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Introduction

People are always the most important object in the research of social scenes, and
the interactions between people is one of the most interesting and potentially
useful challenges for modern engineering [4]. Therefore, detection of people
is a significant topic of research, and machine vision is always the material for
research.

The aim of detecting people can be summarized as: given an image or video
sequence, localize all people. Typically, researchers use rectangular bounding
boxes to show the location of people. During the last decades, people detection
has received great attention in computer vision and pattern recognition because
of its various applications. Though there are thousands of papers that provide
approaches for people detection, most of them focus on datasets from side view.
According to related surveys[4][1], popular datasets available publicly are sep-
arated by application including image retrieval, video surveillance, and driving
assistance. And most of these datasets have no data from the top view, but
this is a common view for indoor surveillance. Most of people detectors from
side view fail on detecting people from the top view. The possible reason could
be the self-occlusion and changed body shape of people. In this viewpoint, the
camera can not capture every body part of a person, especially the lower part.

This thesis is based on MatchNMingle[5], a multi-sensor dataset for the anal-
ysis of social interactions and group dynamics in-the-wild during free-standing
conversations and speed dates. The MatchNMingle dataset have annotated
video for people in crowded scenes from the top view. The deep network,
Overfeat-GooglLeNet[6] is selected as the training system for this research
due to its effectiveness and the similarity between its training data and Match-
NMingle. It is a end-to-end people detection approach aiming at crowded scene.

In the first chapter, I explain the research objective, motivate its importance,
and summarize contributions briefly. In the end of this chapter, I give the struc-
ture of this report.
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1.1. Background

MatchNMingle dataset

As mentioned above, this study is based on MatchNMingle[5]. This dataset
was created to contribute to help analyzing the challenges of social signals and
natural interactions. There are two portions in this event, which are speed dates
and mingle. In this research, we only focus on the mingle part, since only its
annotations is completed. There was multiple forms of social interactions, and
one of the common forms are free-standing conversational groups, which are
small groups of two or more conversing people are emerging. This kind of spa-
tial formations vary due to the purpose and desires of each participant in the
group. These unstable social situations contain abundant information but are
challenging. MatchNMingle contains about two hours of uninterrupted record-
ings for 92 participants, and cases of conversations in the free-standing groups
and sitting dyads.

Multiple sensors were collected in this dataset, including video, audio, person-
ality surveys, frontal pictures, speed-date responses, etc. during 3 real speed
date events, each followed by a mingle party. One of the most important data
is the video for the entire event as well as manual annotations for social actions
and position for 30 minutes at 20fps for each day. Since in the social formations,
position data is one of the important factors for analyzing form, merging, and
dissolution of a formation, in our research, we are interested in this videos and
the position information of every participant.

The video of event area was captured using 9 different GoPro Hero 3+ cam-
eras from top-view. The resolution of video is 1920 x 1080 (16:9), and the
sample rate is 30 fps. In this portion, participants were fenced in a rectangu-
lar space created by tables. There are some overlap between the 5 cameras
that recorded the mingle for this area. In this situation, there is different illu-
minations, shadows, occlusions and a crowded environment in the video, which
causes difficulties for analysis. Because of financial limitations, not all cameras
were annotated. A 30-minute segment of the mingle party was selected ran-
domly for each day. To maximize the people density and number of social actions
in the whole scene, the cameras with the highest concentration of people were
selected for annotation(both position and social actions). The manual annota-
tions of position and social actions was made using the Vatic tool proposed by
Vondrick et al[7]. This tool was designed to annotated crowd-sourcing in Ama-
zon's Mechanical Turk (MTurk).

The 30-minute segment was divided into smaller 2-minute tasks(or HITs). An
example frame from MatchNMingle videos is shown in Figure 1.1(a) and a body-
annotated frame from Vatic tool is shown in Figure 1.2(a).
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(a) A frame from MatchNMingle videos[5] (b) A frame from Brainwash videos [6]

Figure 1.1: Frames from MatchNMingle and Brainwash

There is great interest for using computer vision and machine learning al-
gorithms on people detection from overhead cameras in crowded social scenes.
So far there are hundreds of algorithms and systems for people detection. How-
ever, for the situation in MatchNMingle, there is almost no system aiming to
solve or analysis people detection from the overhead cameras. One of the chal-
lenges is the occlusion in this viewpoint. Since the cameras are located on the
top of the ceiling, people in the cameras are out of common human shape and
with heavy occlusion. Due to occlusion, there are multiple algorithms aim to
improve the detection precision for occluded people. Thus we are interested in
the influence caused by occlusion in datasets.

Overfeat-GooglLeNet Network

To analyze this, based on literature research, I selected a deep network called
Overfeat-GooglLeNet from Russell Stewart et. al[6] as the research system.
This system takes an image as input and directly generates a set of people
bounding boxes as output. Different from original Overfeat model, as the name
of the systems tells, the image representations of the system are trained with
GoogLeNet. There are three reasons for experiment on this network:

» Compared to other detectors, this network shows effectiveness on the
detecting people in crowded scenes especially for people with occlusion.

» Stewart tested their models on the Brainwash dataset, which consists of
11917 images with 91146 labeled people. In Brainwash, the viewpoint of
cameras is not exactly the same as our dataset as shown in Figure 1.1(b).
But it is similar, as the camera is located at the corner of ceiling. This is
also helpful when comparing the performance of detectors trained with
Brainwash and MatchNMingle.

» The implementation of this network is completed and publicly available in
Github.
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The detail explanation of this network is illustrated in Chapter 2 and Chapter 3.

1.2. Research Objective

The main goal of this work is to study the impact of occlusion on performance
of detectors. Based on the study, we aim to improve the performance.

(a) Body Annotation (b) Head Annotation

Figure 1.2: Example frame of body and head annotations

The common-used annotation for people is body bounding box(eg. Figure
1.2(a)). But when the viewpoint is not proper to view the whole body of peo-
ple or it is too crowded to see the whole body, the body annotation can lead
to unexpected overlapping bounding boxes. Several datasets avoid the body
annotation rather using head annotation(eg. Figure 1.2(b)). For example, in
the Brainwash collected by Stewart[6], the lower part of the body are always
invisible and head bounding boxes generates less overlapping boxes compared
to body annotation. In our dataset, similar to Brainwash, the lower body are
always occluded. It is clear that with different annotation, the occlusion level
varies. This can make extremely difference on performance of detectors. Thus,
it is possible that training with head annotated data can promote the perfor-
mance of detectors.

However, collection of proper head annotation for such a big dataset takes both
time and money. Thus it is meaningful to improve the performance of body
detectors. Based on our experiments results, we are trying to give a instruction
on how to modify a training dataset and lead to a better performance.
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1.3. Research Questions and Hypotheses

There are three research questions in my study related to occlusion level and
annotation type separately. According to these research questions, I have four
hypotheses. Below the research questions, hypotheses, and experiments are
listed.

For people with different occlusion level, the visible parts and ratio of visibil-
ity for body varies. Referring to previous evaluation in Stewart's experiments
[6], their system can detect some people with occlusion. However, there is not
much information about when the system can not detect people with occlusion
and how the occlusion level in training data influence the performance. Thus I
have the first research question:

* Research Question 1: How does the network learn with different
occlusion levels in training data?

— Hypothesis 1: Detectors make more mistakes with increase of occlu-
sion level.

— Experiment 1: Train detectors and analyze their performance on peo-
ple with different occlusion level.

