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ABSTRACT
The area of conversational search has gained significant traction in
the IR research community, motivated by the widespread use of
personal assistants. An often researched task in this setting is con-
versation response ranking, that is, to retrieve the best response for a
given ongoing conversation from a corpus of historic conversations.
While this is intuitively an important step towards (retrieval-based)
conversational search, the empirical evaluation currently employed
to evaluate trained rankers is very far from this setup: typically, an
extremely small number (e.g., 10) of non-relevant responses and a
single relevant response are presented to the ranker. In a real-world
scenario, a retrieval-based system has to retrieve responses from a
large (e.g., several millions) pool of responses or determine that no
appropriate response can be found. In this paper we aim to high-
light these critical issues in the offline evaluation schemes for tasks
related to conversational search. With this paper, we argue that the
currently in-use evaluation schemes have critical limitations and
simplify the conversational search tasks to a degree that makes it
questionable whether we can trust the findings they deliver.
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1 INTRODUCTION
Conversational search is concerned with creating agents that fulfill
an information need by means of a mixed-initiative conversation
through natural language interaction, rather than the traditional
turn-taking models exhibited in a traditional search engine’s results
page. It is an active area of research (as evident for instance in the
recent CAIR1 and SCAI2 workshop series) due to the widespread
deployment of voice-based agents, such as Google Assistant and
Microsoft Cortana. Voice-based agents are currently mostly used
for simple closed domain tasks such as fact checking, initiating
calls and checking the weather. They are not yet effective for con-
ducting open domain complex and exploratory information seeking
conversations [15].

1https://sites.google.com/view/cair-ws/home
2https://scai.info/
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Existing efforts in conversational search have started in late
1970’s, with a dialogue-based approach for reference retrieval [35].
Since then, research in IR has focused on strategies—such as exploit-
ing relevance feedback [47], query suggestions [5] and exploratory
search [34, 58]—to make the search engine result page more in-
teractive, which can be considered as a very crude approach to
conversational search systems. User studies [13, 23, 25, 52, 54, 57]
have been conducted to understand how people interact with agents
(simulated by humans) and inform the design of CSSs.

A popular approach to conversational search is retrieval-based:
given an ongoing conversation and a large corpus of historic con-
versations, retrieve the response that is best suited from the corpus
(i.e., conversation response ranking [38, 59, 61, 62]). This retrieval-
based approach does not require task-specific semantics by domain
experts [21], and it avoids the difficult task of dialogue generation,
which often suffers from uninformative, generic responses [26] or
responses that are incoherent given the dialogue context [27]. How-
ever, the current offline3 benchmarks (cf. Table 1) for conversation
response ranking are overly simplified: they mostly require models
to retrieve the correct response from a small set of 10 candidates.

In this paper we first formally describe the threemain approaches
to CSS based on previous work on conversational search. We then
take a critical look at the premises of their offline evaluation schemes,
e.g. ‘The correct response is always in the candidates list.’, discuss
their implications and suggest future directions to cope with their
limitations.

2 TASKS AND EVALUATION SCHEMES
We describe next sub-tasks of the CSS pipeline. First let us con-
sider Figure 1, where we display three different end-to-end CSS
approaches. On the left a retrieval-based system uses the conver-
sational context to select amongst a pool of responses the most
adequate (conversation ranking tasks). On the center we have a
generative model that directly generates the responses from the
conversational context (conversation generation tasks). On the
right the system encompasses a model to retrieve documents fol-
lowed by a model that select spans in such documents (conversation
question answering). Next we discuss common assumptions used
when employing such tasks to evaluate models and we highlight
their shortcomings. On Table 1 we describe popular benchmarks
for conversational ranking tasks with statistic such as the number
of response candidates, and on Table 2 we describe the relation
between the premises discussed in this section and the tasks they
relate to.

3We do not consider here the online evaluation of conversational search systems, which
although is more reliable than offline evaluation, it is expensive, time consuming and
non-repeatable.

https://sites.google.com/view/cair-ws/home
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Figure 1: Different approaches for conversational search systems. The inputs are the previous utterances in the conversation
(the contextU) and the model output is the system response 𝑟 . They encompass, from left to right respectively, the conversa-
tional search tasks of ranking, generation and question answering employed in a end-to-end system.

