained ScaNN artifacts required
to eventually perform approximate nearest neighbor search.
ScaNN operates by combining vector quantization[9] and
asymmetric hashing[25]] to perform efficient and accurate
nearest neighbor searches in high-dimensional datasets. At the
core of ScaNN’s functionality is vector quantization, which
reduces the complexity of the search space. This involves
partitioning the high-dimensional space into smaller subspaces
and representing these subspaces with centroids generated

12390 ¢ @ O 1237 @ ¢ @ ©

< Beyond Federated

Q. daft punk X

Daft Punk - Something About Us (Official Video)

Daft Punk
Daft Punk - Veridis Quo (Official Video)

Daft Punk Title

Add Entry

1237 © ¢ @ O 94

Daft Punk - One More Time (Official Vid...

€) Daft Punk - One More Time (@ @

p) o007/521 & YouTube

Daft Punk - Harder, Better, Faster, Stronger (Official

pieo) Artist

Daft Punk - One More Time (Official

Daft Punk

Youtube Link

Video)

Daft Punk

> punk

4 5 6 7.8 9 o

q1wlesrtyU|op

RETURN TO SEARCH

ADD ENTRY

RETURN TO SEARCH

asdf gh j kI
& z xcvbnm®

2123 | © . Q

(a) YouTube Search

(b) Insert new YouTube video

(c) YouTube playback on selected video

Fig. 1: Screenshot of the BeyondFederated application user interface

using k-means clustering. These centroids are organized into
a pretrained codebook, created during the initial training
phase. The codebook acts as a compact representation of the
dataset, enabling quick approximations of data points within
each subspace. In addition to vector quantization, ScaNN
employs asymmetric hashing to enhance search efficiency.
Asymmetric hashing creates compact binary codes for data
points, allowing rapid comparisons during the search process.
A visual representation of ScaNN is shown in figure 2]

Both vector quantization and asymmetric hashing signif-
icantly reduce the computational load by enabling quick
distance approximations between the query and data points
stored inside the retrieved hash codes in the corresponding
partition. During a search, ScaNN first leverages the pretrained
codebook to quickly identify the most relevant subspaces that
likely contain the nearest neighbors. By focusing on these
subspaces, the number of distance computations is drastically
reduced. Within the identified subspaces, asymmetric hashing
is used to efficiently compare the query with the data points,
ensuring both speed and accuracy. To enable our TensorFlow
model to interact with the pretrained codebook and subspaces,
these values are stored in a ScaNN configuration file after
training. The configuration file created and the hashes of each
embedding are organized into their respective partitions and
comprehensive metadata of the YouTube item. Each embed-
ding is collectively stored inside the LevelDB index(.ldb).
LevelDBJ[14] is just like ScaNN developed by Google and
provides a high perfromant Key-Value storage providing or-

dered mapping from string keys to string values. The LevelDB
index is then converted into a FlatBuffers[I]] binary and added
to the metadata of the TensorFlow model.

C. TensorFlow Lite Support

TensorFlow Lite Support(TFLite Support) [26] is a library
that enables the deployment of TensorFlow Lite models on
edge devices. TFLite Support provides APIs for loading and
running inference on our TensorFlow Lite model, allowing
for running inference on the distributed model. The library
is written in C++ and uses Bazel for cross-platform building,
supporting Java, C++, and Swift. TFLite Support is designed to
be lightweight and efficient, making it suitable for deployment
on mobile and IoT devices with limited computational re-
sources. While ScaNN is actively being updated and improved
by Google[12]], TFLite Support includes a simplified version
of ScaNN that requires less resources to run and only for
inference.

Given our TensorFlow Lite model, TFLite Support ini-
tializes the metadata FlatBuffer (.db) index file through
memory mapping (mmap)[18]. Memory mapping (mmap) is
a technique that maps a file into the memory space of a
process, allowing the file to be accessed as if it were part
of the memory. This approach facilitates efficient and quick
read and write operations, which are crucial for executing
the ScaNN algorithm. After the closest subspaces are found
given an embedding query, TFLite Support retrieves the
hashed embeddings from the LevelDB table by requesting

O Embedding

(O Cluster Centroid

O Search Query
Partition

Fig. 2: Visual representation of SCaNN searching through the
embeddings of the top 2 sub spaces(partitions).

the subspace key ’E_{subspace}’. The subspaces are often
refered to as partitions, scann only calculates the distance
between the query and the embeddings in the closest partition
instead of the whole dataset. After the closest embeddings are
calculated the metadata is also requested by "M_{metadata}’
from the LevelDB table and returning them for display in our
user interface. An overview of how the different components
opereate when searching is shown in figure 3

The current implementation of TFLite Support does not sup-
port on-device K-Means partitioning and quantization training.
This limitation arises primarily because K-Means cluster-
ing requires a specified amount of clusters before training.
Inserting new clusters post-training would necessitate re-
partitioning, potentially affecting multiple partitions. This re-
partitioning process is computationally expensive and demands
significant resources, making it impractical for on-device
execution. Additionally, during runtime, the LevelDB table
employs a read-only immutable table for enhanced perfor-
mance. While this design choice improves the efficiency of
read operations, it inherently prevents the insertion of new
items into the database. Consequently, the immutable nature
of the LevelDB table further contributes to the limitation of
not supporting dynamic K-Means partitioning and quantization
training on-device.

