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Abstract. The past few years have witnessed the rise of
neural networks (NNs) applications for hydrological time
series modeling. By virtue of their capabilities, NN mod-
els can achieve unprecedented levels of performance when
learning how to solve increasingly complex rainfall-runoff
processes via data, making them pivotal for the develop-
ment of computational hydrologic tasks such as flood pre-
dictions. The NN models should, to be considered practical,
provide a probabilistic understanding of the model mecha-
nisms and predictions and hints on what could perturb the
model. In this paper, we developed two NN models, i.e.,
Neural Hierarchical Interpolation for Time Series Forecast-
ing (N-HiTS) and Network-Based Expansion Analysis for
Interpretable Time Series Forecasting (N-BEATS) with a
probabilistic multi-quantile objective and benchmarked them
with long short-term memory (LSTM) for flood prediction
across two headwater streams in Georgia and North Car-
olina, USA. To generate a probabilistic prediction, a Multi-
Quantile Loss was used to assess the 95th percentile predic-
tion uncertainty (95 PPU) of multiple flooding events. Exten-
sive experiments demonstrated the advantages of hierarchi-
cal interpolation and interpretable architecture, where both
N-HiTS and N-BEATS provided an average accuracy im-
provement of ∼ 5 % over the LSTM benchmarking model.
On a variety of flooding events, both N-HiTS and N-BEATS
demonstrated significant performance improvements over
the LSTM benchmark and showcased their probabilistic pre-
dictions by specifying a likelihood objective.

Key points.

– N-HiTS and N-BEATS predictions reflect interpretability and
hierarchical representations of data to reduce neural network
complexities.

– Both N-HiTS and N-BEATS models outperformed the LSTM
in mathematically defining uncertainty bands.

– Predicting the magnitude of the recession curve of flood hy-
drographs was particularly challenging for all models.

1 Introduction

The past few years have witnessed a rapid surge in the
neural networks (NN) applications in hydrology. As these
opaque, data-driven models are increasingly employed for
critical hydrological predictions, the hydrology community
has placed growing emphasis on developing trustworthy and
interpretable NN models. However, maintaining coherence
while producing accurate predictions can be a challenging
problem (Olivares et al., 2024). There is a general agreement
on the importance of providing probabilistic NN prediction
(Sadeghi Tabas and Samadi, 2022), especially in the case of
flood prediction (Martinaitis et al., 2023).

Flood occurrences have witnessed an alarming surge in
frequency and severity globally. Jonkman (2005) studied
a natural disaster database (Guha-Sapir and Below, 2002)
and reported that over 27 years, more than 175 000 peo-
ple died, and close to 2.2 billion were affected directly by
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floods worldwide. These numbers are likely an underestima-
tion due to unreported events (Nevo et al., 2022). In addition,
the United Nations Office for Disaster Risk Reduction re-
ported that flooding has been the most frequent, widespread
weather-related natural disaster since 1995, claiming over
600 000 lives, affecting around 4 billion people globally, and
causing annual economic damage of more than 100 billion
USD (UNISDR, 2015). This escalating trend has necessi-
tated the need for better flood prediction and management
strategies. Scholars have successfully implemented differ-
ent flood models such as deterministic (e.g., Roelvink et al.,
2009, Thompson and Frazier, 2014; Barnard et al., 2014;
Erikson et al., 2018) and physically based flood models (e.g.,
Basso et al., 2016; Chen et al., 2016; Pourreza-Bilondi et al.,
2017; Saksena et al., 2020; Refsgaard et al., 2022) in various
environmental systems over the past several decades. These
studies have heightened the need for precise flood prediction
(Samadi et al., 2025), they have also unveiled limitations in-
herent in existing deterministic and physics-based models.

While evidence suggests that both deterministic and
physics-based approaches are meaningful and useful
(Sukovich et al., 2014; Zafarmomen et al., 2024), their fore-
casts rest heavily on imprecise and subjective expert opin-
ion; there is a challenge for setting robust evidence-based
thresholds to issue flood warnings and alerts (Palmer, 2012).
Moreover, many of these traditional flood models, particu-
larly physically explicit models, rely too strongly on a par-
ticular choice of numerical approximation and describe mul-
tiple process parameterizations only within a fixed spatial ar-
chitecture (e.g., Clark et al., 2015). Recent NN models have
shown promising results across a large variety of flood mod-
eling applications (e.g., Nevo et al., 2022; Pally and Samadi,
2022; Dasgupta et al., 2023; Zhang et al., 2023b; Zafarmo-
men and Samadi, 2025; Saberian et al., 2026) and encourage
the use of such methodologies as core drivers for neural flood
prediction (Windheuser et al., 2023).

Earlier adaptations of these intelligent techniques showed
promising for flood prediction (e.g., Hsu et al., 1995; Tiwari
and Chatterjee, 2010). However, recent efforts have taken
NN application to the next level, providing uncertainty as-
sessment (Sadeghi Tabas and Samadi, 2022) and improve-
ments over various spatio-temporal scales, regions, and pro-
cesses (e.g., Kratzert et al., 2018; Park and Lee, 2024; Zhang
et al., 2023a). Nevo et al. (2022) were the first scholars who
employed long short-term memory (LSTM) for flood stage
prediction and inundation mapping, achieving notable suc-
cess during the 2021 monsoon season. Soon after, Russo
et al. (2023) evaluated various NN models for predicting
depth flood in urban systems, highlighting the potential of
data-driven models for urban flood prediction. Similarly, De-
fontaine et al. (2023) emphasized the role of NN algorithms
in enhancing the reliability of flood predictions, particularly
in the context of limited data availability. Windheuser et
al. (2023) studied flood gauge height forecasting using im-
ages and time series data for two gauging stations in Geor-

gia, USA. They used multiple NN models such as Convolu-
tional Neural Network (ConvNet/CNN) and LSTM to fore-
cast floods in near real-time (up to 72 h).

In a sequence, Wee et al. (2023) used Impact-Based Fore-
casting (IBF) to propose a Flood Impact-Based Forecasting
system (FIBF) using flexible fuzzy inference techniques, aid-
ing decision-makers in a timely response. Zou et al. (2023)
proposed a Residual LSTM (ResLSTM) model to enhance
and address flood prediction gradient issues. They integrated
Deep Autoregressive Recurrent (DeepAR) with four recur-
rent neural networks (RNNs), including ResLSTM, LSTM,
Gated Recurrent Unit (GRU), and Time Feedforward Con-
nections Single Gate Recurrent Unit (TFC-SGRU). They
showed that ResLSTM achieved superior accuracy. While
these studies reported the superiority of NN models for flood
modeling, they highlighted a number of challenges, notably
(i) the limited capability of proposed NN models to capture
the spatial variability and magnitudes of extreme data over
time, (ii) the lack of a sophisticated mechanism to capture
different flood magnitudes and synthesize the prediction, and
(iii) inability of the NN models to process data in parallel and
capture the relationships between all elements in a sequential
manner.

Recent advances in neural time series forecasting showed
promising results that can be used to address the above
challenges for flood prediction. Recent techniques include
the adoption of the attention mechanism and Transformer-
inspired approaches (Fan et al., 2019; Alaa and van der
Schaar, 2019; Lim et al., 2021) along with attention-free ar-
chitectures composed of deep stacks of fully connected lay-
ers (Oreshkin et al., 2020).

All these approaches are relatively easy to scale up in
terms of flood magnitudes (small to major flood predictions),
compared to LSTM and have proven to be capable of cap-
turing spatiotemporal dependencies (Challu et al., 2022). In
addition, these architectures can capture input-output rela-
tionships implicitly while they tend to be more computation-
ally efficient. Many state-of-the-art NN approaches for flood
forecasting have been established based on LSTM. There are
cell states in the LSTM networks that can be interpreted as
storage capacity often used in flood generation schemes. In
LSTM, the updating of internal cell states (or storages) is
regulated through several gates: the first gate regulates the
storage depletion, the second one regulates storage fluctua-
tions, and the third gate regulates the storages outflow (Tabas
and Samadi, 2022). The elaborate gated design of the LSTM
partly solves the long-term dependency problem in flood
time series prediction (Fang et al., 2020), although, the struc-
ture of LSTMs is designed in a sequential manner that can-
not directly connect two nonadjacent portions (positions) of
a time series.

In this paper, we developed attention-free architecture, i.e.
Neural Hierarchical Interpolation for Time Series Forecast-
ing (N-HiTS; Challu et al., 2022) and Network-Based Ex-
pansion Analysis for Interpretable Time Series Forecasting
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(N-BEATS; Oreshkin et al., 2020) and benchmarked these
models with LSTM for flood prediction. We developed fully
connected N-BEATS and N-HiTS architectures using multi-
rate data sampling, synthesizing the flood prediction outputs
via multi-scale interpolation.

We implemented all algorithms for flood prediction on two
headwater streams i.e., the Lower Dog River, Georgia, and
the Upper Dutchmans Creek, North Carolina, USA to en-
sure that the results are reliable and comparable. The results
of N-BEATS and N-HiTS techniques were compared with
the benchmarking LSTM to understand how these techniques
can improve the representations of rainfall and runoff dis-
pensing over a recurrence process. Notably, this study repre-
sents a pioneering effort, as to the best of our knowledge, this
is the first instance in which the application of N-BEATS and
N-HiTS algorithms in the field of flood prediction has been
explored. The scope of this research will focus on:

i. Flood prediction in a hierarchical fashion with inter-
pretable outputs: We built N-BEATS and N-HiTS for
flood prediction with a very deep stack of fully con-
nected layers to implicitly capture input-output relation-
ships with hierarchical interpolation capabilities. The
predictions also involve programming the algorithms
with decreasing complexity and aligning their time
scale with the final output through multi-scale hierar-
chical interpolation and interpretable architecture. Pre-
dictions were aggregated in a hierarchical fashion that
enabled the building of a very deep neural network with
interpretable configurations.

ii. Uncertainty quantification of the models by employing
probabilistic approaches: a Multi-Quantile Loss (MQL)
was used to assess the 95th percentile prediction uncer-
tainty (95 PPU) of multiple flooding events. MQL was
integrated as the loss function to account for probabilis-
tic prediction. MQL trains the model to produce proba-
bilistic forecasts by predicting multiple quantiles of the
distribution of future values.

iii. Exploring headwater stream response to flooding: Un-
derstanding the dynamic response of headwater streams
to flooding is essential for managing downstream flood
risks. Headwater streams constitute the uppermost sec-
tions of stream networks, usually comprising 60 % to
80 % of a catchment area. Given this substantial cover-
age and the tendency for precipitation to increase with
elevation, headwater streams are responsible for gener-
ating and controlling the majority of runoff in down-
stream portions (MacDonald and Coe, 2007).

