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Editors’ Suggestion

Rabi and Ramsey oscillations of a Majorana qubit in a quantum dot-superconductor array
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The Kitaev chain can be engineered within a quantum dot-superconductor array, hosting Majorana zero modes
at fine-tuned sweet spots. In this work, we propose and simulate the occurrence of Rabi and Ramsey oscillations
to feasibly construct a minimal Majorana qubit in the quantum dot setup. Our real-time results incorporate
realistic effects, e.g., charge noise and leakage, reflecting the latest experimental progress. We demonstrate that
Majorana qubits with larger energy gaps exhibit significantly enhanced performance—longer dephasing times,
higher quality factors, reduced leakage probabilities, and improved visibilities—compared to those with smaller
gaps and with conventional quantum-dot-based charge qubits. We introduce a method for reading out Majorana
qubits via quantum capacitance measurements. Our work paves the way for future experiments on realizing
Majorana qubits in quantum dot-superconductor arrays.

DOI: 10.1103/PhysRevB.111.075416

I. INTRODUCTION

Majorana zero modes are non-Abelian anyonic excitations
localized at the defects or edges of a topological superconduc-
tor [1–16]. Qubits constructed from the Majorana excitations
are immune to local noise and are fault tolerant without active
error corrections, offering a pathway to implementing error-
resilient topological quantum computing [3,9]. Recently, the
quantum dot-superconductor array has become a promising
candidate for realizing topological Kitaev chains [2] in solid-
state physics using a concrete idea proposed a while ago
[17]. An advantage of this quantum-dot-based approach is
the intrinsic robustness against the effect of disorder that is
ubiquitous in semiconductor-superconductor Majorana plat-
forms [18–22]. In addition, utilizing Andreev bound states
in a hybrid region as the coupler enables precise control
over the relative amplitudes of normal and superconducting
interactions between quantum dots [23–27], thus allowing
for fine tuning of a quantum dot-superconductor array into
a sweet spot with optimally protected Majorana zero modes
[2,17,28]. Tunnel spectroscopic signatures of Majoranas have
been observed in recent experiments on quantum dots using
both nanowires [29–31] and two-dimensional electrons [32].

To decisively establish a Majorana qubit and demonstrate
its topologically enhanced coherence, Rabi oscillation exper-
iments on quantum-dot-based Kitaev chains are necessary
[33]. Additionally, understanding the topological coherence
and obtaining a sufficiently long coherence time is crucial
for detecting the non-Abelian statistics of Majorana anyons in
fusion [34] or braiding [35,36] experiments. Most importantly
(and as we demonstrate in the current work), such a Rabi

*Contact author: chunxiaoliu62@gmail.com

oscillation experiment is already feasible in currently avail-
able platforms [29–32], provided that two such minimal
Kitaev chains are interconnected via a common supercon-
ducting lead and are normal tunnel coupled at their ends [see
Fig. 1(a)].

In the current work, we propose Rabi and Ramsey oscil-
lation experiments in a minimal Majorana qubit composed
of double two-site Kitaev chains [see Fig. 1(a)]. Our real-
time simulations incorporate realistic effects such as charge
noise and leakage to the noncomputational bases. We find that
Majorana qubits constructed from large-gap Kitaev chains
significantly outperform those with smaller gaps and conven-
tional quantum-dot-based charge qubits in terms of dephasing
time, quality factor, leakage probability, and visibility. In ad-
dition, we propose a Majorana qubit readout method based
on quantum capacitance. Our work demonstrates the optimal
route to the first step of establishing a Majorana qubit as a
viable experimental entity, which has not been achieved in
the 15 years of experiments [37–40] and 25 years of theory
[1–3,41–43] on topological quantum computing.

II. SETUP AND HAMILTONIAN

A minimal Majorana qubit consists of double two-site
Kitaev chains, as shown in Fig. 1(a). The Hamiltonian is

Htot = HL + HR + Htunn,

Ha =
2∑

i=1

μainai + (tac†
a2ca1 + �aca2ca1 + H.c.),

Htunn = �c†
R1cL2 + H.c.

(1)

Here, Ha with a ∈ {L, R} is the Hamiltonian for the left
and right chain, respectively, with μai (i = 1, 2) the on-site
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FIG. 1. (a) Schematic of a Majorana qubit composed of double
two-site Kitaev chains. (b) Bloch sphere. |±z〉 are defined as |ee〉 and
|oo〉, respectively. The dots represent the trajectory of the state vector
in a Rabi experiment.

energy of a spin-polarized dot orbital, nai = c†
aicai = 0, 1 the

occupancy number, and ta and �a the strengths of the normal
and Andreev tunnelings. Htunn is the tunnel Hamiltonian, with
� being the strength of single-electron transfer between dots
from different chains. In the current work, we are particularly
interested in the sweet spot of the system, which is defined as
μai = 0 and ta = �a. Although �L and �R can be different
in strength, in the current work we assume them to be equal
to simplify the discussions. At that point, the even-parity
ground state |e〉a = (|00〉a − |11〉a)/

√
2 is degenerate with the

odd-parity one |o〉a = (|10〉a − |01〉a)/
√

2 within each Kitaev
chain, hosting a pair of Majorana zero modes at two separate
quantum dots. Here, |n1n2〉a = (c†

a1)n1 (c†
a2)n2 |0〉a, and |0〉a is

the vacuum state of chain a. Since total fermion parity is
conserved in the Hamiltonian of Eq. (1), we can focus on the
subspace with total parity even without loss of generality. As
such, the ground-state degeneracy is twofold,

|ee〉 ≡ |e〉L ⊗ |e〉R, |oo〉 ≡ |o〉L ⊗ |o〉R, (2)

which form the basis states of a Majorana qubit.
Rabi oscillations. In the qubit subspace spanned by |ee〉

and |oo〉, the low-energy effective Hamiltonian is

Heff = ε

2
σz + �

2
σx, (3)

where ε ≡ Eoo − Eee and σx/z are Pauli X/Z matrices. Here,
σz rotation is proportional to the ground-state energy splitting,
which we choose to be ε = tL − �L by detuning the hybrid
region in the left chain away from the sweet spot [30]. σx

rotation is realized by single-electron tunneling between the
two chains that can be controlled by a tunnel barrier. Moti-
vated by the form of Heff in Eq. (3), we perform a numerical
simulation of the Rabi and Ramsey experiments using the total
Hamiltonian Htot in Eq. (1). Here we implement the qubit
rotations by applying sequences of pulses of ε or � instead of
microwave driving because of the basis state degeneracy. In
particular, in the Rabi experiment, the system is initialized in
|ee〉 of two decoupled Kitaev chains at their sweet spots. This
corresponds to the north pole of the Bloch sphere. We then
turn on the interchain tunneling � and let the system evolve
for a time τ before performing a readout in the σz basis [see
pulse profiles in Fig. 2(a)]. Figure 2(b) shows the numerically
calculated Pee(τ ) ≡ |〈ee|ψ (τ )〉|2 in the (�, τ ) plane. Indeed,
the fringe pattern of Rabi oscillations confirms that single-
electron tunneling Htunn in Eq. (1) works as a σx rotation
in the qubit subspace, with the oscillation frequency being
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FIG. 2. Numerical simulations in the clean limit. Upper panels:
Numerical simulation of a Rabi experiment. (a) Pulse profiles. (b),
(c) Pee and Pleak in Eq. (7) in the (�, τ ) plane. Lower panels: Numeri-
cal simulation of a Ramsey experiment. (d) Pulse profiles. (e), (f) Pee

and Pleak in the (ε, τwait ) plane. Here, �L = �R = �.

proportional to �. However, surprisingly, we also find that the
state wave function can leak out of the qubit subspace with
a probability Pleak(τ ) ≡ 1 − Pee(τ ) − Poo(τ ), which oscillates
periodically in time and increases with the tunneling strength
� [see Fig. 2(c)]. Using time-dependent perturbation theory
(see Appendix B), we show that a finite interchain tunneling
� inevitably induces a leakage to the excited states of |e′e′〉
and |o′o′〉, i.e.,

Pleak(τ ) = Pe′e′ (τ ) + Po′o′ (τ ) ≈ �2

16�2
sin2 (2�τ/h̄), (4)

where |e′〉a = (|00〉a + |11〉a)/
√

2 and |o′〉a = (|10〉a +
|01〉a)/

√
2 are excited states in each chain and �L = �R = �.

Here the oscillation frequency of the leakage probability is
4�/h̄ and the magnitude scales with �2/�2. On the other
hand, in a Ramsey experiment, we first apply a pulse of Htunn

to rotate the initial state |ee〉 to the equator of the Bloch
sphere, then let it evolve for a time duration τwait in the
presence of a finite ε, and apply the same Htunn pulse again
before the final readout [see pulse profiles in Fig. 2(d)]. The
simulated Pee(τ ) in the (ε, τwait ) plane is shown in Fig. 2(e).
Here the small Pleak in Fig. 2(f) is due to the σx pulses,
while detuning the coupling tL − �L has a negligible impact
on the leakage probability. Both experiments are doable in
the currently available devices and provide complementary
information about Majorana coherence.

III. QUBIT DEPHASING

Charge noise is one of the primary sources of decoherence
in semiconductor-based qubits [44–51]. It can be induced
by charge impurities in the environment or fluctuations in
the nearby gate voltages. As a 1/ f noise, the fluctuations
are dominated by the low-frequency components, which can
be modeled by the quasistatic disorder approximation, since
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FIG. 3. Numerical simulations including charge noises. Upper
panels: Rabi oscillations of disorder-averaged 〈Pee〉. Lower panels:
Ramsey oscillations of disorder-averaged 〈Pee〉. (a), (d) Semicon-
ductor charge qubits. (b), (e) Small-gap Majorana qubits. (c), (f)
Large-gap Majorana qubits. The blue dots are data from numerical
simulations, while the red lines are fitting curves using Eq. (5). Here,
the size of the disorder ensemble is 500.

the zero-frequency part of the noise dominates [52,53]. That
is, in each run of the Rabi or Ramsey experiment, the Hamil-
tonian parameters in Eq. (1) are subject to a static disorder
that obeys normal distribution, and the final readout mea-
surement is averaged over 500 different disorder realizations,
giving 〈Pee(τ )〉. In particular, we simulate and compare three
different types of qubits: (1) a semiconductor charge qubit
with one electron in double quantum dots [51,54], (2) a small-
gap Majorana qubit [29], and (3) a large-gap Majorana qubit
[30,32]. Here a small (large) gap in the Kitaev chain corre-
sponds to the scenario where the dot-hybrid coupling strength
is smaller than (comparable to) the induced gap in the hybrid
region [55]. The mean values and standard deviations of the
Hamiltonian parameters that are subject to charge noises are
chosen according to the values reported in relevant experimen-
tal works, which are summarized in the Appendix F. Figure 3
shows the calculated Rabi and Ramsey oscillations of 〈Pee(τ )〉
with dephasing for all three types of qubits. The curves

with decaying envelopes are further fitted using the following
formula:

〈Pee(τ )〉 = P0 + A cos(2π f τ + φ0) exp −(τ/T2)β, (5)

where 2A is the visibility, T2 is the dephasing time, and β is
the decaying exponent. Their values are summarized in Table I
and, in addition, we define the quality factor as

Q = 2π f T2, (6)

and the leakage probability as

Pleak = lim
τ0→∞

∫ τ0

0
〈Pleak(τ )〉dτ/τ0, (7)

in the long-time limit where 〈Pleak(τ )〉 = 1 − 〈Pee(τ )〉 −
〈Poo(τ )〉 is the instantaneous value.