Since the training of new embeddings is not supported by
default we continue our research by developing a custom a
Non-Perfect Insert (NPI) method. The NPI method involves
embedding the query, quantizing it using the pre-trained

Distance metadata
05 1 Youtube |D, Title, Artist }
04 1 Youtube |D, Title, Artist }
A
Cutput
=
Q
=3
= -
A ‘ Asymmetric Hash ‘
&
=
—
g e
2 Partlmuns
[T
s
0 ‘ Quantized Search ‘
-]
= A .T. A
Query Er"ntledding
T
-
(-]
= =Pre-Trainad= “Pre-Trained=
CodeBook Pariiions
| Universal Scentence Encoder |
[y

Input

| CQuery |

Fig. 3: Overview of the different components when perfoming
a search operation.

codebook, and appending it to the closest cluster. By doing
so, we can simulate a dynamical environment. The method
also explores the potential research areas to improve on for
further work. The NPI approach enables us to evaluate the
performance of the system under different conditions and
analyze the impact of NPI on search performance. Here, we
aim to understand how the system copes with new data and
to ensure it maintains a high level of accuracy and efficiency
despite the constraints imposed by non-dynamic scalability.

For handling the NPI approach, we employ the same model
inference to generate an embedding from the newly inserted
title and artist. This embedding is then used to find the closest
subspace using the pretrained codebook. Unfortunately when
adding the embedding to the closest partition we have tothe
LevelDB table is immutable since data is directly being loaded
through mmap. Therefore the creation of a new LevelDB
index means overwriting the existing index file which is stored
in the metadata of the model. This overwrite then requires
the whole index to be loaded into RAM and written to
disk. This process is computationally expensive and time-
consuming, making it impractical for real-time insertion of

new embeddings. To address this limitation, we also developed
a Batch Insert function that allows for the insertion of multiple
embeddings without reloading the entire index. This function
is designed to improve the efficiency of the system by reducing
the computational load and time required for inserting new
embeddings. The Batch Insert function is implemented as a
separate module that can be called from the main application,
enabling the system to handle multiple insertions simultane-
ously. By batching the insertions, the system can efficiently
manage the addition of new embeddings without overloading
the memory or disk resources. This approach enhances the
scalability and performance of the system, ensuring that it can
handle a large number of insertions while maintaining high
accuracy and efficiency.
The whole process incorporate a new YouTube songs:

1) Generate embedding: We use the existing model to
generate an embedding for the new title and artist.

2) Find closest partition: This embedding is then used to
determine the closest partition based on the pretrained
codebook.

3) Fetch and update partition: Since the table is im-
mutable, we fetch the entire partition that the new
embedding would belong to.

4) Insert new embedding: The new embedding is inserted
into the fetched partition.

5) Create new index: A new index is created to reflect the
updated partition.

6) Reload the index: The nmapped file is overwritten with
the new index and partition data.

The process of adding a new YouTube song is also described
in figure f] When the batch insert function is used, the process
does not directly create and reload this new index, instead it
temporarly stores all the newly added embeddings after which
the batch save function is called. The batch save function then
creates a new index and reloads the index file when newly
added items needs to be searchable.

D. Gossip Network Protocol

BeyondFederated is built on top of the open source Tribler
SuperApp|'} This software features a wide range of integrated
functionality such as recommendation, trust to identity [15}
5, [10]. The Tribler superapp enables robust, decentralised
interactions through the IPV8 protocol, which facilitates secure
data exchange.

In our decentralised YouTube search system, each node
operates as a self-sovereign entity, maintaining control over
its own data and operations. We employ the IPV8 protocol for
communication between nodes, ensuring secure and efficient
peer-to-peer interactions. The self-sovereign nature of each
node allows for independent operation and decision-making.
When nodes disconnect from the network, they simply do not
receive model updates. However, the system remains robust
and functional due to the decentralised architecture.

Uhttps://github.com/Tribler/trustchain-superapp

=
=1
=
s |
] Create New Index
2 |
o Y
H
T] g
E NPInsertEmbedding z
& 5 :
=
Top1 PArition -
Quantized Search | LevelDBE I
'y -~
.
Query Embedding
=
-
(-]
= =Pre-Trained= “Fre-Trained= | w
CodeBook Partifions [
‘ Universal Scentence Encoder ‘
[y

ClickLog

‘ Gossip ‘

Fig. 4: An overview of inserting a new items into the model
without retraining the entire dataset.

BeyondFederated Content discovery is based on the gossip
protocol, each time a user clicks on a search result, a clicklog
entry is created and initially stored using our non-perfect
insert method. The ClickLog currently contains the following
data of the clicked YouTube video: Query, Title, Author,
YouTube video ID such that no personal data is shared. The
gossip protocol then takes over, periodically sharing this new
clicklog entry with neighboring nodes. These neighbors, in
turn, propagate the information to their neighbors, and so on,
ensuring that the clicklog data eventually reaches all nodes in
the network.

The clicklog data is gossiped around the network, enabling
the system to continue sharing information even if some nodes
go offline. The gossiping mechanism ensures that collective
knowledge is maintained and disseminated across the network,
supporting continuous learning and adaptation of the model.
The standard implementations of Gossip protocols assume that
nodes are non-malicious. This reliance on the integrity of
nodes poses significant challenges in a decentralized environ-
ment where malicious nodes may exist. This is considered a
disadvantage of the standard Gossip implementation, further
research is needed to prevent continuous learning from mali-
cious nodes.