— Hypothesis 2: Detectors trained with subsets with low occlusion levels
make more mistakes for people with high occlusion levels.

— Experiment 2: Train detectors with high-occlusion level and low-occlusion
level, and analyze their performance on people with different occlu-
sion.

Second research question is an attempt at head annotation applying in our
dataset.

* Research Question 2: How does the trained model change with
head annotation?

— Hypothesis 3: Detectors trained with head annotation perform better
than detector trained with body annotation.

— Experiment 3: Train detectors with head annotation and body anno-
tation separately and analyze their performance.

With the analysis in Experiment 1 and Experiment 2, we can select more
appropriate training data for people detection from overhead cameras,
which may inspire other researchers on frame selection.

* Research Question 3: How can we improve the performance of
body detectors using the existing data?

— Hypothesis 4: Body detectors trained with less images with low oc-
clusion level perform better than the initial detectors in Experiment
1.
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— Experiment 4: Randomly reduce half of the images with occlusion
level lower than the average image occlusion level in training data,
and train detectors again. Compare the performance of newly trained
detectors and initial detector.

All the results from experiments are analyzed by the evaluation measures,
average precision, count error, equal error rate and F1 measure. According to
these experiments, in this study we discuss the relation between model perfor-
mance and occlusion level as well as annotation type.

1.4. Contribution

There are three main contributions in this work.
» We study the impact of occlusion levels in the detection performance.
e We show the effectiveness of head annotation.

A training data selection strategy on body-annotated data: randomly re-
duce half of the images with occlusion level lower than the average image
occlusion level. Experiments shows that detectors trained with this strat-
egy predicted less bounding boxes that are not people.

1.5. Thesis Organization

In this chapter, we introduce the dataset MatchNMingle which my research is
relied on, the research objective and the contributions including my research
questions and hypotheses. The other chapters of this thesis is structured ac-
cording to my work-flow as follows:

» Chapter 2 reviews the formulation of people detection, including its appli-
cation, popular publicly available datasets, general framework. Based on
the framework, this chapter also gives some methods for feature repre-
sentation and popular classifiers. Because of the powerful performance
of deep network, we introduce several deep model as well as occlusion
handling methods.

» Chapter 3 explains the structure and performance of Stewart's detector(the
GoogleNet-Overfeat Network) as well as theory of every parts. Then I will
give the evaluation methods including the definition and significance of the
evaluation parameters (recall, average precision, recall-1-precision curve,
F1 measure, equal error rate etc.) used in this research.

» Chapter 4 covers the details of every experiments. Firstly it introduces
the quantitative analysis for datasets for frame number, people density,
bounding box occlusion level, etc. The explanation and analysis of exper-
iments setup and experiments results from occlusion level and annotation
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type experiments will be given according to the research questions and
hypotheses.

» Chapter 5 concludes this work, and recommends the future work.






Related Work

People detection has been arguably addressed as a special topic beyond general
object detection. In decades, various methods were proposed based on different
features. In the early research of people detection, low-level features and hand-
crafted features are extracted from people samples as the training features for
classifiers. In recent years, compared with detectors trained with handcrafted
features, deep learning detectors have shown better performance for people
detection.

In this chapter, I searched on people detection surveys, methods, and related
datasets. From these material, I summarized the general architecture of people
detector. And based on the architecture, I talked about detectors based on the
handcrafted features and detectors based on deep models. Since our research
model is based on GooglLeNet and Overfeat architecture, these two designs are
illustrated in this part. Apart from these, to deal with people detection from top
view with the MatchNMingle dataset, I investigated some methods to handle
occlusion of people.

2.1. Brief Introduction to People Detection

Assume we have some images or video sequence, our goal is to develop a sys-
tem that can detect all the instances that are people and return their location.
People detectors typically returns a list of rectangular bounding boxes. There
are thousands of papers that provides and analyze approaches for people de-
tection. Due to different applications, various datasets are publicly available.

Common applications includes image retrieval, video surveillance, and driving
assistance. The definition of these application and their corresponding common-
used datasets are listed below.

» Image retrieval is to searching and retrieving images from a large digital
picture dataset [8].
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— Datasets: MIT[9], INRIA[10], PASCAL VOC[11]

 For video surveillance, systems always analyze the images from video
surveillance cameras in order to recognize human. These images are al-
ways in restricted areas within the camera's view like a fenced off area,
and a parking lot.

— Datasets: USC-B[12], CAVIAR[13]

» For driving assistance, cameras are always equipped on vehicle to ob-
tain images on road. So different from video surveillance, systems are to
analyze the images from public place especially streets.

— Datasets: Caltech[14], TUD[15], CVC[16], ETH[17]

Some example images from these datasets are shown in Figure 2.1. It is
clear that these datasets are always from a side view of people, which we can
recognize every body parts of a person except occluded people.

(c) TUD[15] (d) INRIA[10] "

Figure 2.1: Example images (cropped) and annotations from four pedestrian detection datasets

2.2. General Framework

Nguyen and his colleagues[ 1] gives a general framework for human detection as
shown in Figure 2.2. It has the following sequential steps: extracting candidate
regions that are potentially covered by human objects, describing the extracted
regions, classifying/verifying the regions as human or non-human, and post-
processing. Even for deep network like Overfeat-GooglLeNet, this framework is
commonly applied.
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Figure 2.2: A general human detection framework.[1] Note that preprocessing, e.g. image filter-
ing, may be applied before candidate extraction to enhance the quality of the input image/video
sequence.

The common and ordinary approach for candidate extraction is to assume every
person can be enclosed by a detection “window”. Without prior knowledge of
size and location of people, windows with various scales and positions are ex-
tracted from the images. Merging of some nearby windows is necessary to ob-
tain the final candidate human objects. The common-used method for merging
multiple windows is the non-maximal suppression (NMS). NMS can be positively
formulated as local maximum search, where a local maximum is greater than
all its neighbours (excluding itself)[18]. Then NMS can help to suppress all the
other values (by setting them to 0) except the local maxima. When the input
data is video, the most common technique, background subtraction can extract
human candidates.

2.3. Feature Representation

To construct human descriptors, typically, selected features are organized in a
structure. They are expected to describe human objects with various poses from
various viewpoints. Features can be generated through various methods. Hand-
crafted features are developed from low-level information (e.g. edge, colour,
and motion)[1]. Thus, they can be classified as shape features, appearance
features, motion features, and a combination.

2.3.1. Shape features

Shape features are to describe the shape of people, edge-based features. The
location, orientation and magnitude of edge pixels are always considered for
extracting edge-based features from edge maps or gradient images. The well-
known example of shape features is histogram of oriented gradients (HOG),
which counts occurrence of gradient orientation in localized portions of an image,
proposed by Dalal and Triggs[10].

2.3.2. Appearance features

Appearance features are mainly to capture the colour or texture information
from local image regions. An example of simple appearance features is image
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intensity[19]. Also, there are some commonly used appearance features like
Haar feature and local binary pattern (LBP)[20] that was originally proposed for
texture classification. Haar-like features that are based on Haar wavelets con-
sider adjacent rectangular regions at a specific location in a detection window,
sums up the pixel intensities in each region and calculates the difference be-
tween these sums. And LBP labels the pixels of an image by thresholding the
neighbourhood of each pixel and considers the result as binary number.

