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Abstract

In our ageing society, the demand for care is increas-
ing. Therefore, it is foreseen that robots can help el-
derly to keep living independently. However, due to
the unstructured and dynamic environment, human
assistance will often be required for manipulation
tasks. While the robot can navigate autonomously,
it does not know where to go for telemanipulation
tasks.

Methods have been developed that position a robot
for autonomous manipulation. But with telemanipu-
lation, there are fewer acceptable base poses due to
human and telemanipulation limitations. The objec-
tive of this study is to design and evaluate a position-
ing model, the Inverse Telemanipulation Capability
Map (ITCM), which includes these constraints. A
scoring metric is used based on manipulability and
task visibility. Six participants did a pick-and-place
task with the robot in a base pose used by an expert
(Expert), in the lowest (ITCM-low) and the highest
scoring base pose (ITCM-high).

The results show an increase in completion time of
71% from the ITCM-high to ITCM-low condition and
the effort metrics are around one and a half times
higher. Between the ITCM-high and Expert condi-
tions no differences were found in the metrics. But
participants also reported that the task was less or
equally difficult in the ITCM-high condition.

It is concluded that the ITCM model is a good pre-
dictor for the telemanipulation advantageousness of
a base pose and even the lowest scoring pose is ac-
ceptable. It can thus successfully be used to select
navigational goals for semi-autonomous mobile ma-
nipulators.

— semi-autonomous – telemanipulation –
mobile manipulators – positioning —

I. Introduction

People are getting older, but elderly are not getting
less dependent on care [1]. To alleviate caregivers

from mundane tasks, a mobile manipulator could be
utilised as a home-care robot. Multiple of these type
of robots are being developed, for example Cosero [2]
and rose [3]. These robots have in common that they
have one or two arms with seven degrees of freedom

mounted on a height-adjustable platform and can
operate semi-autonomously.

Due to the domestic environment, humans need
to assist with manipulation tasks [3, 4]. To meet the
care demand, a home-care robot must be able to ma-
nipulate a diverse set of objects and varying tasks.
Although automation of manipulation tasks in do-
mestic environments is being researched for more
than a decade [5], not all possible domestic tasks have
been automated. And would this be the case, then
automation can still fail. Because humans intuitively
understand how to do a task, they will remain needed
to assist home-care robots by telemanipulation.

The robot’s pose1 is of great influence on the
success of a telemanipulation task. It determines if
the task can be reached and how the task is seen
by the operator. Although robots can navigate
autonomously in a domestic environment [6], for
telemanipulation tasks the operator positions the
robot. He or she selects a base pose on a map or
drives the robot towards the task. To be successful,
the human needs to know which regions of the
robot’s workspace are suitable for this task and
to estimate how far away the robot is from the
task. Robots are better suited for this task because
they can measure the exact distance to objects and
exactly remember workspace properties. Therefore
a positioning method is needed that conforms to
limitations of both the operator and the robot.

In previous work, mappings of the reachability and
capability of the arm have been used to position the
robot for autonomous manipulation. To our best
knowledge, no research has been done regarding po-
sitioning a mobile manipulator for telemanipulation.
A difference between autonomous and manual execu-
tion is that the task execution is not pre-determined
with telemanipulation. Consequently, it is helpful if
the robot’s pose provides a variety of possible execu-
tion tactics. Methods to position robots have first been
developed to position robots optimally in an assembly
line [7]. In extension of these methods for fixed robots,
methods have been developed to position mobile ma-
nipulators in order to to autonomously execute a task.
Zacharias et al. [8] introduced the reachability map in

1position and orientation
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I INTRODUCTION

which base positions were ranked. Their score was
computed with Inverse Kinematics (IK) as the amount
of possible orientations the end effector could reach
a position. Because the amount of possible orienta-
tions determine the score, the orientation of the base
is not variable. Based on the work of Zacharias et al.,
a method was developed by Abolghasemi et al. [9]
that generates an approximation of the map that can
take obstacles into account. Other methods extended
on the work with on-line kinematic chain extension
(e.g. with a tool) [10] and a task specific positioning
method called Action Related Place (ARPlace) [11].