The remainder of this paper is structured as follows. Sec-
tion 2 presents the case study and data, NN models, perfor-
mance metrics, and sensitivity and uncertainty approaches.
Section 3 focuses on the results of flood predictions includ-
ing sensitivity and uncertainty assessment and computation
efficiency. Finally, Sect. 4 concludes the paper.

2 Methodology

2.1 Case Study and Data

This research used two headwater gauging stations lo-
cated at the Lower Dog River watershed, Georgia (GA;
USGS02337410, Dog River gauging station), and the Up-
per Dutchmans Creek watershed, North Carolina (NC;
USGS0214269560, Killian Creek gauging station). As de-
picted in Fig. 1, the Lower Dog River and the Upper Dutch-
mans Creek watersheds are in the west and north parts of
two metropolitan cities, Atlanta and Charlotte. The Lower
Dog River stream gauge is established southeast of Villa Rica
in Carroll County, where the USGS has regularly monitored
discharge data since 2007 in 15 min increments. The Lower
Dog River is a stream with a length of 15.7 miles (25.3 km;
obtained from the U.S. Geological Survey [USGS] National
Hydrography Dataset high-resolution flowline data), an av-
erage elevation of 851.94 m, and the watershed area above
this gauging station is 66.5 square miles (172 km2; obtained
from the Georgia Department of Natural Resources). This
watershed is covered by 15.2 % residential area, 14.6 % agri-
cultural land, and ∼ 70 % forest (Munn et al., 2020).

Killian Creek gauging station at the Upper Dutchmans
Creek watershed is established in Montgomery County, NC,
where the USGS has regularly monitored discharge data
since 1995 in 15 min increments. The Upper Dutchmans
Creek is a stream with a length of 4.9 miles (7.9 km), an av-
erage elevation of 642.2 m (see Table 1), and the watershed
area above this gauging station is 4 square miles (10.3 km2)
with less than 3 % residential area and about 93 % forested
land use (US EPA, 2024).

The Lower Dog River has experienced significant flood-
ing in the last decades. For example, in September 2009, the
creek, along with most of northern GA, experienced heavy
rainfall (5 inches, equal to 94 mm). The Lower Dog River,
overwhelmed by large amounts of overland flow from satu-
rated ground in the watershed, experienced massive flood-
ing in September 2009 (Gotvald, 2010). The river crested
at 33.8 feet (10.3 m) with a peak discharge of 59 900 cfs
(1700 m3 s−1), nearly six times the 100-year flood level (Mc-
Callum and Gotvald, 2010). In addition, Dutchmans Creek
experienced significant flooding in February 2020. Accord-
ing to local news (WCCB Charlotte’s CW, 2020), the flood
in Gaston County caused significant infrastructure damage
and community disruption. Key impacts included the threat-
ened collapse of the Dutchman’s Creek bridge in Mt. Holly
and the closure of Highway 7 in McAdenville, GA.

To provide the meteorological forcing data, i.e., precipita-
tion, temperature, and humidity, were extracted from the Na-
tional Oceanic and Atmospheric Administration’s (NOAA)
Local Climatological Data (LCD). We used the NOAA pre-
cipitation, temperature, and humidity data of Atlanta Harts-
field Jackson International Airport and Charlotte Douglas
Airport stations as an input for neural network algorithms.
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Figure 1. The Lower Dog River and The Upper Dutchmans Creek watersheds are in GA and NC. The proximity of the watersheds to Atlanta
and Charlotte (urban area) are also displayed on the map.

Table 1. The Lower Dog River and Upper Dutchmans Creek’s physical characteristics.

Watershed USGS Station Average Elevation Stream Length Watershed area
ID Number (m) (km) (km2)

Lower Dog River watershed, GA USGS02337410 851.9 25.3 172
Upper Dutchmans Creek watershed, NC USGS0214269560 642.2 7.9 10.3

The data has been monitored since 1 January 1948, and 22
July 1941, with an hourly interval which was used as an in-
put variable for constructing neural networks.

To fill in the missing values in the data, we used the
spline interpolation method. We applied this method to fill
the gaps in time series data, although the missing values
were insignificant (less than 1 %). In addition, we employed
the Minimum Inter-Event Time (MIT) approach to precisely
identify and separate individual storm events. The MIT-based
event delineation is pivotal for accurately defining storm
events. This method allowed us to isolate discrete rainfall
episodes, aiding a comprehensive analysis of storm events.
Moreover, it provided a basis for event-specific examination
of flood responses, such as initial condition and cessation
(loss), runoff generation, and runoff dynamics.

The hourly rainfall dataset consists of distinct rainfall oc-
currences, some consecutive and others clustered with brief
intervals of zero rainfall. As these zero intervals extend, we
aim to categorize them into distinct events. It’s worth not-
ing that even within a single storm event, we often encounter
short periods of no rainfall, known as intra-storm zero val-
ues. In the MIT method, we defined a storm event as a dis-
crete rainfall episode surrounded by dry periods both preced-

ing and following it, determined by an MIT (Asquith et al.,
2005; Safaei-Moghadam et al., 2023).

There are many ways to determine MIT value. One prac-
tical approximation is using serial autocorrelation between
rainfall occurrences. MIT approach uses autocorrelation that
measures the statistical dependency of rainfall data at one
point in time with data at earlier, or lagged times within the
time series. The lag time represents the gap between data
points being correlated. When the lag time is zero, the au-
tocorrelation coefficient is unity, indicating a one-to-one cor-
relation. As the lag time increases, the statistical correlation
diminishes, converging to a minimum value. This signifies
the fact that rainfall events become progressively less statis-
tically dependent or, in other words, temporally unrelated.
To pinpoint the optimal MIT, we analyzed the autocorrela-
tion coefficients for various lag times, observing the point at
which the coefficient approaches zero. This lag time signifies
the minimum interval of no rainfall, effectively delineating
distinct rainfall events.

2.2 NN Algorithms

In this study, three distinct neural network (NN) architectures
were developed to perform multi-horizon flood forecasting.

Hydrol. Earth Syst. Sci., 30, 371–399, 2026 https://doi.org/10.5194/hess-30-371-2026
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Each NN was coupled with a MQL objective to generate
probabilistic predictions and quantify predictive uncertainty.
Throughout the manuscript, the term parameters are used ex-
clusively to refer to the network’s weights and biases for clar-
ity and consistency.

2.2.1 LSTM

LSTM is an RNN architecture widely used as a benchmark
model for flood neural time series modeling. LSTM net-
works are capable of selectively learning order dependence
in sequence prediction problems (Sadeghi Tabas and Samadi,
2022). These networks are powerful because they can capture
the temporal features, especially the long-term dependencies
(Hochreiter et al., 2001) and are independent of the length of
the data sequences input, meaning that each sample is inde-
pendent from another one.

The memory cell state within LSTM plays a crucial role
in capturing extended patterns in data, making it well-suited
for dynamic time series modeling such as flood prediction.
An LSTM cell uses the following functions to compute flood
prediction.

it = σ (Aixt + Biht−1+ ci) (1)
ft = σ(Af xt + Bf ht−1+ cf ) (2)
ot = σ(Aoxt + Boht−1+ co) (3)
mt = ft � mt−1 + it � tanh(Agxt + Bght−1+ cg) (4)
ht = ot � tanh(mt ) (5)

Where xt and ht represent the input and the hidden state at
time step t , respectively.� denotes element-wise multiplica-
tion, tanh stands for the hyperbolic tangent activation func-
tion, and σ represents the sigmoid activation function. A, B,
and c are trainable weights and biases that undergo optimiza-
tion during the training process. mt and ht are cell states at
time step t that are employed in the input processing for the
next time step. mt represents the memory state responsible
for preserving long-term information, while ht represents the
memory state preserving short-term information. The LSTM
cell consists of a forget gate ft , an input gate it and an output
gate ot and has a cell state mt . At every time step t , the cell
gets the data point xt with the output of the previous cell ht−1
(Windheuser et al., 2023). The forget gate then defines if the
information is removed from the cell state, while the input
gate evaluates if the information should be added to the cell
state and the output gate specifies which information from
the cell state can be used for the next cells.

We used two LSTM layers with 128 cells in the first
two hidden layers as encoder layers, which were then con-
nected to two multilayer perceptron (MLP) layers with 128
neurons as decoder layers. The LSTM simulation was per-
formed with these input layers along with the Adam opti-
mizer (Kingma and Ba, 2017), tanh activation function, and a
single lagged dependent-variable value to train with a learn-

ing rate of 0.001. The architecture of the proposed LSTM
model is illustrated in Fig. 2.

2.2.2 N-BEATS

N-BEATS is a deep learning architecture based on back-
ward and forward residual links and the very deep stack of
fully connected layers specifically designed for sequential
data forecasting tasks (Oreshkin et al., 2020). This architec-
ture has several desirable properties including interpretabil-
ity. The N-BEATS architecture distinguishes itself from ex-
isting architecture in several ways. First, the algorithm ap-
proaches forecasting as a non-linear multivariate regression
problem instead of a sequence-to-sequence challenge. In-
deed, the core component of this architecture (as depicted
in Fig. 3) is a fully connected non-linear regressor, which
takes the historical data from a time series as input and gen-
erates multiple data points for the forecasting horizon. Sec-
ond, most existing time series architectures are quite limited
in depth, typically consisting of one to five LSTM layers. N-
BEATS employs the residual principle to stack a substantial
number of layers together, as illustrated in Fig. 3. In this con-
figuration, the basic block not only predicts the next output
but also assesses its contribution to decomposing the input, a
concept that is referred to as “backcast” (see Oreshkin et al.,
2020).

The basic building block in the architecture features a fork-
like structure, as illustrated in Fig. 3 (bottom). The lth block
(for the sake of brevity, the block index l is omitted from
Fig. 3) takes its respective input, xl , and produces two output
vectors: x̂l and ŷl . In the initial block of the model, xl corre-
sponds to the overall model input, which is a historical look-
back window of a specific length, culminating with the most
recent observed data point. For the subsequent blocks, xl is
derived from the residual outputs of the preceding blocks.
Each block generates two distinct outputs: (1) ŷl : This repre-
sents the forward forecast of the block, spanning a duration
of H time units. (2) x̂l : This signifies the block’s optimal
estimation of xl , which is referred to “backcast.” This esti-
mation is made within the constraints of the functional space
available to the block for approximating signals (Oreshkin et
al., 2020).