2.3.3. Motion features

Motion information can be used to discriminate one object from another if they
have different motion patterns. Thus, it is efficient for describing objects, espe-
cially for non-rigid objects such as people who always perform cyclic movements.
Motion features are always extracted from temporal difference[21] or optical
flows[22]. Temporal difference (TD) refers to the change or differences of fu-
ture values of a given signal. Generally, it is used in predictions over successive
time steps. And optical flow or optic flow is the pattern of apparent motion of
objects, surfaces, and the edges in a visual scene caused by the relative motion
between an observer and a scene[23]. In Viola's work[21], rectangular features
are calculated on the difference images between consecutive frames to encode
the temporal difference in the motion of people. Similarly, Nguyen[24] applied
the NR-LBP that calculated on the difference images as the motion feature. In
Dalal's work[22], histogram of flows is computed in a similar manner with the
HOG using optical flows. It can be used to describe the boundary motion as well
as internal motion.

2.3.4. Features extracted through deep network

Recently, Deep Neural Networks are also applied in people detection. They use
different models from the discriminative classifiers based on handcrafted fea-
tures. For example, in Ouyang's work[25], sub tasks of human detection such
as features selection, object description, occlusion handling are organized into
different layers of a deep convolutional neural network and the parameters are
jointly learned through the network. But due to the structure of deep network,
the feature extraction and classification are always associated together. More
information about deep learning for people detection is in Section 2.5.

Compared with early work, there are several algorithms that have respectively
good performance on the publicly available datasets mentioned above, but there
are still lack of research on the challenge difficulty, people occlusion, on peo-
ple detection. Generally, they can be classified into two groups by features
extracted from raw images. The first group contains classifiers based on hand-
crafted features, while the other group is classifiers based on features extracted
by deep model.
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2.4. State-of-the-art Classifiers

The structure that human descriptors extracted from handcrafted features fol-
lowed by a discriminative classifier like support vector machine (SVM) or Ad-
aBoost is the most commonly used model before 2014[4][1]. During research, I
found that the most advanced approaches for people detection are mostly based
on deep model. However, there are still several methods based on handcrafted
features that have convincing performance and contributions on publicly avail-
able benchmarks.

In machine learning, SVM is a supervised learning model with associated learn-
ing algorithms that analyze data used for classification and regression analysis.
A joint person detector based on deformable part models (DPM)[26] is pro-
posed in [27] aiming at detecting occluded people. It combines both single
and double-person detectors into a single model that is jointly trained. The
single and double-person detectors are represented as different components of
the DPM. The performance of the joint detector strongly depends on its ability
to distinguish between single and double-person hypotheses. In their related
work[28], they address this issue by reformulating joint detector using structural
SVM framework and modifying the loss function to penalize detection of single
people and double-person components and vice versa.

- B L
Lo\ [
_— N e Weak
.”_': l [ 1) l classifier
{;‘ f ) +1 1+ -1

Input Feature maps Features Weak
image computation _ pooling classifier
1 AN W'
‘:#.‘Y"“ __f_,’-:—,‘ : ]
— I \ : Weak
~Fl J ) ® clasiffier
:l" L, score
f;'_‘ ' +1 -1 +1 -1
Input Feature maps Pooling Responses Weak
image computation filter bank reading classifier

Figure 2.3: Filtered feature channels illustration, for a single weak classifier reading over a single
feature channel [2]

Another well-performing model based on only low-level features is provided
in [2]. In this paper, authors summarized the general architecture of their model
as Figure 2.3. They applied an intermediate layer between low-level feature
maps and the classifier, which is a linear transformation implemented as con-
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volution with a filter bank. Their experiments show that, with the proper filter
bank, filtered channel features reach top detection quality before 2015. The top
method in the research used solely HOG+LUV features and Checkerboards+SDt
as filter bank. Checkerboards is a naive set of filters that covers the same sizes
(in number of cells) as InformedFilters[29] and for each size defines: a uniform
square, all horizontal and vertical gradient detectors, and all possible checker-
board patterns as shown in Figure 2.4. SDt refers to the difference of frames
from weakly stabilized video[30], and is used as an add-on for optical flow in-
formation of 2 channels (not filtered).

s |0 |=|m NE R R
| f|=|H| |~|F|F|=
M | == || . A1 dL dI =
BN ME N (N

(a) Checkerboards Filter (b) InformedFilters

Figure 2.4: Illustration of filter banks. red, white, green indicate {-1, 0, +1}

2.5. Deep Learning for People Detection

In recent years, deep learning has been applied to pedestrian detection and
achieved promising results[31][32][33][34]1[35][36][37][38]. Compared with
using handcrafted features, it can automatically learn features in an unsuper-
vised or supervised fashion. More advanced than the early deep models, some
novel detectors like switchable deep network (SDN) [38] can learn hierarchi-
cal representations with semantic meanings (such as the body parts of head-
shoulder, upper-body, and lower-body). However, Deep Neural Network (DNN)
models are known to be very slow, especially when used as sliding-window clas-
sifiers. Some methods like DeepCascade [33] focus on the trade-off between
accuracy and speed. And some methods (e.g. [39][35]) tried to combine hand-
crafted features and deep model to optimise people detection.

For most of the deep models, pre-training is used. Pre-training has been demon-
strated in an object detection method, R-CNN[40]. With it, the weights are
initialized from the weights of a network that has been trained on ImageNet.
ImageNet is an image database organized according to the WordNet (a large
lexical database of English) hierarchy in which each node of the hierarchy is
depicted by hundreds and thousands of images. [40] shows that fine-tuning
a pre-trained Convolutional Neural Network (CNN) on ImageNet classification
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task on object detection and segmentation data can significantly improve the
performance. There are three popular deep models and three pre-training
strategies as below[32]. Three deep models are AlexNet [41], Clarifai[42], and
GoogLeNet[3](deeper than the first two models), which are the best-performing
models of the ImageNet classification challenge in the past several years. Apart
from these models, there are some other models like VGG-16[43], and CifarNet[34].
Three pre-training strategies exist: (1) no pre-training, (2) pre-training the deep
models by using the ImageNet training data with image-level annotations of
1000 classes, and (3) pre-training the deep models by using ImageNet training
data with object-level annotations. All the models mentioned above are firstly
applied on object classification, while later some researchers employed them on
people detection. For example, [32][34] applied AlexNet in their detectors; [6]
applied GoogLeNet in their models; and [39] used VGG-16 in their method.

Another way to find an approach for people detection is to search on object
detection methods. Zhang and colleges[36] got inspired from a general object
detection method, Faster R-CNN[44]. Faster R-CNN consists of two components:
a fully convolutional Region Proposal Network (RPN) for extracting candidate re-
gions, followed by a downstream Fast R-CNN[43] classifier.

Different from hybrid methods (e.g. [34]) that combines traditional handcrafted
features and deep convolution features, the Faster R-CNN system is a purely
CNN-based method without using handcrafted features. [36] illustrated two rea-
sons for the unsatisfactory accuracy: (1) insufficient resolution of feature maps
for handling small instances, and (2) lack of any bootstrapping strategy for min-
ing hard negative examples. To overcome these weakness, they proposed a
detector using a RPN followed by boosted forests (BF) shared, high-resolution
convolutional feature maps.

Since our research is based on Overfeat-GoogLeNet deep neural network, the
information about Overfeat and GoogLeNet is given below.