The primary advantages of using gossip protocols for dis-
seminating YouTube ClickLog data include scalability, ro-
bustness, and simplicity. The system can efficiently manage
communication in networks with a large number of nodes, as

https://github.com/Tribler/trustchain-superapp

each node only interacts with a few other nodes at a time, thus
reducing overall communication overhead. The decentralised
nature of gossip protocols makes them resilient to node failures
and network partitions, ensuring that the dissemination of
ClickLog data continues smoothly even under adverse con-
ditions. Additionally, the straightforward implementation and
minimal overhead of gossip protocols make them easy to
manage and integrate into existing systems.

Despite this challenge, gossip protocols are a valuable tool
for ensuring efficient and resilient dissemination of YouTube
ClickLog data in distributed systems. By balancing commu-
nication overhead, speed of information dissemination, and
robustness, gossip protocols can significantly enhance the
performance and reliability of BeyondFederated that rely on
timely and accurate ClickLog data.

IV. EXPERIMENTS AND EVALUATION

In this section, we present the experiments and evaluations
conducted to assess the system’s potential as the first decen-
tralised search and recommendation Al system. We will begin
by discussing the datasets used for training the pre-trained
model, followed by an explanation of the evaluation metrics.
Finally, we will present and analyze the experimental results
to evaluate the system’s performance.

A. Experiment Setup

To ensure the experiments closely mirrored real-world con-
ditions, they were conducted on an Android phone with the
following specifications: Processor: Qualcomm Snapdragon
625, Cores 8 cores, Clock speed: 2GHz, Android 8, RAM
4GB, Storage: 64GB. When loading our model we allocate a
maximum of 4 threads to perform model inference and ScaNN.
For the model pretraining phase, we utilized Kaggle[|13] note-
book runs which contain the following specifications: CPU: 4
vCPU cores (Intel Skylake), RAM 30GB of RAM, Storage:
73.1GB.

B. Datasets, Embedders and Pre-trained Models

The main dataset used during the experiments is the Spotify
and YouTube dataset from kaggle[22], which contains 20,230
songs from 2,079 artists. The dataset is released under the
CCO: Public Domain license which is especially important
when running our network experiment distributing contents
of the dataset across the network. Before using this dataset, it
was cleaned to remove redundant YouTube-specific extensions
from the titles, such as ”Official video,” “music video,” and
“lyrics video,” to ensure that our embedding space is not
negatively affected. Often the titles of YouTube videos contain
the artist’s name, so the data was cleaned to remove the artist
name from the title. This ensures that the model learns the
semantic context of the title and artist separately.

Our second dataset, YouTube-Commons, is a large collec-
tion comprising 2,063,066 videos from 411,432 individual
channels. These videos are shared on YouTube under a CC-BY
license. The dataset predominantly features English-speaking

content, accounting for 71% of the original languages. This
extensive dataset tests the system’s scalability and performance
with a vast amount of data, providing insights into how well
the system handles large-scale decentralised information.

To embed the datasets and create our vector space, we
utilized two pre-trained models, not all embedder models are
suitable due to their requirement of running in an on-device
scenario. Therefore we train two models on the same Spotify
Youtube Dataset using both the Universal Sentence Encoder
(USE) and BERT. The basic Universal Sentence Encoder
is around 1GB in size and is not optimized for on-device
inference therefore we will be using a retrained USE from
colab[7]. This results in an 27.3MB model being able to
encode embeddings in 6ms. BERT does have a mobile version
called MobileBERT we will specifically use mobilebert_ga
which has 4.3x smaller and 5.5x faster than BERT-Base while
achieving competitive results, suitable for on-device scenario
as its 5.83MB.

The details of the pre-trained models and their respective
datasets are summarized in Table [[II

1) Metrics: The performance of the system will be evalu-
ated using two primary metrics: speed and accuracy.

The speed of the system is assessed through execution time,
measured in milliseconds (ms), and memory usage, measured
in megabytes (MB). The accuracy of the system is evaluated
using the Recall metric. Recall is a crucial metric in the
evaluation of information retrieval systems, including search
engines and recommendation systems. It is defined as the
ratio of relevant items retrieved by the system to the total
number of relevant items in the dataset. Mathematically, recall
is expressed as:

Number of relevant items retrieved
Recall = - (1)
Total number of relevant items

Recall is particularly important in contexts where missing
relevant items can have significant consequences resulting
in user dissatisfaction due to the inability to find pertinent
YouTube video’s. By measuring both speed and recall, we can
comprehensively evaluate the performance and effectiveness
of the system, ensuring it meets the desired criteria for both

efficiency and accuracy.

C. Content Search on the Edge Experiment

The goal of this experiment is to provide a general overview
of the capabilities of BeyondFederated. In this initial test, we
issue a single query to the system and evaluate its results.

By starting with a query, we aim to understand the basic
functionality and effectiveness of our system’s search capa-
bilities. This approach allows us to identify any immediate
issues and establish a baseline for more complex, multi-
query scenarios in subsequent experiments. This preliminary
assessment helps in verifying that the core components of the
search mechanism are operating correctly and sets the stage
for more detailed performance evaluations and refinements in
future tests. Our query consists of the band name “red hot
chili peppers” to retrieve the top 10 results from the Spotify
YouTube Trained Model.

H Embedder - Dataset Clusters Embedding Dimension ~ Video’s ~ Model Size H
BERT - Spotify and Youtube 140 100 20,230 9.21MB
USE - Spotify and Youtube 140 128 20,230 31.3MB
USE - YouTube-Commons 1450 128 2,063,066 458MB

TABLE II: Overview of different pre-trained models and their trained dataset.

