
Delft Center for Systems and Control

Batch Scheduling of Multi-
Product Pipeline Networks

S.J. Vlot

M
as

te
ro

fS
cie

nc
e

Th
es

is

Batch Scheduling of Multi-
Product Pipeline Networks

Master of Science Thesis

For the degree of Master of Science in Systems and Control
at Delft University of Technology

S.J. Vlot

February 2017

Faculty of Mechanical, Maritime, and Materials Engineering · Delft University of Technology

The research in this thesis is carried out in cooperation with ORTEC Consulting.

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

In oil supply chains, crude oil needs to be transported from oil fields to refineries, and refined
products need to be transported from refineries to regional depots. On land, pipelines are the
preferred mode for long-distance oil transportation, because they are safe, efficient, silent, and
cheap compared to other modes of transport. Pipelines are often part of large networks, in
which they connect multiple supply and demand locations. Multi-product pipelines transport
batches of different products, such as gasoline, diesel, and jet fuel.
Pipeline networks should be operated such that temporal and spatial differences between sup-
ply and demand are balanced, operational limitations are satisfied, and costs are minimized.
This is a rather complicated task, due to the size and complexity of pipeline networks, limited
capacities of tanks and pipelines, and the existence of transportation times of several days.
Because batches are pushed through pipelines, transportation times of current batches de-
pend on injections of future batches, which is a distinctive feature of the pipeline scheduling
problem. The minimization of operational cost is mainly related to transmix volumes, i.e.
contaminated volumes that emerge between consecutive batches, and pumping energy.
In this thesis, we propose a novel pipeline scheduling method for solving the pipeline schedul-
ing problem. It consists of a planning and a scheduling phase that are coupled in a hierarchi-
cal decomposition scheme. In the planning phase, global day-to-day transportation volumes
are determined for each pipeline. In the scheduling phase, we use the planning output to
generate complete schedules. Both phases contain a discrete-time Mixed Integer Linear Pro-
gramming (MILP) problem. The MILP planning problem is solved with truncated branch
and bound. The MILP scheduling problem is further decomposed using a rolling-horizon
approach; the resulting subproblems are solved with branch and bound.
The pipeline scheduling method has been successfully tested on two case studies involving
up to 4 products, 8 pipelines, 8 tank farms, 2 supply locations, and 5 demand locations.
The proposed method is flexible in terms of network configurations, intermediate supply
and demand requirements, and cost structures. Complete schedules for 30-day horizons are
obtained within 3–4 minutes of computation time.
With respect to current industry practice, the novel pipeline scheduling method can greatly
reduce the time required to generate schedules. Compared to current spreadsheet approaches,
the proposed method is generic and less error-prone. Moreover, the obtained schedules are
significantly better in terms of transmix and pumping costs.

Master of Science Thesis S.J. Vlot

ii

S.J. Vlot Master of Science Thesis

Acknowledgments

For almost one year, I have been working on my thesis project at Delft University of Technol-
ogy and ORTEC Consulting. Before I present the main findings, I would like to thank those
of you who have supported me during the past year.

First, I would like to thank my supervisors at Delft University of Technology and ORTEC
Consulting for giving me the opportunity to graduate on a very interesting project. In par-
ticular, I would like to thank prof.dr.ir. Bart De Schutter for his detailed and high-quality
feedback, dr.ir. Noud Gademann for the interesting discussions that were often confusing and
enlightening at the same time, and ir. Gregor Brandt for coaching me both on a professional
and on a personal level.

Next, I would like to thank dr.ir. Ton van den Boom and dr.ir. Theresia van Essen for their
interest in this thesis project and for being part of my graduation committee.

In addition, my thanks go to my colleagues at ORTEC for keeping me in touch with the real
world during countless coffee breaks and Friday afternoon drinks. And last but not least, I
would like to thank my family, girlfriend, and friends for their support and for taking my
mind of the project when needed.

Delft, University of Technology S.J. Vlot
February 2017

Master of Science Thesis S.J. Vlot

iv

S.J. Vlot Master of Science Thesis

Table of Contents

1 Introduction 1

1-1 Pipelines in oil supply chains . 1

1-2 Problem statement . 3

1-3 Research questions . 3

1-4 Thesis outline . 4

1-5 Contributions . 4

2 Batch scheduling techniques 5

2-1 Introduction . 5

2-2 Optimization frameworks . 6

2-3 Solution techniques . 7

2-4 Problem representations . 9

2-5 Current pipeline scheduling methods . 12

2-6 Summary . 14

3 A novel pipeline scheduling method 15

3-1 Introduction . 15

3-2 General methodology . 16

3-3 Representing pipeline networks . 17

3-4 Planning phase . 20

3-5 Scheduling phase . 27

3-6 Summary . 37

Master of Science Thesis S.J. Vlot

vi Table of Contents

4 Case studies 39

4-1 Introduction . 39

4-2 Mesh-structure network . 40

4-3 Tree-structure network . 48

4-4 Transmix experiment . 54

4-5 Summary . 56

5 Conclusions and Recommendations 57

5-1 Conclusions . 57

5-2 Recommendations . 59

A Mixed Integer Non-Linear Programming 63

B Transmix estimation 65

B-1 The dispersion model . 65

B-2 Transmix cost estimation . 66

C Pumping cost estimation 69

C-1 Pipeline flow . 69

C-2 Head losses . 70

C-3 Pumping power . 71

C-4 Piecewise-affine approximation of pumping costs 72

D Additional case study data 75

D-1 Mesh-structure network . 75

D-2 Tree-structure network . 82

D-3 Transmix experiment . 83

Bibliography 85

Glossary 89

List of Acronyms . 89

List of Symbols . 89

S.J. Vlot Master of Science Thesis

List of Figures

1-1 Example of a network with six pipelines and six tank farms 2

1-2 Example of a pipeline containing three batches 2

2-1 Outline of Chapter 2 . 5

2-2 Different representations of a schedule with three consecutive batches 9

3-1 Overview of the proposed pipeline scheduling method 15

3-2 Example of a network with six primary and two secondary pipelines 17

3-3 Two pipeline configurations with secondary pipelines 18

3-4 Example of a piecewise-affine pumping cost approximation with three line segments 18

3-5 Time buckets and batches in the planning and scheduling phase 20

3-6 Relation between injection timing and ejection timing 21

3-7 Expressing piecewise-affine approximations with line segments as lower bounds . 25

3-8 Example of a batch that starts within a scheduling time bucket 28

3-9 Illustration of the batch volume and batch timing variables 31

4-1 Mesh-structure network . 40

4-2 Stock levels at location N4 . 42

4-3 Pumping schedule of pipeline PL1A . 43

4-4 Total costs for different tank scenarios and planning cost structures 44

4-5 Pumping cost for different tank scenarios and planning cost structures 45

4-6 Pumping cost for different tank scenarios and scheduling cost structures 46

Master of Science Thesis S.J. Vlot

viii List of Figures

4-7 Total cost for different supply-demand scenarios and planning cost structures . . 47

4-8 Number of downtime days for different supply-demand scenarios and planning cost
structures . 47

4-9 Tree-structure networks with an increasing number of pipelines 49

4-10 Optimality gaps for an increasing number of pipelines (MILP planning problem) . 50

4-11 Computation times for an increasing number of pipelines (MILP scheduling problem) 50

4-12 Overview of the decomposition experiments . 52

4-13 Computation times and optimality gaps obtained with different solution methods 53

4-14 Pumping costs obtained with different solution methods 53

4-15 Transmix costs obtained with different solution methods 53

4-16 Optimality gaps obtained with two transmix formulations (tree-structure network) 55

4-17 Transmix costs obtained with two transmix formulations (tree-structure network) 55

A-1 Difference between piecewise-affine approximations and relaxations 64

B-1 Correlation for the dispersion of fluids flowing in pipes 67

C-1 Pump and system curves . 70

C-2 Pump curves and efficiency for different system curves 71

C-3 Expressing piecewise-affine approximations with line segments as lower bounds . 72

D-1 Transmix costs for different tank scenarios and planning cost structures 78

D-2 Optimality gap for different tank scenarios and planning cost structures 78

D-3 Computation time for different tank scenarios and scheduling cost structures . . 79

D-4 Pumping cost for different supply-demand scenarios and planning cost structures 80

D-5 Violations for different supply-demand scenarios and planning cost structures . . 80

D-6 Pumping cost for different supply-demand scenarios and scheduling cost structures 81

D-7 Transmix cost for different supply-demand scenarios and scheduling cost structures 81

D-8 Optimality gap compared to the original formulation (mesh-structure network) . 83

D-9 Transmix costs compared to the original formulation (mesh-structure network) . 83

S.J. Vlot Master of Science Thesis

List of Tables

2-1 Existing refined oil pipeline scheduling methods 14

4-1 Pipeline characteristics . 41

4-2 Aggregated tank capacity and opening stock . 41

4-3 Supply and demand parameters . 41

4-4 Input parameters for the pumping cost estimation 41

4-5 Cost parameters . 42

4-6 Case solution . 43

4-7 Pipeline characteristics . 48

4-8 Aggregated tank capacity and opening stock . 50

4-9 Case solution . 51

B-1 Pipeline and fluid parameters for transmix estimation 66

D-1 Pumping cost parameters used in affine experiments 75

D-2 Pumping cost parameters used in piecewise-affine experiments 76

D-3 Initial pipeline contents . 77

D-4 Pumping cost parameters . 82

Master of Science Thesis S.J. Vlot

x List of Tables

S.J. Vlot Master of Science Thesis

Chapter 1

Introduction

1-1 Pipelines in oil supply chains

In oil supply chains, crude oil needs to be transported from oil fields to refineries, and refined
oils need to be transported from refineries to regional depots. On land, pipelines are the
preferred mode for long-distance oil transportation, because they are safe, efficient, silent, and
cheap compared to other modes of transport. In multi-product pipeline networks, pipelines
transport batches of different products such as gasoline, diesel, and jet fuel. These pipelines
connect different tank farms that act as supply, demand, or intermediary location, see Fig. 1-1.

The size of existing oil pipeline networks is enormous and still growing. In the United States,
liquids pipelines stretch over 199 000 miles (320 000 km). In 2014, a total volume of 16.2 billion
barrels (2.58 · 109 m3) was delivered, consisting of crude oil, refined products, and liquefied
natural gas (Association of Oil Pipe Lines and American Petroleum Institute, 2015).

In pipeline networks, temporal and spatial differences between supply and demand should
be balanced. In order to achieve this, product batches are pumped through the network.
Planning and scheduling these batches is a rather complicated task, due to the size and
complexity of existing networks, limited tank capacity in tank farms, and the existence of
significant transportation times of several days. Because batches are pushed through the
pipeline, transportation times of current batches depend on injections of future batches, which
is a distinctive feature of the pipeline scheduling problem.

In addition to complying with supply and demand, pipeline schedules can be better or worse
in terms of operational cost. First of all, batches are injected without any separation in
between them, which leads to some mixing at batch interfaces. This is illustrated in Fig. 1-2,
which shows a pipeline that contains three batches. The amount of contamination can be
reduced by minimizing the number of batch transitions. Second, pipeline networks require
energy for pumping. The required power varies with the flow rate, since pumps have different
efficiencies at different flow rates. In addition, the required pumping pressure increases with
the flow rate due to increasing friction losses in pipelines.

Master of Science Thesis S.J. Vlot

2 Introduction

Figure 1-1: Example of a network with six pipelines and six tank farms

DieselRegularPremium?

Figure 1-2: Example of a pipeline containing three batches

S.J. Vlot Master of Science Thesis

1-2 Problem statement 3

1-2 Problem statement

Given the size and dynamics of pipeline networks, planning and scheduling network operations
is quite complicated. In a monthly cycle, network schedulers spend several days on this task.
Some schedulers use automated scheduling rules based on expert knowledge. However, most
companies still rely on basic spreadsheets. The use of mathematical optimization can improve
this situation, since it offers a structured way for creating feasible and good schedules.

This project is carried out in cooperation with ORTEC Consulting, a quantitative consul-
tancy firm interested in scheduling methods for multi-product pipeline networks. The desired
deliverable is a scheduling tool that generates complete schedules for a 30-day horizon within
a few minutes. The scheduling tool must be built in AIMMS, a commercial software package
for building optimization-based applications. For ORTEC Consulting, there are two impor-
tant considerations from a business perspective. First of all, computation time is important.
Hence, the most suitable solution method is not necessarily exact. Second, the scheduling
tool should be easy to configure for different clients.

This leads to the following problem statement:

Develop a fast and generic method for creating feasible and good schedules
for multi-product oil pipeline networks with known supply and demand.

In this problem statement, fast refers to the amount of computation time required to obtain
complete schedules, which should be a few minutes at most. Furthermore, the method should
be generic in terms of network configurations and scheduling objectives. A schedule should
describe a list of batch injections for each pipeline, specifying batch volumes, product types,
start and end times, and flow rates. Schedules should be feasible and good, i.e. operational
restrictions on tank levels and flow rates must be obeyed, and operational costs related to
pumping energy and transmix volumes should be minimized. The method should be able to
handle networks with at least 4 products and 5–10 long-distance pipelines. Lastly, supply and
demand are known for the entire horizon, which means that supply and demand volumes are
specified for each location in the network and for each product type.

1-3 Research questions

The problem statement, which has been introduced in Section 1-2, is captured in the following
main research question:

How can we solve the pipeline scheduling problem using mathematical optimization?

We split the main research question into four subquestions:

• Which optimization framework is most suitable for the pipeline scheduling problem?
• Which problem representation is most suitable for the pipeline scheduling problem?
• How can we include operational cost in the optimization problem?
• What is the effect of different solution techniques on computation time and quality?

Master of Science Thesis S.J. Vlot

4 Introduction

1-4 Thesis outline

This thesis report consists of five chapters. Chapter 2 covers general batch scheduling tech-
niques, including optimization frameworks, problem representations, and solution techniques.
Existing pipeline scheduling methods are categorized according to these scheduling techniques.
In Chapter 3, we propose a novel pipeline scheduling method. We explain high-level choices
and provide a detailed description of the optimization problems. Chapter 4 describes the re-
sults of two different case studies. Chapter 5 concludes this thesis and gives recommendations
for future work.

1-5 Contributions

Existing pipeline scheduling methods are either aimed at finding optimal schedules for sim-
plified problems, or aimed at finding feasible schedules for very large problems. Currently,
there is no pipeline scheduling method for generating good or optimal schedules for medium-
sized problems as described in Section 1-2. Hence, we propose a novel pipeline scheduling
method aimed at finding good schedules for such problems. The proposed method is flexible
in terms of network configurations, intermediate supply and demand requirements, and cost
structures. Other contributions with respect to existing pipeline scheduling methods are:

• Custom discrete-time representation
Most existing pipeline scheduling methods rely on continuous-time or precedence-based
problem representations, because these representations yield accurate results and re-
quire less binary variables than discrete-time representations. However, it is difficult
to incorporate external inputs in these representations due to a lack of fixed reference
points in time. In discrete-time representations, on the other hand, it is relatively easy
to include intermediate deadlines, shared use of resources, and inventory balances. In
this thesis, we use a custom discrete-time representation in which batches can start and
end within time buckets. The actual timing of these batches is determined in a post-
processing step. In this way, we obtain high-resolution schedules with a small number
of time buckets.

• Incorporation of the batch front in discrete-time representations
Since batches are pushed through pipelines, transportation times of current batches
depend on injections of future batches. Cafaro and Cerdá (2004) introduce the concept
of a batch front variable to track the positions of batches in a pipeline over time. When
a batch reaches the end of the pipeline, its ejection starts. In this thesis project, we
adjust the continuous-time batch front representation of Cafaro and Cerdá (2004) such
that it fits discrete-time problem representations.

• Piecewise-affine representation of pumping costs
The energy costs related to pumping increase nonlinearly with the flow rate. In existing
pipeline scheduling methods, these nonlinear pumping costs are either linearized, or
included in a nonlinear optimization problem. We use a piecewise-affine pumping cost
formulation such that the resulting optimization problem is accurate and can be solved
within reasonable time.

S.J. Vlot Master of Science Thesis

Chapter 2

Batch scheduling techniques

2-1 Introduction

This chapter covers both general batch scheduling techniques and existing pipeline scheduling
methods. We divide the process of solving scheduling problems in three main steps, which
relate to the research questions stated in Section 1-3. These steps are:

1. Definition of the business question (decisions, goals, and boundary conditions)
2. Formulation of mathematical optimization problems that capture the business question
3. Selection of solution techniques and algorithms for solving the optimization problems

Fig. 2-1 illustrates the chapter outline, which is based on the three steps described above.
Sections 2-2 to 2-4 describe general batch scheduling techniques. Section 2-2 covers two opti-
mization frameworks that can be used to describe the pipeline scheduling problem. Section 2-3
covers the solution techniques associated with these optimization frameworks. Depending on
the chosen optimization framework and solution techniques, different problem representations
exist. We describe these problem representations in Section 2-4.

Section 2-5 covers existing pipeline scheduling methods. We classify these methods based on
the batch scheduling techniques that are described in Sections 2-2 to 2-4.

Business question

Optimization problem

Solution techniques

2-2 Optimization frameworks
2-4 Schedule representations

2-3 Solution techniques

2-5 Current pipeline
 scheduling methods

(1-2 Problem statement)

Figure 2-1: Outline of Chapter 2

Master of Science Thesis S.J. Vlot

6 Batch scheduling techniques

2-2 Optimization frameworks

2-2-1 Mathematical programming
Amathematical program is a mathematical description of an optimization problem. It consists
of variables, an objective function indicating what is best in terms of the variables, and
constraints indicating what is allowed in terms of the variables.
Mathematical programming formulations are based on algebra and can be classified accord-
ingly. Linear Programming (LP) problems are characterized by linear objective functions and
constraints. Adding some nonlinear terms results in Non-Linear Programming (NLP) prob-
lems. Moreover, if some variables only take integer values, we obtain Mixed Integer Linear
Programming (MILP) and Mixed Integer Non-Linear Programming (MINLP) problems.
As most scheduling problems involve discrete decisions, they are typically formulated as MILP
problems. For example, we can use binary variables to describe task-machine assignments.
MILP problems with binary variables are of the following form, e.g. see Grossmann (2014):

min cTy + dTx

s.t. Ay +Bx ≤ b
y ∈ {0, 1}m

x ∈ Rn≥0

(2-1)

where b, c, d are vectors of coefficients and A, B are matrices of coefficients. Furthermore, x
and y are vectors of continuous and binary decision variables, respectively.

2-2-2 Constraint programming
Constraint programming (Van Hentenryck, 1989) is a programming paradigm developed to
solve feasibility problems in artificial intelligence applications. It has been extended to solve
optimization problems and, in particular, scheduling problems (Méndez et al., 2006).
Constraint programming is more expressive than mathematical programming, because (1)
it supports direct incorporation of logic and arithmetic expressions, (2) it allows variables
to be indexed by each other, and (3) it offers compact formulations — global constraints
— for representing specific scheduling constructions (Méndez et al., 2006). For example,
end-before-start describes precedence relations and cumulative expresses capacity restrictions,
e.g. in storage facilities and machines. The general form is (Lustig and Puget, 2001):

min f(x)
s.t. gj(x) = 1 ∀j ∈ J

x ∈ X
(2-2)

where f and g are the objective and constraint functions, respectively. Furthermore, J is a set
of constraint indices. The expression gj(x) = 1 states that all constraints should be satisfied.
Although the terms mathematical programming and constraint programming suggest a degree
of similarity, they relate to different types of programming. Constraint programming refers
to computer programming, whereas mathematical programming refers to making a plan. The
main implication is that a constraint program should also describe a way to solve it (Lustig
and Puget, 2001). However, most constraint programming solvers contain generic search
strategies. Therefore, they only require an optimization problem as an input.

S.J. Vlot Master of Science Thesis

2-3 Solution techniques 7

2-3 Solution techniques

2-3-1 Mathematical programming
This section focuses on solving MILP problems, as scheduling problems are typically formu-
lated as such. In general, the number of integer MILP solutions increases exponentially with
the number of binary variables. Although computers and algorithms have improved signifi-
cantly (Bixby and Rothberg, 2007), current exact methods cannot effectively evaluate these
solutions for large instances. Instead, heuristics can be used. Heuristics cannot guarantee
optimality, but often return good solutions within short computation times.

Exact methods
The most common exact solution method for MILP problems is branch and bound (Land and
Doig, 1960; Dakin, 1965), which is the basis of commercial solvers as IBM ILOG CPLEX. Let
us assume that all integer variables are binary, which is true for most scheduling problems.
Then, the algorithm starts by solving a relaxed LP problem in which the binary variables
are treated as continuous. The corresponding solution is a lower bound on the original
minimization problem. If the relaxation does not yield integer values, a search tree is initiated.
Two subproblems are solved, in which one binary variable is fixed to respectively 0 and 1.
If the subproblem results in an integer solution, that particular branch is complete and its
solution serves as an upper bound. If not, the process of branching repeats. The algorithm
continues to solve subproblems until the lower and upper bound have the same objective
value. During the search, the lower bounds are used to prune branches of the search tree.