The Hamiltonian for a semiconductor charge qubit is

Hc =
(

εL �

� εR

)
, (8)

where the basis states are |10〉 and |01〉 with one electron in
the left or right quantum dot, εL (εR) is the corresponding
orbital energy in the left (right) dot, and � is the interdot
coupling strength. Here, the fluctuations of the dot energies
σε dominate the dephasing effect, compared to the fluctua-
tions of the interdot coupling strength σ� , due to the small
magnitude of �. In the Rabi experiment, the dot energies are
tuned into a sweet spot of εL = εR = 0, which is insensitive
to dot-energy detuning up to the first order, i.e., ∂E/∂εa = 0.
However, since the dot-energy fluctuations are large and com-
parable to the interdot coupling strength, e.g., σε = 3 µeV �
� = 5 µeV, the higher-order contributions (e.g., δE ∼ σ 2

ε /�)
lead to a short dephasing time T2 ≈ 2.50(7) ns for x rotations;
see Fig. 3(a). In the Ramsey experiment, to implement the
z rotation, we choose εL = −εR = 20 µeV � �, which is
much more susceptible to charge noise as ∂E/∂εa ≈ 1. Thus,
the dephasing time is even shorter, T2 ≈ 0.096(2) ns, and the
visibility is reduced; see Fig. 3(d). The consistency between
our T2 estimates and the experimental measurements reported
in Ref. [54] validates our modeling of the quantum dot
devices.

In a minimal two-site Kitaev chain that is in the vicinity
of the sweet spot, the energy splitting between the even-
and odd-parity ground states is approximately E ≡ Eo − Ee ≈

TABLE I. Comparison of qubit performances.

Protocol Qubit properties Charge qubit
Small-gap

Majorana qubit
Large-gap

Majorana qubit

Rabi T2 (ns) [Eq. (5)] 2.50(7) 9.25(5) 19.064(8)
Q [Eq. (6)] 38(1) 69.4(4) 144.7(5)
2A [Eq. (5)] 1.01(2) 0.958(1) 1.001(3)

Pleak [Eq. (7)] 0.035 5.7(8) × 10−4

β [Eq. (5)] 0.66(2) 1.87(2) 1.941(3)

Ramsey T2 (ns) [Eq. (5)] 0.096(2) 1.84(7) 11.23(1)
Q [Eq. (6)] 5.3(2) 5.6(2) 34.31(3)
2A [Eq. (5)] 0.77(2) 0.3716(8) 0.950(5)

Pleak [Eq. (7)] 0.0275(1) 3.31(6) × 10−5

β [Eq. (5)] 1.01(4) 0.57(2) 1.557(4)
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μ1μ2/2t + (t − �), where the first term is due to the simulta-
neous detuning of on-site dot energies, while the second term
is the detuning of the hybrid region. In a small-gap Majorana
qubit (i.e., small t ≡ � limit), the dot-energy fluctuations are
comparatively dominant, giving a characteristic energy split-
ting between the basis states δE ∼ σ 2

μ/t . For a Majorana qubit
defined in Fig. 1(a), such a δE leads to noise in the σz basis.
In the Rabi experiment, since the dot-energy noise (∝ σz) is
orthogonal to the σx rotation, the dephasing effect of the dot-
energy fluctuations is strongly mitigated (see the Appendix
F). As such, T2 ≈ 9.25(5) ns is jointly determined by the
fluctuations in the dot energies (∝ σz) as well as in the inter-
chain coupling strengths (∝ σx); see Fig. 3(b). In the Ramsey
experiment on σz rotations, the large dot-energy fluctuations
(∝ σz) cause a more detrimental effect on qubit dephasing,
giving a much shorter dephasing time T2 ≈ 1.84(7) ns and a
reduced visibility 2A ≈ 0.3716(8); see Fig. 3(e) and Table I.
Note that here the dephasing effect of charge noise in ta
and �a is negligible because of the weak dot-superconductor
hybridization.

On the contrary, the performance of a large-gap Majorana
qubit is much improved in almost all aspects, e.g., dephasing
time, quality factor, visibility, and leakage probability. The
strong dot-superconductor hybridization not only strongly
enhances the excitation gap of a Kitaev chain, but also trans-
forms the dot orbitals into Yu-Shiba-Rusinov states [56–58],
thus significantly screening the electric charge in the quan-
tum dots [30,32,55]. As a result, the energy splitting due
to μai fluctuations in the effective Kitaev chain is strongly
suppressed, i.e., σ 2

μ/t is reduced by a factor of ∼300 compared
to the small-gap Majorana qubit. Now the dominant source
of dephasing in the Rabi experiment is the charge noise in
�, giving T2 ≈ 19.064(8) ns; see Fig. 3(c). In the Ramsey
experiment, the fluctuations of ta − �a begin to dominate the
dephasing, giving T2 ≈ 11.23(1) ns; see Fig. 3(f). In addition,
a larger excitation gap in the Majorana qubit also greatly
suppresses the leakage probabilities (see Table I), consistent
with the analytic estimates shown in Eq. (7).

IV. QUBIT READOUT

To read out the Majorana qubits, we consider the quantum
capacitance measurement as shown in Fig. 4, which is defined
as

Cq = −∂2E

∂V 2
g

, (9)

in the zero-temperature limit [34]. Here, E is the eigenenergy,
and Vg is the gate voltage that controls the dot energy via μai =
αaiVg, with αai being the lever arm. Since the measurement
is performed when the two chains are decoupled, the result
would simply be a sum of the values in each chain, i.e., Cq =
CqL + CqR. Furthermore, in the equal-lever-arm regime (αa1 =
αa2 ≡ α), the quantum capacitance comes only from the even-
parity state within each chain, while that of the odd-parity one
is strongly suppressed [34]. Thus the quantum capacitances of
|ee〉 and |oo〉 are

Cee
q = α2

�L
+ α2

�R
, Coo

q = 0, (10)

0.6 0.8 1.0 1.2 1.4

ΔR/ΔL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
q

[α
2
/
Δ

L
]

|ee〉

|oo〉

|eo〉
|oe〉

FIG. 4. Quantum capacitance readout in Eq. (9) of the low-
energy states in a Majorana qubit. α is the magnitude of the lever
arm of the quantum dots, assumed to be identical for all dots. �L

(�R) are the superconducting coupling strengths in the left (right)
chains.

which are distinct from each other and therefore can be used
for qubit readout (see the Appendix G). Following the argu-
ment, we further obtain that Ceo

q = α2/�L and Coe
q = α2/�R,

which are different from both Cee
q and Coo

q . Therefore, in ad-
dition to qubit readout, Cq measurement can simultaneously
reveal the quasiparticle poisoning effect that transitions a Ma-
jorana qubit between states in different total parity space.

V. DISCUSSION

In the numerical simulations, we regard 1/ f charge noise
as the dominant source of decoherence in the proposed de-
vices, neglecting the quasiparticle poisoning effect because
this is the prevailing situation in semiconductor platforms.
For example, a poisoning time of ∼1 ms, as reported in a
similar semiconductor-superconductor hybrid device [59], is
much longer than the dephasing time considered here, ∼10 ns,
making poisoning insignificant for the current consideration
where 1/ f charge noise dominates decoherence. In addition,
here both Rabi and Ramsey experiments are simulated using
the most basic protocols for x and z rotations in order to
demonstrate the working principles and to provide a fair com-
parison between semiconductor charge qubits and Majorana
qubits. We emphasize that the system we consider [29–32] is
equivalent to semiconductor charge qubits if all superconduc-
tivity is removed from consideration. It is, therefore, possible
to further improve the dephasing time, e.g., by optimizing
the pulse profiles, by designing a form of interdot coupling
that is more resilient against charge noise, or by further
scaling up the Kitaev chain [27,31,60]. Such considerations
should be relevant once the basic Rabi and Ramsey oscil-
lations proposed by us are observed so that the elementary
concept of a Majorana qubit is established beyond the simplest
transport measurements prevalent so far in this subject. We
emphasize that our work establishes the feasibility of Rabi
oscillations in the already existing experimental platforms of
Refs. [29–32].
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VI. SUMMARY

We propose and simulate Rabi and Ramsey oscillation
experiments for a minimal Majorana qubit defined in coupled
quantum dot-superconductor arrays. Our realistic calculations
predict actual results of such an experiment and demon-
strate that the performance of large-gap Majorana qubits
significantly surpasses that of the small-gap counterparts and
traditional conventional charge qubits, although some en-
hancement over semiconductor charge qubits should already
manifest in the small-gap platforms. Consequently, conduct-
ing such experiments is both feasible and promising on
currently available Kitaev chain devices, utilizing existing
control and measurement technologies. Our work thus points
in an experimental direction of establishing the quantum dot
Majorana systems as a viable platform by showing how to
perform a completely different experiment, in the context of
Majorana systems. This would provide a crucial step toward
the realization of the first Majorana qubit in solid-state sys-
tems. In fact, the observation of stable Rabi oscillations is
synonymous with having a qubit, and our work establishes
that such a qubit experiment should be successful in the
existing Majorana platforms. The observation of Rabi oscil-
lations in this platform will establish that a feasible qubit
exists here, and may also establish that this qubit has substan-
tially enhanced coherence compared with the corresponding
semiconductor quantum-dot-based charge qubits with no
superconductors.
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APPENDIX A: MODEL

The system of the double two-site Kitaev chain is described
by the following Hamiltonian:

H = HL + HR + HT + Hμ, (A1)

where intrachain coupling in the left chain (site index 1 and 2)
and right chain (site index 3 and 4) is

HL = t
∑

(c†
L2cL1 + c†

L1cL2) + �(cL2cL1 + c†
L1c†

L2),

HR = t
∑

(c†
R2cR1 + c†

R1cR2) + �(cR2cR1 + c†
R1c†

R2), (A2)

the interchain hopping is

HT = �(c†
R1cL2 + c†

L2cR1), (A3)

and the on-site chemical potential is

Hμ =
∑

a∈{L,R}

2∑
i=1

μic
†
a,ica,i. (A4)

Up to a particle-hole transformation, we can choose t > 0,
� > 0, and � > 0.

Here, without the tunneling term � = 0, the two chains are
decoupled, where the sweet spot is achieved when t = �, and
μi = 0, leading to the ground-state manifold spanned by

|e〉L = 1√
2

(1 − c†
L1c†

L2)|0〉, |o〉L = 1√
2

(c†
L1 − c†

L2)|0〉,
(A5)

|e〉R = 1√
2

(1 − c†
R1c†

R2)|0〉, |o〉R = 1√
2

(c†
R1 − c†

R2)|0〉,
(A6)

for the left and right systems, respectively.
With the tunneling term, the ground state of the two chains

can be spanned by the two other single-chain excited states
denoted as

|e′〉L = 1√
2

(1 + c†
L1c†

L2)|0〉, |o′〉L = 1√
2

(c†
L1 + c†

L2)|0〉,
(A7)

|e′〉R = 1√
2

(1 + c†
R1c†

R2)|0〉, |o′〉R = 1√
2

(c†
R1 + c†

R2)|0〉.
(A8)

Therefore, |e〉L, |e′〉L, |o〉L, and |o′〉L (|e〉R, |e′〉R, |o〉R, and
|o′〉R) form the complete basis for the left (right) chain.

