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Samenvatting

Dit proefschrift is voortgekomen uit een aantal rapporten,
geschreven in de jaren 1966-1970 . knkele ervan zijn geschreven
in de Verenigde Staten, samen met Dr. T.T.Soong van de staats-

universiteit van New York te Buffalo.

Behandeld worden lineaire stochastische systemen: Lineaire
toestandsvergelijjkingen en lineaire schattingen van hun oplossingen.

Het homogene deel van de toestandsvergelijjkingen is deterministisch,
het niet-homogene deel is een N-dimensionaal Wiener-Lévy proces.
Ook de beginvoorwaarden zijn stochastisch. Zoals gebruikelijjk zijn de
verdere vooronderstellingen dusdanig dat het systeem beschreven kan
worden door middel van een lineaire integraalvergelijking in een
Hilbert ruimte.

De schatting van de oplossing wordt behandeld in hoofdstuk 6, waar

vooral aandacht wordt geschonken aan het Kalman-Bucy filter.

Uitgangspunt is dat de toestandsvergeljjkingen een wiskundig model
zijn van een technologisch proces. Daarom dienen de resultaten geldig
te zijn met betrekking tot de trajectorién in het model, zie hoofdstuk 1.
Dit in tegenstelling tot de resultaten in hoofdstuk 6, omdat de

schattingsmethoden niet de weerspiegeling zijn van enig fysisch gebeuren.

De meest voor de hand liggende en tevens eenvoudigste calculus om
mee te werken is voor ons doel de calculus in tweede gemiddelde. Deze
wordt uitvoerig behandeld in hoofdstuk 2, en wel voor niet-stationaire
stochastische processen. Harmonische analyse wordt in het geheel niet
toegepast. De meeste resultaten in dit hoofdstuk zijn bekend. Men vindt
ze in technische publicaties, veelal zonder bewijs, of het zijn bijzondere
gevallen van algemenere stellingen uit de functionaal analyse. De
behoefte aan hoofdstuk 2 is ontstaan, omdat er geen samenhangende en
voor ons doel volledige behandeling van deze calculus bestaat. Bovendien
ontstond de gelegenheid om van elk resultaat zijjn geldigheid aan te

tonen met betrekking tot de trajectorié&n.
In hoofdstuk 6, paragraaf 6.2, wordt deze calculus nog enigszins

uitgebreid, zonder echter te letten op de trajectorién, omdat zoals

we gezien hebben, bij schattingsproblemen de noodzaak daartoe ontbreekt.




Omdat Wiener-Lévy processen niet "fysisch realiseerbaar" zin,
worden deze processen vervangen door perturbaties die wel gerealiseerd
kunnen worden. Deze verstoringen worden onderzocht in hoofdstuk 4.
Aangetoond wordt dat differentieerbare perturbaties willekeurig dicht

in de buurt kunnen komen van de gegeven Wiener-Lévy processen.

In hoofdstuk 5 wordt het effect onderzocht van deze verstoringen
op de oplossing van het niet gestoorde systeem. Het blijkt dat de
oplossingen van de gestoorde systemen willekeurig dicht in de buurt
kunnen komen van de oplossing van het niet gestoorde systeem. Dit
betekent dat het ongestoorde systeem een betrouwbaar mathematisch
model kan z{in voor een of ander technologisch proces, ondanks de
aanwezigheid van de Wiener-Lévy processen. Dit resultaat is een
speciaal geval van een algemenere stelling van Wong en Zakai. Deze
stelling, waarin gebruik wordt gemaakt van Ito calculus,is voor ons

doel echter onnodig ingewikkeld.

In hoofdstuk 6 wordt onderzocht wat de invloed is van deze
verstoringen op het Kalman-Bucy filter. Het blijkt dat de relaties
en vergelijkingen in het filter geheel komen te vervallen. Het effect
is dus niet zodanig dat zekere grootheden in de filtervergelijkingen
worden geperturbeerd. Om dit in te zien is een kritische analyse
van de rekenwijjze van Kalman en Bucy een vereiste. Het blijkt dat hun
integraalvoorstelling van de schatting het centrale punt is, zie
paragraaf 6.2. De geldigheid hiervan steunt op het Wiener-Lévy proces
in de observaties, waaraan bovendien nog een extra voorwaarde moet
worden opgelegd. Omdat de observatie-apparatuur zeker geen zuivere
Wiener-Lévy processen zal voortbrengen is het verstoren van deze
processen in het model alleszins zinvol. In de gestoorde modellen
blijkt de geldigheid van de integraalvoorstelling te vervallen, en
daarmee het gehele rekenschema van Kalman en Bucy. Zou men desondanks
toch een integraalvoorstelling voor de schatting invoeren, dan nog
zou er van de filtervergeljjkingen vrijwel niets overbljjven. Niettemin
blijken de schattingen van Kalman en Bucy in zekeren zin bestand tegen
de perturbaties, evenals vele andere schattingen, zoals die van
Wiener bijvoorbeeld. Het is dus toch zinvol om te werken met het niet

gestoorde systeem en met de efficiente rekenwijze van Kalman en Bucy.
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1 Introduction

l.1. Motivation of the subject.

Mathematical models of technological processes may contain constants
and functions, measured empirically. Values obtained in this way are
data with some statistical meaning and are not exact in deterministic
sense. Apart from randomness of this type, physical constants and
functions are often stochastic in an intrinsic sense as a consequence
of uncontrollable influences, present all over in nature. Hence in
order to be meaningful, the results derived from deterministic mathematical
models should possess a certain stability with respect to small
perturbations of the experimentally measured data. The study of
stability of this kind is part of the study of deterministic models.

In order to obtain more adequate descriptions of technological or
physical processes, also stochastic models are taken into consideration.
Strictly speaking, nearly all deterministic models ought to be replaced
by stochastic models. However, with regard to the mathematical
difficulties that might arise, the application of stochastic models
is usually confined to those systems where the random fluctuations
have an appriciable impact on the system behaviour. A well known
stochastic model is that, used in statistical mechanics. Here
randomness is introduced via the stochastic initial conditions of
the equations of motion. From probabilistic point of view this model
is quite simple, as it is based on a finite number of random variables
only. Models in which the degree of randomness is infinite are of
more interest to probability theoretical investigations.

Important models of this kind are those, containing white noise,
or processes related to it. White noise is a purely mathematical
concept. It is the generalized derivative of the Wiener-Lévy process,
a mathematical idealization of the phenomenon of Brownian motion.
Brownian motion is the origin of a large class of stochastic processes
in physics. The most significant property of the Wiener-Lévy process
is the stochastic independence of its increments. To a certain extend

this property reflects reasonably what one would intuitively expect




of a model of the position af a particle in Brownian movement.
However, not all properties of the Wiener-Lévy process turn out

to be realistically related to its physical counterpart. The
assumption of the independence of the increments of the Wiener-Lévy
process entails that its trajectories, although continuous in time,
are not differentiable and not of bounded variation on any interval
with probability 1 . Since a stochastic model of a technological
system should be seen as a probability space of which each elementary
event represents a possible realization of the technological system
in investigation, the mathematical models containing Wiener-Lévy
processes suffer from lack of correspondence with realty. This is

one of the reasons why other mathematical idealizations of Brownian
movement have been proposed. One of them is the Ornstein-Uhlenbeck
process. It is the solution of a linear system, driven by white noise.
However, many of the objections made against the Wiener-Lévy process

also apply with respect to this process.

Notwithstanding, in mathematical models of systems, influenced by
Brownian movement, the Wiener-Lévy processes are widely used. There
is not much freedom in adapting random functions to Brownian motion.
And Wiener-Lévy processes often give rise to tractable computations,
owing to their peculiar stochastic structure. Moreover, the statistical
results established in models containing white noise, correspond
quite often satisfactorily to engineering practice. So it is worthwhile
to investigate when and why it still might make sense to apply Wiener-

Lévy processes in mathematical models.

Let be assumed that some information about certain random processes
is obtained by means of measurements, in order to design a stochastic
model. Then, as in deterministic models, the results derived should
be stable with respect to perturbations of the measured data, in
order to have some practical meaning. However, in particular when
perturbing the trajectories of Wiener-Lévy processes, the whole
structure of stochastic interdependences is mutilated and this may
have fundamental consequences. On the other hand, because of the poor
behaviour of the trajectories of Wiener-Lévy processes, essentially
their perturbations might have a realistic meaning, as they may be

smooth functions. When perturbing Wiener-Lévy processes, especially
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the smooth perturbations are significantly related to the physical
phenomenon of Brownian motion. The increments of the smoothed Wiener-
Lévy processes are "nearly" stochastically independent. They seem to

be satisfactory as a model of Brownian motion in all respects.

In order to trace whether a result is stable with respect to
perturbations of the involved Wiener-Lévy processes, the following
procedure is followed. Apart from investigating the original model,

a sequence of models is considered, each model containing a perturbation
of the Wiener-Lévy processes. The resulting sequences of perturbations
are assumed to tend to the original Wiener-Lévy processes. If it can

be shown that the limit of a sequence of results, obtained in the
sequence of perturbed models, exists and coincides with the corresponding
result in the original, non-perturbed model, the stability of this

result is established. As there are smoothly perturbed systems
arbitrarily close to the original system, a stable result has a

realistic meaning. If the non-perturbed model is easier to treat

than its smoothed versions, it makes sense to use it, provided that

only the stable results are taken into consideration.

Important stochastic models are systems of stochastic differential or
integral equations. Frequently used are Ito equations, ordinary
non-linear integral equations, containing Wiener-Lévy processes. In
order to obtain unique solutions, Ito introduced a special type of
calculus. Here the stochastic integrals exist as limits of Riemann-
Stieltjes sums, where the function values are chosen at the lower
vertices of the sub-intervals of the partitions of the domain of
integration. In this context, sequences of arbitrary Riemann-Stieltjes
sums do not converge in general. The Ito solutions have nice statistical
properties since they are Markov processes. Originally, Ito studied
a class of Markov processes which could be described by the above
equations, later, the equations were used in engineering sciences
as models of technological processes. However, in 1965 Wong and
Zakai [31 ]showed that the solutions are not stable in general in
the above defined sense. Thus, without more, Ito equations are in
general not appropriate as models of technological processes. But
it follows also from the theorem of Wong and Zakai that in the special




case of linear differential equations whose coefficients are
deterministic functions and whose inhomogeneous parts are white
noise processes, the solutions obey the above stability principle
properly. However, to systems of this kind there is no need for the
involved calculus of Ito. They may easier be solved by means of more
elementary methods. Then also the stability of the solutions is
easily established without using the theorem of Wong and Zakai.

The above sketched way of perturbing has formerly been applied
in certain approaches to white noise processes, looked upon as

generalized functions, see for instance Urbanik [29 ] .

In accordance with a previous remark, stochastic differential
equations as models of technological processes should be considered
as probability spaces of which the elementary events are ordinary
differential equations, each of them containing one of the realizations
of the random elements involved. They should essentially be solved
in sample calculus. Results obtained by means of other techniques,
as calculus in q.m. for instance, are to be shown to be identical

to the corresponding results derived by means of sample calculus.

Of great importance to practical purposes is the estimation
of the random variables of stochastic processes. Roughly speaking,
until about 1959 the theory of estimation of stochastic processes
was confined to stationary processes. Interesting theoriés, due
- among others - to Kolmogorov and Wiener, gave rise to ingenious

solutions in closed form, see [}2] and [6]1‘01‘ instance.

Some 11 years ago, presumably incited by the demands of space
navigation, Kalman and Bucy designed a recursive scheme for
determining estimates, also applicable to non-stationary processes.
They exploited the new possibilities opened by the development of
digital computers and the accompanying adaptation of numerical
methods. Their first publications on this subject, see [11 J ’

el




gave rise to an endless stream of engineering literature, "receiving
its impetus from the aerospace dollar" according to Jazwinski, [10 ] .
In the so-called Kalman-Bucy filter, the state system is linear. Its
homogeneous part is deterministic, its inhomogeneous part is a white
noise process and also the initial conditions are random. At any
instant, the observation is a linear function of the state and a

new white noise process is added to it. The succes of the Kalman-Bucy
filter depends entirely on an extra condition, imposed on this latter
white noise process. However, according to previous remarks, the
observation noise, generated in the observation device, should be
modeled as a smooth perturbation of a white noise process. And now

it is of interest to investigate the effect of smoothing the white
noise processes, figuring in the Kalman-Bucy filter. As thus in
particular also the observation noisé is smoothed, the whole system
of equations and relations in the Kalman-Bucy filter breaks down.

And hence the effect of smoothing the noise is not at all the perturbing
of some matrices, figuring in the filter. Still it will be possible
to establish - to a certain extend - the stability of the Kalman-Bucy
estimate, and more general the stability of the estimates of a class,
comprising interpolated and extrapolated values, both of Kalman-Bucy
type and of the type of Wiener and Kolmogorov.

As estimation is a purely mathematical concept, and not the
counterpart of some physical phenomenon, there is no need for using
sample calculus in this context. All results here are established

by means of calculus in q.m.

Non-linear stochastic differential equations and filters need an
entirely different approach. They are not discussed here. In this
thesis all methods are related to Hilbert spaces.

1.2, Motivation of the presentation.

This thesis is a compilation of a number of reports, written by
the author during the years 1966-1970 , as a staff member of the
department of mathematics of the university of technology at Delft,

The Netherlands. Some of them are written in the U.S. in collaboration




with Dr. T. T. Soong of the state university of New York at Buffalo,
see [22- 27 ].

The tutorial flavour, present in the reports, is not faded out in
this thesis. As much as possible, the level of abstraction is adapted
to the nature of the subject. Hence the calculus used is simply
calculus in q.m., accompanied by sample calculus if necessary in view
of the nature of the mathematical model. Many of the topics included
- especially in the first chapters - are well known, and the author
has gratefully consulted the references cited in this text. However,
for lack of a coherent, well-organized source of references, nearly
all necessary mathematical tools - whether or not well-known - are
included in full detail, hopefully for the benefit of an easier
introduction also for those readers who are not an expert in the field.
Not included are those definitions and theorems which may be found
in the usual introductions to probability theory and treatises on

ordinary differential equations.

The extensive literature on the subject is mainly written for
engineers. It contains lots of interesting and important examples
and applications. In this presentation, no applications are included.
There has only been strived for a hopefully correct and complete

mathematical exposition.




2 Calculus in g.m.

2.1. Hilbert spaces of second order random variables,

The results of this section may be found in [15] or [18]
for instance. Let be given the probability space {_O. ,-4 ’ P}
with the set of real valued second order random variables or
A _peasurable functions E(w), co € L) , such that

E‘§2- fnéz(w)dp < O .

This set is splitted up into equivalence classes by means of

the equivalence relation

T~ iff E =1 a.s.
As usual, the elements of an equivalence class are identified
with some representative of that class. Identity is understood
to be "equality a.s." . The addition "a.s." will often be
omitted.
The class of representatives is denoted by
H(A) or simply H
if no confusion may arise. The elements of H are denoted by
A(w), B(w),.., E(w), N («),.. with or without sub- or
superscripts, or simply by Greek characters « ,ﬁ geey E, M 4.
as conventionally the dependence on ¢@ is suppressed in the
notation. Since all degenerate random variables have finite
second moments, the real numbers may be seen as elements of H.
The real numbers are denoted by a,b,..yX,yy.. with or without
sub- or superscripts, or by their numerical value.

It follows from measure properties and the inequality of Schwarz
' 2 2
(EEM)° S ESEY

that H is a linear vector space over the real numbers. For,
if €€ H then ct & H since c¥ is A -measurable and

E’(c’g)2 = c2E§2<c/_> .

and if §€ H, ") € H, then £+ ¥ € H since E+) is

A -measurable and




B(§+ )2 -8+ 2m¢n + 802 B5%+ 2VEEAVEY? w2

- (VEE?2 + VEDD)ken .

The real number system may be seen as a l-dimensional linear
subspace of H .

H is a real inner product space with inner product

(§,1) =E¢7

since
2's 2
EE° 2 o, E" =0 iff g-o a.8.,

E¢n =EMNE,
EcEm =cEgY and
E(E,+§,)M =B§,7M + B0

E and 7 are called orthogonal iff E§97 = 0, ELY.

Necessarily H is a normed linear space with the norm
&l -veg?,

endowed with the properties
(€Il 20, W\ell =0 iff & =0 a.s.,
Ho¥ll = [of- SN sne
feg «mls el + (00 .

In H a metric is induced by the distance || § -W | . The
resulting strong topology - will be the
only topology of H used. Therefore the addition "stromg(ly)"
will often be omitted, also in the notation. Or it will be
replaced by "in q.m.", i.e. "in quadratic mean".

We recall that H is a complete space: If {En’ n=1,2,.. E
is a Cauchy sequence in H , it has a (unique) limit in H. I.e.
ir ¢, - §m“ — 0 as myn—> ¢° , then there is a unique
element §e& H such that € - §n||—> 0 asm—>c” , So
H is a Hilbert space. In general, H is not separable.

We shall need the following properties:

(2:2.1) |Egn|< €l N (Inequality of Schwarz).




(2,1.2) H is a complete space. And if En—’E as n — co
then 5l N8 o ostmce |8l - NE[]< (% - b
(2.1.3) Continuity of the inner product: If En — £ and
Vzm—) 7) as n,m —> ¢» , then

EE My~ ESY

since \Efnnm-EgﬂI- 1E(§n-g)nm+E§(ly)m'v))'
<)% - tallcNMall v UEU-[(Wa - MY = 0esmmoes .

A

(2.2:4) Convergence in q.m. criterion: {En, n=1,2,.. } is
convergent if and only if E En Em converges to a finite number
as n,m—> ¢ , For,

Ly Af EEnEm converges as n,m—> co ,
ll&'n- E,,IIZ-EEi-w?nE,,»«n?i—w as n,m->co ,

Thus {En' n=1,2,.. } is a Cauchy sequence with limit in H
since H is complete.

ii) En—-»% entails Ef ¢ —> “‘gn2 by virtue of (2.1.3).

2.2, Conditional and mathematical expectation.

Given {.Q,.ﬂ, Pl and E(A), let BecH veao-field
and let E€ H(J). Then the conditional expectationa

£
of E with respect to B is a B-measurable function of cv € L2
such that

fB £ ap - fBEdP for all BE B .

According to the theorem of Radon-Nikodym, E‘ﬁg exists and
is a.s8. unique. The following properties may be found in [15]
or [18} for instance.

EE:’3§=EE.
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If M is ﬁ-measurable, EQ'Q- " and E'B'QE= V)Ezf 8le

If g(x) is a convex continuous real function of the real
variable x, -e”2<x< 0 , g(Ezg) < E‘zg(g) a.s. , see
also {20} . Therefore, as ]xl and x2 are continuous and convex,

|E’3§l < Ezl’gl and (EjalBl)2 < 528 |g(2 207 .

It follows that E‘Qg € H(A), as Bc A ang ||Eﬁg (ER R
since
(Eﬁg )2g (E"?)llé,|)2 < Is23 §2 a.s. and hence E(Ezg )2g EE$€2-E§2<W .
So E? is a mapping of H(up) into B(J).

The ﬁ—measurablc random variables of H(uo) constitute a
closed linear subspace H(B) < H(do) and so H(B) isa
Hilbert space. For,

ay + by is 7B -measurable if ‘Q and { are -Z-measurable,

and if {'Qn,n-l,2,..} is a Cauchy sequence of B -measurable
random variables in H(e#), it has an a.s. unique limit ne B(A).
As ‘Q is also the limit in probability of {an} , it is

ﬁ -measurable .

g8 is a linear operator with domain H(«#) and range H(B).
For, if E,M e H(A), EBaE + by) = a8B¢ 4 bEja}') € B(RB).
And as E'B‘Q =Y a.s. if NE€ H(B), H(B) is the range of E3,

E"3 is an idempotent operator, since E'Z(EBE) = E‘zf a.s.

E‘75 is a continuous (bounded) linear operator with “E‘aﬂ =1
as [|EPg e (1§ ema | £BEPe) - 18P0 .

gB
H(A),
(g £By) - eP(e 8B - m(eB¢ E‘BY)) = Eﬂz(gnﬁg) - E('Qm@;).

is self-adjoint . For, if £ and 7) are elements of

(2.2.1) E‘B is the orthogonal projector of H(ue) onto H(\B).
For, if % € H(A) and if 1) € H(B), then EB7 =7 a.s. and

B¢ - 3)m - 5¢n - ENE® - Bgn - BEE®Y - g - EEY - o,
i.e. 1 -Eﬁg 1Y) forall T) € HAB).

2.2,2 If § >& as n>co, then Ezfné E‘Bg since

[ePe, -e®sl\ < |5, - &) .




gl 2.3

Let us consider the degenerate U-field /5 = {¢ ,ﬂ} .
Clearly
Efg =EE a.s.,
and so the ordinary mathematical expectation is obtained as a
special case of the conditional expectation. It follows that Ef
is the orthogonal projector of H(A) onto H(Z), the l-dimensional
subspace of degenerate random variables or constants. And each g€ H

may be a.s. uniquely decomposed as
E-x+8', x=Ef , ' = €E- x.
Then ' 1L x, and %' is centered, i.e. Ef' = 0.
Let {&,,n=1,2,..} C H, Bf, =X emd E, =x + ¢
Then the following proposition is a special case of (2.2.2). It may

also be proved directly, since
\EE\eE\Els’\/ﬂsz - el .

(2.2.3) §n—> ¥ as n—>2? implies Egn—; EE . And so
En-—> E as n—> o2 if and only if x —> x and E'n—’ g'.

2.3, Curves in H. Gaussian processes. Trajectories.

We shall need a calculus in relation to second order random
functions or processes %(t), t€& Y_O,T-]. These functions are
mappings of the interval [ 0,T] of the real line into H. Thus
they are characterized by

E§2(t)<m » or equivalently | E(t) [<en , t e {O,T-_].

As only the strong topology of H will be used, the greater part
of the theory will consist of calculus in gq.m. Frequently used
are the mathematical expectation or mean

Eg(t), te(o,1],

of &(t) and the autocorrelation or covariance functions and

crosscorrelation functions
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EE(s) €(t) ana E(s)N(t), (s,t) € [o0,1%
According to (2.1.1) these ordinary real valued functions are

defined and finite on the indicated domains. The results of this

section mey be found in {157 , [ 18] , ana [ 2 ] .

A real valued process £(t), t € [0,7], is Gaussian, if
all finite systems {E(ti), t,e [0,1] , 1-1,2,..,n} have
a Gaussian distribution. (Real valued) Gaussian processes are
second order processes: If the above &(t) is A -measurable
at each t €[0,T] , then {E(t), t € [0,1]} = u(A).
1t EE(t), t€[0,7], and E§(s)€(t), (s,t) € [0,7]? are
given, all finite dimensional distributions may be determined.
We recalls
(2.3.1) Given a Gaussian family in H, the closure G in H
of the linear subspace, generated by that family, is Gaussian.
In other words, linear combinations of elements of a Gaussian
family are Gaussian, and limits ﬂ

%323. ofﬁnl?qunges of olgi

of a Gaussian family are Gaussian.,) The conditional expectat{on
of an element £ of G with respect to the O -field generated

by the elements of a subset G' of G , belongs also to €.
It is a.s, identical to the orthogonal projoct%f E on the
closed linear subspace of G, generated by &'. Orthogonality
in G is equivalent to stochastic independence.

Sofar, we have not considered the trajectories of stochastic

processes. Given a stochastic process E(t), t e [0,'1‘]. by means
of its (consistent and symmetric) finite dimensional distributions

we shall need a representation

E(w,t), (w,t)e€ L x [O'T]

of this process. Here L) is the pointset of a suitable probability
apnce{_ﬂ,.ﬂ ,P} . The o'-field 4 is always understood to be

complete with respect to P. The sections at t of g(w,t)
are the random variables of £ (t).

There is an infinity of representations of the process g (t)~

For, there is an infinity of probability spaces, suitable for
representation purposes. And, given the above {.Q , A ,P} and

ments , ,

P

3

2.3
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€(w,t), any function %'(w,t), (w,t) € QL x[_O,i‘J , such
that at fixed t € [o,r]

'g'(w,t) = E(w,t) a.8.,

is also a representation of E(t), t€ [O,T}. With the above
property, the representations £(w,t) and g'(u;,t) are
called equivalent.

In order to obtain the trajectories -sections atcww -, as well
as to obtain measurable and unique results if the usual operations
of analysis, based on the operations "inf" and "sup", are performed
on non-denumerable sets of random variables of £ (t), the
representations should be separable in the sense of Doob.

According to Doob, to each representation there is a separable
representation equivalent to it.

A representation is called sample continuous if its sections
at <o are continuous functions of ¢ with probability 1. Sample
continuous representations are separable. If one of the separable
representations of a process is sample continuous, all the
separable representations are sample continuous, according to a
criterion of Neveu.

From now on "stochastic process or function" will stand for
any separable representation of that process. "Sample continuous
process" will stand for any sample continuous representation of
a process of which the separable representations are sample
continuous,

The trajectories of a sample continuous process are defined as
the sections at ¢ in one of its sample continuous representations.
These trajectories may be seen as the elementary events of the
probability space, of which the pointset is the Banach space
Cc [O,Tﬂ, i.e. the normed linear space of real valued continuous
functions on [O,T] with the uniform norm, and where the O -field
S is generated by the open sets of C[O,T]. The unique probability
on S is induced by the sample continuous process., We have shown:

(2.3.2) If a process is sample continuous, its trajectories are
a.8, uniquely determined as the sections at <& in any of its

separable representations.
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2.4. Continuity in g.m.

We recall the conventions of section 2,1. In particular, the
addition "in q.m." will often be omitted in appropriate situations.
The greater part of the results of this section may be found in [15] .

Let E(t) be a mapping of [O,T] into H. The values s and
t below are always assumed to belong to LO,T] .

(2.4.1) Definition: E&(t) is continuous in q.m. at t iff
E(s) — E(t) s d.e. " E(s) - E(t) |— 0 as s — t.
E(t) is continuous on (O,T] iff it is continuous at each tE[O,T] .

{(2:4.2) 1T E(t) is continuous in q.m. on [O,T] -

i) ” £(t) " is a continuous real function on [0,'1‘] by
virtue of (2.1.2).
ii]) E-73 E(t) is continuous in q.m. on [O,T] by virtue

of (2.2,2), and in particular
iii) EE(t) is a continuous real function on [O,T) .

iv) Continuity in q.m. is not equivalent to sample continuity.
(27453 BNTL. g(t) and ’Y)\t) are continuous mappings of [O,T]
into H,

ak(t) + b (t)

is continuous in q.m. on [O,Tl.

(2.4.4) If E(t) is a continuous mapping of [o,m] into H
and if f(t) is a continuous real valued function, then
£(t) £(t)

is continuous in gq.m. on ‘.O,T] , 8ince

| £t g(o) - 50 EC0) ]| & |2e)) - )| o) - E(w)]] + [£(o)-08)] < || ECOI[-
(2.4.5) 1If {gn(t), n-1,2,..} is a sequence of continuous
functions, converging in g.m. to E(t) as n-—»co ,uniformly
in t € [O,TJ , then E\t) is continuous in gq.m. on [0,'1‘]. For,
|| 6te) - E(0)]| £ JECo) - E (o) ||+ |[EL(8) - E (o) + |6 t)- ECR)| -

Then the functions below are also continuous and
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ER¢ (t) - EP E(t) uniformly on 10,T) by virtue of (2.2.2),
and in particular
Eg (t) > EE(t) uniformly on [0,1].

(2.4.6) Continuity in q.m. criterion: ¥£(t) is continuous at ¢!
if and only if E£(s)E(t) is continuous at (t', t'), and

E(t) is cont:muous on [0, ’I‘] if and only if E E(s) €(t) is
continuous on LO T] , on account of (2.1.3) and (2.1.4).

(2.4.7) If &(t) is continuous in g.m. on [O,T], it is
uniformly continuous in g.m. on [ 0,T].

Proof: Along the same lines as in real analysis. Or with the
aid of the covariance function: As the real valued function
E E(s) %(t) is continuous on {0,’1‘]2, it is uniformly continuous
on Y_O,T]Z. Therefore, given £ > O, there is a & > 0O such that
|EE(s) §(x) - EE(sNE() <€ as af(st),(s'yt)]< O .
It follows that
1€ (e)- E()I° 4 [EE()%-BE () € (1)] + |EE(D)-BE(s) E (1)< 26
if |s-t| <.

2.5. Differentiability in q.m.

The greater part of the results of this section may be found
in [15] .
(2.5.1) Definition: E(t) is differentiable in q.m. at t
iff there is a (necessarily a.s. unique) element M € H such that

_ﬂﬂ%ﬂ_tl_)‘rz Nite, ng_‘ﬂ);_ru)._TZ’l_,o as h—> 0.

t(t) is differentiable on [_o,'r] iff-it is differentiable at
each t € [O,T].
The derivative in g.m. is denoted by %—ﬂ- .

2542 1f £(t) dis differentiable in q.m. at t, then

i) * Egt) - l]ij-'lno ” §$t+h)h- E(t) “ on account of (2.1.2),

2:5
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ii) £(t) is continuous in q.m. at t, since s —> t entails
l€ee) - Bl = (-t [ Elol=Fl) |5 o 2ELL)). o,
(2.5.3) If E(t) is differentiable in g.m., then Eﬁl;’(t)

is differentiable in g.m. with derivative

4R Bd €(4)
it E E(t) - & dt
on account of (2.2.2). In particular, Eg(t) is differentiable and

3
LEg(e) - gt

As we put E ¥(t) = x(t) and E(t) = x(t) + €'(t),
£(t) is differentiable in g.m. if and only if x(t) and E'(t)
are differentiable. Then

a8(t) _ ax(t) , 48 (%)
at at dt

(2.5.4) If £(t) and ) (t) are differentiable in q.m.,
then a §(t) + »7)(t) is differentiable with derivative

o dggt} - bdﬂﬂt)

at dt
(2.5.5) If §(t) is differentiable in q.m. on [o,T], and if

f(t) is a differentiable real valued function of t €& [O,T], then
£(t) E(t) is differentiable in q.m. with derivative

a‘%{f(t)i(t)’s = -d%gl)-é(t) + £(t) d_ié‘l).

since || £(t+h) §(t+h)h- £(t) E(t) _ dﬁit) £(t) - £(t) dgdtgt) |&

el € Coom-c() € (wab) _ aL(8) gy}

£(t) € (t+h)-1(t) €(t) a € (t)
“ h % f(t) at “ =
nf(t+hh)-f§t) £(t+n) - d(il‘gtt) 5(‘)” + | 2o .Hi(tm);ﬂt) R dgditt) “

—>0 as h—>0 .

(2.5.6) Differentiability in q.m. criterion: Owing to (2ersd)y
E (t) is differentiable in g.m. at t if and only if

apa, EEMWE( _ EE(t+h) € (t+k)-E €(t+h) € (+)-E E(t) E(t+k)+E E() & (),
h k

Tk
= {g(yh)h- E(t)} {E(tﬂ()k- E(t)}

converges as h,k~»0 independently.
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The existence of the above limit is not equivalent to the
the existence of
32
asbs.Eg(B)§(8') at (513') -~ (t.t)-
3.5, If E(t) is differentiable in g.m. on [0,7],
2
2 P2) [2)
55 B E(s) §(t), 33 EE(s) &(t) and 5755 EE€(s)E(t)
exist and are finite on [O,TJZ. Then by virtue of (2.1.3) and
(2.5.6) the following relations hold:

2
plEle) (o) o 2 mE(s) E(1), Ediﬁ"’ d§£ﬁ'basétE§(s) §().

And if also Y)(t) is differentiable in q.m. on [O,T],
2
sy () - 2 gy, siEel B L O se((y).

28 ot

(2.5.8) If ¥(t) is differentiable in g.m. on [o,'r], it is
a constant element of H if and only if

a £(t)
at =0 on [O,T].
Proof: If the above relation holds, then on account of (2.5.7)
2 af(s 2
2 et (t) -8l ¢(5) =0 on [0,1)%
Therefore E £(s) §(t) is independent of s. Because of symmetry
it is also independent of t and so it is a constant on [0,'1']2,

say E £(s) €(t) = c. Then

|| € - £0) || = & {6(+) - £} {§(%) - §(0)} = c-cmore = 0
and hence £ (t) = £(0) atall té€ [o,1).

The "only if" part needs no comment.
2.5 If E(t) is differentiable in q.m. and Gaussian on
[O,T], g%ﬁ is also Gaussian on [0,‘1"} by virtue of (2.3.1).
For, the divided differences are Gaussian and so is the limit

in q.m. of a sequence of divided differences.

(2.5.10) Let the stochastic process g(t), t GLO,T], be sample
continuous and let £ (w,t), (w,t) € L2 X[O,T], where L) is
the pointset of a suitable probability space {-Q . u@, P} , be a
sample continuous representation of E(t). Let moreover be assumed
that almost all trajectories are ditferentiable on [O,T]. Then
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E(t) is called sample differentiable. At each t € EO,T]
ag(v) _ lim E(w, trot) - B (w,t)
at->o t

exists as an a.s. limit and is called sample derivative. It is
o4 _measurable as an a.s. limit of a sequence of A4 -measurable
divided differences.

Differentiability in gq.m. is not equivalent to sample
differentiability of a second order process. If the derivative
in gq.m. a8 well as the sample derivative of a second order process
exist , they are a.s.identical at fixed t as both may be seen as
limits in probability of one and the same sequence of divided

differences.

2,6. Riemann-Stieltjes integrals in gq.m. I.

