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Abstract
Decision trees are integral to machine learning,
with their robustness being a critical measure of ef-
fectiveness against adversarial data manipulations.
Despite advancements in algorithms, current solu-
tions are either optimal but lack scalability or scale
well, but do not guarrantee optimality. This pa-
per presents a novel adaptation of the Murtree al-
gorithm to address these challenges in the pursuit
of optimal robust decision trees. We introduce a
new method for modeling an adversary as a net-
work flow problem, and provide a dynamic pro-
gramming approach to solve optimal robust deci-
sion trees beyond a depth of two. The performance
of our proposed algorithm is compared with brute-
force solutions across varying decision tree depths,
feature numbers, and data sizes. This research con-
tributes a significant advancement towards obtain-
ing efficient and effective solutions for optimal ro-
bust decision trees, potentially setting a new perfor-
mance benchmark in this area.

1 Introduction
Decision trees are widely used in machine learning, which
can be optimized for many different objectives, such as
minimizing the mean squared error, maximizing the f1 score,
optimizing survival analysis and so on. They are known
for the intuitive visual representation and interpretability,
making them a popular choice for classification tasks;
however, achieving optimal performance often becomes
challenging, especially when factors such as robustness
come into play. Robustness in machine learning pertains
to the ability of an algorithm to perform accurately despite
the presence of adversarial inputs, noise, or other forms of
alterations in the data. It is crucial in a world where data
is becoming increasingly complex and prone to manipulation.

In the case of this paper, we will focus on optimizing
decision trees on robustness: minimizing misclassifications
assuming an adversary. An adversary is a mechanism that
manipulates samples to maximize misclassifications. In
essence, this is a minimax problem, where the model chooses
the decision tree with minimum misclassifications, after
samples have been altered by the adversary to maximize
misclassification. The decision tree that has the least number
of misclassifications, assuming an adversary, is known as
an optimal robust decision tree. The alternative to finding
optimal decision trees are heuristic methods, which can find
well performing decision trees with less runtime, but do not
guarantee optimal performance. The process of finding opti-
mal decision trees establishes a critical performance baseline.
This benchmark acts as a valuable reference for heuristic
methods and provides an upper bound on their performance
potential. Moreover, the pursuit of optimal decision trees is
particularly desirable for small and interpretable models. If
the search for an optimal solution is feasible, it is likely the
preferred option. This is due to the inherent value in obtain-
ing the most efficient and effective solutions. Consequently,

the development of algorithms that broaden the feasibility
of searching for these optimal solutions is a particularly
desirable and significant advancement. Therefore, the work
we present in this paper, is aimed at improving the scalability
and efficiency of algorithms to find optimal robust decision
trees.

Related work on robust decision trees include ROCT [11]
which can find optimal robust decision trees using combina-
torial algorithms, such as Mixed Integer Linear Programming
(MILP) or Maximum Satisfiability (MaxSAT). Due to the
high complexity of standard combinatorial algorithms used in
ROCT, the model does not scale beyond decision trees with a
max-depth greater than two. Other methods that scale better,
include GROOT and the Robust Relabeling algorithm, which
can find robust decision trees, however, they do not guarran-
tee optimality.

Relevant work on improving the scalability of optimal
decision trees includes the Murtree algorithm [5] and the
STreeD algorithm [9]. These algorithms divide the task of
finding an optimal robust decision tree into separable opti-
mization tasks, which are used to solve the optimization task
itself, using an efficient combining operator. A separable
optimization task refers to dividing a problem into smaller
subproblems; in the context of minimizing misclassifications,
this would be the subtrees of the root-node, and the combin-
ing operator would be the addition of misclassifications of
those subtrees.

The Murtree algorithm has shown that optimal decision
trees can be generated more efficiently than solutions
relying on other combinatorial algorithms, using dynamic
programming. However, Murtree has not been generalized
to optimize on constraints other than misclassifications.
The STreeD algorithm attempts to generalize the Murtree
algorithm in order to find decision trees that are optimal with
regard to other objectives.

As the Murtree algorithm has not been applied to robust
decision trees, and the ROCT method is only feasible for
very small decision trees, struggling with decision trees of
depth greater than 2. Therefore, the aim of this research
is to transform the Murtree algorithm into solving optimal
robust decision trees, and answer the research question of
this paper: “What are the advantages of an adapted version
of the Murtree algorithm when applied to computing optimal
robust decision trees, compared to state-of-the-art solutions?”