Besides inverse kinematics, ARPlace used an accu-
rate simulation to determine if the task was practically
reachable. Because care was taken in the simulation
to accurately model the controllers, the robot’s lim-
itations were accurately represented in this method.
However, the generated model was based on position
input. It was thus only able to find a position of the
robot with no specified orientation.

The amount of end effector movement options can
be described by the manipulability score [12]. Using
the manipulability to score base poses, the orienta-
tion of the robot can be selected as well. Whereas
with the reachability score, the gripper orientations
are used to score a position. Therefore no score is ap-
pointed to the grippers orientations, only the position.
The Oriented Reachability Map (hereafter ICM, for
inverse capability map), as presented by Vahrenkamp
et al. [13], uses the same IK sampling as Zacharias
et al. but with the manipulability score. The ICM
is thus also able to pick an orientation for the robot.
However, from tests with our implementation of the
ICM, it is concluded that not all base poses in it result
in a successful task, see Fig. 1 (and Appendix B for
more). According to the IK analysis, the base pose
results in a kinematically reachable task. This is not
the case because the master and slave controllers are
not taken into account.

The positioning methods for mobile manipulators
have been developed for autonomous manipulation
tasks. For telemanipulation a kinematically reachable
pose, might not be reachable. Similar to the ARPlace
method, a more accurate representation of the poses
reachable with telemanipulation, can be obtained if
the representation is obtained with the telemanipula-
tion setup. Furthermore, the manipulability score can
be a good indicator for the amount of tactic options.

The base pose determines task perception, which
can influence the operators limited situational
awareness. The lack of depth information via
two-dimensional camera based visual feedback has
been seen to reduce operator performance with

Fig. 1: Base pose option of the ICM that resulted in a
task that was not executable with telemanipulation, see
Appendix B for our implementation. (Irrelevant background
blurred.)

a factor of two [14]. Because the camera images
are displayed two-dimensionally, the operator is
dependent on depth cues to perceive depth, e.g.:
shadows of objects, motion parallax, relative height
and occlusion [15]. By tilting the camera with 45◦

downwards, the operator can use these depth cues in
both the robot’s forwards and downwards direction.
Concerning the camera’s yaw angle, it has been found
that discrepancies between the operators horizontal
viewing angle and the steering input can cause errors
in telemanipulation tasks [16]. Therefore base poses
which enable the camera to look straight ahead avoid
such errors. A visibility scoring method can be used
in conjunction with the manipulability to prefer base
poses with depth cues in two directions and with a
congruent horizontal viewing and steering angle.

The objective of this research is to develop and test
a positioning method that can select a base pose from
which an operator can perform the task fast and with
little effort without having to reposition the robot.
The possible base poses of this method will be based
on the whole telemanipulation setup to ensure task
execution, therefore it is called the Inverse Telemanip-
ulation Capability Map (ITCM). These poses will be
scored by the manipulability as well as the visibility
of the task. This scoring method will favour poses
from which a larger number of execution tactics are
possible, have depth cues in two directions and with
as less discrepancy between the viewing and the input
angle. To investigate if the designed method is effec-
tive, a human factors experiment was conducted with
a real world slave. Participants were asked to execute
a pick-and-place task from three different base poses.
The best of four base poses selected by an experienced
operator, the Expert condition, the base pose with the
highest score of the task specific ITCM (ITCM-high)
and the base pose with the lowest score (ITCM-low).
It is hypothesised that:
• the performance in the ITCM-high condition will

2



II DESIGN OF THE POSITIONING MODEL

Record arm
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Fig. 2: Generation of task specific inverse telemanipulation
capability map (TS-ITCM).

be greater and operator effort will be less than in
the ITCM-low condition.
• the performance and effort will be equal or better

in the ITCM-high condition than in the Expert
condition.