Table 1: Overview of conversational search benchmarks for which the task requires ranking.

Task Benchmark # of
candidates

average #
of relevant

negative sampling
procedure

relevant is
always present

independent
instances

maximum
eval. metric

Conversation
response
ranking

MSDialog [39] 10 1 scoring function yes yes 0.836 MAP [61]
E-commerce [67] 10 1 scoring function yes yes 0.704 𝑅10@1 [16]
UDC [39] 10 1 random yes yes 0.855 𝑅10@1 [16]
Douban [59] 10 1.18 scoring function yes yes 0.619 MAP [16]
MANtiS [37] 11 1 scoring function yes yes 0.733 MAP [38]
MANtiS [37] 51 1 scoring function yes yes 0.519 MAP [37]
PolyAI-AQA [20] 100 1 random yes yes 0.843 𝑅100@1 [21]
PolyAI-Reddit [20] 100 1 random yes yes 0.718 𝑅100@1 [21]
DSTC7-NOESIS-5 [18] 100 1 random no yes 0.822 MRR [18]
DSTC7-NOESIS-2 [18] 120,000 1 random yes yes 0.253 MRR [18]

Conversation
doc. ranking

MANtiS [37] 11 1.13 scoring function yes yes 0.672 MAP [2]
MANtiS [37] 50 1.13 scoring function yes yes 0.487 MAP [2]

Clarifying ques-
tion ranking StackExchange [43] 10 1 scoring function yes yes 0.492 MAP [43]

2.1 Conversation Ranking Tasks
The task of conversation response ranking [11, 17, 20, 21, 37, 38,
50, 59, 61, 62, 64, 67, 68] (also known as next utterance selection),
concerns retrieving the best response given the dialogue context.
Formally, let D = {(U𝑖 ,R𝑖 ,Y𝑖 )}𝑁𝑖=1 be a data set consisting of 𝑁
triplets: dialogue context, response candidates and response rel-
evance labels. The dialogue context U𝑖 is composed of the pre-
vious utterances {𝑢1, 𝑢2, ..., 𝑢𝜏 } at the turn 𝜏 of the dialogue. The
candidate responses R𝑖 = {𝑟1, 𝑟2, ..., 𝑟𝑘 } are either ground-truth
responses or negative sampled candidates, indicated by the rele-
vance labels Y𝑖 = {𝑦1, 𝑦2, ..., 𝑦𝑘 }. Typically, the number of candi-
dates 𝑘 ≪ 𝐾 , where 𝐾 is the number of available responses and
by design the number of ground-truth responses is usually one,
the observed response in the conversational data. The task is then
to learn a ranking function 𝑓 (.) that is able to generate a ranked
list for the set of candidate responses R𝑖 based on their predicted
relevance scores 𝑓 (U𝑖 , 𝑟 ).

Other similar ranking tasks related to conversational search are
clarification question retrieval [42, 43], where the set of responses
to be retrieved are always clarification questions, conversation doc-
ument ranking [37], where the item to be retrieved is a document
that contains the answer to the dialogue context and conversation
passage retrieval [8, 31]4. A successful model for the ranking tasks
retrieves the ground-truth response(s) first in the ranked list, and
thus the evaluation metrics employed are standard IR metrics such
as MAP and 𝑅𝑁@𝐾 (where N is the number of candidate responses
and K is the list cutoff threshold).

2.2 Conversation Generation Tasks
The task of conversation response generation, also known as dialogue
generation [1, 12, 28, 29, 53], is to generate a response given the
dialogue context. Formally, let D = {(U𝑖 , 𝑟𝑖 )}𝑁𝑖=1 be a data set
consisting of 𝑁 tuples: dialogue context and response. The dialogue
4We do not include TREC CAsT 2019 in 1, since it differs from other datasets by doing
TREC style pooling and judgements.
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Table 2: Premises and respective conversational tasks.

Premise Holds for

(I) There is a complete pool of ad-
equate responses that endure over
time.

Conversation ranking
tasks

(II) The correct answer is always in
the candidate responses list.