2.5.1. GooglLeNet

One of the popular deep concolutional neural network architecture, GoogLeNet,
is designed for the classification and detection in the ImageNet Large-Scale Vi-
sual Recognition Challenge 2014(ILSVRC14)[3]. It is a 22 layer deep network
based on the Hebbian principle and the intuition of multi-scale processing. In-
creasing the size of deep neural network can straightly improve its performance.
In this situation, the depth(the number of levels) and the width(the number of
units at each level) increase. To train models with higher quality safely, a large
amount of labeled training data is necessary. However, this solution can lead
to two main drawbacks. Bigger network with more parameters can make the
network larger, but tends to overfit, especially when the training data is limited.
Apart from this, the use of computational resources is increased sharply with
bigger network.
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Figure 2.5: Inception module[3]

To overcome these challenges, the researchers proposed the Inception archi-
tecture. Inception module with dimension reductions is shown in Figure 2.5.
Inception networks are composed of inception modules stacked on each other,
with occasional max-pooling layers. With this architecture, the computational
complexity can be in control when the number of unites at each layer increasing
dramatically. In addition, this design aligns with the intuition that visual infor-
mation should be processed at various scales and then aggregated so that the
next stage can extract features from different scales simultaneously.

With inception architecture, the computation for bigger network with increasing
width and depth is possible and without getting into computational difficulties.
GoogLeNet refers to the incarnation of the Inception architecture. The schematic
view of GooglLeNet is depicted in Figure A.1.

2.5.2. OverFeat

Output

’ Layer 1 2 3 4 5 6 7 8

Stage conv + max conv + max conv conv conv + max full full full

# channels 96 256 512 1024 1024 3072 | 4096 1000

Filter size 11x11 5x5 3x3 3x3 3x3 - - -

Conv. stride 4x4 1x1 1x1 Ix1 Ix1

Pooling size 2x2 2x2 - - 2x2

Pooling stride 2x2 2x2 - - 2x2

Zero-Padding size - - IxIx1xl IxIx1x1 IxIx1x1 - - -

Spatial input size 231x231 24x24 12x12 12x12 12x12 6x6 1x1 1x1

Figure 2.6: Architecture specifics for OverFeat model

OverFeat is an integrated framework for using convolutional networks for
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classification, localization and detection [45]. In this model, predicted bounding
boxes are accumulated for object localization and detection. By combining multi-
ple localization predictions, it is possible to avoid training on background samples
for detection. This means the time-consuming and complicated bootstrapping
training passes can be avoided. Thus the network focus only on positive classes.

The architecture sizes are in Figure 2.6. The spatial size of the feature maps
depends on the input image size, which varies during inference step. In this
model, the entire image is explored by densely running the network at each
location and at multiple scales. To circumvent that the network window aligned
the object improperly when sliding window approach applied in the case of Con-
vNets, resolution augmentation and last subsampling operation is performed.

This network can be used as a classification-trained network. And it changes
to a localization-trained network when the classifier layers are replaced to a
regression network. The feature extraction is initially trained with the classifi-
cation task. The network generates many bounding box predictions first. Then
the individual predictions are combined through a merge strategy applying to
the regressor bounding boxes. Training the network in a spatial manner and the
model is for detection. Note that it is necessary to predict a background class
when no object is present in the image.

2.6. Occlusion Handling

One of the most difficult challenges in people detection is occlusion[1]. In gen-
eral, occlusion refers to as a phenomenon in which an object of interest is not
fully visible. In practice, occlusion can be categorized into two types: (1) inter-
object occlusion: a human object is blocked by another object called occlude,
and (2) intra-object occlusion/self-occlusion: a human object may not be fully
observed due to his/her pose and/or the camera's viewpoint. In my project,
we are mainly faced with the second type occlusion as shown in Figure 1.1(a).
However, existing approaches mainly focus on the first type of occlusion.

The current occlusion handling methods can be categorized as detection-based
occlusion handling or inference-based occlusion handling. Detection-based ap-
proaches determine the occlusion of people by using only the information of that
object and its parts (e.g. detection scores, geometric information of parts). As
for inference-based approaches, the occlusion is inferred based on the mutual
relationship between that object and other objects. For example, in [27][28],
a double-person detector was applied together with the typical single-person
detector to detect two-person patterns for inter-object occlusion.

Methods (e.g.[32][31][6]) based on DNN shows some improvements in occlu-
sion handling. Using this model, the classification of body parts is verified via
different combinations of that part with other parts. [32] proposed DeepParts
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that is robust against occlusion. They constructed a part pool where different
complementary parts can be automatically selected in data driven manner. The
selected parts can be adopted to different scenarios or different datasets. And
from their research, a single part detector can achieve convincing performance.
The positive samples are computed from the visible map of each ground truth
box and extracted from the corresponding region only if the part template is fully
covered by the visible map. Meanwhile, the negative samples are extracted from
corresponding regions within negative proposals.



Research Methodology

In Chapter 2, the architecture of GoogLeNet and Overfeat is described. The orig-
inal version of Overfeat provided by [45] relied on image representation trained
with AlexNet[41]. In GoogLeNet-Overfeat network, the GoogLeNet architecture
is substituted into the Overfeat model. To describe the training process in our
research, the implementation details of this network are given below in Section
3.1 as well as the information of training and initialization.

Since this work is to study the impact of occlusion, we give the definition of
occlusion levels in Section 3.2.

With the trained models and detection results, reasonable evaluation metrics
are critical for performance analysis. Different metrics reveal a model from var-
ious aspects. Thus, to have a coherent understanding of detectors, multiple
evaluation measures are needed. Besides common performance evaluation,
occlusion level is one of the study target. Thus, we selected commonly-used
evaluation measures used in related work and went one step further to analyze
these measures with occlusion level. Below these selected measures are listed
with definition with and example in Section 3.3.

3.1. GoogleNet-Overfeat Network

3.1.1. Architecture

The architecture of the system is shown in Figure 3.1. The model encode an
image into a 15x20 grid of 1024-dimensional top level GoogLeNet features[6].
The 1024 dimensional vector extracted the contents of the region and contains
rich information referring to the position of the objects. Each cell in the grid is
of size 139x139 receptively. They are trained to generate the list of bounding
boxes intersecting the central 64x64 region. The size of 64x64 was considered
as a large enough region to capture people with local occlusion in the images.

19
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480

G300 [eso

GoogleNet 20 Overfeat

640

Figure 3.1: GoogLeNet-Overfeat first encodes an image into a block of high level features.
Overfeat acts as a controller, decoding this information into a set of detection.

This region size is chosen according to the occlusion interactions in the dataset.
Thus it can be changed larger or smaller if necessary.

3.1.2. Implementation

Initially, the models in Stewart et. al[6] are trained and evaluated using the Caf-
fee open source deep learning framework[46]. Their code(named TensorBox[47])
is available for Tensorflow[48], hence our models are also trained and evalu-
ated with the deep learning framework Tensorflow. The models are trained
with learning rate e = 0.2, and every 100000 iterations, the learning rate is
decreased by multiplying 0.8[6]. GooglLeNet weights are initialized with the
weights parameter pre-trained on ImageNet[49]. According to Stewart's exper-
iments, fine-tuning of GoogLeNet features is critical to meet the demands of the
decoder, and it influence the precision.

3.1.3. Model Training

yl

y2

Figure 3.2: Example of bounding box description

Training requires a "“json” file containing a list of images and the bounding
boxes in each image. There are several data annotation formats allowed for Ten-
sorBox. The most simple format, json-file, is recommended as the same format
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used in Stewart's researches. Each annotation is an object with two proper-
ties: image path(string) and rects(list). rects contains information of all
bounding boxes which present on the current image. The format of bounding
box description consists of four integer properties which mean the main diagonal
of the rectangle (x1,y1) — (x2,y2) as shown in Figure 3.2. TensorBox reading
procedure expects that x1 < x2 and y1 < y2.