Without the loss of generality, we choose to work in
the even total parity, leading to a complete basis of |ee〉 ≡
|e〉L|e〉R, |oo〉, |e′e′〉, |o′o′〉, |ee′〉, |oo′〉, |e′e〉, and |o′o〉. With
this set of bases, the matrix representation of the sum of
Hamiltonian (A2) and (A3) is

HL + HR + HT =
(

h+ 0
0 h−

)
, (A9)

where h+ and h− are

h+ =

⎛
⎜⎜⎜⎜⎝

−2� −�/2 0 −�/2

−�/2 −2t �/2 0

0 �/2 2� �/2

−�/2 0 �/2 2t

⎞
⎟⎟⎟⎟⎠, (A10)

h− =

⎛
⎜⎜⎜⎜⎝

0 �/2 0 �/2

�/2 0 −�/2 0

0 −�/2 0 −�/2

�/2 0 −�/2 0

⎞
⎟⎟⎟⎟⎠. (A11)

Similarly, the matrix representation of the on-site chemical
potential given by Eq. (A4) is

Hμ = μ1234

2
1 + 1

2

(
0 hμ

h†
μ 0

)
, (A12)

where

hμ =

⎛
⎜⎜⎜⎜⎝

−μ34 0 −μ12 0

0 δμ34 0 δμ12

−μ12 0 −μ34 0

0 δμ12 0 δμ34

⎞
⎟⎟⎟⎟⎠, (A13)
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with the shorthand notions of μ1234 ≡ ∑4
i=1 μi, μ12 ≡ μ1 +

μ2, μ34 ≡ μ3 + μ4, δμ12 ≡ μ1 − μ2, and δμ34 ≡ μ3 − μ4.

APPENDIX B: LEAKAGE DUE TO �, t , AND �

In Eq. (3) in the main text, we considered the disorder
effect in ε and � before σz and σx. Here, we will consider
their leakage effect separately to understand the leakage that
is effectively on ε and �.

We first consider the effect of the disorder only in �, t , and
�, i.e., μi = 0, because Eq. (A9) is block diagonal, and given
the initial state is |ee〉, we only need to consider the subspace
of h+, where the Rabi oscillation is between |ee〉 and |oo〉 and
the leakage states are |e′e′〉 and |o′o′〉.

We use the time-dependent perturbation theory, where
Eq. (A9) is decomposed into the noninteracting part H0,

H0 =

⎛
⎜⎜⎜⎜⎝

−2� −�/2 0 0

−�/2 −2t 0 0

0 0 2� �/2

0 0 �/2 2t

⎞
⎟⎟⎟⎟⎠, (B1)

and the perturbation H1 as

H1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 −�/2

0 0 �/2 0

0 �/2 0 0

−�/2 0 0 0

⎞
⎟⎟⎟⎟⎠. (B2)

Conceptually, the first term H0 in Eq. (B1) accounts for the
Rabi oscillation between |ee〉 and |oo〉 (given the initial state
is |ee〉), and the second term H1 in Eq. (B2) leads to |e′e′〉 and
|o′o′〉.

The time-evolution operator (in the Schrödinger picture) is
expanded in the Dyson series (truncated at the first order) as

U (τ ) = e−iH0τ

[
1 − i

∫ τ

0
dτ1H1,I (τ1)

]
eiH0τ , (B3)

where H1,I (τ1) is H1 in the interacting picture,

H1,I (τ1) = eiH0τ H1e−iH0τ =
∑
i, j

〈i|H1| j〉ei(Ei−Ej )τ1 , (B4)

and |i〉 is the eigenvector of H0 with the eigenvalues of Ei.
The spectrum of H0 in Eq. (B1) is

−E+ :
(
cos

(
θ
2

)
sin

(
θ
2

)
0 0

)ᵀ
,

−E− :
(− sin

(
θ
2

)
cos

(
θ
2

)
0 0

)ᵀ
,

E− :
(
0 0 − sin

(
θ
2

)
cos

(
θ
2

))ᵀ
,

E+ :
(
0 0 cos

(
θ
2

)
sin

(
θ
2

))ᵀ
,

(B5)

where E± = � + t ±
√

(� − t )2 + (�/2)2 and tan θ = �/2
�−t .

We substitute the eigenvectors and eigenvalues of H0 into
Eq. (B4), with the initial state

|ψ (τ = 0)〉 = |ee〉 = (1 0 0 0)ᵀ, (B6)

and we have the (unnormalized) final state in the Schrödinger
picture as

|ψ (τ )〉 = U (τ )|ψ (τ = 0)〉 = |ψ (τ )〉

=

⎛
⎜⎜⎜⎜⎝

eiωτ [cos(�τ ) + i sin(�τ ) cos θ ]

eiωτ i sin(�τ ) sin θ

�
2ω

sin(ωτ ) sin(�τ ) sin θ

�
2ω

[− sin(�τ ) cos θ + i cos(�τ )] sin(ωτ )

⎞
⎟⎟⎟⎟⎠,

(B7)

where � =
√

(� − t )2 + (�/2)2 and ω = � + t .
Therefore, the Rabi oscillations between |ee〉 and |oo〉 have

the probability densities of

Pee(τ ) = |〈ee|ψ (τ )〉|2 = sin2 (�τ ) cos2 (θ ) + cos2 (�τ ),

Poo(τ ) = |〈oo|ψ (τ )〉|2 = sin2 (θ ) sin2 (�τ ), (B8)

and the leakage is

Pleak(τ ) = Pe′e′ (τ ) + Po′o′ (τ ) = |〈e′e′|ψ (τ )〉|2 + |〈o′o′|ψ (τ )〉|2

= �2 sin2 (ωτ )

4ω2
, (B9)

indicating that the leakage frequency is 2ω = 2(� + t ), which
is independent of the � and consistent with Fig. 2(b) in the
main text.

Specifically, at the sweep spot � = t , we have θ = π/2
and the probability densities are

Pee(τ ) = cos2 (�τ ),

Poo(τ ) = sin2 (�τ ),

Pleak(τ ) = �2

16�2
sin2 (2�τ ),

(B10)

recovering the Rabi frequency 2� = � in Fig. 2(a).

APPENDIX C: LEAKAGE DUE TO μ1

To consider the leakage effect in μ1 (or, equivalently, for
μ4 due to the inversion symmetry), we set all other parameters
to the sweet spot, including � = t0 and μ2 = μ3 = μ4 = 0.
Following the same time-dependent perturbation theory, the
noninteracting part Hμ1

0 is

Hμ1
0 = μ1

2
1 +

(
H0 0

0 h−

)
, (C1)

where H0 and h− are in Eq. (B1) and in Eq. (A11) (with � =
t), and the perturbation term Hμ1

1 is

Hμ1
1 =

(
H1 hμ1

h†
μ1

0

)
, (C2)

where H1 is in Eq. (B2) and Hμ1 is

hμ1 = 1

2

⎛
⎜⎜⎝

0 0 −μ1 0
0 0 0 μ1

−μ1 0 0 0
0 μ1 0 0

⎞
⎟⎟⎠, (C3)

from Eq. (A13).
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Here, the noninteracting term Hμ1
0 has the eigenvalues and eigenvectors as

−2�− �

2
+ μ1

2
:

1√
2

(1 1 0 0 0 0 0 0)ᵀ,

−2�+ �

2
+ μ1

2
:

1√
2

(−1 1 0 0 0 0 0 0)ᵀ,

2�− �

2
+ μ1

2
:

1√
2

(0 0 −1 1 0 0 0 0)ᵀ,

2� + �

2
+ μ1

2
:

1√
2

(0 0 1 1 0 0 0 0)ᵀ,

μ1

2
:

1√
2

(0 0 0 0 1 0 1 0)ᵀ,

μ1

2
:

1√
2

(0 0 0 0 0 −1 0 1)ᵀ,

−� + μ1

2
:

1

2
(0 0 0 0 1 1 −1 1)ᵀ,

� + μ1

2
:

1

2
(0 0 0 0 −1 1 1 1)ᵀ. (C4)

With the initial state |ee〉 = (1 0 0 0 0 0 0 0)ᵀ, the (unnormalized) final state in the Schrödinger picture is

ψμ1 (τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiτ (2�− μ1
2 ) cos

(
τ�
2

)
ieiτ (2�− μ1

2 ) sin
(

τ�
2

)
�

4�
e− iτμ1

2 sin (2τ�) sin
(

τ�
2

)
i�
4�

e− iτμ1
2 sin (2τ�) cos

(
τ�
2

)
1
2μ1eiτ (�− μ1

2 ) sin
(

τ�
2

)[
1

E−
e

iτ�
4 sin

(E−τ

2

) − 1
E+

e− iτ�
4 sin

(E+τ

2

)]
1
2μ1eiτ (�− μ1

2 ) cos
(

τ�
2

)[− 1
E−

ie
iτ�

4 sin
(E−τ

2

) + 1
E+

ie− iτ�
4 sin

(E+τ

2

)]
1
2μ1eiτ (�− μ1

2 ) cos
(

τ�
2

)[
1

E−
ie

iτ�
4 sin

(E−τ

2

) + 1
E+

ie− iτ�
4 sin

(E+τ

2

)]
1
2μ1eiτ (�− μ1

2 ) sin
(

τ�
2

)[
1

E−
e

iτ�
4 sin

(E−τ

2

) + 1
E+

e− iτ�
4 sin

(E+τ

2

)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C5)

where E± = 2� ± �/2.
Therefore, the leakage to the |e′e′〉 and |o′o′〉 is the same,

Pe′e′ (τ ) + Po′o′ (τ ) = |〈e′e′|ψμ1 (τ )〉|2 + |〈o′o′|ψμ1 (τ )〉|2 = �2 sin2 (2τ�)

16�2
, (C6)

and the leakage to |ee′〉, |oo′〉, |e′e〉, and |o′o〉 is

Pee′ (τ ) + Poo′ (τ ) + Pe′e(τ ) + Po′o(τ ) = |〈ee′|ψμ1 (τ )〉|2 + |〈oo′|ψμ1 (τ )〉|2 + |〈e′e|ψμ1 (τ )〉|2 + |〈o′o|ψμ1 (τ )〉|2

= μ2
1

2

(
sin2

(E−τ

2

)
E2−

+ sin2
(E+τ

2

)
E2+

)
. (C7)

This introduces a superposition of two frequencies E− and E+ in the leakage frequency, where the envelope frequency is E− +
E+ = 4� and the carrier frequency is E+ − E− = �.