Internally, the fundamental building block is composed of
two elements. The initial element involves a fully connected
network, which generates forward expansion coefficient pre-
dictors, θ f

l , and a backward expansion coefficient predictor,
θb
l . The second element encompasses both backward basis

layers, gb
l , and forward basis layers, gf

l . These layers take the
corresponding forward θ f

l and backward θb
l expansion coeffi-

cients as input, conduct internal transformations using a set
of basis functions, and ultimately yield the backcast, x̂l , and
the forecast outputs, ŷl , as previously described by Oreshkin
et al. (2020). The following equations describe the first ele-
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Figure 2. The structure of LSTM programmed in this research. We used tanh and sigmoid as activation functions along with 2 layers of
LSTM, 2 layers of MLP, and 128 cells in each layer.

ment:

hl,1 = FCl,1 (xl) , hl,2 = FCl,2
(
hl,1

)
,

hl,3 = FCl,3
(
hl,2

)
, hl,4 = FCl,4

(
hl,3

)
(6)

θb
l = LINEARb

l

(
hl,4

)
, θb
l = LINEARb

l (hl,4) (7)

The LINEAR layer, in essence, functions as a straightfor-
ward linear projection, meaning θ f

l = W
f
l hl,4. As for the fully

connected (FC) layer, it takes on the role of a conventional
FC layer, incorporating RELU non-linearity as an activation
function.

The second element performs the mapping of expansion
coefficients θ f

l and θb
l to produce outputs using basis layers,

resulting in ŷl = g
f
l (θ

f
l ) and x̂l = g

b
l (θ

b
l ). This process is de-

fined by the following equation:

ŷl =

dim(θ f
l )∑

i=1
θ f
l,iv

f
i, x̂l =

dim(θb
l )∑

i=1
θb
l,iv

b
i (8)

Within this context, vf
i and vb

i represent the basis vectors for
forecasting and backcasting, respectively, while θ f

l,i corre-
sponds to the ith element of θ f

l .

The N-BEATS uses a novel hierarchical doubly resid-
ual architecture which is illustrated in Fig. 3 (top and mid-
dle). This framework incorporates two residual branches, one
traversing the backcast predictions of each layer, while the
other traverses the forecast branch of each layer. The follow-
ing equation describes this process:

xl = xl−1− x̂l−1 ŷ =
∑
l

ŷl (9)

As mentioned earlier, in the specific scenario of the ini-
tial block, its input corresponds to the model-level input x.
In contrast, for all subsequent blocks, the backcast residual
branch xl can be conceptualized as conducting a sequential
analysis of the input signal. The preceding block eliminates
the portion of the signal x̂l−1 that it can effectively approxi-
mate, thereby simplifying the prediction task for downstream
blocks. Significantly, each block produces a partial forecast
ŷl , which is initially aggregated at the stack level and subse-
quently at the overall network level, establishing a hierarchi-
cal decomposition. The ultimate forecast ŷ is the summation
of all partial forecasts (Oreshkin et al., 2020).
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Figure 3. The N-BEATS modeling structure, used in this research.

The N-BEATS model has two primary configurations:
generic and interpretable. These configurations determine
how the model structures its blocks and how it processes time
series data. In the generic configuration, the model uses a
stack of generic blocks that are designed to be flexible and
adaptable to various patterns in the time series data. Each
generic block consists of fully connected layers with ReLU
activation functions. The key characteristic of generic config-
uration is its flexibility. Since the blocks are not specialized
for any specific pattern (like trend or seasonality), they can
learn a wide range of patterns directly from the data (Ore-
shkin et al., 2020). In the interpretable configuration, the
model architecture integrates distinct trend and seasonality
components. This involves structuring the basis layers at the
stack level specifically to model these elements, allowing the
stack outputs to be more easily understood.

Trend Model: In this stack gb
s, l and gf

s, l are polynomials
of a small degree p, functions that vary slowly across the
forecast window, to replicate monotonic or slowly varying
nature of trends:

ŷs, l =

p∑
i=0

θ f
s, l, i t

i (10)

The time vector t = [0, 1, 2, . . . , H−2, H−1]T /H is spec-
ified on a discrete grid ranging from 0 to (H−1)/H , project-
ing H steps into the future. Consequently, the trend forecast
represented in matrix form is:

ŷtr
s, l = Tθ f

s, l (11)

Where the polynomial coefficients, θ f
s, l , predicted by an FC

network at layer l of stack s, are described by Eqs. (6) and
(7). The matrix T, consisting of powers of t , is represented
as [1, t, . . ., tp]. When p is small, such as 2 or 3, it compels
ŷtr
s, l to emulate a trend (Oreshkin et al., 2020).

Seasonality model: In this stack gb
s, l and gf

s, l are periodic
functions, to capture the cyclical and recurring characteristics
of seasonality, such that yt = yt−1, where 1 is the seasonal-
ity period. The Fourier series serves as a natural foundation
for modeling periodic functions:

ŷs, l =

H
2 −1∑
i=0

θ f
s, l, i cos(2πit)+ θ f

s, l, i+[H/2] sin(2πit) (12)
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Consequently, the seasonality forecast is represented in the
following matrix form:

ŷseas
s, l = Sθ

f
s, l (13)

S= [1, cos(2πt), . . ., cos
(

2π
[
H

2
− 1

]
t

)
,

sin(2πt) , . . ., sin
(

2π
[
H

2
− 1

]
t

)
(14)

Where the Fourier coefficients θ f
s, l , that predicted by an FC

network at layer l of stack s, are described by Eqs. (6) and
(7). The matrix S represents sinusoidal waveforms. As a re-
sult, the forecast ŷseas

s, l becomes a periodic function that imi-
tates typical seasonal patterns (Oreshkin et al., 2020).

2.2.3 N-HiTS

N-HiTS builds upon the N-BEATS architecture but with
improved accuracy and computational efficiency for long-
horizon forecasting. N-HiTS utilizes multi-rate sampling and
multi-scale synthesis of forecasts, leading to a hierarchical
forecast structure that lowers computational demands and
improves prediction accuracy (Challu et al., 2022).

Like N-BEATS, N-HiTS employs local nonlinear map-
pings onto foundational functions within numerous blocks
(illustrated in Fig. 4). Each block includes an MLP that gen-
erates backcast and forecast output coefficients. The back-
cast output refines the input data for the following blocks,
and the forecast outputs are combined to generate the final
prediction. Blocks are organized into stacks, with each stack
dedicated to grasping specific data attributes using its own
distinct set of functions. The network’s input is a sequence
of L lags (look-back period), with S stacks, each containing
B blocks (Challu et al., 2022).

In each block, a MaxPool layer with varying kernel sizes
(kl) is employed at the input, enabling the block to focus on
specific input components of different scales. Larger kernel
sizes emphasize the analysis of larger-scale, low-frequency
data, aiding in improving long-term forecasting accuracy.
This approach, known as multi-rate signal sampling, alters
the effective input signal sampling rate for each block’s MLP
(Challu et al., 2022).

Additionally, multi-rate processing has several advan-
tages. It reduces memory usage, computational demands, and
the number of learnable parameters, and helps prevent over-
fitting, while preserving the original receptive field. The fol-
lowing operation is applicable to the input yt−L:t, l of each
block, with the first block (l = 1) using the network-wide in-
put, where yt−L:t,1 ≡ yt−L:t .

yt−L:t, l =MaxPool (yt−L:t, l, kl) (15)

In many multi-horizon forecasting models, the number of
neural network predictions matches the horizon’s dimension-
ality, denoted asH . For instance, in N-BEATS, the number of

predictions
∣∣θ f
l

∣∣= H . This results in a significant increase in
computational demands and an unnecessary surge in model
complexity as the horizon H becomes larger (Challu et al.,
2022).

To address these challenges, N-HiTS proposes the use of
temporal interpolation. This model manages the parameter
counts per unit of output time (

∣∣θ f
l

∣∣= drlHe) by defining the
dimensionality of the interpolation coefficients with respect
to the expressiveness ratio rl . To revert to the original sam-
pling rate and predict all horizon points, this model employs
temporal interpolation through the function g:

ŷτ,l = g
(
τ, θ f

l

)
, ∀τ ∈ {t + 1, . . ., t + H }, (16)

ỹτ,l = g
(
τ, θb

l

)
, ∀τ ∈ {t − L, . . ., t}, (17)

g (τ, θ)= θ [t1]+
(
θ [t2]− θ [t1]
t2− t1

)
(τ − t1) (18)

t1 = arg min
t∈τ :t≤τ

τ − t, t2 = t1+ 1/rl (19)

The hierarchical interpolation approach involves distribut-
ing expressiveness ratios over blocks, integrated with multi-
rate sampling. Blocks closer to the input employ more ag-
gressive interpolation, generating lower granularity signals.
These blocks specialize in analyzing more aggressively sub-
sampled signals. The final hierarchical prediction, ŷt+1:t+H ,
is constructed by combining outputs from all blocks, creat-
ing interpolations at various time-scale hierarchy levels. This
approach maintains a structured hierarchy of interpolation
granularity, with each block focusing on its own input and
output scales (Challu et al., 2022).

To manage a diverse set of frequency bands while main-
taining control over the number of parameters, exponentially
increasing expressiveness ratios are recommended. As an al-
ternative, each stack can be dedicated to modeling various
recognizable cycles within the time series (e.g., weekly, or
daily) employing matching rl . Ultimately, the residual ob-
tained from backcasting in the preceding hierarchy level is
subtracted from the input of the subsequent level, intensi-
fying the next-level block’s attention on signals outside the
previously addressed band (Challu et al., 2022).