Rank Distance = Metadata

0 -0.92737 artist: Red Hot Chili Peppers, title: Can’t Stop, id: 8DyziWtkfBw

1 -0.92040 artist: Red Hot Chili Peppers, title: Otherside, id: rn_YodiJO6k

2 -0.91266 artist: Red Hot Chili Peppers, title: Californication, id: YIUKcNNmywk
3 -0.90260 artist: Red Hot Chili Peppers, title: Dark Necessities, id: QOoloR9ImLwc
4 -0.88711 artist: Red Hot Chili Peppers, title: Dani California, id: SbSaqgSHcS1A
5 -0.87163 artist: Red Hot Chili Peppers, title: Give It Away, id: Mr_uHJPUIOS8

6 -0.83989 artist: Red Hot Chili Peppers, title: By The Way, id: JnfyjwChuNU

7 -0.83138 artist: Red Hot Chili Peppers, title: Scar Tissue, id: mzJj5-lubeM

8 -0.78570 artist: Red Hot Chili Peppers, title: Under The Bridge, id: GLvohMXgcBo
9 -0.72377 artist: The Beach Boys, title: Good Vibrations, id: apBWI6xrbLY

TABLE III: Top 10-Results searching ”Red Hot Chili Peppers” in the 20K Spotify YouTube Trained Model.

1) Results: The search query results for the band “Red
Hot Chili Peppers” in the Spotify YouTube Trained Model
are detailed in Table Il The search execution time was
remarkably efficient, clocking in at just 37 milliseconds. This
rapid performance is maintained even with the retrieval of
additional items, as the distances are computed within the six
closest clusters to the original query. In terms of accuracy, 9
out of the top 10 results are directly relevant to the search
query, yielding a recall rate of 90%. However, the tenth result
is from a different band, "The Beach Boys,” which does
not align with the intended query. This discrepancy may be
explained by the absence of the "Red Hot Chili Peppers
- Snow (Hey Oh)” video, which was located at the 14th
place with a distance of -0.68120 to our search query. The
sentence encoder model, designed to capture the semantic
context of queries, likely associated ”The Beach” with "Hot”
conceptually, while ”Snow,” being contradictory to “Hot,” in
the missing entry’s title may have positioned its vector further
away in the semantic space. This outcome underscores the
system’s capability to interpret the semantic context of queries
and retrieve items based on the learned embeddings, though
it also highlights areas for potential improvement in handling
nuanced semantic relationships.

D. Random keyword inference on different Embedders Exper-
iment

In this experiment, we aim to evaluate the impact of differ-
ent encoder models when our vector space is trained. We will
compare the performance of the Universal Sentence Encoder
(USE) and BERT models in terms of speed and accuracy. The
experiment will involve issuing different type of queries to the
system using both encoder models and analyzing the results
to determine the most effective model for our decentralised
search and recommendation system. We aim to evaluate the
effectiveness of the semantic embeddings by measuring the
system’s performance on a set of seven related queries shown
in table These queries are designed to test various levels

of specificity and semantic understanding, ranging from exact
matches to partial and semantically altered queries. We are
searching for the band UB40 which consost of way less than
the context given in our first expirement. This band also has
10 YouTube videos learned. The queries include:

1) Results: Analyzing the search times for different queries
using the Universal Sentence Encoder (USE) and BERT mod-
els reveals a significant difference in performance. The USE
consistently outperforms BERT in terms of speed, completing
all queries in approximately 38 milliseconds, compared to
BERT’s 85 milliseconds for the same queries. Despite this
difference, both models are capable of handling search queries
in real-time, demonstrating their suitability for time-sensitive
applications.

To further assess the impact of larger datasets, we trained
a model on the YouTube-Commons dataset. Interestingly, the
CPU time does not degrade significantly despite the increased
number of comparisons, as the system efficiently measures
distances to larger clusters. The results of this experiment are
summarized in figure [3.

Assessing the recall in this example is somewhat complex
for both embedding models. Both models successfully retrieve
the correct video when queries include the full song title or the
combination of the artist’s name and the song title. However,
their performance diverges significantly with other types of
queries.

a) Band Name Only: When searching solely for the band
”UB40,” BERT finds two videos that do not include the title
”Red Red Wine,” whereas USE fails to retrieve any videos
including UB40 as the artist.

b) Partial Song Name: The results for the query "Red”
differ between the models. USE predominantly retrieves
videos related to the color red, while BERT identifies videos
associated with red objects, such as roses. This indicates that
USE is more focused on color semantics, whereas BERT
captures a broader range of associations with the word “red.”

Description Example

Full song name and band name ”UB40 Red Red Wine”

Band name only ”"UB40”

Song name only “Red Red Wine”

Partial song name “Red”

Semantic mistake in the song name ”Green Wine”

Foreign language translation of the partial song name | “Vino tinto” (Spanish for "Red Wine”)

TABLE IV: Examples of Song and Band Name Variations

c) Semantic Mistake: For the semantically incorrect
query “Green Wine,” BERT’s results are influenced by the
term “poison,” and it eventually returns the correct video in
the fourth position. In contrast, USE accurately returns the
correct video as the top result, demonstrating its robustness in
handling semantic errors.

d) Foreign Language Translation: The foreign language
query “Vino tinto” does not perform well with either model,
which can be attributed to the dataset being in English and
the models being trained on English text. However, USE does
return related foreign titles, such as those by Vasco Rossi,
suggesting some degree of cross-linguistic capability.