In section II it is described how the ITCM model is
designed, in section III the design of the experiment
is detailed, in section IV the results of the experiment
are reported, in section V these results are interpreted
and discussed, in section VI the conclusions of the
research are given.

II. Design of the positioning model

The goal is to have a model which can predict from
which position the task can best be executed with
telemanipulation. Because the robot’s kinematics and
telemanipulation settings do not change in operation,
a pre-computed map can be used to represent the
robot’s capabilities to reach a fixed End Effector (ee)
pose. Thereafter, the robot can use this pre-calculated
map while on duty (on-line) to generate Task Specific
maps (TS-ITCM) for any number of tasks, see Fig. 2.

To generate the pre-computed ITCM, the manip-
ulability and visibility per End Effector (ee) pose is
calculated based on the recorded configurations. But
to know from which base positions the fixed ee pose
can be reached and which combined manipulability
and visibility score they have, the ee poses are in-
verted to base poses and rounded to a discretisation
grid in the ‘generate ITCM’ step.

Then, on-line, ee poses are generated as a repre-
sentation of the task. For each ee pose of the task,
an ITCM is transformed according to that ee pose.
The transformed ITCMs of all the ee poses are then
merged to a TS-ITCM as described in the ‘Merge
maps’ step. The base pose with the highest score is
then selected as base pose for the task.

A. Record arm configurations

To get a map of the arm’s capabilities, an operator
used the master device to sample the workspace of
the slave. The same real world telemanipulation setup
was used for gathering the data as for the experiment
of this research. Because the experiment uses one task,
only a part of the workspace needed to be sampled:

1.00.750.50.250.0

Fig. 3: A kitchen cabinet needs to be opened (20 cm radius).
Along the path of the cabinet’s handle (white) ee poses are
generated at three positions with varying orientations. Each
ee pose is a purple ‘U’ shape with a grey area near the
wrist. Based on the generated task and the pre-computed
ITCM, the Task Specific Telemanipulation Map (TS-ITCM)
is displayed. The possible base poses are denoted with a
short line, coloured according to their score. Where the
lines meet is the possible position. The direction of the line
is the robot’s forward direction.

the task can be described solely with side grasps at a
height of 41 cm. To reduce the number of not relevant
configurations, the commands of the master device
were fixed at a height such that the slave’s ee would
be 41 cm high and the roll and pitch of the ee were
fixed to be zero. Also the height of the robot’s lift
was fixed to 91 cm, because that height resulted in the
highest score with the IHCM model (see Appendix B).
During 1 h, samples of possible configurations were
recorded with the rosbag [17] system. The result is
seen in Fig. 4

B. Generate ITCM

In this section it is explained how the recorded arm
configurations are used to generate the ITCM.

Based on the kinematic model represented in the
URDF2 of Marco3, a transform was calculated per set
of recorded joint angles. Each transform represents
the pose of the ee in Marco’s base frame. Poses of the
ee which are 2.5 cm higher or lower than the reference
height, were removed. Using the matlab toolbox of
Corke [19], the Jacobian4 was calculated per pose,

2universal robot description format
3prototype robot of PAL’s TIAGo robot [18]
4The Jacobian is the derivative of the arm’s Kinematic Model

with respect to the generalised coordinates and is also called the
Instantaneous Kinematic Model.

3
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Fig. 4: Recorded end effector poses rated with the joint limit
penalized manipulability score. For clarity, only every tenth
pose is shown.

using the joint angles and the kinematic model.
The fraction of the smallest (σmin) over the largest

singular value (σmax) of the singular value decompo-
sition of the configurations Jacobian is used as the
manipulability score as presented by Yoshikawa [12].

scoremanip =
σmin
σmax

[12] (1)

The manipulability score is penalised if the configu-
ration is close to joint-limits, the implemented penal-
ization was presented by Tsai [20, p. 114] and used
k = 106.