ŷt+1:t+H =

L∑
l=1

ŷt+1:t+H, l (20)

yt−L:t, l+1 = yt−L:t, l − ỹt−L:t, l (21)

2.3 Performance Metrics

To comprehensively evaluate the accuracy of flood pre-
dictions, we utilized a suite of metrics, including Nash-
Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), per-
sistent Nash-Sutcliffe Efficiency (persistent-NSE), Kling–
Gupta efficiency (KGE; Gupta et al., 2009), Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), Peak
Flow Error (PFE), and Time to Peak Error (TPE; Evin et al.,
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Figure 4. The structure of N-HiTS model programmed in this study. The architecture includes several Stacks, each Stack includes several
Block, where each block consists of a MaxPool layer and a multi-layer which learns to produce coefficients for the backcast and forecast
outputs of its basis.

2024; Lobligeois et al., 2014). These metrics collectively fa-
cilitate a rigorous assessment of the model’s performance in
reproducing the magnitude of observed peak flows and the
shape of the hydrograph.

NSE measures the model’s ability to explain the variance
in observed data and assesses the goodness-of-fit by compar-
ing the observed and simulated hydrographs. In hydrological
studies, the NSE index is a widely accepted measure for eval-
uating the fitting quality of models (McCuen et al., 2006). It
is calculated as:

NSE= 1−

∑n
i=1
(
Qsi −Qoi

)2∑n
i=1
(
Qoi −Qo

)2 (22)

Where Qoi represents observed value at time i, Qsi repre-
sents simulated value at time i,Qo is the mean observed val-
ues and n is the number of data points. An NSE value of 1
indicates a perfect match between the observed and modeled
data, while lower values represent the degree of departure
from a perfect fit.

As the models are designed to predict one hour ahead in
one of the prediction horizons, the persistent-NSE is essen-
tial for evaluating their performance. The standard NSE mea-
sures the model’s sum of squared errors relative to the sum of
squared errors when the mean observation is used as the fore-

cast value. In contrast, persistent-NSE uses the most recent
observed data as the forecast value for comparison (Nevo et
al., 2022). The persistent-NSE is calculated as:

persistent-NSE= 1−

∑n
i=1
(
Qsi −Qoi

)2∑n
i=1
(
Qoi −Qoi−1

)2 (23)

Where Qoi represents the observed value at time i, Qsi rep-
resents the simulated value at time i, Qoi−1 is the observed
value at the last time step (i− 1) and n is the number of data
points.

The KGE is a widely used performance metric in hydro-
logical modeling and combines multiple aspects of model
performance, including correlation, variability bias, and
mean bias. The KGE metric is calculated using the follow-
ing equation:

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2 (24)

Where r represents Pearson correlation coefficient between
observed Qo and simulated Qs values. α represents bias ra-
tio, calculated as α = µs

µo
where µs and µo are the means of

simulated and observed data, respectively. β represents vari-
ability ratio, calculated as β = σs/µs

σo/µo
where σs and σo are the

standard deviations of simulated and observed data, respec-
tively.
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RMSE quantifies the average magnitude of errors between
observed and modeled values, offering insights into the ab-
solute goodness-of-fit, while MAE is a measure of the aver-
age absolute difference between the modeled values and the
observed values and provides a measure of the average mag-
nitude of errors. RMSE is calculated as:

RMSE=

√√√√1
n

n∑
i=1
(Qoi −Qsi )

2 (25)

and MAE is calculated as:

MAE=
1
n

n∑
i=1

∣∣Qoi −Qsi

∣∣ (26)

Where Qoi represents observed value at time i, Qsi repre-
sents simulated value at time i, and n is the number of data
points. RMSE and MAE provide information about the mag-
nitude of modeling errors, with smaller values indicating a
better model fit.

PFE quantifies the magnitude disparity between observed
and modeled peak flow values. The PFE metric is defined as:

PFE=

∣∣Qomax − Qsmax

∣∣
Qomax

(27)

Where Qomax represents the observed peak flow value, and
Qsmax signifies the simulated peak flow value. The PFE met-
ric, expressed as a dimensionless value, provides a quanti-
tative measure of the relative error in predicting peak flow
magnitudes concerning the observed values. A smaller PFE
denotes more accurate modeling of peak flow magnitudes,
with a value of zero indicating a perfect match.

TPE assesses the temporal alignment of peak flows in the
observed and modeled hydrographs. The TPE metric is com-
puted as:

TPE=
∣∣Tomax − Tsmax

∣∣ (28)

Where Tomax signifies the time at which the peak flow occurs
in the observed hydrograph, and Tsmax represents the time at
which the peak flow occurs in the simulated hydrograph. TPE
that is measured in units of time (hours), provides insight into
the precision of peak flow timing. Smaller TPE values indi-
cate a superior alignment between the observed and modeled
peak flow timing, while larger TPE values indicate discrep-
ancies in the temporal occurrence of peak flows.

The utilization of these five metrics, PFE, persistent-NSE,
TPE, NSE, and RMSE, collectively provides a robust and
multifaceted assessment of flood prediction performance.
This approach ensures that both the magnitude and timing
of peak flows, as well as the overall hydrograph shape, are
accurately calibrated and validated.

2.4 Sensitivity and Uncertainty Analysis

When implementing NN models, it’s crucial to understand
how each input feature affects the model’s performance or

outputs. To achieve this, we systematically excluded each in-
put feature from the model one by one (the Leave-One-Out
method). For each exclusion, we retrained the model with-
out that specific input feature and then tested its performance
against a test dataset. This method helps in understanding
which input features are most critical to the model’s perfor-
mance and which ones have a lesser impact. It also allows us
to identify any input features that may be redundant or have
little effect on the overall outcome, thus potentially simplify-
ing the model without sacrificing accuracy.

In this study, we utilized probabilistic approaches to quan-
tify the uncertainty in flood prediction. This method is rooted
in statistical techniques employed for the estimation of un-
known probability distributions, with a foundation in ob-
served data. More specifically, we leveraged the Maximum
Likelihood Estimation (MLE) approach, which entails the
determination of MQL objective values that optimize the
likelihood function. The likelihood function quantifies the
probability of MQL objective taking values, given the ob-
served realizations.

We incorporated the MQL as a probabilistic error metric
into algorithmic architecture. MQL performs an evaluation
by computing the average loss for a predefined set of quan-
tiles. This computation is grounded in the absolute dispari-
ties between predicted quantiles and their corresponding ob-
served values. By considering multiple quantile levels, MQL
provides a comprehensive assessment of the model’s ability
to capture the distribution of the target variable, rather than
focusing solely on point estimates.

The MQL metric also aligns closely with the Continuous
Ranked Probability Score (CRPS), a standard tool for evalu-
ating predictive distributions. CRPS measures the difference
between the predicted cumulative distribution function and
the observed values by integrating over all possible quantiles.
The computation of CRPS involves a numerical integration
technique that discretizes quantiles and applies a left Rie-
mann approximation for CRPS integral computation. This
process culminates in the averaging of these computations
over uniformly spaced quantiles, providing a robust evalua-
tion of the predictive distribution F̂t .

MQL
(
Qτ ,

[
Q̂q1
τ , . . ., Q̂

qi
τ

])
=

1
n

∑
qi

QL (Qτ , Q̂
qi
τ ) (29)

CRPS
(
Qτ , F̂τ

)
=

1∫
0

QL
(
Qτ , Q̂

qi
τ

)
dq (30)

QL
(
Qτ , Q̂

q
τ

)
=

1
H

t+H∑
τ=t+1

((1− q)
(
Q̂q
τ − Qτ

)
+ q(Qτ − Q̂

q
τ )) (31)

WhereQτ represents observed value at time τ , Q̂q
τ represents

simulated value at time τ , q is the slope of the quantile loss,
and H is the horizon of forecasting (Fig. 5).
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Figure 5. The MQL function which shows loss values for different
values of q when the true value is Qτ .

Implementation-wise, letD = {(Xtyt+h)}Nt=1 denote train-
ing pairs, where Xt is the past 24 h discharge context and
yt+h the discharge h hours ahead. For a fixed horizon h and
quantile levels τk}Kk=1, each model fθ outputs the vector of
conditional quantiles:

Q̂t+h = fθ (Xt )= (Q̂
τ1
t+h, . . ., Q̂t+hτK) ∈ R

K (32)

Parameters θ are learned by minimizing the multi-quantile
(pinball) loss:

L(θ)=
1

NK

N∑
t=1

K∑
k=1

ρτk

(
yt+h− Q̂

τk
t+h

)
,

ρτ (u)=max(τu(τ − 1)u)= (τ − 1{u<0})u (33)

Because ρτ is convex and piecewise linear, its (sub)gradient
with respect to Q̂τ

t+h is:

∂ρτ (y− Q̂
τ )

∂Q̂τ
=

{
−(1− τ) , y− Q̂τ < 0,
−τ, y− Q̂τ > 0,

(34)

enabling backpropagation (Adam) without any sampling.
Thus, each quantile Q̂τ

t+h is a direct network output learned
to satisfy the quantile condition under ρτ . Uncertainty inter-
vals are formed from these quantile predictions; for a 95 %
band we use [Q̂0.025

t+h Q̂
0.975
t+h ]. The resulting bands quantify the

uncertainty conditional on Xt .
Incorporating MQL as a central metric in our study under-

scores its suitability for probabilistic forecasting, particularly
in the context of uncertainty quantification. Unlike traditional
error metrics that focus on point predictions, MQL captures
both central tendencies and variability by penalizing errors
symmetrically across quantiles. This property ensures bal-
anced and reliable assessments of the predictive distribution,
ultimately enhancing the robustness and interpretability of
flood prediction models.

Furthermore, we employed two key indices, the R-Factor
and the P -Factor, to rigorously assess the quality of uncer-
tainty performance in our hydrological modeling. These met-
rics are instrumental in quantifying the extent to which the

model’s predictions encompass the observed data, thereby
providing valuable insights into the model’s predictive ac-
curacy and reliability.

The P -Factor, or percentage of data within 95 PPU, is the
first index used in this assessment. The P -Factor quantifies
the percentage of observed data that falls within the 95 PPU,
providing a measure of the model’s predictive accuracy. The
P -Factor can theoretically vary from 0 % to a maximum of
100 %. A P -Factor of 100 % signifies a perfect alignment be-
tween the model’s predictions and the observed data within
the uncertainty band. In contrast, a lower P -Factor indicates
a reduced ability of the model to predict data within the spec-
ified uncertainty range.

P -Factor=
Observations braketed by 95 PPU

Number of observations
× 100 (35)

TheR-Factor can be computed by dividing the average width
of the uncertainty band by the standard deviation of the mea-
sured variable. TheR-Factor, with a minimum possible value
of zero, provides a measure of the spread of uncertainty rela-
tive to the variability of the observed data. Theoretically, the
R-Factor spans from 0 to infinity, and a value of zero implies
that the model’s predictions precisely match the measured
data, with the uncertainty band being very narrow in relation
to the variability of the observed data.