3.2. Occlusion Levels

To study how occlusion level influence the performance of trained models, there
are two types of occlusion levels defined here, which are average image occlu-
sion level, and bounding box occlusion level.

boxA

boxB

Figure 3.3: Example of overlapped bounding boxes

Bounding box occlusion level of a bounding box A refers to the sum of overlap
ratio between all the other bounding boxes in the same image. To calculate this,
we use the definition of overlap ratio(OR) between two bounding boxes(see
Figure 3.3), which is calculated with the formula below:

ANB
AUB
Thus the bounding box occlusion level(BBOL) of box A can be calculated:

OR(boxA,boxB) =

BBOL(boxA) = Z OR(boxA, boxI) (3.1)

boxl

boxI refers to all the other bounding boxes in the same images as boxA.

And the average image occlusion level(AIOL) is defined as the average bounding
box occlusion level in a certain image.

Yboxx BBOL(boxK)

AIOL(i A) =
(imageA) numberof BB(imageA)

(3.2)
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Due to the fact that the Overfeat-GoogLeNet network takes an image as a input,
we consider the average image occlusion level as a quality of training data. In
fact, the bounding box occlusion level is more related to the occlusion situation
of every person. Thus, when analyzing performance of people with different
occlusion level, we consider the bounding box occlusion level.

3.3. Evaluation Methods

There are many measures used for evaluation in pattern recognition, informa-
tion retrieval and binary classification. And much effort and research has gone
into solving the problem of evaluation of people detectors. The most commonly
used measures are Recall, Precision, and F-measure. These measures are bi-
ased sometimes and should not be used without understanding of the biases. To
evaluate the models comprehensively, using multiple measures is more reliable.
To make it easy to compare our results with the initial model by [6], I considered
recall, average precision, recall-1-precision curve, equal error rate, and count-
ing ability. Apart from these measures, F1-Measure is applied to measure the
effectiveness with respect to both recall and precision.

Below, the measures used in this research are explained in detail both in defini-
tion and understanding with example. To understand the metrics for evaluation,
let us define an experiment. The terms true positive, true negative, false posi-
tive, and false negative compare the performance under test with trusted ground
truth. The terms positive and negative refer to the detector's prediction, and
the true and false refer to the ground truth corresponding to the observation.
The outcomes can be formulated in a 2x2 table as in Figure 3.4.

Predicted condition
positive negative

]
c 2
.g 3 True positive(TP) False negative(FN)
| 8
c
5]
© (0]
o 2
E S False positive(FP) True negative(TN)

()

[

Figure 3.4: Contingency table for experiments

To understand the terms in this table, we give their explanation in our re-
search.

» True positive is the items that are people in all the detected items.
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» False negative is the items that are people in the ground truth but not
detected by the detector.

» False positive is the detected items that are not people.

* True negative should be the non-human items that are not detected by
the detector. Since there is no information about non-human items in our
research, it is not considered.

3.3.1. Recall

Recall is defined as:
TP

Recall = TP+—FN (33)

Recall is the ratio of the correct predictions and the total number of correct items
in the set. It is the percentage of the total correct items correctly predicted by
the model. In the problem of object detection, it also referred to as the true
positive rate or sensitivity. Thus it indicates how good is the model detect the
correct people.

3.3.2. Precision

Precision is defined as: p
Precision = TP T FP (3.4)

Precision is the ratio between the correct predictions and the total predictions,
in other word, it is the positive predictive value. Thus it indicates how much
confidence does the detector have for all the detected objects.

3.3.3. 1-Precision-Recall Curve
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(a) An example of Precision-Recall Curve (b) An example of 1-Precision-Recall Curve

Figure 3.5: Example frame of body and head annotations
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Precision-Recall curve is a useful measure of success of prediction. Since in
Stewart's paper[6] they use 1-Precision-Recall curve as one of the evaluation
metrics, in our research, we also use this curve(example in Figure 3.5(b)). This
curve is a horizontal flip version of Precision-Recall curve(eg. in Figure 3.5(a)) ,
and it shows the tradeoff between precision and recall for different threshold. A
large area under the curve represents both high recall and high precision. High
values for both precision and recall indicate that the detector returns good pre-
diction, as well as a majority of all positive items. Note that there is no linear
relationship between precision and recall, and precision may not decrease with
recall.

A model with high recall but low precision returns more predicted items most
of which are predicted incorrectly when compared with the ground truth. In
the opposite, a model with high precision but low recall returns less predicted
items, but most of them are predicted correctly. Thus an ideal detector with
both high precision and high recall should return more predicted people that
labeled correctly.

3.3.4. False Positive Ratio

False positive ratio also known as false discovery rate(FDR), is the probability
of falsely detecting people for tests. It is calculated as the ratio between the
number of negative items wrongly categorized as positive and the total humber
of all items categorized as positive.

FP

It tell the ratio of wrong predictions in people detection.

3.3.5. COUNT

COUNT represents he count error by computing the average absolute difference
between the number of predicted and ground truth detection in test set images.
abs((TP + FP) — (TP + FN))

COUNT = DTN (3.6)

A smaller COUNT indicates that the number of predicted people is more close to
the number of people in ground truth.

3.3.6. Average Precision

Average precision(AP) summarizes the curve as the weighed mean of precision
at each threshold, with the increasing recall from the previous the threshold
used as weight:

AP = Z(Rn — R, — 1)P, (3.7)
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where P, and R,, are the precision and recall at the nth threshold. A pair (R, P,)
is referred to as an operation point.

3.3.7. Equal Error Rate

Equal error rate(EER) point is the point where precision equals recall. In the
1-Precision-Recall curve, the EER point is the cross point of the blue curve and
red line in Figure 3.5(b). Some people refer it to as a "natural” operation point.

3.3.8. F1 Measure

F-measure, also known as F-score, is a measure that combines precision and
recall is the harmonic mean of precision and recall. This measure is approxi-
mately the average of the two when they are close, and is more generally the
harmonic mean, which, for the case of two numbers, coincides with the square
of the geometric mean divided by the arithmetic mean. The general Fymeasure
for non-negative real values of g is:

precision X recall

Fg = (1+B%)

When the recall and precision are evenly weighted, it is known as F, measure:

B? X precision + recall

recision X recall
F,=2xP (3.8)

precision + recall

3.3.9. Recall,Precision,F'1 Measure-Occlusion Level Curve
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Figure 3.6: Example of Recall,Precision,F1 Measure-Occlusion Level Curve

Since this research studies the occlusion in people detectors, it is crucial to
analyze the performance at different occlusion levels. Thus we plot the recall,
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precision, and F1 measure for bounding boxes with different occlusion level
as shown in Figure 3.6. To extract this information from the predicted data,
we calculate the occlusion level for every bounding box with Equation 3.1 in
Section 1.2 and bin them with binwidth = 0.01 for all bounding boxes with
occlusion level less than 0.5. The bin width is selected by the histogram
function in Matlab to use a larger bin width corresponding to the the maximum
number of bins. If we bin all bounding boxes with binwidth = 0.01, there is not
enough bounding boxes with occlusion level larger than 0.5 to deliver convincing
performance metrics. Thus all the bounding boxes with occlusion level larger
than 0.5 are bin into a group. When plotting, the performance measure points
are drawn at the median of the bounding box occlusion level in the corresponding
bin. For example, in Figure 3.6, the last points of curves are drawn at around
0.75, which is the median of the bin over 0.5.