Heuristics
Heuristics are typically classified as construction heuristics or metaheuristics.

Construction heuristics generate schedules from scratch, e.g. by applying priority rules. Pri-
ority rules basically describe in which order a queue of tasks should be processed. Haupt
(1989) distinguishes rules based on arrival time (e.g. first come first serve), processing time
(e.g. shortest processing time first), static due date (e.g. earliest due date first), and dynamic
due date (e.g. least slack first). Single priority rules can be combined to obtain more advanced
scheduling policies (Panwalkar and Iskander, 1977).

Metaheuristics are improvement heuristics, i.e. they can only improve existing solutions. Af-
ter initialization, metaheuristics try to find better solutions by combining multiple existing
solutions, or by performing a (stochastic) search in the neighborhood of existing solutions
(Harjunkoski et al., 2014). Well-known metaheuristics are tabu search (Glover, 1986), simu-
lated annealing (Kirkpatrick et al., 1983), and genetic algorithms (Holland, 1975).

2-3-2 Constraint programming
Constraint programming algorithms enumerate solutions in a search tree. Similar to branch
and bound, a tree of subproblems is created by assigning values to discrete variables. Rather
than using LP relaxations, branches are pruned using constraint propagation. In essence,
an algorithm reduces the search space by checking and eliminating logic inconsistencies. If
the search space in a branch becomes empty, the search continues in a different branch.
For frequently occurring problem structures, high-level building blocks have been developed.
These global constraints are propagated with specialized algorithms (Hooker, 2002, p. 186).

Master of Science Thesis S.J. Vlot

8 Batch scheduling techniques

In general, constraint programming algorithms are aimed at finding feasible rather than opti-
mal solutions. Optimization can be done by adding constraints that require the next solution
to be better than the current one. It is possible to prove the optimality of a solution, although
this can be time consuming. Proving optimality is done by showing that no better solutions
exist, i.e. the feasible domain of decision variables becomes empty (Lustig and Puget, 2001).

2-3-3 Decomposition methods
If an optimization problem is too large to be solved monolithically, we can use decomposition
methods to split a problem into smaller parts that are easier to solve. These parts can be de-
scribed and solved using (combinations of) the techniques discussed in Sections 2-3-1 and 2-3-2.

Hierarchical and iterative decomposition
In hierarchical and iterative decomposition, the original problem is split into a master problem
and a subproblem. The master problem is typically a simplified or aggregated version of the
original problem. Its solution is a set of high-level decisions and forms the input of a detailed
subproblem. The subproblem is solved to obtain a complete solution, e.g. a schedule. A
challenge of hierarchical and iterative decomposition methods is that the master problem is
often too restrictive or not restrictive enough, yielding respectively no or suboptimal results.
In iterative decomposition, this is overcome by introducing a feedback loop that adjusts the
master problem based on the results of the subproblem (Maravelias and Sung, 2009).
Two well-known iterative decomposition methods are Benders and Lagrangian decomposition.
Note that these methods are not based on simplified or aggregated versions of the original
problem. Instead, the master and subproblem are extracted from the original formulation by
exploiting the structure of variables and constraints (Maravelias and Sung, 2009).

Time-based decomposition: rolling horizon
In time-based decomposition, the scheduling horizon is solved in stages. The main idea is to
solve the problem recursively by shifting a time window, which is referred to as rolling the
horizon. In each iteration, the problem is solved for a limited horizon. From the solution, only
the decisions for the first time period(s) are implemented. These decisions form the initial
conditions of the next iteration, in which the horizon is shifted (Harjunkoski et al., 2014).

A note on hybrid solution techniques
Different solution techniques have complementary strengths. Therefore, combining multiple
methods can greatly improve computational performance (Harjunkoski et al., 2014).
The combination of heuristics and branch and bound might be beneficial when the problem
can be decomposed into subproblems for which good heuristics exist. For example, Maravelias
(2006) uses branch and bound to solve an assignment master problem and a heuristic to solve
the sequencing subproblem. Since the assignment decisions are fixed in the subproblem, each
machine can be sequenced independently using job-shop scheduling heuristics.
The combination of constraint programming algorithms and branch and bound can also be
advantageous. Méndez et al. (2006) state that assignment decisions are efficiently solved with
branch and bound because they have good continuous relaxations. Sequencing decisions,
however, are better suited for constraint programming approaches since effective global se-
quencing constraints exist. This approach can be implemented using a logic-based Benders
decomposition (Hooker, 2002).

S.J. Vlot Master of Science Thesis

2-4 Problem representations 9

2-4 Problem representations

Depending on the chosen optimization framework and solution techniques, different prob-
lem representations exist. Most scheduling surveys distinguish network-oriented and batch-
oriented problem representations, e.g. see Méndez et al. (2006) and Harjunkoski et al. (2014).
The conceptual difference between these problem representations is related to the represen-
tation of batches in shared network equipment:

• In network-oriented representations, batch interaction is constrained via shared time-
grid points that are linked to network equipment. For example, batch overlap is pre-
vented by allowing at most one active batch at each time point per machine.
• In batch-oriented representations, batch starting times are not linked to a point on a
time grid. Instead, starting times are expressed by a continuous or integer variable.
Constraints to prevent overlap contain additional batch sequencing variables.

Both network-oriented and batch-oriented problem representations can be used in the math-
ematical programming framework. Most constraint programming problems are based on
batch-oriented representations, because effective global constraints are available for describ-
ing and solving these problems. An important aspect of batch-oriented representations is that
batches and batch sizes must be known in advance. Network-oriented representations, on the
other hand, consider batching and scheduling decisions simultaneously (Méndez et al., 2006).

In the remainder of this section, we describe three common problem representations. Sec-
tions 2-4-1 and 2-4-2 respectively cover discrete-time representations and continuous-time
representations, which are both network oriented. Section 2-4-3 covers precedence-based rep-
resentations, which are batch oriented.

2-4-1 Discrete-time problem representations

Discrete-time representations are based on uniformly distributed time grids. Batches can
start and end at these time points only, as illustrated in Fig. 2-2a.

Main decision variables
The main decision variables in discrete-time representations are (Shah et al., 1993):

Wijt ∈ {0, 1} Binary: indicates whether task i starts on machine j at time point t
Bijt ≥ 0 Batch size of task i that starts on machine j at time point t
Sst ≥ 0 Inventory level of material s at time point t

| | | | | | | | | | | |

Batch 1

| | | | | | | | | | | |

(a) Discrete-time representation
(network oriented)

(b) Continuous-time representation
(network oriented)

(c) Precedence-based representation
(batch oriented)

TimeTimeTime

Batch 2 Batch 3 Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3

Figure 2-2: Different representations of a schedule with three consecutive batches

Master of Science Thesis S.J. Vlot

10 Batch scheduling techniques

Strengths
The main advantage of discrete-time representations is simplicity. Due to the existence of fixed
reference points, it is relatively easy to express intermediate deadlines, shared use of resources,
and inventory balances. This enables straightforward integration of planning and scheduling
in hierarchical decomposition approaches (Maravelias and Sung, 2009). Furthermore, costs
per unit volume per unit time — such as inventory costs — result in linear expressions,
because the duration of time intervals is fixed (Méndez et al., 2006). Sundaramoorthy and
Maravelias (2011) state that discrete-time representations are probably the best choice for
representing real-world scheduling problems.

Weaknesses
The major drawback of discrete-time representations is that dense time grids are required
to obtain accurate results. As the number of time points is linked to the number of binary
variables, the resulting optimization problems are typically large. In addition, most discrete-
time representations assume that batch processing times are (1) constant and (2) an integer
number of time steps. Nevertheless, variable processing times can be incorporated by intro-
ducing task modes with different durations (Kondili et al., 1993) or by using the mixed-time
representation by Maravelias (2005), in which batches can end in between time points.

2-4-2 Continuous-time problem representations
In continuous-time representations, batches are assigned to time points with a variable timing,
see Fig. 2-2b. The time values of these time points are determined during optimization.

Main decision variables
Compared to discrete-time representations, continuous-time representations involve an addi-
tional time variable:
Wijt ∈ {0, 1} Binary: indicates whether task i starts on machine j at time point t
Bijt ≥ 0 Batch size of task i that starts on machine j at time point t
Sst ≥ 0 Inventory level of material s at time point t
Tt ≥ Tt−1 ≥ 0 Time value of time point t

Strengths
Méndez et al. (2006) state that the main advantages of continuous-time representations are
accuracy and problem size. A small number of time points can be used to represent schedules
with very precise timing, which results in MILP problems with a much smaller number of
binary variables compared to discrete-time approaches. Furthermore, variable processing
times are easily included in the standard formulation, as time point locations are not fixed.

Weaknesses
Continuous-time representations have several disadvantages. First of all, it is difficult to
incorporate external inputs, e.g. intermediate deadlines, due to a lack of fixed reference points.
Second, costs defined per unit volume per unit time result in nonlinear objective functions,
as time steps have variable durations. Furthermore, selecting an appropriate number of time
points is difficult and important. Underestimation leads to suboptimal or even infeasible
results, whereas overestimation yields large problems. Despite the smaller number of binary
variables, continuous-time problems may take longer to solve than discrete-time problems,
as continuous-time problems have weaker LP relaxations (Sundaramoorthy and Maravelias,

S.J. Vlot Master of Science Thesis

2-4 Problem representations 11

2011). An LP relaxation is considered weak when its feasible region is much larger than
the feasible region of the corresponding MILP problem. Then, the LP solution yields a less
effective lower bound, which reduces the possibilities for branch pruning in branch and bound.

2-4-3 Precedence-based problem representations
Precedence-based representations involve decision variables that explicitly state batch se-
quences, see Fig. 2-2c. Most precedence-based representations only consider assignment and
sequencing decisions. Hence, batch-sizing decisions should be made in advance.

Main decision variables and constraints in mathematical programming formulations
In mathematical programming formulations, a binary sequencing variable Xi,i′ indicates
whether or not batch i′ is processed after batch i, and a binary assignment variable Yi,j
indicates whether or not batch i is assigned to machine j. A continuous or integer variable
Ti represents the batch starting time. Big-M constraints are required to ensure consistent
sequencing (Harjunkoski et al., 2014):

Ti + pi ≤ Ti′ +M(3−Xi,i′ − Yi,j − Yi′,j) ∀j, i, i′, i 6= i′ (2-3)
Ti′ + pi′ ≤ Ti +M(2 +Xi,i′ − Yi,j − Yi′,j) ∀j, i, i′, i 6= i′ (2-4)

where pi is the processing time of batch i andM is a parameter with a sufficiently large value,
e.g. the horizon length. If batches i and i′ are assigned to machine j and batch i precedes
batch i′, then Eq. (2-3) reduces to Ti + pi ≤ Ti′ . That is, batch i′ cannot start before batch i
has finished. The constraint in Eq. (2-4) has a similar structure and is active when Xi,i′ = 0.

Main decision variables and constraints in constraint programming formulations
In constraint programming problems, batches and machines are described as tasks and re-
sources with associated parameters and variables. The following global constraint describes
that task assignments and starting times should be chosen such that the utilization of a
resource is less than or equal to its capacity (Beldiceanu and Carlsson, 2002):

cumulatives(tasks[i], resources[j], ≤) (2-5)

Strengths
The main advantage of precedence-based representations is that they explicitly address the
sequential use of shared processing units with sequencing variables. Therefore, sequence-
dependent changeover costs are easily incorporated. In case of mathematical programming,
high-quality solutions can be obtained with small problem formulations, as the number of
binary decision variables is not linked to the number of points on a time grid. In case
of constraint programming, global constraints and specialized algorithms are available for
expressing and solving scheduling problems.

Weaknesses
Batch-sizing decisions are an input in precedence-based representations. Therefore, these
decisions should be made in advance. In mathematical programming formulations, inventory
limitations are hard to incorporate due to a lack of global reference points in time. Moreover,
Big-M constraints might slow down branch and bound. In case of constraint programming,
one is very dependent on the existence of global constraints. Expressing basic scheduling
elements will not be problematic. However, if more elaborate features need to be included,
e.g. variable processing times, constraint programming might be less effective.

Master of Science Thesis S.J. Vlot

12 Batch scheduling techniques

2-5 Current pipeline scheduling methods

Pipeline scheduling problems occur in different industries. Although the main focus of this
thesis report is on refined oil networks, we shortly discuss methods for other networks as well
since they may provide new insights.

2-5-1 Scheduling refined oil networks
Over the past years, researchers have proposed various scheduling methods for refined oil
pipeline networks. To the best of our knowledge, there are three main pipeline scheduling
methods for mesh-structure networks, i.e. Cafaro and Cerdá (2012), Boschetto et al. (2010),
and Lopes et al. (2010). Prior to discussing these methods, we describe the first MILP
approach for pipeline scheduling (Rejowski and Pinto, 2003).

Method by Rejowski and Pinto
The first MILP approach for scheduling multi-product pipeline systems is proposed by Re-
jowski and Pinto (2003, 2004). They present a discrete-time, discrete-volume MILP problem
for a single pipeline with one source and multiple destinations. Schedules are optimized in
terms of batch transitions, inventory costs, and pumping costs per unit volume. Problematic
aspects are the discretization of pipeline volume and time, as both lead to discretization er-
rors. Furthermore, the discrete-time approach results in a large number of binary variables,
which makes this method intractable for large problem instances.
Rejowski and Pinto (2008) transform their previous work into a continuous-time formula-
tion by introducing a variable time grid. The resulting MINLP problem contains bilinear
terms in the objective function, as variable cost terms are multiplied by variable step sizes.
The optimization problem also includes flow-rate-dependent pumping costs, which are de-
scribed by third-degree polynomials. The authors use an outer-approximation algorithm (see
Appendix A) to obtain locally optimal solutions for small problem instances.

Method by Cafaro and Cerdá
Cafaro and Cerdá (2004) present a continuous-time MILP formulation for the case introduced
by Rejowski and Pinto (2003). Their method overcomes several limitations of the previous
method, including the issues regarding problem size and volume discretization. As mentioned
in Section 2-4-2, it is difficult to incorporate cost structures and intermediate demand dead-
lines in continuous-time representations. Cafaro and Cerdá (2004) deal with this by only
considering demand at the end of the scheduling horizon. Moreover, costs that depend on
both volume and time are approximated by costs per unit volume. Another challenge is to
choose the right number of time points. Cafaro and Cerdá (2004) suggest to solve the MILP
problem with an increasing number of time points until the objective value stops improving.
Cafaro and Cerdá (2012) extend their previous method to solve scheduling problems for mesh-
structure networks involving up to six pipelines. Although the results look promising, it is
unclear how the MILP formulation will scale for larger networks. We expect that the required
number of time points will increase, assuming that batch starting times will be different in
every pipeline. In another extension, Cafaro et al. (2015) incorporate nonlinear pumping
costs and solve the resulting MINLP problem with outer approximation. A substantial cost
improvement is observed. However, the computation time increases significantly. Therefore,
the proposed MINLP approach is not suitable for real-world scheduling applications.

S.J. Vlot Master of Science Thesis

2-5 Current pipeline scheduling methods 13

Method by Boschetto et al.
Boschetto et al. (2010) propose a hybrid hierarchical decomposition method for scheduling
30 pipelines of the Brazilian Petrobras network. The solution method consists of different
blocks, i.e. planning, assignment, sequencing, simulation, and timing. In the planning block,
a continuous-time MILP problem is solved to determine global transportation volumes. In
the assignment block, a construction heuristic determines batch volumes, pipeline routes,
time windows, and an initial batch sequence. In the sequencing block, a genetic algorithm
improves the initial batch sequence. The simulation block determines min/max bounds on
flow rates. A precedence-based MILP timing problem is solved to obtain complete schedules.

Although this method generates complete solutions for networks of impressive size, the quality
of the solutions is unclear. The authors clearly aim at feasibility. However, it is not guaranteed
that a 5-step hierarchical decomposition approach without feedback mechanisms will return
feasible schedules. Moreover, it is not clear what should be done when infeasibilities occur.

Method by Lopes et al.
Lopes et al. (2010) propose a constraint programming method for the network studied by
Boschetto et al. (2010). They decompose the overall problem into a planning and a scheduling
phase with a feedback loop in case no feasible schedules exist. In the planning phase, a
randomized construction heuristic generates a list of batches with details regarding products,
volumes, origins, destinations, pipeline routes, and delivery deadlines. The output of the
planning phase is used in the scheduling phase, in which batch sequences and pumping times
are determined. The scheduling phase consists of two constraint programming problems that
cover sequencing and timing decisions separately.

The selection of global constraints is extensively studied and documented. Compared to the
method by Boschetto et al. (2010), finding feasible solutions is more likely due to the iterative
decomposition approach.

2-5-2 Scheduling other networks
This section briefly describes the scheduling methods for crude oil, water, and gas networks.

Crude oil scheduling is equivalent to refined oil scheduling with one exception: different crude
oils are blended in order to meet quality requirements. Blending terms are typically bilinear
— fraction × volume —, yielding nonlinear optimization problems. Zhang and Xu (2015)
describe the first MINLP formulation for scheduling a single long-distance crude oil pipeline.
They propose a custom outer-approximation algorithm to solve the MINLP problem.

The scheduling methods for water and gas pipelines have a strong emphasis on the fluid dy-
namics aspect of pipeline networks, e.g. see D’Ambrosio et al. (2015) and Ríos-Mercado and
Borraz-Sánchez (2015). The multi-product aspect is either non-existent (water networks) or
neglected (gas networks). Important problem features are nonlinear flow-rate-dependent fric-
tion and pump curves that express the relation between pressure and flow rate. Furthermore,
the compressibility of gas introduces additional degrees of freedom, as pipeline inflow and
outflow can be controlled independently.

The resulting MINLP problems are solved with various MINLP solution methods — such as
spatial branch and bound or outer approximation — or by solving a piecewise-affine approx-
imation of the nonlinear optimization problem, see Appendix A for more details.

Master of Science Thesis S.J. Vlot

14 Batch scheduling techniques

2-6 Summary

General batch scheduling techniques
Most scheduling problems — and optimization problems in general — are described and solved
with mathematical programming or constraint programming techniques. In the mathematical
programming framework, scheduling problems are typically expressed as MILP problems and
solved with branch and bound, or with heuristics. Exact methods will return optimal solutions
if they exist, but may require long computation times. Heuristics cannot guarantee optimality,
but often return good solutions within short computation times. In constraint programming,
scheduling problems are expressed with high-level global constraints. Specialized algorithms
are available for solving these structures efficiently.

If a mathematical programming problem or a constraint programming problem is too large to
be solved monolithically, we can use decomposition methods to split the problem into smaller
parts that are easier to solve. Examples of common decomposition methods are hierarchical
decomposition, iterative decomposition, and rolling-horizon decomposition.

Depending on the chosen optimization framework and solution techniques, different problem
representations exist. Mathematical programming problem representations are either network
oriented (time-grid based), or batch oriented (precedence based). For real-world applications,
discrete-time representations are more generic and computationally less demanding than other
representations. The majority of constraint programming problems is precedence based, since
most global constraints are batch oriented.

Current pipeline scheduling methods
Table 2-1 provides an overview of existing refined oil pipeline scheduling methods. Currently,
there are no satisfactory optimization methods for refined oil pipeline scheduling. The method
by Cafaro and Cerdá (2012) is based on a continuous-time representation that cannot be
extended to handle real-world situations. Hierarchical (Boschetto et al., 2010) and iterative
(Lopes et al., 2010) decomposition methods have been proposed for finding feasible schedules
for very large networks. However, there are no guarantees on solution quality or feasibility.

Table 2-1: Existing refined oil pipeline scheduling methods
Business question Optimization problem

Article Pipelines Goal Framework Representation Solution technique(s)

Rejowski and Pinto (2003) 1 Optimality MILP Discrete time Branch and bound
Rejowski and Pinto (2008) 1 Optimality MINLP Continuous time Outer approximation
Cafaro and Cerdá (2012) 6 Optimality MILP Continuous time Branch and bound
Cafaro et al. (2015) 1 Optimality MINLP Continuous time Outer approximation
Boschetto et al. (2010) 30 Feasibility MILP Precedence based Hierarchical decomposition

- Construction heuristic
- Genetic algorithm
- Branch and bound (2x)

Lopes et al. (2010) 30 Feasibility Constraint Precedence based Iterative decomposition
programming - Construction heuristic

- CP search strategy (2x)

S.J. Vlot Master of Science Thesis

Chapter 3

A novel pipeline scheduling method

3-1 Introduction

In this chapter, we propose a novel pipeline scheduling method. It consists of a planning and
a scheduling phase that are coupled in a hierarchical decomposition scheme. In the scheduling
phase, we use a rolling-horizon approach to further reduce the computation time, see Fig. 3-1.

Section 3-2 covers high-level choices regarding the problem formulation and the solution
techniques. Section 3-3 shows how pipeline networks are represented in the proposed method.
Sections 3-4 and 3-5 describe the planning and scheduling phases, respectively.