In this section, the greater part of the theorems belongs to
Riemann-Stieltjes integration theory im Banach spaces with the
strong topology, see [ 9]. Then the methods are analogous to
those, used in real analysis, see [21].

From now on a ‘"partition p" of [Q,T] will be understood
to consist of
i) a set of subdivision points {tk' k-O,.,K} such that

0=t < t <. < tg=1,
ii) a set {ti, k-l,.,K} , such that t € [tk_l,tk] .

Alp) = kn%x x(tk-tk_l) is the mesh of p . Let {p}

hyey
denote the set of all partitions of [O,T] of the above type.
A partition q is a refinement of a partition p if each

subdivision point of p is also a subdivision point of q.

Let f(t) be a mapping of [O,T] into (-c0,co) and E(t)
a mapping of [U,T] into H. Set

K K
T - 2 E) {H(4-th )} e o () Elf(‘i){f(‘k)'E(“k-l)} :

2.6
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Clearly ¢ (p) and o '(p) are elements of H.

(2.6.1) Definition: Iff to all sequences {pn,n-1,2,.}c Sp}
such that A(pn)—> O as n—>co , the sequences

{G’\Pn)v n=1,2,, } and {0"(Pn)r n'losz}

are Cauchy sequences in H, necessarily with a unique limit, say
o and ot respectively,

then o is the Riemann-Stieltjes integral in q.m. jg E(t)af(t)

and ¢ ' is the Riemann-Stieltjes integral in q.m. Sg £(t)a E(t).

If f(t)=t on [O,T]. 0" is the Riemann integral in q.m. S: E(t)at.
By virtue of this definition, the integrals are independent of

the position of the points t\; € [tk-l’tk] in the partitions ) I
As elements of H, integrals in gq.m. have a finite norm.

(2.6.2) Let f(t) be a mapping of [O,T] into (-¢2,¢2)
and E(t) a mapping of [0,7] into H such that
either S:‘ E(t)af(t) or )g £(t)d € (t)

exists as a Riemann-Stieltjes integral in q.m.
i) Then both integrals exist and the following relation holds:

[re(nar(e) = [s)g(0)]7 - [7 s(e)ak(e).

14) Ir 56[0,'1‘], the integrals in q.m. in the right-hand sides
below exist if a@d—omIy 1P those in the left-hand side exist. &md’

Jo E(Baz(e) = f2E(t)ar(e) + [T E()as(s),

[T e()ak(s) = [2e(6)ak(e) + [5 £(t)ak(s).
ii3) 1r ‘Q(t) is a mapping of [0,'1'] into H such that also
S:Il(t)df(t) exists as a Riemann-Stieltjes integral in q.m.,

then the integrals below exist and satisfy

j:{s E(t) + bv)(t)}dr(t) =-a ﬁ,‘ §(t)dr(t) + hszq)(t)df(t),
Jgf(t)d{ag(t) + bQ(t)} - aj’f £(t)a E(t) + » sz(t)d)?(t).
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iv) If g(t) is a mapping of [O,T] into (-¢d,en ) such that
also j: E(t)dg(t) exists as a Riemann-Stieltjes integral in q.m.,
then the integrals below exist and satisfy

§s e(v)afar(s) + ve(0)} = a7 E()ar(s) + v {7 E(t)ag(s),

Sg {af(t) + bg(t)}d E(t) =2 _(3 £(t)a E(t) + h_[z e(t)ak (t).
v) S'or Ezg(t)df(t) and _{g f(t)dEzE(t) exist and satisfy

j: E$§(t)df(t)-Ezj:‘ E(t)as(t) and fz f(t)dEzg(t)-Eﬁjg £(t)a £ (t).
If we put x(t) = EE(t) and E(t) = x(t) + £'(t), then

Sz E(t)ar(t) and I: £(t)a £(t) exist if and only if

{7 x(t)ag(t) ana J2 g (v)as(s), or §2 e(t)ax(t) ama [} £(t)ag'(t)
exist. They satisfy
[Te(varce) = [3 x(t)ag(e) + [7 g (w)ar(s),

[T o)ak (1) = 2 s(v)ax(e) + [T r(v)ag'(e).
vi) If E(t) is Gaussian on [0,'1‘],
I: E(t)af(t) and f: £(t)ak(t), s€fo,1,

are Gaussian processes on Y_O,T] by virtue of (2.3.1), since the
above integrals are limits in q.m. of sequences of Gaussian
Riemann-Stieltjes sums.

vii) let be assumed that E(t) is sample continuous on [O,T]
and that £ (w,t), (w,t)€é £l x[0,T], where L1 is the pointset
of a suitable probability space {.Q ,o‘o ’ P} y is a sample continuous
representation of E(t). Then the trajectories are well defined,

see (2.3.2). If at almost all cw € L) the ordinary integral

T
go E(w,t)ar(t)
exists, then also the ordinary integral
i
o £()aE(w,t)

exists at almost all cv € SL , and reversed,by virtue of the
theorem on partial integration. The above integrals are called

2.6
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sample integrals. As they may be evaluated as a.s. limits of the
sequences
{U‘QPn)v n-1,2,.} and {d'(Pn)r n=1,2,.% ,
they are A -measurable.
As the above sequences are also Cauchy sequences in H, it
follows that the sample integrals are a.s. identical to the

corresponding integrals in q.m.

Proof of (2.6.2): The proofs of i - iv are analogous to the
proofs of the corresponding theorems of real analysis. It remains
to show v :

Let {pn, n-1,2,.} c {p} be such that A(p )—> 0 as n—> oo .

K
3 . T
B (z,) - 2 ECE(Y) {r(t) - 25 )Y .
As n-> eo , the left-hand side tends to Eﬁ[z £(t)ar(t)

by virtue of (2.2.2). Then necessarily also the right-hand side
is convergent as n->¢o . According to definition (2.6.1) its

limit in q.m. is _[z Ezf(t)df(t).

In the other statements of v , also statement iii is

used.

2.7« Riemann-Stieltjes integrals in q.m. II.

The greater part of this section consists of immediate
generalizations of results of real analysis. Covariance function
techniques may be found in lots of books, for instance in [19].

(2.7.1) If the mapping E(t) of [O,T] into H is continuous
in q.m. and if the mapping f(t) of [O,T] into (-wr,en)

is of bounded variation on [O,T] with total variation V,

then

{5 E(t)as(x)

exists as a Riemann-Stieltjes integral in q.m. and the assertions
of (2.6.2) are valid.

2.7
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Proof: Let {pnl be any sequence of partitions of [O,T]
such that A(pn) —> 0 as n->e¢n . Being continuous in q.m. on
the compact set [O,T'_], €(t) is uniformly continuous in q.m.
on [O,T], according to (2.4.7). So, given ¢ > 0, there is
a &> 0 such that [t,t'] G [o,T] and |t-t'|< &  imply
) E(t) - E(t')"( € .If n and m are sufficiently large
and if p is a refinement of both P, and Py v

flo(rg)- (o) [ £ [[a(py)-T ()| +||T(R)- (R ) £ €V + €.

The statement is shown by virtue of definition (2.6.1).

(257.2) Under the same conditions as in (2.7.1),

i) llfgg(t)df(t)llé MV as M= t"e”‘ig’T] ROIE
1) {2 et £ [T)E)far £ .

iii) f: E(t')at' is continuous in q.m. as a function of tE[O,T]

and continuously differentiable in q.m. with derivative

= (S g(enar - E(v)

iv)  If d—%—,&ﬂ is continuous in q.m. on [0,7], then ir t&{0,1],

[¢ 258 4o o E(y) - E£(0).

dt!'
Proof: i) Let {pn} be a sequence of partitions of [O,T]
such that A(pn) —-> 0 as n->cno , As

K
a(p,) = EE(Q)-{ () - £y )Y >
7 ) ékle Jece]] - \f(tk) - oy D|euv.

As n-—co , the left-hand side of the inequality tends to

” IS g(t)df(t) " , cfe (2.1.2), and the right-hand sides remain constant.

Concerning ii, “ E(t)" is a continuous real valued function
of te€ [O,T] according to (2.4.2). So both integrals exist.

K K
ool 2 B0, - 6Dl 2B (e - ben) & X 70 and

the above sums tend to the corresponding integrals as n —>e> .,

2.7
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Concerning iii,it is sufficient to establish the formula for
the derivative in q.m. Provided that (t,tm‘] c[o.ﬂ. and given
&> 0,

Jor g (enae - [Pe(enar

: -1 - JiH
3] IJEm s - el < |3) e n] -

it )hl is sufficiently small.

v gl

Concerning iv, on account of iii,

4 {jtﬁu'—)-dt’- E(t)} -dgd;ttl -%ﬂ-o.

dt o dt!'

1
Therefore, g -&t—l dt' - (t) is a constant element of H
o at’

according to (2.5.8). Putting t = O, this constant is seen to be
0 - E(0) and so

j:ig—("—'l at' - () = - €(0).

dt!

=y If §(t) and 'Vj(t) are continuous mappings of [O,T]
into H and if f(t) and g(t) are real valued functions of
bounded variation on [O,T],

E “: §(s')af(s") j: Q(t')ds(t')} - J: L': E E(s') (t1)aasr(s" )e(t'),
(s,t) € [O,T]z, and in particular,

“ 53 E(v)ar(e)|| 2 - (202 E £(s) E(t) aa £(s)£(t)

Proofs: Let {pml and {%% be sequences of partitions of
[0,8] ana [0,t] respectively, such that Alpy) and Alg))
tend to 0 as myn—> co, and let

1 J

o (p,) = i_Zl E(si){r(si)—f(si_l)}. o(a,) = E‘In(ts){e(tj)-c(tj_l)}.
Then 1 J
B0(p) (%) = Z Z & £(o]) P0epfelo)-0sy )} {a(s)-sy )}
As my,n-» co, the left-hand side tends to

2 {15 Kenarten [Tycenaecen}

by virtue of (2.1.3). The right-hand side is a Riemann-Stieltjes
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sum belonging to
s (t
Jo §o BE(s") N(t1)ad £(s')e(t").
This ordinary Riemann-Stieltjes integral of real analysis exists,
since E E(s') Q(t') is continuous on [O,s]x [O,t] on account

of (2.1.3), and since f(s')g(t') is of bounded variation on
[O,ﬂ)( [O,t], cf. section 2.9.

(2.7+4) If f(t) is a continuously differentiable mapping of
['O,T} into (-o°,00) and if ¥(t) is a continuous mapping
of [0,‘1‘] into H, then

52 E(t)ar(t) = jz E(t) idf—(ti)- at in q.m.

Proof: As f(t) is continuously differentiable on [0,'1‘],
it is also of bounded variation on [O,T] . S0 both integrals
exist as Hiemann (-Stieltjes) integrals in q.m. Let gpn} be
a sequence of partitions of [O,T] such that A(pn)-> 0 as
n—> ¢2 , Since by virtue of the ordinary mean value theorem

df(tk U
) = 10 ) = (e - ) =7 0 g € (et
7 (p,) = E §(tk 1){f(t )-£(t 1)} Z E(tk l) t“' (b=t 1)
where the values of E(t) may be taken at the same points ti-l
as those of %ﬁ « A n-»co , the statement follows on

account of definition (2.6.1).

(25759) If f(t) is a real valued function of bounded variation
on [O,T] and if {En(t), n-1,2,.} is a sequence of continuous
mappings of EO,TJ into H, converging in q.m. to &(t) as

n-> o , uniformly in te& [O,T], then as n—> cn ,

¢ (s)afis) — [PE(s)ar(s) in q.m., wniformly in t€lo,?|.
0 20 o

Proof: Since by virtue of (2.4.5) E(t) is continuous in q.m.
on [O,T], the existence of all integrals figuring in the assertion
is ensured. If £ > 0 and n sufficiently large, then for
all t e[o,T] A

|| §3Ealodarte) - [CEar(a)]] = | [5{EL(0) - ECaar(o)|jg eV,

2.7
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where V is the total variation of f(t) on [O,ﬂ.

By means of partial integration, a number of results concerning
Riemann-Stieltjes integrals of the type

T
2 e(e)ak(s)
may be derived from the above statements. For example
(2.7.6) I {En(t), n-1,2,.} is a sequence of continuous mappings
of [O,T] into H, converging in q.m. to £(t) as n—> eo ,

uwniformly in t & [O,T] , and if f(t) is a real valued continuously
differentiable function of t€[0,7], then as n—> o,

j: f(s)a En(s)-—9 g: f(s)a £(s) in qem., uniformly in t & [O,T].

Proof: By virtue of (2.4.5), g(t) is continuous in q.m.
on [O,T]. According to (2.6.2) and (2.7.4),

(et (e) - [ea)E ()] -[2E () Sl ana
OO EOHONMESM{OE 29

Apparently all above integrals in q.m. exist. Application
of (2.7.5) completes the proof.

2.8, Riemann-Stieltjes integrals in q.m. III,

The existence of integrals in q.m. of the type

7
fo t(t)at(e)
cannot always be reduced by means of partial integration to the

existence of
T
(o€ (war(s) .
In certain circumstances the following method might be useful.

Let £(t) be a mapping of (_O,T.] into H. Let p be the
partition of [o,T], defined in section 2.6, and let {p} be
the set of all partitions of [o,'r].
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(2.8.1) Definition:
X
v( &(t)’ P [OvT} ) - 5 )\g(tk) = E(tk-l)“ ’

v( &(t), [o,7] ) = sup V( £(t),p, [0,%] ).
p€ {p}
E(t) is of bounded variation in the strong sense on [0,!] 1f1
v( E(t), fo,1] )< en.
(2.8.2) If f(t) 4is a continuous mapping of [O,TJ into
(-co,¢c0), and if ¥(t) is a mapping of [O,T] into H

of bounded variation on (O,T] in the strong semnse, the
Riemann-Stieltjes integral in q.m.
Vi
§o £()a &(t)
exists and the assertions of (2.6.2) are valid.

Proof: Let {pnl be a sequence of partitions of [O,T] such
that AL(pn)-+ 0 as n—>c2, As [O,T] is compact, f(t) is
uniformly continuous on [O,T] « So, given & > O there is a >0
such that [s,t]c[o,r] and |s - t{< & imply |£(s) - £(t)|<E .
If n and m are sufficiently large and if p is a refinement

of both P, and Py o
|7 (e)-a (e o' (p)- T ()| +[0 ' (p)- 7 (p )| S €V + V.

Therefore {d"(pn)} is a Cauchy sequence in H and the assertion
is proved according to definition (2.6.1).

A number of statements analogous to those of section 2.7 may

now be proved for integrals of the type

JE £(t)d E(t) .

This, however, will be done in the next section under less stringent
conditions. Here we shall confine ourselves to the following

theorem.

(2.8.3) If £(t) is a mapping of [o,T] into H, continuously
differentiable in q.m., and if f(t) is a continuous mapping of
[0,7] into (-ca,c2), then

i) v( E(t), [0,2] )< @@ ,

11) SZ £(t)a E(t) = _{: £(t) d—%ﬁ dt.
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Proof: Let p be the partition of [0,'1‘]. defined in section 2.6.
Concerning i, it follows from (2.7.2) that

K X
= I8¢k~ &%) = = | j‘tk_l LELE) 4y “ £ ur

where M = ::EO,T]”M “ And so  ¥( 5(1)9 [0,‘!] YSuT.

Concerning ii, according to (2.8.2) and (2.7.1) both integrals
exist as Riemann (-Stieltjes) integrals in q.m. Let

Z ( { =
a'! - 2 E ’

K (
T() = > 1(h ) s

If p passes through a sequence {pnl such that A(Pn)é 0
as n-»co , then

o1(o) = [Te(ak(t) ana (o) [Tr(r) LhL8 g,

On account of the definition and the existence of the integrals,
figuring in ii, we were alowed to choose tl':-tk-l’ k=1,.,K.
By virtue of (2.7.2),

o o- d(p)"‘z [f(tk 1)‘ " E‘k-

(hemtey) - B )= 8y 1)} -
E el 16, {FR - ilal
&= k-1 % 1 at dt =

X b a8(y ) () |
= f"k-l)t' jtk_ “ e U
As M = ‘f(t)l given €50 it follows that

tE[O T
| (o) - 7o) £ €M m

if n is sufficiently large, since i%tu)- is uniformly continuous

in gem. on the compact set LO '1'] Therefore, as n—s> co ,

| §5 ewa &) - §3 20) _igcﬁl at || &

I REOIT{ORACN] | 3 ERCRELCN - |5 £(®) Lien dt] - 0.
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2.9. Riemann-Stieltjes integrals in q.m. IV .

The first statements in this section belong to standard
calculus in q.m., see [15], or [19] for instance.

Let us first introduce and recall several notations and notions
of real analysis, If D = YO,S]X[O,'R] is the Cartesian product
of two intervals of the real line, the finite set p(D) of
of rectangles d = [s,s']x[t,t'] with union D, such that the
intersection of every two rectangles d consists at most of an
edge, is a partition of D. The mesh of p(D) is defined as

A(p(D)) = max |s' -], |t'-t|.
de p(D)
A partition q(D) of D is a refinement of p(D) if each element
of p(D) is the union of some elements of q(D).
If p and q are partitions of [O,S] and [O,T] defined by

0 = Bo< al<. (sI =S and O = to< tl< .<1;J = T respectively,

p(D) = pxgq = g[si-l'si]x[tj-l't,j—l y i=1,.,I, j'lrnJ}

is a product partition of D. Every partition of D can be refined
by product partitions. If D = [0,'1‘]2, every partition of D can be
refined by product partitions of the type p~ = pXp .

If G(s,t) is a mapping of D into (-¢o,¢2 ), we define, as
gp(D)} is the set of all partitions of D, and if

a = [sy8]x[t,t'] € (D),
A AG(syt) = G(s'yt') - G(s,t') - G(s8',t) + €(s,t),

d
V(6(s,t),p(D),D) = = |an6e),
d€ p(D) d

and v(G(s,t),D) = sup V(G(s,t),p(D),D) .
{p(D)}
v(G(s,t),D) is the total variation of G(s,t) on D.
If q(D) is a refinement of p(D),
v(e(s,t),a(D),D) 23 V(G(s,t),p(D),D) .

Since each partition may be refined by a product partition, it
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follows that V(G(s,t),D) may be evaluated by means of the product
partitions alone, and by means of the partitions of type p2 if p is
a square. If the total variation V(G(s,t),D) of G(s,t) on D is
finite, G(s,t) is called of bounded variation on D.

v(¢(s,t),D) is a non-negative O-additive set function with

respect to D.

1r = [o,8]x[o,r] ana  G(s,t) = g (s)e,(t),
then V(6(s,t),D) = V(g (s), [0,5]).V(ey(t),[0,T])
where V(gl(s),[O,S]) and V(gz(t),[o,'l'])

are the total variations of gl(s) and gz(t) on Y_O,S] and [O,T]
respectively.

Let the notion of partition p(D) be extended in this sense that
to each d€p(D) there is an arbitrary point (sd,td)e d. Let F(s,t)
and G(s,t) be mappings of D into (-c2,c2). If to all sequences
§ pn(D)} , such that A(pn(D))—> 0 as n-=> co , the corresponding

sequences

{ s(z,(0) - deanw) P(ogsty) 286(s,t) |

are convergent, necessarily with one and the same limit, say S, then

S = ‘H‘D F(s,t)ddG(s,t)

is the ordinary Riemann-Stieltjes integral of F(s,t) with respect
to G(s,t) on D.
This integral may be shown to exist if F(s,t) is continuous and
G(syt) of bounded variation on D. Then
|s \ £ MV
where M = max ‘ F(s,t)l and V is the total variation

(syt)€D
of G(s,t) on D.

Now we shall establish the existence of the integral in (2.8.2)

under a less stringent condition:
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(2.9.1) If f(t) 4is a continuous mapping of O,T] into
(-eo2,c0), and if §(t) is a mapping of [0 T| into H
such that E E(s) £(t) is of bouded variation on [0, T]

(o f(t)ak (v)

exists as a Riemann-Stieltjes integral in q.m., and the assertions
of (2.6.,2) are valid. Then

“Sg £(t)a §(t)"2 - fgjﬁ £(s)£(t)aaE E(s) E(t) £ w2V
if M =max _|f£(¢) and V= V(EE(s)E(t), [_o,'sz).
t€fo,T]

Proof: Let {pn} be a sequence of partitions of [0,'1‘] such
that A(p )> 0 as n—>» co . In regard to definition (2.6.1),
it is to be established that {tf’(p )} is a Cauchy sequence in H
or, equivalently on account of the convergence in gq.m. criterion
(2.1.4), that

Ec'(p,)o'(p,)
converges as mmn-»>co . 1f Pu and p, are defined by

0-s<al<.<s-'1‘ and 0-t<t<.<t = T respectively,

B0 (p,)o ' (p,)= z Zf(spf(t-)z{g(s) Bay_ }{E ()= §(e )}

iml j=1

P~
12-1 lef(s P (s reglx[ ety e =Ll

The right-hand side may be seen as a Riemann-Stieltjes sum belonging
to the ordinary integral

(260 £(s)£(t)adE E(s) E ().
This integral exists as f(s)f(t) is continuous and E §(s) £(t)
of bounded variation on [.O,T]z. And so Eg '(pn)(f '(pn) converges

as n,m-—» c2 ,

(2.9.2) Corollary: If also g(t) is a continuous mapping of [0 T]
into (-e¢2,¢”) and ‘V)(t) a mapping of [0 T] into H such that also
E E(S) Yl(t) and E v(s)O(t) are of bounded variation on LO T] , then

Bi§S stenagton [ se)an(enf= (218 s(ena(t)aam g (1) E (+1).
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The condition in (2.9.1)
“ EE(s) E(t) is of bounded variation on [0,1‘)2 |
is less stringent than the condition in (2.8.2)

» g( t) is of bounded variation on [O,’l‘] in the strong sense "
since

(2.9.3)  V(EE(e) £(v), [0,1]) £ {v( £(w), [0, 1)
For, if p is a partition of [0,T] , defined by 0=t < #,< o K ty=T,

pxXp is a partition of [0,1‘]2. On account of the inequality
of Schwarz (2.1.1),

V(EE(s) £ (+),xp, [0,7)%) = %1 jZ:‘E{é(ti)- By D} fECE)- E(tj-l)}‘é
N N
= = | Ecy)- Byl | ECey- ECey ) -

il j=1
{12: “'gkti)- E(ti_l)“g 2 - {v( §(t),p,[o,T])}2 -

As we have seen that total variations may be evaluated by means of
the partitions pXxXp alone, the statement follows as p passes
through a sequence of partitions {pn} of {O,T] such that

A(pn)—)o as n—» co .

Application to the Wiener-Lévy process in chapter 4 will show
that the reverse is not true. Also in chapter 4, the existence of
Riemann-Stieltjes integrals in gq.m. with respect to Wiener-Lévy
processes may be established, owing to theorem (2.9.2) or (2.7.1)
but not to (2.8.2).

(2.9.4) Let E(t) be a mapping of [0,T] into H such that
EE(s) F(t) is of bounded variation on [0,1‘]2, and let f(s)
and g(s) be continuous mappings of [O,T] into (-en,on ),
i) Then, if

nt) = [ a(s)ak(s),

E-q(g) n(t) is of bounded variation on [O,T)z.

w) (3 r«t)d{fﬁ snaf ) - {7 r0sa ().
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Proof: Concerning i , on account of (2.9.2),
EN(s)N(t) = (20 ata)e(t)aarE(sr) Et') .
2
T as w i Vg tiie il Xt et e Oy and m= max_|(g(t)|, then
CYAESCR R gl
t
2

|apEn(e) n(6)] - H:jltl s(s)a(+)aaz £ (o) £ ()| w2W(EE (o) € (4),)
according to (2.9.1). And so

V(EN(s) (1), [0,7)%) £ n°V(BE (s) £(8), [0,])%) < oo

Concerning ii, both integrals exist, owing to (2.9.1). Let p be
the partition in section 2.6. It gives rise to the following
Riemann-Stieltjes sum, belonging to the integral in the left-hand

side of ii
K t t
g'(p) = kZl f(tg)Uok g(s)da E(s) - jok'l g(s)dg(s)} -

= s )St“ (s)a & (s) = jt“ £(t!)e(s)a € (s)
! 8 s = ! 8 =
i T ka1 eey e

jznp(t)g(t)dg(t), if n(6)=£(t)) as & t<b, kel,.K

The above calculations are valid by virtue of (2.6.2) and (2.9.1).
It follows also from (2.9.1) that

155 sema ) e[| - |3 {#(0a)-n (e }ak(v)]?a siv,

where
m, = sup \f(t)-hp(t)\.\g(t)l and V -V(E{(s)E(t),LO,T]z).
te{0,T]
Since f(t) is uniformly continuous on the compact set [O,T],
m—> 0 if p passes through a sequence {png of partitions
of [o,T], such that A(p )—> 0 &8s n—»en’.
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3 Ordinary linear systems, driven by random functions

3.1, The Bansoh spacs HE D,

If H is a Hilbert space of the type defined in section 2.1
and if N is a natural number, the ordered N-tuples or
N-vectors, written as column vectors

£
E -1 |, B € H, i=1,.,N,
Sw
constitute a linear space under the natural rules of addition and

scalar multiplication ( here throughout with the real numbers).
Obviously

n 'i\ln b iﬁf.,!‘ ” 13

is a norm on this space. With this norm it will be called the
space H N. Since H is complete, H ¥ is complete with respect

to this norm. So it is a Banach space.

Ir
817 ce ot Byg
A= 5 '
81 ¢ - - o
is an NXN-matrix with real valued entries aij’ i,j=1,.,N, then
s & 2%,

where AE stands for the usual matrix-vector multiplication.
If

N
|2] - e Jz_ll"ijl ’
then

laelln |4l |Eds-

The following definitions are alowed, owing to the properties
of the elements of H :
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E?El ey
Eﬁg = : and in particular EE = . .
EBEN EEN

ET -(El.... EN) is the transpose of E  and the

covariance matrix of £ is

E§,€, ..»..r., EE €,

EEET - :

Efngl... e EENEN

“ e we

Let §(t), t € [0,T] be a mapping of [0,7] into gk,

Continuity of ¥ (t) in the strong sense, again called continuity
in q.m., is defined in the natural way:

£ (t) is continuous in q.m. at tE€ [o,T] iff

”E(s) - E(t)“n—) 0 as s—>t, BEK.O,T].

It follows that £(t) is continuous in g.m. as a mapping of [O,T]
into H " if and only if each component of g(t) is continuous
in q.m. as a mapping of [O,T] into H .

In analogous way, sample continuity and the diverse types of
differential quotients and integrals are defined. In all relevant
cases below, assertions about g(t) are true if and only if the
corresponding assertions are true with respect to each of the
separate components of E(t). Thus many notions and assertions
in this chapter have their l-dimensional counterpart in chapter 2,
They will often be used without further comment and without
introducing new names and symbols as the context will make clear
what is meant.

So €(t) is differentiable in q.m. on LO,T] iff

d
it S1(%)

d%g(t) = exists on [O,T].

SEn

3.1
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If E(t) is continuous in g.m. on 10,'1‘] , its Riemann
'[: §1(s)ds
integral in q.m. S: E(s)as = : y tE€ [0,‘1‘],
S:El(s)ds

exists, is continuous in q.m. and differentiable in q.m. on [O,T],

and satisfies d% S; E(s)ds = E(t). Then also
E-'bf: E(s)ds = J': Pl £(s)ds and in particular Ej:f(s)ds-j: Eg(s)ds.

1f E(t) is differentiable in q.m., then also E”SE(t), and

Ej;i% £(t) - d% Egsg(t), in particular Ed% E(t) = d% EE,(t)-

3.2 The homogeneous system.

In this section are used several classical fixed point theorems
for Banach spaces, see [ B-J for instance.

s0s1 Let A(t) be an NXN-matrix, whose entries aij(t),
i,j=1,.,N, are continuous mappings of [O,T] into (-¢0,e0).
Let E(t) be any continuous mapping of [O,TJ into H li. satisfying
in gq.m. sense the system of differential equations

(3.2.1a) d%g(t) - A(L) E(Y) t e [0,7],
with initial .condition

(3.2.1b) €(0) =0,

or, equivalently, the system of intgral equations
(3.2.1c) E(t) = [ a(s)E(a)as , tefo,1].

Then ¥(t) =0, té&[o,T].
In other words, the above system is uniquely solvable with
solution identical to OEH N.

3-2




36 3.2

Proof: Clearly g(t) = 0 is a solution. In order to show

that it is the unique solution, let be assumed that also the

arbitrary continuous mapping g(t) of [O,T] into H S

satisfies (3,2,1c). As we write
TE(t) = [Ea(s)g()as , teo,1],
then (3.2.1c) reads

E(t) = TE(t) .

It follows that at t € [o,'r],

LSy =JT 5Ol = 5 409 S eranly 2 a0 - o yte & s,
where M = sém[STT] \A(s)‘ and m = sénigf'f] ”E(S)“N .
Then | §(t)]|y = ”57'2 E(t)ﬂN -“7{57’5(1;))"N - “ f: A(s)Tg(s)dsuN <

JEIA@)] 7 Eollgae = [fu e a5 o 2

and by induction,

[y = |7 ey £ n B 2 o QD

n! n!

for all natural numbers n and for all t 6[0,’1‘] « Necessarily
%(t) is identical to 0 on [O,T].

(3.2.2) If A(t) is the matrix in (3.2.1), and if ¥ € HDY,
then there is a unique continuous mapping §(t) of [O,T] into
H N, satisfying in q.m. sense the system of differential equations

(3.2.2a) d% E(t) = A(t) E(t) , t € [0,17],
with initial condition
(3.2.2b) £(0) =7,

or, equivalently, the system of integral equations

(3.2.2¢) E(t) = 7 + j: A(s) E(s)ds, t € [9,1-].

Proof: If there is a continuous mapping g(t) of [O,T] into
H N, satisfying the above system, it is unique. For, if also the
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continuous mapping 'vz(t) of ‘_0,'1‘] into Hnsatisfies the
above system, then §(t) - ‘Q(t) satisfies the system in (3.2.1)
and so E(t) - N(t) is identical to 0 .

In order to show the existence of a solution to (3.2.2c), let
€(t) be a contiuous mapping of iO,T] into EY. We shall use

several results of (3.2.1) and write

JEt) =7 + TE(t), te€ [o,T].
S E(t) is a continuous mapping of [o,'r] into HY and
L260) =L (L) =T+ TEW) = ¥+ T( P+ TEW)

whereas
T V+ TEW) = (& A(s){)/+ 7§(s)}ds - TY + T 2L (1)
So

L) = VT +T2E(v)

and by induction, since

(3.2.2d) el - Y o1 g14,

J“g(t) « Vs TV o ..+ )y, V‘nf(t), n=1,2,..

It is seen that o ° £(t) is a continuous mapping of [O,T-_)

into H N. X el U’"N and if k 1is a fixed natural number,

then on account of the results in (3.2.1),
L2 £ (1) - P o) g = | T PH 40 dT 2Ly TR () TR (1) £
722 +e e 72 | T B0y T By £

k-1 n+k n
(um)* MT)™* MT (MT)
R +eet C (n+k-1)1 e Fim e — 0 as n->c2,

uniformly in tG 0 T] And so, since HN is a complete space,
there is a mapping A(t) of YO T] into HY such that

L2 E(t) — A(t) as n—> co, unifornly in t € [o,T].

By virtue of (2.4.5), A(t) is continuous on [0.'1‘]. Finally,
according to (3.2.2d) and (2.7.5),

Alt) = Y+ j: A(s) A(s)ds,

showing the existence of a solution to the given system.
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If the N components of 7 in (3.2.2b) are degenerate random
variables, a deterministic homogeneous linear system is obtained
as a special case of (3.2.2). We recall the following result of
the deterministic theory:

§§.2.2) The class of deterministic N-vector valued functions,

satisfying (3.2.2a), is a linear vector space of dimension N,

The fundamental matrix associated with A(t) is the unique NX N-matrix
F(t) ’ t E [OPT]I

whose entries are deterministic (in this case real valued)
differentiable functions on [O,T]. such that its column vectors

are a base of the above linear space, and such that
F(0) = Iy »

IN being the NXN identity matrix. Obviously

d

S P(t) = A(B)R(E) ,  te€ [o,T],
and

t

F(t) = Iy + j'o A(s)F(s)ds , t € [o,1].

F(t) 4is non-singular on [9,13, F-l(t)F(t) -I .

Also F-l(t) is continuously differentiable on LO,T] and satisfies

0= g1 - 2 {Flr} - G wlre) + ) 2 R
or

S rle) = -FHOA)R(HF(8) = FI(0)A(t) .

Now the unique solution in q.m. E(t) of the system in (3.2.2)

may be represented as

E(t) =F(t) YV,

since by virtue of (2.5.5) and the properties of F(t) ,

d_i_g_tl = S{P0Y} AR = a0 EH)

where the differential quotients are derivatives in q.m., and since

£(0) =F(0)Y = V.
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If we consider 2 = ?(w) at fixed «w , it follows from the
above deterministic theory that the system in (3.2.2) has a unique
sample solution if the derivative in (3.2.2a) or the integral
in (3.2.2c) are assumed to be a sample derivative or sample integral.
Also this sample solution may be represented as

E (w,t) = F(t) Y (w) .
So we have obtained the following theorem:
(5.2.4} The system in (3.2.2) has a unique solution in q.m.
as well as in sample sense. If F(t) is the fundamental matrix

associated with A(t), see (3.2.3), the solutions of both types

may be represented as
E(t) =F(t)V , te [0,1].

They coincide a.s. at each t € [O,T].

3e3. Inhomogeneous systems.