R-Factor=
Average width of 95 PPU band

Standard deviation of measured variables
× 100 (36)

In practice, the quality of the model is assessed by consider-
ing the 95 % prediction band with the highest P -Factor and
the lowest R-Factor. This specific band encompasses most
observed records, signifying the model’s ability to provide
accurate and reliable predictions while effectively quantify-
ing uncertainty. A simulation with a P -Factor of 1 and an
R-Factor of 0 signifies an ideal scenario where the model
precisely matches the measured data within the uncertainty
band (Abbaspour et al., 2007).

Figure 6 shows the workflow of programming N-BEATS,
N-HiTS, and LSTM for flood prediction. As illustrated, the
initial step involved cleaning and preparing the input data,
which was then used to feed the models. The workflow
for each model and their output generation processes are
depicted in Fig. 6. We segmented the storm events using
the MIT approach, as previously described. Following this,
we conducted a sensitivity analysis using the Leave-One-
Out method and performed uncertainty analysis using the
MLE approach to construct the 95 PPU band. This rigorous
methodology ensures a robust evaluation of model perfor-
mance under varying conditions and highlights the models’
predictive reliability and resilience. We employed the “Neu-
ralForecast” Python package to develop the N-BEATS, N-
HiTS, and LSTM models. This package provides a diverse
array of NN models with an emphasis on usability and ro-
bustness.
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Figure 6. The workflow of N-BEATS, N-HiTS, and LSTM implementation. The upper section of the figure illustrates multiple steps from
data preprocessing to model evaluation. The lower section provides a detailed view of the workflow and implementation for each model,
highlighting the specific processes and methodologies employed in generating the outputs. Backpropagation Through Time (BPTT) trains
LSTM by unrolling the model through time, computing gradients for each time step, and updating weights based on temporal dependencies.

3 Results and Discussion

3.1 Independent Storms Delineation

MIT’s contextual delineation of storm events laid the ground-
work for in-depth evaluation of rainfall events, enabling iso-
lation and separation of rainfall events that led to significant
flooding events. The nuanced outcomes of the MIT assess-
ment contributed significantly to the understanding of rain-
fall variability and distribution as the dominant contributor
to flood generation.

During modeling implementation, the initial imperative
was the precise distinction of storm events within the pre-
cipitation time series data of each case study. Our findings
demonstrate that on average a dry period of 7 h serves as
the optimal MIT time for both of our case studies. This out-
come signifies that when a dry interval of more than 7 h
transpires between two successive rainfall events, these sub-
sequent rainfalls should be considered two distinct storm
events. This determination underlines the temporal threshold
necessary for distinguishing between individual meteorolog-
ical phenomena in two case studies.

3.2 Hyperparameter Optimization

In the context of hyperparameter optimization, we system-
atically considered and tuned various hyperparameters for
the N-HiTS, N-BEATS, and LSTM. We searched for learn-
ing rates on a log-uniform grid between 1× 10−4 and 1×
10−3, batch sizes {16,32,64}, input size {1,6,12,24} h. For
the LSTM, recurrent layers {1,2,3}, hidden units per layer
{64,128,256}, activation {tanh,ReLU}, decoder MLP depth
{1,2,3}, and decoder MLP width {64,128,256} were var-
ied during the simulation run. For N-HiTS, stacks {2,3,4},
blocks per stack {2,3,4,5}, block MLP width {64,128,256},
and block MLP depth {2,3,4}were explored. For N-BEATS,
we searched stacks {2,3,4}, blocks per stack {2,3,4,5},
block MLP width {64,128,256}, and block MLP depth
{2,3,4}; the interpretable (trend/seasonality) basis was kept
fixed. Following extensive exploration and fine-tuning of
these hyperparameters, the optimal configurations were iden-
tified (see Table 2). For the N-HiTS model, the most fa-
vorable outcomes were achieved with the following hyper-
parameter settings: 2000 epochs, “identity” for scaler type,
a learning rate of 0.001, a batch size of 32, input size of

Hydrol. Earth Syst. Sci., 30, 371–399, 2026 https://doi.org/10.5194/hess-30-371-2026



M. Saberian et al.: Probabilistic neural network configurations for flood prediction 383

24 h, “identity” for stack type, 512 units for hidden layers
of each stack, step size of 1, MQLoss as loss function, and
“ReLU” for the activation function. As shown in Table 2,
the N-HiTS model demonstrated superior performance with
4 stacks, containing 2 blocks each, and corresponding coef-
ficients of 48, 24, 12, and 1, showcasing the significance of
these settings for flood prediction.

This hyperparameter optimization was also conducted for
the N-BEATS model. In this model, we considered 2000
epochs, 3 stacks with 2 blocks, “identity” for scaler type, a
learning rate of 0.001, a batch size of 32, input size of 24 h,
“identity” for stack type, 512 units for hidden layers of each
stack, step size of 1, MQLoss as loss function, and “ReLU”
for the activation function.

Moreover, the LSTM as a benchmark model yielded its
best results with 5000 epochs, an input size of 24 h, “identity”
as the scaler type, a learning rate of 0.001, a batch size of 32,
and “tanh” as the activation function. Furthermore, LSTM’s
hidden state was most effective with two layers containing
128 units, and the MLP decoder thrived with two layers en-
compassing 128 units. These meticulously optimized hyper-
parameter settings represent the culmination of efforts to en-
sure that each model operates at its peak potential, facilitating
accurate flood prediction.

In Table 2, “epoch” refers to the number of training steps,
and “scaler type” indicates the type of scaler used for nor-
malizing temporal inputs. The “learning rate” specifies the
step size at each iteration while optimizing the model, and
the “batch size” represents the number of samples processed
in one forward and backward pass. The “loss function” quan-
tifies the difference between the predicted outputs and the ac-
tual target values, while the “activation function” determines
whether a neuron should be activated. The “stacks’ coeffi-
cients” in the N-HITS model control the frequency special-
ization for each stack, enabling effective handling of different
frequency components in the time series data.

Another hyperparameter for all three models is input size,
which is a variable that determines the maximum sequence
length for truncated backpropagation during training and the
number of autoregressive inputs (lags) that the models con-
sidered for prediction. Essentially, input size represents the
length of the historical series data used as input to the model.
This variable offers flexibility in the models, allowing them
to learn from a defined window of past observations, which
can range from the entire historical dataset to a subset, tai-
lored to the specific requirements of the prediction task. In
the context of flood prediction, determining the appropriate
input size is crucial to adequately capture the meteorological
data preceding the flood event. To address this, we calculated
the time of concentration (TC) of the watershed system and
set the input size to exceed this duration. According to the
Natural Resources Conservation Service (NRCS, 2010), for
typical natural watershed conditions, the TC can be calcu-
lated from lag time, the time between peak rainfall and peak
discharge, using the formula: Lag time= TC × 0.6 (NRCS,

2010). Specifically, the average TC in the Lower Dog River
watershed and Upper Dutchmans Creek watershed was found
to be 19 and 22 h, respectively. As these represent the aver-
age TC for our case studies, we selected the 24 h for input
data, slightly longer than the average TC, ensuring sufficient
coverage of relevant meteorological data preceding all flood
events.

3.3 Flood Prediction and Performance Assessment

In this study, we conducted a comprehensive performance
evaluation of N-HiTS, N-BEATS, and benchmarked these
models with LSTM, utilizing two case studies: the Lower
Dog River and the Upper Dutchmans Creek watersheds.
Within these case studies, we trained and validated the mod-
els separately for each watershed across a diverse set of storm
events from 1 October 2007 to 1 October 2022 (15 years) in
the Lower Dog River and from 21 December 1994 to 1 Octo-
ber 2022 (27 years) in the Upper Dutchmans Creek. The de-
cision to train separate models for each catchment was made
to account for the unique hydrological characteristics and lo-
cal features specific to each watershed. By training models
individually, we aimed to optimize performance by tailor-
ing each model to the distinct rainfall-runoff relationship in-
herent in each catchment. All algorithms were tested using
unseen flooding events that occurred between 14 December
2022 and 28 March 2023. Our targets were event-focused,
where operational value focuses on performance during ris-
ing limbs, peaks, and recessions. Evaluating over the entire
continuous hydrograph (testing period) can dilute or even
mask differences. For this reason, we prioritized an event-
centric assessment as the primary evaluation approach rather
than full-period metrics. In the Dog River gauging station,
two winter storms, i.e., 3 to 5 January 2023 (Event 1) and
17 to 18 February 2023 (Event 2), as well as a spring flood
event that occurred during 26 to 28 March 2023 (Event 3)
were selected for testing. Additionally, three winter flooding
events, i.e., 14 to 16 December 2022 (Event 4), 25 and 26
January 2023 (Event 5), and 11 to 13 February 2023 (Event
6), were chosen to test the algorithms across the Killian
Creek gauging station in the Upper Dutchmans Creek. The
rainfall events corresponding to these flooding events were
delineated using the MIT technique discussed in Sect. 3.1.

Our results for the Lower Dog River case study explic-
itly demonstrated the accuracy of both N-HiTS and N-
BEATS in generating the winter and spring flood hydro-
graphs compared to the LSTM model across all selected
storm events. Although, N-HiTS prediction slightly outper-
formed N-BEATS during winter prediction (3 to 5 January
2023). In this event, N-HiTS outperformed N-BEATS with
a difference of 11.6 % in MAE and 20 % in RMSE. The
N-HiTS slight outperformance (see Tables 3 and 4) is at-
tributed to its unique structure that allows the model to dis-
cern and capture intricate patterns within the data. Specif-
ically, N-HiTS predicted flooding events hierarchically us-
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Table 2. Optimized values for the hyperparameters.