APPENDIX D: LEAKAGE DUE TO μ2

The leakage effect in the other on-site chemical potential is μ2 (or μ3). Namely, we set μ1 = μ3 = μ4 = 0, and t = �. This
leads to the same noninteracting part Hμ2

0 = Hμ1
0 as in Eq. (C1), while the perturbation term Hμ2

1 is

Hμ2
1 =

(
H1 hμ2

h†
μ2

0

)
, (D1)
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where H1 is in Eq. (B2) and hμ2 is

hμ2 = 1

2

⎛
⎜⎜⎜⎜⎝

0 0 −μ2 0

0 0 0 −μ2

−μ2 0 0 0

0 −μ2 0 0

⎞
⎟⎟⎟⎟⎠. (D2)

Here, the noninteracting term Hμ2
0 has the same eigenvalues (with μ1 replaced with μ2) and eigenvectors as in Eq. (C4), and,

therefore, the final state in the Schrödinger picture starting from |ee〉 is

ψμ2 (τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiτ (2�− μ2
2 ) cos

(
τ�
2

)
ieiτ (2�− μ2

2 ) sin
(

τ�
2

)
�

4�
e− iτμ2

2 sin (2τ�) sin
(

τ�
2

)
i�
4�

e− iτμ2
2 sin (2τ�) cos

(
τ�
2

)
μ2

4 eiτ (�− μ2
2 )

[(
i sin

(
E−τ

2

)
E−

− i sin
(

E ′+τ

2

)
E ′+

)
e− iτ�

4 +
(

− i sin
(

E ′−τ

2

)
E ′−

+ i sin
(

E+τ

2

)
E+

)
e

iτ�
4

]

μ2

4 eiτ (�− μ2
2 )

[(
i sin

(
E−τ

2

)
E−

+ i sin
(

E ′+τ

2

)
E ′+

)
e− iτ�

4 +
(

− i sin
(

E ′−τ

2

)
E ′−

− i sin
(

E+τ

2

)
E+

)
e

iτ�
4

]

μ2

4 eiτ (�− μ2
2 )

[(
i sin

(
E−τ

2

)
E−

+ i sin
(

E ′+τ

2

)
E ′+

)
e− iτ�

4 +
(

i sin
(

E ′−τ

2

)
E ′−

+ i sin
(

E+τ

2

)
E+

)
e

iτ�
4

]

μ2

4 eiτ (�− μ2
2 )

[(
− i sin

(
E−τ

2

)
E−

+ i sin
(

E ′+τ

2

)
E ′+

)
e− iτ�

4 +
(

− i sin
(

E ′−τ

2

)
E ′−

+ i sin
(

E+τ

2

)
E+

)
e

iτ�
4

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D3)

where E± = 2� ± �/2 and E ′
± = 2� ± 3�/2.

Therefore, the leakage to the |e′e′〉 and |o′o′〉 is the same as Eq. (C7), and the leakage to |ee′〉, |oo′〉, |e′e〉, and |o′o〉 is

Pee′ (τ ) + Poo′ (τ ) + Pe′e(τ ) + Po′o(τ ) = |〈ee′|ψμ2 (τ )〉|2 + |〈oo′|ψμ2 (τ )〉|2 + |〈e′e|ψμ2 (τ )〉|2 + |〈o′o|ψμ2 (τ )〉|2

= μ2
2

4

(
sin2

(E−τ

2

)
E2−

+ sin2
(E+τ

2

)
E2+

+ sin2
(E ′

−τ

2

)
E ′−

2 + sin2
(E ′

+τ

2

)
E ′+

2

)
. (D4)

APPENDIX E: DEPHASING DUE TO DISORDER IN �

In this Appendix, we consider the dephasing effect which
is used to estimate T2. To focus only on the low-energy sector,
we work in the minimal two-level system where the Hilbert
space only includes |ee〉 and |oo〉. The effect of � acts like
the magnetic field along the x direction and, therefore, the
effective two-level Hamiltonian is

Hx = Bxσx, (E1)

where Bx is quasistatic disorder following the Gaussian dis-
tribution with the variance of σ 2

Bx
and mean of B̄x, i.e., Bx ∼

N (B̄x, σ
2
Bx

), σx is the Pauli X matrix, and the initial state is
ψx(τ = 0) = |ee〉.

Under the evolution of Hx, the final state ψx(τ ) is

ψx(τ ) = e−iHxτψx(τ = 0) =
(

cos(Bxτ )

−i sin(Bxτ )

)
. (E2)

Therefore, the probability of finding the state in |oo〉 is

Poo(τ ) = |〈oo|ψx(τ )〉|2 = sin2(Bxτ ). (E3)

Thus, the disorder-averaged probability is

〈Poo(τ )〉Bx = 1√
2πσBx

∫ ∞

−∞
dBxe

− (Bx−B̄x )2

2σ2
Bx sin2(Bxτ )

= 1

2
[1 + e−2τ 2σ 2

Bx cos(2B̄xτ )]. (E4)

Therefore, the decay of the envelope of 〈Poo(τ )〉Bx follows the
Gaussian decay with a prefactor of e−2τ 2σ 2

Bx , namely, β = 2
in the ansatz in Eq. (5) in the main text. This provides a
fundamental understanding of the ansatz in Eq. (5) in the main
text.

APPENDIX F: DEPHASING DUE TO DISORDER
IN μi, �, AND t

Besides the dephasing effect due to the disorder in �, we
also consider the dephasing effect due to the disorder in μi,
�, and t .

In practice, the disorder of these quantities acts like the
magnetic field along the z direction and, therefore, the effec-
tive two-level Hamiltonian is

Hxz = Bxσx + Bzσz, (F1)
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where Bx here is constant, Bz is quasistatic disorder following
the Gaussian distribution with the variance of σ 2

Bz
and mean of

0, i.e., Bz ∼ N (0, σ 2
Bz

), σz is the Pauli Z matrix, and the initial
state is again ψxz(τ = 0) = |ee〉.

Under the evolution of Hxz, the final state ψxz(τ ) is

ψxz(τ ) = e−iHxzτψxz(τ = 0)

=
(

cos
(√

B2
x + B2

z τ
) − i sin

(√
B2

x + B2
z τ

)
cos(θ )

−i sin
(√

B2
x + B2

z τ
)

sin(θ )

)
,

(F2)

where tan θ = Bx/Bz, and the probability of finding the state
in |oo〉 is

Poo(τ ) = |〈oo|ψxz(τ )〉|2 = sin2
(√

B2
x + B2

z τ
) B2

x

B2
x + B2

z

.

(F3)

Therefore, the disorder-averaged probability is

〈Poo(τ )〉Bz

= 1√
2πσBz

∫ ∞

−∞
dBze

− B2
z

2σ2
Bz sin2 (√

B2
x + B2

z τ
) B2

x

B2
x + B2

z

≈ 1√
2πσBz

∫ ∞

−∞
dBze

− B2
z

2σ2
Bz sin2

[(
B2

x + B2
z

2Bx

)
τ

]

= 1

4

⎛
⎜⎝2 − Bxe2iBxτ√

Bx
(
Bx − 2iσ 2

Bz
τ
) − Bxe−2iBxτ√

Bx
(
Bx + 2iσ 2

Bz
τ
)
⎞
⎟⎠,

(F4)

where the second line assumes the Bz � Bx such that√
B2

x + B2
z ≈ Bx + B2

z

2Bx
, and B2

x
B2

x+B2
z

≈ 1. Therefore, it shows a

power-law decay with 〈Poo(τ )〉Bz ∼ τ− 1
2 .

We provide the parameter for the numerical simulations
of qubit dephasing in Figs. 3(d)–3(f). For the charge qubit
in Fig. 3(d), we set εL/R ∼ N (0, 32), �L/R ∼ N (5, 0.052)
during the x pulse (i.e., with finite �L/R) in units of meV,
where N (μ, σ 2) is the normal distribution with mean μ and
variance σ 2; during the z pulse (i.e., with finite εL/R), we
set εL ∼ N (20, 32), εR ∼ N (−20, 32), �L/R ∼ N (0, 0.052)
in units of meV. For the small-gap Majorana qubit (all four
�1,2,3,4 = 12 meV) as shown in Fig. 3(e), during the x pulse,
we set four μ1,2,3,4 ∼ N (0, 32), tL/R ∼ N (12, 0.0162), and
� = 0.5 meV; during the z pulse, we set four μ1,2,3,4 ∼
N (0, 32), tL ∼ N (14, 0.0162), tR ∼ N (12, 0.0162), and � =
0 meV. For the large-gap Majorana qubit (all four �1,2,3,4 =
38 meV) as shown in Fig. 3(f), during the x pulse, we set
four μ1,2,3,4 ∼ N (0, 0.32), tL/R ∼ N (38, 0.0162), and � =
0.5 meV; during the z pulse, we set four μ1,2,3,4 ∼ N (0, 0.32),
tL ∼ N (40, 0.0162), tR ∼ N (38, 0.0162), and � = 0 meV.

APPENDIX G: QUANTUM CAPACITANCE
MEASUREMENT OF A MAJORANA QUBIT

In this Appendix, we show that the quantum capacitance
measurement is capable of reading out |ee〉 and |oo〉 in a
Majorana qubit. We first review the calculations in a single

Kitaev chain, and then generalize it to a Majorana qubit com-
posed of double Kitaev chains. The zero-temperature quantum
capacitance of a state is defined as

Cq = −∂2E

∂V 2
g

, (G1)

where E is the eigenenergy of the state and Vg is the gate
voltage. The Hamiltonian of a minimal Kitaev chain can be
decomposed into even- and odd-parity sectors due to Fermi
parity conservation. The even-parity Hamiltonian is

Heven =
(|00〉

|11〉
)T (

0 �

� μ1 + μ2

)(〈00|
〈11|

)
, (G2)

where μ1,2 are the on-site energies of the two dots and t,� are
the normal and Andreev couplings. The ground-state energy
Ee of |e〉 is

Ee = μ1 + μ2

2
−

√
�2 +

(
μ1 + μ2

2

)2

. (G3)

On the other hand, the derivative with respect to gate voltage
is

∂

∂Vg
= α1

∂

∂μ1
+ α2

∂

∂μ2
≈ α

(
∂

∂μ1
+ ∂

∂μ2

)
, (G4)

where αi ≡ dμi/dVg is the lever arm, and here we assume that
all dots share a similar value of lever arm α. Therefore, it is
straightforward to obtain the quantum capacitance of the even-
parity ground state as below,

Ce
q = −∂2Ee

∂V 2
g

= α2√
�2 + (

μ1+μ2

2

)2
− α2(μ1 + μ2)2

4
[
�2 + (

μ1+μ2

2

)2]3/2 .

(G5)

At the sweet spot of μ1 = μ2 = 0, we have

Ce
q = α2

�
. (G6)

On the other hand, the Hamiltonian in the odd-parity sector is

Hodd =
(|10〉

|01〉
)T

(
μ1 t

t μ2

)(
〈10|
〈01|

)
, (G7)

with the ground-state energy being

Eo = μ1 + μ2

2
−

√
t2 +

(
μ1 − μ2

2

)2

. (G8)

The corresponding quantum capacitance is

Co
q = 0, (G9)

due to the opposite signs of the coefficients in front of μ1 and
μ2 in the term of ( μ1−μ2

2 )2.
We now generalize our calculations to the quantum capac-

itance of the double Kitaev chain system. The eigenenergies
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of the ground states are simply the sum of the left and right
chains, i.e.,

Eab = EaL(μL1, μL2) + EbR(μR1, μR2), (G10)

where a, b denotes the parity e, o. We note that the μ depen-
dence of E is separable between the left and right chains,
which indicates that ∂/∂Vg → α( ∂

∂μL1
+ ∂

∂μL2
) for the left

chain energy, while ∂/∂Vg → α( ∂
∂μR1

+ ∂
∂μR2

) for the right
one. Therefore, we have

Cab
q = −∂2Eab

∂V 2
g

= −∂2EaL

∂V 2
g

− ∂2EbR

∂V 2
g

= CaL
q + CbR

q , (G11)

that is, the quantum capacitance of the state in the whole
system is a sum of the value in each chain separately. We

therefore have

Cee
q = α2

�L
+ α2

�R
,

Coo
q = 0,

Ceo
q = α2

�L
,

Coe
q = α2

�R
. (G12)

Therefore, one can distinguish between |ee〉 and |oo〉 states us-
ing the quantum capacitance measurement. Furthermore, the
values of Cq for |eo〉 and |oe〉 are generally very different from
the qubit states. Thus our method also provides a possible way
to investigate the quasiparticle poisoning effect by analyzing
the readout results of |eo〉 and |oe〉.
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The Kitaev chain can be engineered within a quantum dot-superconductor array, hosting Majorana zero modes
at fine-tuned sweet spots. In this work, we propose and simulate the occurrence of Rabi and Ramsey oscillations
to feasibly construct a minimal Majorana qubit in the quantum dot setup. Our real-time results incorporate
realistic effects, e.g., charge noise and leakage, reflecting the latest experimental progress. We demonstrate that
Majorana qubits with larger energy gaps exhibit significantly enhanced performance—longer dephasing times,
higher quality factors, reduced leakage probabilities, and improved visibilities—compared to those with smaller
gaps and with conventional quantum-dot-based charge qubits. We introduce a method for reading out Majorana
qubits via quantum capacitance measurements. Our work paves the way for future experiments on realizing
Majorana qubits in quantum dot-superconductor arrays.