Experiments

In this chapter, we evaluate and analyze the performance of the models trained
using the Overfeat-GoogLeNet system experimentally. All the training data and
test data are from the video and annotation in MatchNMingle dataset.

MatchNMingle has the position of bounding box for every people in frames, so
we can use this information to analysis quality of this dataset, such as number
of images, number of bounding box, bounding box density, and occlusion level.
The evaluation metrics used in this chapter are selected from related papers,
and described in Chapter 3.3.

Apart from the details of dataset in Section 4.1, the experiments and results
are described in the sequence of the hypotheses mentioned in Chapter 1.3. Fi-
nally, in Section 4.4 we provide modified training data selection strategy for this
deep network as well as the performance evaluation of models trained with the
selected data.

4.1. Statistic of Datasets

The annotations for positions in MatchNMingle contain the location of people by
body bounding boxes. To study the occlusion in this situation, the quantitative
analysis is necessary for the dataset.

Later the head annotation was added. Thus, the quantitative analysis was done
for data with different annotation. There are four metrics for the quantitative
analysis, of which are number of images in the dataset, total bounding box
number(BB number), bounding box density(BB density), and average image oc-
clusion level. Bounding box density is calculated by the equation:

BBnumber

BBdensity = (4.1)

number of images
The average image occlusion level is calculated by the Equation 3.2.

27
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Data Number of images | BB number* | BB density* | Average image occlusion level**
Dayl 4228 43933 10.1973 1.194
Day2 4438 40789 9.1909 0.7213
Day3 4472 43729 9.7784 1.444
Day1&2 8664 83883 9.6818 0.9519
Day18&3 8698 86823 9.9819 1.3225
Day2&3 8910 84518 9.4858 1.084
Dayl&2less 4188 37712 9.0048 0.4619
Dayl&2more 4476 46171 10.3152 1.4103
Day1&3less 3705 36882 9.9547 0.9174
Day18&3more 4993 49941 10.0022 1.6232
Day283less 4915 44050 8.9624 0.7657
Day2&3more 3995 40468 10.1297 1.4756

* "BB" refers to bounding box
** Tt is calculated by the Equation 3.2

Table 4.1: Quality of datasets with body annotation in MatchNMingle

Firstly, the data with body annotation is for the experiments referring to the
first two hypotheses. The videos in MatchNMingle are taken in three days for
the three-day speed date event. Since the participants in different days are dif-
ferent, the people in the videos of different days have different hair style and
clothes. The most visible parts of people are head and shoulders.

The training data and validation set for every model is composed of data from
two days, and the remaining data from the other day is used as test data for
this model. This is called a leave-one-day-out cross-validation. In Table 4.1, we
have different subsets. The subsets of Dayl, Day2, and Day3 are used as test
sets, while the subsets of Dayl&2, Day1&3, Day2&3 are used as training sets
and validation sets. It can be seen from the measures in the table that there is
a different average image occlusion level for different days. The bounding box
density and average image occlusion level of Day2 is much lower than that of
Day1l and Day3.

In addition, as we need experiments with different occlusion levels, all the sub-
sets for training are separated into two groups(“less” and “more”) by the average
occlusion level per image. We do this for the experiments of second hypothesis.
The “less” group contains frames with occlusion level lower than the median of
average image occlusion level of all available for each subset: Day1&2, Day1&3,
and Day2&3. The remaining images are classified into the “more” sets. The me-
dian of the image average occlusion level among all data, 0.8, is used as the
threshold for these two groups. Thus, all the images from subsets in "less”
group have the image occlusion level lower or equal to 0.8. With this separa-
tion, the subsets in "less” group have much lower bounding box density and
average image occlusion level than subsets in “more” group. This means that in
the "less” group, there are less bounding boxes and bounding boxes have lower
possibility to overlap with each other.
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Data | Number of images | BB nhumber* | BB density* | Average image occlusion level**
HDay1 4228 43933 10.391 0.0218
HDay2 4479 39198 8.7515 0.0505
HDay3 4473 41902 9.3678 0.0348
HDay1&2 8707 83131 9.5476 0.0366
HDay1&3 8701 85835 9.8649 0.0285
HDay2&3 8952 81100 9.05%4 0.0426

* "BB" refers to bounding box
** Tt is calculated by the Equation 3.2

Table 4.2: Quality of datasets with head annotation in MatchNMingle

For our third hypothesis, we present the statistics of the head annotation in
Table 4.2. To distinguish head annotation from body annotation, the letter "H" is
for the head-annotated data. Same as the body-annotated images, all the data
is separated into different subsets for testing or training. The subsets of Day1,
Day2, and Day3 are used for testing, while the subsets of Day1&2, Day1&3, and
Day2&3 are used for training. Since we annotated the same frames as body an-
notation, the number of images in corresponding subsets for head annotation
are the same as the number for body annotation.

The head annotation information is collected separately from the body anno-
tation with different collection ways. There are three 30-minute videos of each
day, which are nine videos in total. Annotating one frame per second, we have
16200 frames. Due to the budget and time limitation, it is impossible to anno-
tate all 16200 frames for MatchNMingle dataset. Thus, we select the periods
around the time point of form, merging, and dissolution of conversation forma-
tions. With this selection, the time periods when most of the participants are
static are eliminated. The head annotation was done manually with the Ama-
zon's Mechanical Turk(MTurk). With head annotation, the average occlusion
level per image(lower than 0.1) is much lower than that of datasets with body
annotation(around 1).

To see the concrete information of bounding box occlusion level in MatchNMin-
gle, we calculate the bounding box occlusion level of every bounding box and
sort them ascendingly in a vector. In Figure 4.1, we show the vector of ascend-
ing bounding box occlusion level for data with body annotation(blue curve) and
head annotation(red curve). The bounding box occlusion level is calculated by
the Equation 3.1, and it represents the occlusion ratio for each bounding box.
For body-annotated data, most of the bounding boxes have low occlusion levels
of at most 0.4. The extreme cases with very high occlusion level are rare. For
head-annotated data, most of the bounding boxes have no occlusion. Thus, by
using of head annotation, we can avoid most of occluded bounding boxes in
body-annotated data.
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Figure 4.1: Bounding Box Occlusion levels ascending curve
4.2, Body Occlusion Experiments

In this section, we describe the experiments and performance evaluation of
research question 1. Two hypotheses based on this research question, are dis-
cussed.