The visibility score indicates the closeness of the
head camera’s orientation to a goal orientation. The
goal orientation is the yaw and pitch in which the
head camera would look at the ee. To calculate the
visibility score, a direction vector (dir) between the
head’s camera and the configuration’s ee is calculated
in the shoulder frame. The shoulders x-axis points
forward, the z-axis points upward and was chosen
because it does not translate relative to the camera
and does not rotate relative to the base. It is assumed
that the pitch and yaw joints coincide with the posi-
tion of the camera, thus no displacement is taken into
account as a result of the rotation. Looking down-
ward at the task with a 45◦ angle allows the operator
to perceive depth cues in the horizontal as well as a
vertical plane, as such pitchgoal = 45o. A yaw angle
of 0 is advantageous because the master input is rel-
ative to robot’s base frame. With a large yaw angle,
operators need to rotate the master input mentally to
match the rotated view of the scene. The lower and
upper bounds of the pitch and yaw are the joint limits
of the camera’s head with as extra margin the field of
view of the camera.

yaw = atan
(

diry

dirx

)
pitch = atan

 dirz√
dir2

x + dir2
y

 (2)

scoreyaw =

1−
∣∣∣ yaw−yawgoal

yawub−yawgoal

∣∣∣ if within bounds

0 otherwise
(3)

scorepitch =

1−
∣∣∣ pitch−pitchgoal

pitchub−pitchgoal

∣∣∣ if within bounds

0 otherwise
(4)

scorevisib =
(

scoreyaw + scorepitch

)
· 1

2
(5)

The manipulability and visibility score need to be
combined in one metric. Because the base poses can
only be sorted according to one metric at a time. Both
the visibility and the manipulability score are scaled
independently such that the base poses have values
from 0 to 1. Therefore, an average of both scores can
be made without biasing one score over the other.

score =
(
scoremanip + scorevisib

)
· 1

2
(6)

The ee poses in the base frame are then inverted to
base poses in the ee frame. Thereafter the inverted
poses are discretised to positions in a square grid
of 5 cm and orientations divisible by 1

8 π rad. This
discretization is necessary to let base positions overlap
precisely. Each pose and corresponding score was
stored as a row in a two-dimensional array. This array
is the Inverse Telemanipulation Capability Map.

C. Task generation

As first part of the on-line process, a task representa-
tion is generated. Although it is not known how the
task is to be executed, it is known where the gripper
needs to be. For example, if a cupboard needs to be
opened, positions can be selected along the handles
path. These positions need to be on a similar grid as
the base poses have been discretised on. The distance
between the gripper positions thus need to be a multi-
tude of the discretization grid size. In that way if the
maps overlap during merging, the overlapping poses
are at the exact same position. In Fig. 3, it can be seen
that the positions of the gripper do not coincide in
the middle of the fridge door’s arc.

Because it is not known from which direction the
operator will approach the grasp, all possible orienta-
tions are generated. These are however limited to be
either perfectly perpendicular to or in the direction of
the grid of gripper positions as can be seen in Fig. 3.

Additionally a pre-grasp pose can be used as well.
Because it is often not possible to directly grasp the
object, the object is approached in a linear manner.
The pre-grasp is placed 5 cm (the discretisation dis-
tance) before the grasp.

Due to the constraints on selecting gripper poses,
the task may be a couple of centimeters different or
actually use other gripper orientation. But it does
enable an computationally efficient combination of

4



III METHODS

the ITCMs and a precise representation of the task is
not that useful as it will probably not be executed in
that way.

D. Merge maps

With the gripper poses generated and the ITCM cal-
culated off-line (see Fig. 2), the task specific ITCM
(TS-ITCM) can be generated.

From the ITCM it is checked which poses are feasi-
ble, these can only have an angle around the vertical
axis of the world frame (otherwise the robot would
not be vertical) and the vertical axes of the robot and
the world frame should be parallel. The height of the
base should be zero, i.e. on the floor. But the lift of
Marco gives a margin of 35 cm.