DOI: 10.1103/PhysRevB.111.075416

I. INTRODUCTION

Majorana zero modes are non-Abelian anyonic excitations
localized at the defects or edges of a topological superconduc-
tor [1–16]. Qubits constructed from the Majorana excitations
are immune to local noise and are fault tolerant without active
error corrections, offering a pathway to implementing error-
resilient topological quantum computing [3,9]. Recently, the
quantum dot-superconductor array has become a promising
candidate for realizing topological Kitaev chains [2] in solid-
state physics using a concrete idea proposed a while ago
[17]. An advantage of this quantum-dot-based approach is
the intrinsic robustness against the effect of disorder that is
ubiquitous in semiconductor-superconductor Majorana plat-
forms [18–22]. In addition, utilizing Andreev bound states
in a hybrid region as the coupler enables precise control
over the relative amplitudes of normal and superconducting
interactions between quantum dots [23–27], thus allowing
for fine tuning of a quantum dot-superconductor array into
a sweet spot with optimally protected Majorana zero modes
[2,17,28]. Tunnel spectroscopic signatures of Majoranas have
been observed in recent experiments on quantum dots using
both nanowires [29–31] and two-dimensional electrons [32].

To decisively establish a Majorana qubit and demonstrate
its topologically enhanced coherence, Rabi oscillation exper-
iments on quantum-dot-based Kitaev chains are necessary
[33]. Additionally, understanding the topological coherence
and obtaining a sufficiently long coherence time is crucial
for detecting the non-Abelian statistics of Majorana anyons in
fusion [34] or braiding [35,36] experiments. Most importantly
(and as we demonstrate in the current work), such a Rabi

*Contact author: chunxiaoliu62@gmail.com

oscillation experiment is already feasible in currently avail-
able platforms [29–32], provided that two such minimal
Kitaev chains are interconnected via a common supercon-
ducting lead and are normal tunnel coupled at their ends [see
Fig. 1(a)].

In the current work, we propose Rabi and Ramsey oscil-
lation experiments in a minimal Majorana qubit composed
of double two-site Kitaev chains [see Fig. 1(a)]. Our real-
time simulations incorporate realistic effects such as charge
noise and leakage to the noncomputational bases. We find that
Majorana qubits constructed from large-gap Kitaev chains
significantly outperform those with smaller gaps and conven-
tional quantum-dot-based charge qubits in terms of dephasing
time, quality factor, leakage probability, and visibility. In ad-
dition, we propose a Majorana qubit readout method based
on quantum capacitance. Our work demonstrates the optimal
route to the first step of establishing a Majorana qubit as a
viable experimental entity, which has not been achieved in
the 15 years of experiments [37–40] and 25 years of theory
[1–3,41–43] on topological quantum computing.

II. SETUP AND HAMILTONIAN

A minimal Majorana qubit consists of double two-site
Kitaev chains, as shown in Fig. 1(a). The Hamiltonian is

Htot = HL + HR + Htunn,

Ha =
2∑

i=1

μainai + (tac†
a2ca1 + �aca2ca1 + H.c.),

Htunn = �c†
R1cL2 + H.c.

(1)

Here, Ha with a ∈ {L, R} is the Hamiltonian for the left
and right chain, respectively, with μai (i = 1, 2) the on-site
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FIG. 1. (a) Schematic of a Majorana qubit composed of double
two-site Kitaev chains. (b) Bloch sphere. |±z〉 are defined as |ee〉 and
|oo〉, respectively. The dots represent the trajectory of the state vector
in a Rabi experiment.

energy of a spin-polarized dot orbital, nai = c†
aicai = 0, 1 the

occupancy number, and ta and �a the strengths of the normal
and Andreev tunnelings. Htunn is the tunnel Hamiltonian, with
� being the strength of single-electron transfer between dots
from different chains. In the current work, we are particularly
interested in the sweet spot of the system, which is defined as
μai = 0 and ta = �a. Although �L and �R can be different
in strength, in the current work we assume them to be equal
to simplify the discussions. At that point, the even-parity
ground state |e〉a = (|00〉a − |11〉a)/

√
2 is degenerate with the

odd-parity one |o〉a = (|10〉a − |01〉a)/
√

2 within each Kitaev
chain, hosting a pair of Majorana zero modes at two separate
quantum dots. Here, |n1n2〉a = (c†

a1)n1 (c†
a2)n2 |0〉a, and |0〉a is

the vacuum state of chain a. Since total fermion parity is
conserved in the Hamiltonian of Eq. (1), we can focus on the
subspace with total parity even without loss of generality. As
such, the ground-state degeneracy is twofold,

|ee〉 ≡ |e〉L ⊗ |e〉R, |oo〉 ≡ |o〉L ⊗ |o〉R, (2)

which form the basis states of a Majorana qubit.
Rabi oscillations. In the qubit subspace spanned by |ee〉

and |oo〉, the low-energy effective Hamiltonian is

Heff = ε

2
σz + �

2
σx, (3)

where ε ≡ Eoo − Eee and σx/z are Pauli X/Z matrices. Here,
σz rotation is proportional to the ground-state energy splitting,
which we choose to be ε = tL − �L by detuning the hybrid
region in the left chain away from the sweet spot [30]. σx

rotation is realized by single-electron tunneling between the
two chains that can be controlled by a tunnel barrier. Moti-
vated by the form of Heff in Eq. (3), we perform a numerical
simulation of the Rabi and Ramsey experiments using the total
Hamiltonian Htot in Eq. (1). Here we implement the qubit
rotations by applying sequences of pulses of ε or � instead of
microwave driving because of the basis state degeneracy. In
particular, in the Rabi experiment, the system is initialized in
|ee〉 of two decoupled Kitaev chains at their sweet spots. This
corresponds to the north pole of the Bloch sphere. We then
turn on the interchain tunneling � and let the system evolve
for a time τ before performing a readout in the σz basis [see
pulse profiles in Fig. 2(a)]. Figure 2(b) shows the numerically
calculated Pee(τ ) ≡ |〈ee|ψ (τ )〉|2 in the (�, τ ) plane. Indeed,
the fringe pattern of Rabi oscillations confirms that single-
electron tunneling Htunn in Eq. (1) works as a σx rotation
in the qubit subspace, with the oscillation frequency being

τ
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0 1Γ/Δ

0

30

τ
[�

/
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a
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]
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FIG. 2. Numerical simulations in the clean limit. Upper panels:
Numerical simulation of a Rabi experiment. (a) Pulse profiles. (b),
(c) Pee and Pleak in Eq. (7) in the (�, τ ) plane. Lower panels: Numeri-
cal simulation of a Ramsey experiment. (d) Pulse profiles. (e), (f) Pee

and Pleak in the (ε, τwait ) plane. Here, �L = �R = �.

proportional to �. However, surprisingly, we also find that the
state wave function can leak out of the qubit subspace with
a probability Pleak(τ ) ≡ 1 − Pee(τ ) − Poo(τ ), which oscillates
periodically in time and increases with the tunneling strength
� [see Fig. 2(c)]. Using time-dependent perturbation theory
(see Appendix B), we show that a finite interchain tunneling
� inevitably induces a leakage to the excited states of |e′e′〉
and |o′o′〉, i.e.,

Pleak(τ ) = Pe′e′ (τ ) + Po′o′ (τ ) ≈ �2

16�2
sin2 (2�τ/h̄), (4)

where |e′〉a = (|00〉a + |11〉a)/
√

2 and |o′〉a = (|10〉a +
|01〉a)/

√
2 are excited states in each chain and �L = �R = �.

Here the oscillation frequency of the leakage probability is
4�/h̄ and the magnitude scales with �2/�2. On the other
hand, in a Ramsey experiment, we first apply a pulse of Htunn

to rotate the initial state |ee〉 to the equator of the Bloch
sphere, then let it evolve for a time duration τwait in the
presence of a finite ε, and apply the same Htunn pulse again
before the final readout [see pulse profiles in Fig. 2(d)]. The
simulated Pee(τ ) in the (ε, τwait ) plane is shown in Fig. 2(e).
Here the small Pleak in Fig. 2(f) is due to the σx pulses,
while detuning the coupling tL − �L has a negligible impact
on the leakage probability. Both experiments are doable in
the currently available devices and provide complementary
information about Majorana coherence.

III. QUBIT DEPHASING

Charge noise is one of the primary sources of decoherence
in semiconductor-based qubits [44–51]. It can be induced
by charge impurities in the environment or fluctuations in
the nearby gate voltages. As a 1/ f noise, the fluctuations
are dominated by the low-frequency components, which can
be modeled by the quasistatic disorder approximation, since
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FIG. 3. Numerical simulations including charge noises. Upper
panels: Rabi oscillations of disorder-averaged 〈Pee〉. Lower panels:
Ramsey oscillations of disorder-averaged 〈Pee〉. (a), (d) Semicon-
ductor charge qubits. (b), (e) Small-gap Majorana qubits. (c), (f)
Large-gap Majorana qubits. The blue dots are data from numerical
simulations, while the red lines are fitting curves using Eq. (5). Here,
the size of the disorder ensemble is 500.

the zero-frequency part of the noise dominates [52,53]. That
is, in each run of the Rabi or Ramsey experiment, the Hamil-
tonian parameters in Eq. (1) are subject to a static disorder
that obeys normal distribution, and the final readout mea-
surement is averaged over 500 different disorder realizations,
giving 〈Pee(τ )〉. In particular, we simulate and compare three
different types of qubits: (1) a semiconductor charge qubit
with one electron in double quantum dots [51,54], (2) a small-
gap Majorana qubit [29], and (3) a large-gap Majorana qubit
[30,32]. Here a small (large) gap in the Kitaev chain corre-
sponds to the scenario where the dot-hybrid coupling strength
is smaller than (comparable to) the induced gap in the hybrid
region [55]. The mean values and standard deviations of the
Hamiltonian parameters that are subject to charge noises are
chosen according to the values reported in relevant experimen-
tal works, which are summarized in the Appendix F. Figure 3
shows the calculated Rabi and Ramsey oscillations of 〈Pee(τ )〉
with dephasing for all three types of qubits. The curves

with decaying envelopes are further fitted using the following
formula:

〈Pee(τ )〉 = P0 + A cos(2π f τ + φ0) exp −(τ/T2)β, (5)

where 2A is the visibility, T2 is the dephasing time, and β is
the decaying exponent. Their values are summarized in Table I
and, in addition, we define the quality factor as

Q = 2π f T2, (6)

and the leakage probability as

Pleak = lim
τ0→∞

∫ τ0

0
〈Pleak(τ )〉dτ/τ0, (7)

in the long-time limit where 〈Pleak(τ )〉 = 1 − 〈Pee(τ )〉 −
〈Poo(τ )〉 is the instantaneous value.