The contributions of this research is the demonstration of
a dynamic programming approach applied to finding optimal
robust decision trees, the introduction of a novel method
for modeling an adversary which results in an exponential
speedup with respect to the number of leaves per tree, and
an algorithm that can comfortably solve optimal robust
decision trees with a max depth of 3, and feasibly solve
trees of depths 4 and 5. The results exhibit linear increase in
the runtime gain (defined as the runtime of the brute force
method divided by the runtime of our proposed algorithm)
with respect to the runtime of the brute force method.



2 Related works
The first prominent paper that examined adversarial attacks,
was an early paper by Dalvi et al.[4], emphasizing the rapid
degradation of classifier performance after deployment due
to adaptive adversaries. The paper incited further research
on the topic of adversarial machine learning, such as Lowd
et al., who focused their research on black-box adversarial
attacks [7] (where the adversary does not know the model
completely), and later the notable paper by Ling et al. pro-
viding a comprehensive exploration of adversarial machine
learning. [6]
Adverserial attacks against decision trees were first men-
tioned in the paper of Papernot et al.[8] where it was shown
that adversarial attacks were generalizable to many different
machine learning models, such as SVM, logistic regression,
others and decision trees. This prompted research into
several algorithms that contribute to the body of work on
robust decision trees, which do not guarantee optimality. The
first notable research conducted was by Chen et al., which
introduced an algorithm which made use of recursive greedy
splitting at each node, approximating information gain in the
context of an adversary. A later paper introduced TREANT,
which based their algorithm on robust splitting and attack
invariance[3].

The GROOT algorithm, improved on the work of Chen. et
al. and the TREANT algorithm, achieving similar accuracy
scores but with a runtime of two magnitudes faster. The
GROOT algorithm accomplished this by adopting the same
greedy recursive splitting method as Chen. et al., and making
use of its main contribution: computing the adversarial GINI
coefficient in constant time. [10]

Then there is the Robust Relabeling algorithm [12], which
further improves GROOT, by introducing a post-learning
procedure to optimally change the leaf labels of the decision
tree, in the context of an adversary. The algorithm has higher
accuracy scores when combined with GROOT, than GROOT
itself, however, the runtime is orders of magnitude slower.

The first notable study on optimal robust decision trees is
the ROCT algorithm, which presented a solution to identify
optimal robust decision trees through the use of combina-
torial optimization, using MILP and MaxSAT. However,
this method is limited to decision trees with a depth less
than or equal to two, as finding decision trees with larger
max depths is computationally infeasible. The approach
assumes continuous data and an adversary that can perturb
data for each feature within defined limits for increasing and
decreasing a feature value. [11]

Finally, there are two papers on computing optimal deci-
sion trees, which serve as the basis of our research. The first
paper is the Murtree algorithm, a novel method for calculating
optimal decision trees using dynamic programming, leverag-
ing the recursive nature of decision trees and incorporating
caching and pruning. Murtree also introduced a fast depth-2
solver, which is optimized for finding optimal decision trees

with max depth 2. [5]
The second paper is the STreeD paper [9], which builds on

the Murtree paper’s approach, by proposing a more flexible
and general recurrence relation to allow for computing op-
timal decision trees based on other metrics. The recurrence
relation allows for optimal solutions to also be presented as
a pareto front, as well as a set of non-dominated solutions
for situations where no single solution to a subproblem con-
tributes to the primary solution’s optimality. In such cases,
a set of non-dominated solutions emerges, ensuring that at
least one solution from the subproblem is part of the optimal
solution. The STreeD algorithm does this by introducing a
notation to allow for a more general formulation, such as a
cost function, transition function, and a combining operator,
which is discussed in further detail in the preliminaries sec-
tion.

3 Formal Problem Description
The task at hand involves finding an optimal decision tree,
given constraints on the depth of the tree. This problem is
classified as NP-hard. There are several metrics that can be
optimized. such as the mean squared error, the F1 score, or
simply minimizing misclassifications. However, we propose
an adversarial optimization method.

An optimal robust decision tree can be described as fol-
lows: consider the situation where we generate every possi-
ble decision tree architecture constrained by the features of
the data and the desired maximum depth. Now, let us hypo-
thetically allow an adversary to manipulate the sample data
differently for each of these possible decision tree instances.
As the adversary alters the samples to maximize misclassifi-
cations optimally, we record the misclassification counts for
each decision tree.

Subsequently, the decision tree with the least amount of
misclassifications out of all potential trees is considered the
optimal robust decision tree. In essence, the optimal robust
decision tree is where the combined effects of the adversary’s
manipulations and the resulting misclassifications are mini-
mized.

