

A COMPARISON BETWEEN THE DUTCH AND EUROPEAN STANDARDS FOR DAYLIGHT IN BUILDINGS

P5 PRESENTATION

LIANNE ZOUTENDIJK - 4218663

APRIL 20, 2018

No guarantee for daylight quality

Standards for daylight in buildings

Content

- Research framework
 - Goals
 - Research question
 - Approach
- Literature review
 - Dutch standard
 - European standard
- Case studies
 - Case 1 Basement Basisweg Amsterdam
 - Case 2 Office DGMR Casuariestraat The Hague
 - Results

- Systematic study
 - Methodology
 - Variants
 - Results
- Conclusions
- Recommendations
- Discussion

Goal

Set of recommendations

Research framework

Research question

 What are the main differences between the Dutch and the European standards for daylight in buildings?

- Assessment methods
- Requirements
- Effects on daylight quality

Approach

- Literature review
- Case studies
- Systematic study

- Dutch standard NEN 2057
- European standard EN 17037

Dutch standard – NEN 2057

- Equivalent daylight area A_{e,i}
 - At least 2.5% of the floor area
 - o At least 0.5m²

$$o$$
 $A_{e,i} = A_{d,i} \cdot C_{b,i} \cdot C_{u,i}$

- ∘ A_{d,i} is the daylight area [m²]
- o C_{b.i} is the obstruction factor [-]
- o C_{u,i} is the reduction factor [-]

$$o$$
 $A_{e,i} = A_{d,i} \cdot C_{b,i} \cdot C_{u,i}$

- o A_{d,i} is the daylight area [m²]
- C_{b.i} is the obstruction factor [-]
- o C_{u,i} is the reduction factor [-]

$$o$$
 $A_{e,i} = A_{d,i} \cdot C_{b,i} \cdot C_{u,i}$

- o A_{d,i} is the daylight area [m²]
- o C_{b.i} is the obstruction factor [-]
- C_{u,i} is the reduction factor [-]

European standard - EN 17037

- Daylight
- Sunlight
- Glare
- o View

Levels of recommendation

Daylight

o D =
$$\frac{\text{internal illuminance}}{\text{illuminance of the unobstructed sky}} \cdot 100\%$$

 Target daylight factor D_⊤ 	≥ 2.1%
U Target davlight factor D _T	∠ ∠. ⊥ / U

o Minimum target daylight factor D_{TM} ≥ 0.7%

Daylight

- 1,5 hours
- One day between February 1 and March 21

Daylight

- 1,5 hours
- One day between February 1 and March 21

Daylight

- 1,5 hours
- One day between February 1 and March 21

Daylight

- 1,5 hours
- One day between February 1 and March 21

Glare

- Daylight Glare Probability (DGP)
- DGP ≥ 0.45, during more than 5% of the occupation time.

Glare

Daylight Glare Probability (DGP)

o DGP ≥ 0.45, during more than 5% of the

occupation time.

View

- O View distance ≥ 6m
- Landscape layer visible from 75% of the utilised area
- Window dimensions → view angle ≥ 1

Dutch standard

- Requirements
- Normative
- Equivalent daylight area

European standard

- Recommendations
- Descriptive
- Daylight factor
 - Duration of solar exposure
 - Daylight glare probability
 - View

- Obstructions
- Reflection factors
- Light transmittance of the glass

Case studies

O Equivalent daylight area $A_{e,i} = A_{d,i} \cdot C_{b,i} \cdot C_{u,i} = 5.25 \cdot 0.52 \cdot 1 = 2.73 \text{ m}^2$ = 4.2% of the floor area of 65.5m²

Measurements

Simulations

Measured daylight factor

Simulated daylight factor

Measured daylight factor

Simulated daylight factor

with orientation factor

Sunlight

 No direct sunlight enters the room on a day between February 1 and March 21

Glare

- Daylight glare probability
 - ≥ 0.45 during 2.2% of the occupation time

View

- Landscape layer is visible
- View distance < 6m
- o View angle ≥ 14°
 - Window width = 3.5m

View

- Landscape layer is visible
- View distance < 6m
- o View angle ≥ 14°
 - \circ Window width = 3.5m > 2.7m

- This badly daylit space complies to the Dutch standard
- The uncomfortable view almost complies with the European standard
- An orientation factor is necessary to match measurements and simulations
 - In reality daylight factors are influenced by the orientation

Room NW

 $A_{e,i} = 1.88 \text{ m}^2$ = 9.7% of the floor area of 19.44m²

o Room SE $A_{e,i} = 2.93 \text{ m}^2$ = 15.1% of the floor area of 19.44m²

Measurements

Simulations

Daylight

Room NW

$$_{\odot}$$
 D_{TM} = 0.14% < 0.7%

$$\circ D_T = 0.36\% < 2.1\%$$

Room SE

$$_{\odot}$$
 D_{TM} = 0.36% < 0.7%

$$\circ D_{T} = 1.92\% < 2.1\%$$

Sunlight

Glare

- Room NW
 - \circ DGP ≥ 0.45 during 0% of the occupation time

- Room SE
 - DGP ≥ 0.45 during 9.89% of the occupation time

View

- Landscape layer is visible
- •View distance > 6m
- o View angle ≥ 14°
 - Window width = 3.25m

View

- Landscape layer is visible
- •View distance > 6m
- o View angle ≥ 14°
 - \circ Window width = 3.25m > 1.5m

- This visually comfortable office does not comply with the European standard
- Glare and exposure to sunlight highly depend on the orientation and surroundings

- Three categories
 - o 0. Original design
 - o 1. Minimal window area according to the Dutch standard
 - o 2. Minimal daylight factors according to the European standard

Original design

Category 1, minimal window area

Original design

Category 2, maximum daylight factor

Daylight

Category 1

Daylight

Category 2

Sunlight

Sunlight

Glare

Glare

Orientation

Average daylight factors

Average daylight factors

The relation between quivalent daylight area and daylight factor

- With the minimum equivalent daylight area, the target daylight factor is not reached.
- It is almost impossible to meet the European standard.
- Multiple influencing factors
 - Surroundings
 - Orientation
 - Window shape

Conclusions

 What are the main differences between the Dutch and the European standards for daylight in buildings?

- Assessment methods
- Requirements
- Visual effects

Assessment methods & requirements

Dutch standard

- Requirements
- Normative
- Equivalent daylight area

 Mandatory minimum obstructions and light transmittance

European standard

- Recommendations
- Descriptive
- Daylight factor
 - Duration of solar exposure
 - Daylight glare probability
 - View
- No limits regarding obstructions, light transmittance and reflection factors

Effects on daylight quality

Dutch standard

- Easily achievable
- Requirements are too low
- Equivalent daylight area = 2.5%

European standard

- Hardly achievable
- Recommendations are too high
- Target daylight factor = 0.2%

Recommendations

- Consider surroundings and orientation
- Convert simulated daylight factors with an orientation factor
- Use standard reflection factors and at least minimum obstructions
- Use the right window shape

Recommendations

- Consider the average daylight factor
- Target daylight factor of 0.8%
- Average daylight factor of 1.5%
- Consider sunlight, glare and view
- Use simulations to gain insight in the daylight quality

Further research

- Effects on health and comfort
- Building functions
- Physical effects