2) Discussion: The results highlight several key observa-
tions about the performance and behavior of the USE and
BERT models. Both models don’t perform on relatively small
queries in which no real words are being used. USE’s speed
advantage makes it more suitable for real-time applications,
while BERT’s broader semantic understanding can be bene-
ficial in scenarios requiring nuanced context comprehension.
Both models show limitations in handling foreign language
queries, pointing to a potential area for future improvement.
Overall, these findings underscore the importance of selecting
the appropriate model based on the specific requirements
of the application, whether it be speed, recall, or semantic
understanding.

100 W BERT 20K
W USE 20K
- USE 2M

Speed (ms)

6‘860

Fig. 5: Measuring the search time for different queries using
the Universal Sentence Encoder and BERT models.

E. Non-Perfect Insert Experiment

In this experiment, we evaluate the system’s ability to handle
the insertion of new entries and measure the execution time
required for these operations. This is crucial for ensuring
the scalability and efficiency of the system as it updates its
database with new information. The experiment is designed

to demonstrate the basic functionality of single YouTube item
insertion, evaluate the system’s performance under a moderate
load by inserting a batch of 10,000 items, and assess the
scalability and performance for repeated insertions up to one
million times. When we add a new song, we will be using a
randomly generated list of random words for artist names and
titles, including two random English words such as “artist:
Eternal Ballad title: Crystal Phoenix YouYubeld: 123”.

1) Results: The system successfully inserted a new item
into our YouTube Spotify dataset, resulting in a model size
increase of 876 bytes. When the new model is queried,
including the same embedding as the one we just added, we
notably receive our added YouTube item as the first result.
However, we noticed the extremely close distance of -1.46156,
which is uncommon compared to learned embeddings during
the pre-trained phase. Furthermore, the insertion operation
took 574 milliseconds to complete, with a RAM usage of
16 MB. These results demonstrate the system’s ability to
efficiently handle the insertion of new items, even when they
do not perfectly match the existing dataset. In Figure [6] the
different insertion times are shown for the different model
sizes and the cost of rebuilding the index each time.

Inserting the same YouTube item into the larger pre-trained
model, we observed an increase in both insertion time and
RAM usage compared to our smaller model. This bottleneck
is due to the need to read, initialize, and overwrite the entire
index, which consists of a large size of 458 megabytes (MB).
After writing the new index, it is necessary to reload the index
and initialize a new LevelDB table to enable searching. The
insertion process took 1.5 seconds, with a RAM usage of 458
MB. Despite the increased time and resource usage, the system
successfully added the new item to the dataset.

Inserting approximately 8 new songs results in significant
differences, where the YouTube Commons 2M Dataset re-
quires an infeasible amount of time to rebuild the index for
each new entry. Since it is not necessary to search all insertions
directly, we also experimented with adding entries first and
rebuilding the index after all songs had been added. This
approach significantly reduced the insertion time. We observed
that batch processing of insertions followed by a single index
rebuild allowed us to manage the database more efficiently.
By delaying the rebuild process until after all insertions, we
reduced the cumulative time and resource usage. For instance,
when inserting 8 new songs in the larger dataset, the rebuild
time, though substantial, was offset by the reduced frequency
of rebuild operations, leading to a more manageable system

Insert Amount

Entry Number

1600 +
8 1400 { 4
¢
1200 4
6 ¢
21000 +
5
o
2 *
< 800 ¢+
4 § ¢
£ 600 4
2 400 +
—e— 20K No Index Rebuild L4
20K Index Rebuild 200 + —e— 20K No Index Rebuild
—&— 2M No Index Rebuild 4 20K Index Rebuild
0 —4— 2M Index Rebuild 0 1 —— 2M No Index Rebuild
0 50 100 150 200 250 0 200 400 600 800 1000 1200 1400 1600
Duration (seconds) Duration (seconds)
(a) Insert of 8 random Youtube items (b) Insert of 1600 random Youtube items
10000 —e— 20K
4.125
8000 4.100
4.075
6000 —~
2o}
£ 4.050

4000

2000

—e— 20K No Inde
2M No Inde>

300 400 500

Duration (seconds)

100 200

(c) Insert of 10K random Youtube items

21000 21200 21400 21600 21800

Number of Inserts

20400 20600 20800

(d) Index size growth on 10K random Youtube Items

Fig. 6: Non-perfect item insert experiment.

load. This approach, while reducing the frequency of resource-
intensive operations, still faced challenges. Specifically, the
size and complexity of the dataset necessitated careful man-
agement of memory and processing power. Nevertheless, the
results indicated a clear benefit in handling multiple insertions
as a batch process rather than individually.

When adding 1,600 songs, we eventually observed that even
rebuilding a smaller index each time on insertion becomes
slower. While the larger dataset takes a bit longer to initial-
ize, it still outperforms the batch insert version of the non-
perfect insert.The performance gap widened as the number of
insertions increased. Inserting 1,600 songs individually into
the larger dataset required a significant rebuild time for each
insertion, cumulatively leading to substantial delays. However,
by batch processing these insertions, we managed to reduce
the overall time significantly. The larger dataset, with its
more extensive index, benefited from fewer rebuild operations,
demonstrating the efficiency of handling bulk insertions. We
also noted that the initialization time for the larger dataset,

although initially longer, did not scale linearly with the number
of insertions. This suggests that the system’s architecture is
capable of handling large-scale data more effectively when
optimized for batch processing. As the batch size increased,
the efficiency gains became more pronounced, highlighting the
importance of strategic insertion management in maintaining
system performance.