This problem can be formally expressed using mathemati-
cal notation. A binary decision tree, denoted by τ , where each
internal node corresponds to a feature f , each branch denotes
a decision rule, and each leaf node represents the prediction
label. In terms of a function, a binary decision tree τ is de-
fined as τ : 0, 1n → 0, 1, where n signifies the number of
features.

The set T contains all possible decision tree architectures
restricted by the number of features and the maximum depth.

The adversarial action, denoted by A, acts on a given
dataset d = (x1, y1), ..., (xN , yN ), which consists of N sam-
ples where each xi is a binary feature vector and each yi is a
binary label. The function A : d → D transforms this data
set into a set of all possible perturbations of the data set.

Finally, we define a function M : T ×D → 0, ..., N which
represents the number of misclassifications made by the de-
cision tree in the data set.

Our problem essentially boils down to a minimax problem.
We are seeking a decision tree that minimizes the maximum



possible misclassification count that any adversarial action
could induce. This can be represented as:

min
τ∈T

max
d∈A(D)

M(τ, d)

The objective is to decompose the problem of finding this
adversary-resilient optimal decision tree into separable opti-
mization tasks with an efficient combining operator. This al-
gorithm is then evaluated based on runtime to see how well it
scales when compared to a brute force method depending on
the amount of features, depth, and amount of data samples.

4 Preliminaries
In this section, we introduce notation that is relevant in other
papers, as well as notation used throughout the rest of this
paper. The section includes some relevant equations, defini-
tions, and theorems. The notation can be formally described
as:

• D: Set of instances
• D+/−: Set of instances labeled true/false
• Df/f : Set of instances where feature is true/false

• Da: Set of instances that the adversary can move outside
of the tree

• Dfa : Set of instances where feature value can be flipped
by the adversary

• d: Maximum depth
• F : The feature space
• f : A single feature
• F : Set of features
• K: The label space

• k̂: A label
• α: Lower bound on cost
• β: Upper bound on cost
• M(τ,D): Returns total misclassifications given a tree τ

and a dataset D
• C(D, d): Minimum cost
• τ = (f, τl, τr, α, β): A tree represented by its feature

split, left and right subtrees, and the upper and lower
bounds of cost that the tree contributes to the overall de-
cision tree.

• T = {τ1, τ2, τ3, ...τn}: a set of trees
• candidates(T ) → {τi ∈ T |αi < min{βj |τj ∈ T}}:

Returns all possible trees that might be part of the opti-
mal solution, given a set of trees

• τi ⊕ τj = (f, τi, τj , α, β): The combining operator
which combines two subtrees into a tree.

• merge(Tl, Tr) → {τi⊕τj |τi ∈ Tl, τj ∈ Tr}: Combines
the 2 sets of subtrees for the feature split into one set of
trees

• g(D,F, k̂): Cost function that returns the cost of a leaf
node given the label

In this paper, we introduce an algorithm that builds on
the “STreeD” algorithm, a method first described in the
“STreeD” paper. This foundational work provides a more
general method for calculating the optimal decision trees.
The algorithm in the paper is described by the following re-
currence relation:

C(D,F,d)=



opt

( ⋃
k̂∈K

g(D,F,k̂)

)
, if d = 0,

opt

( ⋃
f∈F

merge(C(Df ,f∪F,d−1),

C(Df , f ∪ F, d− 1)
))

, if d > 0.

(1)

The equation above uses other notation not used in this pa-
per, notably opt which returns the optimal solution, a pareto
front, or a set of non-dominated solutions given a set of solu-
tions. This is replaced by candidates, which is a narrowed-
down definition of opt, where the return of candidates only
refers to a set of non-dominated solutions.
The relation above changes based on the depth of the tree:
when the depth d = 0, the non-dominated leaf nodes are
given; when d > 0, a set of non-dominated subtrees is given.
The optimal tree (or pareto front) is determined by combin-
ing two sets of non-dominated solutions for all feature splits
and returning the solutions where the feature split has a non-
dominated score.

The work in our paper narrows this algorithm down, to ap-
ply for finding optimal robust decision trees, by changing opt
to candidates and only considering data with binary labels,
unlike the STreeD paper which also considers discrete labels
of arbitrary amounts; hence the cost function g(D,F, k̂) is
replaced by a lower and upper bound. The lower bound is
min(|D+|, |D−|), where D contains all instances including
those that the adversary can move in and out of the leaf node.
The upper bound does the same, except it assumes all the
instances are moved out of the leaf node and fully contribute
to misclassifications outside the leaf node, which can be
formulated as min(|D+ \ Da|, |D− \ Da|) + |Da|, where
Da refers to the instances that can be moved in and out of the
leaf node.