Hyperparameter N-HiTS N-BEATS LSTM

Epoch 2000 2000 5000

Scaler type identity identity standard

Learning rate 0.001 0.001 0.001

Batch size 32 32 32

Input size 24 h 24 h 24 h

Stack type Seasonality, trend,
identity, identity

Seasonality, trend,
identity

∗

Number of units in each hidden layer 512 512 128

Loss function MQLoss MQLoss MQLoss

Activation function ReLU ReLU tanh

Number of stacks 4 3 ∗

Number of blocks in each stack 2 2 ∗

Stacks’ coefficients 48,24,12,1 ∗ ∗

∗ Not applicable.

ing blocks specialized in different rainfall frequencies based
on controlled signal projections, through expressiveness ra-
tios, and interpolation of each block. The coefficients are then
used to synthesize backcast through ỹt −L : t l and forecast
(ỹt+1 : t+Hl) outputs of the block as a flood value. The coef-
ficients were locally determined along the horizon, allowing
N-HiTS to reconstruct nonstationary signals over time.

While the N-HiTS emerged as the most accurate in pre-
dicting flood hydrograph among the three models, its per-
formance was somehow comparable with N-BEATS. The N-
BEATS model exhibited good performance in two case stud-
ies. It consistently provided competitive results, demonstrat-
ing its capacity to effectively handle diverse storm events and
deliver reliable predictions. N-BEATS has a generic and in-
terpretable architecture depending on the blocks it uses. In-
terpretable configuration sequentially projects the signal into
polynomials and harmonic basis to learn trend and season-
ality components while generic configuration substitutes the
polynomial and harmonic basis for identity basis and larger
network’s depth. In this study, we used interpretable architec-
ture, as it regularizes its predictions through projections into
harmonic and trend basis that is well-suited for flood pre-
diction tasks. Using interpretable architecture, flood predic-
tion was aggregated in a hierarchical fashion. This enabled
the building of a very deep neural network with interpretable
flood prediction outputs.

It is essential to underscore that, despite its strong per-
formance, the N-BEATS model did not surpass the N-HiTS
model in terms of NSE, Persistent-NSE, MAE, and RMSE
for the Lower Dog River case study. Although both models

showed almost the same KGE values. Notably, the N-BEATS
model showcased superior results based on the PFE metric,
signifying its exceptional capability in accurately predicting
flood peaks. However, both N-HiTS and N-BEATS models
overestimated the flood peak rate of Event 2 for the Lower
Dog River watershed. This event, which occurred from 17 to
18 February 2023, was flashy, short, and intense proceeded
by a prior small rainfall event (from 12 until 13 February)
that minimized the rate of infiltration. This flash flood event
caused by excessive rainfall in a short period of time (<8 h)
was challenging to predict for N-BEATS and N-HiTS mod-
els. In addition, predicting the magnitude of changes in the
recession curve of the third event seems to be a challenge
for both models. The specific part of the flood hydrograph
after the precipitation event, where flood diminishes during
a rainless is dominated by the release of runoff from shal-
low aquifer systems or natural storages. It seems both mod-
els showed a slight deficiency in capturing this portion of the
hydrograph when the rainfall amount decreases over time in
the Dog River gauging station.

Conversely, in the Killian Creek gauging station, the N-
BEATS model almost emerged as the top performer in pre-
dicting the flood hydrograph based on NSE, Persistent-NSE,
RMSE, and PFE performance metrics (see Tables 3 and 4).
KGE values remained almost the same for both models. In
addition, both N-BEATS and N-HiTS slightly overpredicted
time to peak values for Event 5. This reflects the fact that
when rainfall varies randomly around zero, it provides less
to no information for the algorithms to learn the fluctuations
and patterns in time series data. Both N-HiTS and N-BEATS
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Table 3. The performance metrics for the Lower Dog River flood predictions with 1 h prediction horizon.

Model Performance Metric Event 1 Event 2 Event 3

N-HiTS NSE 0.995 0.991 0.992
Persistent-NSE 0.947 0.931 0.948
KGE 0.977 0.989 0.976
RMSE 123.2 27.6 68.5
MAE 64.1 12.0 37.8
PFE 0.018 0.051 0.015
TPE (hours) 0 1 0
P -Factor 96.9 % 100 % 93.5 %
R-Factor 0.27 0.40 0.33

N-BEATS NSE 0.991 0.989 0.993
Persistent-NSE 0.917 0.916 0.956
KGE 0.984 0.984 0.98
RMSE 154.1 30.5 62.5
MAE 72.6 13.6 35.9
PFE 0.0005 0.031 0.0002
TPE (hours) 0 1 0
P -Factor 87.8 % 100 % 90.3 %
R-Factor 0.17 0.23 0.24

LSTM NSE 0.756 0.983 0.988
Persistent-NSE −1.44 0.871 0.929
KGE 0.765 0.978 0.971
RMSE 841.1 37.9 79.5
MAE 369.4 18.6 42
PFE 0.258 0.036 0.016
TPE (hours) 1 0 0
P -Factor 81.8 % 93.1 % 96.7 %
R-Factor 0.37 0.51 0.6

provided comparable results for all events predicted in this
study. N-HiTS builds upon N-BEATS by adding a MaxPool
layer at each block. Each block consists of an MLP layer that
learns how to produce coefficients for the backcast and fore-
cast outputs. This subsamples the time series and allows each
stack to focus on either short-term or long-term effects, de-
pending on the pooling kernel size. Then, the partial predic-
tions of each stack are combined using hierarchical interpo-
lation. This ability enhances N-HiTS capabilities to produce
drastically improved, interpretable, and computationally ef-
ficient long-horizon flood predictions.

In contrast, the performance of LSTM as a benchmark
model lagged behind both N-HiTS and N-BEATS models for
all events across two case studies. Despite its extensive ap-
plications in various hydrology domains, the LSTM model
exhibited comparatively lower accuracy when tasked with
predicting flood responses during different storm events. Fo-
cusing on NSE, Persistent-NSE. KGE, MAE, RMSE, and
PFE metrics, it is noteworthy that all three models, across
both case studies, consistently succeeded in capturing peak
flow rates at the appropriate timing. All models demonstrated
commendable results with respect to the TPE metric. In most
scenarios, TPE revealed a value of 0, signifying that the mod-

els accurately pinpointed the peak flow rate precisely at the
expected time. In some instances, TPE reached a value of
1, showing a deviation of one hour in predicting the peak
flow time. This deviation is deemed acceptable, particularly
considering the utilization of short, intense rainfall for our
analysis.

Our investigation into the performance of the three dis-
tinct forecasting models yielded compelling results pertain-
ing to their ability to generate 95 PPU, as quantified by the P -
Factor andR-Factor. These factors serve as critical indicators
for assessing the reliability and precision of the uncertainty
bands produced by the MLE. Our findings demonstrated that
the N-HiTS and N-BEATS models outperformed the LSTM
model in mathematically defining uncertainty bands, in terms
of R-Factor metric. The R-Factor, a crucial metric for evalu-
ating the average width of the uncertainty band, consistently
favored the N-HiTS and N-BEATS models over their coun-
terparts. This finding was consistent across a diverse range
of storm events. In addition, coupling MLE with the N-HiTS
and N-BEATS models demonstrated superior performance in
generating 95 PPU when assessed through the P -Factor met-
ric. The P -Factor represents another vital aspect of uncer-
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Table 4. The performance metrics for the Killian Creek flood predictions with 1 h prediction horizon.

Model Performance Metric Event 4 Event 5 Event 6

N-HiTS NSE 0.991 0.971 0.991
Persistent-NSE 0.885 0.806 0.844
KGE 0.982 0.967 0.991
RMSE 28.8 46.0 19.0
MAE 17.9 23.8 11.5
PFE 0.017 0.008 0.020
TPE (hours) 0 0 0
P -Factor 92.6 % 90.9 % 100 %
R-Factor 0.39 0.48 0.45

N-BEATS NSE 0.992 0.973 0.989
Persistent-NSE 0.908 0.821 0.823
KGE 0.972 0.951 0.973
RMSE 25.7 44.2 20.2
MAE 18.3 25.9 14.0
PFE 0.006 0.008 0.019
TPE (hours) 0 0 0
P -Factor 96.3 % 86.3 % 96.9 %
R-Factor 0.43 0.53 0.43

LSTM NSE 0.952 0.892 0.935
Persistent-NSE 0.4 0.27 0.087
KGE 0.92 0.899 0.901
RMSE 65.7 89.2 50.3
MAE 41.1 45 35.9
PFE 0.031 0.058 0.098
TPE (hours) 1 0 0
P -Factor 70.4 % 72.73 % 81.82 %
R-Factor 0.66 0.7 0.65

tainty quantification, focusing on the precision of the uncer-
tainty bands.

Figures 7 and 8 present graphical depictions of the pre-
dicted flood with 1 h prediction horizon and uncertainty as-
sessment for each model as well as Flow Duration Curve
(FDC) across two gauging stations. As illustrated, the un-
certainty bands skillfully bracketed most of the observational
data, reflecting the fact that MLE was successful in reducing
errors in flood prediction. FDC analysis also revealed that
N-HiTS and N-BEATS models skillfully predicted the flood
hydrograph, however, both models were particularly success-
ful in predicting moderate to high flood events (1800–6000
and >6000 cfs). In the FDC plots, the x-axis denotes the ex-
ceedance probability, expressed as a percentage, while the
y-axis signifies flood in cubic feet per second. Notably, these
plots reveal distinctive patterns in the performance of the N-
HiTS, N-BEATS, and LSTM models.

Within the lower exceedance probability range, partic-
ularly around the peak flow, the N-HiTS and N-BEATS
models demonstrated a clear superiority over the LSTM
model, closely aligning with the observed data. This ob-
served trend is consistent when examining the corresponding
hydrographs. Across all events, the flood hydrographs gen-

erated by N-HiTS and N-BEATS exhibited a closer resem-
blance to the observed data, particularly in the vicinity of
the peak timing and rate, compared to the hydrographs pro-
duced by the LSTM model. These findings underscore the
enhanced predictive accuracy and reliability of the N-HiTS
and N-BEATS models, particularly in predicting moderate
to high flood events as well as critical hydrograph features
such as peak flow rate and timing. The alignment of model-
generated FDCs and hydrographs with observed data in the
proximity of peak flow further establishes the efficiency of
N-HiTS and N-BEATS in accurately reproducing the dynam-
ics of flood generation mechanisms across two headwater
streams.