When adding 10,000 songs, the index size did not increase
substantially. However, the insertion process for 10,000 songs
still required 200 and 500 seconds, respectively, for the smaller
and larger datasets. Inserting 10,000 songs into the system
provided a comprehensive test of its scalability. Despite the
relatively modest increase in index size, the insertion time
revealed significant differences between the datasets. For the
smaller dataset, the process took approximately 200 seconds,
reflecting a relatively efficient handling of the bulk insertion.
In contrast, the larger dataset required around 500 seconds,
underscoring the additional complexity involved in comparing
more centroids to find the closest partition. These results

10

22000

indicate that while the system can handle a large volume of
insertions, the efficiency is heavily dependent on the dataset
size. The larger dataset’s longer insertion time can be attributed
to the increased overhead in managing a more complex index.

Finally, adding 1 million YouTube items to the system,
we observed a total insertion time of 7 hours, and the index
size increased by 62 MB. Queries to the system were still
processed really fast differencing from the original 37ms to
90ms. The difference dependents on the total number of items
in the partition. Hashing the items in the partition and then
comparing the distance to the centroid of the partition still
performs extremely fast but the more items in the partition the
slower the search time will be. In terms of recall, adding more
songs to the system will quickly decrease the recall rate since
all the newly added embeddings suffer from the codebook
and the k-mean centroids not being updated, meaning their
distance is placed closer to the centroid of the cluster they are
placed in, overflowing the partition. None of the earlier queried
songs are found in the top 10 results, and the recall rate drops
to 0%. This is shown in tabldV]l This is a critical issue that
needs to be addressed to maintain the system’s effectiveness in
retrieving relevant and accurate entries. The system’s ability to
learn and retrieve newly added YouTube embeddings, even in
a non-optimized state, demonstrates its potential for handling
large-scale data. However, facing the challenge of decreasing
recall rates, the system must be periodically retrained to
recalibrate the retrieval process and balance the influence of
newly inserted songs with existing entries.

2) Discussion: The results of the non-perfect insert experi-
ment provide valuable insights into the system’s scalability and
efficiency in handling new entries. The system demonstrates
the ability to efficiently insert new items, even when they
do not perfectly match the existing dataset. By managing
the insertion process strategically, the system can optimize
resource usage and reduce the overall time required for bulk
insertions. The batch processing approach, which delays the
index rebuild until after all insertions, proves to be an effective
strategy for managing large-scale data. This method allows
the system to handle a high volume of insertions while
maintaining performance and efficiency. However, the system
faces challenges in maintaining recall rates as the dataset
grows, highlighting the need for periodic retraining to ensure
the accuracy and relevance of search results. By addressing
these challenges and optimizing the insertion process, the
system can enhance its scalability and performance, enabling
it to handle large-scale data effectively and efficiently.

FE. Decentralised content discovery and search Experiment

Our final experiment examines the entire end-to-end
pipeline of decentralised content discovery and search In this
section, we quantify the exact cost of content discovery and
decentralised search. Content discovery is based on a gossip
protocol, as illustrated by the network view available. We focus
on the Creative Commons Spotify-YouTube dataset, which
contains videos that can be freely redistributed.

11

Our experiment centers on the core primitive of two random
peers exchanging discovered content and search results. The
search results are organized in a format known as a ClickLog,
which consists of pairs of ”Query, Clicked-YouTube-URL.”
One device in our experiment generates the ClickLog, while
the other device inserts these results into SCANN (Scalable
Nearest Neighbors).

To investigate the data exchange size, we set up two
devices to gossip a single ClickLog each second. This setup
helps us determine the volume of data exchanged and assess
the feasibility of implementing BeyondFederated Learning.
Understanding the data requirements is crucial for ensuring the
efficiency and scalability of the decentralised search process.
By quantifying the data exchanged during content discovery
and search, we can better understand the implications for
network load and system performance.

—e— Transfered Clicklog Size (MB)

= = N N
1 =} S 5

Total Message Size (MB)

«

20000 40000 60000

Time (seconds)

80000 100000

Fig. 7: Two random peers exchanging clicklog data

1) Results: The results of the content discovery and search
experiment provide valuable insights into the data exchange
process between peers. The data exchanged between the two
devices is minimal, with each ClickLog containing only a
fesingle YouTube item. This low volume of data ensures
that the gossip protocol is efficient and does not overload
the network with unnecessary information. Figure [/| show
the steady increase of exchanged ClickLogs between the two
devices, highlighting the continuous flow of information in a
decentralised environment. This experiment demonstrates the
feasibility of implementing content discovery and search using
a gossip protocol, with minimal data exchange and efficient
communication between peers. The results indicate that the
system can effectively handle the exchange of search results
and ClickLogs, enabling decentralised content discovery and
search in a scalable and efficient manner.