We also pay attention to Theorems 4.7 and 4.8 in STreeD,
which are relevant to proving optimality of the algorithm.
Theorem 4.7 states “An optimization task o = <g,≻,⊕, c>
is separable if and only if its leaf node cost function g is
independent, its combining operator ⊕ preserves order
over its comparison operator ≻ and the constraint c is
anti-monotonic.”, and theorem 4.8 states “STreeD, as defined
in Eq. (1), finds the Pareto front for any optimization task
that is separable according to Def. 4.2.”. We also refer
to definitions 4.3, 4.5, and 4.6 in the STreeD paper, which
define the three conditions in theorem 4.7. The definitions
are explored in further detail later in the paper.

Finally, this paper uses the Push Relabel algorithm [2], a
max-flow algorithm, which in practice has a low runtime.
While the algorithm is not intrinsically related to decision
trees, this paper employs the max-flow algorithm to effi-
ciently calculate the misclassifications in a tree given an ad-



versary. This is accomplished by converting the adversary
into a max-flow problem. The algorithm implementation was
copied from the GeeksforGeeks website, with an unknown
author.[1]

5 Contribution
In this section, we will discuss a novel way of modeling the
adversary, as a network flow problem, and describe the pro-
posed algorithm to solve for optimal robust decision trees, in
the form of a recurrence relation. The proposed algorithm
finds the solution to the minimax problem:

min
τ∈T

max
d∈A(D)

M(τ, d)

. The problem is discussed in greater detail under the formal
problem description section.

5.1 Adversary Model
The adversary can be modeled as a maximum flow problem,
where the leaves are depicted as edges emanating from
the source and edges leading into the sink. In a binary
classification tree, each leaf node indicates the number of
true- and false-labeled samples.

The intuition behind the max-flow formulation can best be
explained when considering a regular decision tree, where the
total amount of misclassifications is simply the sum of the mi-
nority labels in each leaf node. This is because the label of a
leaf node is determined by the majority label of its instances
(e.g., if there are more ’true’ instances than ’false’, the node
is labeled ’true’), and every minority instance is thus a mis-
classification.

Similarly, in a network representation, the max flow is de-
termined by the smallest capacity of the edges between any
source-sink pair. If we construct the network so that these
edge capacities correspond to the counts of each label in our
decision tree, then the max flow will represent the sum of the
minority labels, just as in the decision tree. Thus, the max
flow in the network will equal the total misclassifications in
the decision tree.

Figure 1: The misclassifications of a decision tree without an adver-
sary transformed into a network flow problem

The max flow of the network described above, visible in
Figure 1, is equal to the total amount of misclassifications
in the corresponding non-robust decision tree. The total
number of misclassifications in a regular binary decision tree
is the minimum number of total true and false labels for each
leaf added together. The max flow also calculates this same
value, since each pair of edges connected by a leaf node can

only have a max flow of the edge with the smaller capacity.
This shows that Figure 1 is a valid transformation for regular
binary decision trees.

For each leaf, two edges are added to the network: an
edge that connects from the source node and to a new node
(which is representative of the leaf), while another edge
connects from the leaf node to the sink node. The capacity
of these edges is determined on the basis of the number
of true- and false-labeled samples in the leaf node. This
means that if a leaf node contains six true samples and
three false samples, the capacity of the edge from the source
would be six, and the edge entering the sink would have
a capacity of three (the other way around is also fine, as
long as the network is consistent). This procedure is applied
to all leaf nodes, resulting in a network with edges con-
necting the source and new nodes and new nodes and the sink.

This intuition can be further extended in the context of an
adversary, except here the flow through a leaf node can be
redirected through edges that represent the different ways the
adversary can move the samples around.

Figure 2: A depth 2 decision tree with three leaf nodes. The green
rectangles represent the number of instances labeled true, and the
red rectangles represent the number of instances labeled false. The
green and red boxes represent a true and false label, respectively, that
can be moved to multiple leaf nodes by the adversary (represented
by the dotted lines)

Figure 3: Transformation of the decision tree in figure 2 to a max
flow problem, where the red and green nodes represent the instances
the adversary can move.

In order to extend a network similar to Figure 1, to account



for an adversary, we consider samples that have the potential
to be assigned to multiple leaf nodes. For each sample, an
additional node is introduced. In the case of a true sample, an
edge of capacity one connects from the source to the sample
node, and outgoing edges of capacity one are connected to
each leaf node that the adversary can direct the sample to.
Conversely, for false samples, the new sample node has one
outgoing edge to the sink node, and ingoing edges from all
the leaf nodes where the sample could potentially be moved
to; all edges also have capacity one.