To evaluate robustness across lead times, we extended
the analysis to 3 and 6 h prediction horizons. The results
are presented in Figs. 9–12, and Tables 5 and 6. As ex-
pected, NSE and KGE decreased while the absolute errors
increased with horizon for all models; however, N-HiTS and
N-BEATS continued to outperform LSTM across both sta-
tions and events. At Killian Creek station, both N-HiTS and
N-BEATS preserved their lead, yielding higher NSE and
lower MAE/RMSE than LSTM, while at the Lower Dog
River, N-BEATS remained slightly superior on the same met-
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Figure 7. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 1 h prediction horizon for the three selected flooding
events in the Lower Dog River gauging station.

rics. KGE values stayed comparable between the two feed-
forward models, and peak-focused metrics (PFE and TPE)
indicated that both still captured peak magnitude and tim-
ing reliably, compared to LSTM. Uncertainty bands widened
with horizon as expected, but the likelihood-based 95 PPU
for N-HiTS and N-BEATS maintained tighter R-Factors and
competitive P -Factors relative to LSTM, especially around
moderate-to-high flows. Flow-duration diagnostics at multi-

hour leads reinforced these findings, showing closer align-
ment of N-HiTS and N-BEATS to observations in the up-
per tail. Overall, the multi-horizon results corroborate the 1 h
horizon results: N-HiTS and N-BEATS deliver more accu-
rate and reliable flood forecasts than LSTM, and their rela-
tive strengths persist at 3 and 6 h ahead. For completeness,
we also evaluated 12 and 24 h lead times. During these hori-
zons, all models’ performances declined sharply (NSE<0.4
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Figure 8. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 1 h prediction horizon for the three selected flooding
events in the Killian Creek gauging station.

across sites and events), so we restrict detailed reporting to
1–6 h where performance remains operationally meaningful.

To probe cross-catchment generalizability, we trained a
single “regional” model by pooling Lower Dog River and
Killian Creek, preserving per-site temporal splits and fit-
ting a global scaler only on the pooled training portion to
avoid leakage; evaluation remained strictly per site. Rela-
tive to per-site training, pooled fitting produced a small accu-

racy drop for N-HiTS and N-BEATS (∼ 2 % to 3 %). LSTM
showed mixed performance to pooling, it improved in some
storm events but degraded in others, so that, when aver-
aged across both stations and storm events, LSTM’s regional
performance was effectively unchanged relative to the per-
site training. Despite that, the regional N-HiTS/N-BEATS
matched the accuracy of the best per-site models within the
variability observed across storm events and, importantly,
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Figure 9. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 3 h prediction horizon for the three selected flooding
events in the Lower Dog River gauging station.

consistently surpassed LSTM at both basins. Mechanisti-
cally, N-HiTS’s multi-rate pooling and hierarchical interpo-
lation, and N-BEATS’s trend/seasonality basis projection, act
as catchment-invariant feature extractors that support param-
eter sharing across stations.

In our investigation, we conducted an analysis to assess
the impact of varying input sizes on the performance of the
N-HiTS, as the best model. We implemented four different

durations as input sizes to observe the corresponding dif-
ferences in modeling performance. Notably, one of the key
metrics affected by changes in input size was 95 PPU, which
exhibited a general decrease with increasing input size. As
detailed in Table 7, we observed a discernible trend in the R-
Factor of the N-HiTS model as the input size was increased.
Specifically, there was a decline in the R-Factor as the input
size expanded. This trend underscores the influence of input
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Figure 10. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 6 h prediction horizon for the three selected flooding
events in the Lower Dog River gauging station.

size on model performance, particularly in terms of 95 PPU
band and accuracy.

Overall, uncertainty analysis revealed that coupling MLE
with N-HiTS and N-BEATS models demonstrated superior
performance in generating 95 PPU, effectively reducing er-
rors in flood prediction. The MLE approach was more suc-
cessful in reducing 95 PPU bands of N-HiTS and N-BEATS
models compared to the LSTM, as indicated by the R-Factor

and P -Factor. The N-BEATS model demonstrated a nar-
rower uncertainty band (lower R-Factor value), while the
N-HiTS model provided higher precision. Furthermore, in-
corporating data with various sizes into the N-HiTS model
led to a narrower 95 PPU and an improvement in the R-
Factor, highlighting the significance of input size in enhanc-
ing model accuracy and reducing uncertainty.
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Figure 11. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 3 h prediction horizon for the three selected flooding
events in the Killian Creek gauging station.

3.4 Sensitivity Analysis

In this study, we conducted a comprehensive sensitivity anal-
ysis of the N-HiTS, N-BEATS, and LSTM models to evalu-
ate their responsiveness to meteorological variables, specifi-
cally precipitation, humidity, and temperature. The goal was
to assess how the omission of input features impacts the over-

all modeling performance compared to their full-variable
counterparts.

To execute this analysis, we systematically trained each
model by excluding meteorological variables one or more at
a time, subsequently evaluating their predictive performance
using the entire testing dataset. The results of our analysis
indicated that N-HiTS and N-BEATS models exhibited min-
imal sensitivity to meteorological variables, as evidenced by
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Figure 12. 95 PPU band and FDC plots of N-HiTS, N-BEATS, and LSTM models with 6 h prediction horizon for the three selected flooding
events in the Killian Creek gauging station.

the negligible impact on their performance metric (i.e., NSE,
Persistent-NSE, KGE, RMSE, and MAE) upon input feature
exclusion.

Notably, as shown in Table 8, the performance of the N-
HiTS model displayed a marginal deviation under variable
omission, while the N-BEATS model exhibited consistent
performance irrespective of the inclusion or exclusion of
meteorological variables. The structure of this algorithm is

based on backward and forward residual links for univari-
ate time series point forecasting which does not take into
account other input features in the prediction task. These
findings suggest that the predictive capabilities of N-HiTS
and N-BEATS models predominantly rely on historical flood
data. Both models demonstrated strong performance even
without incorporating precipitation, temperature, or humid-
ity data, underscoring their ability in flood prediction in the
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Table 5. The performance metrics of the models with 3 h prediction horizon.

Model Performance Metric Event 1 Event 2 Event 3 Event 4 Event 5 Event 6

N-HiTS NSE 0.91 0.86 0.58 0.83 0.81 0.89
KGE 0.92 0.92 0.74 0.85 0.85 0.88
RMSE 506 107 485 122 119 65
MAE 293 58 209 71 65 42
PFE 0.03 0.02 0.08 0.1 0.07 0.05
TPE (hours) 0 0 0 0 0 0
P -Factor 97 % 100 % 93.5 % 85 % 72 % 88 %
R-Factor 0.8 1.3 0.75 0.99 0.92 1.14

N-BEATS NSE 0.92 0.88 0.56 0.82 0.82 0.89
KGE 0.91 0.91 0.72 0.83 0.84 0.87
RMSE 481 101 498 124 115 63
MAE 241 48 207 67 58 33
PFE 0.04 0.02 0.12 0.006 0.02 0.002
TPE (hours) 1 0 2 0 0 0
P -Factor 90.9 % 93 % 90.3 % 92 % 68 % 94 %
R-Factor 0.7 1.2 0.74 0.78 1.1 0.87

LSTM NSE 0.7 0.77 0.42 0.82 0.51 0.55
KGE 0.765 0.87 0.65 0.79 0.64 0.69
RMSE 928 139 575 125 190 133
MAE 487 80 296 85 118 87
PFE 0.12 0.03 0.16 0.16 0.44 0.08
TPE (hours) 2 1 2 2 1 2
P -Factor 75.8 % 96 % 83.9 % 100 % 90 % 94 %
R-Factor 1.15 1.88 1.66 2.8 3.7 2.4

absence of specific meteorological inputs. This capability un-
derscores the robustness of the N-HiTS and N-BEATS mod-
els, positioning them as viable tools and perhaps appropriate
for real-time flood forecasting tasks where direct meteoro-
logical data may be limited or unavailable.

3.5 Computational Efficiency

The computational efficiency of the N-HiTS, N-BEATS, and
LSTM models, as well as a comparative analysis, is pre-
sented in Table 9. The study encompassed the entire pro-
cess of training and predicting over the testing period, em-
ploying the optimized hyperparameters as previously de-
scribed. Regarding the training time, it is noteworthy that
the LSTM model exhibited the quickest performance. Specif-
ically, LSTM demonstrated a training time that was 71 %
faster than N-HiTS and 93 % faster than N-BEATS in the
Lower Dog River watershed, while it was respectively,126 %
and 118 % faster than N-HiTS and N-BEATS in the Up-
per Dutchmans Creek, over training dataset. This is because
LSTM has simple architecture compared to the N-BEATS
and N-HiTS and does not require multivariate features, hi-
erarchical interpolation, and multi-rate data sampling. Per-
haps, this outcome underscores the computational advantage
of LSTM over other algorithms.

Conversely, during the testing period, the N-HiTS model
emerged as the fastest and delivered the most efficient re-
sults in comparison to the other models. Notably, N-HiTS
displayed a predicted time that was 33 % faster than LSTM
and 32 % faster than N-BEATS. This finding highlights the
computational efficiency of the N-HiTS model in the con-
text of predicting processes. Our experiments unveiled an in-
teresting contrast in the computational performance of these
models. While LSTM excelled in terms of training time, it
lagged behind when it came to the testing period.

In the grand scheme of computational efficiency, model
accuracy, and uncertainty analysis results, it becomes evident
that the superiority of the N-HiTS and N-BEATS models in
terms of accuracy and uncertainty analysis holds paramount
importance. This significance is accentuated by the critical
nature of flood prediction, where precision and certainty are
pivotal. Therefore, computational efficiency must be viewed
in the context of the broader objectives, with the accuracy and
reliability of flood predictions taking precedence in ensuring
the safety and preparedness of the affected regions.

4 Conclusions

This study examined multiple NN algorithms for flood pre-
diction. We selected two headwater streams with minimal
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Table 6. The performance metrics of the models with 6 h prediction horizon.