Conversation ranking
tasks and conversa-
tional QA

(III) The effectiveness of models for
small candidate lists generalize to
large collections.

Conversation ranking
tasks

(IV) Test instances from the same
dialogue are considered as indepen-
dent.

Conversation ranking
tasks, conversation gen-
eration tasks and con-
versational QA

(V) There is only one adequate an-
swer.

Conversation ranking
tasks, conversation gen-
eration tasks and con-
versational QA

contextU𝑖 is composed of the previous utterances {𝑢1, 𝑢2, ..., 𝑢𝜏 }
at the turn 𝜏 of the dialogue. The response 𝑟𝑖 is the 𝑢𝜏+1 utterance,
i.e., the ground-truth. The task is then to learn a model 𝑓 (.) that
is able to generate the response 𝑟𝑖 based on the dialogue context
U𝑖 . The majority of the research conducted in response generation
relies on data sets that are not information-seeking, e.g. movies
subtitles or chit-chat [10, 45, 55, 66].

Other generation tasks from conversational search that share
the same evaluation scheme of conversation response generation
are clarification question generation [44], the response is generated
on the go, and query reformulation [8], suggestions of follow-up
queries are generated. The evaluation of generative models re-
lies on word-overlap metrics inspired by machine translation, e.g.
BLEU [36], or text summarization, e.g. ROUGE [30]. Such metrics
have been extensively studied and criticized by the natural language
processing (NLP) community. There is empirical evidence that word-
overlap metrics do not correlate well with human judgments [32].
The complexity of the generation task evaluation is so high that
it is common to resort to expensive human evaluation, through
crowd-sourcing, lab experiments or in-field experiments [9].

2.3 Conversational Question Answering
This task is also known as conversational machine reading com-
prehension [7, 40, 46], and it concerns selecting spans from a
document as a response to the dialogue context. Formally, let
D = {(U𝑖 , 𝑎𝑖 , 𝑝𝑖 )}𝑁𝑖=1 be a data set consisting of 𝑁 triplets: dialogue
context, the answer span and the context passage. The dialogue
contextU𝑖 is composed of the previous utterances {𝑢1, 𝑢2, ..., 𝑢𝜏 }
at the turn 𝜏 of the dialogue. The answer span 𝑎𝑖 is composed of
the ground-truth start and finish indexes of the passage 𝑝𝑖 con-
taining the correct answer. The task is then to learn a model 𝑓 (.)
that is able to predict the answer span 𝑎𝑖 based on the dialogue
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Figure 2: Amount of word intersection between response
and the most similar historical responses.
context U𝑖 and the context passage 𝑝𝑖 . The evaluation is based on
the amount of words that are correct in the selected span, using
classification metrics such as the F-score. Extractive (span-based)
question answering is a very similar NLP task, for which similar
problems arise, such as unanswerable questions [41].

2.4 Premises and Limitations
(I) There is a complete pool of adequate responses that endure
over time. Our ranking tasks assume access to a pool of responses
that contains at least one appropriate answer to a given information
need. If we resort only to historical responses the maximum effec-
tiveness of a system would be very low. For example, in popular
benchmarks such as UDC [33] and MSDialog [39] the number of
responses that are exact matches with historical responses are less
than 11% and 2% respectively. As we see at Figure 2, most conver-
sations have only 50–60% words match, when compared to the
most similar historical response. This indicates that the maximum
accuracy achieved by a real-world system would be small, since
only the responses that semantically match a previous one can
be employed effectively. We also see that such exact matches are
often uninformative: 40% are utterances for which the intent is to
show gratitude, e.g.‘Thank you!’, compared to the 20% overall rate
in MSDialog. Another concern is that responses that were never
given before, e.g. questions about a recent Windows update, would
not be answerable by such a system even though this information
might be available on the web.

(II) The correct answer is always in the candidate responses
list. Neural ranking models are generally employed for the task
of re-ranking a set of documents in adhoc retrieval, obtained from
a recall-oriented and efficient first stage ranker [65]. While such
multi-stage approach offers a practical approach for conversational
response ranking, 12 of 13 benchmarks analyzed at Table 1 always
include the relevant response in the small candidate list to be re-
trieved and none require models to do full corpus retrieval.