Figure 4: Reduced network flow graph from figure 3, where the
red node is combined with the node middle leaf node, and the edge
directing flow from the source to the green node is combined with
the edge directed towards the left most node.

When a sample can only be directed to two nodes, the new
node can be merged with one of the leaf nodes to improve the
efficiency of the max-flow algorithm, increasing the capacity
of the shared edge by 1, as shown in Figure 4. However,
if a sample can be directed to more than two leaf nodes, an
additional node is necessary to accommodate the complexity
of the network.

Advantages of the adversary model
The advantage we offer by transforming the adversary model
into a max flow problem, is that the label of the leaf can re-
main ambigouos. The conventional way of modelling the ad-
versary is by sending all the adversarial samples to leaf nodes
with the opposite label if possible. This increases the search
space for each tree, to include labels of the leaf nodes, dou-
bling with each leaf added per tree (assuming binary labels.
For example a tree with two leaves could have four possible
combinations of labels, a tree with three leaves would have
twice that, with eight possible combinations of label. Hence
there is a exponential speedup with respect to the number of
leaves per tree.

5.2 Algorithm
The primary challenge of developing a STreeD-like algorithm
tailored to optimal robust trees lies in the seemingly nonsep-
arable nature of the problem at first glance. Specifically, the
optimal and robust subtrees derived from each child node are
not necessarily constituents of the overall optimal robust tree.
This outcome arises because these optimal robust subtrees fail
to consider potential misclassifications engendered by sam-
ples that can be moved outside of their respective tree by the
adversary.

As a consequence, a degree of uncertainty underlies the
number of misclassifications that a subtree might contribute
if it is part of the primary solution. We represent this un-
certainty by defining an upper and lower bound, wherein the
lower bound signifies the minimum conceivable misclassifi-
cations and the upper bound indicates the maximum possi-
ble misclassifications a subtree could contribute to the overall
tree.

This inherent uncertainty implies that there does not exist
a single solution within each subtree that is guaranteed to be
a part of the complete solution for the optimal robust tree.

Recurrence Relation

C(D,F, d) =



{(F,∅,∅,min(|D+|,|D−|)
min(|D+\Da|,|D−\Da|)+|Da|},

if d = 0,

candidates

(⋃
f∈F merge

(
C(Df ,f∪F,d−1),

C(Df ,f∪F,d−1)

))
,

if d > 0.

(2)
In examining the given recurrence relation when d = 0, the

algorithm returns a set containing a single leaf node, with
a lower and upper bound. The leaf node is not assigned a
label; instead, the label is decided at every point where it
is combined with another tree (either directly, or indirectly
through a parent node), when computing the lower and upper
bounds of the larger tree.

For cases where d > 0, the algorithm returns a list of all
potential subtrees that could be part of the optimal robust de-
cision tree. The need for a set of subtrees instead of a sin-
gle subtree arises because a robust subtree deemed optimal
does not ensure its inclusion in the larger, optimal robust de-
cision tree. The basis for this lies in the program’s inability
to quantify the misclassifications caused by samples that can
be moved in and out of the subtree by the adversary. As a re-
sult, all returned subtrees contain an upper and a lower bound
of misclassifications. Only the final set of potentially optimal
decision trees returned is guaranteed to have a single tree, as
the tree encompasses all samples, hence no samples can be
moved outside of the tree.
The lower bound is dictated by the number of possible mis-
classifications within a given subtree, which is calculated by
formulating the subtree as a max flow problem, and assuming
that all samples that can be moved in and out of the subtree
are only moved within the subtree.

α = M(τ,D)

The upper bound assumes that all samples that can be
moved outside will cause misclassifications outside the sub-
tree, hence it follows that the upper bound can be calculated
formulating the subtree as a max flow problem, only consid-
ering samples that cannot be moved outside of the subtree,
and adding the amount of samples that can be moved outside
the subtree and the max flow together.

β = M(τ,D \Da) + |Da|



The function merge combines all possible pairs of sub-
trees and returns that set. The combining operator ⊕,
used in merge, can be described as follows: τi ⊕ τj =
(F, τi, τj ,M(τi⊕τj , D∪Da),M(τi⊕τj , D)+ |Da|), where
M(τi ⊕ τj , D) returns the misclassifications of the con-
structed decision tree. The function candidates, further re-
fines the process by retaining all subtrees with a strictly lower
lower-bound than the lowest upper bound of all possible sub-
trees, where the comparison operator ≻ is defined as αi < βj

where αi is the lower bound of a tree and βj is the upper
bound of the other tree.