The Hamiltonian for a semiconductor charge qubit is

Hc =
(

εL �

� εR

)
, (8)

where the basis states are |10〉 and |01〉 with one electron in
the left or right quantum dot, εL (εR) is the corresponding
orbital energy in the left (right) dot, and � is the interdot
coupling strength. Here, the fluctuations of the dot energies
σε dominate the dephasing effect, compared to the fluctua-
tions of the interdot coupling strength σ� , due to the small
magnitude of �. In the Rabi experiment, the dot energies are
tuned into a sweet spot of εL = εR = 0, which is insensitive
to dot-energy detuning up to the first order, i.e., ∂E/∂εa = 0.
However, since the dot-energy fluctuations are large and com-
parable to the interdot coupling strength, e.g., σε = 3 µeV �
� = 5 µeV, the higher-order contributions (e.g., δE ∼ σ 2

ε /�)
lead to a short dephasing time T2 ≈ 2.50(7) ns for x rotations;
see Fig. 3(a). In the Ramsey experiment, to implement the
z rotation, we choose εL = −εR = 20 µeV � �, which is
much more susceptible to charge noise as ∂E/∂εa ≈ 1. Thus,
the dephasing time is even shorter, T2 ≈ 0.096(2) ns, and the
visibility is reduced; see Fig. 3(d). The consistency between
our T2 estimates and the experimental measurements reported
in Ref. [54] validates our modeling of the quantum dot
devices.

In a minimal two-site Kitaev chain that is in the vicinity
of the sweet spot, the energy splitting between the even-
and odd-parity ground states is approximately E ≡ Eo − Ee ≈

TABLE I. Comparison of qubit performances.

Protocol Qubit properties Charge qubit
Small-gap

Majorana qubit
Large-gap

Majorana qubit

Rabi T2 (ns) [Eq. (5)] 2.50(7) 9.25(5) 19.064(8)
Q [Eq. (6)] 38(1) 69.4(4) 144.7(5)
2A [Eq. (5)] 1.01(2) 0.958(1) 1.001(3)

Pleak [Eq. (7)] 0.035 5.7(8) × 10−4

β [Eq. (5)] 0.66(2) 1.87(2) 1.941(3)

Ramsey T2 (ns) [Eq. (5)] 0.096(2) 1.84(7) 11.23(1)
Q [Eq. (6)] 5.3(2) 5.6(2) 34.31(3)
2A [Eq. (5)] 0.77(2) 0.3716(8) 0.950(5)

Pleak [Eq. (7)] 0.0275(1) 3.31(6) × 10−5

β [Eq. (5)] 1.01(4) 0.57(2) 1.557(4)
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μ1μ2/2t + (t − �), where the first term is due to the simulta-
neous detuning of on-site dot energies, while the second term
is the detuning of the hybrid region. In a small-gap Majorana
qubit (i.e., small t ≡ � limit), the dot-energy fluctuations are
comparatively dominant, giving a characteristic energy split-
ting between the basis states δE ∼ σ 2

μ/t . For a Majorana qubit
defined in Fig. 1(a), such a δE leads to noise in the σz basis.
In the Rabi experiment, since the dot-energy noise (∝ σz) is
orthogonal to the σx rotation, the dephasing effect of the dot-
energy fluctuations is strongly mitigated (see the Appendix
F). As such, T2 ≈ 9.25(5) ns is jointly determined by the
fluctuations in the dot energies (∝ σz) as well as in the inter-
chain coupling strengths (∝ σx); see Fig. 3(b). In the Ramsey
experiment on σz rotations, the large dot-energy fluctuations
(∝ σz) cause a more detrimental effect on qubit dephasing,
giving a much shorter dephasing time T2 ≈ 1.84(7) ns and a
reduced visibility 2A ≈ 0.3716(8); see Fig. 3(e) and Table I.
Note that here the dephasing effect of charge noise in ta
and �a is negligible because of the weak dot-superconductor
hybridization.

On the contrary, the performance of a large-gap Majorana
qubit is much improved in almost all aspects, e.g., dephasing
time, quality factor, visibility, and leakage probability. The
strong dot-superconductor hybridization not only strongly
enhances the excitation gap of a Kitaev chain, but also trans-
forms the dot orbitals into Yu-Shiba-Rusinov states [56–58],
thus significantly screening the electric charge in the quan-
tum dots [30,32,55]. As a result, the energy splitting due
to μai fluctuations in the effective Kitaev chain is strongly
suppressed, i.e., σ 2

μ/t is reduced by a factor of ∼300 compared
to the small-gap Majorana qubit. Now the dominant source
of dephasing in the Rabi experiment is the charge noise in
�, giving T2 ≈ 19.064(8) ns; see Fig. 3(c). In the Ramsey
experiment, the fluctuations of ta − �a begin to dominate the
dephasing, giving T2 ≈ 11.23(1) ns; see Fig. 3(f). In addition,
a larger excitation gap in the Majorana qubit also greatly
suppresses the leakage probabilities (see Table I), consistent
with the analytic estimates shown in Eq. (7).

IV. QUBIT READOUT

To read out the Majorana qubits, we consider the quantum
capacitance measurement as shown in Fig. 4, which is defined
as

Cq = −∂2E

∂V 2
g

, (9)

in the zero-temperature limit [34]. Here, E is the eigenenergy,
and Vg is the gate voltage that controls the dot energy via μai =
αaiVg, with αai being the lever arm. Since the measurement
is performed when the two chains are decoupled, the result
would simply be a sum of the values in each chain, i.e., Cq =
CqL + CqR. Furthermore, in the equal-lever-arm regime (αa1 =
αa2 ≡ α), the quantum capacitance comes only from the even-
parity state within each chain, while that of the odd-parity one
is strongly suppressed [34]. Thus the quantum capacitances of
|ee〉 and |oo〉 are

Cee
q = α2

�L
+ α2

�R
, Coo

q = 0, (10)
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FIG. 4. Quantum capacitance readout in Eq. (9) of the low-
energy states in a Majorana qubit. α is the magnitude of the lever
arm of the quantum dots, assumed to be identical for all dots. �L

(�R) are the superconducting coupling strengths in the left (right)
chains.

which are distinct from each other and therefore can be used
for qubit readout (see the Appendix G). Following the argu-
ment, we further obtain that Ceo

q = α2/�L and Coe
q = α2/�R,

which are different from both Cee
q and Coo

q . Therefore, in ad-
dition to qubit readout, Cq measurement can simultaneously
reveal the quasiparticle poisoning effect that transitions a Ma-
jorana qubit between states in different total parity space.

V. DISCUSSION

In the numerical simulations, we regard 1/ f charge noise
as the dominant source of decoherence in the proposed de-
vices, neglecting the quasiparticle poisoning effect because
this is the prevailing situation in semiconductor platforms.
For example, a poisoning time of ∼1 ms, as reported in a
similar semiconductor-superconductor hybrid device [59], is
much longer than the dephasing time considered here, ∼10 ns,
making poisoning insignificant for the current consideration
where 1/ f charge noise dominates decoherence. In addition,
here both Rabi and Ramsey experiments are simulated using
the most basic protocols for x and z rotations in order to
demonstrate the working principles and to provide a fair com-
parison between semiconductor charge qubits and Majorana
qubits. We emphasize that the system we consider [29–32] is
equivalent to semiconductor charge qubits if all superconduc-
tivity is removed from consideration. It is, therefore, possible
to further improve the dephasing time, e.g., by optimizing
the pulse profiles, by designing a form of interdot coupling
that is more resilient against charge noise, or by further
scaling up the Kitaev chain [27,31,60]. Such considerations
should be relevant once the basic Rabi and Ramsey oscil-
lations proposed by us are observed so that the elementary
concept of a Majorana qubit is established beyond the simplest
transport measurements prevalent so far in this subject. We
emphasize that our work establishes the feasibility of Rabi
oscillations in the already existing experimental platforms of
Refs. [29–32].
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VI. SUMMARY

We propose and simulate Rabi and Ramsey oscillation
experiments for a minimal Majorana qubit defined in coupled
quantum dot-superconductor arrays. Our realistic calculations
predict actual results of such an experiment and demon-
strate that the performance of large-gap Majorana qubits
significantly surpasses that of the small-gap counterparts and
traditional conventional charge qubits, although some en-
hancement over semiconductor charge qubits should already
manifest in the small-gap platforms. Consequently, conduct-
ing such experiments is both feasible and promising on
currently available Kitaev chain devices, utilizing existing
control and measurement technologies. Our work thus points
in an experimental direction of establishing the quantum dot
Majorana systems as a viable platform by showing how to
perform a completely different experiment, in the context of
Majorana systems. This would provide a crucial step toward
the realization of the first Majorana qubit in solid-state sys-
tems. In fact, the observation of stable Rabi oscillations is
synonymous with having a qubit, and our work establishes
that such a qubit experiment should be successful in the
existing Majorana platforms. The observation of Rabi oscil-
lations in this platform will establish that a feasible qubit
exists here, and may also establish that this qubit has substan-
tially enhanced coherence compared with the corresponding
semiconductor quantum-dot-based charge qubits with no
superconductors.
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APPENDIX A: MODEL

The system of the double two-site Kitaev chain is described
by the following Hamiltonian:

H = HL + HR + HT + Hμ, (A1)

where intrachain coupling in the left chain (site index 1 and 2)
and right chain (site index 3 and 4) is

HL = t
∑

(c†
L2cL1 + c†

L1cL2) + �(cL2cL1 + c†
L1c†

L2),

HR = t
∑

(c†
R2cR1 + c†

R1cR2) + �(cR2cR1 + c†
R1c†

R2), (A2)

the interchain hopping is

HT = �(c†
R1cL2 + c†

L2cR1), (A3)

and the on-site chemical potential is

Hμ =
∑

a∈{L,R}

2∑
i=1

μic
†
a,ica,i. (A4)

Up to a particle-hole transformation, we can choose t > 0,
� > 0, and � > 0.

Here, without the tunneling term � = 0, the two chains are
decoupled, where the sweet spot is achieved when t = �, and
μi = 0, leading to the ground-state manifold spanned by

|e〉L = 1√
2

(1 − c†
L1c†

L2)|0〉, |o〉L = 1√
2

(c†
L1 − c†

L2)|0〉,
(A5)

|e〉R = 1√
2

(1 − c†
R1c†

R2)|0〉, |o〉R = 1√
2

(c†
R1 − c†

R2)|0〉,
(A6)

for the left and right systems, respectively.
With the tunneling term, the ground state of the two chains

can be spanned by the two other single-chain excited states
denoted as

|e′〉L = 1√
2

(1 + c†
L1c†

L2)|0〉, |o′〉L = 1√
2

(c†
L1 + c†

L2)|0〉,
(A7)

|e′〉R = 1√
2

(1 + c†
R1c†

R2)|0〉, |o′〉R = 1√
2

(c†
R1 + c†

R2)|0〉.
(A8)

Therefore, |e〉L, |e′〉L, |o〉L, and |o′〉L (|e〉R, |e′〉R, |o〉R, and
|o′〉R) form the complete basis for the left (right) chain.