V. CONCLUSION

In this research is shown that machine learning can be fully
decentralised. Our on-device federated learning realisation is
one of the first to explore the share nothing architecture [23]].
Our open source prototype is capable of operating on any
supported smartphone

Zhttps://github.com/Tribler/tribler/issues/7254

https://github.com/Tribler/tribler/issues/7254

Rank Distance Metadata

0 -1.64961 artist: Eternal Ballad title: Crystal Phoenix, id:abc123456

1 -1.53666 artist: Crystal Ballad, title: Phoenix Moonlight, id:abc123456

2 -1.53307 artist: Mystic Symphony, title: Ember Mystic, id: abc123456

3 -1.50501 artist: Moonlight Ballad, title: Mystic Eternal, id:abc123456

4 -1.49494 artist: Phoenix Ballad, title: Eternal Crystal, id:abc123456

5 -1.47767 artist: Whisper Ballad, title: Crystal Mystic, id:abc123456

6 -1.47767 artist: Starlight Ballad, title: Phoenix Eternal, id:abc123456

7 -1.46832 artist: Moonlight Ballad, title: Moonlight Phoenix, id:abc123456
8 -1.45609 artist: Moonlight Ballad, title: Shadow Moonlight, id:abc123456
373 -0.94673 artist: Red Hot Chili Peppers, title: Under The Bridge, id: GLvohMXgcBo

TABLE V: Top 10 and selected additional results for the query "Red Hot Chili Peppers Under The Bridge” in the Spotify

YouTube Trained Model + Random Youtube Entries.

Query Youtube ID Artist name Song title
Red Red Wine zXt56MB-3ve UB40 Red Red Wine
Red Hot Chili Peppers 8DyziWtkfBw Red Hot Chili Peppers ~ Can’t Stop
Red Hot Chili Peppers Otherside rn_YodiJO6k Red Hot Chili Peppers Otherside

TABLE VI: ClickLog format example which is exchanged between smartphones using our IPv8 gossip overlay.

The results demonstrate that our BeyondFederated archi-
tecture using SCaNN can efficiently retrieve approximate
nearest neighbors in a decentralised environment. This system
effectively clusters YouTube embeddings using k-means clus-
tering, which enables accurate real-time similarity searches.
By testing the insertion of non-perfect entries, we showcase a
functional use case of the system, illustrating its capability to
learn and retrieve newly added YouTube embeddings even in
a non-optimized state.

The decentralised nature of the system allows for data distri-
bution across multiple devices while maintaining performance.
Additionally, the system can learn new embeddings based on
data from other nodes within the network, leveraging shared
clicklog data for collaborative learning. This collaborative
approach ensures that user privacy is preserved, as data is not
centralized.

The continuous integration of shared clicklog data enables
the system to refine its understanding of user preferences
and behaviors, leading to constant updates and improvements
in the embeddings. This method harnesses the collective
knowledge of the network, significantly enhancing the overall
performance and accuracy of the decentralised YouTube search
system. This research highlights the potential for creating a
decentralised web3 YouTube platform that is both efficient
and privacy-preserving, paving the way for more robust and
user-centric decentralised applications.

REFERENCES

[1]1 Adding metadata to TensorFlow Lite models. URL:
https : // www . tensorflow . org / lite / models / convert /
metadata.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn.
Approximate Nearest Neighbor Search in High Dimen-
sions. 2018. arXiv: 1806.09823 [cs.DS].
AndroidYoutubePlayer. URL: https : / / github . com /

PierfrancescoSoffritti/android- youtube-player.

(2]

(3]

12

(4]

(5]

(6]

(7]

(8]

[9]

ANN-Benchmarks is a benchmarking environment for
approximate nearest neighbor algorithms search. URL:
https://ann-benchmarks.com/.

Joost Bambacht and Johan Pouwelse. Web3: A De-
centralized Societal Infrastructure for Identity, Trust,
Money, and Data. 2022. arXiv: 2203.00398 [cs.DC]l
Daniel Cer et al. Universal Sentence Encoder. 2018.
arXiv: 1803.11175 [cs.CL].

Custom trained Bert Scentence Encoder model. URL:
https : // github . com / tensorflow / tflite - support / blob /
master / tensorflow_lite_support / examples / colab / on_
device_text_to_image_search_tflite.ipynb.

Jacob Devlin et al. BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. 2019.
arXiv: 1810.04805 [cs.CL].

Ruiqi Guo et al. Accelerating Large-Scale Inference
with Anisotropic Vector Quantization. 2020. arXiv:
1908.10396 [cs.LG].

J. S. Hammudoglu et al. Portable Trust: biometric-
based authentication and blockchain storage for self-
sovereign identity systems. 2017. arXiv: |1706.03744
[cs.CR].

Jialiang Han et al. DeFL: Decentralized Weight Aggre-
gation for Cross-silo Federated Learning. 2022. arXiv:
2208.00848 [cs.LG].

Introducing ScaNN vector indexing in AlloyDB, bring-
ing 12 years of Google research to speed up vector
search. 2024. URL: https://cloud. google.com/blog/
products/databases/understanding- the- scann- index-in-
alloydb.

KaggleResources. URL: |https://www.kaggle.com/docs/
notebooks#the-notebooks-environment.

LevelDB is a fast key-value storage library written at
Google that provides an ordered mapping from string
keys to string values. URL: https://github.com/google/
leveldbl

Rohan Madhwal
Web3Recommend:

and Johan Pouwelse.
Decentralised recommendations

https://www.tensorflow.org/lite/models/convert/metadata
https://www.tensorflow.org/lite/models/convert/metadata
https://arxiv.org/abs/1806.09823
https://github.com/PierfrancescoSoffritti/android-youtube-player
https://github.com/PierfrancescoSoffritti/android-youtube-player
https://ann-benchmarks.com/
https://arxiv.org/abs/2203.00398
https://arxiv.org/abs/1803.11175
https://github.com/tensorflow/tflite-support/blob/master/tensorflow_lite_support/examples/colab/on_device_text_to_image_search_tflite.ipynb
https://github.com/tensorflow/tflite-support/blob/master/tensorflow_lite_support/examples/colab/on_device_text_to_image_search_tflite.ipynb
https://github.com/tensorflow/tflite-support/blob/master/tensorflow_lite_support/examples/colab/on_device_text_to_image_search_tflite.ipynb
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1706.03744
https://arxiv.org/abs/1706.03744
https://arxiv.org/abs/2208.00848
https://cloud.google.com/blog/products/databases/understanding-the-scann-index-in-alloydb
https://cloud.google.com/blog/products/databases/understanding-the-scann-index-in-alloydb
https://cloud.google.com/blog/products/databases/understanding-the-scann-index-in-alloydb
https://www.kaggle.com/docs/notebooks#the-notebooks-environment
https://www.kaggle.com/docs/notebooks#the-notebooks-environment
https://github.com/google/leveldb
https://github.com/google/leveldb