Let A(t) be an NXN-matrix whose entries are continuous mappings

of [0,T] into (-c0,en), let ¥ &€ H' and let o(t) bea

continuous mapping of [O,T] into H “.

Let be given the formal systems

Gua)  SEW -AWEM® + k(1) , € [o,1],

(3.3b) E(0) = ¥
and
(3.3¢) E(t) = 70 J: {A(s) E(s) + o((s)} ds , t € [0,'1'].

(3.3.1) If E(t) is a continuous mapping of [O,T] into HN,

the system (3.3a),(3.3b) is equivalent to (3.3c) in calculus in g.m.
And
(3.3.1a)  E(t) = B(t)¥ + F(t) (& Fi(s)e(s)as
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is the unique solution in q.m. to (3.3a,b,c). Here F(t) is the
fundamental matrix, associated with A(t), see (3.2.3), and the
integral is a Riemann integral in q.m.

Proof: If also "Q(t) satisfies (3.3a,b) in g.m. sense, then
€ (t) - 7)(t) is a solution in g.m. to the system in (3.2.1) and
so E(t) - M(t) =0, tE€ [O,T], showing the uniqueness.

The solution in g.m. to (3.3a,b) will be constructed by means
of the method of Lagrange. Let be assumed that 7\t) is a mapping
of [o,'r] into H Y , such that

7(t) = F(t) #(¢)

satisfies (3.3a). Substitution into (3.3a) yields owing to (2.5.5),

) i) + 7(e) LB - a(0)R(2) P(1) + ot (1),

Since %&—tl = A(t)F(t), see (3.2.3), it follows that
F(t) g—%—t-l it

So we may put
t -1
P(t) = fo F " (s)ot(s)ds .
Then #(0) = 0, and E(t) = F(t)/ + [(t) satisfies (3.3a,b).
All above calculations in q.m. are valid on account of the assertions
in chapter 2 and by virtue of (3.2.4).

(3.3.2) If ot(t) is sample continuous, (3.3a,b) is equivalent
to (3.3c) for sample continuous processes E(t) on [O,T_].
Then (3.3a,b) has a unique solution in the sense of sample calculus,
which may also be represented as (3.3.la), provided that the integral
is interpreted as a Riemann sample integral,

If o (t) is continuous in q.m. as well as in sample sense, both

types of solution exist uniquely and coincide.

(3.3.3) If the system {)’; () ,t e(_o,T]} is Gaussian,
the solution (3.3.1a) to (3.3a,b) is Gaussian on LO.T} by
virtue of (2.3.1) and vi in (2.6.2).
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(3.3.4) If E(t) is the solution in q.m. to (3.3a,b) or (3.3c),
then by virtue of (2.5.3) and v in (2.6.2),

(1) = 22 €(1) = H(0)ER7 + B(v) [ F (08P (0)av
is the unique solution in q.m. to

d% ¢(t) = A(t) #(t) + BRx (%) , e [o,'r],
¢(0) =By,
or to

P(t) = EBY + j: {A(s)?(s) + Ej‘ao((s)}ds St é[o,'r].

In particular, as we set
E E(t) = x(¢t) , E(t) = x(t) + E'(¢),
Ed(t) = a(t) , A(t) = a(t) + o' (t) ,
EY =¢ 5 Y=c+ .

x(t) is the unique solution of the deterministic system
d
a3 X(8) = aA()x(¢) + a(t) , t € [0,'1’],
x(0) = ¢ ,
and ¢'(t) is the unique solution in g.m. of
o EN(t) = AR EN(E) + K (2) te[o,1],
£'(0) = 7' .
The above two systems together are equivalent to (3,3a,b), interpreted

in gq.m. sense. On account of (2.4.2), a(t) and o'(t) are continuous (in q.m.)

(3.3.5) 1f 7 and o (t), t €]0,T), are stochastically independent,
and if E = 0 and (or) EA(t) =0, t€ [o,a'], the covariance

function matrix

EE()E (+) , (%) € (0,15,

of
E(t) = F(+)Y + F(t) j: P 1(v) (v)av

is equal to

(3.3.5a)  F(s) \:E YT (2t F-l(u){EO((u)oLT(v)}(F-l(v))Tdudv]FT(t) .
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This is seen as follows:

N N S
E¥;(s) §4(t) = E [fl fih(s){)’h + kZ_ljo fhk(u)ock(n)du} E

N N
5 ot
. {11-2.1 th.(t){Yh. + k'Z_l 1 fh.k.(v)o(k.(')dv}],
where the f;‘i(u) are the elements of F'l(u).

According to (2.7.3), (2.4.4) and (3.2.3),
B (2 s (wa, (wau o f2 £l () dy, (av -

§ofs ) {E (@) e, (MY £y (Vauav .
Since Vi.Lo(J.(t)y i,3=1,.,8, tefo,7],

E )’h(T =0, where O = j: f;l],'k,(v)a(k(v)dv .

For, if {U'n, nel,2,.. } is a sequence of Riemann sums,
converging in g.m. to & as n—> o2 , then by virtue of (2.1.3),
0=EY o = lim E Y, o =EY. o .
h ™ n s h™n k

And hence N
E Ei(s) gj(t) = h%l fih(s) BY, ¥, fjh,(t) +

X s(t -1 -1
h,k%ul fih(s)'-sojo fhk(u) {Eo(k(u)oLk,(v)} fh,k,(v)dudv.fjh,(t) .

showing (3.3.5a) .

303
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4 Wiener-Lévy processes and some of their
smooth perturbations

4.1, The l-dimensional Wiener-Lévy process and calculus.

A detailed account of the l-dimensional Wiener-Lévy process may
be found in [15] . See also [6] and [14] .

Let ,3(t) be a stochastic function of t € [O,T-_]. It will be
assumed that s and t , with or without subscripts belong to [O,T]
and that 5;< 85 t:< b, as - 1< 39

J it
We recall, if
i) ﬁ(t) is real valued on [O,T],

13) /3(0) = 0 a.s.,

iii) 3(t) is sample continuous on [O,T],

and if

iv) the increments of /3\1;) are stochastically independent, i.e.

{Blry) - Be}  ana  { 8(t) - Blt)]

are stochastically independent if

Ltt) N [t.j,t4) =g,
then /3(t) is necessarily Gaussian and so of second order, and
continuous in q.m. on [O,T . Then also Eﬁ(t) exists and is
continuous on [O,T], see (2.4.2).
Moreover, if
v) EB(t) =0 , te[o,'r],
then the increments of 3(t) are orthogonal. For, if [tl,tz) f\[tj.t4) = ﬁo
B{A(t,)- B(t))} {A(%,)- Blt,)} = BYA(t,)- Bt EB(E,)- Bles) = O
Finally, if
vi) the increments of /3(1;) are stationary in the sense that

E{ﬁ(s) - ﬁ(t)}z depends only on |s - t
say E{A(s) - A(t)}? = £(|s-tl), then
f(tyoty) = B{Rty)- At} - E[{B(4)- A [BCp)- BC1)}] -
E{ﬁ(tB)-ﬁ(tz)}z + E{p(tz)-ﬁ(tl)‘g2 = £(85-1,) + £(t,-%))
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and it can be shown that
2 _ g2 2 . :
E{ﬁ(s) -,B(t)} - ‘s-tl, O ° being any positive number.
Now the choice of 0'2 is the only freedom remained., Unless stated

otherwise, it will be assumed that
vit) %=1,

(401.1) Definition: Endowed with the properties i-vii , ﬁ(t)
is the l-dimensional Wiener-Lévy process on [0,’1‘]. Unless stated
otherwise, the symbol ﬁ(t), without further comment, will stand

for the process with the above properties.
We shall recall and discuss some more properties of p(t).

With probability 1, the trajectories of ﬁ(t) are not of
bounded variation and not differentiable on any sub-interval

of [O,T]. However, they are continuous because of assumption iii.

ﬂ(t) is not of bounded variation on [O,T] in the strong
sense, cf. (2.8.1). For, if P, is the partition of [_O,T]
defined by the subdivision points

1 2 =]
0,57 =7 .., ED—T, T,

then

V(A(m[0,1]) = P pEm- 4EIn)|-2 VI n 2o oo oo nmson.
B k=1 ks B o

It follows from the differentiability in gq.m. criterion (2.5.6)
that /S(t) is nowhere differentiable in q.m.

Since ,3(t) is continuous in q.m. on [O,T], EAS(s)/3(t) is
continuous on [0,'1‘]2 by virtue of (2.4.6).

LE 0O< s <t <T, '
E8(s) B(t)=E {ms)-/a(o)}[{/s(t)-ﬂ(s>}+{/s(s)-/s(o)}] -£{/3(s)- A(0)} *-s.

Let us use the notions and notations in section 2.9, Then, if

a = [o08, ) x[t;,%,] < [o,7)?

it is analogously shown that
M-m  if [sl,az)ﬁ [t1:t,) = [mm) ,

a4 EA(s)B(4) - {
0 if [sl,sz)/\[tl,tz)- 2 .
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In this way, E/S(s)ﬁ(t) induces a non-negative measure on the
rectangles d of [O,T]z. If the intersection of d with the

diagonal s=t of [_O,'l‘]2 contains at most one point, the above

measure of d is equal to O .It follows that for each partition
p([0,7]%) o [o,7)?,

V(Eﬁ(s)ﬁ(t)’ p( [_OPT]Z)’ [OrT]z) =T and so V(E/&(s)/i(t)v [0'1,]2) =T,
i.e:

(4.1.2) Ef(s)3(t) is of bounded variation on [o,T'_]2 with

total variation T .

(4.1.3) If f(t) is a continuous mapping of [O,T] into
(-¢2,02 ), then

i) 5: £(s)aB(s) , t€ [o,'r]

exists as a Riemann-Stieltjes integral in gq.m. on account

of (4.1.2) and (2.9.1),

it) the assertions of (2.6.2) are valid,

iii) and if also g(t) is a continuous mapping of [O,T] into
(-2 ,00),

(4.1.38) B[S £(s)aB(s')[¥ &(t')a/3(s1)= (@ £(s')g(s')as! , memin(s,t)

and in particular

.1.3b | §2 2e)ap(a)||? = [E £3(s)as .

Proof:s We only have to show (4.l1.3a). According to (2.9.2),
I - e[S £(s')aB(s") ] e(t')aB(tr) = [2[F £(st)e(t)aaBB(s) A1),
where the latter integral exists as an ordinary Riemann-Stieltjes
integral since f(s')g(t') is continuous and E B(s')B(t') of bounded
variation on D = [O,s]x[o,tj . Hence it is the limit of a sequence
of Riemann-Stieltjes sums, constructed on some sequence of
partitions of D of which the mesh tends to O. Assume sS< t.
Then m = s . We may use partitions p(D) = pxgq , where the
partitions p and q of [0,s] and [0,t) are defined by

subdivision points s tm , satisfying

k ’
= = ~ Aol e -
0 s°< sl<..<sK s and O so< sl<..<sK s=1:1=..__1:M £

respectively. Owing to the properties of /3(1;) discussed above,
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h‘p(s)/3(t) induces a measure unequal to O only on the squares
4 = ( S 1 k} of p(D). Therefore, since

a0 p —

0, EB(s)B(t) = S = Sp_q 0
a Riemann-Stieltjes sum belonging to p(D) is

K
S((0) = = £(spalsy sy - 5y}

where (sl'c ; sl'(') is an arbitrary point in d_, k=1,..,K.
Also the integral J = j:’s f(s')g(s')ds' exists and may be
evaluated as the limit of a sequence of Riemann sums, constructed

on any sequence of partitions of [O,s] y such that the mesh tends

to O . Choosing the above p , we obtain the Riemann sum
K
s(p) = 51 £(s" )e(sy" sy - s 1}
where sg' is any point in [sk 10 sg] y k=1l,..,K. Now in
fz-all<]t- s + [ste@)) - st + [lste) - 311,
s(p()) - S(p) = Z SECOLCDR £(ap)e(ep)} (o - 8]

1f p(D) passes through a sequence {pn(D) - nn1,2,.} such
that A(pn(]))) — 0 as n-—> o2 , the first and the last term
in the above inequality tend to O as n-> 2 on account of
the definition and the existence of the integrals I and J .
The middle term tends to O by virtue of the uniform continuity
of f(s')g(t') on [o,s]x[o,t] . And hence I =J .

4.2, A class of smooth perturbations of the l-dimensional

Wiener-Lévy process.

The approximation of /3(t) by smooth functions, treated in
this section, corresponds to the operation of smoothing, used in
the theory of generalized functions, see 1;25) . Cf. also [>53]

And so there will be need for the testing functions of distribution

theory.
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(4.2.1) The testing functions p(t) used in this section are
assumed to be endowed with the following properties:
i) p(t) is a non-negative, symmetric mapping of (-¢? ,em)
into itself, with compact support [-l,+l] o L.e: p(-t) = p(t),
plt)= 0 if ¢ éY_—l,+l] and p(t) = 0 outside I_-l,+l] o
ii) p(t) is smooth, i.e. infinitely often differentiable
on (-¢2,4,02).

reo +1
1) J p(t)dt = S p p(t)at = 1.

-cn -

(/DY D 4 s (1)<,

For instance : p(t) = {
if [t[_z_l.

(4.2.2) As we define pn(t) = n p(nt), n=1,2,.. , t € (-c0,¢2),

then pl(t) = p(t), and pn(t) enjoys the above properties i, ii

and iii with the exception that its support is [—% y + %] .

It shrinks to {0} as n-—>c¢D .,

R As we define qn(t) = Sf” pn(s)ds ‘
q (t) Lo as t-> -c/iv and o (t)T1 as toes,
ap(t) =0 if t£--  and q (t) =1 if t?‘-r—ll 5
" t nt
And since qn(t) = _(_w n p(ns)ds = S_w p(x)dax ,
Lo if t<0
qn(t) =% if t=0 as n-»em .
T if t>0

The limit function of the sequence {qn(t) ; n-l,2,..} is the

unit step function of Heaviside.

We shall need the following easily verified result of real
analysis. It should be noted that the function f(t) below may

be non-differentiable and not of bounded variation on Y-O,’.[‘].

(4.2.4) If f£(t) is a continuous mapping of LO,T] into (-cn,c2)
such that f£(0) = O, then as te[_o,'l‘],

i) fn(t) = S;P qn(t-s)df(a) = qn(t-T)f(T)+ jg f(s)pn(t-s)ds exists,
ii) fn(t) is smooth on EO,T], fx(xk)(t) = SS pl(lk'l)(t-s)df(s),

iii) and as n—» ¢? , the sequence {fn(t), n-l,2,..}
converges to f(t), uniformly in t & [O,Tl.
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We shall need the following lemma:

(4.2.5) Let {€ (1), tefo,1, ne1,2,..}
be a sequence of real valued sample continuous stochastic processes

with sample continuous representations
En("":t) ’ (w,t)E QXY_O’T]’ n=1,2,.. ’

where )L is the point set of a suitable probability space {.Q ,dg . P} v
If at a.a. cw € L)L

En(w,t) = E(w,t) as n-»ed , uniformly in t € LO,T-],

then gn“’ € a.s, in the sense that for any ¢ >0 ,
U . ; ]
(4.2.5a) P[ngn,[w. temfg,'r] l;n(w,t) g(w,t)lgé ].LO as n'—>oo .

Proof: Because of the uniform convergence of a.a. sequences of
trajectories, also the limit process "g(w,t) is sample continuous

on [O,T] and so is the process
|Eat) - Ew,0)| » (w,0e Qxfo,r].
It is separable in the sense of Doob, cf. section 2.3. Hence

258)  oLylew) = s [ Eales) - §(w,t)]

is an ./a-mea.surable function of oué.(). . As we set
>
(4.2.50) A, -ngn,wacxn(w)e.-E] 5

then An,e./f , and {An' ’ n'-1,2,..} is a shrinking sequence

of A -measurable sets. So it converges to an A -measurable set,

say An,J,A e A as n'— o and hence

(40205d) P(A ) y P(A) as n'—s eo .

i wA € A, then w, € An, for all n'. This means, according

to (4.2.5c), that at each n', there is an n" 2 n' such that
O(nu(wA) :‘? a .4
Therefore, according to (4.2.5b), En(uJA,t) does not converge
uniformly in t € {O,T] as n—>c¢2 , and hence
P(A) =0,

showing (4.2.5a) on account of (4.2.5d) and (4.2.5c).
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Corollary: We have shown o(n(w) —-> 0 a.s., as n —»co.
Hence, owing to a theorem of Egorov, see [ 7] y given € > 0O,
there is a set A_€ .4 with P(A¢ )< € , such that o ()

€ £ n

converges uniformly in (L~ A, , as n-—»> co . This means
En(u),t) — E£(w,t) as n—> co, uniformly in

(i, t)e (ﬂ\AE)XLO,T] y P(A; )< € forany &> 0.

Remark: The convergence
}n—>’§ a.s. as n—» o2
in the sense of (4.2.5a) implies
En—’ § in P as n —>e¢?
in the sense that for any € > 0,

P[w :téf\él’)ﬂlfn(w,t) - §(w,t)lg&]-ao as n—» co .

In turn, this type of convergence implies
En—‘, § in distribution as n —» ¢?

in the sense that the probability measures, induced by the processes
En onto the o’-field S of C[O,’l‘], see section 2.3, converge
weakly to the probability measure, induced onto S by g s cfe [2].

Let ,3(t) be the l-dimensional Wiener-Lévy process on [O,T] ’
and qn(t) the function in (4.2.3). Then

(L

Yo Ipt-8)dB(s)
exists as a Riemann-Stieltjes integral in q.m. by virtue of (4.1.3).
According to i in (2.6.2) and to (2.7.4),

§2 aytt-s)ap(e) = [a,(t-)3()]] - {7 B(s)aa (t-s) =
a,(+-1)3(1) + (7 B(s)p,(t-s)as .

It is seen that the rigt-hand side also exists as a Riemann sample
integral, and again by partial integration, so does the left-hand
side. On account of vii in (2.6.2) the sample integrals coincide
with the integrals in q.m. We recall that with probability 1 , the
trajectories of LB(s) are neither differentiable, nor of bounded

variation on [o,T].
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Now the following definition is admissible:

2.6 Bo(t) = SE q, (%-8)d B(s), telo,%), n=1,2,.. ,
to be interpreted as a sample integral, as well as an integral
in q.m., is a smooth perturbation of the l-dimensional Wiener-Lévy
process /3(t) in (4.1.1). It may also be represented as

(4.2.6a) ABa(t) = q (¢-T) A(T) + ‘(3 B(s)p, (t-8)ds .
We shall derive a number of properties of /3n(t).

1) With probability 1 the trajectories of /3n(t) are
smooth functions of t on [O,T], on account of (4.2.4). The

sample derivatives may be represented as

(4.2.6D) ﬁxgk)(t) - Jf pl(lk-l)(t-s)d/&(s), Kk=1,2,.. -

4 44 Now we shall consider /3n(t) as a mapping of YO,T]
into H . Since E 3(t) =0 on [O,T], it follows from v
in (2.6.2) that E/Sn(t) exists and is identical to 0 on [O,T].

/3n(t) is smooth in q.m. Its derivatives in gq.m. may also be

represented as (4.2.6b) and coincide with the sample derivatives.
Let us first show
& B8 = {7 5 (t-8)ap(s) inm qum.

If t and t+h are fixed values in [O,T], {qn(t+hps)-qn(t-s)}/ h
is a continuous function of 8. On account of the mean value
theorem of real analysis, it may be written as pn(t-s+ 8(s)),
where (@(s) is a walue between (0 and h . Now, given
€ >0 and |h‘ sufficiently small, it follows on account
of (4.1.3b) and by virtue of the uniform continuity of pn(s)
on the compact set {O,T], that

” %{ jg qn(t+h-s)d/3(s) - Sg q(t-s)d/B(s)} - S: Pn(t-s)d/g(s) “2 -
L3t - o] - olesn

o
| 5 (patt+ 6(e)-0)-p,(t-8)}a A(a)] 2 §o{pa(t+ 8(s)-8)-p, (t-8)}2at< ¢2m.
The differentiability in q.m. of (4.2.6b) is shown analogously,

anu it follows by iuductiou tuat ﬁql\t) is smooth in g.m.
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iii) 3_(t) is Gaussian on [o,T], by virtue of vi in (2.6.2),
since ,3(t) is Gaussian on [O,T].

iv) If the intervals [tl,t2] and \-_t}’t4] are disjunct, then
the increments

{Baltp)- B ()} ana {8, (8- A, (50}
of /.’)n(t) are stochastically independent and orthogonal in H ,
see (2.3.1), if n is sufficiently large.

For, according to (4.1l.3a),
B{,(4,)- B, (4} { Ba(t,)- B, (850} =
B [7{a,(t,-8) - a (t;-8)faB(s) (7 §a,(t,-8) - qn(ts-l)}d/j(e) -
§2 {an(t,m0) - ay(t-0)}{a, (t,-8) - q (t5-s)}as .
Since the support of pn(t) tends to %0} , the support of
qn(tk+1-s) - qn(tk-a) tends to [tk'tlu-l] as n —> <2 , Hence,
since [tl,tZ] and [t5,t4] are disjunct, the function

{ a(tp=8) = ay(ty-0)} {a,(ts-8) - a (3;-0)]

is identical to O if n is sufficiently large. Then the above
integral is equal to O , showing the orthogonality of the increments.

v) As n— eo , ﬂn—'ﬁ a.s. in the sense of (4.2.5a).

For, if {_Q A, PS is a suitable probability space and
{ﬁn(w yt)y (w,t) € -QX[O,T], n-1,2,..} ’

a sequence of sample continuous representations of the processes

.'sn(t)' then at a.a. « the assertion iii of (4.2.4) is

applicable, since
6n(w st) = Sg qn(t's)d/?l(w 18) .

As also the remark and the corollary to (4.2.5) are applicable:
Bow ,t)—> B(w ,t) as n—» <o , uniformly in
(w ,t) € (S2na,) x[o,2] , a,¢# anda P(a,)<E for any £5> 0,
and

Bn—>7 in P and in distribution as n > <? ,
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vi) As n-—ec0, ﬁn(t)—-» /3(t) in q.m., uniformly in t € [O,‘l‘].

For, on account of (4.1.3a),

130 - Bl = | §3 ante-esapie) - peel)? -

2 {[5 gitwap) - sY{[] o (tmape) - Blu) -

E Sg qn\t-u)d/é(u)jg q (t-v)dB(v) - 2Ej': 1 dﬁ(u)_{(’f q, (t-v)a3(v) +
Eﬁz(t) =

jg qn(t—s)zds = 2_{2‘ q (t-s)ds + t =

jz {qn(t-s) = h(t-s)}st < ftg {qn(x) - h(x)lzdx ,

where h(x) is the unit step function of Heaviside. Because of the
properties of qn(t), exposed in (4.2.3),

q,(x) - h(x)
tends to 0 on (-02,¢0) as n— ¢c2 ., As it is also uniformly

bounded in n,

=T

by virtue of the dominated convergence theorem of Lebesgue.

Now E/Sn(s)ﬂn(t)—a EA(s) B(t) = min(s,t) as n—>e0 ,

uniformly in (s,t) €& [O,T]z by virtue of the following lemma:

(4.2.6c) 1If {fn(t), n=l,2,..} and {Y)n(t), n-1,2,..} are

sequences of mappings of [O,T] into H , converging in gq.m. as

n—>e¢® , uniformly in t € [O T], to E(t) and ’V!(t) respectively,

then the sequence of crosscorrelation functions {E§ (s )72 (t), n=1,2,.

tends to Eg( )‘Q(t) as n->co , uniformly in (s,t) € [O T]

For,

|z (), (0) - BE)N(0)] 2 |2E () 1.(0) - Y0}«

EMXORRIOIIOIE

& a(- [Na(® - 2O + [[Eate) - £ -[nol

on account of the inequality of Schwarz.

S*T{qn(x) -n(x}?—> 0 as n— o> , uniformly in t€[0,1],

3
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vii) Using (4.1.2) and the notation, introduced in section 2.9,
V(EB (s)/3, (%), [0,73%) 1 = V(B (s) 3 (1), [o,r]z) as n—»oo .

For, according to (4.l.3a),
B3, (8) B, () = E {7 g (s-w)a p(u) {7 a,(+-)ap(v) -

Sz qn( s—x)qn( t-x)dx .

Let d = [_sl,sz']x[tl,tz]c[o,ﬂz . Then
20 BB (s)B_(t) = 227 o (s-x)q (t-x)dx =
f:{qn(sz-x) - qn(sl-x)}{qn(tz-x) - qn(tl-X)}dx = W

the latter inequality being true since qn(t) is non-decreasing,
see (4+2.3). Therefore

\AdA Eﬁ}n(a)/:\n(t)l - AclA Eﬁn(s)pn(t)

and so

WEB, ()3, (4)s [0,1)%) = (02 BB, ()3, (1) -
[ﬁ'%zﬁ qn(s-x)qn(t-x)dx = jz{qn('l'—x) - qn(-x)ladx .

It follows from the properties of qn(t) in (4.2.3) that
{qn(T-x)-qn(-x)}Tl as n—>¢3, 0< x<T.

Hence, by virtue of the monotone convergence theorem of Lebesgue,

Ig{qn(T-X) = qn(-x)lzdx T 52 ldx =T, as n—> ¢o ,

As it may be convenient that also the perturbed Wiener-Lévy
processes start with the value 0O at t = 0, we may introduce

the smooth perturbations

o {Bn(t) ” [:’n(o)} , n=1,2,.. , te&fo,r].
Since An(o)->o in g.m, and a.s. as n—>co , and since /5n(0)
is independent of t , the processes (4.2.7) possess all above
properties i - vii , and moreover they are a.s. identical to 0
at t =0 .
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The above results are gathered in the following statement:

(4.2.8) To the l-dimensional Wiener-Lévy process /3(t), te[o,’.t‘],
exists a sequence
{ Ba(), t € forsicnalsa ot }
of smooth perturbations with the properties
1) ﬁn(t) has smooth trajectories with probability 1 ,
ii) /jn(t) is a smooth function of second order,
with E3 (t) =0 on [o.,1]
1349 ﬁn(t) is Gaussian on [0,‘1‘-], and may be defined on A(t),
iv) the increments of ﬁn(t) on disjunct closed intervals
are stochastically independent and orthogonal as n is large,
v) as n— 2 , 3 /3 ae.s., in P and in distribution
in the sense of (4.2.5), its corollary and remark,
vi) ﬁn(t)—a ,B(t) in q.m., uniformly in t € [O,’I‘] as n—» co ,
implying
A ; 1 2
Eﬁn(s)ﬁn(t) — EA(s)B(t) = min(s,t), uniformly in (s,t) € LO,T] 3
vii) the total variation of E /A (s)3_(t) on [ 0,1]°
increases to T, the total variation of E/j(s)/f.(t) on [O,T]z,
as n—» co ,

viii) the perturbations 5n(t) may be assumed to start with
the value 0 at t =0,

In (4.2.8), the first 4 properties describe Bn“) as a
reasonable mathematical model of the coordinates of a particle
in Brownian motion. The properties v - vii show that ﬁn(t)

converges satisfactorily to ﬁ\t) as n—> co .,




55 4.3

4.3. Smooth perturbations of a finite degree of randomness.

It will be shown that there are smooth perturbations of [B(t)
in the sense of (4.2.8), based on a finite number of random variables
ﬁ(ti), ef, [22] . Perturbations of this kind have been used by
Wong and Zakai, see [_31] "

(4.3.1) Let r(x) be a mapping of [O,l] into itself with the
properties

1) r(0) = 0, r(l) =1, and r(x) is non-decreasing on [0,11,
and

ii) =r(x) 4is smooth on [0,1] and moreover such that

r(k)(o) = r(k)(l) =0, k=1,2,.. .

For instance,
r(x) = a,(x-3)

where qz(t) is one of the functions defined in (4.2.3).

032 If p is the partition of [O,T], defined by the subdivision
points t satisfying 0-t°< tl < ale <tI = T, we define

: 4
t -t
i-1 F
) if ti-l

o (_
p ¢ ti- ti-l
The behavior of ri\t) on [ti-l'ti] corresponds with the behavior
of r(x) on [0,1] .

LN

t

(1

ty imlyaniyd o

Let »A(t) , t€ LO,T] , be the l-dimensional Wiener-Lévy process,
see (4.1.1). Let {_Q SRCALES P} be a suitable probability space, and
Blew ,t), (2 ,t)€ QO x [O,T] , a sample continuous representation

of ,3(t).
(4.3.3) Given (4.3.1) and (4.3.2), we define

3.38)  B3(8) = Bl )+ ri(t){lﬁ(ti) = /S(ti_l)} if te [ti_l,ti],
imlyeeyl,

Obviously, there is no ambiguity at the subdivision points ti.

1f {pn, n=1,2,.. } is any sequence of partitions of [O,T] ’

such that A\pn)a 0O as n-> oo , and if we set
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/3a8) =3, (1),
then m
(4.3.3b) 3 Aa8) s b2, 1
is a sequence of smooth perturbations of the l-dimensional
Wiener-Lévy process.
It is endowed with the properties i - viii in (4.2.8).

Proof:
i) It is an immediate result of the definition that the
trajectories /3p(cu,t) are smooth on the open intervals (ti_l,ti)
and that the right~ and left-hand derivatives exist and are equal
to O at the subdivision points ti . Hence the derivatives of all
orders exist also at the subdivision points and so the trajectories

are smooth on ['0,'1‘].

ii) (t) 4is of second order, since at any t & [O,’l‘] it is

a linear combination of some of the random variables /3( ti). Clearly
Edp(t) =0 on IO,T]. It is smooth in q.m. by virtue of arguments
analogous to those, used in i and by applying a simple version

of (2.5.5)

134) /3.(t) is Gaussian on IO,TJ on account of (2.3.1), as
at any t e {0,'1'] it is a linear combination of random variables,
belonging to the Gaussian family {/_-}(t), te [O,T]}.

iv) The increments of 6n(t) on disjunct closed intervals
of [O,T] are stochastically independent and hence orthogonal
as E,B(t) = 0, if n is sufficiently large. For,if

0s slé s, < 85 < 8, AT,
there is an N such that A(pn) < 85~ 8, as n>N . So, to
any partition P, with n > N, there is a subdivision point ti(n)
in [52,55] « And hence
/Jn(sz)-ﬁn(sl) is defined on some increments of ,3(t), té& {O’ti(n)]'
whereas
@n(sd/)-,q,l(sj) is defined on some increments of ,3(t), t € [ti(n)’T]'
The assertion is shown, owing to the independence and orthogonality

of the increments of ,3(t), see (4.1.1) .

4.3
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v) At a.a. cvo € 2, ﬁn(w,t)a B(w,t) uniformly

in te€ [O,T] as n-—» ¢? ., For, being continuous on the compact
set [0,T] , B(w,t) is uniformly continuous on YO,'I‘]. So,

given €& >0, there isa & >0 such that [s,t] < [0,7] and
[s-t | < & imply \/3(9) - ﬁ(t)\< € . Since a(p)-—>0

as n—» ¢> , there is an N such that n > N implies A(pn)<d‘ .
let us assume that partition p in (4.3.2) satisfies &(p) < & .
Given t € [o,m] » there is an index i such that te [t ,,t].

Then |t - t0]< ¢ o {t-ti_1[<d‘ ,

ﬂn(wlt) — ﬂ(w,ti-l) * ri(t) {ﬁ(w!ti) - ﬁ(w’ti-l)},
and so
\/3n(w.t)-/3(w,ti_1)\ - \ri(t)] .\/S(w,ti) ‘/3(‘*’”1-1),\ < 1, € »
Therefore

Balw 14)- Bl D)3 (w 0= Bl 1y )|+ (Bl 1)- plw,e)< 2€ .
The index N is obtained independently of +t and hence
ﬁn(wtt)"’ /S(wrt)
uniformly in t €& [O,T] as n-» ¢” , Theorem (4.2.5) is applicable,
yielding
T, = /3 8.8, 88 N —s <

in the sense of (4.2.5a). Also the corollary and the remark
to (4.2.5) apply.

vi) /3n(t)~—> A3(t) in q.m., uniformly in t & [O,T] as n—» <o ,
This may be shown by arguments analogous to those in v since

/3(t) is also uniformly continuous in g.m. on LO,T], according

to (2.4.7). So, given € > 0, there isa & > 0 such that

‘:s,t] c [O,T] and (s-tl(J imply “,[3(3) —ﬂ(t)“( e .

Again there is an N such that n >N implies A(p )< S .

Let us assume that the partition p in (4.3.2) satisfies A(p)< & .
If t € ['O,'l‘], there is an index i such that t ¢ Iti-l'ti-]'

Now we obtain, see v ,

|| Ba(®) - Al | - lri(t)i'“ﬁ’(ti) - By < e
and therefore

ERCREOIE ERORYICWY B VIO Rl
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Again the index N is obtained independently of ¢t € [p,T] and
hence the convergence in q.m. of /3n(t) to /3(t) is uniform
in t € [o,1].

On account of lemma (4.2.6c), Eﬁn(s) @n(t) —> EfB(s)B(t)
as n-—» o , uniformly in (s,t)é& [O,T}z.

vii) Also this assertion is true since we may show that for
any partition p of ‘_0,’1‘],
2 2
V(EB,(s) B, (1), [0,7)7) = 1 = W(EA(s) A(t), [0,7]7) .
Let p be the partition in (4.3.2) and let
TR AN AR LTA R

Then, as the total variation is an additive set-function,

WEB,(s) B, (1), [0,1)%) - = CTNOYRORINE

i,j=1,.,

If i=j and (s,t)é€ dyso

Bo(e) = Blry_y) + = (8){A(x) - By )Y,
Bpt) = Bty 1) + r(0){B(+)) - Bly; )} ana
E/gp(s) ﬁp(t) =ty + (1:i - ti_l)ri(s)ri(t) .