. . .
Rolling horizon

Solve MILP planning problem

Scheduling phase

Planning phase

Post-processing: generate high-resolution scheduling output

Post-processing: generate planning output / scheduling input

Solve MILP
problem 1

Solve MILP
problem 2

Solve MILP
problem 3

Solve MILP
problem I

Figure 3-1: Overview of the proposed pipeline scheduling method

Master of Science Thesis S.J. Vlot

16 A novel pipeline scheduling method

3-2 General methodology

In Chapter 2, we investigated general batch scheduling methods and pipeline scheduling
methods. We concluded that there are no satisfactory methods to create good schedules for
large networks. Therefore, we propose a novel pipeline scheduling method. It is built from
scratch, but inspired by existing batch scheduling techniques.

Overall approach: hierarchical decomposition with a rolling horizon
Based on literature on existing pipeline scheduling methods (Section 2-5), we expect that some
form of decomposition is required to solve the pipeline scheduling problem within reasonable
time. For that reason, we split the total problem into a planning phase and a scheduling phase,
and couple them in a hierarchical decomposition scheme. In the planning phase, global day-
to-day transportation volumes are determined such that demand and supply requirements are
met and tanks are operated within their limits. In the scheduling phase, we use the planning
output to generate complete schedules. Both phases contain an optimization problem and a
post-processing step. We solve the optimization problem of the planning phase monolithically.
The optimization problem of the scheduling phase is too large to be solved within reasonable
time. Therefore, we further decompose it using a rolling-horizon decomposition.

Optimization framework: mathematical programming
Referring to Section 2-2, there are two main optimization frameworks for expressing schedul-
ing problems, i.e. mathematical programming and constraint programming. Both frameworks
have been successfully applied to many different scheduling problems, see Harjunkoski et al.
(2014). For solving mathematical programming problems, and Mixed Integer Linear Program-
ming (MILP) problems in particular, sophisticated commercial solvers are available. These
solvers are based on algorithms that make clever use of mathematical properties — e.g. lower
bounds obtained from linear relaxations — to find optimal solutions, even when many feasible
solutions exist. Constraint programming algorithms, on the other hand, are primarily aimed
at finding feasible solutions in highly-constrained solution spaces.

The main challenge of the pipeline scheduling problem is to find a schedule that contains
a small number of product transitions and requires a small amount of pumping energy to
execute. We expect that many feasible schedules exist, e.g. we could inject a large number
of tiny batches in each pipeline. Hence, we expect that the algorithms associated with the
mathematical programming framework are most suitable for solving this problem. Therefore,
we express the pipeline scheduling problem as a mathematical programming problem.

Problem representation: two discrete-time MILP problems
We formulate the optimization problems of the planning and the scheduling phase as discrete-
time MILP problems. The discrete-time representation is preferred, because it offers more
flexibility than other representations, see Section 2-4-1. It enables, among others, straightfor-
ward incorporation of intermediate supply and demand deadlines, and easier integration of
the planning and scheduling phases in the hierarchical decomposition approach. According to
Sundaramoorthy and Maravelias (2011), discrete-time problems are also better from a com-
putational point-of-view, because they are solved faster when using branch and bound. The
main reason is that discrete-time problems have tighter LP relaxations than, for example,
continuous-time representations.

S.J. Vlot Master of Science Thesis

3-3 Representing pipeline networks 17

3-3 Representing pipeline networks

In the proposed pipeline scheduling method, networks consist of various locations that are
connected by pipelines, see Fig. 3-2. These locations fulfill several roles in a pipeline network.
They represent tank farms, they act as supply and demand points, and they couple primary
and secondary pipelines. Tank farms are aggregated per product type, i.e. individual tanks
within tank farms are not considered.

Primary and secondary pipelines
The difference between primary and secondary pipelines is that primary pipelines start at
tank farms, whereas secondary pipelines start at the end of other pipelines. We can use
combinations of primary and secondary pipelines to represent pipelines with intermediate
exits and to represent pipelines with multiple branches, see Figs. 3-2 and 3-3.

Secondary pipelines are different from an operational perspective, because batch injections
in secondary pipelines cannot be freely selected. Instead, they are directly linked to batch
ejections of preceding pipelines. During this research, we observed that representing secondary
pipelines as primary pipelines introduces additional degrees of freedom in the optimization
problem that do not really exist, which significantly slows down branch and bound. Therefore,
it is important to treat these pipelines as different entities.

Transmix and pumping cost
Two main cost drivers of pipeline operation are transmix costs and pumping costs. We express
these costs with linear and piecewise-affine cost structures, respectively.

Transmix volumes appear at batch interfaces and grow during transportation due to a diffusion-
like process, which is known as axial dispersion. Appendix B explains axial dispersion in more
detail. Depending on the composition, transmix volumes are sold as a different product or
reprocessed in a nearby refinery. As costs are incurred per product transition, we represent
transmix costs with a linear cost structure.

*

*

Figure 3-2: Example of a network with six primary and two secondary (*) pipelines

Master of Science Thesis S.J. Vlot

18 A novel pipeline scheduling method

Primary pipeline Secondary pipeline 1

Secondary pipeline 2

Primary pipeline Secondary pipeline

Figure 3-3: Two pipeline configurations with secondary pipelines

The energy required for pumping depends on both the pump efficiency and the network
flow characteristics. Pumps should overcome the pressure drops in pipelines that are caused
by friction losses. These friction losses increase nonlinearly with the flow rate. We expect
that taking the flow-rate dependency of pumping costs into account will have a beneficial
effect on the pumping costs of the resulting schedule. However, incorporating the nonlinear
dynamics — as proposed by Cafaro et al. (2015) — leads to Mixed Integer Non-Linear Pro-
gramming (MINLP) problems, which are hard to solve within reasonable time. Therefore, we
approximate the pumping costs with piecewise-affine functions. Fig. 3-4 shows an example
of a piecewise-affine approximation with an arbitrary number of line segments. Appendix C
describes the required computations for obtaining such approximations.

Flow rate

P
um

pi
ng

 c
os

ts
 p

er
 u

ni
t

ti
m

e

Original equation
Piecewise-affine
approximation

QmaxQmin

Figure 3-4: Example of a piecewise-affine pumping cost approximation with three line segments

S.J. Vlot Master of Science Thesis

3-3 Representing pipeline networks 19

Sets
We describe pipeline networks with the following sets:

N Locations
P Products
L Pipelines
Lstart
n ⊆ L Pipelines that start at location n

Lend
n ⊆ L Pipelines that end at location n

Lprim ⊆ L Primary pipelines
Lsec ⊂ L Secondary pipelines
Lsec
l ⊆ Lsec Secondary pipelines that are connected to primary or secondary pipeline l

M Line segments used in the piecewise-affine approximation of pumping costs

Parameters
Furthermore, we use the following parameters:

V pipe
l Total pipeline volume (capacity) of pipeline l
Qmin
l Minimum injection flow rate in pipeline l

Qmax
l Maximum injection flow rate in pipeline l

Rmin
n,p Minimum stock level of product p at location n

Rmax
n,p Maximum stock level of product p at location n

V min
l Minimum batch volume in pipeline l
V max
l Maximum batch volume in pipeline l

A note on notation
In the remainder of this chapter, we use the following conventions: capital letters denote sets
and parameters, whereas lowercase letters denote indices and variables. Indices are always
located in subscripts. Superscripts are used to distinguish different parameters and subsets.

The MILP planning and scheduling problems are based on the sets and parameters introduced
here. In addition, there are several variables that occur in both MILP problems but have a
slightly different meaning. Therefore, we add a ‘p’ or an ‘s’ to the superscripts of all variables
to make a clear distinction between the planning and scheduling variables, respectively.

Master of Science Thesis S.J. Vlot

20 A novel pipeline scheduling method

3-4 Planning phase

3-4-1 Introduction
The main goal of the planning phase is to create a list of transportation volumes that are
required to meet supply and demand for the entire time horizon. The output contains:

• Planned injection volumes per pipeline, product, and time period
• Planned supply realizations per location, product, and time period
• Planned demand realizations per location, product, and time period

The planning phase is based on a discrete-time MILP problem, which is solved monolithically,
and a post-processing step. The latter refines the output of the former. In the remainder of
this introduction, we provide a high-level overview of the planning phase.

Planning time buckets
For a specified time horizon, we initialize a set of uniformly distributed planning time buckets,
e.g. 30 planning time buckets of 1 day. We neglect dynamics within planning time buckets,
such as fluctuations of tank levels. As this might lead to feasibility issues in the scheduling
phase, some conservatism is included in the tank capacity constraints.

Aggregated planning batches
For each primary pipeline and each planning time bucket, we initialize exactly one aggregated
planning batch. During optimization, one or multiple products are assigned to these planning
batches, which is visualized in Fig. 3-5a. In the planning phase, the main decisions are related
to choosing the products and volumes that are contained in each aggregated planning batch.
In the scheduling phase, the contents of each planning batch are sequenced such that the
number of product transitions is minimized, see Fig. 3-5b.

Transportation times
In the planning phase, we assume that batch transportation times are constant. We approx-
imate them using average pipeline flow rates. This results in a simpler problem formulation,
in which the ejection timing of each planning batch can be calculated in advance.

Planning batch 1

(a) Planning phase

(b) Scheduling phase

t=1 t=2 t=3

k=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Planning batch 2 Planning batch 3

Figure 3-5: Time buckets and batches in the planning and scheduling phase (blocks with the
same color represent batches of the same product)

S.J. Vlot Master of Science Thesis

3-4 Planning phase 21

Pipeline end

30%

t=1 t=2 t=3

70%

Pipeline start

Injection

Ejection

Figure 3-6: Relation between injection timing and ejection timing (transportation time is 1.7
planning time buckets)

We store the ejection timing in the parameter Yl,h,t, which expresses the fraction of planning
batch h that is ejected from pipeline l in planning time bucket t. The post-processing step
corrects the approximation error caused by this simplification.

Batch ejections will typically take place in two planning time buckets, since transportation
times are generally not an integer number of planning time buckets. When a planning batch
h is injected in pipeline l in planning time bucket t = 1 and the average transportation
time is 1.7 planning time buckets, then 30% of the batch ejection takes place in the second
planning time bucket (Yl,h,t=2 = 0.3) and 70% takes place in the third planning time bucket
(Yl,h,t=3 = 0.7), see Fig. 3-6.

Supply and demand
Both supply and demand volumes are specified on beforehand and should be fulfilled as much
as possible. We do not consider backlog functionality; when supply or demand cannot be
realized, it is simply lost.

Objective function
The objective function of the MILP planning problem consists of costs related to pipeline
shutdowns, pumping costs, transmix costs, lost supply, and lost demand. The costs of pipeline
shutdowns are based on the number of planning time buckets in which a pipeline is inactive
and on the total number of pipeline shutdowns. We use piecewise-affine functions to describe
the pumping costs. Furthermore, we approximate the number of batch transitions by the total
number of products in each aggregated planning batch. Supply and demand that cannot be
realized is incorporated with a linear cost structure, defined per unit volume.

Post-processing
Since the MILP planning problem is based on fixed transportation times, we perform a
post-processing step to obtain the actual ejection timing of each planning batch. The post-
processing step simulates the injection of each planning batch. The actual ejection timing of
each planning batch can be calculated by imposing a volume balance on each pipeline.

Master of Science Thesis S.J. Vlot

22 A novel pipeline scheduling method

3-4-2 Sets
In addition to the sets in Section 3-3, the MILP planning problem is based on these sets:

T Planning time buckets
T in
l,h ⊆ T Injection time domain of planning batch h in pipeline l
T ej
l,h ⊆ T Ejection time domain of planning batch h in pipeline l
H Planning batches
Hl ⊆ H Planning batches allocated to pipeline l
HLF
l ⊆ Hl Line-fill batches in pipeline l, i.e. batches that are contained in pipeline l at

the start of the planning horizon

3-4-3 Parameters
In addition to the parameters in Section 3-3, the MILP planning problem is based on the
parameters in this section. They are divided into general parameters and cost parameters.

General parameters
∆T ∈ R+ Duration of one planning time bucket
Yl,h,t ∈ [0, 1] Volume fraction of batch h ∈ Hl ejected from pipeline l during planning

time bucket t ∈ T ej
l,h

V LF
l,h,p ∈ R+ Volume of product p in line-fill batch h ∈ HLF

l in pipeline l
Sn,p,t ∈ R+ Supply volume of product p during planning time bucket t at location n
Dn,p,t ∈ R+ Demand volume of product p during planning time bucket t at location n

Cost parameters
Cpump,marg
l,m ∈ R Marginal pumping costs in pipeline l in piecewise-affine segment m

Cpump,stat
l,m ∈ R Static pumping costs in pipeline l in piecewise-affine segment m

Ctrans
l ∈ R+ Costs of injecting one extra product in a planning batch in pipeline l

Cdown
l ∈ R+ Costs per time bucket of downtime in pipeline l

Cshut
l ∈ R+ Costs per shutdown of pipeline l

Csup
n,p ∈ R+ Costs of unfulfilled supply of product p at location n

Cdem
n,p ∈ R+ Costs of unfulfilled demand of product p at location n

S.J. Vlot Master of Science Thesis

3-4 Planning phase 23

3-4-4 Variables
This section describes all planning-related variables and their required initial conditions.

Location variables
rp
n,p,t ∈ R+ Stock level of product p at location n at the start of planning time bucket t
sp
n,p,t ∈ R+ Realized supply of product p at location n during planning time bucket t
dp
n,p,t ∈ R+ Realized demand of product p at location n during planning time bucket t
sp,u
n,p,t ∈ R+ Unfulfilled supply of product p at location n during planning time bucket t
dp,u
n,p,t ∈ R+ Unfulfilled demand of product p at location n during planning time bucket t

Pipeline variables
zp
l,t ∈ {0, 1} Indicates whether pipeline l is active during planning time bucket t (1)

or not (0)
ψp
l,t ∈ R+ Pumping costs related to pipeline l during planning time bucket t
σp
l,t ∈ [0, 1] Indicates1 whether pipeline l ∈ Lprim is shut down at the beginning of plan-

ning time bucket t (1) or not (0)

Batch variables
vp,in
l,h,p,t ∈ R+ Volume injection of product p in batch h ∈ Hl in pipeline l during planning

time bucket t ∈ T in
l,h

vp,ej
l,h,p,t ∈ R+ Volume ejection of product p from batch h ∈ Hl from pipeline l during

planning time bucket t ∈ T ej
l,h

θp
l,h,p ∈ {0, 1} Indicates whether batch h ∈ Hl in pipeline l contains product p (1)

or not (0)

Initial condition
rp
n,p,t=1 Initial stock level of product p at location n

3-4-5 Constraints
This section describes all planning-related constraints.

Stock balance
Stock levels increase due to pipeline ejections and realized supply, and decrease due to pipeline
injections and realized demand:

rp
n,p,t = rp

n,p,t−1 +
∑

l∈Lend
n

∑
h∈Hl

vp,ej
l,h,p,t−1 −

∑
l∈Lstart

n

∑
h∈Hl

vp,in
l,h,p,t−1 + sp

n,p,t−1 − d
p
n,p,t−1

∀n ∈ N, ∀p ∈ P,∀t ∈ T, t > 1
(3-1)

1Although 0 and 1 are the only meaningful values in this context, this variable can be expressed as a
continuous 0–1 variable in the MILP formulation, since its value is forced to 0 or 1 by the involved constraints.

Master of Science Thesis S.J. Vlot

24 A novel pipeline scheduling method

Conservative stock bounds
To prevent feasibility problems when generating schedules, we use conservative stock bounds:
at the beginning of each planning time bucket, there should be enough stock to complete
all stock-decreasing operations and there should be enough idle capacity to complete all
stock-increasing operations. The following two constraints describe this:

Rmin
n,p ≤r

p
n,p,t−1 −

∑
l∈Lstart

n

∑
h∈Hl

vp,in
l,h,p,t−1 − d

p
n,p,t−1 ∀n ∈ N, ∀p ∈ P,∀t ∈ T, t > 1 (3-2)

rp
n,p,t−1 +

∑
l∈Lend

n

∑
h∈Hl

vp,ej
l,h,p,t−1 + sp

n,p,t−1 ≤ R
max
n,p ∀n ∈ N, ∀p ∈ P,∀t ∈ T, t > 1 (3-3)

Supply and demand
Supply and demand volumes are specified on beforehand and should be fulfilled as much
as possible. We add violation variables to make the optimization problem robust against
infeasible inputs:

sp
n,p,t + sp,u

n,p,t = Sn,p,t ∀n ∈ N, ∀p ∈ P,∀t ∈ T (3-4)
dp
n,p,t + dp,u

n,p,t = Dn,p,t ∀n ∈ N, ∀p ∈ P,∀t ∈ T (3-5)

Batch contents
Product volumes in aggregated batches are semi-continuous. Only if a product is included,
the corresponding volume should be between a lower and an upper bound:

V min
l θp

l,h,p ≤
∑
t∈T in

l,h

vp,in
l,h,p,t ∀l ∈ L,∀h ∈ Hl,∀p ∈ P (3-6)

∑
t∈T in

l,h

vp,in
l,h,p,t ≤ V

max
l θp

l,h,p ∀l ∈ L,∀h ∈ Hl,∀p ∈ P (3-7)

Batch ejection timing
Batch transportation times are fixed. The parameter Yl,h,t, which indicates the volume frac-
tion of batch h that is ejected in planning time bucket t, is calculated in advance based on
average transportation times. In the constraints, we distinguish new batches and line-fill
batches, i.e. batches that are contained in the pipeline at the start of the horizon:

vp,ej
l,h,p,t = Yl,h,t

∑
t′≤t

vp,in
l,h,p,t′ ∀l ∈ L,∀h ∈ Hl \HLF

l , ∀p ∈ P,∀t ∈ T ej
l,h (3-8)

vp,ej
l,h,p,t = Yl,h,t · V LF

l,h,p ∀l ∈ L,∀h ∈ HLF
l ,∀p ∈ P,∀t ∈ T (3-9)

Pipeline flow bounds
Pipeline flow is semi-continuous, i.e. it is either zero or between a lower and an upper bound.
We impose bounds on the sum of batch injections:

(Qmin
l ·∆T)zp

l,t ≤
∑
h∈Hl

∑
p∈P

vp,in
l,h,p,t ∀l ∈ Lprim,∀t ∈ T (3-10)

∑
h∈Hl

∑
p∈P

vp,in
l,h,p,t ≤ (Qmax

l ·∆T)zp
l,t ∀l ∈ Lprim,∀t ∈ T (3-11)

S.J. Vlot Master of Science Thesis

3-4 Planning phase 25

For secondary pipelines, the flow bounds are different. If the preceding pipeline operates at
low speed, then the part of the ejection redirected to the secondary pipeline should be large
enough to meet the minimum flow-rate requirements of the secondary pipeline. Likewise, if
the preceding pipeline operates at high speed and the maximum flow rate of the secondary
pipeline is lower than that, then the ejection of the preceding pipeline cannot be completely
redirected to the secondary pipeline. Since the MILP planning problem is based on aggregated
batches and fixed transportation times, we cannot use the constraints in Eqs. (3-10) and (3-11)
to guarantee these conditions. Instead, we introduce two constraints on product level:

Qmin
l′

Qmin
l

∑
t∈T ej

l,h

vp,ej
l,h,p,t ≤

∑
t∈T in

l′,h

vp,in
l′,h,p,t ∀l ∈ L,∀l′ ∈ Lsec

l ,∀h ∈ Hl ∩Hl′ ,∀p ∈ P (3-12)

∑
t∈T in

l′,h

vp,in
l′,h,p,t ≤

Qmax
l′

Qmax
l

∑
t∈T ej

l,h

vp,ej
l,h,p,t ∀l ∈ L,∀l′ ∈ Lsec

l ,∀h ∈ Hl ∩Hl′ ,∀p ∈ P (3-13)

The constraints in Eqs. (3-12) and (3-13) ensure that the injection in secondary pipeline l′
is always within the range of allowed flow rates [Qmin

l′ , Qmax
l′], regardless of the flow rate in

primary pipeline l.

Pumping costs
We approximate the pumping costs with piecewise-affine functions, as illustrated in Fig. 3-7a
and further explained in Appendix C. Since the piecewise-affine functions are convex, we can
include them in the problem formulation without any additional binary variables. The line
segments, see Fig. 3-7b, are lower bounds on the pumping costs ψp

l,t:

Cpump,marg
l,m

∑
p∈P

∑
h∈Hl

vp,in
l,h,p,t + Cpump,stat

l,m ·∆T ≤ ψp
l,t ∀l ∈ L,∀m ∈M,∀t ∈ T (3-14)

As ψp
l,t is minimized, its value will always coincide with the piecewise-affine function. De-

pending on the flow rate, the constraint in Eq. (3-14) is binding for at least one line segment.