For each gripper pose, all the possible base poses are
transformed to be relative to a single fixed coordinate
frame. Then it can be compared how many grasps
are possible from which base pose.

First, for each gripper position (pos) and their orien-
tations (or) the grasp and pre-grasp gripper pose are
merged. Only the base poses are kept which occur in
both the grasp and pre-grasp ITCM-set (intersection),
see equation 7. The lowest score is selected because
that represents the minimum telemanipulation capa-
bility from that base pose to the ee.

ITCMposor = ITCMgrasp ∩ ITCMpre-grasp (7)

Secondly for each grasp position (pos of m), all (n)
grasp orientations are merged. Since not all the ori-
entations need to be reachable from the base poses
(candidate base poses), all base poses are kept (union)
and for equal base poses the highest score is kept
(equation 8).

ITCMpos =
n⋃

or=1
ITCMposor (8)

Lastly, to generate the TS-ITCM base poses that are
present in ITCMpos of all (m) positions are selected.
For the remaining base poses, the lowest score is used.
This is because the most difficult to reach ee position
will be the most noticeable.

TS-ITCM =
m⋂

pos=1
ITCMpos (9)

The base pose with the highest score is selected as the
best base pose, demonstrated in Fig. 3.

E. Case study

In Fig. 5, a comparison is shown between the IHCM
(see Appendix B) and ITCM method. The IHCM
is an implementation of the ICM with the visibility
score. The task is a pick-and-place task, with thus two

1.00.750.50.250.0

0.20 cm

(a) TS-IHCM

0.20 cm

(b) TS-ITCM

Fig. 5: The same pick-and-place task used to generate a
map with the IHCM and ITCM method. The pick and place
positions are denoted with the blue circles. The coloured
lines can be interpreted as in Fig. 3.

positions 15 cm apart. Per position three orientations
are used in the task, frontal, left and right side. The
case study in the next part of this paper uses the same
task as shown in the figure.

It can be seen that the TS-IHCM shows a lot more
base pose options than the TS-ITCM. The main dif-
ference between the IHCM and ITCM is the way in
which they gather reachable ee poses. It can thus be
concluded from Fig. 5 that a large number of kinemat-
ically reachable poses, are not reachable with telema-
nipulation.

III. Methods

A. Participants

Eight participants volunteered to take part in the ex-
periment, of which two were excluded during the
experiment. One of the two excluded participants
continued to hit the table quite hard. The other was
excluded because the robot had various problems and
the experiment could not be rescheduled. The six par-
ticipants which completed the experiment were aged
23, 23, 23, 27, 28 and 65. Of these participants, one
was female and one other had extensive experience
with this telemanipulation setup.

No compensation was given to the participants for
partaking in the experiment. The participants were
briefed about the purpose of the experiment, see Ap-
pendix J, they could also see that the pose of the robot
with respect to the task changed per condition. All
participants gave their informed consent prior to the
experiment. The Human Research Ethics Committee
of the Delft University of Technology approved of this
research.

B. Apparatus

The experiments were performed on a telemanipu-
lation setup consisting of a Geomagic Touch Omni
(Omni) on the master and a prototype of the TIAGo
robot (Marco) on the slave side, see Fig. 6. The Omni

5
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Fig. 6: Experiment setup with the operator holding the
master device, Marco in front of the table with the cup and
the markers and the table placed on the template. (Irrelevant
background blurred.)

gave position and orientation commands to Marco
and Marco’s force-torque sensor was used to give
translational haptic feedback to the participant with
the Omni. The master and the slave were connected
over WiFi and communicated over ros topics. Data
was recorded with the rosbag system [17].

Marco has a seven degrees of freedom arm, which
sits on a lift together with the overview camera, on
the gripper an additional camera is mounted. Images
of both cameras are displayed simultaneously.