Since ri(t) is non-decreasing on [ti-l’ti-} with total variation
equal to 1 ,

v(E/sp(s)[sp(t), dii) =t -t .
If i< j and (s,t)€ dy 50
Bote) = By ) + x(){B(t) - By ]
and /3p(t) may be written as
B o(8)= Aty _)+fA(t))- ALty )+ {AC;_1)- BLe N +r () {B(%5)- pley_))
And hence
E/3p(s) Bp(t) =t ;¢ (1:i - ti_l)ri(s) .

And now, since ERB _(s)B3_(t) depends on s alone,
4 P P

V(ER ()B (1), d;;) = O -
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If i>j and (s,t) e dij » a similar result is obtained.
And so we obtain

VER () A1), [0,1)°) = = V(BB (6) (1), ag) -

1=ly4,
b3 (¢, =t, ) =t =t = T .,
i=1,.,I b i-1 3 (]
viii)  /3,(0) = B(0) = 0 , by virtue of the definition of/g(t)
and the definition of /5n(t) in this section.

The perturbations /3n(t) of ,3(t) in this section are
defined on a finite number of random variables.
The mappings /3n(t) of [O,T] into H are polygons. The

derivatives in q.m. at the vertices are identical to 0 .

4.4, The N-dimensional Wiener-Lévy process and some of its

differentiable perturbations.

(4.4.1) Let /;’,ol(t),.., /30N(t) be N mutually stochastically
independent (and orthogonal) l-dimensional Wiener-Lévy processes

on [O,T] of type (4.1.1). Then

(4.4.1a) E/soi(s)poj(t) = é‘ijmn(s,t) , i,3=1,.,N, s,t € [o,'r] s
where the Kronecker d}j is equal to 0 if i # j and equal
to 1 if i=j .
The column N-vector
/3ol(t)
.4.1b Bolt) = , tefo,7,

L
/soN(t)
is the standard N-dimensional Wiener-Lévy process. It follows
from (4.4.1a) that

4.4
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-
(4.4.1c) Eﬁo(s)ﬁo(t) = min(s,t) Iy
where IN is the NXN-identity matrix.

(4.4.2) Let G(t) be an NxN-matrix whose entries gij(t) are
continuously differentiable mappings of [O,T] into (-ed2,¢2).
The N-dimensional Wiener-Lévy process on tO,T] is the mapping
/3(t) of [0,7] into HY , defined by

.4.28 (1) = S;‘ 6(s)as3(s) , tE€ [o,1] .
Here /30(3) is the standard N-dimensional Wiener-Lévy process
of (4.4.1b). From now on /3(t) will stand for N-dimensional
Wiener-Lévy process. The components of /3(t) are

N N
(at.20)  f3,(%) = {7 1:21 833 (8)a /3, (8) = 1:21 OV IO

i=1l,.,N.
The integrals in (4.4.2b) exist as Riemann-Stieltjes integrals
in g.m. on account of (4.1.3).

By virtue of i in (2.6.2) and by (2.7.4),
N N
Ueteze)  f3y(1) = = gy, (0) By (1) - =[5 3¢ Ea(®) Boy(e)as,

i=1l,.,N.
Now it is seen that the integrals also exist as ordinary Riemann
sample integrals +).
Hence (4.4.2a) is meaningful as an integral in q.m. as well
as a sample integral. Both types of integrals coincide, owing
to vii in (2.6.2). And the following relation holds:

(4.4.2a) B(e)=§¥ a(s)ap (s) = 6(2) 3,() - (¥ 2 6(s) B, (o)as.

o ds

+) Usually the elements of G(t) are only demanded to be continuous
functions. In order to establish the meaning of (4.4.2a)
or (4.4.2c) as a sample integral, continuity of these elements
is not sufficient. It would be sufficient that they were
moreover of bounded variation on [O,T]. However, in order to

subject G(t) to a more realistic condition, we demanded that

4.4

the elements g;:(t) should be continuously differentiable on 0,T].
1J
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On account of (4.4.1a), (4.4.2b) and (4.1.3a),

444

N N
(4.4.2e) Eﬁi(s)pd(t) = :L—l hEl E g: g (w)ds , (u) _(: gjh(v)dpoh(v) -

N
:&:—1 E: gik(u)g;jk(u)du , m = min(s,t) , (8,t) € [0,'1—'12 )

and hence the covariance function matrix satisfies

(44.2f) EA(s)A3(t) = j: G.(u)GT(u)du, m = min(s,t), (s,t)€ [0,T]2 .

As we set

4e2 B(t) = 6(£)6'(t) , tefo,7] ,
then
(4.4.2h) o EA(+) A1) = B(t), tefo,1] .

It follows by the method of (2.9.4) and the result in (4.4.2e)
that the elements of the covariance function matrix E[S(s)/j(t)
are of bounded variation on LO,T]2 :

N
(ea.21) VO EB,(8)3,(1), [0,7)° VEZ [0 ey Wglwfam =

2
£ NTM as M = max Eial )] e
i,3=1,.,N, te(0,T] &350}

The separate components ,Bi(t) of ,(t), i=1,.,N, possess the
properties i-v of the 1l-dimensional Wiener-Lévy process (4.1.1).
If, for instance, the matrix G(t) is independent of t on LO,T],
the components ﬁi“') also possess the property vi, i.e. they
have stationary increments. If G(t) is identical to Ir.N on [_0,‘1‘],
[_’,(t) is identical to ﬁo(t), the standard N-dimensional Wiener-Lévy
process, whose components possess all properties i - vii of the
l-dimensional Wiener-Lévy process (4.1l.1).

In non-trivial cases, the components of /S(t) are not
differentiable in q.m., and their trajectories are with probability 1

not differentiable and not of bounded variation on the sub-intervals

of [o,T].

In order to obtain continuously differentiable perturbations of
the N-dimensional Wiener-Lévy process (4.4.2a), we shall start with
perturbing the N-dimensional standard Wiener-Lévy process /;'o(t).
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1ts respective components /Soi(t), i=1l,.,N, are replaced by
processes ﬂsoi(n,t), n=1,2,.. . Here /3oi(n,t) is related to
ﬁoi\t) as ﬁn(t) to /3(t) in (4.2.8). And so

ﬂol(n't)
(4.4.3) By (n,t) = ] , telo,], nelz2,.. ,

ﬁoN(‘n' t)

is a smoothly perturbed standard N-dimensional Wiener-Lévy process.
Its components are endowed with all properties i ~ viii in (4.2.8).
Hence, if i # j, /6°i(n,s) and /Soj\n',t) are stochastically
independent and orthogonal as they have zero expectation, and as
they are defined on /3°i(u),11e LO,T] and on /303(7), v e [O,T]

respectively.

(4.4.4) Definition: If G(t) is the matrix in (4.4.2) and if
/3°\n,t) is the N-vector (4.4.3),
ﬂl(nv t)

/Bn,t) = : - [see)asns) ,  tefor],

ﬂN(n: t)

is a continuously differentiable perturbation of the N-dimensional
Wiener-Lévy process (4.4.2).

By virtue of (2.8.3), (2.6.2) and the properties of /So(n,s),
(4.4.48) [B(n,t) = S§ G(s) d% ﬁ%(n,a)ds -
6(t) B, (n,t) - [¥ 2 6(s) 3 (n,8)as.
The components /31(n,t) of /3(n,t) satisfy

N
(etetb)  f3y(m%) = = (% &y (8)a3, (nys) =

= %gt &5 (s) 'g/-‘5 (n,s)ds =EN{8 () B, (nyt) - v 4 (s8) (n,s)ds .
k=1'° ik de /rok ! kel ik ok *oe? o ds ik /30k Y

The above derivatives and integrals exist in sample sense as well

as in q.m. In both senses the results coincide by virtue of (2.6.2). !
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Owing to (4.4.4b), it is a result of real analysis and of (2.7.2)
respectively, that the components /ei(n,t) are differentiable in

sample sense, as well as in g.m. with derivatives
d N d
qtBi(net) = :Ei 8 (%) 43 Blmit) i=1,.,N .
k=

Since /3bk(n’t)' k=1,.,N, is infinitely often differentiable in
sample sense and in q.m., and as gik(t) is assumed to be continuously
differentiable,

a3 /Bi(nit)
ig again continuocusly differentiable in sample sense and in g.m.,
see (2.5.5). If the matrix G(t) possesses a derivative of order K,
the components /Si(n,t) possess derivatives of order K+l1, both

in sample sense and in gq.m. The results in both senses coincide.

Since E/c%(n,t) = 0 on account of (4.4.3) and (4.2.8), also
EAB(n,t) = 0

on account of (4.4.4) and of v in (2.6.2).
And as /3°(n,0) = 0, also /3(n,0) =0, see (4.4.4a).

By assumption in (4.4.1), the components /3°i(t) of /Sb(t)
are stochastically independent and orthogonal processes on [O,T].
Hence the random variables figuring in /3°(t), = [O,T], belong
to a centered Gaussian subspace of H, see section 2.3, It follows
from (4.4.4), (4.4.3) with (4.2.8) and from (2.3.1) that the random
variables figuring in /3(n,t) also belong to that Gaussian subspace.

If OIS ISR B N = RO

1 2 3 4
LA
Ailrty) = Bilarty) = = Stf 8;) (£)d By (ny %)

and N
- rt
Bylmity) = fylarty) = = Stg 83, (1)d /3, (n,t) .
So the above increments are defined on increments of /30k(n,t), k=1,.,H,
in [tl’tz] and (ti’t4] respectively.

Owing to (4.2.8) these respective increments are stochastically

independent and orthogonal if n is sufficiently large, and hence

4.4
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the same is true with respect to the above increments of the

components of A(n,t).

Let us consider the difference of the components of the

N-dimensional Wiener-Lévy process (4.4.2) and its perturbation (4.4.4):

. t 4
18- 1) 2 o (OB )= A 9}-15 o8 e (B (2)- Blmss) ds]
t € o,7], i=1,.,N.

The integrals may be seen as sample integrals, as well as integrals
in q.m. The integrals of both types coincide.

By virtue of (4.2.8), the trajectories of ﬁok(n,a) tend to
the corresponding trajectories of ﬂok(s) as n—> c” , uniformly
. ; - d
in s € [O,’l] » k=l,.,N . As by assumption /= gik(s) is

continuous on [O,T], the trajectories of

& € (8) [ Byle) - B, ne)}

tend to 0 as n—>o2 , uniformly in s é€ [O,’l‘]. Hence, on account
of the rules of ordinary real analysis,the trajectories of
@i(t) —~ ﬁi(n,t) tend to 0 , uniformly in t € [O,T]. Lemma (4.2.5)
applies and so the trajectories of ﬁ)i(n,t) tend as n —» O
to the corresponding trajectories of ﬁi(t) a.s8. in the sense
of (4.2.5a). This type of convergence implies convergence in probability
and in distribution in the sense of the remark to (4.2.5).

By virtue of (4.2.8), ﬁok(n,s) tends to 601((5) in q.m.
as n—> o2 , uniformly in s € [0,'1‘]. Since d% gik(s) is

continuous on IO,T],
“d% gik(s){ﬁok(s) & ﬁok(nrs)} ” > 0 as n—>» o2,

uniformly in s € [O,T]. Hence, by virtue of (2.7.5),
fji(n,t) —> ﬁi(t) in q.m, as n—>c¢© , uniformly in t € LO,T].

Because of lemma (4.2.6c), this latter result entails

Eﬂi(n,s) ﬁj(n,t) — Eﬁi(s) ﬁj(t) as n-—s»co ,

uniformly in (s,t) € [0,'1']2 . dyd=lye, N o
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Finally, let us consider the total variation on [Q,Tﬂz of
the elements of the covariance function matrix E/S(n,s)ﬁr(n,t).
On account of (2.9.2),

N N
B y(nis) By(ant) = B = (7 &y, (wa B, (mw) £ fq €5V By, (a,v)

N
s kel I: I: gik(u)gak(v) ddEﬁok(n'u)ﬁok(nlv) ’ i’j-lt'DN ’

since ﬁok(n,u) and /Soh(n,v) are orthogonal if h# k,
see (4.4.3). Obviously,

V( E/Si(nns)ﬁd(nvt) ’ Y_O’T]2 ) =

N
. §o 15 aucey () aaB g mw) Baiw)  [0,1)7 ).

Because of i in (2.9.4) and vii in (4.2.8),

2

VO §5[3 eywey (v) adk B (aw) B (ayv) 4 [0,1)2) = WP r,

it M= , gij(t)}.

max
i,d=1,.,N, te[0,T]
And hence
2 2
v( Eﬁi(n,s)ﬂj(n,t) - [o,'r] )& NN T, n=l,2,.. , i1,i=1,.,85.
We recall (4.4.2i), where we established

V(ER(s)py(t) , (0,1 ) e wulr.
And so the elements of the covariance function matrices
Ef(n,8)A(n,t) and Ep(s)3(t)

are of bounded variation on LO,T]Z, uniform in n=1,2,.. .

If the components of /3°(n,t) are of the type, defined in
section 4.3, then /3(n,t) , t é[O,T] is defined on a finite

number of random variables.

We have shown that A(n,t) is a reasonable mathematical model
of the position of a particle in Brownian motion. And we have shown

the measure in which [3(n,t) approaches ﬁ(t) if n is large.

4.4
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The above results are gathered together in the following

statement:

(4.4.5) Given the N-dimensional Wiener-Lévy process /3(t), te[O,T],

in (4.4.2), there is a sequence

{ﬁi(n,t) » té&fo,T], el e }

of perturbations of /S(t) with the following properties.

As 1i,j=1,.,N,
i) the components ﬁi(n,t) have continuously differentiable
trajectories with probability 1 ,
ii) the components ﬂi(ﬁ,t) are continuously differentiable
in q.m. on [0,’1‘],
iii) E A(n,t) =0, t € [O,TJ , and the random variables, figuring
in AR(n,t) and A(t) , téY_O,T], belong to the centered Gaussian
system, generated by /3 (D) té{o,'l‘], fortall sl o S

iv) the increments of ﬁi(n t) and ﬁ (n,t) on disjunct
closed intervals of [0 T] are orthogonal 1f n is sufficiently
large,

v) as n — co, the trajectories of Bi(n,t) tend to the

corresponding trajectories of /;’i(t) a.s. in the sense of (4.2.5a)
and hence also in probability and in distribution in the sense of
the remark to (4.2.5),
vi) as n-— o9 , ﬁi(n,t) — /ii(t) in q.m., uniformly
in té€[o,7],
implying that Eﬁ (n,s) ﬂJ(n t) — Ep (s) /3 (t) as n—> &2,
uniformly in (s,t)E[O T]
vii) the elements of the covariance function matrices
E/&(n,s),BT(n,t) and Eﬁ(s)ﬂT(t) are of bounded variation

[o,'r]z , wniform in n=1,2,.. ,

viii) /3(n,o) = O] 52 e .

At each n , /3(n,t), té[O,T], may be based on a finite set

of random variables.

4.4
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5 Ordinary linear systems, driven by white noise and the
behaviour of their solutions with respect to differentiable
perturbations of the involved noise processes

5¢1. The solution of an ordinary linear system, driven by

an N-dimensional Wiener-Lévy process.

We shall continue chapter 3.

elel Let be given the system
d E(t) = a(t) g(t)at + aB(t) +) s tefo,7],

55.1.lal
£(0) = 7

whose meaning is
(5.1.1b) €(t) = 7 + S: A(s) €(s)as + 3(t) +) , t € [o,'r] .
We recall that

+) A(t) is an NxN-matrix whose entries aij(t), igj=1,.,N,
are continuous mappings of LO,T] into (-er,en) ,

ii) 73 with components )&, i=1,.,N, 1is a centered Gaussian
N-vector, E Y =0 ,

iii) ,3(t) is the N-dimensional Wiener-Lévy process (4.4.2a)
with components /3,(t), t€[0,T], i=1,.,N .

And it is assumed that moreover

iv) )’i and ﬂd(t), te(o0,7], 1,3=1,.,N, are stochastically
independent.

+) Usually, d,3(t) in (5.1.1a) is replaced by M(t)d 3(t), where
the matrix M(t) is endowed with the same properties as G(t)
in (4.4.2). This means that /B(t) = j; 6(s)a /3, (s) in (5.1.1b)
is replaced by j: M(s)d/3(s). According to (2.9.4),

fsm(e)aBle)=[2 u(e)af? (u)a 3 ()= IF u(s)e(s)a B (o)=[F T(s)a g (s).

Since the matrix G(s) = M(s)G(s) is also continuously differentiable

on (O,T], it is not a restriction to treat systems like (5.1.la).
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Because of the above assumptions,

{ Yi 0 ABy(8)s 1,371,008, te[o,1] }

is a centered Gaussian system, and
)’i.L ﬂj(t) y i,J=1,.,N, té[O,T] .

(5.1.1¢) E(t) stands for a mapping of [O,T] into H N,
continuous in q.m. and sample continuous.

Since ,3(t) 4is not differentiable on {0,T], neither in q.m.,
nor in sample sense, there is not a system of differential equations
of type (3.3a), equivalent to (5.1.1b).

(5.1,2) There is a unique E(t) of type (5.l.1c), satisfying (5.1.1b)
in sample sense and in q.m. It may be represented as

(5.1.2a)  E(t) = F(t)? + F(t) g: Fl(s)a(s) =
F(1)Y + (3(t) + F(t) [ ¥ (s)a(s) B(e)as ,

where F(t) is the fundamental matrix, associated with A(t),
see (3.2.3). The integrals may be seen as sample integrals as well

as integrals in q.m.

Proofs: If there is a solution to (5.1.1b), it is unique. For, if
both E(t) and 7)(t) satisfy (5.1.1b) then E(t) - N(t)
satisfies (3.2.1c) and hence E(t) - ¥)(t) =0, té{p,T].

We shall show that substitution of (5.1.2a) into

E(t) - |2 4(s) € (a)as
yields Y + A(t) .

On account of (3.2.2) and (3.2.4) substitution of E(t)=F(t)Y yields ).
1t remains to show that substitution of

E(t) = F(t) J‘: F‘l(s)d/s(s) yields ,3(t) .

d

Because of A(s)F(s) = i F(s), see (3.2.3), it is by means of partial

integration (2.6.2) and by virtue of (2.7.4) and (2.9.4) that we obtain
£(0)- 1% AR {1 F e p)}as - E(0)- ¢ dE(s) f(s ¥ Bw)as -
gt - (7o) {2 Flaw]] + (2 F(s)difz OOV

£(4)-F(£) [¥ P (s)a 3(s)+ (¥ F(s)F(s)a/3(s)= E(t)- E(£)+(F a/3(a)= B(1).
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By virtue of foregoing results, all above operations are valid
in q.m. as well as in sample sense. The results in both senses

coincide.

Owing to v in (2.6.2),
¢(t) = P(1)EDY + F(x) [ P (s)arBa(s)
is the unique solution in g.m. to
() = B2 + (¥ a(s) p(s)as + BBA(1).

Here E Y =0 and EA(t) =0, t€[0,7]. If » and ,3(t) in (5.1.1b)
were replaced by c +» and b(t) + B(t) respectively, where b(t) is
assumed to be continuously differentiable on [O.T], the solution to

the thus modified system could be written as x(t) + E(t), with

E E(t) =0 on [0,T]. Analogous to the results in (3.3.4), x(t) is
governed by a deterministic system and E(t) by a stochastic system.

Below we shall discuss several properties of E(t), the
solution (5.1.2a) to (5.1.1b).

(5+1.2b) The components §i(t), i=1l,.,N, of £(t) are continuous
in q.m. and sample continuous on [O,T]. These properties were
imposed on  ¥(t) in (5.1.lc). The representation (5.1.2a) shows
that £(t) is endowed with these properties.

However, in non-trivial cases the components fi(t) are not
differentiable in q.m. on [0,T]. And with probability 1 , the
trajectories are neither differentiable, nor of bounded variation
on the sub-intervals of [p,T].

(5.1.2¢) {gi(t), J=lris N, te[o.w]}
is a centered Gaussian system. It is Gaussian by virtue of (2.3.1)
and representation (5.1.2a), whereas E E(t) =0 on [O,T] on
account of v in (2.6.2) since EY = 0 and ES3(t) =0 on LO,T],
see also the discussion on the top of this page.

On account of the definition of ,/3(t) in (4.4.2), the above
Gaussian system is a subset of the Gaussian linear space, generated

by the Gaussian system
iyi, =100, Bs(8), d=1,.N, te[O,T]} .
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N
(5.1,2d) E g(s)'gT(t) = F(s) {EY"T+ S: F'l(u)B(u)[_F'l(u)] du}FT(t),
where m = min(s,t) and B(t) is the matrix (4.4.2g).

For, the elements of matrix E g(e)ETZt) may be computed
as follows:

N
E§;(s) & (¢) = E [(E £,,.(8) { AN hzl fkh(u)d/sh(u)})

Z £ (9 § Yr + S Z rk.h.<v)a/3h.(v)})}

where fij(a) and f;J(t) y i,j=1,.,N, are the elements of the

matrices F(s) and F-l(t) respectively.
According to (4.4.2a) and (2.9.4),

N
S ri()ag, () = (2 £ (u) = 4] ey 038, (") -

N
= (o T ()@, (w)a By )

=l

and hence, on account of (4.4.2e),
B (o fp(wap, @) (250 (Map,, () -

N N
= z E (2 £ (w)ey,(was, () (¢ £ (g (VB (v) -

r=1 r'=

r2_1 o kh(n)shr(u)fklhl(u)gh'r(ﬂ)du-

2 k) { = g me,m] i
o “kh iy &\ W81y u) k'h' u)du -S f (u)hhh (u)fk,h'(u)du,

f bij(t)' i,j=1,.,N, are the elements of B(t).
As le- ﬂj(t)v i,j=1,.,N, tEEO,T],
t -1
EY,T =0, where O - jo It 088, 6r) .
For, if { 0; 9 N=1,2,.. } is a sequence of Riemann-Stieltjes

sums, converging in q.m. a8 n—> &2 to O , then on account of (2.1.3),

0=EY 0, = lim EY O -E}’a' .
x n=>o°0
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And hence

N
E Ei 8) §j(t) 2 rik(e)Ekaklfjkl(t) o

kyk'=1

k
rik(s){ o kh<“>bhh-<u>fk-h~<u>du} £ (8)

showing (5.1.2d).

k,h h',k'-l

{5.1.2¢e) £(t) is an N-dimensional Markov process.

Proof: Let i_('l A, P} be a probability space, suitable for
representing all events below.

Llet 0£s St ST .

Let B[s] bve the minimal O -field generated by E(s).

Let 5.5[0,5] be the minimal ¢ -field generated by &(u), ueio,s].

We have to establish the Markov property

Ez['o's]g(t) - g3le) €(t) a.s. , see [15].
Since

E(s) = F(s)7 + ¥(s) 2 ¥ l(w)a Blw),
it follows that
E(t) = F()F 1(s) E(s) + F(¢) ([ Fi(map(v) =
nie] + (lst]

as we write
ls] = F(H)F (s) §(s),  %[s,t] = P(¥) (¥ P i(v)am(v) .

([s,t] is defined on the increments of ,3(v) in [a,t] and

£ tn); uE[O,e] is defined on the increments of B(v) in [O,u]
and on Y . Hence, t{s,t] is stochastically independent of
€w), uef0,s], and so

BR8] r (s, 4] = EBC) £[s,4] = Exfs,t] - 0 a.s.
Tz[s] is ﬁ[s]- and 53[0,5] -measurable, entailing

Eﬁ[o’s]T)[S] o Eﬁ[s]vts] -, YJ[S'] 8.8,

Therefore
Eﬁ‘:o,s] g(t) _ E@Y_O’S]{,D[S] e :[s,t]} - EﬁI_O,B] Y)T_B] ~ E@[O’S]C[B,t]-
piel = 220 + £} - 220 £ a.

5.1
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It is contained in the above lines that

2205) g(4) = me] = F(£)F"2(s) € (s) .
Hence E(t), t E[O,T) is in general not an N-dimensional martingale.

It is also seen that £(t) is in general not a process with

independent increments.

The l-dimensional wide-sense stationary version of the solution
€(t) is called Ornstein-Uhlenbeck process. Ornstein and Uhlenbeck
proposed to use this process as a mathematical model of the velocity
of a particle in Brownian motion, see [3 ] and [30] for instance.
However, as we remarked in (5.1.2b), it is not differentiable in q.m.,
and with probability 1 its trajectories are neither differentiable,

nor of bounded variation on the sub-intervals of [O,Tl.

5+2. The behaviour of the solution with respect to differentiable

perturbations of the N-dimensional Wiener-Lévy process.

As we explained in chapter 1 , it is meaningful to investigate
whether solution §(t),(5.1.2a), to system (5.1.1b) is stable with
respect to differentiable perturbations of the N-dimensional
Wiener-Lévy process ,3(t) in (5.1.1b). And in particular, attention
should be paid to the sample behaviour.

To this purpose, /a(t) in (5.1.1b) will be replaced by an

element of the sequence

{ A(n,t), telo,1], n-1,2,..}
in (4.4.5) of continuously differentiable perturbations of /3(t).
Thus at each n, n=1,2,.. , we obtain a system

En,t) = ¥ + (¥ A(s) £ (n,0)as + B(n,t) , tefo,r] .

Since /3(n,t) is continuously differentiable in sample sense
as well as in q.m., this system is equivalent to the system of

differential equations
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3 Em,t) = A(6) £ (n,t) + & A(n,t), telo,r],
with initial condition
E(nxo) - Y ’

on account and in the sense of (3.3.1) and (3.3.2). So there is a
unique solution §(n,t) which may be interpreted in gq.m. as well

as in sample sense. It may be represented as

E(n,t) = B() 7 + B(¢) [ ¥ () 2(n,0)a8 =

F(£) 7 + Bln,t) + F(t) | ¥ (s)a(s) B(n,8)as ,

where F(t) is the fundamental matrix associated with A(t) ,
see (3.2.3). The second equality is a consequence of partial
integration (2.6.2) and of the properties of F(t). All theorems
of section 3.3 are applicable to £ (n,t).

If E&(n,t) tends to £(t) in (5.1.2) as n—s e , E(t)
is "stable" . The exact meaning of this kind of stability depends
om the way in which ,B3(n,t) tends to ,3(t) and £(n,t) tends
to £(t) as n-—> es . A detailed account of the mode of stability
will be given in each relevant situation separately.

0251 Summarizing,
£(t) = B(t)Y + A(t) + F(2)[* #72(e)A(s) B(e)as
is the solution (5.l1.2a) to the system
Et) = 7 + (P a(s)E(s)as + A1) , tefo,T],

in (5.1.1). All conditions in section 5.1 are assumed to be fulfilled

and so all results in 5.1 are valid.

A(n,t) is an element of the sequence in (4.4.5), endowed with
all properties i - viii listed there.

E(n,t) = F(£)Y + B(n,t) + P(t) (¥ #1(s)A(s) B(n,s)as
is the solution to the system
S E(n,t) = A(D) Em,t) + $AM,) , teloT], E(n,0) = ¥V ,
and hence g(n,t) is endowed with all properties established in
section 3.3.

We shall show:
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§(t), t (-[O,T] is stable with respect to continuously
differentiable perturbations of the N-dimensional Wiener-Lévy
process /3(1:), t€[0,T], in the following sense: If n-—>c»o ,
then

1) §i(n,t)-—’ Fi(t) in q.m., uniformly in t&[O,T_], fuly s,y
entailing

E Ei(n,s) Ed(n,t) — E §i(s) Ej(t) uniformly in (s,t)€ [O,T]Z
i,j=1,.,N, owing to (4.2.6¢c),

ii) g‘i(n) s §i a.s. in the sense of (4.2.5a), i=1,.,N,
entailing also convergence in probability and in distribution,
see the remark to (4.2.5).

Proof: According to the above exposition,

E(t) - Emyt) = B(Y) - Blayt) + B(2) I FH(e)as){B(s) - Bln,s)}as
where the integral may be interpreted as a Riemann integral in q.m.
as well as a Riemann sample integral.

Concerning assertion i, let us first note that
ﬁi(n,t) — Bi(t) in q.m. as n —> &2 , uniformly in t€ {O,T],
i=1,.,N,
on account of vi in (4.4.5), or, equivalently

té[o '] JAt) - B@,t)f|y >0 as n—s oo,
see chapter 3. Hence it follows that
tq ; IIE( t) - €,y = [0 q [A() - Bty +

max max |F1 max n, —
( ,T]lp(t)’)( b ] (t)A(t)l )2l ]})pm Bla,t)|| g) =0

as n—» 09 , showing i .
Concerning ii, let {ﬂ A P} be a probability space,
suitable for representing the above stochastic processes. As e L),

and in obvious notation,

| §1(w.t) Einyew,t) | & |By(w,t)- Bimw,t)| +

= ]r j(t)” \f'k\s)l lakh(s)l |/3h(w,s) Py(mr e, s)( ds .

At a.a. fixed cO0€ L , I@h(cu,s)- ﬁh(n,w,s)} —> 0 as n —» c” ,
uniformly in s ELO,T], h=l,.,N., Hence, at a.a. c0 ¢ 2,
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| E(w,t) - ¥ (m,w,t)| —> 0 as n-s o, miformly in t€[0,1),
according to the results of ordinary real analysis. Theorem (4.2.5)
applies, and ii is established.

If in the above systems
7, PB(t) and  AB(n,t)
are replaced by
c+ 2 , b(t) + B(t) and b(t) + A(n,t) respectively,
the deterministic parts of the solutions coincide and the, above
theorem on stability is applicable, see (3.3.4) and (5.1.2).

Also E‘z'g(n,t)—o Eﬁf(t) in q.m. as n— 29 , uniformly
in t€[o,7] , see (2.2.2).

The l-dimensional version of the result in (5.2.1) may be seen
as a special case of a general theorem of Wong and Zakai, see [31] .
Wong and Zakai investigated the above type of stability with respect

to the l-dimensional Ito-equation

ag(t) = £( E(t),t)at + g( £(¢),t)a B(¢v) ,  tefo,T],
E(0) = Y .

In general, it is only by means of Ito-calculus or related calculi

that this equation is (uniquely) solvable, provided that certain
conditions are satisfied. It should be stressed that in general the
results of Ito-calculus cannot be obtained by means of the ordinary
calculus, exposed in chapter 2. Essentially, Ito-integrals are limits
of sequences of Riemann-Stieltjes sums, where the values tl':e‘-tk-l’tk]
in the intervals of the partitions are fixed at tl': - tk-l « Wong and
Zakai showed that the sequence of ordinary sample solutions of the
ordinary stochastic differential equations

S %(n,t) = £( E(n,t),t) + &( §(n,1),t) $B(n,8) , tefo,7],
E(n.o) =7, n=1,2,.. ’
tends to the Ito-solution of

a £(8) = £( £(t),t)at + 3a( §(1),1).,% ( £(t),t)at + g(E (1), )3 (%),
te[o,T] . k(o) = 7,
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if certain conditions, imposed on the functions involved are
fulfilled. And so the Ito-solution of the Ito-equation is in general
not stable in the sense of (5.2.1).

In particular, the equation in (5.2.1), i.e. equation (5.l.la),
may be seen as an Ito-equation. It may be solved by means of Ito-
calculus. Then, however, the Ito-solution coincides with the ordinary
sample solution and solution in gq.m. in the sense of section 5.1 .,
The theorem of Wong and Zakai is applicable, yielding that here the
solution is stable as in this particular situation the coefficient
of d/3(t) is independent of £(t). However, we prefered to avoid
the involved Ito-calculus and theorem of Wong and Zakai, and to
establish the stability directly.

A result, similar to that of (5.2.1) , has been derived in [27] .
There an Nth order linear differential equation with deterministic
coefficients and a stochastic right-hand side is treated along the
lines of this chapter.

The stability of the solution E(t) in (5.2.1) with respect to
perturbations of the other involved data may be shown by methods
analogous to those in treatises on ordinary differential equations,

see for instance [ 8 ].
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6 Kalman-Bucy and related estimates, and their behaviour with
respect to differentiable perturbations of the involved
white noise processes

6.,l. Linear minimum variance estimates of Wiener and Kalman-Bucy.

Throughout we shall use the conventions of section 3.1l.

Belsl Let be given the N-dimensional linear system of (5.1.1),
d §(t) = A(t) E(t)at + a 3(t), tefo,1],
o) = 7,

with the properties i-iv described there.
Then the solution (5.l.2a),

(6.1.1b) £(t) = F(t)Y + F(t) jz F1(s)aB(s), te[o,1],

is endowed with all properties listed in (5.1.2).

(6. 1L.1a)

Given tE[:O,T], E(t) is '"observed" as the column M-vector [(s)
Z(s)
(6.1.1c) T)(S)

at all sESt.

Vl(s) + E(s), where the column M-vector

SB H(u) £ (u)du,

[}

]

Here S, is a subset of [O,T] . It may vary with t .

H(u) is an M XxN-matrix, whose entries are continuous mappings
of {O,T] into (- e»,em). Since E(u) is continuous in q.m.
on [0,7], H(u) §(u) is also continuous in g.m. on [0,7],
see (2.4.4). And so 72(9) exists as a Riemann integral in gq.m. on
account of (2.7.1). By virtue of (2.7.2), 'L?(s) is continuously

differentiable in g.m. and satisfies

(6.1.1d) S 9 (s) = H(s) E(s) .