Flow rate

P
um

pi
ng

 c
os

ts
 p

er
 u

ni
t

ti
m

e

Original equation
Lower bounds
(arrows indicate feasible region)

m = 1

m = 2

m = 3

Flow rate

P
um

pi
ng

 c
os

ts
 p

er
 u

ni
t

ti
m

e

Original equation
Piecewise-affine
approximation

(a) Piecewise-affine approximation (b) Line segments as lower bounds

Figure 3-7: Expressing piecewise-affine approximations with line segments as lower bounds

Master of Science Thesis S.J. Vlot

26 A novel pipeline scheduling method

Number of shutdowns
If pipeline l is active in the previous planning time bucket (t − 1) but not in the current
planning time bucket t, the following constraint forces σp

l,t to 1:

zp
l,t−1 − z

p
l,t ≤ σ

p
l,t ∀l ∈ Lprim, ∀t ∈ T, t > 1 (3-15)

1− zp
l,t=1 ≤ σ

p
l,t=1 ∀l ∈ Lprim (3-16)

3-4-6 Objective function
The objective function of the MILP planning problem consists of six terms:∑

l∈Lprim

∑
h∈H

∑
p∈P

Ctrans
l θp

l,h,p︸ ︷︷ ︸
transmix

+
∑
l∈L

∑
t∈T

ψp
l,t︸ ︷︷ ︸

pumping

+
∑

l∈Lprim

∑
t∈T

Cdown
l (1− zp

l,t)︸ ︷︷ ︸
pipeline downtime

+
∑

l∈Lprim

∑
t∈T

Cshut
l σp

l,t︸ ︷︷ ︸
pipeline shutdowns

+
∑
n∈N

∑
p∈P

∑
t∈T

Csup
n,p s

p,u
n,p,t︸ ︷︷ ︸

unfulfilled supply

+
∑
n∈N

∑
p∈P

∑
t∈T

Cdem
n,p d

p,u
n,p,t︸ ︷︷ ︸

unfulfilled demand

(3-17)

S.J. Vlot Master of Science Thesis

3-5 Scheduling phase 27

3-5 Scheduling phase

3-5-1 Introduction
In the scheduling phase, we use the output of the planning phase to generate complete sched-
ules. Similar to the planning phase, the scheduling phase consists of a discrete-time MILP
problem and a post-processing step that refines the MILP solution.
We decompose the MILP scheduling problem using a rolling-horizon approach. In every
iteration, the MILP problem is solved for a limited time horizon. Subsequently, the MILP
solution for the first scheduling time buckets is fixed. In addition, the MILP solution serves
as an initial condition for the next MILP problem, in which the horizon is shifted. We repeat
these steps until the entire scheduling horizon is solved.
The remainder of this introduction provides a high-level overview of the scheduling phase.

Scheduling time buckets
We initialize a set of uniformly distributed scheduling time buckets for the scheduling horizon.
We assume that an integer number of scheduling time buckets fits in one planning time bucket.
For example, when each planning time bucket has a duration of 24 hours, the scheduling time
buckets can be 4 or 6 hours, but not 5 hours.

Scheduling batches
We initialize scheduling batches for each primary pipeline, for each subset of scheduling time
buckets that corresponds to one planning time bucket, and for each product type. In contrast
to planning batches, scheduling batches contain a single product.
Fig. 3-5 in Section 3-4-1 illustrates the relation between planning batches and scheduling
batches. In essence, each planning batch contains one or more scheduling batches that are
not yet sequenced. The scheduling batches that correspond to a particular planning batch, can
only be injected in the scheduling time buckets that correspond to that particular planning
batch. Referring to the example in Fig. 3-5, scheduling batches that originate from planning
batch 1 can only be injected in scheduling time buckets k = 1 up to k = 6, since these
scheduling time buckets correspond to planning time bucket t = 1.

Post-processing
To overcome discretization errors that occur in most discrete-time representations, we allow
batches to start and end within scheduling time buckets. Referring to Fig. 3-8, if the injection
of batch 2 starts in the third scheduling time bucket, then volumes of both batch 1 and batch
2 can be injected in that time bucket. The post-processing step computes the actual switching
time using volume-based interpolation. For example, if 40% of the total injection volume in
the third scheduling time bucket corresponds to batch 2, then the post-processed starting
time of batch 2 is at 60% of the third scheduling time bucket.

Transportation times
In contrast to the planning problem, the scheduling problem does include dynamic trans-
portation times. Inspired by Cafaro and Cerdá (2004), we use a batch front variable to track
the positions of batches in a pipeline over time. The batch front variable represents the vol-
umetric front coordinate of a batch with respect to the start of the pipeline. When a batch
reaches the end of the pipeline, its ejection starts.

Master of Science Thesis S.J. Vlot

28 A novel pipeline scheduling method

Batch 1 Batch 2

k=1 2 3 4 5 6

40%60%

Figure 3-8: Example of a batch that starts within a scheduling time bucket

Objective function
As the pipeline activation and the fulfillment of supply and demand are determined in the
planning phase, the objective function of the MILP scheduling problem only contains two
terms, i.e. transmix costs and pumping costs. Similar to the MILP planning problem, we
approximate the pumping costs with piecewise-affine functions. The transmix costs are based
on the number of product transitions in the batch injection sequence.

3-5-2 Sets
In addition to the sets in Section 3-3, the MILP scheduling problem is based on these sets:

K Scheduling time buckets
K ip
l,b ⊆ K In-pipe time domain of scheduling batch b in pipeline l

K in
l,b ⊆ K

ip
l,b Injection time domain of scheduling batch b in pipeline l

Kej
l,b ⊆ K

ip
l,b Ejection time domain of scheduling batch b in pipeline l

B Scheduling batches
Bp ⊆ B Scheduling batches of product p
Bl ⊆ B Scheduling batches allocated to pipeline l
Bh ⊆ B Scheduling batches that correspond to aggregated planning batch h
BLF
l ⊆ Bl Line-fill batches in pipeline l, i.e. batches that are contained in pipeline l at

the start of the scheduling horizon

3-5-3 Parameters
In addition to the parameters in Section 3-3, the MILP scheduling problem is based on the
parameters mentioned below. They are divided into general, planning, and cost parameters.

General parameters
∆K ∈ R+ Duration of one scheduling time bucket
V LF
l,b,p ∈ R+ Volume of product p in line-fill batch b ∈ BLF

l in pipeline l

Planning parameters
V plan
l,h,p ∈ R+ Planned volume of product p in planning batch h ∈ Bl in pipeline l
Zplan
l,k ∈ {0, 1} Planned pipeline activation during scheduling time bucket k in pipeline l

Splan
n,p,k ∈ R+ Planned supply of product p during scheduling time bucket k at location n
Dplan
n,p,k ∈ R+ Planned demand of product p during scheduling time bucket k at location n

S.J. Vlot Master of Science Thesis

3-5 Scheduling phase 29

Cost parameters
Cpump,marg
l,m ∈ R Marginal pumping energy costs in pipeline l in piecewise-affine segment m

Cpump,stat
l,m ∈ R Static pumping energy costs in pipeline l in piecewise-affine segment m

Ctrans
l ∈ R+ Costs per product transition in pipeline l

Cdown
l ∈ R+ Costs per time bucket of downtime in pipeline l

Cshut
l ∈ R+ Costs per shutdown of pipeline l

3-5-4 Variables

This section describes all scheduling-related variables and their required initial conditions.

Location variables
rs
n,p,k ∈ R+ Inventory level of product p at location n at the start of scheduling time bucket k

Pipeline variables
σs
l,k ∈ [0, 1] Indicates2 whether pipeline l is shut down at the beginning of scheduling time

bucket k (1) or not (0)
θs
l,k ∈ [0, 1] Indicates2 whether a new batch injection is started in pipeline l ∈ Lprim in

scheduling time bucket k which contains a different product than the previous
batch (1) or not (0)

ψs
l,k ∈ R+ Pumping costs in pipeline l during scheduling time bucket k

Batch timing variables
xs,start
l,b,k ∈ {0, 1} Indicates whether the injection of batch b ∈ Bl starts in pipeline l in

scheduling time bucket k ∈ K in
l,b (1) or not (0)

xs,cont
l,b,k ∈ [0, 1] Indicates2 whether the injection of batch b ∈ Bl continues in pipeline l

in scheduling time bucket k ∈ K in
l,b (1) or not (0)

ys,start
l,b,k ∈ {0, 1} Indicates whether the ejection of batch b ∈ Bl starts in pipeline l in

scheduling time bucket k ∈ Kej
l,b (1) or not (0)

ys,cont
l,b,k ∈ [0, 1] Indicates2 whether the ejection of batch b ∈ Bl continues in pipeline l in

scheduling time bucket k ∈ Kej
l,b (1) or not (0)

ws,transit
l,b,k ∈ [0, 1] Indicates2 whether batch b ∈ Bl is in transit at the start of scheduling

time bucket k ∈ K ip
l,b (1) or not (0)

ws,pipe
l,b,k ∈ [0, 1] Indicates2 whether batch b ∈ Bl is in pipeline l at the start of scheduling

time bucket k ∈ K ip
l,b (1) or not (0)

2Although 0 and 1 are the only meaningful values in this context, this variable can be expressed as a
continuous 0–1 variable in the MILP formulation, since its value is forced to 0 or 1 by the involved constraints.

Master of Science Thesis S.J. Vlot

30 A novel pipeline scheduling method

Batch volume variables
vs,in
l,b,k ∈ R+ Injection volume of batch b ∈ Bl in pipeline l during scheduling time bucket

k ∈ K in
l,b

vs,ej
l,b,k ∈ R+ Ejection volume of batch b ∈ Bl from pipeline l during scheduling time bucket

k ∈ Kej
l,b

vs
l,b,k ∈ R+ Volume of batch b ∈ Bl in pipeline l at the start of scheduling time bucket

k ∈ K ip
l,b

f s
l,b,k ∈ R+ Volumetric front coordinate of batch b ∈ Bl in pipeline l at the start of

scheduling time bucket k ∈ K ip
l,b

Initial conditions
rs
n,p,k=1 Initial stock level of product p at location n
xs,cont
l,b,k=1 Indicates whether the injection of batch b ∈ Bl continues in pipeline l in the

first scheduling time bucket (1) or not (0). This variable equals 1 for the latest
line-fill batch in each pipeline, i.e. the batch that is closest to the pipeline start.

ys,cont
l,b,k=1 Indicates whether the ejection of batch b ∈ Bl continues in pipeline l in the first

scheduling time bucket (1) or not (0). This variable equals 1 for the earliest
line-fill batch in each pipeline, i.e. the batch that is closest to the pipeline end.

ws,transit
l,b,k=1 Indicates whether batch b ∈ Bl is in transit in pipeline l in the first scheduling

time bucket (1) or not (0)
vs
l,b,k=1 Batch volume of line-fill batches b ∈ BLF

l in pipeline l at the start of the first
scheduling time bucket

f s
l,b,k=1 Batch front of line-fill batches b ∈ BLF

l in pipeline l at the start of the first
scheduling time bucket

Explanation of the batch volume and batch timing variables
Fig. 3-9 illustrates the desired behavior of the batch volume variables and the batch timing
variables of one batch — batch 3 — in relation to other batches. The dashed vertical lines
mark important events, i.e. injection start, injection end, ejection start, and ejection end.
Fig. 3-9a shows the scheduling time bucket in which the injection of batch 3 starts. The
injection of batch 3 continues (Fig. 3-9b) until the injection of batch 4 starts. The same
behavior holds for the ejection timing. First, the ejection of batch 3 starts, see Fig. 3-9c. The
ejection of batch 3 continues (Fig. 3-9d) until the ejection of batch 4 starts.
The batch front is used to relate the injection and ejection timing. Fig. 3-9e plots the batch
fronts of multiple batches. The area between these curves illustrates the pipeline content over
time. When the injection of batch 3 starts, its batch front starts increasing. The batch front
of batch 3 keeps increasing until the other end of the pipeline is reached. At that point, the
ejection of batch 3 starts. The batch front remains constant until batch 3 is fully ejected.
Fig. 3-9f shows the batch volume over time. The batch volume increases between injection
start and injection end, and decreases between ejection start and ejection end.
Furthermore, Fig. 3-9g indicates whether or not batch 3 is in transit at the start of a particular
scheduling time bucket, i.e. injection has started but ejection has not yet started. Fig. 3-9h
indicates whether or not batch 3 is in the pipeline at the start of a particular scheduling time
bucket, i.e. injection has started but ejection has not yet ended.

S.J. Vlot Master of Science Thesis

3-5 Scheduling phase 31

()

() 4 5 6
1

0
k

3

Batch 2
1

0
k

Batch 3 Batch 4 Batch 5

xs,start
l,b,k

xs,cont
l,b,k

Injection
start

Injection
continued

(a)

(b)

0

Batch 1

k

V pipe

f l,b,k Batch 2 Batch 3 Batch 4 Batch 5Batch
front

(e) ()s

()

()

1

0
k

Batch 1 Batch 2 Batch 3 Batch 4

1

0
k

1 2 3 4ys,start
l,b,k

ys,cont
l,b,k

Ejection
start

Ejection
continued

(c)

(d)

()
1

0
k

Batch 3w s,transit
l,b,k

Batch
in transit

(g)

()
1

0
k

Batch 3w s,pipe
l,b,k

Batch
in pipe(h)

0
k

v
l,b,k

Batch 3

Batch
volume

(f) ()

Injection
start

Injection
end

Ejection
start

Ejection
end

s

Figure 3-9: Illustration of the batch volume and batch timing variables

Master of Science Thesis S.J. Vlot

32 A novel pipeline scheduling method

3-5-5 Constraints
This section describes all scheduling-related constraints.

Stock balance
Stock levels increase due to pipeline ejections and planned supply, and decrease due to pipeline
injections and planned demand. The following constraint, which is similar to Eq. (3-1) in the
MILP planning problem, describes this:

rs
n,p,k = rs

n,p,k−1 +
∑

l∈Lend
n

∑
b∈Bl∩Bp

vs,ej
l,b,k−1 −

∑
l∈Lstart

n

∑
b∈Bl∩Bp

vs,in
l,b,k−1 + Splan

n,p,k−1 −D
plan
n,p,k

∀n ∈ N, ∀p ∈ P,∀k ∈ K, k > 1
(3-18)

Conservative stock bounds
To prevent feasibility problems during pipeline operation, we use conservative stock bounds
that are equivalent to Eqs. (3-2) and (3-3) in the MILP planning problem:

Rmin
n,p ≤rs

n,p,k−1 −
∑

l∈Lstart
n

∑
b∈Bl∩Bp

vs,in
l,b,k−1 −D

plan
n,p,k−1 ∀n ∈ N, ∀p ∈ P,∀k ∈ K, k > 1

(3-19)

rs
n,p,k−1 +

∑
l∈Lend

n

∑
b∈Bl∩Bp

vs,ej
l,b,k−1 + Splan

n,p,k−1 ≤ R
max
n,p ∀n ∈ N, ∀p ∈ P,∀k ∈ K, k > 1

(3-20)

Overall pipeline flow
The pipeline must be completely filled, thus the injection volume equals the ejection volume:∑

b∈Bl

vs,in
l,b,k =

∑
b∈Bl

vs,ej
l,b,k ∀l ∈ L,∀k ∈ K (3-21)

Pipeline flow is semi-continuous, i.e. it is either zero, or between a lower and an upper bound:

(Qmin
l ·∆K)Zplan

l,k ≤
∑
b∈Bl

vs,in
l,b,k ∀l ∈ L,∀k ∈ K (3-22)

∑
b∈Bl

vs,in
l,b,k ≤ (Qmax

l ·∆K)Zplan
l,k ∀l ∈ L,∀k ∈ K (3-23)

Injections in secondary pipelines cannot be larger than ejections from preceding pipelines:∑
l′∈Lsec

l

vs,in
l′,b,k ≤ v

s,ej
l,b,k ∀l ∈ L,∀b ∈ Bl, ∀k ∈ Kej

l,b (3-24)

Batch injection timing
The variables xs,start

l,b,k and xs,cont
l,b,k express the injection timing, see Section 3-5-4. In secondary

pipelines, the injection timing is directly linked to the ejection timing of the previous pipeline:

xs,start
l′,b,k = ys,start

l,b,k ∀l ∈ L,∀l′ ∈ Lsec
l ,∀b ∈ Bl ∩Bl′ , ∀k ∈ Kej

l,b ∩K
in
l′,b (3-25)

xs,cont
l′,b,k = ys,cont

l,b,k ∀l ∈ L,∀l′ ∈ Lsec
l ,∀b ∈ Bl ∩Bl′ , ∀k ∈ Kej

l,b ∩K
in
l′,b (3-26)

S.J. Vlot Master of Science Thesis

3-5 Scheduling phase 33

Eqs. (3-27) to (3-31) include all timing-related constraints for primary pipelines:∑
k∈Kin

l,b

xs,start
l,b,k ≤ 1 ∀l ∈ Lprim,∀b ∈ Bl (3-27)

∑
b∈Bl

xs,start
l,b,k ≤ 1 ∀l ∈ Lprim,∀k ∈ K (3-28)

∑
b∈Bl

xs,cont
l,b,k = 1 ∀l ∈ Lprim,∀k ∈ K (3-29)

xs,cont
l,b,k ≤ x

s,cont
l,b,k−1 + xs,start

l,b,k−1 ∀l ∈ Lprim,∀b ∈ Bl,∀k ∈ K in
l,b, k > 1 (3-30)

xs,start
l,b,k−1 ≤ x

s,cont
l,b,k ∀l ∈ Lprim,∀b ∈ Bl,∀k ∈ K in

l,b, k > 1 (3-31)

Eqs. (3-27) and (3-28) state that each batch injection starts at most once, and that at most one
batch injection starts in each scheduling time bucket. Exactly one batch injection continues
in each scheduling time bucket (Eq. (3-29)). The constraint in Eq. (3-30) ensures that a
batch only continues when it has started. Eq. (3-31) states that a batch injection continues
for at least one scheduling time bucket after injection start. The combination of Eqs. (3-29)
and (3-31) ensures that batch injections are properly ended.

Subsequently, the injection volumes are linked to the injection timing:

vs,in
l,b,k ≤ (Qmax

l ·∆K)(xs,start
l,b,k + xs,cont

l,b,k) ∀l ∈ L,∀b ∈ Bl, ∀k ∈ K in
l,b (3-32)

If an injection starts, the total injection volume should be at least the minimum batch size:

V min
l

∑
k∈Kin

l,b

xs,start
l,b,k ≤

∑
k∈Kin

l,b

vs,in
l,b,k ∀l ∈ L,∀b ∈ Bl (3-33)

Batch ejection timing
We use a similar set of constraints for the batch ejection timing:∑

k∈T
ys,start
l,b,k ≤ 1 ∀l ∈ L,∀b ∈ Bl (3-34)

∑
b∈Bl

ys,start
l,b,k ≤ 1 ∀l ∈ L,∀k ∈ K (3-35)

∑
b∈Bl

ys,cont
l,b,k = 1 ∀l ∈ L,∀k ∈ K (3-36)

ys,cont
l,b,k ≤ y

s,cont
l,b,k−1 + ys,start

l,b,k−1 ∀l ∈ L,∀b ∈ Bl, ∀k ∈ K, k > 1 (3-37)

ys,start
l,b,k−1 ≤ y

s,cont
l,b,k ∀l ∈ L,∀b ∈ Bl, ∀k ∈ Kej

l,b, k > 1 (3-38)

vs,ej
l,b,k ≤ (Qmax

l ·∆K)(ys,start
l,b,k + ys,cont

l,b,k) ∀l ∈ L,∀b ∈ Bl, ∀k ∈ Kej
l,b (3-39)

Furthermore, batch ejections can only take place after injection:

ys,start
l,b,k ≤

∑
k′≤k

xs,start
l,b,k′ ∀l ∈ L,∀b ∈ Bl \BLF

l ,∀k ∈ Kej
l,b (3-40)

Master of Science Thesis S.J. Vlot

34 A novel pipeline scheduling method

Auxiliary timing variables
For the constraints related to the batch front, two auxiliary variables are required to indicate
whether a batch is currently in transit or in the pipeline, see Section 3-5-4 and Fig. 3-9.