Without the loss of generality, we choose to work in
the even total parity, leading to a complete basis of |ee〉 ≡
|e〉L|e〉R, |oo〉, |e′e′〉, |o′o′〉, |ee′〉, |oo′〉, |e′e〉, and |o′o〉. With
this set of bases, the matrix representation of the sum of
Hamiltonian (A2) and (A3) is

HL + HR + HT =
(

h+ 0
0 h−

)
, (A9)

where h+ and h− are

h+ =

⎛
⎜⎜⎜⎜⎝

−2� −�/2 0 −�/2

−�/2 −2t �/2 0

0 �/2 2� �/2

−�/2 0 �/2 2t

⎞
⎟⎟⎟⎟⎠, (A10)

h− =

⎛
⎜⎜⎜⎜⎝

0 �/2 0 �/2

�/2 0 −�/2 0

0 −�/2 0 −�/2

�/2 0 −�/2 0

⎞
⎟⎟⎟⎟⎠. (A11)

Similarly, the matrix representation of the on-site chemical
potential given by Eq. (A4) is

Hμ = μ1234

2
1 + 1

2

(
0 hμ

h†
μ 0

)
, (A12)

where

hμ =

⎛
⎜⎜⎜⎜⎝

−μ34 0 −μ12 0

0 δμ34 0 δμ12

−μ12 0 −μ34 0

0 δμ12 0 δμ34

⎞
⎟⎟⎟⎟⎠, (A13)
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with the shorthand notions of μ1234 ≡ ∑4
i=1 μi, μ12 ≡ μ1 +

μ2, μ34 ≡ μ3 + μ4, δμ12 ≡ μ1 − μ2, and δμ34 ≡ μ3 − μ4.

APPENDIX B: LEAKAGE DUE TO �, t , AND �

In Eq. (3) in the main text, we considered the disorder
effect in ε and � before σz and σx. Here, we will consider
their leakage effect separately to understand the leakage that
is effectively on ε and �.

We first consider the effect of the disorder only in �, t , and
�, i.e., μi = 0, because Eq. (A9) is block diagonal, and given
the initial state is |ee〉, we only need to consider the subspace
of h+, where the Rabi oscillation is between |ee〉 and |oo〉 and
the leakage states are |e′e′〉 and |o′o′〉.

We use the time-dependent perturbation theory, where
Eq. (A9) is decomposed into the noninteracting part H0,

H0 =

⎛
⎜⎜⎜⎜⎝

−2� −�/2 0 0

−�/2 −2t 0 0

0 0 2� �/2

0 0 �/2 2t

⎞
⎟⎟⎟⎟⎠, (B1)

and the perturbation H1 as

H1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 −�/2

0 0 �/2 0

0 �/2 0 0

−�/2 0 0 0

⎞
⎟⎟⎟⎟⎠. (B2)

Conceptually, the first term H0 in Eq. (B1) accounts for the
Rabi oscillation between |ee〉 and |oo〉 (given the initial state
is |ee〉), and the second term H1 in Eq. (B2) leads to |e′e′〉 and
|o′o′〉.

The time-evolution operator (in the Schrödinger picture) is
expanded in the Dyson series (truncated at the first order) as

U (τ ) = e−iH0τ

[
1 − i

∫ τ

0
dτ1H1,I (τ1)

]
eiH0τ , (B3)

where H1,I (τ1) is H1 in the interacting picture,

H1,I (τ1) = eiH0τ H1e−iH0τ =
∑
i, j

〈i|H1| j〉ei(Ei−Ej )τ1 , (B4)

and |i〉 is the eigenvector of H0 with the eigenvalues of Ei.
The spectrum of H0 in Eq. (B1) is

−E+ :
(
cos

(
θ
2

)
sin

(
θ
2

)
0 0

)ᵀ
,

−E− :
(− sin

(
θ
2

)
cos

(
θ
2

)
0 0

)ᵀ
,

E− :
(
0 0 − sin

(
θ
2

)
cos

(
θ
2

))ᵀ
,

E+ :
(
0 0 cos

(
θ
2

)
sin

(
θ
2

))ᵀ
,

(B5)

where E± = � + t ±
√

(� − t )2 + (�/2)2 and tan θ = �/2
�−t .

We substitute the eigenvectors and eigenvalues of H0 into
Eq. (B4), with the initial state

|ψ (τ = 0)〉 = |ee〉 = (1 0 0 0)ᵀ, (B6)

and we have the (unnormalized) final state in the Schrödinger
picture as

|ψ (τ )〉 = U (τ )|ψ (τ = 0)〉 = |ψ (τ )〉

=

⎛
⎜⎜⎜⎜⎝

eiωτ [cos(�τ ) + i sin(�τ ) cos θ ]

eiωτ i sin(�τ ) sin θ

�
2ω

sin(ωτ ) sin(�τ ) sin θ

�
2ω

[− sin(�τ ) cos θ + i cos(�τ )] sin(ωτ )

⎞
⎟⎟⎟⎟⎠,

(B7)

where � =
√

(� − t )2 + (�/2)2 and ω = � + t .
Therefore, the Rabi oscillations between |ee〉 and |oo〉 have

the probability densities of

Pee(τ ) = |〈ee|ψ (τ )〉|2 = sin2 (�τ ) cos2 (θ ) + cos2 (�τ ),

Poo(τ ) = |〈oo|ψ (τ )〉|2 = sin2 (θ ) sin2 (�τ ), (B8)

and the leakage is

Pleak(τ ) = Pe′e′ (τ ) + Po′o′ (τ ) = |〈e′e′|ψ (τ )〉|2 + |〈o′o′|ψ (τ )〉|2

= �2 sin2 (ωτ )

4ω2
, (B9)

indicating that the leakage frequency is 2ω = 2(� + t ), which
is independent of the � and consistent with Fig. 2(b) in the
main text.

Specifically, at the sweep spot � = t , we have θ = π/2
and the probability densities are

Pee(τ ) = cos2 (�τ ),

Poo(τ ) = sin2 (�τ ),

Pleak(τ ) = �2

16�2
sin2 (2�τ ),

(B10)

recovering the Rabi frequency 2� = � in Fig. 2(a).

APPENDIX C: LEAKAGE DUE TO μ1

To consider the leakage effect in μ1 (or, equivalently, for
μ4 due to the inversion symmetry), we set all other parameters
to the sweet spot, including � = t0 and μ2 = μ3 = μ4 = 0.
Following the same time-dependent perturbation theory, the
noninteracting part Hμ1

0 is

Hμ1
0 = μ1

2
1 +

(
H0 0

0 h−

)
, (C1)

where H0 and h− are in Eq. (B1) and in Eq. (A11) (with � =
t), and the perturbation term Hμ1

1 is

Hμ1
1 =

(
H1 hμ1

h†
μ1

0

)
, (C2)

where H1 is in Eq. (B2) and Hμ1 is

hμ1 = 1

2

⎛
⎜⎜⎝

0 0 −μ1 0
0 0 0 μ1

−μ1 0 0 0
0 μ1 0 0

⎞
⎟⎟⎠, (C3)

from Eq. (A13).
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Here, the noninteracting term Hμ1
0 has the eigenvalues and eigenvectors as

−2�− �

2
+ μ1

2
:

1√
2

(1 1 0 0 0 0 0 0)ᵀ,

−2�+ �

2
+ μ1

2
:

1√
2

(−1 1 0 0 0 0 0 0)ᵀ,

2�− �

2
+ μ1

2
:

1√
2

(0 0 −1 1 0 0 0 0)ᵀ,

2� + �

2
+ μ1

2
:

1√
2

(0 0 1 1 0 0 0 0)ᵀ,

μ1

2
:

1√
2

(0 0 0 0 1 0 1 0)ᵀ,

μ1

2
:

1√
2

(0 0 0 0 0 −1 0 1)ᵀ,

−� + μ1

2
:

1

2
(0 0 0 0 1 1 −1 1)ᵀ,

� + μ1

2
:

1

2
(0 0 0 0 −1 1 1 1)ᵀ. (C4)

With the initial state |ee〉 = (1 0 0 0 0 0 0 0)ᵀ, the (unnormalized) final state in the Schrödinger picture is

ψμ1 (τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiτ (2�− μ1
2 ) cos

(
τ�
2

)
ieiτ (2�− μ1

2 ) sin
(

τ�
2

)
�

4�
e− iτμ1

2 sin (2τ�) sin
(

τ�
2

)
i�
4�

e− iτμ1
2 sin (2τ�) cos

(
τ�
2

)
1
2μ1eiτ (�− μ1

2 ) sin
(

τ�
2

)[
1

E−
e

iτ�
4 sin

(E−τ

2

) − 1
E+

e− iτ�
4 sin

(E+τ

2

)]
1
2μ1eiτ (�− μ1

2 ) cos
(

τ�
2

)[− 1
E−

ie
iτ�

4 sin
(E−τ

2

) + 1
E+

ie− iτ�
4 sin

(E+τ

2

)]
1
2μ1eiτ (�− μ1

2 ) cos
(

τ�
2

)[
1

E−
ie

iτ�
4 sin

(E−τ

2

) + 1
E+

ie− iτ�
4 sin

(E+τ

2

)]
1
2μ1eiτ (�− μ1

2 ) sin
(

τ�
2

)[
1

E−
e

iτ�
4 sin

(E−τ

2

) + 1
E+

e− iτ�
4 sin

(E+τ

2

)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C5)

where E± = 2� ± �/2.
Therefore, the leakage to the |e′e′〉 and |o′o′〉 is the same,

Pe′e′ (τ ) + Po′o′ (τ ) = |〈e′e′|ψμ1 (τ )〉|2 + |〈o′o′|ψμ1 (τ )〉|2 = �2 sin2 (2τ�)

16�2
, (C6)

and the leakage to |ee′〉, |oo′〉, |e′e〉, and |o′o〉 is

Pee′ (τ ) + Poo′ (τ ) + Pe′e(τ ) + Po′o(τ ) = |〈ee′|ψμ1 (τ )〉|2 + |〈oo′|ψμ1 (τ )〉|2 + |〈e′e|ψμ1 (τ )〉|2 + |〈o′o|ψμ1 (τ )〉|2

= μ2
1

2

(
sin2

(E−τ

2

)
E2−

+ sin2
(E+τ

2

)
E2+

)
. (C7)

This introduces a superposition of two frequencies E− and E+ in the leakage frequency, where the envelope frequency is E− +
E+ = 4� and the carrier frequency is E+ − E− = �.