Since E E(u) = 0, ue[O,T], E‘)Q(s) = 0, see v in (2.6.2).
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Finally, E(s), sE[O,T], is an M-dimensional Wiener-Lévy process
of type (4.4.2). So it may be written as
Als) = (B Ewaf,(u) ,
where G(u) is endowed with properties similar to those of G(t)
in (4.4.2), and where Zgo(u), ué-[O,Tﬂ, is an M-dimensional standard
Wiener-Lévy process. It is moreover assumed that at each u¢ [O,T],
/SO(u) is stochastically independent of » and /3(t), tefo,T].
And hence, since all involved random elements are centered,
ﬁj(s).L b4 ’ /33(3) 4 ﬁi(t)' J=1,.,M, i=1,.,N, siteioiT]’
and so
(6.1.2e)  34(s) L £ (¢), p3y(s) LM (u),
s,t,ue{o,T], i=1,.,8, Jd,k=l,.,M.
As we write
= TR
B(u) = G(u)6 (u),
then according to (4.4.2f),
. G2 mn % 4
e {L/S(s;,@,(t) .‘E-o B(w)du , m=min(s,t) , s,teLO,T],
i Eﬁ(s)/.’»(s) = B(s) .

Later, an additional condition will be imposed on B(s) .

The problem to be treated is to describe the conditional expectation
~
E(t\st) of ¥(t) , given the class of observations

c(sy) = {Z5(e)s  3=1,.M, e€s -
Let H be the Hilbert space, generated by the centered Gaussian
system

{yk, k=l,o,N, B,(t), i=1,.,N, te[0,7], F  (s)s J=1,- M, seI_O,T]}.

Then also H is a centered Gaussian system, containing all random

elements described above, see (2.%3.1). Let

n[c(st)]
be the closed linear subspace of H , generated by the elements of

c(st). Then according to (2.3.1),
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= §,(t1sy)
6211 E(t\st) =1 :
E(t(s,)
may be seen as the column N-vector, whose components Ei(t \ St) are
the orthogonal projections of §i(t) onto H[C(St)] sy di=lyosH. Or,
the conditional expectation of an element Ei(t) coincides a.s. with
its linear minimum variance estimate (linear least squares approximation) .
Ignoring (2.3.1), estimates of the latter type exist uniquely as
orthogonal projections onto the closed subspace H[C(St)] , by virtue
of the pfo:]ection theorem for Hilbert spaces, see [1]3.5.
As Ei(t | S,) 1is the orthogonal projection of Ei(t) onto
g [c(sy)]
A
§,(¢) - E.(¢]sy)
is orthogonal to all elements of H [c(st)] , or equivalently, to all
elements of C(St) on account of :che continuity of the inner product
in H , see (6.1.4). Hence each £, (¢ | St) is characterized as the
unique element of H {C(St)] with the property

BE(4) 7y(0) =B E(¢)8) () s 31,4, ses, .
or, E(t | St) is the unique solution in H N[ C(St)] to the

N=dimens]

lonal Wiener-Hopf system

(6.1.1h) E g(t)zT(s) = E g(t \ st)ZT(s) » B8ES, .

~
Depending on the position of t and S, in [O,T], E(t) St)
is a predicted (extrapolated) or interpolated random vector.

If the involved stochastic processes are wide-sense stationary,

the estimates are of the type of Wiener and Kolmogorov, see [}2] .

(6.1,2) 1r 8; = [O,t] 2 then g\t [st) in (6.1.1) , in this
case usually denoted as §(t| t), is the Kalman-Bucy filter estimate,
see [ 4] - [ 5], [12] " [17] for instance.

In this case an extra condition is imposed on the process /3( t)
in regard to the feasibility of certain computations, This will be

discussed in the following sections.
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In (6.1.1) all stochastic elements are centered at zero expectation.
1f
- 16)) and A(s)

are replaced by

c+ 7 , b(t)+ (t) and b(s) + /3(s)
respectively, with

E¥-0, EA(t) =0 and EA(s) -0,
where d% b(t) = a(t) is assumed to exist and to be continuous on
[0,T],then the solution to the thus modified system (6.1.la) may be

written as

x(t) + §(t), EE(t) =o0.

Here x(t) 4is the solution to the deterministic system in (3.3.4)
and €(t) is the solution to the original system (6.l.la).
It follows from (6.1.1c) that also the observations [/ (s) may be
splitted up into a deterministic part and a stochastic part with
zero expectation. The deterministic part can be determined and the
stochastic part, being of type (6.l.lc), may be treated as in (6.1.1).
So it is not a restriction to assume that the stochastic elements,

figuring in (6.1.1) have zero expectation.

Since the estimation of £(t) in (6.1.1) is exclusively a
mathematical operation in the Hilbert space H , the sample behaviour

of the stochastic processes is not relevant.

In later sections we shall need several properties of orthogonal
projectors of H onto closed linear subspaces H[C(S)] , generated
by the elements of a class C(S) = { Zj(s), j=1,.,M, sE€ S-} -

If & is an operator, R(() will stand for its range. If =

is a subset of H , 231' will stand for its orthogonal complement in H,

We recall, see [ 1],

(6els3]) Given the closed linear subspace H[C(S)] y there is a
unique orthogonal projector Z7P defined on H , with range H[C(S)] .

If J stands for the identity operator.on H , also J - 7> is an
orthogonal projector with domain H . The ranges of 2 and J - 72

are each others orthogonal complement in H . They are closed.

601
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6.l If S is any subset of [O,T] ’ E[C(S)]L = C(S)-L .

Proof: i) Since C(s) < Hfc(s)] , c(sy" > HLc(s)]J‘.
ii) Assume £ SHEC(S) I 7 € H[C(S)] , it may be

represented as

M K
(6.1.4a) 7 = J% . & {j(sk) y 85 € S, 8 real,

k=1
or as
(6.1.4b) Z = lim in q.m. Co 4, being of type (6.1.4a).

n— ¢
Hence, if [/ is represented as in (6.1.4a), E§ 7 = 0. If 7 is
represented as in (6.1.4b), EE zn =0 for all n . So, by virtue
of the continuity of the inner product, see (2.1.3),

O=EEZ —> EEZ =0 as n—en .,

This means £ & lil[C(S)]'L and hence C(S)'L = H[C(S)]-L 5

In the next assertion, the continuity in q.m. of Zj(s) ol g=1yias My
on [O,T] is essentially needed.

(6,1.5) If S, € S &3 c[o,T] , where S_ is dense in S and
S is the closure of S in [:O,T] , then

Be(s,))] - ac(s)] .
Proof: 1) Simce S < §, H[c(so)] < w[e®] .
ii) It remains to show H[_C(g)) ) H[C(So)] . The elements

of H[C(E)] may be represented as

¥ K B
(6.1.5a) FA R ajkzj(sk) » 8 € 8, 84 real,

j=1 k=1

or as

(6.1.5b) 4 = 1lim in q.m. o L, being of type (6.1.5a).
n—» eo

To each s € S, there is a sequence { Sem * m-1,2,..} in 8
tending to s as m-—» ¢o , By virtue of the continuity in q.m.

on [O,T] of ZJ(S)’ J=1,.,M, Zj(skm)-—y Zj(sk) in q.m. as

m—> 0o . Hence & in (6.1.5a) is the limit in g.m. of some sequence
in H[C(So)] and so it belongs to H[C(So)] . The same is true of
the elements Zn in (6.1.5b) and hence also 7 in (6.1.5b) belongs

to H[C(So)] , showing the assertion.
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The assertions in (6.1.4) and (6.1.5) together give

(6.1.6) If S < S < s < [o0,T] , where S, is dense in S and
'S the closure of ‘S in [O,T] s then

c(so)"'- H[c(so)]"' - H[C(E)]l,

owing to the continuity in q.m. of [j(s) on [O,TJ =Ty

1r s < [0,1], n=1,2,.., let H[C(Sn)] be the closed linear
subspace of H , generated by the elements of C(Sn)- {Zj(s), j=1,.,M, s€ Sn'g
and let .‘721 denote the orthogonal projector of H onto H[C(Sn)] .

Let ﬁé,:@ mean EEG&E(é,Eg?n§ for all £ € H.

We recall, see [l]:

6.1, a) The following three statements are equivalent:
i) P& R

1) |R E|l&E||RE|| forann £ e w,
111) H[e(s)] < E[e(s))] .
®) The above assertions are implied by Sm < Sn .

c) If { fg y Nn=1,2,.. } is an increasing, or a decreasing
sequence of orthogonal projectors of H , there is a unique orthogonal
projector 7 of H , such that 7;7,7’, or ‘:731\L T respectively,
in the sense that

|%e - P&|| - o
“?;l§" T “f/aén y OT ”?ngu 4, ll?’él\ respectively

as n—>co , forall € &€ H.

and

(6.1.8) Let S0 (=t Gy [t [0,'1‘] , where So is dense in S , and
let {Sn, n= 1 } be a sequence of subsets of [O,T] Ay e
Sn'f So, or Sn‘l’ So as n—> e&n ,
then
f/‘;’l T f/’", or 9;‘ i ﬁ respectively,

where P is the unique orthogonal projector of H onto H[C(S)} .
We recall that [j(s) in C(S) dis continuous in g.m. on [0,T], j=1,.,M .
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Proof: Because of (6.1.3), (6.1.5) and (6.1.7) it is sufficient to
. establish that the range R(9’) of & coincides with H{C(S)] .

‘ 1) assume s f s . Then H[C(S))] t Efctsi] ana P, t .
Since P = P, forall n, R(P) > c(s )] for all n,
see (6.1.7), and hence , as R(9°) is closed,

R(P) = H[c(s)] .
If ¢ € R(P) , there isa ¢ < H, such that
g =F = lim in g.m. 7 € .

\ since 2 ¢ e E[0(s))] < B[6(s)) for a1l n, PE e H[c(s)]

as H[c(s)] is closed. And so
R(P) < Hle(s)] .
i1) Assume S | S_ . Then H[c(sn)]L E[c(s)] and S
Since P < gan for all n , R(P) < H[C(Sn)] for all n ,
gee (6.1.7), and hence
R(P) = H[c(s)] .
1r ¢ € H[e(s)) , e u[c(sn)] for all n . This means
E(t - RE)P =0
for all n and for all & € H . Since
g’ng — #E€ in q.m. as n—> e,

it follows on account of the continuity of the inner product in H ,
see (2.1.3) that B(§ -%E)¢ =0 forall fe H. so g€ RP)
on account of (6.1.3), and hence

R(P) > m[c(s)] .

6.2, The integral representation of the Kalman-Bucy estimate.
A generalization of the Riemann-Stieltjes integral in g.m.
A generalization of a theorem of Karhunen.

(6.2.1) Concerning the Kalman-Bucy estimate (6.1.2), the Wiener-Hopf
system (6.1.1h) may be written as

(6.2.1) EE)L(s) - BE(tl 05(s) ., sefo,t].

From now on it is moreover assumed that

6.2
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(6.2.1b) B(s) >0, sefo,1].
Then the unique solution in H N[C([O,t] )] to (6.2.la) can be specified,
owing to the remarkable circumstance that under condition (6.2.1b)

the elements of H N[C([O,t] )] may uniquely be represented as
integrals of a type, to be described below, cf. [23] 4

Let us first consider the symmetric MxM-matrix B(s) = E(S)Er(s).
On account of (4.4.2), the elements Ejk(s), jok=1,.,M, of G(s)
are continuously differentiable mappings of [0 TJ into (-e2,en),
Here however, it is already sufficient that the g k(s) are continuous
[O ’1‘] , as we are not interested in sample calculus, el lAdAs2c) s
Anyhow, it follows that the elements u.k(s), Jyk=1,.,M, of B(s)

are continuous mappings of [O,T] into’ (= co,cal),

if Al and A2 are MXxM-matrices, we recall that by definition

A, 2,4, 1iff xT(Al-Az)x(%,O for all x € X,
where X is the sphere of column M-vectors x with real valued
components such that x'x = 1 . Then

x B(s)x = xTE(s)aT(s)x =0, i.e. B(s) 2 0

and hence (6.2.1b) is a restriction.

(6.2.1c) In order to avoid certain difficulties, also in section 6.4,
we shall define B(s) in a slightly different way, cf. (4.4.2).

Let
1/ay,(8)

"1/dyy(8)

be a diagonal MXM-matrix , whose diagonal elements are continuous,

d,,(s)
D(s) = i =S and hence also D.l(s) =
aa-ls)

positive mappings of [0,T] into (-c7,c0 ). Then there are positive
numbers e and e' such that

min

J=1,.,M, 56):0 T] ‘S) = J=1v°rnv 56[0 T.] d (B) e

0< e =

Let 0(5) ’ sé[O,T] , be a real, continuous MXM-matrix such

that it is orthogonal at each 8é€ [O,T] . Now we define

(s) = 07(s)D(s)0(s) , and hence B~M(s) = 07(s)D 7 (s)0(s).

i(a) and B l( are continuous on [O,T] , symmetric and satisfy

eI, % i(s) & eIy %'IM ~-l(s) % Iy s sé[O;T] .
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In the chapters 3 - 5 it looked the best to work with Riemann
(-Stieltjes) integrals in q.m., because of the continuity of the functions
involved, the need for differentiation with respect to the upper limit
of the domain of integration, the sample behaviour and the perturbations.

In this chapter, there will be an essential need for stochastic
integrals of other types. For example, in section 6.4 we shall
incidentally meet the stochastic integral

[ £(s) @ (s)as ,
where ¢ (s) 1is continuous in q.m. on [O,t] , and where f(s) is an
Lz[o,t] -function. As f(s) is only defined almost everywhere on [O0,t] ,
the above integral can in general not be evaluated as a Riemann integral

in q.m. Still we may assign a well defined meaning to it. Since
f(s) € L2{0,t_] y it. may be approximated by the elements of a sequence

{fn(s), wal 250 }

of stepfunctions constant on intervals, and converging to f(s) as
n—> 52 in the sense of L2[0,t] . It is seen that at each n

* fn(s) (f(s)ds

exists as a Riemann integral in g.m., since ?(s) is continuous in
g.m. on [O,t] . Now we define

t 11m in q.m. jt
,[o f(s)lf(s)ds = £ (s)Cf(s)ds 5

This limit exists, as is seen with the aid of the convergence in q.m.
criterion (2.1.4), since as m,n—» cn ,

t t
B{f fatw) pu)anfl £ (M @(vIav = (P[P £ ()e (v) E@u) P(v)anay —>

j"gt £(u)£(v) EQ(u) @ (v)audv .

This follows from the convergence of £ (n)f (v) Eq’(u) q’(v) to
f(u)f(v) E(P(u) (P(v) in L [0 t] m,n —» &2 . The value of the
integral is independent of the sequence {f {8) 5 n=ly25. } as it
may be similarly shown that J f (s)({’(s)da—, O in q.m. a8 n—> ¢,
if £ (s)— 0 in L [o t]

If f(s) is continuous on Y_O,t] y the above integral may be evaluated
as a Riemann integral in q.m., and also in the above sense. It is

easily shown that the results are identical. Now the following question

arises: When may integrals be evaluated by different principles, and
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and when do the thus obtained values coincide? Of course, in this form

the question is far too general. Below it will be answered in detail
in case of
t
fs 2(e)a 14(s)
where [/.(s) , j=1,.,M, is a component of the observation L(s) ,
defined in (6.1.1). We shall need the above integral as a generalization

of the Riemann-Stieltjes integral in q.m.

Let [J_O,t] be the linear space of Lebesgue-measurable mappings
of [O,t] into (- ¢2,029 ) such that their squares have a finite
Lebesgue integral on [O,t] . If {0} is the subspace of functions,
equal to O a.e. in [0,t] , then LZ[O,t]-.CZI_O,t]/{O} with the usual
inner product is a Hilbert space. It is stressed that here we shall
deal with .Cz[o,t]. Its topology is assumed to be induced by that
of L2[O,t]. Hence a sequence {fn(s), n-l,2,..'§C ‘Cz[o,t} is

a Cauchy sequence iff S: {fm(s) = fn(s)} 2ds—> 0 as m,n—> &2 .

It has a limit in Iz[o,t] which is unique mod {o} . As only the
strong topology of L2f.0,t] will be induced into ,62[0,1:] , the
addition “strong (ly)" will be omitted in relevant situations.

Let us recall the inequality of Schwarz: If fj(s)é ,(,’2[0,1:], j=1,2,
then
(6.2.14) &g: ‘fl(s)f2(s)l ds }2 £ f; fi(s)ds g: fg(s)ds 4
entailing
(6.2.1e) {g:]fl(s)! dskzgt'[: fi(s)ds >

Let UEO,t_IC [2 [O,t-] be the linear subspace generated by the
indicator functions of the intervals of [0,t]. We recall that 7[o,t]
is dense in _C2[0,t] . If i(s)e j[O,t] , there is a set of
numbers {1, k=1,.,K} and a set L,

0-t°< tl(.. <tK-t,suchthat

i(s) = i, if s € (tk_l,tk) , k=1,.,K ,

the values i(tk), k=0,.,K, being immaterial as we shall see. So
the elements of j[o,t-l are step functions with a finite set of
discontinuities. It is easily seen that

6.2,1f S: i(s)d ;j(s) exists as a Riemann-Stieltjes integral in q.m.
owing to the continuity in g.m. of Zj(s) on Y_O,t], and

t : :
fostoalye) = = n {75000 - Iy D} > 3biem
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Let us consider the arbitrary mapping f(s) of [O,t] into
(- ¢?,¢0) and the partition p of [0,t], consisting of the
subdivision points tk’ k=0, .,K, such that 0O = t°< oo <tx = t,
and the numbers s, k=1,.,K, such that ske[tk_l,tk] 5 (Fan
section 2.6. Let P be the set of all partitions of this kind.
Define

(6.2.1g) f(pys) = f(ak) if s € (tk_l.tk). k=1,.,K,
the values f(p,tk), k=0,.,K, being immaterial,

K
men f(p,s)e](0,t] ana [ o(pe)ayy(e) - = (s {7,(4)- £(5 1)}

according to (6.2.1f). Owing to definition (2.6.1),

(6.2.1h) S: f(s)d [j(s) exists as a Riemann-Stieltjes integral in g.m.
if and only if
{ S: f(pn,s)dzj(s) s n=lg2 0 }

is a Cauchy sequence in H for all sequences {pn ’ n-1,2,..}C P
such that A(pn)*o as n—> oo .,

Let us recall the following results of (6.1.1):
1) fye)=0,(e) + By(s)
ii) nj(u) .sz(v) ’
i13) 'qj(s) is continuously differentiable in q.m.
Let i(s), 1,(s) and 1,(s) be elements of J[0,t]. Then
S: il(s)d [J(s) = j: il(s) d% 7Z‘j(s)ds + S: 11(8)‘1733(5)

on account of (6.2.1f), and

(6.2.11) E j: 1)(u)d 7 (u) j: 1,(v)aZ, (v) =
a e
S:[: il(u)iz(v) a—:év E Y)J(u) ")k(v)dudv + S: il(u)iz(u)bjk(u)du
on account of (2.5.7). The derivation is similar to that in (5.1.2d).

The integrals in the right-hand side are ordinary Riemann integrals.

d t
Since dsnj(s) is continuous in g.m. on io,t],

_* d 4

suoy B3N (v) = B G Ny(w) 430y (v)
is continuous on {0,1:]2 by virtue of the continuity of the inner
product in H, see (2.1.3).




88 6.2

And as %jk(n) is continuous on [O,t-} y there is a constant
A > 0 such that

\%dk(u)\ c ue fo,t] .
Hence, also by virtue of (6.2.le),
2
6.2.1 | S50 1,01, 5755 By (Maney |2

A j: | 1,(a)] au g:\ iy(u)| au £ 4 t\/g: ii(u)du S;‘ i2(u)au ,
and on account of (6.2.1d4),
(6.2,1k) \ f: il(u)iz(u);jk(u)dul‘é A I: l il(u)iz(u)‘ du £

A j: ii(u)du [: ig(u)du 5

In particular, if i(s) = il(s) = i2(s), (6+2.1i) - (642.1k) give

E{j: i(s)d zj(s)}zs g:g i(u)i(v) 'b:% E vj(u) TJj(v)dudv + I: iz(s)gjj(e)ds,

(6+2¢1m) n S: i(s)d zj(s) "2 = “ j: i(s)d ‘rzj(s)“ I )”: 1(5)d/3].(s)“2 5
and a number A >0 such that for j=1,.,M,

2
(6.2.1n) “ I; i(s)dnj(s) “2 = S:L‘: i(u)i(v) bu_ab; EY)j(u)YJJ(v)dudv <

At 5: i2(s)ds

and

(6.2.1p) “ j: i(s)d/’gj(s)“ L j: iz(s)%Jj(s)ds £ A S: iz(a)ds -

Finally, since by assumption g(s) >0 on Y_O,t] , see (6.2.1b),

the following assertion is valid, owing to (6.2.lc):
62l There is a number e > O such that for j=1,.,M,

0Le Lt, 12(S)d3 é_[;' iz(s);jj(s)ds - “5: i(s)dﬁj(s)“ <



(6.2.2) 1If jn(s)ej[o,t], n=1,2,.. , and if [j(s) is any

component of the observation g’(s) in (6.1.1), then

i 2 jn(s)d Zj(s), =l 230r % is a Cauchy sequence in H

if and only if
{jn(s), n=1,2,.. } is a Cauchy sequence in [Z[O,t].

Proof: It is to be shown, if m,n— e that

% . 2 7 : t 2
l”o {Jm(s)-jn(s)} d Zj(s)” — 0 if and only if 50 {Jm(s)-jn(s)} ds—»0.

Or equivalently, since jm(s)—jn(s)e j[O,t], m,n=1,2,.. y it is
to be shown, if i (s)€ J[o,t] » n=1,2,.. and as n—» o> that

t 2 . t .2
u jo in(s)d Zj(s) “ —> 0 if and only if So in(s)ds —5 2

Now on account of (6.2.lm) and (6.2.1q), and as n— o2 ,
t 2 3 o
H Eo in(s)d Zj(s) " — 0 implies jo in(s)ds—>0,
and by virtue of (6.2.1n), (6.2.1p) and (6.2.lm), and as n—» eo ,
t .2

X in(s)ds —0 implies “ s: in(B)d ZJ(B) “ 2"’ 0.

£6:2.3) If f(s) is an arbitrary mapping of [O,t] into (- en,en),
and if {d(s) is any component of the observation [(s) in (6.1.1),

g: f(s)d zj(s) exists as a Riemann-Stieltjes integral in q.m.
if and only if
jt{f( 8)-£( s)}zds——>0 as myn—>» &2
° Py Py ’

for all sequences {pn, n=1,2,.. } = P with a(p)—>0 as n—se> .

Proof: On account of definition (6.2.1g), the functions f(pn,a)

are elements of J[O, t]. Hence the above equivalence follows from
the equivalences in (6.2.2) and (6.2.1lh).




(6.2,4) Let f(s) be any mapping of {0,{] into (-¢n,¢7 ), and
zj(s) ’ j=1,.,M, a component of the observation Z\s) in (6.1.1).
Then

S: f(s)d [J(s) exists as & Riemann-Stieltjes integral in g.m.
if and only if
6.2, f(s) is bounded and Riemann- integrable on )_'o,t].
( Or, equivalently,see [21 ] ’
f(s) is bounded and continuous a.e. on [O,t]).

(6.2.4b) If the above conditions are fulfilled, then
f(s) € [2[0,t] and f(pn,s)ef(s) in [2}'_0,1;'] as n-»cd ,

for any sequence {p ’ n-l,2,..} (=2, 53 such that lim A(p.) = 0.
n n
n—>en

Proof: By virtue of (6.2.3) it is sufficient to show that
the condition

(6.2440) "to any £ > 0 exists a $& > 0 such that
Ja {£(pyr8)-2(p,s2)} %as <€ if a(p,), 8(py)< S

is equivalent to (6.2.4a).

i) Assume that condition (6.2.4c) is satisfied. Then according
t0 (6.2.1e), 1f A(pm)<3 and A(Pn)<‘r ’

| §5 {£(opes) - £me)} as| 2 [ | £(p,08) - 2(p,00) | an <
VTS: {f(pgs8) - £(p_,8)} %as <ie .

So, for all sequences {pn, n=1,255, IC. P with A(Pn)—>0 as n-> on,

t
{12 2(p,,8)a8 , nely2,.. }
is a Cauchy sequence in the real line. And hence, owing to the
definition of f(pn,s) in (6.2.1g),
t
So f(s)ds

exists as a Riemann integral in the sense of definition (2.6.1),

specialized to degenerate random functions.
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The above integral of f(s) on [O.t‘} is a Riemann integral
in the sense of the usual definitions in real analysis if moreover
f(t) is bounded on [O,t] . This however, is also implied by (6.2.4c):
Let p  and p, be fixed partitions of [0,t] such that A(py)< &,
A(py)< & , and let be assumed that f(s) is unbounded on {_o,t] .
Then there is an interval in the partition Py 58y [tk-l'tk] -
where f(s) is unbounded. And so there is a sequence

{’ki' 110200 s } c % _10%]

such that f(ski)—*o’-! as 1-—> c¢o . Let us consider the sequence
{pmi , 1-1,2,..} =, 3

where partition Ppy is identical to 15 except for the value

s, € [tk—l’tk] in p_ , which is replaced by s, .
Hence on the one hand A(pn)< o, A(pmi)<5 S =l Ol

t 2
whereas on the other hand So {f(pmi,s)-f(pn,s)} ds—>co as i-—»>en .
This is absurd since we assumed (6.2.4c). And hence f(s) is bounded
on [O,t].
ii) Assume that condition (6.2.4a) is satisfied. Then to any
€>0 there isa & > 0 such that for all p € P with A(p)<d ,

| §% £(s)as - {F £(p,0)as |< € .

If p is defined by the subdivision points tk’ k=0,.,K, such that
0 = t°< ow <tx = t and by the values 8 € [tk-l'tk] y, set
T(p,ys) = sup £(u)
wE [t 10 ]

£(pys) = inf £(u)

SER 1t

if s € (tk_l,tk), k=1,.,K,

the values ?(p,tk) and g(p,tk), k=0,.,K, being immaterial.
Since f(s) is bounded on [0,t], say ff(s)léB y

(6.2.49) -3 % £(ps) &%) < Tpe) 5 3

for all pe P and s E[O,t], possibly with the exception of those s,

coinciding with the subdivision points of the partition. Then to fixed p,
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there are partitions p' and p" in P , containing the same
set {tk - k-o,.,K} as p, but where the values s/ and s
in the intervals [tk-l’tk] are respectively chosen such that

= f(p,s) - Ly 2
Y (py8) - £(p'ys) < for Se[o’t]\{to""txg'

0 éf(p",s) = £(P95) < &

Since A(p') =A(p") =A(p)< 6 ,

§elT(e,0) - £(2s8) [ a8 = |[{T(p,0) - £(p,0)} as|=

+

§o{T(r0)- 2(pry0)} a8 + |[E{2(prs0) - 2(s)} as |

s |[E{e) - 2ee)Yas |+ [E{2(p"0)- £(py0)} as &
Et+ & + € + £t =2(1+t)E , id.es

l T(pss) - £(pys)| —> 0 in measure on [0,t] as A(p)—> O.

Hence, by virtue of (6.2.4d),
l £f(py8) - f(a)\ —> 0 in measure on [_O,t] as A(p) - 0,

and so
{f(p,s) - f(s)} 2 50 in measure on [O,t] as A(p) — 0.

On account of (6.2.4d), {f(p,s) - f(s)} £ s uniformly
bounded on [O,t] by 432. The dominated convergence theorem
of Lebesgue applies, see [15] , and establishes (6.2.4b)

S:’ {f(p,s) - f(s)} 24 »0 as A(p)— o0 ,

and therefore (6.2.4c),
completing the proof of (6.2.4).

If .ﬁ[o,t] denotes the linear space of (bounded) Riemann-
integrable mappings of [0,t] into the real line, it is shown in
the above theorem that ﬂ[o,t] coincides with the set of real
valued functions f(s), s€ [0,t], to which

J.: f(s)d ZJ(S)' J=1,.,M,

exists as a Riemann-Stieltjes integral in g.m.
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It is shown that J[o,t]< R[0,t]c L,l0,t] ana we recall
that :7(O,t] is dense in .ﬂzip,t]. S: f(s)a ;J(s) may be seen
as a mapping 5’; of the linear subspace J[O,t] of [2[0,1:]
into H ., It is seen in iv of (2.6.2) that 57' is linear. It
follows from (6.2.2) that Sfi is continuous on f7[0,t] , and
that 5?; can be extended from the domain J{O,t] to [2[0,‘0]
as a continuous linear operator, entailing the following generalization

of the notion of integral in q.m. with respect to Zj(a) :

(6.2,5) Definition: If f£(s) € [2[0,1'.], and if [ (s) isa
component of the observation /(s) in (6.1.1), then

Jo #(e)a gy(e) o =1s00m,
is the limit in H of any sequence

(6+2.58) { j: 1,(8)a 75(s), n=1,2,.. }c. H

of Riemann-Stieltjes integrals, such that

(6.2.5b) {1,(s), n=1,2,.. }= T(o,¢t]

is a Cauchy sequence in ,sz_o,t], tending to f(s) as n—> o2,

(6.245¢) The above definition is admissible.

Proof: Since :7[0,1:] is dense in ,Czio,t] , there are always
sequences (6.2.5b) tending to f(s) in .52[0,‘&]. According
to (6.2.2), the corresponding sequences (6.2.5a) have one and the
same limit in the complete space H.

mnd given f(s) € £,{0,t] , both definitions (2.6.1)
and (6.2.5) are applicable in order to compute j: f(s)d l:j(s),
if and only if f(s)e€ ﬁ [O,t]. The the integrals of both types
coincide.

Since there is no ambiguity when integrating f(s) € .sz_o,t]
with respect to ;J(s) in the sense of definition (6.2.5) or,
if possible, in the sense of definition (2.6.1), no new symbols will
be introduced and here the figuring stochastic integrals may
simply be refered to as integrals in q.m.




It follows directly from definition (6.2.5) that the assertions
of (2.6.2), specialized to £ = Zj are valid if f and g are
elements of .(,‘2, with the exception of the rule of partial
integration i in (2.6.2).

6.2.6) If fl(s) and f2(s) are elements of fz[o,t], then

R MENOLY RONMEAOLI MO

(6.2.6a) e
It[: fl(u)fz(v) Bu%; E sz(u)nk(v)dudv + }‘ot fl(s)fz(s)bjk(s)ds,

o
where the integrals in the right-hand side exist as ordinary
Lebesgue integrals, Jj,k=1,.,M.

Proof: Let {1ln(s), n=lls 0 } and {12m(s), mal,2,..}
be sequences in J[O,t] , such that

I:{fl(s)-iln(s)}%s—bo as n->» o> ,

(6+2.6b)

J: {fz(s) = izm(s)§2d5—> 0 as m—> ¢3 .

On account of (6.2.1i), for all n,m=1,2,.. , and as Jj,k=1,.,M,
(6.2.6c) B[P 1) (s)aZy(s) (¥ 1, (a)a(s) =

j:{; iln(u)i2m(v) aﬂ% E vj(u)vk(v)dudv + ‘{: iln(s)iZm(s);jk(s)ds.

According to (6.2.2),

t t
{ 50 iln(s)d [j(s), =12 S } and {Jo i2m(s)dzk(s), m-1,2,..-§
are Cauchy sequences in H , converging as n,m —> ©2 to
t t
fo £2(s)a £4(s) and (BEAOLYME)
respectively on account of definition (6.2.5). Owing to the

continuity of the inner product in H, see (2.1.3), the left-hand
side of (6.2.6c) tends to the left-hand side of (6.2.6a) as n,m~>ed .,

In the right-hand side of (6.2.6a) the integrands are
Lebesgue-measurable on [O,t]z and [O,t] respectively, since
22
£1(s) and f,(s) b;long to_ Lz[o,t], TTE Evj(u)nk(v) is
continuous on (O,t] and bjk(s) is continuous on [O,t]. The

latter two functions are bounded on their respective domains by
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A> 0, j,k=1,.,M, see (6.2.1i). Hence the integrals below exist
as ordinary Lebesgue integrals. They satisfy

[EF) 5385 B0, 0@ {£,@5,0) - 1, @1,,(M} | er <
A 5:&: {‘fl(u)\ .]fz(v)-izm(v)\ + ii2m(v)‘.lfl(u)—iln(u)\ } dudy =

afE e fan fE ) e,-1,)av + & (3|1, (M)]av. § 3| £ ()1, (w)|au

~—>0 as n,m—> c2 by virtue of (6.2.le) and (6.2.6b).

Similarly,
[MEME {fl(a)fz(s)-iln(s)izm(s)} | as =

AS;’ Ifl(s)fz(s)-iln(s)izm(s) l ds >0 as n,m—> &2 .

Hence, the right-hand side of (6+2.6c) tends to the right-hand side

of (6.2.6a) as n,m —» ¢o , and (6.2.6a) is shown to be true.

(6.2.7) It follows from the above result that the identities and
inequalities in (6.2.1i) - (6.2.1q) remain valid if the elements
i(s), il(s) and iz(s) of j[o,t] are replaced by arbitrary
elements f(s), fl(s) and f2(s) respectively of [2[0,1;],
provided that the integrals of the real functions are interpreted
as Lebesgue integrals.