The in-transit variable is active when injection has started but ejection has not yet started.
The following constraint describes this:

ws,transit
l,b,k = ws,transit

l,b,k−1 + xs,start
l,b,k−1 − y

s,start
l,b,k−1 ∀l ∈ L,∀b ∈ Bl, ∀k ∈ K ip

l,b, k > 1 (3-41)

The in-pipeline variable is active when injection has started but ejection has not yet ended.
In terms of the other variables, the in-pipeline variable is the sum of the in-transit variable
and the ejection-continue variable:

ws,pipe
l,b,k = ws,transit

l,b,k + ys,cont
l,b,k ∀l ∈ L,∀b ∈ Bl, ∀k ∈ K ip

l,b (3-42)

Batch volume balance
Batch volumes increase due to volume injections and decrease due to volume ejections:

vs
l,b,k = vs

l,b,k−1 + vs,in
l,b,k−1 − v

s,ej
l,b,k−1 ∀l ∈ L,∀b ∈ Bl,∀k ∈ K ip

l,b, k > 1 (3-43)

If a batch is not in the pipeline, its volume is zero. Otherwise, the volume is at most V max
l :

vs
l,b,k ≤ V max

l ws,pipe
l,b,k ∀l, b ∈ Bl, k (3-44)

Linking injection and ejection
Recall that batches are pushed through the pipeline, which implies that the batch ejection
timing is linked to future batch injections. The batch front location captures these dynamics.
The batch front location is the volumetric front coordinate of a batch measured from the
pipeline start. When the batch front reaches the end of the pipeline, its ejection should start.
The batch front and the relation to other variables is illustrated in Fig. 3-9 and explained in
Section 3-5-4. To describe the batch front, we consider the following aspects:

• The batch front of a batch is only non-zero if the batch is in the pipeline:

f s
l,b,k ≤ V

pipe
l · ws,pipe

l,b,k ∀l ∈ L,∀b ∈ Bl, ∀k ∈ K ip
l,b (3-45)

• Directly after injection start, the batch front is equal to the first injection volume:
f s
l,b,k = vs,in

l,b,k−1. The following constraints capture this:

vs,in
l,b,k−1 − (Qmax

l ·∆K)(1− xs,start
l,b,k−1) ≤ f s

l,b,k ∀l ∈ L,∀b ∈ Bl,∀k ∈ K ip
l,b, k > 1
(3-46)

f s
l,b,k ≤ f s

l,b,k−1 + vs,in
l,b,k−1 + (Qmax

l ·∆K)(1− xs,start
l,b,k−1) ∀l ∈ L,∀b ∈ Bl,∀k ∈ K ip

l,b, k > 1
(3-47)

S.J. Vlot Master of Science Thesis

3-5 Scheduling phase 35

• In subsequent scheduling time buckets, the front increases due to injections of all
batches, and decreases due to own ejections: f s

l,b,k = f s
l,b,k−1 +

∑
(b′∈Bl) v

s,in
l,b′,k−1−v

s,ej
l,b,k−1.

The following constraints capture this:

f s
l,b,k−1 +

∑
b′∈Bl

vs,in
l,b′,k−1 − v

s,ej
l,b,k−1 − (V pipe

l +Qmax
l ·∆K)(1− ws,pipe

l,b,k + xs,start
l,b,k−1) ≤ f s

l,b,k

∀l ∈ L,∀b ∈ Bl, ∀k ∈ K ip
l,b, k > 1 (3-48)

f s
l,b,k ≤ f s

l,b,k−1 +
∑
b′∈Bl

vs,in
l,b′,k−1 − v

s,ej
l,b,k−1 ∀l ∈ L,∀b ∈ Bl, ∀k ∈ K ip

l,b, k > 1 (3-49)

Note that we cannot use these constraints for the scheduling time bucket in which the
current batch injection starts, since injections in the previous batch should not increase
the batch front of the current batch.
• Ejection can only start if the batch front will exceed the pipeline volume in the next
scheduling time bucket. The ejection volume at ejection start is bounded by the amount
of overshoot:

vs,ej
l,b,k ≤ f

s
l,b,k +

∑
b′∈Bl

vs,in
l,b′,k − V

pipe
l · ys,start

l,b,k ∀l ∈ L,∀b ∈ Bl, ∀k ∈ Kej
l,b (3-50)

Stick to the plan
We use the planning output to restrict the number of feasible solutions of the MILP scheduling
problem. In primary pipelines, the sum of all batch injections should equal the planned
injection volume:∑

b∈Bl∩Bp∩Bh

∑
k∈Kin

l,b

vs,in
l,b,k = V plan

l,h,p ∀l ∈ Lprim,∀h ∈ Hl \HLF
l ,∀p ∈ P (3-51)

In primary pipelines, each batch injection always takes place in a single planning time bucket.
Therefore, each planned batch injection is fully completed at the end of the corresponding
planning time bucket. In secondary pipelines, batch injections are linked to ejections from
preceding pipelines. As these ejections are typically not aligned with the planning time buckets
— recall the situation in Fig. 3-6 — planned batch injections in secondary pipelines are often
not fully completed at the end of the scheduling horizon. These partial injections would
violate the equality constraint in Eq. (3-51). Therefore, we introduce alternative constraints
for secondary pipelines, in which we limit the pipeline inflow and the tank inflow at the start
of secondary pipelines:∑

b∈Bl∩Bp∩Bh

∑
k∈Kin

l,b

vs,in
l,b,k ≤ V

plan
l,h,p ∀l ∈ Lsec,∀h ∈ Hl \HLF

l ,∀p ∈ P (3-52)

∑
b∈Bl∩Bp∩Bh

∑
k∈Kej

l,b

vs,ej
l,b,k

︸ ︷︷ ︸
preceding pipe outflow

−
∑

l′∈Lsec
l

∑
b∈Bl′∩Bp∩Bh

∑
k∈Kin

l′,b

vs,in
l′,b,k

︸ ︷︷ ︸
secondary pipe inflow︸ ︷︷ ︸

tank inflow

≤ V plan
l,h,p −

∑
l′∈Lsec

l

V plan
l′,h,p

︸ ︷︷ ︸
planned tank inflow

∀l ∈ L,∀h ∈ Hl,∀p ∈ P

(3-53)

Master of Science Thesis S.J. Vlot

36 A novel pipeline scheduling method

Transmix detection
If a new batch injection of product p starts in scheduling time bucket k and the current batch
injection contains a different product, then we force the transmix variable θs

l,k to 1 with the
following constraint:

− 1 +
∑

b∈Bl∩Bp

xs,start
l,b,k +

∑
b∈Bl\Bp

xs,cont
l,b,k ≤ θ

s
l,k ∀l ∈ L,∀p ∈ P,∀k ∈ K (3-54)

Pumping costs
Equivalent to Eq. (3-14) in the MILP planning problem, we approximate the pumping costs
with piecewise-affine functions. The line segments m are lower bounds on the pumping costs:

Cpump,marg
l,m

∑
b∈Bl

vs,in
l,b,k + Cpump,stat

l,m ·∆K ≤ ψs
l,k ∀l ∈ L,∀m ∈M,∀k ∈ K (3-55)

3-5-6 Objective function
The objective function of the MILP scheduling problem only contains two terms, i.e. transmix
costs and pumping costs: ∑

l∈Lprim

∑
k∈K

Ctrans
l θs

l,k︸ ︷︷ ︸
transmix

+
∑
l∈L

∑
k∈K

ψs
l,k︸ ︷︷ ︸

pumping

(3-56)

S.J. Vlot Master of Science Thesis

3-6 Summary 37

3-6 Summary

In this chapter, we have proposed a novel pipeline scheduling method. It consists of a planning
and a scheduling phase that are coupled in a hierarchical decomposition scheme. Both phases
contain an MILP problem and a post-processing step. Two main cost drivers of pipeline
operation are transmix volumes and pumping energy. We have expressed these costs using
linear and piecewise-affine cost structures, respectively.

In the planning phase, global day-to-day transportation volumes are determined such that
demand and supply requirements are met, and tanks are operated within their limits. Batch
sequences and dynamic transportation times are not yet considered. The planning phase
contains a discrete-time MILP problem, which is solved monolithically, and a post-processing
step that refines the MILP solution.

In the scheduling phase, the planning output is used to generate complete schedules. Similar
to the planning phase, the scheduling phase consists of a discrete-time MILP problem and a
post-processing step that refines the MILP solution. The MILP scheduling problem is solved
with a rolling-horizon approach to further reduce the computation time.

Master of Science Thesis S.J. Vlot

38 A novel pipeline scheduling method

S.J. Vlot Master of Science Thesis

Chapter 4

Case studies

4-1 Introduction

In this chapter, we test the novel pipeline scheduling method on two different case studies.
We have implemented the method in AIMMS 4.30 and solve the Mixed Integer Linear Pro-
gramming (MILP) problems with IBM ILOG CPLEX 12.7 (64-bit) on an Intel Core i7 (2.0
GHz) CPU with 8 GB of RAM.

The first case study (Section 4-2) is based on the mesh-structure network introduced by
Cafaro and Cerdá (2012). After explaining the case details and describing the base case
solution, we test the pipeline scheduling method for different tank sizes and supply-demand
scenarios. We repeat the experiments with different pumping cost structures — i.e. no costs,
affine costs, and piecewise-affine costs — in both the MILP planning problem and the MILP
scheduling problem. The main goal of these experiments is to investigate how the pipeline
scheduling method performs in these different situations and to see the effects of adopting a
piecewise-affine pumping cost structure in terms of solution quality and computation time.

The second case study (Section 4-3) considers a tree-structure network with an increasing
number of pipelines. The case study illustrates that the pipeline scheduling method works
on a variety of network configurations. Furthermore, we investigate the quality of the de-
composition approach by solving the tree-structure network with different solution methods.
We compare the results of the proposed pipeline scheduling method to the results obtained
without rolling-horizon decomposition and without hierarchical decomposition.

Section 4-4 covers an alternative transmix representation for the MILP planning problem.
We test the alternative transmix representation on both case studies to investigate whether
the quality of the obtained solutions improves.

Master of Science Thesis S.J. Vlot

40 Case studies

4-2 Mesh-structure network

4-2-1 Case details
The network considered in this section is inspired by the mesh-structure network of Cafaro and
Cerdá (2012). The network transports four different products and consists of eight locations
— of which two supply locations and five demand locations — that are connected by six
primary pipelines and two secondary pipelines, see Fig. 4-1. Pipelines PL1 and PL4 have
intermediate exits. The orange arrows indicate supply and demand locations.

Although the network is the same as in Cafaro and Cerdá (2012), we solve a different case. The
method by Cafaro and Cerdá (2012) cannot handle intermediate supply and demand dead-
lines. Therefore, the authors assume that there is no incoming supply within their scheduling
horizon of 10 days and that all demand volumes are due at the end of the horizon. The rate
of fulfillment is limited by a maximum flow rate. Although it is possible to incorporate such
demand structures in our pipeline scheduling method, we have not included it yet, as it is not
in the scope of this thesis project. Instead, we assume that supply and demand volumes are
fixed, see Section 1-2. Therefore, we have decided to generate a different set of input data.

Tables 4-1 to 4-5 contain the input data for this case study. We express volumes in kilobar-
rels (1 kbbl ≈ 158.99 m3), which is common in the oil industry. Table 4-1 contains the main
pipeline parameters. Table 4-2 lists the available storage capacity at each location. Table 4-3
describes the supply and demand scenarios. The pumping cost coefficients are calculated
according to Appendix C with the input parameters listed in Table 4-4. The resulting coeffi-
cients are included in Tables D-1 and D-2 in Appendix D-1-1. Table 4-5 contains the values of
the other cost parameters. For details regarding the initial pipeline contents, see Table D-3.

We solve the case study using planning time buckets with a duration of 24 hours and schedul-
ing time buckets with a duration of 4 hours, for a 30-day horizon. The rolling horizon is based
on two parameters, i.e. the scheduling window, which expresses the number of scheduling time
buckets for which the problem is solved in one iteration, and the roll period, which expresses
by how much the horizon is shifted after one iteration. We set these parameters to 4 and 2
days, respectively. Using larger parameter values only results in an increase in computation
time, whereas using smaller parameter values yields worse schedules.

N6

PL5

PL1B

PL4B

PL2

PL3

PL6

N8

N5

PL4A

N3

N7

PL1A

N4

N1

N2

Figure 4-1: Mesh-structure network
S.J. Vlot Master of Science Thesis

4-2 Mesh-structure network 41

Table 4-1: Pipeline characteristics

Capacity [kbbl/day] Batch size [kbbl]

Pipeline Length [km] Diameter [inch] Volume [kbbl] Min Max Min Max

PL1A 200 20 255 120 150 30 150
PL1B 100 20 127 90 120 24 120
PL2 250 20 319 130 160 32 160
PL3 250 20 319 100 120 24 120
PL4A 150 20 191 100 120 24 120
PL4B 150 20 191 70 120 24 120
PL5 411 12 189 30 40 8 40
PL6 164 12 75 27 40 8 40

Table 4-2: Aggregated tank capacity and opening stock

Product availability

Location P1 P2 P3 P4 Capacity (for available products) [kbbl] Opening stock [kbbl]

N1 x x x 450 225
N2 x x 350 175
N3 x x x 250 125
N4 x x x x 450 225
N5 x x 350 175
N6 x 250 125
N7 x x x x 350 175
N8 x 250 125

Table 4-3: Supply and demand parameters

Supply at location [kbbl/day] Demand at location [kbbl/day]

Products N1 N2 N3 N5 N6 N7 N8

P1 95 - 15 55 - 25 -
P2 35 80 10 80 - 25 -
P3 40 - 10 - - 30 -
P4 - 80 - - 10 30 40

Table 4-4: Input parameters for the pumping cost estimation

Parameter Description Value

ε Pipeline roughness 0.002 [inch]
η Pump efficiency 75 [%]
CE Energy cost 0.20 [$/kWh]
ρ Average density 800 [kg/m3]
ν Average kinematic viscosity 0.70 · 10−6 [m2/s]
g Gravitational acceleration 9.81 [m/s2]
|M | Number of line segments 4 [-]

Master of Science Thesis S.J. Vlot

42 Case studies

Table 4-5: Cost parameters

Parameter Description Value

Ctrans
l Costs per product transition 20 000 [$]

Cshut
l Costs per pipeline shutdown 50 000 [$]

Cdown
l Costs per time bucket of downtime 100 000 [$]

Csup
n,p Costs of unfulfilled supply 200 000 [$/kbbl]

Cdem
n,p Costs of unfulfilled demand 200 000 [$/kbbl]

4-2-2 Case solution
We solved the case study described in the previous section with the pipeline scheduling method
introduced in Chapter 3. Table 4-6 shows the main results.

During the experiments, we obtained feasible solutions within short computation times and
with acceptable optimality gaps of less than 5%. However, solving the MILP planning problem
to optimality required much more time. In most cases, the branch and bound algorithm did
not converge within one hour of computing. Recalling the problem statement in Section 1-2,
we are mainly interested in a pipeline scheduling method that returns good solutions within
short computation times. Therefore, we suggest to solve the MILP planning problem with
truncated branch and bound, i.e. to terminate the optimization before optimality has been
proven. When we limit the computation time to 180 seconds, we obtain a solution with an
optimality gap of 2.90%, which we consider acceptable.

The MILP scheduling problem is solved in 22.28 seconds of computation time. The final solu-
tion consists of $763k pumping costs and $2040k transmix costs. Figs. 4-2 and 4-3 illustrate
the results. Fig. 4-2 shows the stock levels at location N4. The stock levels are well within
the tank capacity limits, which indicates that inflow and outflow are in balance. Fig. 4-3
partly visualizes the schedule of pipeline PL1A. The Gantt chart shows the injection timing
of batches at location N1 and the ejection timing of these batches at location N3. The area
chart directly above the Gantt chart shows the pipeline contents over time. The white line
at the left side of each colored band represents the batch front. It takes approximately two
days to transport batches from the start to the end of the pipeline. Note that batches of the
same product are combined as much as possible to limit the number of product transitions.

Product

Time [day]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

400

300

200

100

0

P1

P2

P3

P4St
oc

k
le

ve
l
[k

bb
l]

Figure 4-2: Stock levels at location N4

S.J. Vlot Master of Science Thesis

4-2 Mesh-structure network 43

Table 4-6: Case solution

MILP planning problem

Total number of variables 6 523
Number of binary variables 946
Number of constraints 9 668
Computation time [s] 180.05
Optimality gap [%] 2.90

MILP scheduling problem

Total number of variables (per iteration) 7 749
Number of binary variables (per iteration) 771
Number of constraints (per iteration) 17 471
Computation time (per iteration) [s] 1.59
Computation time (total) [s] 22.28

Performance indicators

Pumping cost (MILP solution) [$ ×1000] 763.74
Pumping costs (actual) [$ ×1000] 763.20
Transmix costs [$ ×1000] 2 040.00
Number of pipeline shutdowns 0
Number of downtime days 0
Supply fulfillment [%] 100
Demand fulfillment [%] 100

Figure 4-3: Pumping schedule of pipeline PL1A

Master of Science Thesis S.J. Vlot

44 Case studies

4-2-3 Tank experiment
In the tank experiment, we vary the storage capacity in the network from 80% to 120%
of the original capacity while keeping other parameters constant. We solve these scenarios
with different pumping cost structures in both the MILP planning problem and the MILP
scheduling problem.

Experiments with different pumping cost structures in the MILP planning problem
To test different cost structures in the planning phase, we solve the MILP planning problem
with no, affine, and piecewise-affine pumping costs for different tank sizes. Subsequently,
we solve the MILP scheduling problem with piecewise-affine pumping costs. Afterwards, we
obtain the actual pumping costs by evaluating the nonlinear equations.

The resulting schedules do not contain any pipeline shutdowns or unfulfilled supply and de-
mand. Hence, the total costs consist of pumping and transmix costs only. Fig. 4-4 shows
the sum of the actual pumping costs and the transmix costs for different tank scenarios and
planning cost structures. For all cost structures, the costs tend to decrease when tank capac-
ities increase. However, the lines contain some unexpected jumps. By further investigating
the cost components, we discover that these jumps are mainly due to transmix costs, see
Fig. D-1 in Appendix D-1-2. This could indicate that the transmix representation in the
MILP planning problem is too simple. Hence, we test an alternative transmix representation
at the end of this chapter, see Section 4-4.

The optimality gaps obtained with different planning cost structures tend to increase when
tank sizes decrease. The optimality gaps for the base case are around 3%. For small tank
sizes, the optimality gaps increase to 6–7%, see Fig. D-2.

Tank size with respect to the base case [%]

T
ot

al
co

st
s

[$
x

10
00

]

80 85 90 95 100 105 110 115 120

3200

3150

3100

3050

3000

2950

2900

2850

2800

2750

2700

2650

2600

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

Figure 4-4: Total costs for different tank scenarios and planning cost structures

S.J. Vlot Master of Science Thesis

4-2 Mesh-structure network 45

Tank size with respect to the base case [%]

A
ct

u
al

p
u
m

p
in

g
co

st
s

[$
x

10
00

]

80 85 90 95 100 105 110 115 120

850

830

810

790

770

750

730

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

Figure 4-5: Pumping cost for different tank scenarios and planning cost structures

Fig. 4-5 shows the pumping costs for different tank scenarios and planning cost structures.
The graph clearly indicates the advantage of including pumping costs in the MILP planning
problem, as it results in a cost decrease of 3–11%. It is surprising that the affine cost structure
results in slightly better schedules than the piecewise-affine cost structure. We might explain
this by investigating the optimality gaps; the solutions obtained with a piecewise-affine cost
structure have larger optimality gaps, particularly at tank sizes of 90%, see Fig. D-2. An ex-
periment with longer computation times indeed shows that the piecewise-affine cost structure
yields equally good or slightly better schedules than the affine pumping cost structure.

Experiments with different pumping cost structures in the MILP scheduling problem
To test different pumping cost structures in the scheduling phase, we solve the MILP schedul-
ing problem with no, affine, and piecewise-affine pumping costs. We solve the MILP planning
problem with a piecewise-affine cost structure. Similar to the previous experiment, we obtain
the actual pumping costs by evaluating the original nonlinear equations.
The transmix costs, which are equal for all pumping cost structures, again dominate the total
costs. There are some differences in terms of pumping cost, see Fig. 4-6. The curves are very
similar for all cost structures, since the injection volumes are based on the same planning
output. The pumping costs obtained with a piecewise-affine cost structure are approximately
2% lower than the pumping costs obtained with other cost structures. The small increase in
pumping costs at tank sizes of 105% seems strange. However, the pumping costs are only one
part of the total costs. Overall, there is still a decrease in cost.
The MILP scheduling problem of the base case is solved in 15–20 seconds of computation time.
For scenarios with less tank capacity, the computation times increase to 35–45 seconds. The
time differences between different cost structures are small. For more details, see Fig. D-3.

Master of Science Thesis S.J. Vlot

46 Case studies

Tank size with respect to the base case [%]

A
ct

u
al

p
u
m

p
in

g
co

st
s

[$
x

10
00

]

80 85 90 95 100 105 110 115 120

840

820

800

780

760

740

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

Figure 4-6: Pumping cost for different tank scenarios and scheduling cost structures

4-2-4 Supply-demand experiment
In the supply-demand experiment, we test the pipeline scheduling method for different supply
and demand scenarios while keeping the network capacity, i.e. tank and pipeline capacity,
constant. Again, we vary the base case in a range of 80% to 120% and solve with different
pumping cost structures as explained in Section 4-2-3.

Experiments with different pumping cost structures in the MILP planning problem
Fig. 4-7 shows the total costs for different supply-demand scenarios and planning cost struc-
tures. The costs tend to increase when there is more supply and demand to be fulfilled.
Similar to the tank experiment, we observe unexpected jumps in costs, which are again due
to jumps in the transmix costs. As already mentioned in Section 4-2-3, we propose an alter-
native transmix representation in Section 4-4. The affine and piecewise-affine pumping cost
structures result in the lowest actual pumping costs, see Fig. D-4 in Appendix D-1-3.

Fig. 4-8 shows that pipelines must be shut down for small supply-demand scenarios. There
are some small differences between the results obtained with different cost structures in low
supply-demand scenarios. Furthermore, not all supply and demand can be fulfilled for high
supply-demand scenarios, see Fig. D-5. These supply and demand volumes are lost.