APPENDIX D: LEAKAGE DUE TO μ2

The leakage effect in the other on-site chemical potential is μ2 (or μ3). Namely, we set μ1 = μ3 = μ4 = 0, and t = �. This
leads to the same noninteracting part Hμ2

0 = Hμ1
0 as in Eq. (C1), while the perturbation term Hμ2

1 is

Hμ2
1 =

(
H1 hμ2

h†
μ2

0

)
, (D1)
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where H1 is in Eq. (B2) and hμ2 is

hμ2 = 1

2

⎛
⎜⎜⎜⎜⎝

0 0 −μ2 0

0 0 0 −μ2

−μ2 0 0 0

0 −μ2 0 0

⎞
⎟⎟⎟⎟⎠. (D2)

Here, the noninteracting term Hμ2
0 has the same eigenvalues (with μ1 replaced with μ2) and eigenvectors as in Eq. (C4), and,

therefore, the final state in the Schrödinger picture starting from |ee〉 is

ψμ2 (τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiτ (2�− μ2
2 ) cos

(
τ�
2

)
ieiτ (2�− μ2

2 ) sin
(

τ�
2

)
�

4�
e− iτμ2

2 sin (2τ�) sin
(

τ�
2

)
i�
4�

e− iτμ2
2 sin (2τ�) cos

(
τ�
2

)
μ2

4 eiτ (�− μ2
2 )

[(
i sin

(
E−τ

2

)
E−

− i sin
(

E ′+τ

2

)
E ′+

)
e− iτ�

4 +
(

− i sin
(

E ′−τ

2

)
E ′−

+ i sin
(

E+τ

2

)
E+

)
e

iτ�
4

]

μ2

4 eiτ (�− μ2
2 )

[(
i sin

(
E−τ

2

)
E−

+ i sin
(

E ′+τ

2

)
E ′+

)
e− iτ�

4 +
(

− i sin
(

E ′−τ

2

)
E ′−

− i sin
(

E+τ

2

)
E+

)
e

iτ�
4

]

μ2

4 eiτ (�− μ2
2 )

[(
i sin

(
E−τ

2

)
E−

+ i sin
(

E ′+τ

2

)
E ′+

)
e− iτ�

4 +
(

i sin
(

E ′−τ

2

)
E ′−

+ i sin
(

E+τ

2

)
E+

)
e

iτ�
4

]

μ2

4 eiτ (�− μ2
2 )

[(
− i sin

(
E−τ

2

)
E−

+ i sin
(

E ′+τ

2

)
E ′+

)
e− iτ�

4 +
(

− i sin
(

E ′−τ

2

)
E ′−

+ i sin
(

E+τ

2

)
E+

)
e

iτ�
4

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D3)

where E± = 2� ± �/2 and E ′
± = 2� ± 3�/2.

Therefore, the leakage to the |e′e′〉 and |o′o′〉 is the same as Eq. (C7), and the leakage to |ee′〉, |oo′〉, |e′e〉, and |o′o〉 is

Pee′ (τ ) + Poo′ (τ ) + Pe′e(τ ) + Po′o(τ ) = |〈ee′|ψμ2 (τ )〉|2 + |〈oo′|ψμ2 (τ )〉|2 + |〈e′e|ψμ2 (τ )〉|2 + |〈o′o|ψμ2 (τ )〉|2

= μ2
2

4

(
sin2

(E−τ

2

)
E2−

+ sin2
(E+τ

2

)
E2+

+ sin2
(E ′

−τ

2

)
E ′−

2 + sin2
(E ′

+τ

2

)
E ′+

2

)
. (D4)

APPENDIX E: DEPHASING DUE TO DISORDER IN �

In this Appendix, we consider the dephasing effect which
is used to estimate T2. To focus only on the low-energy sector,
we work in the minimal two-level system where the Hilbert
space only includes |ee〉 and |oo〉. The effect of � acts like
the magnetic field along the x direction and, therefore, the
effective two-level Hamiltonian is

Hx = Bxσx, (E1)

where Bx is quasistatic disorder following the Gaussian dis-
tribution with the variance of σ 2

Bx
and mean of B̄x, i.e., Bx ∼

N (B̄x, σ
2
Bx

), σx is the Pauli X matrix, and the initial state is
ψx(τ = 0) = |ee〉.

Under the evolution of Hx, the final state ψx(τ ) is

ψx(τ ) = e−iHxτψx(τ = 0) =
(

cos(Bxτ )

−i sin(Bxτ )

)
. (E2)

Therefore, the probability of finding the state in |oo〉 is

Poo(τ ) = |〈oo|ψx(τ )〉|2 = sin2(Bxτ ). (E3)

Thus, the disorder-averaged probability is

〈Poo(τ )〉Bx = 1√
2πσBx

∫ ∞

−∞
dBxe

− (Bx−B̄x )2

2σ2
Bx sin2(Bxτ )

= 1

2
[1 + e−2τ 2σ 2

Bx cos(2B̄xτ )]. (E4)

Therefore, the decay of the envelope of 〈Poo(τ )〉Bx follows the
Gaussian decay with a prefactor of e−2τ 2σ 2

Bx , namely, β = 2
in the ansatz in Eq. (5) in the main text. This provides a
fundamental understanding of the ansatz in Eq. (5) in the main
text.

APPENDIX F: DEPHASING DUE TO DISORDER
IN μi, �, AND t

Besides the dephasing effect due to the disorder in �, we
also consider the dephasing effect due to the disorder in μi,
�, and t .

In practice, the disorder of these quantities acts like the
magnetic field along the z direction and, therefore, the effec-
tive two-level Hamiltonian is

Hxz = Bxσx + Bzσz, (F1)
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where Bx here is constant, Bz is quasistatic disorder following
the Gaussian distribution with the variance of σ 2

Bz
and mean of

0, i.e., Bz ∼ N (0, σ 2
Bz

), σz is the Pauli Z matrix, and the initial
state is again ψxz(τ = 0) = |ee〉.

Under the evolution of Hxz, the final state ψxz(τ ) is

ψxz(τ ) = e−iHxzτψxz(τ = 0)

=
(

cos
(√

B2
x + B2

z τ
) − i sin

(√
B2

x + B2
z τ

)
cos(θ )

−i sin
(√

B2
x + B2

z τ
)

sin(θ )

)
,

(F2)

where tan θ = Bx/Bz, and the probability of finding the state
in |oo〉 is

Poo(τ ) = |〈oo|ψxz(τ )〉|2 = sin2
(√

B2
x + B2

z τ
) B2

x

B2
x + B2

z

.

(F3)

Therefore, the disorder-averaged probability is

〈Poo(τ )〉Bz

= 1√
2πσBz

∫ ∞

−∞
dBze

− B2
z

2σ2
Bz sin2 (√

B2
x + B2

z τ
) B2

x

B2
x + B2

z

≈ 1√
2πσBz

∫ ∞

−∞
dBze

− B2
z

2σ2
Bz sin2

[(
B2

x + B2
z

2Bx

)
τ

]

= 1

4

⎛
⎜⎝2 − Bxe2iBxτ√

Bx
(
Bx − 2iσ 2

Bz
τ
) − Bxe−2iBxτ√

Bx
(
Bx + 2iσ 2

Bz
τ
)
⎞
⎟⎠,

(F4)

where the second line assumes the Bz � Bx such that√
B2

x + B2
z ≈ Bx + B2

z

2Bx
, and B2

x
B2

x+B2
z

≈ 1. Therefore, it shows a

power-law decay with 〈Poo(τ )〉Bz ∼ τ− 1
2 .

We provide the parameter for the numerical simulations
of qubit dephasing in Figs. 3(d)–3(f). For the charge qubit
in Fig. 3(d), we set εL/R ∼ N (0, 32), �L/R ∼ N (5, 0.052)
during the x pulse (i.e., with finite �L/R) in units of meV,
where N (μ, σ 2) is the normal distribution with mean μ and
variance σ 2; during the z pulse (i.e., with finite εL/R), we
set εL ∼ N (20, 32), εR ∼ N (−20, 32), �L/R ∼ N (0, 0.052)
in units of meV. For the small-gap Majorana qubit (all four
�1,2,3,4 = 12 meV) as shown in Fig. 3(e), during the x pulse,
we set four μ1,2,3,4 ∼ N (0, 32), tL/R ∼ N (12, 0.0162), and
� = 0.5 meV; during the z pulse, we set four μ1,2,3,4 ∼
N (0, 32), tL ∼ N (14, 0.0162), tR ∼ N (12, 0.0162), and � =
0 meV. For the large-gap Majorana qubit (all four �1,2,3,4 =
38 meV) as shown in Fig. 3(f), during the x pulse, we set
four μ1,2,3,4 ∼ N (0, 0.32), tL/R ∼ N (38, 0.0162), and � =
0.5 meV; during the z pulse, we set four μ1,2,3,4 ∼ N (0, 0.32),
tL ∼ N (40, 0.0162), tR ∼ N (38, 0.0162), and � = 0 meV.

APPENDIX G: QUANTUM CAPACITANCE
MEASUREMENT OF A MAJORANA QUBIT

In this Appendix, we show that the quantum capacitance
measurement is capable of reading out |ee〉 and |oo〉 in a
Majorana qubit. We first review the calculations in a single

Kitaev chain, and then generalize it to a Majorana qubit com-
posed of double Kitaev chains. The zero-temperature quantum
capacitance of a state is defined as

Cq = −∂2E

∂V 2
g

, (G1)

where E is the eigenenergy of the state and Vg is the gate
voltage. The Hamiltonian of a minimal Kitaev chain can be
decomposed into even- and odd-parity sectors due to Fermi
parity conservation. The even-parity Hamiltonian is

Heven =
(|00〉

|11〉
)T (

0 �

� μ1 + μ2

)(〈00|
〈11|

)
, (G2)

where μ1,2 are the on-site energies of the two dots and t,� are
the normal and Andreev couplings. The ground-state energy
Ee of |e〉 is

Ee = μ1 + μ2

2
−

√
�2 +

(
μ1 + μ2

2

)2

. (G3)

On the other hand, the derivative with respect to gate voltage
is

∂

∂Vg
= α1

∂

∂μ1
+ α2

∂

∂μ2
≈ α

(
∂

∂μ1
+ ∂

∂μ2

)
, (G4)

where αi ≡ dμi/dVg is the lever arm, and here we assume that
all dots share a similar value of lever arm α. Therefore, it is
straightforward to obtain the quantum capacitance of the even-
parity ground state as below,

Ce
q = −∂2Ee

∂V 2
g

= α2√
�2 + (

μ1+μ2

2

)2
− α2(μ1 + μ2)2

4
[
�2 + (

μ1+μ2

2

)2]3/2 .

(G5)

At the sweet spot of μ1 = μ2 = 0, we have

Ce
q = α2

�
. (G6)

On the other hand, the Hamiltonian in the odd-parity sector is

Hodd =
(|10〉

|01〉
)T

(
μ1 t

t μ2

)(
〈10|
〈01|

)
, (G7)

with the ground-state energy being

Eo = μ1 + μ2

2
−

√
t2 +

(
μ1 − μ2

2

)2

. (G8)

The corresponding quantum capacitance is

Co
q = 0, (G9)

due to the opposite signs of the coefficients in front of μ1 and
μ2 in the term of ( μ1−μ2

2 )2.
We now generalize our calculations to the quantum capac-

itance of the double Kitaev chain system. The eigenenergies
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of the ground states are simply the sum of the left and right
chains, i.e.,

Eab = EaL(μL1, μL2) + EbR(μR1, μR2), (G10)

where a, b denotes the parity e, o. We note that the μ depen-
dence of E is separable between the left and right chains,
which indicates that ∂/∂Vg → α( ∂

∂μL1
+ ∂

∂μL2
) for the left

chain energy, while ∂/∂Vg → α( ∂
∂μR1

+ ∂
∂μR2

) for the right
one. Therefore, we have

Cab
q = −∂2Eab

∂V 2
g

= −∂2EaL

∂V 2
g

− ∂2EbR

∂V 2
g

= CaL
q + CbR

q , (G11)

that is, the quantum capacitance of the state in the whole
system is a sum of the value in each chain separately. We

therefore have

Cee
q = α2

�L
+ α2

�R
,

Coo
q = 0,

Ceo
q = α2

�L
,

Coe
q = α2

�R
. (G12)

Therefore, one can distinguish between |ee〉 and |oo〉 states us-
ing the quantum capacitance measurement. Furthermore, the
values of Cq for |eo〉 and |oe〉 are generally very different from
the qubit states. Thus our method also provides a possible way
to investigate the quasiparticle poisoning effect by analyzing
the readout results of |eo〉 and |oe〉.
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