Optimality

In order to prove optimality, we will first prove that the
task is separable and then conclude that it is optimal, as
we refer to Theorem 4.8 in the STreeD paper, which states
that if the optimization task is separable, it can be solved
using Eq. (1). To prove separability, we refer to Theorem
4.7, which asserts that an optimization task is separable
based on three conditions. First condition: The cost function
g is independent. Second condition: the constraint c is
anti-monotonic. Third condition: the combining operator ⊕
preserves order. We will also refer to three definitions from
the STreeD paper, relevant to the three conditions. The first
condition, relies on definition 4.3, stating that a cost function
g is independent if it relies purely on the label assignment
k̂ and the parents’ branching decisions F . Definition 4.6
defines a constraint as anti-monotonic, if the constraint is
violated in a subtree, it should also be violated in the parent
tree. Finally, there is definition 4.5, which asserts that a
combining operator preserves order, if an arbitrary subtree
s1 dominates another subtree s′1, then it follows that if both
subtrees are merged with another subtree s2, s1 ⊕ s2 should
dominate s′1 ⊕ s2.

We can show that the first condition is satisfied, by
observing that the cost function for leaf nodes in our re-
currence equation is min(|D+|, |D−|) for the lower bound
and min(|D+ \ Da|, |D− \ Da|) + |Da| for the upper
bound. The only inputs for the cost function are D and Da

(a subset of D), which is influenced purely by the parent’s
branching decisions and hence is independent according to
definition 4.3. The second condition is also trivially satisfied
according to definition 4.6, as the constraint c allows all
trees, which means there cannot be any violations in any tree,
and therefore it follows that no constraint is violated in a
subtree that is not violated in a parent tree, as no constraints
are violated at all.

Finally, to prove that the combining operator preserves
order, we will describe definition 4.5 with some mathe-
matical notation. Note that domination is described by the
comparison operator ≻, which in the context of τi ≻ τj is
defined as αi < βj . Here, αi refers to the lower bound of τi
and βj refers to the upper bound of τj . Given three arbitrary
trees: τ1 ∈ candidates(T1), τ ′1 ∈ T1, and τ2 ∈ T2, we need
to prove τ1 ⊕ τ2 ≻ τ ′1 ⊕ τ2, assuming that τ1 ≻ τ ′1.

In order to prove this we first recall that

α = M(τ,D)

and
β = M(τ,D \Da) + |Da|

. We then consider the scenario where the adversary moves
all the samples it is allowed to move, into the left subtree, in
this case the misclassifications in the tree would be equal to:
M(τl, Df ∪ Dfa) + M(τr, Df̄ \ Da) = αr + βr − |Da|.
Since we know that the adversary is capable of causing at
least that many misclassifications in the tree, we can affirm
that the lower bound of the tree must be at least that amount.
Consequently: α ≥ αl + βr − |Da|. Now consider the
scenario in which all samples that the adversary can move
in between the left and right subtrees, as well as outside
the tree, are counted as misclassifications, formulated as
M(τr, Df \Da)+M(τr, Df̄ \Da)+ |Da| = βl+βr−|Da|.
In this scenario, we can guarantee that the adversary cannot
cause anymore misclassifications, as all samples that could
be misclassifications are counted as misclassifications.
Hence, it follows that β < βl + βr − |Da|.

Now let us substitute α with α(τ ′1 ⊕ τ2) and
β with β(τ1 ⊕ τ2). The resulting equations are
α(τ ′1⊕τ2) ≥ α′

1+β2−|Da| and β1+β2−|Da| ≥ β(τ1⊕τ2).
Because we know that α′

1 > β1 by definition, we can com-
bine the expressions into one: α(τ ′1⊕τ2) ≥ α′

1+β2−|Da| >
β1 + β2 − |Da| ≥ β(τ1 ⊕ τ2). Finally, applying the tran-
sitive property of inequalities, we can conclude that
α(τ ′1 ⊕ τ2) > β(τ1 ⊕ τ2), and hence τ1 ⊕ τ2 ≻ τ ′1 ⊕ τ2.

Since the task has been shown as separable under the three
conditions of Theorem 4.7, and because the recurrence rela-
tion we presented is a narrowed-down version of Eq. (1), we
can conclude, according to Theorem 4.8, that the algorithm
returns optimal trees.