Experiments with different pumping cost structures in the MILP scheduling problem
The results of the experiment with different scheduling cost structures are included in Figs. D-
6 and D-7 in Appendix D-1-3. Again, the piecewise-affine cost structure results in the lowest
actual pumping costs. The relative difference with respect to other cost structures is approx-
imately 2%, which is in line with the observations in the tank experiment (see Section 4-2-3).

S.J. Vlot Master of Science Thesis

4-2 Mesh-structure network 47

Supply and demand with respect to the base case [%]

80 85 90 95 100 105 110 115 120

3500

3400

3300

3200

3100

3000

2900

2800

2700

2600

2500

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

P
u
m

p
in

g
an

d
tr

an
sm

ix
 c

os
ts

[$
 x

 1
00

0]

Figure 4-7: Total cost for different supply-demand scenarios and planning cost structures

Supply and demand with respect to the base case [%]

P
ip

el
in

e
d
ow

n
ti
m

e
[d

ay
s]

80 85 90 95 100 105 110 115 120

12

11

10

9

8

7

6

5

4

3

2

1

0

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

Figure 4-8: Number of downtime days for different supply-demand scenarios and planning cost
structures

Master of Science Thesis S.J. Vlot

48 Case studies

4-3 Tree-structure network

4-3-1 Case details
In this case study, we consider a tree-structure network with an increasing number of pipelines.
The different network configurations are visualized in Fig. 4-9 and described here:

• Network 1 consists of two locations and a single pipeline. Supply arrives at location N1
and demand is picked up at location N2.
• In network 2, we add pipeline PL2 and shift the demand from location N2 to N3.
• In network 3, we add pipeline PL3 and shift half of the supply to location N4.
• In network 4, we split pipeline PL2 into pipelines PL2A and PL2B with an intermediate
demand location at location N5.
• In network 5, we shift the demand at location N5 to location N6. We connect location
N5 and location N6 using pipeline PL4.
• In network 6, we branch pipeline PL2A into an additional pipeline PL2C that ends at
location N7. We shift half of the demand at location N3 to location N7.

The largest network consists of seven locations — of which two supply, three demand, and two
intermediary locations — and six pipelines that transport four different products. Table 4-
7 lists pipeline dimensions, capacity limits, and batch limits. Table 4-8 describes storage
capacities and opening stock levels. The total supply volume is 40 kbbl per product per day,
which we evenly distribute among the available supply locations. Next to that, we evenly
distribute the nominal demand volumes of 40 kbbl per product per day among the available
demand locations. To simulate fluctuations in demand over time, we multiply the nominal
demand volumes by a factor γ, which is drawn from a continuous uniform distribution between
0.5 and 1.5 for each planning time bucket, demand location, and product. The randomized
demand volumes are used as an input in the MILP planning problem.

We use the same cost parameter values as in the previous case study, see Tables 4-4 and 4-
5. The pumping cost coefficients are calculated according to Appendix C. The resulting
coefficients are included in Table D-4 in Appendix D-2. Each pipeline contains 25% of each
product at the start of the horizon. We solve this case using planning time buckets with a
duration of 24 hours and scheduling time buckets with a duration of 6 hours. We again set
the rolling-horizon parameters, i.e. the scheduling window and the roll period, to 4 and 2
days, respectively.

Table 4-7: Pipeline characteristics

Capacity [kbbl/day] Batch size [kbbl]

Pipeline Length [km] Diameter [inch] Volume [kbbl] Min Max Min Max

PL1 150 20 191 75 90 22.5 90
PL2A 200 20 255 150 180 45.0 180
PL2B 200 20 255 50 60 15.0 60
PL2C 100 20 127 50 60 15.0 60
PL3 150 20 191 75 90 22.5 90
PL4 100 20 127 50 60 15.0 60

S.J. Vlot Master of Science Thesis

4-3 Tree-structure network 49

N5

PL1

N4

N1

PL4
N6

N3

N7

N2

PL2A PL2B

PL2C

PL3

N5

PL1

N4

N1

PL4
N6

N3N2

PL2A PL2B

PL3

N5

PL1

N4

N1 N3N2

PL2A PL2B

PL3

PL1

N4

N1 N3N2

PL2

PL3

PL1

N1 N3N2

PL2

1.

2.

3.

4.

5.

6.

PL1

N1 N2

Figure 4-9: Tree-structure networks with an increasing number of pipelines
Master of Science Thesis S.J. Vlot

50 Case studies

Table 4-8: Aggregated tank capacity and opening stock

Product availability

Location P1 P2 P3 P4 Capacity per product [kbbl] Opening stock per product [kbbl]

N1 x x x x 150 75
N2 x x x x 300 150
N3 x x x x 150 75
N4 x x x x 150 75
N5 x x x x 150 75
N6 x x x x 150 75
N7 x x x x 150 75

Figure 4-10: Optimality gaps for an increasing number of pipelines (MILP planning problem)

C
om

p
u
ta

ti
on

ti
m

e
(s

ch
ed

u
lin

g
)

[s
]

Figure 4-11: Computation times for an increasing number of pipelines (MILP scheduling problem)

S.J. Vlot Master of Science Thesis

4-3 Tree-structure network 51

4-3-2 Case solution
Table 4-9 shows the results of the case study described in the previous section. The first
observation is that all network configurations are successfully solved. Due to the differences
between network configurations, it is not straightforward to compare the costs of these net-
works. However, it is possible to investigate the differences in terms of optimality gaps and
computation times. These results are included in Figs. 4-10 and 4-11, respectively.

As in the previous case study, we solve the MILP planning problem with truncated branch
and bound. After 180 seconds of computation time, we obtain solutions with acceptable
optimality gaps, see Table 4-9 and Fig. 4-10. The optimality gaps range from 0.00% to 5.26%
and tend to increase when we increase the number of pipelines.

Fig. 4-11 shows the computation time required to solve the MILP scheduling problems. The
computation time clearly increases when we increase the number of pipelines. The difference
from three to four pipelines and from five to six pipelines is particularly large. Note that
these steps have one common characteristic, i.e. a secondary pipeline is added to the network.
Although not documented here, we also observed in other experiments that computation times
significantly increase when secondary pipelines are included in the network. Based on these
observations, it seems that secondary pipelines have a larger influence on the computation
time than primary pipelines. Additional dependencies in secondary pipelines might explain
this. Rather than a single injection-ejection relation, the ejection timing of secondary pipelines
depends on both the injection and the ejection timing of preceding pipelines.

Table 4-9: Case solution

Number of pipelines

1 2 3 4 5 6

MILP planning problem
Total number of variables 1 879 2 541 3 323 4 353 5 003 6 289
Number of binary variables 170 340 510 662 832 984
Number of constraints 3 863 4 661 5 579 6 727 7 513 8 917
Computation time [s] 23.25 180.06 180.03 180.06 180.05 180.05
Optimality gap [%] 0.00 0.28 2.49 4.10 5.26 2.41

MILP scheduling problem
Total number of variables (per iteration) 1 065 1 685 2 392 3 679 4 335 6 684
Number of binary variables (per iteration) 67 132 201 323 400 669
Number of constraints (per iteration) 3 347 4 692 6 155 8 744 10 147 14 102
Computation time (per iteration) [s] 0.11 0.18 0.27 0.88 1.04 2.34
Computation time (total) [s] 1.58 2.48 3.82 12.38 14.54 32.73

Performance indicators
Pumping cost (MILP scheduling) [$ ×1000] 177.20 618.15 505.95 339.76 350.78 289.02
Pumping costs (actual) [$ ×1000] 177.16 617.93 505.80 339.65 350.69 288.91
Transmix costs [$ ×1000] 600.00 1 200.00 1 840.00 2 200.00 2 780.00 2 740.00
Number of pipeline shutdowns 0 0 0 0 0 0
Number of downtime days 0 0 0 0 0 0
Supply fulfillment [%] 100 100 100 100 100 100
Demand fulfillment [%] 100 100 100 100 100 100

Master of Science Thesis S.J. Vlot

52 Case studies

4-3-3 Decomposition experiment
The proposed pipeline scheduling method is based on a MILP planning problem and a MILP
scheduling problem that are coupled in a hierarchical decomposition scheme. Furthermore,
we solve the MILP scheduling problem with a rolling-horizon approach. The main purpose of
using these decomposition methods is to reduce the computation time. However, the quality
of the generated schedules might decrease due to these decomposition methods.

In this section, we investigate the quality and performance of different solution methods
by performing three experiments, see Fig. 4-12. In the first experiment (Fig. 4-12a), we
solve the case study with the hierarchical and rolling-horizon decomposition. The resulting
schedule is used as an upper bound in the second experiment (Fig. 4-12b), in which we
solve the MILP scheduling problem without the rolling-horizon decomposition. In the third
experiment (Fig. 4-12c), we solve the entire case monolithically by dropping the stick-to-the-
plan constraints in the MILP scheduling problem, i.e. Eqs. (3-51) to (3-53) in Section 3-5.
Again, the schedule obtained in the first experiment is used as an upper bound.

Solve MILP
sched. problem I

Rolling horizon

Solve MILP planning problem

(a) With rolling horizon (b) Without rolling horizon (c) Monolithic

Solve MILP planning problem

Solve MILP
scheduling problem

(without rolling horizon)

Solve MILP
scheduling problem

(without rolling horizon
and planning constraints)

Figure 4-12: Overview of the decomposition experiments (post-processing is not visualized)

The experiments are performed with a maximum computation time of 24 hours. Figs. 4-13
to 4-15 show the main results. Fig. 4-13a visualizes the computation times of the experiments.
Although we provide an initial solution, it takes a long time to solve the MILP scheduling
problem without rolling horizon, particularly for networks with more than three pipelines.
When we solve the problem monolithically, optimality cannot be guaranteed within 24 hours.
The remaining optimality gaps are in the range of 70–90%, see Fig. 4-13b. These results
already indicate the computational benefits of using a decomposition method.

Figs. 4-14 and 4-15 show the solution quality obtained with different solution methods. The
differences between experiments with and without rolling horizon in terms of pumping costs
and transmix costs are negligible. Thus, the rolling-horizon decomposition is fast and it does
not deteriorate solution quality. On the other hand, the results obtained in the monolithic
experiment are slightly better than the results obtained in other experiments. On average,
the pumping costs are 6% lower when we use a monolithic solution method. The transmix
costs decrease by 8%. Moreover, the solutions obtained with the monolithic solution method
could improve even further when longer computation times are used, since the associated
optimality gaps are large. Hence, although the hierarchical decomposition approach is fast,
it does lead to a decrease in solution quality.

S.J. Vlot Master of Science Thesis

4-3 Tree-structure network 53
C
om

p
u
ta

ti
on

ti
m

e
[s

]

O
p
ti
m

al
it
y

g
ap

[%
]

With rolling horizon

Without rolling horizon

Monolithic

Number of pipelines [-]

(a) Computation times

Number of pipelines [-]

(b) Optimality gaps (monolithic experiment)

Figure 4-13: Computation times and optimality gaps obtained with different solution methods

A
ct

u
al

p
u
m

p
in

g
co

st
s

[$
 x

 1
00

0]

Number of pipelines [-]

With rolling horizon

Without rolling horizon

Monolithic

Figure 4-14: Pumping costs obtained with different solution methods

Number of pipelines [-]

With rolling horizon

Without rolling horizon

Monolithic

Figure 4-15: Transmix costs obtained with different solution methods

Master of Science Thesis S.J. Vlot

54 Case studies

4-4 Transmix experiment

Based on the results of the tank and supply-demand experiments of the mesh-structure net-
work (Sections 4-2-3 and 4-2-4), we expect that the MILP planning formulation can be im-
proved by extending the current transmix representation. In the original formulation of
Section 3-4, we approximate the number of product transitions by the number of products
that are contained within aggregated planning batches. In that case, we neglect product
transitions between aggregated planning batches. We expect that including these product
transitions in the MILP planning problem will yield better schedules. This experiment is a
first attempt to improve the transmix cost structure.

Adjustments to the MILP planning problem
We replace the transmix cost term in the planning objective, Eq. (3-17), by:∑

l∈Lprim

∑
h∈H

∑
p∈P

Cθ
l θ
′
l,h,p (4-1)

where the variable θ′l,h,p ∈ [0, 1] indicates to what extent we penalize the presence of product p
in aggregated planning batch h in pipeline l. It is preferred to include products in the current
batch h that are also present in the previous batch (h − 1), because these products can be
potentially merged in the scheduling phase. To express this, we distinguish three cases:

θ′l,h,p =

0 if θp

l,h,p = 0
1− λ if θp

l,h,p = 1 and θp
l,h−1,p = 1

1 if θp
l,h,p = 1 and θp

l,h−1,p = 0
(4-2)

where the parameter λ ∈ [0, 1] is the inter-batch discount factor. We incorporate Eq. (4-2) in
the MILP planning problem using the following constraint:

θp
l,h,p − λθ

p
l,h−1,p ≤ θ

′
l,h,p ∀l ∈ Lprim,∀h ∈ H,∀p ∈ P (4-3)

We include Eqs. (4-1) and (4-3) in the MILP planning formulation of Section 3-4 and solve
both case studies with the adjusted MILP planning problem. We change the restriction on
computation time to 300 seconds to make sure that the obtained optimality gaps are still
acceptable. During the experiments described in Sections 4-2 and 4-3, we observed that
most aggregated planning batches contain two products. Thus, if the current planning batch
contains a product that is also contained in the preceding planning batch, there is chance of
50% that we can combine them. Therefore, we set the inter-batch discount factor to λ = 1/2.

Case study results of the tree-structure network
Figs. 4-16 and 4-17 show the optimality gaps of the MILP planning solution and the trans-
mix costs of the resulting schedule, respectively. Referring to Fig. 4-16, the optimality gaps
obtained with the alternative formulation are large (20%–30%) compared to the original
formulation, despite the increased amount of allowed computation time. Nevertheless, the
alternative formulation results in schedules with less transmix costs for most networks, see
Fig. 4-17. On average, the transmix costs decrease by 5%. When we use shorter computa-
tion times, e.g. 180 seconds, we do not observe these improvements. When we use longer
computation times, e.g. 1 hour, the transmix costs decrease by another 7%.

S.J. Vlot Master of Science Thesis

4-4 Transmix experiment 55

Number of pipelines [-]

Figure 4-16: Optimality gaps obtained with two transmix formulations (tree-structure network)

Number of pipelines [-]

Figure 4-17: Transmix costs obtained with two transmix formulations (tree-structure network)

Case study results of the mesh-structure network
We repeat the tank experiment of the mesh-structure network with the alternative transmix
formulation. Again, long computation times of 300 seconds are required to obtain results
with an acceptable optimality gap, see Fig. D-8 in Appendix D-3. For small tank sizes,
the transmix costs decrease by approximately 10%. For very large tanks, this difference
increases to almost 40%, see Fig. D-9. In case of large tank scenarios, the aggregated planning
batches will typically contain a single product. Therefore, most product transitions are present
between successive planning batches. Hence, incorporating inter-batch transitions in the
MILP planning problem is particularly beneficial for scenarios with large tanks.

Final remarks
The first results obtained with the alternative transmix formulation are promising. However,
more research is required to improve it, as the optimality gaps are large and the computation
times required to reach these gaps are too long. Further improving the alternative transmix
formulation remains for future research.

Master of Science Thesis S.J. Vlot

56 Case studies

4-5 Summary

The novel pipeline scheduling method has been successfully tested on two case studies. We
have decided to solve the MILP planning problem using truncated branch and bound with
a time limit of 180 seconds, because near-optimal solutions are found within that amount of
time but proving optimality requires much longer. The MILP scheduling problem is solved
within 10–60 seconds of computation time. Thus, the pipeline scheduling method returns
complete schedules within 3–4 minutes of computation time.

The first case study is inspired by the mesh-structure network of Cafaro and Cerdá (2012).
We solved this case with varying tank sizes and supply-demand scenarios. When tank sizes
increase, both pumping costs and transmix costs tend to decrease. When supply and demand
increase, pumping costs also increase. The transmix costs both increase in low and high
supply-demand scenarios. The best schedules were obtained with an affine or a piecewise-
affine pumping cost structure in the MILP planning problem, and with a piecewise-affine
pumping cost structure in the MILP scheduling problem.

In the second case study, we considered a tree-structure network with an increasing number of
pipelines. It seems that secondary pipelines have a larger influence on the computation time
than primary pipelines. Next to that, we investigated the quality of the decomposition ap-
proach by solving the case study with rolling horizon, without rolling horizon, and completely
monolithic. The hierarchical decomposition method and the rolling-horizon decomposition
method significantly reduce the computation time required to solve the pipeline scheduling
problem. The differences in solution quality obtained with and without rolling-horizon de-
composition are negligible. On the other hand, slightly better solutions are obtained with
the monolithic solution method. On average, the pumping costs are 6% lower when we use a
monolithic solution method. The transmix costs are decreased by 8%. Hence, the hierarchical
decomposition approach does lead to a decrease in solution quality.

In the last experiment, we tested an alternative transmix representation for the MILP planning
problem. In the alternative transmix representation, the interaction between aggregated
planning batches is incorporated in the problem formulation. The preliminary results are
promising. The transmix costs decreased by 10–40% in the first case study, and by 5% in
the second case study. However, the required computation times and the resulting optimality
gaps are significantly larger than in the original transmix representation. Hence, we should
further improve the transmix formulation in future research.

S.J. Vlot Master of Science Thesis

Chapter 5

Conclusions and Recommendations

5-1 Conclusions

Given the size and complexity of pipeline networks, planning and scheduling network opera-
tions is a complicated task. Referring to the problem statement in Section 1-2, the research
in this thesis has been aimed at developing a fast and generic method for creating feasible
and good schedules for multi-product oil pipeline networks with known supply and demand.
We captured this in the following main research question:

How can we solve the pipeline scheduling problem using mathematical optimization?

We have split the research question into four subquestions, which we answer in this section.

Which optimization framework is most suitable for the pipeline scheduling problem?
There are two main optimization frameworks that can be used to represent the pipeline
scheduling problem, i.e. mathematical programming and constraint programming. Mathe-
matical programming is the most suitable framework for this problem, because the algorithms
associated with this framework are better at finding good or optimal schedules when many
feasible solutions exist, which is the case for the pipeline scheduling problem. Within the
mathematical programming framework, we have selected a Mixed Integer Linear Program-
ming (MILP) formulation to represent the pipeline scheduling problem. The results indicate
that the choice for mathematical programming indeed leads to fast and good results.

Which problem representation is most suitable for the pipeline scheduling problem?
There are three main problem representations in the mathematical programming framework,
i.e. discrete-time, continuous-time, and precedence-based representations. Of these three op-
tions, discrete-time representations provide the most flexibility. Discrete-time representations
enable, among others, straightforward incorporation of intermediate supply and demand dead-
lines, and easier integration of planning and scheduling phases in decomposition approaches.
Furthermore, optimization problems with discrete-time representations are better from a com-
putational point-of-view, as they are solved faster when using branch and bound.

Master of Science Thesis S.J. Vlot

58 Conclusions and Recommendations

The pipeline scheduling problem is split into a planning phase and a scheduling phase that are
coupled in a hierarchical decomposition scheme. In the planning phase, relatively large time
buckets are used, e.g. with a duration of 24 hours, and several simplifying assumptions are
made. For example, transportation times are fixed and batches are not yet sequenced. The
scheduling phase involves smaller time buckets, e.g. with a duration of 4 hours. Moreover,
batch sequencing and dynamic transportation times are considered in the scheduling phase.
A batch front variable links the timing of batch injections to the timing of batch ejections.
To overcome discretization errors that occur in most discrete-time representations, we have
introduced a time-bucket approach in which batches can start and end within time buckets.
Afterwards, the actual timing of these events is determined with volume-based interpolation.
In this way, we obtain high-resolution schedules with a small number of time buckets.

How can we include operational cost in the optimization problem?
The main operational costs of pipeline networks are related to transmix volumes and pumping
energy. Transmix volumes emerge when two different products are sequentially pumped into
a pipeline. These products mix due to a diffusion-like process, known as axial dispersion.
Transmix costs are incurred per product transition. We have incorporated this with a linear
cost structure in which costs are assigned to the number of product transitions.

Due to friction losses in pipelines, energy is required to keep the pipeline running. These
friction losses increase nonlinearly with the flow rate. We have approximated these nonlinear-
ities using piecewise-affine functions with 4 segments. In the MILP scheduling problem, we
observed an average cost decrease of 2% with respect to solutions obtained without piecewise-
affine pumping cost approximations. In the MILP planning problem, on the other hand, the
affine and piecewise-affine representations result in similar pumping costs.

What is the effect of different solution techniques on computation time and quality?
The proposed pipeline scheduling method is based on a MILP planning problem and a MILP
scheduling problem that are coupled in a hierarchical decomposition scheme. Furthermore,
we solve the MILP scheduling problem with a rolling-horizon approach. These decomposi-
tions are favorable from a computation point-of-view. However, the quality of the generated
schedules might decrease due to these decomposition methods. Experiments show that the
quality loss due to the rolling-horizon decomposition is negligible. Furthermore, we solved the
total pipeline scheduling problem monolithically. After a day of computing, the intermediate
solutions of the monolithic approach show an average decrease of 6% in pumping costs and
8% in transmix costs. Hence, the proposed hierarchical decomposition approach does lead to
a decrease in solution quality.