4.2.1. Hypothesis 1: Detectors make more mistakes with
increase of occlusion level.

Training data | Testdata| AP | Recall | EER | COUNT | F1 measure
Day1&2 Day3 0.6296 | 0.7555 | 0.71 0.2 0.6868
Day1&3 Day2 0.5697 | 0.7122 | 0.68 | 0.2501 0.633
Day2&3 Day1 0.6114 | 0.7126 | 0.68 | 0.1655 0.6581

Average 0.6036 | 0.7267 | 0.69 | 0.2052 0.6593

Table 4.3: Performance evaluation of body annotated data in MatchNMingle

Three detectors are separately trained with Day1&2, Day1&3, and Day2&3,
and tested with Day3, Day2, and Day1, respectively. Table 4.3 shows the results
for average precision(AP, calculated with Equation 3.7), recall(calculated with
Equation 3.3), equal error rate(EER), count(calculated with Equation 3.6), and
F1 measure(calculated with Equation 3.8) for the three detectors. For cross-
validation, each detector represents one fold and the average value of these
metrics is given as well. From the results of average precision and recall, the
value of recall is respectively lower than that of average precision. Thus, these
detectors tend to return more predicted items, and many of them are predicted
incorrectly.
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Figure 4.2: Performance-occlusion curves of body annotated data in MatchNMingle
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To see the performance of detectors with different levels of occlusion, we plot
the recall, precision, and F1 measure with increasing occlusion levels in Fig-
ure 4.2, as mentioned in Section 3.3.9. Figures of 1-Precision-Recall curve are
listed in Appendix B. It can be seen in Figure 4.2 that the recall, precision and
F1 measure show a fluctuate declining as the bounding boxes occlusion level in-
creases. But this tendency becomes fluctuant when the occlusion level becomes
too large. This unstable condition may be the result of lack of heavy occluded
bounding boxes in the test data. One unexpected case is that there is a small
increase in the beginning of these curves, which means that the detection per-
formance for bounding boxes without occlusion is slightly lower than that with
a little occlusion. A possible explanation for it is that the detectors maybe over-
fit at the bounding boxes with no occlusion due to the much larger number of
non-overlapped bounding boxes in training data.

From the performance evaluation results, as we expected, the value of recall,
precision, and F1 measure decrease with increasing of bounding box occlusion
level. It suggests that bounding boxes with higher occlusion level are more
difficult to detected.

4.2.2. Hypothesis 2: Detectors trained with subsets with
low occlusion levels make more mistakes for people
with high occlusion levels.

Training data | Test data AP Recall EER COUNT | F1 measure
Day1&2less Day3 0.6843 0.7667 0.74 0.1203 0.7232
Day1&3less Day2 0.5635 0.7221 0.68 0.2813 0.633
Day2&3less Day1 0.6174 0.7378 0.69 0.195 0.6723

Average 0.6191 0.7422 0.7033 0.1989 0.6762
(+0.0155)* | (+0.0155)* | (0.0133)* | (-0.0063)* | (+0.0169)*

Day1&2more Day3 0.6785 0.7632 0.72 0.1249 0.7183

Day1&3more Day2 0.564 0.6894 0.66 0.2223 0.6205

Day2&3more Day1 0.6497 0.7121 0.68 0.0961 0.6795

Average 0.6307 0.7216 0.6867 0.1478 0.6728
(+0.0271)* | (-0.0146)* | (-0.0033)* | (-0.0574)* | (+0.0202)*

* compared with average value in Table 4.3

Table 4.4: Performance evaluation of body annotated data with different occlusion level

We trained three detectors with subsets in “less” group, and three detec-
tors with subsets in “more” group. When testing, we applied images with "less”
occlusion and “more” occlusion together. Table 4.4 shows the performance eval-
uation results for “less” models and “more” models. The 1-Precision-Recall curve
and Recall, precision, F1-occlusion level curve for these models are listed in Ap-
pendix C.
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Figure 4.3: Recall-occlusion curve comparison

Comparing the values of eval-
uation metrics for “less” and
"“more” models to the general
models trained in Table 4.3, it
suggests that for detectors in
both groups, the average pre-
cision increases. It indicates
that the detectors return less
detected items. For detectors
trained with “less”, there are
more items predicted correctly in
the detected items as the av-
erage recall is 0.0155 higher.
For detectors trained with “more”,
there are less items predicted
correctly in the detected items
as the average recall is 0.0146
lower.

We show the Recall, precision, F1-
occlusion level curve for the six
models and try to compare them
with the general models in Sec-
tion 4.2.1. Since there are too
many curves for these models, to
make the comparison simple and
easy to understand, these curves
are compared separately. In Fig-
ure 4.3, Figure 4.4, and Figure
4.5, the recall, precision, and F1
measure curves for "less”, “more”
models and corresponding general
model are displayed in different
sub-figures.
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Figure 4.4: Precision-occlusion curve comparison

Compared to the general mod-
els, the value of recall for most
of "less” and "more” models im-
proved slightly. And the recall of
"more” models at higher bounding
box occlusion level is higher than
that of “less” models. The recall
of “less” models at lower bounding
box occlusion level is not always
lower than that of “more” mod-
els.

As for the precision, compared to
the general model, only the aver-
age precision of “less” and “more”
models trained with Day1&2 data
is better, while the other models
trained with Day1&3, and Day2&3
perform similarly to the general
models. And for the precision
curves, the precision decreases
with fluctuation, and with not
much difference from the general
models.

Since F1 measure combines the re-
call and precision together, it has
similar tendency to recall.

From the analysis of recall, preci-
sion and F1 measure, in general,
the detectors trained with subsets
with low occlusion perform worse
than detectors trained with higher
occlusion level. The performance
at low occlusion level of all our
models is similar. It indicates that
for every training subset there is
enough or even too many samples
with low occlusion level. And the
higher ratio of samples with higher
occlusion level shows the possibil-
ity to improve the correct predic-
tions.
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It is helpful to understand
all the trained models if we
can find where the wrong pre-
dictions are. Here, the false
positive ratio defined by Equa-
tion 3.5 can tell the ratio of
wrong predictions at different oc-
clusion levels. Figure 4.6 be-
low shows the wrong predic-
tions ratio on different occlu-
sion levels for models trained
with "less”, "more”, and over-
all data. In these figures, we
can see the models trained with
“less” make more wrong pre-
dictions at higher occlusion lev-
els. The models trained with
“more” make less wrong pre-
dictions at higher occlusion lev-
els but make similar wrong pre-
dictions at lower occlusion lev-
els compared with “less” mod-
els.

Most of the wrong predictions hap-
pen on bounding boxes with low
occlusion levels especially bound-

foring boxes with almost no occlu-

sion. This is because in the
test set, most of the bounding
boxes have very low occlusion lev-
els. Even the ratio of wrong pre-
dictions is very low, the number
of wrong prediction is still high
compared to other occlusion lev-
els.

According to the wrong predic-
tion ratio analysis, there are two
ways to improve the detection per-
formance for our existing models.
First, even though the wrong pre-
diction ratio becomes higher with
occlusion level increasing, it makes

Figure 4.6: False positive ratio-Occlusion level curve Sense to improve the performance

at low occlusion levels. In our con-
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dition, most of bounding boxes have low occlusion and our detectors show un-
expected increase at the beginning of the recall, precision-occlusion level curve.
Thus, it is necessary to overcome this problem. Second, in training data, the
number of samples with high occlusion levels is apparently less than that with
low occlusion levels. This means there is not enough samples with high occlu-
sion levels for training. Due to the common learning curve for deep models, it
is possible to enhance the performance at high occlusion levels by training with
more occluded samples.

4.3. Head Annotation Experiments

In this section, the experiments and performance evaluation for the third hy-
pothesis are described.