Let us again consider the Hilbert space Lz[o,t] - f;[o,t] /{0}.
1f T(s) € L,{0,t] and if f£(s)€ xfz[p,t] is a representative
of f(s), we may unambiguously define

JET@a gy(e) =[5 2(a)afy(a) 4 3m1p00e
Then the mapping f induces a continuous linear mapping F, of
Lz[o,t] into H . Owing to (6.2.1q) - essentially to (6.2.1b) -
it can be shown that FJ
and the Hilbert space, generated by the elements Zj(a), s € [O,t] .
Thus FJ is a generalization of the isomorphy between Lz[o,t]
and the Hilbert space, generated by the elements ,(s), s & [O,t] .
of the 1-dimensinal Wiener-Lévy process in (4.1.1). This isomorphy
was first shown by Karhunen, see [15] . See also [ 6 ] « The above

property of F_j follows as a special case from a more general

is a (1-1)-correspondence between L2[0,t]

theorem below.
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£6.2.B! Let us consider the closed linear subspace H [C([O,t])]
of H , generated by the elements of the class

c([o,t]) = {Z,'j(s), J=1,.,M, sé[O,t]} .
H [c([o,t])] is a Hilbert space. (And it is separable since [(s)

is continuous in q.m. on [O,t] ). Its elements Z: may be

represented as

u X
(6.2.82) [ = = = iy Zj(sk)} -

j=1 k=1
where the coefficients ijk are real numbers and {sl,..,sx} (= [0, t] ’
or as
(6.2.8b) r = lim [~ in q.m. ,
n—s o2

where (n is of type (6.2.8a) and {Zn' Ml 2 e } is a Cauchy

sequence in H .

It may be assumed in (6.2.8a) that 0 < sl< .- sK_._é-_ t. The
value s=0 may be omitted since {(0) = WQ(O) + A(0) =0 ,
see (6,1.1). At each j , Jj=1,.,M, we define the function
iJ(s) € J[O,t] as follows :

é ijk if 0§ 8 < s)
K
1<-Z2 ijk if 8, =8 < s,
:I.J(s) = s lefetare IR e e oielse olaieieie
in if 8y 158 < 8¢
0 if sxé 8 =t

Then { in (6.2.8a) may be written as

¥
(6.2.8¢c) { - 32-1 (E1,0000 Iy -

Let JM[O,t] be the space of column M-vectors i(s) whose
components are elements of J[O,t] .

Let ,f‘g{o,t] be the space of column M-vectors f(s) whose
components are elements of ‘[2 [O,t] .

Let [(s) be the colum M-vector, defined in (6.1.1), with
components Zj(s), J=1,.,M.
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(6:2.9) ye 1 {c([o,])]
if and only if / may be represented as
(6.2.9a) ! - j;‘ tNs)af(s) , f(s)€ .C:[o,t) .

Given [€ H[C([O,t])] , the components fj(s) of f(s)
in (6.2.9a) are unique mod {0}, i.e, unique as elements of L2[0,t] .

Proof: i) Assume [ is represented as in (6.2.9a). The integral
exists according to (6.2.5), and clearly [ € H [c([O,t])] >

ii) Assume e H [C( LO,t])] . Then on account of (6.2.8a)

and (6.2.8b) there is a Cauchy sequence

{Zn- j" il—(s)d[(s) - in(s)éjl[o,t__], n-l,2,..}

o

tending in q.m. to Z' as n-—> ¢2 , And so
"Z - 7 "2—>0 as myn — &2

m n 4 &

Ir im\s) is the colum M-vector with components ijn“) - ijn(s),
j=1,.,M, then by virtue of (6.2.1i) and (6.2.1c), i.e. (6.2.1b),

J2am LalP= 5 i (oda L= {2 1T (dag(o)+ [3 17 ()af3(e)]-
52 sm a2 | & smaf@)® = || [ iL()e A

S: 1;(5);(3)1m(s)ds 2 e J: i:n(s)im(l)ds -

M
e ;’-21 J: {i,‘)n(s) - 1Jn(s)}2ds - e>O0.

Hence, ||J_ - 7, |2~ 0 implies that at each J , J=1,.,M,
{ i;jn(s) s n=l 2,00 } is a Cauchy sequence in [2[_0,’6],
necessarily with a limit, say fj(a) € .[z[o,t] since £2[o,t]
is a complete space. Since Zn is assumed to converge to Z ’
by virtue of (6.2.2) and (6.2.5)

7 = lim in qum. (¥ 11(a)a J(s) = [E £7(a)a g (s) ,

n-—

showing (6.2.9a) .

6.2




iii) Assume that f(s) in (6.2.9a) is not unique in the stated
sense. Then there is an element g(s) € ,Cg[o,t] such that

7 =[8(e)af(e) = (3 & ()ak(s) .

Or, as we set h(s) = f(s) - g(s), then by virtue of (6.2.7)
and (6.2.1c), 1ce. (6,2.1%),

IYOLEO) R SO IOV LR I YOLVO] =
|2 aT(e)aB(e) |2 = [3 aT(a)B(s)n(s)as = o [F n'(s)n(s)as -

.‘%S: hi(s)‘ds, e >0 .

And hence h,(s) = 0 a.e. on [O,t] iees fj(s) = gj(s)
a.e, on [O.t] ’ J=1,.,M.

(6,2.10) Let L:EO,t-] _be the space of column M-vectors f(s),g(s),..
whose components fa(s),gj(a),.. y j=1,.,M, are elements of Lz\:O,t‘).
Under the natural rules of addition and scalar multiplication, at each t€ T

l[0 t] is a linear vector space over the real numbers. Obviously

(6.2.10a) (f(s),g(s))t- j T (B)g(s)da = 2 S f (s)g (s)ds
is an inner product in L2 [0 t] Then
(6.2.100) | Eolly = (F(e),F(a))E

is a norm on L [0 t] Since the components T (s) are elements of the
complete space L [O t], also 2[0 t] is complete in the sense of the
topology induced by the above norm. Hence L [O t'] is a real Hilbert space .

(6.2.10¢c) Asiseideiing to any fE Lz[o t)
PET=X -j" T (s)d;(s) e m]c([o, t])]
F is a linear (1-1) and bicontinuous mapping of L2 Y_O t]
anto H[c([o )] .
Proof: F is obviously linear. It is (1-1) by virtue of (6.2.9).
It remains to show that it is bicontinuous. We need the identity

e T e )2 = [|fE Tman@ ]2+ |§E Tiaafe)? -
[0 T B N0 Fo) auav + [¥ F(o)5()E(o)a0




Since En(u)VIT(v) and ‘i-(a) are continuous on their
respective domains, there is a positive constant C such that

“ J: ?T(s)d Z(B)n 2 ¢ ¢ !: ?T(u)du S: T(v)av + ¢ Sz T (s)T(s)as .

Since B(s) 2 e I, on {O,t] , see (6.2.1c), where e is a

positive constant,

n S:? (s)dZ(s)l 22, j: ?T(s)?(s)ds

Let X, n=1,2,.. and X be elements of H[c([o,t_])] . By
means of the above defined mapping F they correspond (1-1) to
elements En, n=1,2,.,. and E respectively of L:[O,t] . It
follows from the above inequalities that if n-—>eco ,

X,—> X in E[c([0,t])]
if and only if
En'—’ € in the Hilbert space L:[O,t] ’

showing that both F and F-l are continuous.

Thus F generalizes the previously discussed mapping FJ, and

both F and F;j generalize the afore-mentioned theorem of Karhunen.

It should be observed, if [(s) were an arbitrary mapping
of [O,t] into H l, nothing could be said about the possibility
of representations of the kind (6.2.9a) and their uniqueness.
Representation (6.2.9a) is obtained, owing to the sjpructure of the
observation Z(s) and owing to the property Bs)>o0, se[o,t],
of ,(s).

Let us return to (6.1.2). Since the components of ?(tl t) are
elements of H{C([O,t])] , we obtain by virtue of (6.2.9) and (6.1.1):
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(6.2.11) Provided that condition (6¢241b,c) is satisfied, the Kalman-
Bucy estimate may uniquely represented at each te[O,T] as

Ectle) = [P x(waz @)

where K(t,u) is an NXxM-matrix, whose entries ki.\t,u), i=1,.,N,

j=1,.,M, are unique elements of Lz[o,t] as functions of u .
Given E(t) and [(s), s€ [0,t] , the system
(6.2.11a) E §(t)2,'T(s) = E {j: K(t,u)d[(u)}z-r(s) . sE[O,t] 5

is necessarily solvable with unique solution matrix K(t,u) , uée [O,f] ’
whose entries are elements of Lz[O,t] .

Let us observe that we may write
~ M t
£ (t]¢) = ,121 (o dyy(tim)a g y(u) »  i=1,..8,

and that (6.2.11a) may be splitted up into N systems of M

equations, whereas the ith system may be written as

M
EJ () E (t) = 321 N ONN kyy(tu)a 7(w)
(642.11b) : : : se[o,t].

M
EJ (s) B, (%) = gl E 7 y(s) f: ky5(tyu)d Z’j(u)

At each i the M elements kijkt,u) » J=1,.,M, occur jointly
in (62.11b). The N systems (6.2.11b) , i=1l,.,N, may be treated
separately.

Ge3's Further properties of the integral representation of the

Kalman-Bucy estimate and its Wiener-Hopf system.

If not explained in this section, the meaning of the symbols used
may be found in the sections 6.1 and 6.2 .
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Let us reconsider (6.2.11a).

(6.3.1) As we define
@(s) = H(s) E(s) ,
then according to (6.1.1d),

8(s) = d%v(s) in q.m, and 12(5) = S:e(v)dv in q.m.
Since the components of f(t) are orthogonal to the components
of 5(8) ’

BE(+)1(s) = B £(6) {N(s) + B(a)} = B E()Y(s) -

And hence, on account of the continuity of the inner product in H ,
see (2.1.3),

(6.3.18)  EE(t)Z(s) = EE(t) [P€(mav = [ EE(1)€ (V)av .

Since the components of /3(5) are orthogonal to the components
of 1?(5) , and by virtue of (2.1.3) and (6.1.1f),

E7(w) ' (s) = B{nw) + B} {y(s) +A(&)} = EY)Ns) + [2 B(v)av,
where m = min(u,s). Hence
EZ()7(s) = [oav (2 aw EQ(v)Q'(w) + (8B(v)av  if 0% u £s

and
E /(u) ZT(s) = 52 dav I: dw EQ(V)QT(w) + S: i(v)dv if s < u

IIN
o

And so E/(u) Z,'T(s) is differentiable if u § s with derivative

)% EZ(u)Zr(s) = J: Ee(u)gT(w)dw + i(u) if 0 £ u <s,

(6.3.1b)
a% E Z(u)zT(s) - 5: EQ(u)€(w)aw if s< u £t .

On account of these formulae 3% E [ (u) ZT(s) is continuous in (u,s)
and continuously differentiable in s, if u / 8 o If uT s and

- N7
uls , b% EZ(u=s")7 (s) and 3% EZ(u-s+)zT(s) are continuous in s.

We shall show
(6.3.1c) EU: K(t,u)dy (u)} Z‘r(s) - j: E(tyu) 3% [E Z(u)ZT(sﬁ du .

For that purpose, let {Kn(t,u) s nwl 2.0, } be a sequence

of NXx M-matrices whose entries as functions of u are elements of

6.3
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.7[0,1:] , such that they tend in LZ[O,t] to the corresponding
elements of K(t,u) as n—» co . Then on account of (2.1.3), (6.3.1b)
and (6.2.5),

E {S: K(t,u)d Z(u)} ey = E{lig_};lcg.m. U: K (t,u)d Z{(u)] zT(s)} -

lim  ® S;‘ K (t,u)d 7 (u) [(s) = L lim S: K_(t,u) du[E 7 (u) ZT(s)] "

XL ==

lim _(: Kn(t,u) a%[E 7 (u) ZT(s)] du = J: K(t,u) 3%[E Z(u) Z.‘Zs)]d\l .

n — ea
; 2 T ]
'he last equality holds since l(n(t,u) 3;1;19 J(u)Z(s)| tends to
. T
K(t,u) B%{E [(w)] (s)] in LZT_O,t] , owing to the convergence of

2 T
l(n(t,u) as n—> ¢o and owing to the behaviour of ‘D;.[E I (w), (s):}
as a function of u , see (6.3.1b).

Substitution of (6.3.la) and (6.3.1c) into (6.2.1la), utilizing
the results in (6.3.1b) , yields

8 T t 8 T s =
jo E E(t)g'(v)av = go K(t,u) _{o EQ(u)g (w)aw du + (2 K(t,u)B (u)du .
Since the entries of K(t,u) as functions of u belong to Lz[o,t:[ ’
and since EQ(u)@T(w) is continuous in (u,w) , the elements
of the matrix K(t,u)ES (u) QT(w) are Lebesgue-measurable with finite
Lebesgue integral on [O,t]x‘_o,s] . Hence in the above expression the
order of integration may be changed, yielding
t T ~ T
Is au{[o K(t,w)E@ ()@ (w)aw + K(t,u)B(u) - EE ()€ (u)}- 0
at all se[o,t] A

Or equivalently,
j: K(t,w)E€ (w)8 (w)aw + K(t,u)B(u) - EE(+)€'(u) = 0
(6.3.1dj<at u€ [O,t] y possibly with exception of a set of
Lebesgue measure O .
By virtue of (6.2.11), at each fixed teIO,T-J there is one

and only one matrix K(t,w) satisfying (6.3J d). As functions of
w , the entries of KX(t,w) are elements of LZIO,t] .
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(6.3.1e) If the system in (6.3.1d) is multiplied on the right
by B'l(u) , the separate equations become

- ~_1 Mot . ~.1
k;y(thu) = kZ_l E §;(£) g (u)pyjtu) - h,zk.:.1(° kip(tswEE, (v) g, (u)b, j(u)dw ,

i=1,.,N, J=1,.,M .

-1 ~a]
Since the functions E Ei(t)gk(u)bkj(u) and E§, (w) ek(u)bkj(u)
are continuous in u € LO,t] » and on account of the inequality of Schwarz,

= - ~-1, ~_1
\kij(t,u) - kij(t.v)1 B 1‘2_:1 IEEi(t){ek(u)bkd(u) - @k(v)bkj(v)}\ +
h,%-l S: \kih(t.w)E 6plm {Qk(u).{:;}ku) - f}kKV);;}(v)}\d._, B as kA A

Hence the elements of K(t,u) are continuous functions of ué[o,t]
and the equality in (6.3.1d) holds at all u € [O,t] =

Combining the above results with (6.1.11) we obtain:

(6.3.2) Provided that condition (6.2.1b,c) is satisfied, the Kalman-
Bucy estimate may uniquely be represented at each t€ [0,'1'] as

gkt[ $1 = j: K(t,8)d Z(s) .

K(t,s) is continuous as a function of s€[0,t] . It is necessarily

the unique solution to the NXM-system

(6.3.28) K(t,s)B(s) + s: K(t,u)EL}(u)QT(s)du = E E(t)QT(a) . se[O,q.

(6.3.2b) The elements of the kernel, i.e. the elements of the
M XM-matrix

o ST,
EQ(n)8'(s)
are continuous functions of (u,s) e tO,th by virtue of the

continuity of the inner product, see (2:1.3), since G(s) is
continuous in g.m. on [O,tJ, see (6.3.1).

(6.3.2¢c) let us consider the inhomogeneous part of (6.3.2a), i.e.
the NX M-matrix

B g(t)gT(s) , where 0 £s8 £t £°7 .,

Since 8(s) = H(s) §(s) , see (6.3.1), it follows on account of
(5.1.2d) that
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E E() €(s) = E E(+) € (s)H (s) =
F(t) {E)’?’T + 2 F-l(u)B(u)[F-lku)]T du} F'(s)E(s) ,
where F(t) is the fundamental matrix, associated with the matrix

A(t) , see (3.2.3). Since F(t) is continuously differentiable with

derivative
d

it follows that E E(t)QT(s) is differentiable with respect to t
if 0=g&t=T, with partial derivative

2 3y 5
>t EE()8(s) = A(Y)EE(t)8 (s) ,
whereas the above formula represents the derivative from the right
if s=t , and from the left if +t=T .
t t=s
Let the compact set A be defined by A
0€s&t, t€[0,1]. T
Since B (t) and &(s) are continuous
in q.m., it follows from the continuity
of the inner product, see (2.1.3), that o | 8

EE(4)8T(s) ana 2 BE(t)E(s) -
A(t)E E(t) ¢T(s) are continuous, and hence uniformly continuous

and bounded functions of (t,s) on the compact domain A ,
provided that the value of D% E E(t)gT(s) at (T,T7) is suitably

defined.

Remark: With respect to the above partial derivative, we recall
that E(t) is not differentiable in g.m., see (5.1.2b).

~

6.3, Multiplication from the right with B-l(s) and transposition
of (6.3.2a) yields

(6.3.3a) KT(t,s) + S: s‘l(s)Eg(s)@T(u)KT(t,u)duzi-l(s)E§(s) ET(t) . sé[O,t]

This MXN-gystem may be splitted up into N uncoupled systems

of M coupled equations
(6.3.3b) KI(t,s) + S: %-l(s)Eg(s)QT(u)KI(t,u)du=i-l(s)EQ(s) Ei(t),

s € [o,t] s i=1.0N
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where Ki(t,s) represents the i*® column M-vector of the matrix

KTkt,s) and fi(t) the 1P component of the N-vector E(t) ,
ef. (6.2.11Db).
By virtue of (6.2.11), there is a unique solution f:(t,e) to

to each of the M-systems in (6.3.3b).

If t is a "small" fixed value in [O,T] ’ KI(t,s) may be
expressed by means of a Neumann expansion, giving some '"local"

information about K(t,s).
It is of more interest to observe that at fixed ¢t¢€ [O,TJ,
~-1 T iy
5: B " (s)E8(s)8 (u)Ki(t,u)du

defines a compact mapping of Lg[p,ﬁ] into itself. Then, owing to
the a priori knowledge of existence and uniqueness of a solution

to (6.3.3b), some properties of the "global" solution K(t,s) might
be derived, cf. [28] , page 281 . However, with the aid of these
ideas it looks hard to establish all qualities of K(t,s), needed
in the Kalman-Bucy filter.

Therefore, in the next section we shall transform (6.3.3b), in
order to yield an equivalent system from which all necessary

information about K(t,s) can be obtained.

Finally, let us notice that the l-dimensional version of (6.3.3b)
is not an integral equation of Volterra-type, in spite of the variable
upper limit t of the domain of integration. At each fixed té€ [O,T] ’
the l-dimensional version of (6.3.3b) is an integral equation of
Fredholm.

Gsd. A system of integral equations, related to the

Kalman-Bucy estimate.

If not defined in this section, the meaning of the symbols used,
may be found in the previous sections. If no confusion may arise, a
vector a or matrix A with real valued entries will be called

continuous or differentiable e.g., iff all elements enjoy the assigned

6»4
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property. The components of a and the elements of A will be

denoted by a, and a respectively.

J Jk
(6.4.1) Throughout this section, iﬂs) stands for the matrix,
defined in (6.2.1c).

Let d%d(s) represent the positive square root of djjks), J=1,.,M,
and define the diagonal matrices

H 8 1 dé (s)
p¥(s) - d”(\) 3 ) , 1) - /i)
= dyn ()

see (6.2.,1c). Let 0(s) be as in (6.2.1c) and set

y BE {O,T] ’

\1/1&“(.)

iﬁ(s) = OT(s)D*(s)O(s) and i-ﬁ(s) - OT(s)D-i(s)O(n) .

In this way, i#(s) and i'i(s) are (uniquely) defined continuous, definite

positive MX M-matrices, s é[O.T] y symmetric and such that

#(e)ib(s) = B(s) , P R(0)5E(s) = 3H(s) and BE(a)FE(s) - I, -

(6+4.2) Let us multigly the M-dimensional system (6.3.3b) at the

left-hand side with B®(s). Then we obtain
(6.4.28) FE(s)K](t,5) + [E{57%(s)E 6 ()€ () B (w)}{BECu)K] (+,u)}au -
-FE()EQ(s) £,(t) ,  s€[0,t), te[0,T), i-1,.,N.

As we set

(6.4.2b) ii(s)kz(t,s) = ii(s,t) - hence KI(t,s) = §fé(a)§i(s,t) -
and
(6.4.20) B 2(a)EQ ()€ (w)EE(u) = C(syu) ,

then system (6.4.2a) is transformed into

(6.4.22) K, (s,%) + [¥ c(s,0k,(u,t)an = FH(a)EQ (a) E,(¢) , s€[0,¢],
tefo,7], i-1,.,N.

It should be noted that the kernel C(s,u) does not depend on i .

At each i system (6.4.2d) corresponds with (6.3.3b) or (6.2.11b).
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(6.4.3) We shall investigate the M-dimensional system of integral
equations
t
(6.4.32) Ax(s,t) - jo C(syu)x(u,t)du = y(s,t) , se[0,t],

te [o,'r].
Here A is a parameter, C(s,u) is the MXM-matrix in (6.4.2c),
y(s,t) is a given element of lei[o,t] and x(s,t) € 1.‘2‘[0,1:] is

to be solved.
Lg[o,t] is the real Hilbert space, defined in (6.2.10).
As we substitute X
Ae-1 ana  y(s,t) = -B7%(s)EE (s) E,(¢)

into (6.4.3a), system (6.4.2d) is obtained, with x(s,t) = ‘Ei(s,t) .

(6.4.3b) Let us first recall several properties of L‘Z‘[O,t] .

If u(s,t) and v(s,t) are elements of lel[o,t] , the inner
product is defined as follows:

M
(u(s,t),v(s,t))t = j: w (s,t)v(s,t)ds = = J: ud(s,t)vj(s,t)ds .
=1
Hence :

Jvcest)]2 = §¥ v (o, t)v(s, t)as = 322 [3 ¥(sit)as .

The inequality of Schwarz reads

- s trav(sitn),| £ luts, ol Jrcs, ol -

l J: uT(s,t)v(s,t)da

If the components of u(s,t) are essentially bounded in s on
[O,t] ( eego if wu(s,t) is continuous in s on [O,t] ), then
there is a finite number wu(t) such that

ess sup ‘uj(s,t)l = u(t)
se[0,t], J=1,.,M
and hence X
2
“u(s.t)"t = E : ug(s,t)ds = ltuz(t)
Then

M
l E J: uj(s,t)vj(s,t)ds = ‘j: uT(s,t)v(u,t)ds

l(u(s.t),v(s.t))tl £ futs, )l g-Ivestlly & u(e)Vie |v(s, 0, -

604
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(6.4.3c) The kernel C(s,u) of (6.4.3a), i.e. the MXM-matrix
¢(s,u) = 37¥(s)E€ (s)€T(w)B 3 (u)
enjoys the properties

1) C(s,u) is continuous in (s,u) on [O,T]z, owing to (6.3.2b)
and (6.4.1). Hence its elements are uniformly continuous on [0,'1‘]2

and bounded. So there is a finite number ¢ such that

o (B,u)E[Q,T?gT Jok=l,.,M \cjk(s’u)l .

i)  ¢'(s,u) = C(u,s) .

(6.4.3d) The operation

z(s,t) = I: C(syu)x(u,t)du
defines a mapping ?t of Lg[o,t] into itself with the properties :
1) ?t is a linear operator .

14) Et is a continuous operator with norm n Lot "t satisfying

1€, = e, teforr] .

For,
LA
21(.!,t> E JO clk(s:u)xk(u’t)du
£, x(s,t) = a(s,8) =| . !
: Mo, :
zy(syt) ﬁ So cn(s,u)xk(u,t)du

And on account of (6.4.3b) and (6.4.3c),

M
{zj(s,t)l = l';;?l I: cdk(s,u)xk(u,t)du\ < cv-;a “x(e,t)",c s JmlsesM .
Hence

M
"ft x(s,t)ui - “z(s.t)“i = E '(: zi(s,t)ds < M J: cznt ‘x(s,t)ll?c ds =

- c2u242 ux(s,t)ni 5
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$i1) ?t is a compact operator.

Proof: Let
{ x(n,8,t), n=1,2,.. }

be any bounded sequence in L‘;[O,t] . This means, there is a value
a(t) such that

Hx(n,s,t)[lt = a(t), n=l1,2,.. .
By definition, ?t is compact at té[O,T] iff the sequence
(1) {z(n,s,t) - Zot x(n,8,t) , n=1,2,.. }
contains a subsequence, converging in lel[o,t] .
If s,s' e [_o,t] .

Izj(n,s,t) - zj(n,S':t)l =

M

t
:Z-_l Jo{cjk(s,u) - cjk(s',u)} x (n,u,t)du
The elements cjk(s,u) are uniformly continuous on [O,T]2 . Hence
given £ > O, there is a number & > O such that uniformly in ue[O,T]

‘cjk(a,u) - cjk(s',u)'< £ if ‘s-s'l< 5 .
Then by virtue of (6.4.3b),
M

% .
‘E Jo {cik(s.u)-cjk(s',u)}xk(n,u,t)du‘é EW; “x(n,u,t)nt{,—_ et a(t) .
And hence for all n and Jj=1,.,M, if ls-s'l< ) then

lzd(n,s,t) - zd(n,s',t)l < g\ Mt a(t) .

This means that at each J the elements of the sequence

(2) {zd(n,s,t) S w2000 }

constitute an equicontinuous system of functions of s on [O,t] .
The elements of (2) are also uniformly bounded, as also on
account of (6.4.3b),

- cv-ﬁ ux(n,u,t)“té cw_‘t a0

= (¢ (
- So cjk(a,u)xk n,u,t)du

zj(n,s,t)} -

Therefore, owing to Ascoli‘'s theorem, at each j there is a

subsequence of (2)

{zj(n',s,t), nt="5% } ’
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converging uniformly on [O,t] as n'-> e¢o . And hence, there is

also a subsequence of (1) ,
{z(n“,s,t), n"= .. },

such that at each J the corresponding sequence of components
{zj(n”,s,t), n'=t o S

converges uniformly on Io,t] as n"—> ¢o , say to zj(s,t) .

Then also

6-4

”z(n"vsvt) - Z(Bst)“i - ‘%l j: {zj(n",s,t) - zj(s,t)}2d3—>0 as n—» &2 ,

showing the asserted compactness of ?t .
iv) (‘ft is a symmetric operator.
For, if f(s,t) and g(s,t) are elements of Lg[o,t:} .

(f(sgt)i ?t g(S,t))t - j: fT(Sgt)Kj: C(s,u)g(u,t)du] ds =
- S: Sct: £7(s,t)C(s,u)g(u, t)dsdu,

whereas on account of ii in (6.4.3c),

.
( &, 1(s,0),8(e,0)), = (2 [Lf C(s.u)f(u.t)du] gls, t)ds =

- j;‘ SZ £T(u,t)C (s,u)g(s, t)dsdu = j: f;‘ £ (u,t)C(u,s)g(s,t)dsdu

Hence (£(s,t), th 8ks!t))t = ( 81,, f(s,t),g(s,t))t .

v) (gt is a non-negative definite operator.

. M
For, if f(s,t) € Lz[o,t‘l , then

(£(syt)y &, £lst))y = (& [ €70, 1)572(s)EG ()87(w)B 2 (w) £(u, t)dsau .

Set
Pu,t) = €w)EE(u)e(u,t)

=
Then f’fJ(u,t) = (f’(u,t), as it is l-dimensional. It is the sum of a

number of second order random functions of the type, discussed in (6.2.1).
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Hence

t
fo @u,t)du
is well defined as a stochastic integral in q.m. It has a finite
second moment and satisfies

Eijot ?(u)t)du]z = J: 5.: E?(B,t)?(u,t) dsdu =
- .[: '(: fT("t)‘i-i(B)Ee(5)eT(u)i-ﬁ(u)f(upt)dsduy

see (6.2.1). So we obtain

(£(s,t), &, 2(s,)), = E[§5 Plu,t)au]® 2 0.

(6.4.4) Let 77, represent the identity operator in le‘[o,t] .
Then system (6.4.3a) may be written as
6.4.4a (A 7t - Lpt ) x(s,t) =.y(8,t) , te[o,'n] .

where A is a parameter, y(s,t) & given element of Lg[o,t] ’

and where on account of (6.4.3) is at each te[o,ﬂ a linear

t
compact (and continuous) , symmetric and non-negative definite mapping

of Lg[o,t] into itself. The element x(s,t) is to be solved.

Since at té [O,T] ?t is linear and compact, its spectrum
consists - possibly with the exception of the value 0 - of a bounded
denumerable set of eigenvalues }\n(t), n=1,2,.. alone, and only the
nunber O may be a condensation point. Since ft is symmetric,
the eigenvalues are real, and since ft is non-negative definite,

they are non-negative.

Hence A = -1 is not in the spectrum of gt , entailing that
at each te€[0,T] , - f7t - ft is invertible, with inverse

6.4.4b (-2, = &, .

(- 71: - ft )-1 is a linear, continuous operator, defined on
the whole space Lg[o,t] y since f

see [28 ] , page 337.

t is compact and symmetric,

As a consequence, at each tG[O,T]
6.4.4c (=T, - €, ) x(st) =0

is uniquely solvable in Lg[o,t] s with solution
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x(s,t) =0 € L‘;[o,t] ,
since x(s,t) = 0 satisfies (6.4.4c).

It follows also that at each té[O,T], system (6.4.3a) with
A = -1, and hence system (6.4.2d) has a unigue solution. This is
in accordance with the result in (6.3.2) or (6.2.11), and with the
fact that the Wiener-Hopf equations of the Kalman-Bucy estimate have

a unique solution.

Since Zt is compact, symmetric and non-negative, there is at
each tE€ LO,T] a maximum eigenvalue, satisfying

max A (0) = &), -

n=1,2,..

Hence according to ii in (6.4.3d),

(6.4.44) 0 £ max ')\n(t) =< cMt , te[_o,T] .

n=1,2,..
As we define

A_(t)
6.4.4e (A,t) = su n St G0, FINAGLIGE
= n=l,g,.. \ A - An(tj ) )?é[) :(It)’ niél,2,..

it can be shown that
a4 A 7 - C07 = 3 freano},
see [ 28] page 338.

In the context of the Kalman-Bucy filter, we are only interested
in the case that A = -1, see (6.4.4b) and (6.4.3a). Then, as all

An(t) are non-negative, (6.4.4e) shows

0 £ x(-1,t) = max A_(t)
n
n=1,2,..

and hence according to (6.4.4d),

0 £ ol(-1,t) = oMt , tefo,1] .
Hence, owing to (6.4.4f) with 7\ = -1 , we obtain the important result
(6.4.4g) -7, - & )'1“t z1+cMt, tefo,1] .

This means, if t varies in IO,T], then "( - 7t - f‘c )-1“1;

is uniformly bounded.
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Let us return to (6.4.3a) with A = -1 . We have shown :

6.4. Let be given the M-dimensional system
(6.4.5a) x(s,t) = d(s,t) - _{: C(s,u)x(u,t)dn , sE[O,t} y

where C(s,u) is the MX M-matrix in (6.4.3c) and where d(s,t) is
any element of le‘[o,t] .
Then at each te€[0,T] :

i) There is a unique solution x(s,t) € lel[o,t] 5

£1) The solution x(s,t) is a linear transformation of d(s,t),

and a continuous transformation in the sense of the topology of Lg[o,tJ .

iii) “x(s,t)u,c = (1+ cm).“a(s,t)“t : te[O,T] .

We shall frequently use the following consequence of i and ii :
iv) If d(syt) = 0, then x(s,t) =0 .
And at each fixed t e[o,T] »

M M
d(s,t) >0 in Lz[o,t'] entails x(s,t)—> 0 in Lz[o,t] .

We recall, if d(s,t) -3-%(3)E€(s)§i(t) , then the unique
solution to (6.4.5a) is

x(s,t) -.ﬁ%(s)l(:(t,s) .

t t=s
N
6.4.6 Let us recall the compact =
domain A , defined by A
0Okes et , te[o,T],
see (6.3.2). g S
In this subsection it is assumed that
6.4.6a the components of d(s,t) are bounded on A .

Hence there is a finite number d such that

i:-){e Id.(s,t)’
(s,t)e A, j=1,.,M I

d =
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Then
%
(6.4.6b) “d(s,t)”i - f: di(s,t)ds z a%ur, tefo,1] .
=1
Since

x(8,t) = d(s,t) - j: ¢(s,u)x(u,t)au , sefo,t] ,
then by virtue of (6.4.3b)
\xj(s,t)l = |ay(st)| + \ kZ: f: cjk(s,u)xk(u,t)du)s
£ a+cVut [xu, ), -
And as on account of (6.4.6b) and of iii in (6.4.5)
[ x@,wf, =@+ oMt).fas,t)|, = (1 + aut)aYut , tefo,1] ,
it follows that

(6.4.6¢) lxj(s,t)l & d + doMt(l + cMt) & d + dcMT + dc2u’r?
uniformly in (s,t) € & , j=1,.,M .

I.e.: If the components of d(s,t) are bounded on & , and if
x(8y,t) is the solution to (6.4.5a), then also the components of x(s,t)

are bounded on A .

6.4 In iii of (6.4.3d) we established among other things that
I: C(syu)x(u,t)du

is a continuous function of s on [O,t] , if x(u,t) e Lgﬁp,t] e

Hence, if d(s,t) is continuous in s on LO,t] , the solution

x(s,t) to (6.4.5a) is also continuous in s on {O,t] y cf. (6.3.1e).
However, we need to establish the continuity of x(s,t) in (s,t)

on /\ , under the assumption that
(6.4.7a) d(s,t) is continuous in (s,t) on A .

Then the components dj(s,t) are uniformly continuous on /Z\ ,

and bounded on A , say by d, and (6.4.6c) applies. I.e. :

6.4.7b Under the assumption (6.4.7a), the components xj(s,t)
of the solution x(s,t) to (6.4.5a) are bounded on A .
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In this subsection condition (6.4.7a) is assumed to be fulfilled.