The table used is 37 cm high and 75.5 cm wide, the
cup is 9 cm high, the height of the middle of the cup
is thus at 41.5 cm from the floor. The cup itself is 50 g,
weights are added to the bottom of the cup to make
the cup less prone to tumble. This resulted in an total
weight of 325 g. As can be seen in Fig. 6, a lamp (LED,
10 W, 750 lm) is added above the cup.

C. Experimental design

1) Task definition
The participants were asked to pick up an object and
place it on a marked surface, with the telemanipula-
tion setup, see Fig. 6. From the starting configuration
of the arm, the participants picked the cup and placed
it 15 cm along the table’s edge. After releasing the
cup, the participants retreated from the cup towards
the original position. The participants were asked
to do the task as fast as possible while ensuring the
object ends up within the goal area. If the cup was
placed partly outside of the black circle, the researcher
asked the participant to reposition the cup after the
cup left the gripper. The task failed when the cup was
no longer in reach of the robot (e.g. it has fallen or it

was pushed away while grasping).

2) Experimental conditions
The independent variable was the method with which
the robot was positioned, it is either:
• Expert: see paragraph below
• ITCM-high: the highest scoring TS-ITCM base

pose
• ITCM-low: the lowest scoring TS-ITCM base pose

The order in which the conditions were presented was
permuted per participant, to counterbalance learning
effects and carry-over effects between conditions. The
distance and angle of the robot as seen from the pick
up location is shown in Table 1.

The participants were not aware in which order
the positioning methods were used to position the
robot. The height of the robot’s lift is the same for all
conditions, the yaw and pitch of the overview camera
is fixed per condition to show the pick and place
markers at the same position on the cockpit’s screen.
In Appendix I these views are displayed.

Table 1: Distance in the forward (x) and left (y) direction
and rotation of the task frame .

Condition x [m] y [m] θ [ o]

Expert 0.88 0.20 2.9

ITCM-high 0.75 0.15 0

ITCM-low 0.55 −0.45 −90

The Expert condition represents manual position
selection. The base pose of the Expert condition is
fixed such that it is not dependent on the navigation
skill of inexperienced participants and there is no
risk of the participants copying positions from the
ITCM model. An operator – experienced with this
setup – was asked to perform the task and drive
the robot as well. The robot started 2 m away from
the table, the operator drove the robot to a position
from where the operator thought he would be able to
perform the task with telemanipulation. The operator
was not allowed to reposition the robot. Out of four
attempts, one failed, because the robot was to far
from the task to reach it. From the three successful
attempts, the position with the fastest execution time
was chosen (28.73 s) to represent the Expert position.
From the other positions the operator took 29.75 s and
31.98 s. To get a precise measurement of the Expert
condition’s base pose, the table pose measurements
were averaged over 35 s.

3) Experimental protocol
In Fig. 8, the experimental protocol is depicted. Prior
to the experiment, the participants were familiarised
with the telemanipulation setup and the task. For

6
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ITCM-high
θ 

0.20 cm
Fig. 7: In the experiment, the task moved instead of the
robot. The positions of the table are shown for each condi-
tion. The x-axis of the base_footprint frame is displayed
with the red arrow and the y-axis with the green arrow. The
black arrow displays the positive rotational direction of θ.

the familiarisation phase, the table was positioned be-
tween the table positions belonging to the ITCM-high
and Expert conditions. The robot’s two-dimensional
lidar was used to evaluate if the correct base pose was
attained (see Appendix A).

The workspace was explored by getting force feed-
back from contact with the table and by seeing the
response when the edge of the robot’s workspace
is approached. Thereafter the researcher performed
the task as example for the participant, repeating the
strategy as briefed in the participant instruction (Ap-
pendix J). Then the participant performed the task,
while receiving strategy tips from the researcher, until
seven repetitions were successful (not failed).