5.3 Brute force algorithm
In order to validate the results of the algorithm above, as
well as provide a benchmark algorithm, we developed a
brute-force algorithm that recursively generates all possible
trees, and uses the same adversary model as described above.
The brute-force algorithm itself might be competitive with
state-of-the-art solutions, as it takes advantage of the recur-
sive nature of decision trees, pruning feature splits that are
already present in parent nodes, however, it does not make
use of memoization like the dynamic programming approach.

We also developed another brute-force algorithm uses a
the conventional way of modelling the adversary, where leaf
labels are predetermined, and total misclassifications corre-
spond to the number of samples that could be moved to a leaf
node bearing the opposing label.

6 Experimental Setup and Results
In this research, we sought to demonstrate the scalability of
a given algorithm under various conditions, controlling for a
range of variables. The primary objective of our experiments



was to determine how the algorithm’s performance, measured
in runtime, scales in relation to specific controlled variables.
These variables encompassed the max depth, the number
of features, the number of instances, and the proportion of
cells that an adversary was permitted to manipulate. To
conduct a thorough analysis, we executed the algorithm for
every possible combination of these variables, generating a
comprehensive dataset for further investigation.

To understand the specific influence of each variable, we
performed an analysis in which all but one variable were
held constant. This methodology enabled us to isolate the
impact of each variable on the algorithm’s scalability. For
instance, we assessed how the algorithm’s runtime scales
with the number of features, at a constant depth, the number
of instances, and the number of cells the adversary is allowed
to manipulate.

By isolating each variable, we were able to derive specific
insights into the individual and collective impact of these
variables on the algorithm’s performance. The outcomes of
this research provide a detailed understanding of the algo-
rithm’s scalability and potential performance under varying
conditions, showing significant improvements in terms of
scalability, when compared to the brute-force approach. For
clarity, when we refer to the brute-force approach, we are
refering to the approach that uses our proposed adversary
model.
We carried out experiments on 18 datasets which were
provided to us by another student, with 1800 variations
for each dataset, on an HP ZBook Studio x360 G5, with
2.60Ghz processing power, of which approximately 15% of
the CPU was used at a time. A timeout was set to 5 minutes
due to the large number of results that needed to be generated.

6.1 Results
The results contain sections that investigate the scalability of
the algorithm when isolating for certain conditions. Condi-
tions include max depth (which ranges from 1 to 5), number
of instances in the dataset (ranging from 100 to 1000), num-
ber of features (ranging from 10 to 100), and the attack power,
which specificies the proportion of cells that the adversary is
allowed to manipulate (ranging from 0.005 to 0.05). The run-
time is displayed logarithmically. There is also a section that
investigates the general scalability of the algorithm compared
to a brute-force approach. For the sections investigating run-
time when isolating certain conditions, the ranges of condi-
tions are sometimes cut short, as the results are dominated
by timeouts. For example, most results with a max depth of
4 or larger take longer than 5 minutes; therefore, no results
containing analysis of the runtime itself for depth 4 or higher
are shown; instead, results on the percentage of timeouts are
presented.

Overall scalability of the algorithm
To evaluate the holistic scalability of the algorithm, we sorted
the results on runtime for both the brute-force algorithm, and
the dynamic algorithm. Then we computed the cumulative

runtime and percentage of searches covered, for both algo-
rithms. The results are presented in the following figures 5
and 6.

Figure 5: Percentage of optimal decision trees generated. Results
were sorted on runtime first, then the cumulative runtime was calcu-
lated.

Figure 6: Percentage of optimal decision trees generated. Results
were sorted on runtime first, then the cumulative runtime was calcu-
lated.

As shown in Figure 5, all optimal decision trees with a max
depth equal to 1 and 2, were completed in less than five min-
utes. For trees with a max depth of 3, the algorithm found the
majority of decision trees within the five-minute time frame.
Contrast this with the results of the brute-force algorithm in
figure 6, where all searches for optimal trees with a max depth
of 3 or greater timed out, and even a few searches for max-
depth 2 trees timed out as well. It is clear that the dynamic
programming algorithm scales far better than the baseline.

Runtime gain

To demonstrate the added value our algorithm provides, we
measured the runtime gain of the proposed algorithm over the
brute-force algorithm. The runtime gain is the runtime of the
brute-force algorithm divided by the runtime of the proposed
algorithm.



Figure 7: Runtime gain for trees of depth 1 and 2.

Figure 8: Runtime gain for trees of depth 2.

Figure 9: Runtime gain between brute force algorithm (which uses
our proposed adversary model), and brute-force algorithm that uses
the conventional adversary approach; for trees of depth 1 and 2.