Hence (6.4.7b) is valid. /
(6.4.71) ot 7
Let t be a fixed value in [O,T]. t
£ i
Assume 0 St' < t . vl
Consider the unique solutions E E
x(s,t) and x(s,t') : :

0 e
to system (6.4.5a) at t and at t! Tt
respectively.

x(s,t') if 0€ s S t'
Define x(s,t') = {
0 if t'<s &t
Then

d(s,t') - S': C(syu)x(u,t')du if 0=s =+¢'

Z(S,t') - { 4! )

0 = jo C(syu)x(u,t')du - jo C(syu)x(u,t')du if t'<s=£t
Since

x(syt) = d(s,t) - j;‘ C(syu)x(u,t)du , sé [o,t] ¥
we obtain at each t é[O,T] the identity
6.4.7c x(syt)-x(5,t"') = u(s,t,t')- j: C(s,u){x(u,t)—z(u,t')}du, s€ {_o,t],
where

(6.4.74) u(s,t,t') = {

d(s,t)-d(s,t') if 0 8 £ t!

d(s,t)-sg' C(syu)x(u,t')au if t'<s £t

Now consider at té[O,T] the system
6.4.Te yis,t,4') = u(s,t,t') - j; ¢(s,u)y(u,t,t')au , se [0,t] .
As it is of type (6.4.5a), it is uniquely solvable with solution

y(syt,t') = x(s,t) - x(s,t') ,

according to identity (6.4.7c).

We shall show

u(s,t,t')—>0 in Llé(_o,t] as t'1t,

or equivalently

6.4.7F “u(s,t,t')“i—bo as t'}¢t.
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By virtue of (6.4.74),

“u(svt9t')"i = % I: qu.(s,t,t’)ds =

x t! 2 . t L t! 2
;EE 50 {dj(s,t)-dj(s,t')} ds + ;E St,{dj(s,t)— S fo cjk(s,u)xk(u,tl)du} ds
J=1 Jj=1 k=1
The first term in the right-hand side tends to O as t'T t , because
of the uniform continuity of dj(s,t) in (s,t) on A . In the second
term, the integrand is bounded on account of the continuity of d(s,t)
on A\ , and by virtue of the boundedness on A of cjk(s,u)
- see (6.4.3c) - and of xk(u,t') - see (6.4.7b) - . Then also the
second term tends to O , since the measure t-t' of the domain of
integration tends to O as t'T t.

Hence (6.4.7f) is established. And so, by virtue of (6.4.7e) and
of iv in (6.4.5),

(6.4.78) lly(s,t,t')"t = lx(s,t) - g(s,t')“t — 0 ‘Fs t'T e

Now we assume 02t <t'< T, t fixed. t!
We shall similarly show that

6.4.7h “x(s,t) - x(s,t')“t—» 0 as t'lt -

0

Instead of identity (6.4.7c) we now obtain
(6.4.7i) x(syt')-x(s,t) = v(s,t,t')-s: C(s,u){x(u,t')-x(u,t)}dn, se0,],
where
(6.4.74) v(syt,t') =d(a,t')-d(s,t)-j:'c(s,u)x(u,t')‘dn at each s€{0,t] .
Then

|| V(s,t.t')"i = ;21 I: '§(s,t,t')ds =

=%Std(st')-d(st)-%jt'c (syu) (ut')du2d
j=1°{3' A jep b SRR }s'
ks '] &, dy(s,t') - d;(s,t) >0 , wmifornly in s€[0,t] ,
because of the uniform continuity of d(s,t) on A . Since
cjk(s,u)xk(u,t') is bounded on A by virtue of (6.4.3c) and
of (6.4.7b) respectively, jtlcjk(s,u)xk(u,t')du tends to 0 ,
uniformly in s é[O,tJ since the measure t'-t of the domain

of integration tends to 0 as t'| t .
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Hence, according to (6.4.7g,h),
(6+4.7k) Given € >0 , there is a number J > O such that
| x(sst) - x(syt)], < € if |t-t'|< S .

The bar in x(s,t') may be omitted if t'= t .

(6.4.7m) If the components of the M-vector d(s,t) are continuous
functions of (s,t) on A , then also the components of the solution

x(s,t) to (6.4.5a) are continuous functions of (s,t) on A .

Proof : Let (s,t) and (s',t') in A , (s,t) fixed.

Necessarily 0ZLs<t , and O0<s'&t' ., We may write
x(s,t) - x(8',t') = x(s,t) - x(8',t') =

- a(a,) - a(atye) - {7 clamata,an - [Fo(ar )zl t)an) -

= d(s,t) - d(s',t') - j: C(s,u) {x(u,t) = 3(u,t')}du

- JE{otam) - oot )}x(e,t)an + (}o(sr u)x(u, e )au

where the bar in x(u,t') may be omitted if t'2= t .

Hence

‘xj(s,t) = xj(s',t')\ = \xj(s,t) - }_J(s',t')} =

+

M
|dj(a,t)-dj(s',t')‘ + kZ’l 5: cjk(s,u){xk(u,t)—ggk(u,t')Edu

+ % ﬁ lcjk(s,u)—cjk(s',u)l.l_)_gk(u,tl)]du o é I:'icjk(s"“)’—‘k(“'t') &

k=1 k=1
Let E£> 0.

1) Since d(s,t) is uniformly continuous on A , there is a
neighbourhood 7z of (s,t) , such that

ldj(a,t) - dj(s',t')]< 3 if (st') e 2 NA -

5. On account of (6.4.3b,c) and (6.4.7%), ‘t-t'l < & entails

)
¥
l % :cjk(s’u){xk(“vt) - Ek(u»t')}dul < JVut & .
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iii) Since cdk(s,u) is uniformly continuous on A , there is a

number J' such that
)cjk(e,u) - cjk(s',u))< g if ls-s']~< ST k] oM 0T
According to (6.4.7b), 5k(u,t') is uniformly bounded on A , say
‘gk(u,t')‘ < x ., (ugtt)e A, k=l oM .

Hence

k§-1 J: ‘cjk(s,u)-cjk(s',u)$.)Ek(u,t')]du < MExt if [a-—s"< S

iv) If t'<t,
' - .
= Jt Jk(s ,u)x (st )\du 0
And TGS s

o .‘t l K (8"u)x (u,t')Idu < Mox.(t'- t) .

The asserted continuity of x(s,t) as a vector function of (s,t)

on A is shown in i - iv .

(6.4.Tn) If d(s,t) = 'ﬁ"i’(s)Eg(s)gi(t) , {(8,t) € A , it satisfies
condition (6.4.7a), see (6.3.2c). Then the solution to system (6.4.5a)
is
x(s,t) = 5%( )K (tys)

Hence the components of B%(S)K (tys) and therefore those of

i(t,s) -B é(s)x(s,t), and finally the elements of the Kalman
matrix K(t,s) in (6.2.11) are continuous functions of (s,t)
on A . It is observed that in (6.5.2) only the continuity of the

elements of K(t,s) as functions of s was shown.

It is seen that the conditions, imposed on the covariance matrix
B(s) of the Wiener-Llévy process in the observations, see (6.2.1lc),

fully exploited.
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6.4.8 We have sees in (6.3.20) that Af d(s.t) = 3 W(=)RE(a) £,(t) ,
6.4.8a d(syt) is partial differentiable on A with respect
to t , and

d(s,t) and 3‘% d(s,t)
are continuous vector functions of (s,t) on A .
In this subsection we shall show that under condition (6.4.8a),

the solution x(s,t) to (6.4.5a) is also partial differentiable
with respect to t and that it satisfies an appropriate system of

integral equations. A
b
e
Let condition (6.4.8a) be fulfilled. t

Let t be a fixed value in [0,T)

and assume

0 > 8

0£t<t' &7T. .
6.4.8b According to the mean value theorem of calculus,

d.(syt') - d,(s,t)

J 3 °
= d.(s,t"(s
8 -t 'Bt"(s) j( ’ ( ))

where 0< t"'(s)-t < t'-t .

And since on account of (6.4.8a) ﬂ,é(;; dj(sgt"(:i-)) is
uniformly continuous on A ,

dJ(s,t') - dj(e,t)

t' -t

2
—> 3 dj(s,t) as t'Lt , uniformly in s¢€ [O,t] .

Let x(s,t) and x(s,t') be the solutions to (6.4.5a) at t and
t' respectively. Then owing to (6.4.7i,j) we obtain the identity

1) ( 1) -x( )
6.4.8¢c EL!‘t—t%Ls-‘—tl = w(s,t,t') - S: c(s,u) B2 tt'-i Wit) gu - se[(),t],

where

(6.4.8d) w(s,t,t') = d(s,t;?:ths,tl - t':-Lt x:' C(syu)x(u,t')du , se[O,t].
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By virtue of (6.4.8a), also condition (6.4.7a) is fulfilled. And
8o (6.4.7m) applies. Hence, also on account of (6.4.3c), C(s,u) ,
x(u,t) and C(s,u)x(u,t) are continuous on A . By virtue of the

mean value theorem for integrals of continuous functions,
1
ﬁj: cjk(s,u)xk(u,t')du - cjk(s,t")xk(t",t) s b <R U

where t" varies with s . We may write
|cjk(s,t)xk(t,t) - t,—}t S:'cjk(s,u)xk(u,t')dul -
- lcjk(e,t)xk(t,t) - cjk(s,t")xk(t",t')‘ =
g}cjk(s,t)-cjk(a,t")).,xk(t,t)] * ‘cjk(s,t")}.,xk(t,t)-xk(t",t')] .

As cjk(s,t) and xk(t",t') are uniformly continuous on A and

bounded,

cjk(s,t)xk(t,t) - t'_:—Lt J: cjk(s,u)xk(u,t')duf —> 0 as t'J, £,

uniformly in se[O,t] .
1
Hence the components of t'_]-.t S: C(s,u)x(u,t')du tend to the
corresponding components of C(syt)x(tyt) as t'lt , uniformly

in se[o,t] .

Owing to the above result and to (6.4.8b),

. . dj(s,t')—dj(s,t) 1 e
«4.8e wj(s,t,t ) = 20 Ttiog jt{%cjk\s,u)xk(u,t')}du
% M
=> % dj(s,t) = k21 cjk(s,t)xk(t,t) as t'l t , uniformly in sé[O,t].

According to (6.4.8a), (6.4.3c) and (6.4.Tm),

IC.
6.4.8f ~3 s, t) - C(syt)x(tyt) is continuous in (s,t) on A .

Consider the ¢ ctem

6.4.8 ¥(s,t) = ‘L?% d(s,t)-C(s,t)x(t,t)} = jg ¢(syu)y(u,t)aun , sefo,t],
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where x(t,t) is the value at s=t of the solution x(s,t) to the
system

xi8,t) = dle,t) = ﬁ ¢(s,u)x(u,t)du .
As system (6.4.8g) is of type (6.4.%a), it is endowed with a unique
solution. Moreover, since according to (6.4.8f) s% d(syt) - C(s,t)x(t,t)

is continuous in (s,t) on A , (6.4.7m) applies and hence

(6+4.8h) The solution y(s,t) to system (6.4.8g) is continuous
in (s,t) on A , provided that condition (6.4.8a) is fulfilled.

Now consider the identity

(6.4.81) x(s,t;? - x(s,t) y(s,t) =

-t

{w(s,t,t')-a% d\s,t)+C(s,t)x(t,t)}-j: c(s,u){i(iit—'ﬂ(bﬁ -y(u,t)}du, sefo, 1],

t'- ¢

where w(s,t,t') is defined in (6.4.8d), where y(s,t) is the
solution to (6.4.8g) and x(s,t) the solution to (6.4.5a),

and consider the system

(6:4.87) z(8ytyt!) = r(s,t,t') - j: ¢(syu)z(u,t,t')au , sefo,t],

where

(6.4.8k) r(sytyt') = w(s,t,t') - b% d(s,t) + C(s,t)x(t,t) , se[o,t] -
x(t,t) being the solution to (6.4.5a) at s=t .

Since (6.4.8j) is of type (6.4.5a), it is endowed with a unique

solution. On account of the identity (6.4.8i) this solution is

(6.4.8m) z(syt,t!) = x(§,t;? = %ﬁg't) y(s,t) ,

x(s,t) and y(s,t) being the solutions to (6.4.5a) and (6.4.8g)

respectively.

According to (6.4.8e) and (6.4.8k),
M
2 - t 2
nr(s,t,t )"t ﬁjo rd(s,t,t')ds—> 0 as t'L t,
entailing, because of (6.4.8j), (6.4.8m) and iv in (6.4.5),

(6.4.8n) )|z(s,1;,t')"t =”5§i't—3-%(3'ﬂ = y(s,t)“t >0 as t't.
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(6.4.8p) I.e.: If condition (6.4.8a) is satisfied, then the
solution x(s,t) to

x(s,t) = d(s,t) - I: C(syu)x(u,t)du , sé{O,t] ’

is differentiable from the right with respect to t in the topology
of L:[O,t] . The derivative in this sense will be denoted by
D§+x(s,t). It satisfies

t
D2+x(5’t) = y(s,t) ,
where y(s,t) is the solution to system (6.4.8g). Hence

D;+x(s,t)- {b% d(s,t)—C(s,t)x(t,t)}— S: C(s,u)D;+x(s,t')du » sef0,t].

A similar approach in case that t!' T t looks not feasible in
view of (6.4.7d), cf. (6.4.73).

(6.4.8q) On account of (6.4.8h), D;+x(a,t) is continuous in
(syt) on A , provided that it is appropriately defined at t = T .

Denoting the components of D;+x(s,t) by [D;+x(s,1’.)1j , it
follows from (6.4.84) and (6.4.8k) since D;+x(s,t) = y(s,t) that

xd(s,t') - xi(s,t)

- ¢ B [D;+x(s,t)]:] -

M xk(u,t') = xk(“vt)
- I‘J(Syt,t') e s: kz-l cjk(slu) {

o -{D;+x(u,t)]k}du, sé[O,t].

Hence on account of (6.4.8j,k), (6.4.8e), (6.4.8n) where y(s,t) =
= D*x(s,t) , and (6.4.3D),

xj(s,t') - xj(s,t)

t+ '
R a [D2 x(s,t)]j >0 as t'}t, se[o0,t] , te{o,'r],

i.e. x(s,t) is partial differentiable from the right on A with
respect to t in the ordinary sense. Its right-hand side partial
derivative is denoted by Dt+x(s,t) . It satisfies

p**x(s,t) = D;“’x(s,t) ,

and hence it is continuous in (s,t) on /N on account of (6.4.8q).
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Among other things, we have established that under condition (6.4.8a)
the M-vector x(s,t) is continuous in (s,t) on A , and partial
differentiable from the right with respect to t , and that also the
derivative Dt+x(s,t) is continuous in (s,t) on A . Hence, owing
to lemma (6.4.8t) below,

x(s,t) is partial differentiable with respect to t from both

sides in the ordinary sense and

)_a{ x(s,t) = Dx(s,t) = Dy'x(s,t) , (st)e & .

Hence, according to (6.4.8p) :
(6.4.81) If condition (6.4.8a) is satisfied, the solution x(s,t) to
t
x(8,t) = d(s,t) -[o ¢(s,u)x(u,t)an , sefo,t], tefo,1],

is partial differentiable with respect to t and s% x(s,t) satisfies

33 x(5,%) = ;2 d(5,4)-0(s, 1)x(t,8) - [¥ c(sy0) & x(w,t)aw , (s,1)e & .

6.4.8s At the beginning of this subsection we recalled that
a(s,t) = 5H(a)8E (s) £, (%)

satisfies condition (6.4.8a). So, the components of ii(s)kz(t,s),

hence those of i-i(s)ﬁ:(s,t) and therefore the elements of the
Kalman-matrix K(t,s) in (6.2.11) are partial differentiable with
respect to t on A (provided that condition (6.2.lb,c) is satisfied).

K(tys) and b'aE K(t,8)
are continuous on /4 and the partial derivative satisfies
52 K(t,5)B(s)=A(+)EE (£)8T(s)K(¢,)EQ (£)&T(s)- (¥ -2 K(t,u)EQ (n)€(s)an ,

(syt)e & , see (6.4.7n), (6.4.2) and (6.3.2a,c).

It is observed that the properties of d(s,t) are reflected
in the solution x(s,t) to system (6.4.5a).
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It remains to show the lemma, announced below (6.4.8q).

(6.4.8t) Let f(x) be a mapping of [a,b] into (-090,e2).
Provided that they exist, let the ordinary derivative, the derivative
from the right and the derivative from the left of f(x) be
represented by Df(x) , D'f(x) and D f(x) respectively.

Lemma: Agsume

i) f(x) 4is continuous on [a,b].
ii) D'f(x) exists on [a,b) .
1i1) D'f(x) is continuous on [a,b) ., l%g D'f(x) exists, and
x

by definition : D'f(b) = l%g D+f(x) ot (624280,
x

Then f(x) is differentiable on [a,h] and Df(x) = D'f(x) , x¢€ [a,b].

Proof's Consider

glx) = f(x) - SLE%—E—ELEl (x -a) , =xela,b] .

It is seen that also g(x) enjoys the above properties i , ii and iii .
And moreover,

iv) g(a) = g(b) .

4) We shall first establish the assertion

(1) there is a value X, € [asb] such that D+g(x°) =0 .
Proof: Assume the contrary,

(2) atall xc [a,b] , D'g(x) £0 .

Since D+g(x) is continuous on [a,b] y it attains a minimum nt

. o
and a maximum M~ on [a,b] . Moreover

either M > nm'> 0 or nt< ut< o0 ,

otherwise (2) would be false because of the continuity of D+g(x)
on [a,b] -

Assume m' >0 .

As also g(x) is continuous on [a,b] y it attains a maximum

value M on [a,b] , 82y M = g(xM) . Suppose x & [a,b) . Since
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D+g(xu) > n" >0, there is a value x' & (xl,b] such that
ex') - elx,) _ .+ ot
ot - ol - SRR LT elx') > elx) +3 (x' - x)> alx) =¥ .
x' - Xy
This is absurd and hence x, =b , and M = g(v) .
There is also a value x" € (a,b] such that
g(x") - g(a) n* '
T >3 » i.ee &(x")> gla) +35 (x" - a)> gla) .
Hence, combining the above results,

(3) M= g(b)2 g(x")> g(a) in conflict with iv .

The other alternative, M+< 0 , is treated similarly with result

(4) g(a) > g(b) .

Both (3) and (4) are in conflict with iv . Hence (2) is

false and (1) is true. In other words:
(5) If the conditions i , ii and iii are fulfilled, then there
is a value x € [a,b] such that
)

f(b) - f(a

+
b - a & f(xo)

B) Under the conditions i , ii and iii , f(x) is differentiable
on [a,b] -
Proof: At x=a , Df(a) = D'f(a) by definition. Assume
x & (a,b] and agxlXx .
Then according to (5) there is a value X, such that

£(x) - £(x)

4
— = Df(xo) and x

IIN

X
o

N

X,

- g xT_x_ » then x> X and hence D+f(xo) - D+f(lg) because of
the continuity of D'f(x) on [a,b] . Therefore

Df(x) = lim M = 1lim  Dd'r(x.)) = D'f(x) ,
xTx X-x Xo > X

establishing the lemma .

6.4
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(s The Kalman-Bucy filter.

For sake of completeness we shall establish the computation
scheme of Kalman and Bucy, solving the Wiener-Hopf system concerning
E\t‘t), see for instance [16] 5

If not defined here, the meaning of the symbols used may be found
in previous sections, as well as the proofs of the validity of a
number of relations and formulae, used by Kalman and Bucy in the
computations below. Many details are omitted here as they are amply

discussed before.

Let be given the N-dimensional system (6.1.1),

c&(t) = Y+ [Pa(s)E(s)as + A1), tefo,1],

with the M-dimensional observations

£(s) = M(s) + A(s) at all s €[0,t] , where

Nis) = [Se(w)au , g(u) = H(u) £ (u) ,

S BA(s)3(s) = B(s) = 0T(8)D(8)0(s) > O , see (6.2.1c),
EA(t)Y =0, EA(t))T=0, Ep(t)/"sT(s) = 0 and hence
t 55()F(s) = 0, BA)EN(t) - 0 ana EM()AE(s) =0,

see (6.1.1).

6.5.1a

All above random elements are centered, and may be embedded in
a Gaussian Hilbert space H . The components of Z(s) y B E[O,t] ,
generate a closed subspace H[C([O,t]ﬁ of H . The Kalman-Bucy

estimate 42(tlt) is characterized by

Ei(t]t) e uc([o,t]) , i=1,.,N, and

E{E(t) - E(t]t)} I =0 for all e H[C([O,t])J .
In particular,

E {;(t) - %(t\t)}f(s) s E{g(t) - ’E(t]t)}’gT(t\t)

see (6.1.1).

6.5.1b

= 0,

605
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The Kalman-Bucy estimate may uniquely be represented as
- t
64542 E(t|t) = [o K(tyu)da Z (u) , te[o,7] ,
where K(t,u) is an NxM-matrix whose entries at fixed t are

elements of L2[0,t] , owing to the fact that B(s) > 0, see (6.2.11).

At each te[o,T], K(t,s) is the unique solution to the system
(6:5+3) x(t,a)i(s) + g: K(t,u)Eg(u)gT(s)du = Eg(t)gT(s) y se]0,t],
see (6.3.2) and (6.4.5).

E g(u)QT(s) is continuous in (u,s) on [O,T]2 s

E E(t) é?s) is continuous in (t,s) on A ,
B% E E(t)eT(s) = A(t)g (t)@T(s) exists and is continuous in (t,s) on A ,

see (6.3.2).

It follows that K(t,s) is continuous in (t,s) on A
see (6.4.7n), and that

s% K(t,s) exists, is continuous in (t,s) on A and satisfies

(6.5.4) D% K(t,8)B(s) + K(t,)EC (£)Q'(s) + : b% K(t,u)E€ (u) 8 (s)du =
= A(t)EE(+)ET(s) , (s,t)e A, see (6.4.8s).

A
The estimation error is E(t) = B(t) - g(t\t) .
P(t) represents the error covariance matrix
=T
P(t) = EE(t)E () , 3 K_O,TJ .
In the Kalman-Bucy filter, P(t) is not only of importance as a
measure of the magnitude of the estimation error. It is also an
essential tool in the calculations. With the aid of P(t) , Kalman

and Bucy arranged the computations in such a way that K(t,s) is
needed only at the diagonal s=t .
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Since E g(t) ET(t]t) =0, ses (6.5,1b),
R(6) - BE(0) {£(0) - E(e|0)) - BE(ET(w)

Hence, since  @(t) = H(t) 8(t) ,

(6.5.5a) P(t)ET(t) = E E(+)E(+)H (t) = E E(+)8T(¢) =
-EE(1)g'(t) - BE(+|t)€(s) =
- B E(+)¢N(t) - E{jj K(ty)a ()]l

s f(u) = M(u) + /5(u) )
(6.5.5b) j: K(t,u)d [(u) = j: K(tyu)an(u) + j: K(t,u)af(u) .

Since 'Q(u) is continuously differentiable in q.m. with derivative
in gem. Q(u) , see (2.7.2), and since K(t,u) is continuous in
uef0,t] , we may apply (2.8.3), owing to the results in (6.2.5)
where it is shown that the ordinary Riemann-Stieltjes integral in q.m.

- if possible - may be used in this context. Hence

&Y t d t
(6.5.5¢) Jo K(t,u)d'Y)(u) = jo K(t,u) d;?'l(u)du. = IO K(t,u)g (u)du .
Then on account of the continuity of the inner product, see (2.1.3),
and as Eﬁ(u)g'(t) = 0 , we obtain according to (6.5.5a,b,c),

P(t)H'(t) = E E(t) QT(t)-EUZ K(t,u) &(u)du} eT(t)-Eif;‘ x(t,u)dﬁ(u)} eT(t) -
= B E(£)6'(%) - [¥ x(4,u)E€(u) € (t)au .
Hence according to (6.5.3) at s=t ,

(6.5.6) P(t)H'(t) = K(t,4)5(¢) tefo,] .

Consider (6.5.4), i.e.
DB? K(t,8)B(s) + K(t,£)EL(t)8 (s) +
- A(8)EE(1)ET(
Since €(t) = H(t) E(t) and according to (6.5.3) it follows that

t

b Z(twEE (w)ET(s)au -

8) (syt) e & .

K(t,t)E€ (+)€(s) = K(t,t)H(t)EE(t)€ (s) =
= K(t,£)H(t) {x(t,s)’ﬁ(s) . [t K(t,u)EQ(u)@T(s)du} .
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Substitution of this result in the left-hand side, and of (6.5.3)
in the right-hand side of (6.5.4) yields

}% K(t,s)B(s) + x(t,t)a(t){x(t,s)ﬁ(a) 5 1t K(t,u)Eg(u)@T(s)du} +
+ : 337‘ K(t,u)Eg’(u)gT(s)du - A(t){K(t,s)g(s) + J: K(t,u)E€ (u)eT(s)du} ’
i.e.
{ aDT; K(t,s) + K(t,t)H(t)K(%,8) - A(t)K(t,s)} B(s) +
S; f o K(tyu) + K(t,£)H(£)K(t,u) - A(t)x(t,u)} E€(u)e'(s)du = 0 ,
se[o,t] | TE [O,T] , and hence on account of (6.4.5),

6.5. 5% K(t,8) + K(t,8)H(t)K(t,8) - A(£)K(t,8) = 0 , (syt)e &

Owing to (6.4.8s) we may write

K(tys) = K(s,8) + J: D% K(u,s)du .
Hence
E(t|t) = J: K(t,s)d f(s) = jg K(s,s)a 7 (s) + I:i t 2 K(u,s)du}d{(s):

s ou
(6.5.7a) _J: K(s,s)a {(s) +I2U‘; o2 K(u,s)dzj(s)} du ,

gince the order of integration may be changed. This will be shown
at the end of this section.

Substitution of (6.5.7) yields
E(t)t) = S: K(s,s)a Z(s) + j:{fg[A(u)K(u,s) - K(u,u)H(u)K(u,8)] Z(s)}du ’
and as j‘; K(u,s)d {(s) = é(u‘u) ,
(6.5.8) E(t[t) = j; K(s,s)a L (s) + j:{A(u) - K(u,u)H(u)}g(u\u)du , tef0,1].

This is a system of stochastic linear integral equations for g(t\t) ’
involving K(t,s) only at the diagonal s=t , whereas (6.5.6) gives
the relation between K(t,t) and P(t) .

We shall derive a system of integral equations for E(t)= £(t)- E(t\t).
On account of (6.5.5b,c) and since §&(s) = H(s) E(s) ,

JE x(sy9)ay(s) = [¥x(s,0)H(s) € (s)as + [f K(s,e)afi(s) .
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Hence (6.5.8) may be rewritten as ‘
B(e]6) = ¥ a(e) B(s|a)as + ¥ x(s,8)8(s) {6 (s)- ¥ (s]o)}as + % K(s,8)a3(s)
Subtracting this result from (6.5.1), i.e. from
E(t) = ¥+ (¥ a(s) E(s)as + 3(¢) ,
delivers , as E(t) = E(t) - &(t|t) ,
(6.5.9) F() = Y+ [E{A()K(s,0)(s)] E(s)am + A1) - (¥ K(s,0)a/3(s)
tefo,T] ,

where according to (6.5.6), K(s,s) = P(s)HT(s)E'l(s) 5

Owing to the footnote in (5.1.1) and to (4.4.2),

(& x(s,8)a3(e)
is an N-dimensional Wiener-Lévy process. Hence also
A = B(t) - (¥ x(s,8)a3(s)

~T
is an N-dimensional Wiener-Lévy process, since Eﬂ(t)ﬂ(s) =0 .
It is seen similarly as in (4.4.2e,f,g,h) that

B(t) - 2 EA()B(w)

~T
satisfies - also on account of E/j(t)/i(s) =0 -

6.5.10 B(t) - d% E{ﬁ(t)' Sz K(s,s)d/;(a)} {[3(‘6)- SZ K(s,s)dﬁ(a)}T-
= d% {5: B(s)ds + S:’ K(s,s)i(s)KT(s,s)ds} -
= B(t) + K(t,t)B(t)K'(t,t) .

Since moreover
- yT yT t ~ T
EA(s)Y - EB(s)) - E i K(sys)aB3(s)}Y =0,
system (6.5.9) is of the type, treated in section 5.1. Set
6.5.11 c(t) = EYYT , A(t) = A(t) - K(t,t)H(t)
and let F(t) be the fundamental matrix associated with A(t).
I.e. -l;(t) is the NX N-matrix with the properties

6.5,12 F(0) = I d% F(t) = A(£)F(t) ,

N ’

where I y is the NXN-identity matrix, see (5s2e5)%
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Now system (6.5.9) may be written as follows:
E(t) = 7 + [EE(e)E()as + B(1) .

On account of the above comments, (5.1.2d) applies and yields

P(t) = B E(t)ﬂt) - f(t){c + [t i"l(s)i(s){_i‘l(s)]T ds}l‘?T(t) , tefo,1].

And according to (6.5.12),

(6.5.13) P(0) = F(0)CF (0) = I §CIy=C,

and as P(t) is apparently differentiable,

(6:.5.14) § P(+) = K)E)c + [ i-l(s)i(s)[p'l(s)]Tas}FT(t) +
: i(t)i'l(t)i(t)[i'l(t)]TET(t) +
+ F)fe + §EFHB)[F (6] asfF UK (1) -
= A(t)P(t) + B(t) + P(t)IT(t) s té[o,T] .

Substitution of (6.5.6), (6.5.10) and (6.5.11) into (6.5.14) yields
Sr(v) - {A(t) - p(t)n"(t)%'l(t)n(t)}p(t) %
+ B(%) + P(+)ET(t)B L(+)B(+)B L (t)H(£)PT(t) +
+ 2()fa’(x) - H(F ((R()]
i.e.

(6.5.15) & P(t) = A(£)P(t) + P(£)L" () - P(£)E (t)B~L(t)H(t)B(t) + B(t) ,
it tefo,2] ,
whereas according to (6.5.13)
P(0) = C .

Except for P(t) , all matrices in (6.5.15) are assumed to be
known. Hence P(t) is the solution of an N-dimensional Riccati-system

with a given initial condition. This solution is calculated numerically.
With (6.5.6), system (6.5.8) delivers

(6.5.16)  B(+|e) = [¢ {a(s) - P(a)H" ()5 (2)E(8) } B(s]s)an +

+ S; P(s)HT(sii'l(s)d L(s) , te [O,TJ .
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This is a system of stochastic linear integral equations. Given
the matrices A(s), B(s), H(s), the calculated matrix P(s) and the
sampled observations ¢ (s), (6.5.16) is treated as a deterministic
system and the corresponding sample of E(tlt) is determined in

accordance with the theory of linear minimum variance estimation.

Also in this section it is seen that the condition )i(s) >0 is

essentially needed, as i-l(s) figures in the computations.

The matrix P(t) gives information about the accuracy of the
estimation. A discussion on the numerical evaluation of P(t) ,
té[O,T] y may be found in [ 4 ] .

In practice, the above computations are systematically discretized.
The validity of the continuous counterpart shows the validity of the
discrete data processing, and its relative independence of the size

of the then introduced time-differences At , see also theorem (6.1.8).

A
An alternative method of finding the estimate g(t\t) would
consist of numerical computation of the matrix X(t,s) , see for
instance system (6.3.3a). If K(t,s) is known, the estimate

A
t
€ tl) = ¥ k(t,0)aZ(s)
is simply evaluated by numerical integration.

However, the matrix K(t,s) depends on two variables. And the
numerical evaluation of K(t,s), (s,t)é A , looks rather hard in
comparison with numerically solving the Riccati system of P(t),
te [0,T1 , in the Kalman-Bucy filter, as P(t) depends on one

variable only.
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It remains to show that the order of integration in (6.5.7a) may

be changed.
u u=s
Let A Dbe the domain defined by A /
0O£s€u, 0O£ust . £
Let f(u,s) represent one of the entries
) 2
&= Kij(u,s) of 42 K(uys) . Then f(u,s)
is continuous on A according to (6.4.8s). ;
Let @(s) represent one of the components : "}
4 s ~ I <
of §(s)=1(s)+ R(s) = Io € (w)dw+ ﬁ(s) 5 0 i-1+ ! i= > 3
Then ¢@(s) 4is continuous in q.m. on [O,t}. a - at

£ i g Osusevet,

E Z(u) Z,'T(v) = S"; 5:: Eg(u‘)QT v')autdv' + S\; B(ut)du* .
Here Eg(u')gr(v') and B(u') are continuous in (u',v') on [O,t]z
and in u' on [O,t] respectively. So there are functions g(u',v')
and h(u') , continuous in (u',v') on [0,1:]2 and in u' on [O,t]
respectively, such that

E(f?(u) (f(v) = Sg EZ glu',v')du'dv' + S‘; h(u')du’' , usv .,
Hence, if [x,y] ¢ [O,tJ » the total variation V(E@(u)¢p(v) , [x,y]z)
of qu(u)(p(v) on \'_x,y]z satisfies

V(EGM) P(v) , [x)°) £ 1208 |gCutsv?)|aurav! + (¥ |n@n)|aur

see also section 2.9. Hence, if
M = max max glu! v')] max h(u') }
{ (ut,v') e [0,t]? jetete ’ u'c-;[o,t]l by
then

(1) VEGPE) , [x3]%) = Mly-x|? + u|y-x| .

Define

A = J;{J: fku,s)du}d cp(s) » R = j‘:{j‘; f(u,s)dq?(s).}du .