Concluding remarks
With respect to current industry practice, the novel pipeline scheduling method can greatly
reduce the time required to generate schedules. Compared to current spreadsheet approaches,
the mathematical programming formulation is generic and less error-prone. Moreover, the
obtained schedules are better in terms of operational cost.

In conclusion, we have successfully developed and tested a novel pipeline scheduling method.
The proposed method is flexible in terms of network configurations, intermediate supply
and demand requirements, and cost structures. Complete schedules for 30-day horizons are
obtained in competitive computation times of 3–4 minutes.

S.J. Vlot Master of Science Thesis

5-2 Recommendations 59

5-2 Recommendations

Although the proposed pipeline scheduling method shows promising results, there are always
aspects that can be improved. This section describes recommendations for future work.

Problem extensions
The following problem extensions can be the subject of future research:

• Tank allocation
In addition to batch volumes and timing, the source and destination tanks of each
batch should be specified to enable schedule execution. However, the proposed pipeline
scheduling method does not consider tank allocation. In future research, it would be
interesting to incorporate tank allocation in the problem formulation, e.g. by adding a
tank allocation phase to the hierarchical decomposition method. Since the tank alloca-
tion problem will be mainly a feasibility problem, we could use a constraint programming
approach or a construction heuristic to solve this.

• Variable energy tariffs
When energy tariffs vary over time, e.g. based on peak hours, it might be rewarding
to adjust the pipeline flow rate throughout the day. We could incorporate variable
energy tariffs in the problem formulation by adding a time index to the correspond-
ing cost parameters. Note that this illustrates the flexibility of the selected discrete-
time representation; it is much harder to incorporate time-dependent energy tariffs in
continuous-time and precedence-based representations, as there is no fixed time grid.

• Supply and demand backlog
The current problem formulation does not include supply and demand backlog. When
supply or demand cannot be met, it is simply lost. However, this situation does not
correspond to reality. If demand cannot be fulfilled, it is typically delivered on the next
day or replaced by a product of a higher grade. If supply consists of incoming ships and
a cargo cannot be unloaded, ships are delayed until storage capacity becomes available.
In future work, we could include this behavior in the MILP planning problem.

• Inventory costs
The current problem formulation does not include inventory holding costs, since external
factors — supply and demand — determine how much of each product is contained in
the network. The underlying assumption is that the inventory holding costs are equal
in the entire network. If this assumption does not hold, we could include these costs in
the objective function to see whether this has an effect on the resulting schedules.

Case studies
We can address the following aspects to make the case studies more realistic:

• Improve parameter values
Out of all cost parameters, only the pumping costs are based on accurate estimations.
Although we have derived a transmix volume based on laws of physics, the corresponding
costs are unknown. Also the costs of pipeline shutdowns are unclear. When pipeline
operation is resumed, there will be costs related to fluid acceleration. In addition, batch
mixing might increase at lower flow rates, yielding larger transmix volumes.

Master of Science Thesis S.J. Vlot

60 Conclusions and Recommendations

• Tweak piecewise-affine pumping cost approximation
In the case studies in Chapter 4, we have approximated the pumping costs by piecewise-
affine function with four line segments that are evenly distributed over the interval of
allowed flow rates. The line segments connect five breakpoints that are located on the
original nonlinear curve. Hence, the approximation is an overestimation of the actual
costs. We could tweak the piecewise-affine approximation by solving a least-squares
problem in which we minimize the squared approximation error of the pumping costs.

Transmix representation
Furthermore, we can improve the transmix representation in terms of cost and volume:
• Improve transmix cost structure

In the MILP planning problem, we approximate transmix costs using the number of
products that are contained in aggregated planning batches. However, the product
transitions between aggregated planning batches are neglected. We expect to obtain
better schedules when these inter-batch product transitions are incorporated in the
MILP planning problem. The alternative transmix representation of Section 4-4 al-
ready improves the transmix cost structure. The results are promising. However, the
optimality gaps are large and the corresponding computation times are too long. In fu-
ture work, we could further improve the proposed transmix representation or investigate
other transmix representations.

• Incorporate transmix volume losses
The proposed MILP formulations do not include the cause of transmix costs, i.e. volume
loss due to mixing at batch interfaces. The MILP formulations can be improved by
taking these volume losses into account. In the simplest form, we can multiply batch
volumes by a constant loss factor. Alternatively, we can add a variable loss term to
the batch volume balance, which becomes positive based on the product properties of
preceding and succeeding batches.

Solution quality
Next to further investigating the schedule quality obtained with the current decomposition
method, two suggestions for future work are:
• Less conservative MILP planning problem

The MILP planning and scheduling problems contain conservative tank bounds to pre-
vent feasibility issues during schedule generation and execution. Since the time dis-
cretization in the planning phase is rather coarse, the conservatism might result in
schedules with unnecessary high operational costs. In future work, we could investigate
the effect of (partly) relaxing these conservative tank bounds. This might result in tank
capacity violations during scheduling. These violations could be resolved by adding
a feedback loop from the scheduling phase to the planning phase in which the MILP
planning problem is tightened based on the MILP scheduling solution.

• Less strict MILP scheduling problem
The current MILP scheduling problem strictly obeys the planned injection volumes. In
future work, it might be interesting to investigate whether allowing more scheduling
freedom leads to better schedules. For example, shifting some volume to the previous
or next day may result in schedules with less transmix costs.

S.J. Vlot Master of Science Thesis

5-2 Recommendations 61

Long-term problem extensions
The scope of the pipeline scheduling problem can be further increased by considering the
following long-term problem extensions:
• Scheduling in dynamic environments
The proposed pipeline scheduling method is based on deterministic inputs. However,
these inputs may change during schedule execution. In future work, we might investigate
the effects of disruptions on the network. Consequently, we could develop strategies for
coping with these disruptions, both during schedule generation — i.e. proactive, robust
scheduling — and during schedule execution — i.e. reactive rescheduling.

• Optimization of oil supply chains
Pipeline networks are typically part of larger oil supply chains. For example, supply
and demand locations can be connected to ports, truck terminals, railway stations, and
refineries. Future work could consider the interaction of these different entities in a
larger supply chain network. In particular, it might be interesting to incorporate a
larger part of the oil supply chain in a single optimization problem. The problem can
be further extended by considering the related decision-making and information-sharing
processes, which typically involve multiple companies with different objectives.

Applications in other fields of research
Parts of the proposed pipeline scheduling method might be applicable to crude oil scheduling
and production scheduling:
• Scheduling of crude oil networks

Although the proposed pipeline scheduling method is aimed at scheduling pipeline net-
works for refined products, it could be extended to schedule crude oil pipeline networks.
In crude oil pipeline networks, different crude oils are blended in order to meet quality
requirements. When crude blending takes place in tanks only — i.e. batches are not
blended in pipelines — then the scheduling problem for crude oil pipelines is similar to
the pipeline scheduling problem considered in this thesis. Tank allocation and crude
blending in these tanks can be captured in an additional optimization problem.

• Custom discrete-time representation for production scheduling
In this thesis, we have introduced a custom discrete-time representation in which batches
can start and end within time buckets. A post-processing step computes the actual
timing based on batch sizes. In future work, we could investigate whether similar
representations exist for production scheduling. If this is not the case, we could identify
potential applications for the custom discrete-time representation. For example, the
representation could be applied to scheduling problems in which batch processing times
are large and the desired resolution of time is high.

Master of Science Thesis S.J. Vlot

62 Conclusions and Recommendations

S.J. Vlot Master of Science Thesis

Appendix A

Mixed Integer Non-Linear
Programming

The general form of Mixed Integer Non-Linear Programming (MINLP) is as follows (Gross-
mann, 2002):

min f(x, y)
s.t. gj(x, y) ≤ 0 ∀j ∈ J

x ∈ X
y ∈ Y

(A-1)

where f and g are differentiable functions, J is a set of constraint indices, and x and y are
continuous and discrete variables, respectively. The set X describes a convex continuous
domain. The set Y is a set of integer points, which are in most cases binary.

MINLP problems can be solved with nonlinear solvers, such as outer approximation and
spatial branch and bound. An alternative approach is to use piecewise-affine relaxations
and approximations in order to transform MINLP problems into linear problems that can
be solved with efficient Mixed Integer Linear Programming (MILP) solvers. Piecewise-affine
approaches are particularly interesting for MINLP problems with nonconvex relaxations, as
the corresponding MILP problems have convex, linear relaxations. A typical disadvantage of
piecewise-affine approaches is that they introduce additional binary variables in the problem
formulation.

Outer approximation
Outer approximation is based on an iterative sequence of solving an MILP master problem
and a Non-Linear Programming (NLP) subproblem (Duran and Grossmann, 1986). The
values of the binary values are determined in the master problem. Therefore, the resulting
subproblem is a continuous NLP problem.

The outer approximation is initialized by solving the NLP relaxation of the MINLP problem.
Subsequently, the MINLP problem is linearized based on the NLP solution, which is known

Master of Science Thesis S.J. Vlot

64 Mixed Integer Non-Linear Programming

as the MILP master problem. Solutions to the master problem are local lower bounds of
the optimal solution (D’Ambrosio et al., 2015). Next, the binary variables are fixed and the
corresponding NLP subproblem is solved. If a feasible solution is found, it is an upper bound
of the optimal solution. A new iteration is initiated by linearizing the MINLP around the new
upper bound. The algorithm is terminated when the lower and upper bounds have converged.

According to D’Ambrosio et al. (2015), outer approximation only works well for convex prob-
lems, as local lower bounds are valid global lower bounds for convex problems. This as-
sumption does not hold for nonconvex problems. In that case, the algorithm might converge
towards a local optimum rather than the global optimum.

Spatial branch and bound
Spatial branch and bound is an optimization algorithm aimed at solving MINLP problems
with nonconvex relaxations to global optimality. The total problem is iteratively divided
into subproblems by branching on both integer and continuous variables. Locally optimal
solutions are used as upper bounds. Lower bounds are obtained by solving convex relaxations
of the subproblems. By gradually refining the subproblems, tighter relaxations are obtained.
The branching process is continued until the relaxations are tight enough to provide almost
feasible solutions, also referred to as ε-feasibility (D’Ambrosio et al., 2015).

Piecewise-affine reformulation
MINLP problems can be transformed into MILP problems using piecewise-affine approxima-
tions and relaxations. The difference between these two options is illustrated in Fig. A-1. In
case of a piecewise-affine approximation, the nonlinear function is replaced by line segments.
In case of a piecewise-affine relaxation, the nonlinear function is replaced by envelopes. The
relaxed function value must be within one of these envelopes. Additional binary variables are
used to indicate which line segment or envelope is activated.

Figure A-1: Difference between piecewise-affine approximations and relaxations (D’Ambrosio
et al., 2015)

S.J. Vlot Master of Science Thesis

Appendix B

Transmix estimation

This appendix describes the estimation of typical transmix volumes and costs. Section B-1
explains the dispersion model. Section B-2 discusses a numerical example.

B-1 The dispersion model

During pipeline transport, batch transitions will slowly spread in longitudinal direction, a
phenomenon also known as axial dispersion. Axial dispersion can be modeled with an adapted
version of Fick’s diffusion law (Levenspiel, 1999, p. 295–296):

∂C

∂t
= D∂2C

∂x2 (B-1)

where C(x, t) is the presence of the transition as a function of time t and location x. Further-
more, D is the axial dispersion coefficient1. In dimensionless form, the equation becomes:

∂C

∂θ
=
(D
uL

)
∂2C

∂ζ2 −
∂C

∂ζ
(B-2)

with dimensionless time θ = t/t̄, dimensionless location ζ = (ut+ x)/L, mean transportation
time t̄, flow velocity u, and pipeline length L. The parameter

(
D
uL

)
, also known as the vessel

dispersion number, indicates the amount of axial dispersion.

For small values of dispersion (
(

D
uL

)
< 0.01), the transmix region remains bell-shaped and

symmetric. In that case, the solution of Eq. (B-2) is an error curve that is similar to the the
probability density function of a normal distribution (Levenspiel, 1999, p. 296):

C = 1√
4π
(

D
uL

) exp

−(1− θ)2

4
(

D
uL

)
 (B-3)

1For consistency with Fig. B-1, we use a bold D to denote the axial dispersion coefficient.

Master of Science Thesis S.J. Vlot

66 Transmix estimation

In this error curve, the standard deviation of the dimensionless transportation time is:

σθ = σ2
t

t̄2
= 2 D

uL
(B-4)

where t̄ is the average transportation time, and σt is the standard deviation of the transporta-
tion time. Then, the volumetric standard deviation σV is:

σV = σt · u · π
(
d

2

)2
(B-5)

Substituting Eq. (B-4) in Eq. (B-5) yields:

σV =

√
2 D
uL
· t̄ · u · π

(
d

2

)2
(B-6)

=

√
2 D
uL
· L · π

(
d

2

)2
(B-7)

B-2 Transmix cost estimation

In this section, we estimate the volume and costs of a typical transmix volume.

Estimating the transmix volume
The example discussed in this section is based on the parameter values of Table B-1.

Table B-1: Pipeline and fluid parameters for transmix estimation

Quantity Value (non-SI) Value (SI)

d Pipeline diameter 20 inch 0.51 m
L Pipeline length 300 km 300 · 103 m
q Flow rate 150 kbbl/day 0.276 m3/s
u Flow velocity 1.36 m/s
ν Kinematic viscosity 0.70 cSt 0.70 · 10−6 m2/s

The transmix volume that should be removed depends on the purity requirements before
and after the batch transition. For example, if the pipeline flow is considered pure when it
contains at most 5% of another product — which should hold for both sides of the symmetric
transmix volume — then we should remove 90% of the transmix volume. Since 90% of the
surface beneath a normally-distributed bell curve corresponds to 2 ·1.645 standard deviations,
we should remove:

Vtransmix = 2 · 1.645 · σV (B-8)
We need to know the value of the vessel dispersion number D

uL to compute the volumetric
standard deviation σV . Fig. B-1 visualizes a related parameter, i.e. D

ud , for different Reynolds
numbers. Using this parameter, we can compute the vessel dispersion number: D

uL = D
ud ·

d
L .

For the situation described in Table B-1, the Reynolds number is Re = ud
ν = 9.88 · 105.

According to Fig. B-1, the parameter D
ud is approximately 0.20, yielding a vessel dispersion

number of 3.39 · 10−7. Substituting this number in Eq. (B-7) and then in Eq. (B-8) results in
a transmix of 165 m3 (1.04 kbbl), which is approximately 1% of the average batch size.

S.J. Vlot Master of Science Thesis

B-2 Transmix cost estimation 67

Figure B-1: Correlation for the dispersion of fluids flowing in pipes (Levenspiel, 1999, p. 310)

Estimating the transmix cost
Transmix volumes are sold as a different product or reprocessed in a nearby refinery. The
costs related to this are difficult to estimate, since they are highly dependent on the actual
network, transmix compositions, sales opportunities, and the location of nearby refineries.
For example, in different scientific articles e.g. Cafaro and Cerdá (2004, 2012), transmix costs
range from $4 000 to $40 000.

To provide an illustrative calculation, let us take the pipeline case of Table B-1. Suppose that
the transmix volume contains regular and premium fuels. Since the quality of premium fuel
is higher than the quality of regular fuel, the transmix volume is sold as regular fuel. The cost
difference between these fuels is approximately $0.40 per gallon (U.S. Department of Energy,
2015), which is $106 per m3. Assuming that half of the transmix volume originates from
premium fuel, the corresponding downgrading costs are 1

2 · 165
[
m3] · 106

[$
m3

]
= 8745 [$].

Master of Science Thesis S.J. Vlot

68 Transmix estimation

S.J. Vlot Master of Science Thesis

Appendix C

Pumping cost estimation

This appendix covers the estimation of pumping energy and its associated costs. Section C-1
describes the energy balance for steady incompressible flow. Section C-2 discusses losses in
pipelines. Section C-3 provides equations for calculating the pumping power. Section C-4
describes the piecewise-affine approximation of pumping costs.

C-1 Pipeline flow

Pipeline flow can be described with the steady-flow energy equation for incompressible fluids,
e.g. see (White, 2011, p. 193):(

pout
ρg

+ u2
out
2g + zout

)
︸ ︷︷ ︸

outflow

−
(
pin
ρg

+ u2
in

2g + zin

)
︸ ︷︷ ︸

inflow

= hpump − hloss (C-1)

with static pressures pin, pout, flow velocities uin, uout, elevation heights zin, zout, pump
head1 hpump, head loss hloss, material density ρ, and gravitational acceleration g. The energy
equation expresses that the total amount of static pressure, kinetic, and potential energy
between two points in a system is increased by pumps and decreased by energy losses.

We assume that oil has the same static pressure in source and destination tanks, i.e. pin = pout.
Furthermore, if the pipeline diameter is constant, the inflow velocity equals the outflow veloc-
ity. Consequently, the terms in Eq. (C-1) related to static pressure and kinetic energy cancel.
Thus, pumps should overcome elevation changes and pipeline losses:

hpump = z2 − z1 + hloss (C-2)

The right-hand side of Eq. (C-2) corresponds to the system curve in Fig. C-1. Section C-2
describes the computation of hloss. The left-hand side of Eq. (C-2) corresponds to the pump

1In fluid dynamics, head is a different measure for liquid pressure: h = p

ρg
.

Master of Science Thesis S.J. Vlot

70 Pumping cost estimation

Flow rate

T
ot

al
 h

ea
d

Pump curves
System curve

Increasing
impeller speed

Operating points

Figure C-1: Pump and system curves

curves in Fig. C-1, which are further described in Section C-3. The equality in Eq. (C-2)
implies that the entire system of pipelines and pumps always operates at an intersection of
the system and pump curves.

C-2 Head losses

Losses in pipelines are classified as major or minor (White, 2011, p. 399). Major losses
correspond to friction losses over the entire pipeline length, whereas minor losses are local
losses due to flow at pipeline entrances, exists, fittings, and valves. The total losses are:

hloss = hfriction +
∑
i∈I

hminor,i = u2

2g

(
f
L

D
+
∑
i∈I

Ki

)
(C-3)

with Darcy friction factor f , pipeline length L, pipeline diameter D, and local-loss coefficients
Ki for local losses i ∈ I. For large values of L/D, which is the case for long pipelines, the
minor losses are negligible.
We calculate the friction losses in pipelines with the Darcy-Weisbach equation:

hfriction = f
L

D

u2

2g (C-4)

The Darcy friction factor f in Eq. (C-4) is typically calculated by performing several iterations
of the implicit Colebrook-White equation (Colebrook, 1939):

1√
f

= −2 log10

(
ε

3.7D + 2.51
Re
√
f

)
(C-5)

with pipeline roughness ε and Reynolds number Re. Alternatively, we can obtain f with
approximate explicit formulations, such as the equation by Swamee and Jain (1976):

f = 0.25[
log10

(
ε

3.7D + 5.74
Re0.9

)]2 (C-6)

S.J. Vlot Master of Science Thesis

C-3 Pumping power 71

C-3 Pumping power

Pipeline networks are commonly equipped with centrifugal pumps that are driven by electric
motors. Fig. C-1 shows typical performance curves for two different impeller speeds. By
varying the impeller speed, we can reach different operating points on the system curve. The
power required to operate the pump at these operating points is:

P = ρ · g · hpump ·Q
η

(C-7)

with electric power P , fluid density ρ, gravitational acceleration g, pump head hpump, flow
rate2 Q, and pump efficiency η. The corresponding pumping costs per unit time are:

J = CE · P (C-8)

in which CE represents the costs per unit energy.

As explained in Section C-1, the required pump head hpump depends on elevation differences
and friction losses at a specific operating point. Next to the required pump head, the pump
efficiency η is also dependent on the location of the operating point. Fig. C-2 shows typical
level curves of pump efficiency at different operating points. For systems with a small static
head, i.e. small elevation changes, the system curve is aligned with the efficiency curves
(Fig. C-2a). In that case, the pump efficiency will not change much at different flow rates.
However, for systems with a large static head, the system curve does cross the efficiency
curves, see Fig. C-2b. Hence, the pump efficiency will vary in that case.

The pump efficiency and the energy use are typically determined by doing measurements on
the actual system. Since there was no access to such data during this thesis, we assume a
constant pump efficiency in the interval of allowed pipeline flow rates. When the static head
is very large, we should reconsider this assumption.

Flow rate

T
ot

al
 h

ea
d

70%

70%
80%

80%

Flow rate

T
ot

al
 h

ea
d

70%

70%
80%

80%

(a) System curve with no static head (b) System curve with large static head

High speed System curve

Pump performance
Pump efficiency

Low speed

High speed

Low speed

System curve

Pump performance
Pump efficiency

Figure C-2: Pump curves and efficiency for different system curves

2The relation between velocity and flow rate is u = Q

π (D/2)2 , with pipeline diameter D.