Model Performance Metric Event 1 Event 2 Event 3 Event 4 Event 5 Event 6

N-HiTS NSE 0.82 0.58 0.51 0.6 0.7 0.52
KGE 0.76 0.68 0.67 0.74 0.78 0.67
RMSE 708 189 525 188 147 137
MAE 423 90 257 110 90 77
PFE 0.35 0.29 0.12 0.03 0.2 0.1
TPE (hours) 2 3 0 0 3 3
P -Factor 70 % 96 % 87 % 92 % 82 % 87 %
R-Factor 0.71 1.1 1.1 1.8 1.15 1.2

N-BEATS NSE 0.94 0.85 0.59 0.33 0.82 0.59
KGE 0.83 0.82 0.73 0.55 0.79 0.67
RMSE 386 112 481 244 115 126
MAE 259 58 181 131 56 74
PFE 0.16 0.23 0.02 0.03 0.03 0.12
TPE (hours) 0 3 0 0 0 3
P -Factor 100 % 86 % 90.3 % 85 % 77 % 78 %
R-Factor 1.8 2.3 1.1 1.13 3.3 1.2

LSTM NSE −0.35 −0.39 −0.22 −0.17 −0.2 −0.2
KGE 0.3 0.05 0.18 0.34 0.33 0.4
RMSE 1984 348 834 324 300 220
MAE 1304 192 468 234 201 174
PFE 0.24 0.36 0.42 0. 6 0.44 0.42
TPE (hours) 3 4 3 0 2 2
P -Factor 36 % 79 % 90.3 % 85 % 86 % 63 %
R-Factor 1.8 1.9 2.16 1.6 3.7 1.6

Table 7. N-HiTS’s R-Factor results for three storm events in each
case study, using 1, 6, 12, and 24 h input size in training.

Input Size 1 h 6 h 12 h 24 h

Dog River, GA – Event 1 0.314 0.337 0.29 0.272
Dog River, GA – Event 2 0.35 0.413 0.403 0.402
Dog River, GA – Event 3 0.358 0.459 0.374 0.336
Killian Creek, NC – Event 4 0.491 0.422 0.426 0.388
Killian Creek, NC – Event 5 0.584 0.503 0.557 0.483
Killian Creek, NC – Event 6 0.482 0.42 0.446 0.454

human impacts to understand how NN approaches can cap-
ture flood magnitude and timing for these natural systems.
In conclusion, our study represents a pioneering effort in
exploring and advancing the application of NN algorithms,
specifically the N-HiTS and N-BEATS models, in the field
of flood prediction. In our case studies, both N-HiTS and N-
BEATS models achieved state-of-the-art results, outperform-
ing LSTM as a benchmark model, particularly in one-hour
prediction. While a one-hour lead time may seem brief, it is
highly significant for accurate flash flood prediction particu-
larly in an area with a proximity to metropolitan cities, where
rapid response is critical. These benchmarking results are ar-
guably a pivotal part of this research. However, the N-BEATS

model slightly emerged as a powerful and interpretable tool
for flood prediction in most selected events.

This study focused on short-lead, operational forecasting
at gauged sites, using historical discharge to deliver robust,
low-latency updates. While the evaluation is limited to two
Southeastern U.S. basins, the architecture (e.g., N-HiTS) is
flexible and can incorporate additional covariates and catch-
ment attributes. Extending the approach to ungauged or other
basins is feasible through multi-basin training and transfer
learning or few-shot adaptation when even brief warm-up
records are available. These extensions represent promising
directions for future work to assess geographic transferability
under the same operational assumptions.

In addition, the results of the experiments described
above demonstrated that N-HiTS multi-rate input sampling
and hierarchical interpolation along with N-BEATS inter-
pretable configuration are effective in learning location-
specific runoff generation behaviors. Both algorithms with
an MLP-based deep neural architecture with backward and
forward residual links can sequentially project the data sig-
nal into polynomials and harmonic basis needed to predict
intense storm behaviors with varied magnitudes. The inno-
vation in this study, besides benchmarking the LSTM model
for headwater streams, was to tackle volatility and memory
complexity challenges, by locally specializing flood sequen-
tial predictions into the data signal’s frequencies with inter-
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Table 8. Performance metrics’ values for N-HiTS, N-BEATS, and LSTM models by excluding meteorological variables one or more at a
time.

Model Excluded Variables NSE Persistent-NSE KGE RMSE MAE

N-HiTS Using all variables 0.996 0.92 0.988 22.66 4.19
Without Precipitation 0.993 0.91 0.97 23.28 4.31
Without Humidity 0.995 0.914 0.976 22.87 4.22
Without Temperature 0.995 0.921 0.985 22.43 4.14
Discharge only prediction 0.993 0.911 0.972 23.21 4.29

N-BEATS Using all variables 0.994 0.978 0.992 11.80 2.13
Without Precipitation 0.994 0.978 0.991 11.86 2.17
Without Humidity 0.994 0.978 0.991 11.81 2.16
Without Temperature 0.994 0.978 0.991 11.82 2.16
Discharge only prediction 0.994 0.978 0.991 11.96 2.17

LSTM Using all variables 0.992 0.865 0.926 29.52 8.15
Without Precipitation 0.979 0.665 0.892 39.46 19.83
Without Humidity 0.991 0.843 0.925 31.73 9.15
Without Temperature 0.983 0.628 0.872 48.95 11.49
Discharge only prediction 0.976 0.576 0.692 52.28 33.5

Table 9. Computational costs of N-HiTS, N-BEATS, and LSTM models in the Dog River and Killian Creek gauging stations.

Training Time over Train Datasets (seconds) Predicting Time over Test Datasets (seconds)

Model Lower Dog River Upper Dutchmans Creek Lower Dog River Upper Dutchmans Creek

N-HiTS 256.032 374.569 1533.029 1205.526
N-BEATS 288.511 361.599 2028.068 1482.305
LSTM 149.173 165.827 2046.140 1792.444

pretability, and hierarchical interpolation and pooling. Both
N-HiTS and N-BEATS models offered similar performance
as compared with the LSTM but also offered a level of in-
terpretability about how the model learns to differentiate as-
pects of complex watershed-specific behaviors via data. The
interpretability of N-HiTS and N-BEATS arises directly from
their model architecture.

In the interpretable N-BEATS framework, forecasts are
decomposed into trend and seasonality stacks, each repre-
sented by explicit basis coefficients that reveal how different
temporal patterns contribute to the prediction. Similarly, N-
HiTS achieves interpretability by aggregating contributions
across multiple distinct time scales, allowing insight into
the temporal dynamics driving each forecast. N-HiTS aims
to enhance the accuracy of long-term time-series forecasts
through hierarchical interpolation and multi-scale data sam-
pling, allowing it to focus on different data patterns, which
prioritizes features essential to understand flood magnitudes.
N-BEATS leverages interpretable configurations with trend
and seasonality projections, enabling it to decompose time
series data into intuitive components. N-BEATS interpretable
architecture is recommended for scarce data settings (such as
flooding event), as it regularizes its predictions through pro-
jections onto harmonic and trend basis.

These approaches improve model transparency by allow-
ing understanding of how each part of the model contributes
to the final prediction, particularly when applied to complex
flood patterns. Both models also support multivariate series
(and covariates) by flattening the model inputs to a 1-D se-
ries and reshaping the outputs to a tensor of appropriate di-
mensions. This approach provides flexibility to handle arbi-
trary numbers of features. Like LSTM, both N-HiTS and N-
BEATS models support producing probabilistic predictions
by specifying a likelihood objective. In terms of sensitiv-
ity analysis, both N-HiTS and N-BEATS maintain consistent
performance even when trained without specific meteorolog-
ical input.

Although, during some flashy floods, the models encoun-
tered challenges in capturing the peak flows and the dy-
namics of the recession curve, which is directly related to
groundwater contribution to flood hydrograph, both models
were technically insensitive to rainfall data as an input vari-
able. This suggests the fact that both algorithms can learn
patterns in discharge data without requiring meteorological
input. This ability underscores these models’ robustness in
generating accurate predictions using historical flood data
alone, making them valuable tools for flood prediction, espe-
cially in data-poor watersheds or even for real-time flood pre-
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diction when near real-time meteorological inputs are limited
or unavailable. In terms of computational efficiency, both N-
HiTS and N-BEATS are trained almost at the same pace;
however, N-HiTS predicted the test data much quicker than
N-BEATS. Unlike N-HiTS and N-BEATS, LSTM excelled
in reducing training time due to its simplicity and limited
number of parameters.

Moving forward, it is worth mentioning that predicting the
magnitude of the recession curve of flood hydrographs was
particularly challenging for all models. We argue that this
is because the relation between base flow and time is par-
ticularly hard to calibrate due to ground-water effluent that is
controlled by geological and physical conditions (vegetation,
wetlands, and wet meadows) in headwater streams. In addi-
tion, the situations of runoff occurrence are diverse and have
a high measurement variance with high frequency that can
make it difficult for the algorithms to fully capture discrete
representation learning on time series.

In future studies, it will be important to develop strategies
to derive analogs to the interpretable configuration as well
as multi-rate input sampling, hierarchical interpolation, and
backcast residual connections that allow for the dynamic rep-
resentation of flood times series data with different frequen-
cies and nonlinearity. A dynamic representation of flood time
series is, at least in principle, possible by generating additive
predictions in different bands of the time-series signals, re-
ducing memory footprint and compute time, and improving
architecture parsimony and accuracy. This would allow the
model to “learn” interpretability and hierarchical representa-
tions from raw data to reduce complexity as the information
flows through the network.

While a single station provides valuable localized informa-
tion, particularly for small, headwater streams where runoff
closely follows immediate meteorological conditions, it may
not capture the spatial heterogeneity of larger watersheds. In
our study, the applied methods successfully captured runoff
magnitude and dynamics in small basins for an operational
setting. However, broader spatial coverage and distributed
data would likely enhance model accuracy for larger regions.
Consequently, our conclusions are specifically scoped to the
selected basins and forecast horizons, and broader general-
izations would require multi-region investigations in future
work.

Finally, the performance of N-HiTS, N-BEATS, or other
neural network architectures could be further enhanced
with robust uncertainty quantification. Approaches such as
Bayesian Model Averaging (BMA) with fixed or flexible
priors (Samadi et al., 2020) or Markov Chain Monte Carlo
(MCMC) optimization methods (Duane et al., 1987) could
capture both aleatoric and epistemic uncertainties. We leave
these strategies for future exploration in the context of neural
flood time-series prediction.

Data availability. The historical discharge data used in this
study are from the USGS (https://waterdata.usgs.gov/nwis/uv/
?referred_module=sw, last access: 15 Januray 2026), meteoro-
logical data from USDA (https://www.ncdc.noaa.gov/cdo-web/
datatools/lcd, last access: 1 March 2024). We have uploaded the
datasets and codes used in this research to Zenodo, accessible via
https://doi.org/10.5281/zenodo.13343364 (Saberian and Samadi,
2024). For modeling, we used the NeuralForecast package (Olivares
et al., 2022), available at: https://github.com/Nixtla/neuralforecast
(Olivares et al., 2022).
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