Figures 7 and 8 show the runtime gains for trees of depth 1
and 2. We notice that the runtime gain between trees of depth
1 and 2 in figure 7, differ significantly. The reason behind
this lies in the fact that there is very little pruning the model
can do, when limited to only depth 1 trees, compared to depth
2 trees. This comparison is significant, when speculating
on what the runtime gain might be for searches limited to
trees of max depth 3. If depth 2 trees allow for significantly
more pruning than depth 1 trees, the same might hold true
for depth 3 trees when compared to depth 2 trees.

Figure 9 illustrates the benefits of our proposed adversary
model. The figure depicts the runtime gain of the brute-force
algorithm, with a brute-force algorithm that uses the conven-
tional adversary model, where leaf labels are predetermined,
and total misclassifications correspond to the number of sam-
ples that could be moved to a leaf node bearing the opposing

label.
Note that the increase in runtime for depth 1 trees varies

between a factor of 2 and 8, while for depth 2 trees, the run-
time increase is approximately 16. These observations bolster
our claim of an exponential speedup relative to the number of
leaves in a tree. This is evidenced by the fact that depth 1
trees have two leaves and hence four potential leaf label com-
binations, and a fully matured depth 2 trees with four leaves
contain 16 such combinations. Both corresponding with the
runtime gain.

Runtime increase with attack power

Figure 10: Average runtime for the brute-force algorithm iwth vary-
ing attack power. Only includes results for trees of depth 1. As well
as results for trees of depth 2 with maximally 70 features, as there
are timeouts in the other results

Further insights are garnered from Figure 10 that shows the
runtime increases marginally with attack power for the brute-
force algorithm. This is evidence that the push-relabel algo-
rithm scales well with the type of network described in Figure
4. In theory the push-relabel algorithm, scales polynomially
with the amount of vertices, however, in practice it is known
to be very efficient.

7 Responsible Research
The methodology and experimental design of this study ad-
hered strictly to the tenets of FAIR principles. The FAIR prin-
ciples are a set of guidelines designed to enhance the usabil-
ity of data. They encompass four core tenets detailed below,
alongside the ways in which they were implemented in this
study:

• Findable: We have data readily accessible in the same
repository as the source code, ensuring straightforward
replication of the experiments detailed in our paper.

• Accessible: There is no requirement for special authen-
tication to access the data.

• Interoperable: We’ve stored our data in the widely-used
CSV format.

• Reusable: The code contains instructions to run the
code.

By adhering to these guidelines, we aim to increase the poten-
tial usability of the data garnered in our study. This, we hope,
will promote further experimentation and enhance our collec-
tive understanding of algorithms and NP-Hard problems.



It is also relevant to acknowledge that LLM’s like chatGPT
were used to improve the quality of the writing, help debug
some of the code, and write a few helper functions for further
debugging.

8 Conclusions and Future Work
In conclusion, we present to you an algorithm, that treats the
task of finding optimal robust decision trees, as separable op-
timization tasks, as well as a max-flow formulation for the
adversary, that can be efficiently computed using the push-
relable algorith, and offers exponential speedup with respect
to the number of leaf nodes in a tree. The algorithm scales
comfortably up to depth 3 trees, and can feasibly compute a
considerable amount of optimal robust trees with a maximum
depth of up to 5. In contrast with the brute-force approach
which does not scale past depth 2.

8.1 Limitations and possible improvements
This study, while advancing the field, acknowledges certain
limitations. The current research exclusively assumes binary
data and binary labels and confines its focus to robust decision
trees in the context of minimizing misclassifications.

Another limitation of this paper is the difficulty of com-
paring this solution with other state-of-the-art methods such
as ROCT, which assumes only continuous data and, hence,
cannot be directly compared.

8.2 Future research
Despite these limitations, there is ample scope for future re-
search. For example, this work could be extended to consider
continuous and discrete data. This would allow for more di-
rect comparisons with different state-of-the-art methods that
deal with continuous data. Additionally, considering other
definitions of adversaries could provide a richer understand-
ing of how the method performs under various threat models.

Furthermore, research could be extended to optimizing ro-
bust decision trees on other metrics such as MSE, F-score,
survival analysis.

Finally, the definitions of adversaries in the current work
and other state-of-the-art methods differ. While in essence
both definitions allow adversaries to move samples to differ-
ent leaf nodes, the rules that determine whether a sample can
be moved to a leaf node, differ. Future work in this context
could include translating the adversaries in other works to the
adversary we defined, when binarizing the data.
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