After the familiarisation phase, each condition was
administered. The table was positioned for each con-
dition with the help of a template. The researcher
performed the task, while repeating the strategy ver-
bally. Thereafter the participant got seven repetitions
to practice. After the practice, seven successful repeti-
tions were recorded for analysis, the amount of failed
trials was noted down. Lastly, for each condition the
nasa-tlx [21], difficulty score and open questions
(Appendix H) were administered.

Expert, ITCM-high and ITCM-low (randomized)

Familiarisation Training Experiment Failures

`

Example

Q

= 7 = 7

≥ 0

 

= 7

W
or

ks
pa

ce
 

ex
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or
at
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n

≥ 0

Q

= 7 = 7

≥ 0

Q

= 7 = 7

≥ 0

Fig. 8: Experimental protocol. The letter ‘Q’ denotes when
the nasa-tlx, difficulty question and open questions are
administered to the participant.

4) Metrics
Metrics are used to interpret the measured data and
look for effects of the different positioning methods
on task performance and operator effort.

The task performance is defined as the task com-
pletion time (tct): the time from the moment the cou-
pling button is pressed up until the gripper is 0.30 m
away from the cup-place-position before the gripper
is reset.

The following metrics are used to evaluate the op-
erator effort of which the first two are subjective and
the last three are objective measures:

– Self reported difficulty score based on the
agreement or disagreement to the statement
whether ‘it was difficult to execute the task’.

wwl Self reported weighted workload [%] as mea-
sured with nasa-tlx [21].

csa Cumulative steering angle [rad]. The total
amount of rotation that the master device was
steered by the human. As used by [22].

cst Cumulative steering translation [m]. The sum
of differences in consecutive master positions.

sal Spectral arc length [-] as presented by [23],
sal is used to evaluate the smoothness of the
translational velocity of the master device.

5) Data analysis
A within subject design has been used for the exper-
iment. Experimental conditions were compared on
basis of populations, assuming a normal distribution
and homogeneity of variance. For all metrics, except
the difficulty score, statistical analysis has been done
on the means of all subjects’ repetitions per condition.

The input the participant gives on the master device
is initially sampled at around 1 kHz. It is downsam-
pled by first filtering with a second order Butterworth
filter with a cut-off frequency of 50 Hz, whereafter it
is interpolated to a 50 Hz signal. A cut-off frequency
of 50 Hz is selected because voluntary human contrac-
tions are reported to go up to 25 Hz [24].

The kolmogorov-Smirnovtest did not reject any of
the metrics to be normally distributed. A one-way
repeated measures anova was used to find if there is
a difference between conditions. Differences were
deemed significant if the probability that the dif-
ference could come from the same population was
smaller than 5% (p < 0.05). A one-tailed paired sam-
ple t-test was used as post hoc test with a Bonferroni
correction for multiple testing error.

IV. Results

Expert and ITCM-low conditions resulted in three
failed repetitions and the ITCM-high condition re-
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Fig. 9: Task completion time (tct) for six participants, seven
repetitions and all three conditions. The tct is significantly
longer in the ITCM-low condition as compared to the ITCM.
No significant difference has been found between the Expert
and ITCM-high condition. The large dot with the whiskers
is the mean of the participants means with the 95 % confi-
dence interval. The coloured dots represent the mean per
participant and the grey lines link means of one participant
and each grey dot represents a repetition. The horizontal
bars denote a post-hoc tests, where ‘n.s.’ stands for not
significant, ‘*’ for p < 0.05, ‘**’ for p < 0.01 and ‘***’ for
p < 0.001

sulted in one failed repetition during the experiment.
During training, there was one failed repetition in the
Expert condition and eleven in the ITCM-low condi-
tion.

A. Performance

As performance metric the task completion time (tct)
is used, see section III.C.4. In Fig. 9, the mean tct is al-
most two times as high in the ITCM-low compared to
the ITCM-high condition, this difference is significant.
Additionally, the tct increased for all participants in
the ITCM-low condition.

No significant difference has been found between
the tct of the ITCM-high and of the Expert condition.
The standard deviation of the ITCM-high condition
is almost half that of the Expert condition, as can be
seen in Table 2.