4.3.1. Hypothesis 3: Detector trained with head annotation
performs better than detector trained with body an-
notation.

Training data | Test data AP Recall EER COUNT | F1 measure
HDay1&2 HDay3 0.6583 0.7589 0.74 0.1529 0.705
HDay18&3 HDay?2 0.6839 0.8313 0.81 0.2156 0.7597
HDay2&3 HDay1 0.591 0.7967 0.77 0.3535 0.6797
Average 0.6444 0.7967 0.77 0.2407 0.7117

(+0.0408)* | (+0.07)* | (+0.08)* | (+0.0355)* | (+0.0522)*

* compared with average value in Table 4.3

Table 4.5: Performance evaluation of head annotated data in MatchNMingle

We trained and tested three detectors with head-annotated data. To com-
pare the performance of models trained with head annotation and body anno-
tation, the models trained in Section 4.2.1 use the same frames as the models
trained in this section. The performance evaluation metrics are shown in Table
4.5, and the 1-Precision-Recall curves are shown in Figure 4.7. From the per-
formance table, the average value of AP, recall, EER, and F1 measure increase,
which means the head detectors return less detected items and more of them
are predicted correctly comparing to the body detectors. Unexpectedly, the pre-
cision of model trained with HDay2&3 is lower than that of model trained with
body annotation, while the recall is higher. This suggests the detector returns
more predicted items and most of them are predicted correctly. The possible
reason for this case can be the quantitative analysis of head-annotated data.
From Table 4.2, the bounding box density of HDay1l is much higher than that
of HDay2 and HDay3. This means the difficulty of detecting people in HDay1 is
higher. However, in general, as expected, head detectors tend to be a better
solution when detecting people from the overhead cameras.
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4.4. Modified Body-annotated Training Data Ex-
periments

4.4.1. Hypothesis 4: Body detectors trained with less im-
ages with low occlusion level perform better than the
initial detectors in Experiment 1.

Data | Number of images | BB number | BB density | Average occlusion level(per image)
MDay1&2 5753 59616 10.3626 1.1923
MDay1&3 5805 61150 10.5340 1.6596
MDay28&3 5696 58382 10.2496 1.4265

Table 4.6: Quality of modified body annotated data in MatchNMingle

Training data | Test data AP Recall EER COUNT | F1 measure
MDay1&2 Day3 0.7027 0.7352 0.72 0.0461 0.7186
MDay1&3 Day2 0.6117 0.7112 0.69 0.1626 0.6577
MDay2&3 Day1 0.6731 0.7283 0.7 0.0821 0.6996
Average 0.6625 0.7249 0.7033 0.0969 0.6920

(+0.0589)* | (-0.0018)* | (+0.0133)* | (-0.1089)* | (+0.0327)*
(4+0.0181)** | (-0.0718)** | (-0.0667)** | (-0.1438)** | (-0.0197)**

* compared with average value in Table 4.3
** compared with average value of head detectors in Table 4.5

Table 4.7: Performance evaluation of modified models

With the analysis of results from above experiments, I propose modified
training subsets based on the training subsets used in Section 4.2.1. The idea
of maodification is to reduce the number of samples with low occlusion level and
to increase the ratio of samples with high occlusion level. Thus, we randomly
remove half of the images with occlusion level lower than the average image
occlusion level, and trained detectors again with these modified training subsets.
Before training, the quantitative analysis is done for the data, and the result is
shown in Table 4.6. It is clear that after the modification the number of images
and bounding boxes is lower, while the bounding box density and average image
occlusion level becomes higher.

According to the performance measure in Table 4.7 and Figure 4.8, the average
precision increases, while the value of recall almost stays static compared to the
initial models. And this leads to the improvement of EER and F1 measure. Thus,
the modified models return less predicted items and most of them are predicted
correctly.

Even though there is an improvement for models trained with modified train-
ing data, the performance of body detectors still can not reach that of head
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detector. Compared to head detectors, the average precision of modified body
detectors is slightly better, while there is large distance between the value of
recall. The average recall of head detectors is about 10% better, and this leads
to larger EER and F1 measure. However, the modified body detectors seem to
have better ability for counting people, since the their average count is much
lower than that of initial body detectors and head detectors.






Conclusion and Future Work

5.1. Conclusion

This thesis work study the impact of occlusion on performance of models trained
by Overfeat-GooglLeNet network with subsets of different occlusion levels. With
MatchNMingle dataset, our research goes through four hypotheses and corre-
sponding experiments.

For Hypothesis 1, we trained three detectors, and these detectors tend to re-
turns more predicted items and most of them are predicted incorrectly when
compared to the ground truth. With the increase of occlusion level, the value of
recall reduces from around 0.7 to of at most 0.5; the value of precision reduce
from around 0.8 to of at most 0.6; the value of F1 measure reduces from around
0.7 to less than 0.5. Their performance at different occlusion levels suggests
that the bounding boxes with higher occlusion level are more difficult to detect.

For Hypothesis 2, we trained models with less occlusion and more occlusion
separately. We found that the models trained with higher occlusion levels re-
turn better predictions at higher occlusion level. In the original training data,
it seems that the ratio of images with low occlusion levels is too high, and this
may lead to overfit. In addition, it seems that detectors trained with less frames
have higher average precision. It means there detectors return less detected
items. And the detectors have better counting ability as COUNT reduces.

The third hypothesis about head annotation is more like an attempt and verifi-
cation that head detector is supposed to be a better solution in crowded scenes.
With experiments and evaluation, the average precision, recall and EER improve.
The head detectors reach 0.0522 larger F1 measure comparing to the body de-
tectors. Thus, head detectors returns less prediction items and most of them
are correctly predicted. These models are closer to the ideal detector with high
precision and high recall.

43
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For Hypothesis 4, we proposed modification of training data for body-annotated
data. The modification strategy is to reduce the ratio of images with low oc-
clusion level and improve the average occlusion level of the dataset. With the
modified training data, we obtained three body detectors. There is a remarkable
improvement on the precision of these models, which means our modification
reduces the number of detected items and results in better balance between
precision and recall. However, this improvement is segmentary. It seems that
these models have better counting ability, but the ratio of undetected people
does not reduce. Comparing to the comprehensive improvement on both preci-
sion and recall of head detectors, the body detectors still have critical limitation.
Therefore, in the situation of MatchNMingle, head detector is a better solution
for people detection.

5.2. Future Work

Firstly, according to the occlusion level ascending curves (Figure 4.1), we are
lack of instances with high occlusion level. This limitation influence on the body
occlusion experiments. If more samples with high occlusion level are collected,
we can separate them into more groups for training and testing rather than only
"less” and “more” groups in Section 4.2.2. In this way, the analysis of relation
between training set occlusion level and performance at different occlusion level
can become more detailed and effective.

Secondly, it is meaningful if the accuracy and uniformity of annotation on our
dataset can be improved by manually checking. There are some inappropriate
bounding boxes when people is moving in the camera. And the head annotation
are collected through MTurk, where the workers are not trained to do annota-
tion. This results in bounding boxes of different styles. Some bounding boxes
contain more background, while some contain not the complete head. Some
workers annotated the partical visible people on the edge, while some did not.
And some workers only annotated the visible part when people are overlapping,
while some guessed the position of the whole head and annotated. This diver-
gence of annotation could be misleading when training, especially the case of
occlusion.

Thirdly, the variation of our dataset is low comparing to the images in Brain-
wash. When extracting images from video, they ensured a fixed interval of 100
seconds to obtain a dataset with large variation. Variation in images is important
for training and evaluation.

Lastly, validation and analysis on single dataset is not enough for a research,
so it is better to do more experiments with other dataset for people detection.
There is not much dataset contains people from the overhead cameras, but oc-
clusion is a common challenge for people detection. Thus, study of occlusion is
not limited in our dataset.
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A. GoogLeNet
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Figure B.1: 1-Precision-Recall curves of body annotated data in MatchNMingle
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C. Curves for Hypothesis 2
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Figure C.1: Performance evaluation of body annotated data with lower occlusion level
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