Since f(u,s) is continuous on A , 5-: f(uys)du is a continuous
function of s on [O,t] . Hence oL exists on account of (1)
and (2.9.1), see also (6.2.5).
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Since f(u,s) is uniformly continuous on the compact domain A ,
if € > 0 , there is a number & > O such that
If(u,s) - f(u',s')l< £ if \u—u"( %) and ls-—s"( g .
Let
A= (u,gtA 'f(u,s)) .
Hence, if \u-v|<5 and 0=ZLuZ£v=s, according to (2.9.1)
we obtain

52 fmepte) - I3 tvsmae(e) | =

152 e - g -
= e VvEgu)gwn) , [ou]?) + aWEg@)@e) , (uv]°) -

[MECADLTAEN] =

Now because of (1) it is seen that Sl; f(u,s)d q)(s) is continuous
in q.m. as .a function of u on [O,t] . Hence ,3 exists according
to (2.7.1), see also (6.2.5).

_ f(u,s) if (u,s) ¢ A,
Set f(u,s) = {

0 otherwise

Then, since (y(s) is continuous in gq.m. on [O,tl , we may write

X - j;'{j: Tu,s)au}aq(s) , 43 = [:{j: T(u,0)a 9 (s)}au .

let n, i and j be natural numbers. We define

- (it =1 g i1 < i d=1 4 = 4
£ (uys) = £( 5= ¢, 4=t ) if nt=u<nt, nt_.s<nt,
i = 1,.,n ,
fn(t,s) = f(t,s) .
Since f(u,s) is uniformly continuous on A , it follows, if n
is sufficiently large, that
= 2
f(u,s) - fn(u,s)‘< 3 ’ (u,s)e[O,tJ ’
possibly with exception of the points (u,s) satisfying

lL'—ltéu(l

i i-1 i X
= St -n—té s<;1-t P ] i

Define

oL = jg{j;‘ fn(u,s)du}d P(s) , B, = j:{ﬁ fn(u,s)dcp(s)}du g
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Then
z
n ’

\S: T(u,s)du - f: fn(u,s)du\ = J: \ Euys)= fn(u,s)\du < £t + A

uniformly in s E[O,t] . And hence, according to (2.9.1),

o - || & (et +a2) VHEPEIPG) , [0,4]) -
Therefore, also on account of (1) ,
(2) Lp,—> o in g.m. as n-—s» oo .
It is similarly shown that

(3) An " /3 in g.m. as n-» <> ,

Finally, since ¢(s) is continuous in g.m. on [O,t] 5

n n ‘ : X
d“”i‘al ijf(—ig—lt.ﬂ;—lt){?(ﬁt)-<p(ﬂ;—lt)}=
@ a1 . 1

-1 E S A Bolso- ol -6,

Hence, as by virtue of (4)

e - Bl= Nt - 8, - pll2l* - =N+ | 8- sl

o« = B3 on account of (2) and (3) .

6.6. The behaviour of Kalman-Bucy and related estimates with

respect to differentiable perturbations of the

involved white noise processes.

I1f not explained in this section, the meaning of the symbols used
may be found in previous sect-ns. 1f a character represents a vector
or a matrix, the same character with one ore more subscripts represents

a component or an entry of that vector or matrix.
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Since the linear minimum variance estimation in the previous
section is merely a mathematical processing of information, and not
the counterpart of any physical phenomenon, there is no need for a
critical study of the sample behaviour of the estimate E(t‘t) .

In accordance with the theory of linear minimum variance estimation,
we were interested in Jjust one trajectory of g(t‘t) , corresponding

to the registered trajectory of the observation r(s) .

However, in the state equations and in the observations are
figuring the Wiener-Lévy processes ,3(t) and )§(s) respectively.
In accordance with the comments in section 1.1 we are interested in
the behaviour of the estimates in case /S(t) and /g(s) are
perturbed.

Especially perturbing ji(s) has deep consequences. In section

6.2 we have seen that the validity of the integral representation

t -~
jo K(t,8)d £(s) of E(t|t)
hinges entirely on the properties of B(s) , exposed in (6.2.1bc). In
case jg(s) is replaced by ji(n,s) - /§(n,s) being a perturbation
defined in (4.4.4),

Eﬁ(n,u)ﬁ‘r(n,v)

is a function of u and v , and not a perturbation of the matrix
~ ~T ~
E/%Ol»% (v) = SZ B(w)dw , m=min(u,v).

Hence the argumentation in section 6.2 is not applicable to the
perturbed estimate.

Even, if one would "try" an integral representation

J'z K_(t,8)a 7, (s)
to the perturbed version of E(t‘t) y it is because of the structure
of Efi(n,u)/{?n,v) that the computation scheme in section 6.5
breaks down completely.

So in this case perturbing the Wiener-Lévy processes is not simply
reflected in the perturbation of some matrices in the formulae of the
previous section. And the investigation of the effect of the
perturbation of the Wiener-lLévy processes on the estimate will be
performed without using the formulae of section 6.5. Then, as we shall

see, the results are not confined to the Kalman-Bucy estimate alone.

6.6




|
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(6.6.1) We shall be concerned with the situation depicted in

subsection (6.1.1). Omitting many details, we recall
r the N-dimensional system
t
g(t) = 7 + (¥ a(s) E(s)as + (1) , tefo,T)

and the M-dimensional observations

{(s) = M(s) + B(s) atall se€s,clo,7] , where
N(s) = [ € (wau,

€(u) = H(u) §(u)

B(t) =

see section 4.4 ,

J2 6w
B(s) = §2 EWaf ) }
(6.6.1a) < EY/(u) =0 , BYA(v) =0, £ WA(v) =0,
and hence at s, t,u,v €[0,7] ,

EY/3(t) =0 , 8YA(s) =0 , EA(8)A(s) =0 ,

B £(t) A(s) = 0, E§(w)A(s) = 0, EW(u)A(s) =0 .

All random elements are centered and Gaussian and may be

embedded in the Gaussian Hilbert space H , generated by
\ the components of Y , /Go(t) and ﬂoks) . s,téLO,T] .

We recall
~ ~ ~T
B(s) = 42 BB (s) A (s)

Also here condition (6.2.1c) is assumed to be satisfied,

E(s) - OT(s)D(s)O(s)é ely, » e>0, sE[O,T], where
(6.6.1b)
: 0(s) and D(s) are continuous orthogonal and diagonal respectively.

H[C(St)] is the closed subspace of H , generated by the

elements of the class
o(sy) = {Z(e)s 3=1,., se s} .

(6.6.1c) E(tlst) is characterized by § (t,s Ve H[C(S )] i=l,.,N and
E{§ - (t]s )}; 0 forall ze H[c(s )]s or
equivalently L{E - (th )}t (s) =0, se€ Sy »

see (6.1.4).
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St may vary with t . Dependent on the structure of S C[O T]

E(t[s ) is an interpolated (smoothed) , filtered or extrapolated

(predicted) random N-vector. If the involved stochastic processes
are wide sense stationary, %(t\st) is of the type of Wiener and
Kolmogorov. If S, = [0,4] , € (t[[0,t]) = E(t|t) is the Kalman-

Bucy estimate.

(6.6.2) Let
$ B(m,s), sefo,1], m=l,2,..} and  {An,t), teo,1], n=1,2,..}

be sequences of differentiable perturbations of J(s)
-(6'—6'ﬁl and /5(1:) respectively, endowed with the properties

exposed in (4.4.5) .

According to the comments in section 1.1, at each n , m we

shall consider

r the N-dimensional system
gE(n,t) = ¥V + j: A(s) E(nys)das + A(n,t) , tefo,T],
and the M-dimensional observations
;(n,m,s) = ")(n,s) + ﬁ(m,s) at all s € S; » where
‘rJLn,s) = 52 € (n,u)du and hence U(n,o) =0, and
€ (n,u) = H(u) € (n,u) .
(6.6.2p) { We recall /?,(m,O) = 0 . Hence
! (n,m,0) = M(n,0) + B(m,0) =0 .
On account of (6.6.la) and (6.6.2a),
~T ~T
Eg(n,t)ﬁ(m,s) =0 and E'Y()(n,u)/3(m,s) =

It is seen that also all random elements here, are

centered and Gaussian. All random variables are elements
N\ of H in (6.6.1a).

Now theorem (5.2.1) is applicable:

(6.6.2c) E;(n,t) —>§i(t} in gq.m., uniformly in te[O,T] =1 TS TN,

as n - 0.,
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Hence according to (2.7.5),
N
’oj(n,s) = % f: ij(u)ﬁk(n,u)du — Qj(s) in q.m. &8s n —» o ,

uniformly in s€[0,T] , J=1,.,M .

And since 4 (n,m,s) = v(n,s) + E(m,s) , it follows - also by
virtue of (6.6.2a) - that

(6.6.2d) ;'J(n,m,s) —> Zj(e) uniformly in SEY_O,TJ as n,m —> o0 ,
Moreover, we notice that 7 .(n,m,s) is continuously differentiable

in qe.m. and .(s) continuous in q.m. on [0,T] , j=1,.,M .
J

ke H[C(n,m,st)]
be the closed linear subspace of H , generated by the elements of
the class
¢(n,m,s,) = {Z’j(n,m,s), j=1l,.,M, s € stg

Let gkn,m,tlst) be the conditional expectation of E(n,t) ’
given C(n,m,St). Since also l'fre all random elements are centered
Gaussian, the components of g(n,m,t|st) are the linear minimum
variance estimates of the corresponding components of %€ (n,t) ,

given C(n,m,st) s le®s

gi\n,m,t‘st) € H[c(n,m,st)} , i=1,.,N, and

E{E(n,t) - E(n,m,t!st)} f(n,m) = 0 for all

(6.6.2e)
{(n,m) € HLC(n,m,St)J , or equivalently
= T
E{E(n,t) = E(n,m,t\st)} {(n,mys) =0 atall sé€ Sy
see (6.1.4).
A~
(6.6.3) Definition: The estimate §’(t\st) in (6.6.1) is stable

with respect to differentiable perturbations of the involved Wiener-

Lévy processes iff
A ~
(6.6.3a) gi(n,m,t‘st) — §i(tjst) in qem. as n,m —» 0 , i=1,.,N ,

cf. section 1.1l.
Hence in investigations on stability in the sense of this definition,

the value té€ ‘{'O,T:‘\ and the set Stc [O,T:‘ are kept fixed.
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(6.6.4) Let t and S, be a fixed value and a fixed set in [O,T] 7

Let us introduce the orthogonal projectors

f/D and @(n,m)
of H onto

H[C(St)] and H{p(n,m,st)]
respectively. Then
?;(tist) = PE,(t) and Ei(n,m,t{st) = P(a,m) E (n,t)
and stability condition (6.6.3a) reads
(6.6.48) P (n,m) E,(n,t)>PE (t) in q.m. as nm—>oo, i=1,.,8 .
Since 9P and W(n,m) are orthogonal projectors in H ,
"\7”}[ = ".‘/’(n,m)“ =1, uniformly in m and n ,
and if ¢ € H ,

1Pl |1PI-1I¢ll = ¢l and  [|[Pmmel & | P@ml- el = ¢l -

6.6.4b E(t‘st) is stable in the sense of definition (6.6.3)
if and only if

9 (n,m) gi(t)—, P Ei(t) in q.m. a8 n,m—» 6o , i=1,.,N .

si(t)} \\Ei(n,t)/ i[c(n,m,s,)]
\ \

I N
i \ Ei(nsm,tj St)=7’(n’m) Ei(nvt)

P(n,m) &, (t)

3 I
£, (t]s,)-PE, (1) H{c(s,)]

Proof: The asserted equivalence follows from the identity
Pnym) € (n,8)-PE (1) =Pnm){E;(n,0)- B, (1)} +{P(m,m) £, (1)-PE ()]
and from the result below, being valid on account of (6.6.2c):
[ @(n,m){fi(n,t)— Ei(t)}"f—: J€;(m t)- ()| > 0 as n—s oo,
i=l,.,N .
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And hence
(6.6.4c)  In order that E(tlst) be stable in the sense of (6.6.3),

it is sufficient that

?(n,m)q?—» 93?’ in q.m. as n,m— e» , for all @€ H .

If ¢eH, \ 7
let us write :\\ H[C(n,m,St))

? - Pe PN

I ?(n,m)=gﬂnﬂm)¢

and :
(?’(n,m) - g’(n.m)qﬂ :
Then (6.6.4c) reads: ? ::p?, H[C(st)]
(6.6.44) In order that E(t(st) be stable in the sense of (6.6.3),

it is sufficient that
%(n,m) — (79 in q.m. as n,m — e» , for all ¢ €H,
where § and c?’(n,m) are characterized by
P e ic(s,)] $(n,m) € H[c(n,m,st)],

and

6.6

P = (;\).L H[C(St)] 5 ¢~ (?)(n,m) € H[C(n,m,st)] or equivalently

E{cp — v.?)} [j(s) =0 and E{qJ - @(n,m)} [j(n,m,s) =0,

s € St y J=l,.,M , ny,m=1,2,.. , see (6.1.4).

6.6.4e - i) E{c’;}(n,m) - (?7} Zj(s) — 0
ii) E{?(n,m) -9 J;(mm,s) = o0
if n,m—so00, sE€S5,, j=l,.M.
Proof: i) On account of (6.6.4d),
B{Fmm) - #}L (a) - E{P - Pmm}{Z ;(aims) - L (o)} .

Because of

[P - @ml = |P|+|P@mell € 2 |l
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and, according to (6.6.2d),
|| {y(n,m,s) - [j(s)H — 0 as n,m —> ¢o ,
it follows from the inequality of Schwarz, as n,m —> o2 , that
|E{f ) - 3} 1 0| 2| P - Fmml. [{ ome) - [ > 0.
ii) Similarly,

l ?(n,m) - CP} Z.(n,m,s)] I {‘f } [ (n,m,s) - . (s)}l
= “5}7” "Z (nymys) - CJ.(S)D > as n,m —> o2 .

6.6.4F The condition
A A
lf’(n,m)—,¢ in q.m. as n,m—>» e? , ¢ € H,
in (6.6.4d) is equivalent to
A ~ A
E{cp(n,m) -tP} ¢(n,m)—> 0 as nm—> e2 , ¢PeH,
Proof: The first condition is equivalent to
Ei(’?(n,m) - @}2 —> 0 as n,m —> co ,
~ ~, A A Gl
E{Cp(n,m) - (P} a(n,m) - E{(P(n,m) - 93} ®-—>0 as n,m - en .
So, in order to proof the statement it is sufficient to show
E{Zf)(n,m) “ L'P}ﬁ ~> 0 as n,m—> &> .

Since $ e H[C(St)] . c'f) is the strong limit of a sequence, whose
members are finite linear combinations of elements of C(St). Hence,

given §& > 0 , there is a decomposition

A
¢ £ +
such that 2: % £
= Z:(s ) and AR E
j=1 k=1 Jk deek I(WH
where the coefficients aJk are real numbers and s € St s k=mbos K
So

|2 (b - #16] & e (ptom) - B+ [2{B0m - F}ol=

M K .
= = |ap)-2{f@m - §}yye0] + |E{Pwimg - P}yl .

6.6
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The first term in the right-hand side tends to O as n,m — ©? on

account of i in (6.6.4e). And by virtue of the inequality of Schwarz,

|5{2@me - Pely| = | Pwme - Poll. |vllcz]¢le .

Hence, on account of (6.6.4d) and (6.6.4f):

(6.6.48) In order that E(tist) be stable in the sense of (6.6.3),
it is sufficient that

E{&(n,m) -@}@(n,m) — 0 as n,m—>0oa , forall QE H.

In spite of ii in (6.6.4e), an approach to E{C‘f\?(n,m) - $}$(n,m)
similar to the method in (6.6.4f) breaks down since fy,\v(n,m) may vary
with n and m . The result in subsection (6.6.6) shows that the
condition in (6.6.43) is not fulfilled in general.

(6.6.5) In this subsection we shall show the stability of E(t\st)

in the sense of definition (6.6.3), in case S, is a finite set.
Let t be an arbitrary value in [O,T] s, and let
S,= {sk . k=0,l,.,K} , such that 0 =5 < 8¢ -- (g &T.

It is for sake of convenience that we put O € S . This may be done
without loss of generality as according to (6.6.1a) and (6.6.2b)

(J(o) = [J(n,m,O) =0, Jj=l,.,M, n,m=1,2,.. .
Now also the classes of observations
C(St) = {Zj(sk) y d=l,.,M, k=0,.,l(“'
and
C(n,m,St) = {Zj(n'm'sk) y J=1,.,M , k=01-|xz ’ n,m=1,2,.. ,
are finite. Hence the Hilbert spaces
H[C(St)] and H[C(n,m,st)] O

are finite dimensional - Euclidean - in this case. They may also be

generated by the elements of the classes of differences
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D(s,) = {(jk = L0 = Lyl 1)y =154, k=1,.,x}
and
D(n,m,St) = {{jkknvm)‘ Zj(nvmvsk)‘ Zj(nvmysk_l)y J=1,.,M, k=11-1K‘§

respectively. As we also introduce

Yz‘]kkn) = vj(n’sk) = nj(n'sk—l)

Asm) = Bslms) = Bilmsy 1)

then , since fj(n,m,s) = T)j(n,s) + ﬁj(m,s) , it follows that

ij(n,m) - vjk(n) + ﬁ.]k(m) y J=1,.,M , k=1,.,K , n,m=1,2,..

and

So, on account of (6.6.4e),
E{@’(n,m) - &} z’jk — 0 and
(6.6.5a) E{Ep(n,m) = Ef)} [jk(n,m) — 0

as nm —» c2 , Jjyk=1l,.,M ,

Also here, condition (6.2.lb,c), see (6.6.1b), i.e.
B(s)2 e I M e 2200 sé[_O,T], and i(s) continuous on [O,TJ ’
is essentially needed.

S -~
(6.6.5b) S kK B(s)asZels -8 ,) Iy .
81 k k-1 M
For, if X is the sphere of column M-vectors x with real valued

components such that Xx =1, see (6.2,1), then for all xe X ,

s _ 8 . s
<1 s E B(s)ds|x = [ K [XTB(S)J%(IS = 3 N ds = e(s, -8 ) .
81 81 i1 k k-1
(6.6.5¢) If
A>O0

and if

{A(m) S =102 }

is a sequence of LXL-matrices with real valued entries Aij(m) such that
Aij(m) —> A;; as m—>eo, 3 gmly ey by

then there is & number r such that

A(m) >0 if m>r .




|

For, as A> O , there is a number a > O such that A2 a I -
So, if Y is the sphere of columm L-vectors y with real valued
| components such that yTy =1, then if ye Y (hence also
} ‘yilél’ i=11-vL)

{A-A(m) ‘Z {A (m)-A, Syiy‘_j

i
£ = |A,.(m)-A, .| < 3a
i,3=1 ij ij

if m is sufficiently large, say m> r , i.e.
A - -&aIL<A(m)< A+§aIL .

And as éaIL>O,

A(m) > A - éaIL% %aIL> 0 ifm S e

In order to show the stability of € (t|S,) , according to (6.6.4¢)
it is sufficient to establish

E{a’(n-m) - ‘?’}?F(n,m) —> 0 as nm—> 2 , PEH.
Since @(n,m) € H[C(n,m,S,)] = E[D(n,m,5,)] , n,me1,2,.. ,

H[D(n,m,st)] being the Euclidean space generated by the elements of
Lol
D(n,m,St) y ¢ (n,m) may be decomposed as

‘ N M X
6.6.5d ¢ (n,m) = i k%l ajk\n,m) ij(n,m),

where the coefficients ajk(n,m) are real numbers.
A
Given (P(n,m) , the coefficients ajk(n,m) are not necessarily
unique, since the elements ;j(n,m,sk) and hence the elements (J.k(n,m)

might not be linearly independent ( if m is small) .

(6.6.5¢) Given @€ H , there is & number r , such that the
coefficients ajk(n,m) in (6.6.5d) are uniformly bounded in n

and m , provided that m > r .

Proof: According to (6.6.5d),
M K M K -
g)(nvm)? o a(n!m) - == a-jk(nvm) T)jk(n) o ajk(n,m)d-k(m)
j=1 k=1 j=1 k=l A
By virtue of (6.6.2b) the two terms in the right-hand side are

orthogonal . Hence
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20?2 |Pwa,me)? -
M X ) M X ~ =
(6+645fF) = n Z_ Z= ajk(n,m) 'Y)J.k(n)‘ + “ 32.1 kZ_l ajk(n,m) ﬂjk(m)“ >

|

|

”% kZl:i ajk(n,m) /37]‘1((“1)”2 .

Let us introduce the row MK-vector
aT(n.m) = ( all(n,m) o aMl(n,m), el s alK(n,m) s a.m((n,m) )
and the covariance MKxX MK-matrix

(An)(m) Sa e B (Alx)(m)

A(m) =

(e)(®) o e e (4 (2)

whose MXM-submatrices (Akh) are defined as
Bk ()
(4)(m) = B : B - TG B /}uh(m)} -

Ay (m)
- - ~ . T
=k [ﬂ(m95k) -ﬁ(m'sk—l)} & (ﬁ(mlsh) o ﬂ(m'sh-l)) » kyh=1,.,K , n,m=1,2,.

Then (6.6.5f) reads
(66.5g) 91?2 &T(n,m)a(n)a(n,m) .

By virtue of the properties of E(m,s) and the Wiener-Lévy process
75(5) it follows as m —» e , that the elements of (Akh)(m) tend to
0 if k ;4 h , and to the corresponding elements of the MXM-matrix

s ~
Jsk B(s)ds if k = h . Hence as m —» co , the elements of A(m)
k-1

tend to the corresponding elements of the covariance MKX MK-matrix
A , defined as

jsl B(s)as . . . (0)
o .

(0) . j:}i_l‘i(s)ds
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On account of (6.6.5b), j:: g(s)ds_—% e(sk - sk-l)lll s k=l Ky
-1

and hence
S min
ASedyy >0, d-= k=1,.,K (Sk"sk-l) ’

where Ilﬂ( is the MK X MK-identity matrix.
Owing to (6.6.5c) it follows from the convergence of the elements

of A(m) to the corresponding elements of A that there is a number

r such that
A(m) = ﬁedl‘MK as miir o,
i.e.

M K 2
ded = = ajk(n,m) = aT(n,m)A(m)a(n,m) .
J=1 k=1

Finally, according to (6.6.5g),

M K

== o am <2 %L

j=1 k=1
if m >r and for all n , showing the uniform boundedness of the
coefficients ajk(n,m) , asserted in (6.6.5e).

(6.6.5n) Theorem: If the number of observations is finite, i.e.
A

if St is a finite set, then g(tlst) is stable with respect to

differentiable perturbations of the involved Wiener-Lévy processes,

independently of the position of t and St in [O,T] .
Proof: Owing to (6.6.4g) it is sufficient to show that
E{a(n,m) - (?3} @(n,m) —> 0 as n,m—>0co , for all P € H.

Let a be the bound of the coefficients ajk(n,m) R Ly e USSR
m>r , established in (6.6.5e). Then on account of (6.6.5d)
and (6.6.5a),

,E{g)(n,m) - 5}3} E}"(n,m)l = é _%_ ajk(n,m)E{t?(n,m) - @} ij(n,m)

j=1 k=1

= 0 as n,m —> c2 ,

s 25 E{c‘p(n,m) - Plzptam)

j=1 k=1

-

=
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(6.6.6) We shall show that the estimate ?(tlst) does not need
to be stable in the sense of definition (6.6.3) in case S, is an

infinite set.

Consider the Kalman-Bucy filter. There St = [O,t] . Assume M=N=1 .
This restriction is not essential and serves merely for simplifying
the notation.

Assume moreover that the l-dimensional perturbed Wiener-Lévy
processes (3(n,t) and fg(m,s) are of the kind, discussed in
section 4.3. Then they have a finite degree of randomness. Let p(n,t)
and fs'(m,s) be constructed by means of the partitions p and g

respectively, where
p 1is defined by 0=t°< tl<..<tP-—-T
and q by O=s°<sl<..<sQ-T.
Assume that the position of t in LO,T] is such that

thig € ¥ £t , s <t S8

t and sQ, being subdivision points of p and q respectively.

P!
(6.6.6a) Obviously, the (l-dimensional) solution E(n,t) to the
state equation is some linear combination of the elements

Y, ﬁ(tl) 3 eisiy /S(tp,) .
Here /3(to) may be omitted since /3(1:0) = 3(0) =0 .

(6.6.6b) Obviously, the (l-dimensional) observations [ (n,m,s) ,

sE[O,tJ , are linear combinations of the elements of the class
(6:6:60) {4 flt) 4 e Ble) s Alop) o en s Blog))}

In (6.6.6c), fj(to) and g(so) may be omitted since they are
identical to O . Now the elements in (6.6.6c) are linearly independent.

Hence there is a unique decomposition
(6.6.64) { (n,m,s) = u(s)” + vl(s)ﬁ(tl) + ..+ vP,(s)/j(tP,) +
T wl(e)[g(sl) + .. + wQ,(s)/g(sQ,) at each eeio,t] .

The coefficient functions are mappings of [O,t] into (-ecn,en ) .,
In non-trivial systems they are linearly independent ( hence also

non-0 ) on [O,t] . Hence there is a set of values
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{xl 9 ece 3 x1+P'+Q' E c [O,t]
such that the (1+P'4Q')°-matrix
u(xl) vl(xl) . vP,(xl) wl(xl) . 'Q'(xl)
X = . ) o . . . -
u(x),praqr) Vi) ¢ Vi (xpapiigr) My pige) @ o (Xpipe,ge)
is non-singular.

Then by means of the 1+P'4Q' relations, obtained by substituting

successively
8 =X cee y 8 = xl+P'+Q'

into (6.6.6d), the elements of class (6.6.6c) may be linearly

expressed in

[(n,m,xl) ’ s ’ ((nvm’xl+Pl+Q|)

as follows:

[ Y ( n,m,x

(tl)} {amx) )
(6.6.6e) (el 1, g

(s,) ;

\(;Q')J \ Z(;”m’xl.,.Pl.,,Q')

Let E(n,m) be the Eclidean space, generated by the elements of
class (6.6.6c), and - as always - let H[C(n,m, [O,t])] be the
Hilbert ( Euclidean ) space, generated by the elements Z(n,m,a) ’
sefo0,t] .

It follows from (6.6.6b) that H[C(n,m, |0,t])] < E(n,m)

and from (6.6.6e) that H[C(n,m, [O,t])_] > E(a,m) .

Hence

(6.6.6F) H[C(n,m, [O,t_])} = E(n,m) .
According to (6.6.6a), €(n,t) € E(n,m) and hence owing to (6.6.6f)
€(n,t) € H[C(n,m, [O:t])] . Then necessarily E(n,t) [o,ﬂ) = E(n,t) .
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By virtue of (5.2.1), g€(n,t) —> E(t) in gem. as n—> en .
Hence

-~

§(n,tl[0,t]) = &(n,t) — £(t) in q.m. as n—> e .

Since E(t‘[b,t]) B E(t\t) satisfies equation (6.5.16), it is seen
that in non-trivial cases E (tlﬁ),t]) # E(t) . Hence in the above
situation ?(t‘[o,t]) = g(t\t) may be not stable in the sense of
definition (6.6.3).

(6.6.7) Let S be an arbitrary subset of [O,TJ , and t an
arbitrary value in [O,T] .
Let

{sk s i, % }
be a sequence of finite subsets of S , increasing to S or to any
set dense in S , as k—> en ,
We recall, see (6.6.2d), that Zj(n,m,s) and [j(s) y J=ly.,M ,
n,m = 1,2,.. , are continuous in q.m. on [O,T] . Hence (6.1.8)
applies.

Let n and mj pass to infinity through sequences

3
{ nl ’ n2 9 oo } and { ml ’ m2 9 oo }
respectively.

Then owing to (6.1.8) and (6.6.5h) we may present the following

diagram. The arrow means "converges in g.m. to"

E(nl,ml,tlsl) %(nz,m2,t|sl) e —> g(t\sl)
g(nl,ml,t]sz) %(nz,mz,t]sz) iwes | oty 2<t\s2)

seececvssccses R ) ese e sessene

{ v v

%(nl,ml,t )S) E(nz,mz,t \S) Velu el 7&2;> g(t\ S)

The convergence in q.m. along the vertical lines is shown in (6.1.8).

The possible behaviour along the last horizontal line is
illustrated in the previous subsection (6.6.6).
The convergence along the other horizontal lines is established

in theorem (6.6.5h).

6.6
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Some conclusions and remarks:

There is no hope for better estimates when increasing the number
of observations in a given interval indefinitely, because of the
possible instability of ((t\S) . The question, how many observations

would be the best, is unanswered.

The (discretized) computation schemes and formulae, belonging to

6.6

A
f(t‘S) may be used if it is convenient, as in the Kalman-Bucy filter e.g.

This is seen in the last vertical line. Then the result is stable
with respect to small perturbations of (the) finitely many

observations (used).

The above diagram is applicable to a large class of estimates,
comprising predicted, filtered and smoothed estimates of an endless
variety, both of Kalman-Bucy type and of the type of Wiener and

Kolmogorov.

We have explained at the beginning of this section, that the

Kalman-Bucy filter breaks down if the involved Wiener-Lévy processes

are differentiably perturbed. It might be hard to design a mathematically

exact computation scheme to the estimates of the last horizontal

line in the diagram.

The convergence in the other horizontal lines of the diagram

depends entirely on the assumption (6.2.lb,c),

i(s) > 0 and continuous on [0,T] .
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1.

3

STELLINGEN

Het is weinig zinvol om Ito-calculus te gebruiken bjj de
behandeling van de stochastische lineaire systemen die
voorkomen in dit proefschrift.

Overigens bleden de hier gebezigde methoden geen uitzicht
op generalisatie met betrekking tot algemenere (Ito-)systemen.

Heuristische beschouwingen die dienen om het Kalman-Bucy
filter met continue tjjd-parameter geloofwaardig te maken
zijn weinig overtuigend of onhoudbaar.

Het "colored noise filter" van Bucy is in wezen een gewoon
Kalman-Bucy filter. Zie

R.S. Bucy, Optimal filtering for correlated noise,

J. of mathematical analysis and applications 20, 1967
en

Bucy and Joseph, Filtering for stochastic processes

with applications to guidance, Interscience publishers, 1968.

"Augmented state" methoden en "noise whitening" technieken
voeren tot gewone Kalman-Bucy filters. Zie
Bryson and Johansen, Linear filtbring for time-varying
systems using measurements containing colored noise,
IEEE Trans. Automatic Control, AC-10, 1, 1965
en
Nahi, Estimation theory and applications, Wiley, 1969.

De geperturbeerde filters in §6.6 van dit proefschrift zijn
van fundamenteel andere aard dan Kalman-Bucy filters.

Aan de gevoeligheid van het Kalman-Bucy filter voor
onnauwkeurigheden in de gemeten of geschatte grootheden in de
filtervergelijkingen wordt de nodige aandacht besteed, zie
bijjvoorbeeld
Jazwinski, Stochastic processes and filtering theory,
Academic Press, 1970.
De gevoeligheid voor verstoringen van de alles beheersende,
en fysisch niet eens realiseerbare Wiemer-Léwy processen
wordt echter buiten beschouwing gelaten.

In
P.L. Falb, The Kalman-Bucy filter in Hilbert space,
Information and control 11, 1967,
wordt de mathematische behandeling van het Kalman-Bucy filter
nodeloos ingewikkeld gemaakt, terwijl de kern van de zaak niet
wordt geraakt. De bewering van de schrijver, dat een "fully
rigourus theory" verkregen is, is aanvechtbaar. Zie ook
Kalman, Falb, Arbib, Topics in mathematical system theory,
McGraw-Hill, 1969.




De

8,

9.

De meerderheid van de publicaties in de Engelse taal op het
gebied van stochastische systeem analyse is wvan een
onvoldoende mathematisch gehalte.

Dit kan in verband gebracht worden met de invloed die is
uitgegaan van het ministerie van defensie van de Verenigde
Staten van Amerika, getuige bjjvoorbeeld het dankwoord van
Richard Bellman, uitgesproken ter gelegenheid van het im
ontvangst nemen van de "Norbert Wiemer Prize in Applied
Mathematics".

Als E(t) een reéel stochastisch tweede orde proces is
op [0,T] , dan is het kwadraat van de totale variatie van

EE(t)™ op [0,2] kleiner dan, of gelijk san de totale variatie
van BE(s)E(t) op [0,7)° .

Van een Hilbert ruimte X wordt de sterke topologie beschouwd.
Gegeven is de continue afbeelding E(t) vam (-00,c9) in
X . Het gedrag van £(t) in de buurt van +02 en - o2 is
zodanig dat de afbeeldingen

2:2

o n's

En(t) - / . - E(t~s) ds , £ €& (-cP,02) , n = 1,2,..,
4

van (-¢2,c0) in X gedefinieerd zin.

De vectoren 5(t) spannen een lineaire deelruimte van X
op, waarvan de afsluiting in X de Hilbert ruimte H zij.
Op analoge wijze brengt En( t) de Hilbert ruimte Hn woort.

Als 9P de orthogonale projector is van X op H , en ¢n
die van X op En , dan is

n_l’izo ?/q"nﬁ - PE voor iedere ¥ & X .

De openheid die thans wordt betracht inzake de adoptie van
pleegkinderen is bevorderlijk voor de geestelijke gezondheid,
de ontplooiing en de inpassing in de maatschappij van het
geadopteerde kind.

The Kalman-Bucy filter and its behaviour with respect to
smooth perturbations of the involved Wiener-Lévy processes