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

with trust and relevance. 2023. arXiv: 2307.01411
[cs.DC].

Enrique Tomds Martinez Beltrdn et al. “Decentralized
Federated Learning: Fundamentals, State of the Art,
Frameworks, Trends, and Challenges”. In: IEEE Com-
munications Surveys & Tutorials 25.4 (2023). 1SSN:
2373-745X. DOI: 10.1109/comst.2023.3315746. URL:
http://dx.doi.org/10.1109/COMST.2023.3315746.

H. Brendan McMahan et al. Communication-Efficient
Learning of Deep Networks from Decentralized Data.
2023. arXiv: [1602.05629 [cs.LG].

mmap. URL: https://man7.org/linux/man-pages/man2/
mmap.2.html,

Facebook AI Research. FAISS: A library for efficient
similarity search and clustering of dense vectors. https:
//faiss.ai/. Accessed: 2024-05-29. 2024.

Shaped.ai. The Secret Sauce of TikTok’s Recommenda-
tions. https://www.shaped.ai/blog/the- secret- sauce -
of - tik - toks - recommendations. Accessed: 2024-05-29.
2024.

Spotify. Annoy: Approximate Nearest Neighbors in
C++/Python optimized for memory usage and load-
ing/saving to disk. https://github.com/spotify/annoy.
Accessed: 2024-05-29. 2024.

spotify-youtube-dataset. URL: https://www.kaggle.com/
datasets/salvatorerastelli/spotify-and-youtube.

Michael Stonebraker. “The Case for Shared Nothing
Architecture”. In: Database Engineering 9.1 (1986).
http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf.
Philip Sun. Announcing ScaNN: Efficient Vector Sim-
ilarity Search. URL: https ://research . google / blog /
announcing-scann-efficient-vector-similarity-search/.
Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
“Sequence to Sequence Learning with Neural Net-
works”. In: Advances in Neural Information Process-
ing Systems. 2014, pp. 3104-3112. URL: https : //
proceedings . neurips . cc/ paper_files/paper/2014/file/
310ce61c90f3a46e340ee8257bc70e93-Paper.pdf.
TensorFlow Lite Support. URL: https://github.com/
tensorflow / tflite - support/tree/ master/ tensorflow_lite_
support.

Martijn de Vos et al. Decentralized Learning Made
Practical with Client Sampling. 2024. arXiv: 2302 .
13837 [cs.DC].

Yuxin Wen et al. Fishing for User Data in Large-Batch
Federated Learning via Gradient Magnification. 2022.
arXiv: 2202.00580 [cs.LG].

Liangqi Yuan et al. Decentralized Federated Learning:
A Survey and Perspective. 2024. arXiv: 2306.01603
[cs.LG].

13

https://arxiv.org/abs/2307.01411
https://arxiv.org/abs/2307.01411
https://doi.org/10.1109/comst.2023.3315746
http://dx.doi.org/10.1109/COMST.2023.3315746
https://arxiv.org/abs/1602.05629
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://faiss.ai/
https://faiss.ai/
https://www.shaped.ai/blog/the-secret-sauce-of-tik-toks-recommendations
https://www.shaped.ai/blog/the-secret-sauce-of-tik-toks-recommendations
https://github.com/spotify/annoy
https://www.kaggle.com/datasets/salvatorerastelli/spotify-and-youtube
https://www.kaggle.com/datasets/salvatorerastelli/spotify-and-youtube
http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf
https://research.google/blog/announcing-scann-efficient-vector-similarity-search/
https://research.google/blog/announcing-scann-efficient-vector-similarity-search/
https://proceedings.neurips.cc/paper_files/paper/2014/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf
https://github.com/tensorflow/tflite-support/tree/master/tensorflow_lite_support
https://github.com/tensorflow/tflite-support/tree/master/tensorflow_lite_support
https://github.com/tensorflow/tflite-support/tree/master/tensorflow_lite_support
https://arxiv.org/abs/2302.13837
https://arxiv.org/abs/2302.13837
https://arxiv.org/abs/2202.00580
https://arxiv.org/abs/2306.01603
https://arxiv.org/abs/2306.01603

	8aaf7b6a-7180-415e-9a6f-f6f4ad9e72d8.pdf
	Introduction
	Problem Description
	Architecture of BeyondFederated
	User Interface
	TensorFlow Model
	TensorFlow Lite Support
	Gossip Network Protocol

	Experiments and Evaluation
	Experiment Setup
	Datasets, Embedders and Pre-trained Models
	Metrics

	Content Search on the Edge Experiment
	Results

	Random keyword inference on different Embedders Experiment
	Results
	Discussion

	Non-Perfect Insert Experiment
	Results
	Discussion

	Decentralised content discovery and search Experiment
	Results

	Conclusion