(III) The effectiveness of models for small candidate lists
generalize to large collections. While in adhoc retrieval we have
to rank from a pool of millions of documents, current benchmarks
require models to retrieve responses from a list of 10–100 candidates
(12 out of 13 use less than 100 candidates, and 7 use only 10 candi-
dates). This makes the task unreasonably easy, as demonstrated by
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the 80% drop in performance from subtask 5 (120000 candidates)
and subtask 2 (100 candidates) of DTSC7-NOESIS [18]. Additionally,
5 of the 13 tasks sample instances randomly as opposed to using
a scoring function such as BM25, making the task even easier as
evidenced by the higher maximum evaluation metrics for random
negative sampled benchmarks in Table 1.

(IV) Test instances from the same dialogue are considered
as independent.When creating conversational datasets [20, 33, 39]
the default is to generate multiple instances from one dialogue: one
instance for each answer provided by the information provider com-
posed of the last information seeker utterance, and the dialogue
history. Even though multiple utterances come from the same di-
alogue, they are evaluated independently, e.g. an inappropriate
response in the beginning of a conversation does not change the
evaluation of a response given later by the system in the same
dialogue. All benchmarks analyzed in Table 1 evaluate instances
from the same dialogue independently. In a real-world scenario, if
a model fails in the start of the conversation, it has to recover from
unsatisfactory responses.

(V) There is only one adequate answer. Traditional offline eval-
uation cannot handle counterfactuals [3] such as what would have
happened if another response was given instead of the ground-truth
one. Due to the high cost of human labels, it is common to use only
one relevant response per context (the observed human response).
However, multiple responses could be correct to a given context
with different levels of relevance. Multiple answers can be right be-
cause they provide semantically similar responses or because they
are different but appropriate responses to an information-need.

3 CONCLUSION AND FUTURE DIRECTIONS
In this paper we argue that current evaluation schemes in conver-
sational search, as instantiated through popular tasks and bench-
marks, are extreme simplifications of the actual problem. Based on
our observations, we encourage work on the following directions
for each of the issues we described:

• (I) Creation of a pool of responses: creation of a compre-
hensive pool of responses from historical responses and other
sources e.g, creating responses from web documents. Study
whether hybrids of ranking and generation [60] that generate
the pool of responses to be ranked is a viable alternative to using
only historical responses.

• (II)Handling dialogue contexts that are unanswerable: study
the effect of candidate lists for which no adequate response to
the dialogue context exist, and how to automatically detect such
cases, e.g. through performance prediction [19], none-of-the-
above prediction [14, 18, 56] and uncertainty estimation [51].
Detecting if the current information-need still needs further clar-
ification and elucidation in order to make it answerable is also
an important research direction.

• (III) Ranking beyond 100 responses: methods for effective
retrieval from the entire pool of responses such as multi-stage
approaches that apply a recall-oriented first stage ranker [65].
Traditional IR methods which are efficient might not be effective
for retrieval of responses to be re-ranked [49]. Investigations of
the effectiveness of conversational search tasks for large corpus
retrieval, i.e. the generality effect [48].

• (IV) Take into account the dialogue evolution: When eval-
uating a model for retrieving responses, instead of having several
independent instances for each dialogue (one for each information-
provider response), consider a dialogue uniquely. For instance
by introducing evaluation metrics that take into account the
other responses from the same dialogue given by the system, e.g.
ranking relevant responses in the initial turns of the dialogue
leads to higher gains than ranking relevant responses in the last
turns of the dialogue.

• (V-a) Expanding the number of relevant responses: how to
expand the number of relevant response candidates, e.g para-
phrases [18] and adversarial examples [24], for information-
seeking conversations. In IR, the evaluation in a scenario of
limited relevance judgments has been studied [4, 63].

• (V-b) Counterfactual evaluation of dialogue: how to tell
what would have happened if answer B was given instead of A,
when there is no relevance label for answer B [22]. For exam-
ple, Carterette and Allan [6] proposed a evaluation scheme that
takes advantage of the similarity between documents with the
intuition that closely associated documents tend to be relevant
to the same information need.
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