Master of Science Thesis S.J. Vlot

72 Pumping cost estimation

C-4 Piecewise-affine approximation of pumping costs

Piecewise-affine functions consist of multiple line segments. Fig. C-3a shows an example of
a piecewise-affine approximation with three line segments. The line segments m ∈ M for
pipeline l ∈ L are parameterized by Cpump,marg

l,m and Cpump,stat
l,m , which represent the slopes

and intercepts of these lines, respectively. Then, in case of the scheduling subproblem, the
piecewise-affine pumping costs are expressed by the following set of equations:

ψs
l,k =

Cpump,marg
l,1

∑
b∈Bl

vs,in
l,b,k + Cpump,stat

l,1 ·∆K if Qstart
l,1 ≤

∑
b∈Bl

vs,in
l,b,k < Qend

l,1
Cpump,marg
l,2

∑
b∈Bl

vs,in
l,b,k + Cpump,stat

l,2 ·∆K if Qstart
l,2 ≤

∑
b∈Bl

vs,in
l,b,k < Qend

l,2
...

Cpump,marg
l,|M |

∑
b∈Bl

vs,in
l,b,k + Cpump,stat

l,|M | ·∆K if Qstart
l,|M | ≤

∑
b∈Bl

vs,in
l,b,k ≤ Qend

l,|M |

(C-9)

A similar set of equations holds for the planning subproblem.

The flow rate intervals, slopes, and intercepts can be computed in different ways. In this
thesis, we decided to distribute the line segments uniformly over the interval of allowed flow
rates. Furthermore, we determine the slopes and intercepts by connecting points that are
located on the nonlinear curve, see Fig. C-3a. The main reason to select this approach is its
simplicity. Furthermore, the actual pumping costs are calculated in the post-processing step of
the scheduling phase. Therefore, the accuracy of the piecewise-affine approximation is of less
importance. Nevertheless, it might be interesting to investigate different approaches in future
research. For example, we could obtain the slopes and intercepts by solving a least-squares
problem in which we minimize the squared approximation error of the pumping costs.

Flow rate

P
um

pi
ng

 c
os

ts
 p

er
 u

ni
t

ti
m

e

Original equation
Lower bounds
(arrows indicate feasible region)

m = 1

m = 2

m = 3

Flow rate

P
um

pi
ng

 c
os

ts
 p

er
 u

ni
t

ti
m

e

Original equation
Piecewise-affine
approximation

(a) Piecewise-affine approximation (b) Line segments as lower bounds

Figure C-3: Expressing piecewise-affine approximations with line segments as lower bounds

S.J. Vlot Master of Science Thesis

C-4 Piecewise-affine approximation of pumping costs 73

The piecewise-affine pumping cost approximation is based on the following steps:
• Initialization of breakpoints and line segments
• Cost calculation at breakpoints
• Calculation of slope and intercept parameters
• Incorporation of piecewise-affine pumping costs in the MILP formulations

In the remainder of this section, we describe these steps in detail.

Initialization of breakpoints and line segments
For all pipelines l ∈ L, the start and end points of each line segment m ∈M are:

Qstart
l,m = Qmin

l + (m− 1)Q
max
l −Qmin

l

|M | − 1 (C-10)

Qend
l,m = Qmin

l +m · Q
max
l −Qmin

l

|M | − 1 (C-11)

where |M | is the cardinality of set M .

Cost calculation at breakpoints
To obtain the costs that correspond to flow rates Qstart

l,m and Qend
l,m , we repeat the following

steps for all pipelines l ∈ L and for all line segments m ∈M :
1. Compute the Darcy friction factor f using the implicit Colebrook-White equation

(Eq. (C-5)) or the explicit Swamee-Jain equation (Eq. (C-6))
2. Compute the head loss due to friction using the Darcy-Weisbach equation (Eq. (C-4))
3. Compute the required power and the corresponding costs using Eqs. (C-7) and (C-8)

We store the resulting energy costs per unit time in the parameters J start
l,m and Jend

l,m .

Calculation of slope and intercept parameters
The piecewise-affine functions are parameterized by Cpump,marg

l,m and Cpump,stat
l,m , which repre-

sent the slopes and intercepts of the line segments, respectively. The corresponding values
are:

Cpump,marg
l,m =

Jend
l,m − J start

l,m

Qend
l,m −Qstart

l,m

(C-12)

Cpump,stat
l,m = J start

l,m − Cpump,marg
l,m ·Qstart

l,m (C-13)

Incorporation of piecewise-affine pumping costs in the Mixed Integer Linear Programming
(MILP) formulations
As the piecewise-affine functions are convex, we can incorporate them without any binary
variables. This is done by bounding the pumping costs ψ from below by each line segment,
see Fig. C-3b. In the planning and MILP scheduling problems, the corresponding constraints
are included in Eqs. (3-14) and (3-55), respectively. These constraints are:

Cpump,marg
l,m

∑
p∈P

∑
h∈Hl

vp,in
l,h,p,t + Cpump,stat

l,m ·∆T ≤ ψp
l,t ∀l ∈ L,∀m ∈M,∀t ∈ T

Cpump,marg
l,m

∑
b∈Bl

vs,in
l,b,k + Cpump,stat

l,m ·∆K ≤ ψs
l,k ∀l ∈ L,∀m ∈M,∀k ∈ K

Master of Science Thesis S.J. Vlot

74 Pumping cost estimation

S.J. Vlot Master of Science Thesis

Appendix D

Additional case study data

D-1 Mesh-structure network

D-1-1 Case details

Table D-1: Pumping cost parameters used in affine experiments

Pipeline l Segment m Cpump,marg
l,m [$/kbbl] Cpump,stat

l,m [$/day]

PL1A 1 111.09 -9688.06
PL1B 1 34.35 -2300.67
PL2 1 159.31 -14962.53
PL3 1 93.55 -6672.26
PL4A 1 56.13 -4003.36
PL4B 1 43.16 -2446.85
PL5 1 224.66 -5009.57
PL6 1 82.87 -1727.96

Master of Science Thesis S.J. Vlot

76 Additional case study data

Table D-2: Pumping cost parameters used in piecewise-affine experiments

Pipeline l Segment m Cpump,marg
l,m [$/kbbl] Cpump,stat

l,m [$/day]

PL1A 1 93.63 -7592.86
PL1A 2 104.86 -9023.86
PL1A 3 116.70 -10623.39
PL1A 4 129.18 -12400.76

PL1B 1 27.50 -1683.99
PL1B 2 31.86 -2108.98
PL1B 3 36.53 -2599.62
PL1B 4 41.52 -3160.55

PL2 1 135.92 -11922.31
PL2 2 150.99 -13994.54
PL2 3 166.84 -16292.94
PL2 4 183.47 -18829.16

PL3 1 81.52 -5469.27
PL3 2 89.31 -6286.99
PL3 3 97.45 -7181.96
PL3 4 105.93 -8157.63

PL4A 1 48.91 -3281.56
PL4A 2 53.59 -3772.19
PL4A 3 58.47 -4309.18
PL4A 4 63.56 -4894.58

PL4B 1 27.86 -1376.08
PL4B 2 37.19 -2145.35
PL4B 3 47.82 -3155.72
PL4B 4 59.77 -4439.57

PL5 1 179.97 -3668.89
PL5 2 208.40 -4593.03
PL5 3 238.87 -5659.57
PL5 4 271.38 -6878.60

PL6 1 60.80 -1132.04
PL6 2 74.59 -1549.41
PL6 3 89.77 -2057.71
PL6 4 106.31 -2665.78

S.J. Vlot Master of Science Thesis

D-1 Mesh-structure network 77

Table D-3: Initial pipeline contents

Pipeline Sequence Product Volume of total pipeline [%]

PL1A 1 P1 20
PL1A 2 P2 30
PL1A 3 P3 20
PL1A 4 P1 30

PL1B 1 P3 25
PL1B 2 P1 25
PL1B 3 P2 25
PL1B 4 P3 25

PL2 1 P4 30
PL2 2 P2 20
PL2 3 P4 20
PL2 4 P2 30

PL3 1 P1 25
PL3 2 P2 25
PL3 3 P1 25
PL3 4 P2 25

PL4A 1 P1 25
PL4A 2 P4 25
PL4A 3 P2 25
PL4A 4 P4 25

PL4B 1 P2 30
PL4B 2 P1 20
PL4B 3 P3 30
PL4B 4 P4 20

PL5 1 P2 25
PL5 2 P1 25
PL5 3 P2 30
PL5 4 P1 20

PL6 1 P4 100

Master of Science Thesis S.J. Vlot

78 Additional case study data

D-1-2 Tank experiment

Tank size with respect to the base case [%]

T
ra

n
sm

ix
co

st
s

[$
x

10
00

]

80 85 90 95 100 105 110 115 120

2400

2300

2200

2100

2000

1900

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

Figure D-1: Transmix costs for different tank scenarios and planning cost structures

Tank size with respect to the base case [%]

O
p
ti
m

al
it
y

ga
p

(p
la

n
n
in

g)
[%

]

80 85 90 95 100 105 110 115 120

7

6

5

4

3

2

1

0

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

Figure D-2: Optimality gap for different tank scenarios and planning cost structures

S.J. Vlot Master of Science Thesis

D-1 Mesh-structure network 79

Tank size with respect to the base case [%]

C
om

p
u
ta

ti
on

ti
m

e
(s

ch
ed

u
li
n
g)

[s
]

80 85 90 95 100 105 110 115 120

45

40

35

30

25

20

15

10

5

0

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

Figure D-3: Computation time for different tank scenarios and scheduling cost structures

Master of Science Thesis S.J. Vlot

80 Additional case study data

D-1-3 Supply-demand experiment

Supply and demand with respect to the base case [%]

A
ct

u
al

p
u
m

p
in

g
co

st
s

[$
x

10
00

]

80 85 90 95 100 105 110 115 120

950

900

850

800

750

700

650

600

550

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

Figure D-4: Pumping cost for different supply-demand scenarios and planning cost structures

Supply and demand with respect to the base case [%]

D
em

an
d

vi
ol

at
io

n
[%

]

80 85 90 95 100 105 110 115 120

2.4

2

1.6

1.2

0.8

0.4

0

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

Figure D-5: Violations for different supply-demand scenarios and planning cost structures

S.J. Vlot Master of Science Thesis

D-1 Mesh-structure network 81

Supply and demand with respect to the base case [%]

A
ct

u
al

p
u
m

p
in

g
co

st
s

[$
x

10
00

]

80 85 90 95 100 105 110 115 120

950

900

850

800

750

700

650

600

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

Figure D-6: Pumping cost for different supply-demand scenarios and scheduling cost structures

Supply and demand with respect to the base case [%]

T
ra

n
sm

ix
co

st
s

[$
x

10
00

]

80 85 90 95 100 105 110 115 120

2600

2500

2400

2300

2200

2100

2000

1900

Pumping cost structure

A) No cost

B) Affine cost

C) Piecewise-affine cost

Figure D-7: Transmix cost for different supply-demand scenarios and scheduling cost structures

Master of Science Thesis S.J. Vlot

82 Additional case study data

D-2 Tree-structure network

Table D-4: Pumping cost parameters

Pipeline l Segment m Cpump,marg
l,m [$/kbbl] Cpump,stat

l,m [$/day]

PL1 1 28.25 -1417.90
PL1 2 30.93 -1628.89
PL1 3 33.72 -1859.68
PL1 4 36.64 -2111.15

PL2 1 28.25 -1417.90
PL2 2 30.93 -1628.89
PL2 3 33.72 -1859.68
PL2 4 36.64 -2111.15

PL3A 1 142.27 -14365.29
PL3A 2 156.00 -16526.27
PL3A 3 170.34 -18893.01
PL3A 4 185.31 -21474.80

PL3B 1 17.49 -583.14
PL3B 2 19.13 -669.31
PL3B 3 20.84 -763.48
PL3B 4 22.62 -866.00

PL3C 1 8.74 -291.57
PL3C 2 9.56 -334.65
PL3C 3 10.42 -381.74
PL3C 4 11.31 -433.00

PL4 1 8.74 -291.57
PL4 2 9.56 -334.65
PL4 3 10.42 -381.74
PL4 4 11.31 -433.00

S.J. Vlot Master of Science Thesis

D-3 Transmix experiment 83

D-3 Transmix experiment

Tank size with respect to base case [%]

O
p
ti
m

al
it
y

ga
p

(p
la

n
n
in

g)
[%

]

80 85 90 95 100 105 110 115 120

8

7

6

5

4

3

2

1

0

Transmix formulation

A) Original formulation

B) Alternative formulation

Figure D-8: Optimality gap compared to the original formulation (mesh-structure network)

Tank size with respect to base case [%]

T
ra

n
sm

ix
co

st
s

[$
x

10
00

]

80 85 90 95 100 105 110 115 120

2400

2200

2000

1800

1600

1400

1200

Transmix formulation

A) Original formulation

B) Alternative formulation

Figure D-9: Transmix costs compared to the original formulation (mesh-structure network)

Master of Science Thesis S.J. Vlot

84 Additional case study data

S.J. Vlot Master of Science Thesis

Bibliography

Association of Oil Pipe Lines and American Petroleum Institute. U.S. Liquids Pipeline Usage
& Mileage Report, 2015.

N. Beldiceanu and M. Carlsson. A new multi-resource cumulatives constraint with negative
heights. In International Conference on Principles and Practice of Constraint Programming,
pages 63–79. Springer, 2002.

R. Bixby and E. Rothberg. Progress in computational mixed integer programming - a look
back from the other side of the tipping point. Annals of Operations Research, 149(1):37–41,
2007.

S. N. Boschetto, L. Magatão, W. M. Brondani, F. Neves-Jr, L. V. Arruda, A. P. Barbosa-
Póvoa, and S. Relvas. An operational scheduling model to product distribution through a
pipeline network. Industrial & Engineering Chemistry Research, 49(12):5661–5682, 2010.

D. C. Cafaro and J. Cerdá. Optimal scheduling of multiproduct pipeline systems using a
non-discrete MILP formulation. Computers & Chemical Engineering, 28(10):2053–2068,
2004.

D. C. Cafaro and J. Cerdá. Rigorous scheduling of mesh-structure refined petroleum pipeline
networks. Computers & Chemical Engineering, 38:185–203, 2012.

V. G. Cafaro, D. C. Cafaro, C. A. Méndez, and J. Cerdá. MINLP model for the detailed
scheduling of refined products pipelines with flow rate dependent pumping costs. Computers
& Chemical Engineering, 72:210–221, 2015.

C. F. Colebrook. Turbulent flow in pipes, with particular reference to the transition region
between the smooth and rough pipe laws. Journal of the Institution of Civil engineers, 12
(8):393–422, 1939.

R. J. Dakin. A tree-search algorithm for mixed integer programming problems. The Computer
Journal, 8(3):250–255, 1965.

C. D’Ambrosio, A. Lodi, S. Wiese, and C. Bragalli. Mathematical programming techniques
in water network optimization. European Journal of Operational Research, 243(3):774–788,
2015.

Master of Science Thesis S.J. Vlot

86 Bibliography

M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming, 36(3):307–339, 1986.

F. Glover. Future paths for integer programming and links to artificial intelligence. Computers
& Operations Research, 13(5):533–549, 1986.

I. E. Grossmann. Review of nonlinear mixed-integer and disjunctive programming techniques.
Optimization and Engineering, 3(3):227–252, 2002.

I. E. Grossmann. Challenges in the application of mathematical programming in the
enterprise-wide optimization of process industries. Theoretical Foundations of Chemical
Engineering, 48(5):555–573, 2014.

I. Harjunkoski, C. T. Maravelias, P. Bongers, P. M. Castro, S. Engell, I. E. Grossmann,
J. Hooker, C. Méndez, G. Sand, and J. Wassick. Scope for industrial applications of
production scheduling models and solution methods. Computers & Chemical Engineering,
62:161–193, 2014.

R. Haupt. A survey of priority rule-based scheduling. Operations-Research-Spektrum, 11(1):
3–16, 1989.

J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.

J. Hooker. Logic-Based Methods for Optimization: Combining Optimization and Constraint
Satisfaction. John Wiley & Sons, 2002.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

E. Kondili, C. Pantelides, and R. Sargent. A general algorithm for short-term scheduling
of batch operations - I. MILP formulation. Computers & Chemical Engineering, 17(2):
211–227, 1993.

A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.
Econometrica: Journal of the Econometric Society, pages 497–520, 1960.

O. Levenspiel. Chemical Reaction Engineering. Wiley, 1999.

T. M. T. Lopes, A. A. Ciré, C. C. de Souza, and A. V. Moura. A hybrid model for a
multiproduct pipeline planning and scheduling problem. Constraints, 15(2):151–189, 2010.

I. J. Lustig and J.-F. Puget. Program does not equal program: Constraint programming and
its relationship to mathematical programming. Interfaces, 31(6):29–53, 2001.

C. T. Maravelias. Mixed-time representation for state-task network models. Industrial &
Engineering Chemistry Research, 44(24):9129–9145, 2005.

C. T. Maravelias. A decomposition framework for the scheduling of single-and multi-stage
processes. Computers & Chemical Engineering, 30(3):407–420, 2006.

C. T. Maravelias and C. Sung. Integration of production planning and scheduling: Overview,
challenges and opportunities. Computers & Chemical Engineering, 33(12):1919–1930, 2009.

S.J. Vlot Master of Science Thesis

87

C. A. Méndez, J. Cerdá, I. E. Grossmann, I. Harjunkoski, and M. Fahl. State-of-the-art
review of optimization methods for short-term scheduling of batch processes. Computers
& Chemical Engineering, 30(6):913–946, 2006.

S. S. Panwalkar and W. Iskander. A survey of scheduling rules. Operations Research, 25(1):
45–61, 1977.

R. Rejowski and J. M. Pinto. Scheduling of a multiproduct pipeline system. Computers &
Chemical Engineering, 27(8):1229–1246, 2003.

R. Rejowski and J. M. Pinto. Efficient MILP formulations and valid cuts for multiproduct
pipeline scheduling. Computers & Chemical Engineering, 28(8):1511–1528, 2004.

R. Rejowski and J. M. Pinto. A novel continuous time representation for the scheduling of
pipeline systems with pumping yield rate constraints. Computers & Chemical Engineering,
32(4):1042–1066, 2008.

R. Z. Ríos-Mercado and C. Borraz-Sánchez. Optimization problems in natural gas trans-
portation systems: A state-of-the-art review. Applied Energy, 147:536–555, 2015.

N. Shah, C. Pantelides, and R. Sargent. A general algorithm for short-term scheduling of
batch operations - I. computational issues. Computers & Chemical Engineering, 17(2):
229–244, 1993.

A. Sundaramoorthy and C. T. Maravelias. Computational study of network-based mixed-
integer programming approaches for chemical production scheduling. Industrial & Engi-
neering Chemistry Research, 50(9):5023–5040, 2011.

P. K. Swamee and A. K. Jain. Explicit equations for pipe-flow problems. Journal of the
Hydraulics Division, 102(5):657–664, 1976.

U.S. Department of Energy. U.S. Gasoline and Diesel Retail Prices. https://www.eia.gov/
dnav/pet/pet_pri_gnd_dcus_nus_a.htm, 2015. Retrieved January 2, 2017.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming, volume 5. MIT Press
Cambridge, 1989.

F. M. White. Fluid Mechanics. McGraw-Hill, 2011.

S. Zhang and Q. Xu. Refinery continuous-time crude scheduling with consideration of long-
distance pipeline transportation. Computers & Chemical Engineering, 75:74–94, 2015.

Master of Science Thesis S.J. Vlot

https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_a.htm
https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_a.htm

88 Bibliography

S.J. Vlot Master of Science Thesis

Glossary

List of Acronyms

LP Linear Programming

MILP Mixed Integer Linear Programming

MINLP Mixed Integer Non-Linear Programming

NLP Non-Linear Programming

List of Symbols

All sets, parameters, and variables are described in Chapter 3:

• General sets and parameters are described in Section 3-3
• Planning-related sets, parameters, and variables are described in Section 3-4
• Scheduling-related sets, parameters, and variables are described in Section 3-5

Master of Science Thesis S.J. Vlot

90 Glossary

S.J. Vlot Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Pipelines in oil supply chains
	Problem statement
	Research questions
	Thesis outline
	Contributions

	Batch scheduling techniques
	Introduction
	Optimization frameworks
	Solution techniques
	Problem representations
	Current pipeline scheduling methods
	Summary

	A novel pipeline scheduling method
	Introduction
	General methodology
	Representing pipeline networks
	Planning phase
	Scheduling phase
	Summary

	Case studies
	Introduction
	Mesh-structure network
	Tree-structure network
	Transmix experiment
	Summary

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Appendices
	Mixed Integer Non-Linear Programming
	Transmix estimation
	The dispersion model
	Transmix cost estimation

	Pumping cost estimation
	Pipeline flow
	Head losses
	Pumping power
	Piecewise-affine approximation of pumping costs

	Additional case study data
	Mesh-structure network
	Tree-structure network
	Transmix experiment

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