B. Effort

In this section the metrics concerning operator effort
as presented in section III.C.4 and the responses on
the closed and open questions are discribed. These
can be divided in subjective (wwl, reported difficulty
and responses to open questions) and objective mea-

Fig. 10: All six participants reported the difficulty of the
task for each condition. The shaded areas and lines are
added for illustrative purposes. The task is rated more
difficult from the ITCM-low base pose than from the ITCM-
high base pose. From the ITCM-high base pose the task is
rated less difficult than from the Expert base pose.

sures (sal, csa, cst).

1) Subjective effort measures

The participants’ agreement to the statement ‘It was
difficult to execute the task’ is shown in Fig. 10. All
participants reported that the ITCM-low was more
difficult than the ITCM-high condition. Between the
Expert and ITCM-high condition, half of the partic-
ipants reported similar difficulty and the other half
reported that Expert was more difficult.

The reported weighted workload shows no differ-
ence between conditions, see Table 2.

Responses to the open questions are aggregated
in Appendix H. A positive response was that two
participants reported that the ITCM-high condition
resulted in an easier task. In the other responses
two participants said that the cup is easily pushed
outside the robot’s workspace in the Expert condition.
Of two participants, one found in the Expert and
the other in the ITCM-low condition that the depth
information was limited because the arm blocked the
view on the arm’s shadow. Lastly, four participants
responded that the ITCM-low condition was made
hard because the rotation between the master input
and the camera’s viewpoint.

2) Objective effort measures

The amount of steering input in rotational (csa) and
translational (cst) sense is significantly larger in the
ITCM-low condition than in the ITCM-high condition
(see Fig. 11 and Table 2). No significant difference has
been found between the csa and cst of the Expert and
ITCM-high condition.

The smoothness of the steering input, as calculated
with the spectral arc length (sal) shows no difference
for the different conditions, see Table 2.

8



V DISCUSSION

Table 2: Descriptive and inferential statistics of all metrics except the reported difficulty score. Significant differences are
printed in bold.

Metric
Descriptive

ANOVA
Post-hoc

Expert ITCM-high ITCM-low ITCM-high – ITCM-low Expert – ITCM-high

tct 39.68(12.43) 37.74 (7.84) 64.65(22.03) [s] F(15) = 5.78, p < .05 p < .01 r = .67 p = .62 r = .10
wwl 52.11(21.64) 46.33(18.21) 68.00(12.94) [%] F(15) = 2.34, p = .13 – –
csa 7.55 (2.22) 7.96 (1.45) 14.20 (2.80) [rad] F(15) = 16.8, p < .001 p < .001 r = .84 p = .36 r = .12
cst 208.27(43.94) 226.46(31.26) 304.82(70.45) [m] F(15) = 6.02, p < .05 p < .05 r = .62 p = .21 r = .25
sal -18.93 (5.95) -18.74 (3.05) -20.99 (6.05) [-] F(15) = 0.35, p = .71 – –

Fig. 11: Rotational and translational steering input of the
master. Significant differences can be seen between the
ITCM-high and ITCM-low conditions. See Fig. 9 how to
read the figure.

V. Discussion

To enable short term introduction of home-care robots
[4], a positioning model for telemanipulation tasks
has been designed for semi-autonomous mobile ma-
nipulators. The designed method uses recorded data
from the telemanipulation setup in order to accurately
predict the task’s reachability. This model is called
the Inverse Telemanipulation Capability Map (ITCM).
Based on a collection of gripper poses a Task Specific
ITCM (TS-ITCM) can be calculated on-line.

The designed ITCM method is based on the
ARPlace method [11] and the ICM method [13]. Like
the simulation ARPlace uses, the ITCM uses an record-
ing of the slave’s workspace to get an accurate map.
However, since the map representation is similar to
the ICM, the ITCM is not task specific and can select
a base orientation and lift height. To cater telemanip-
ulation tasks’ unpredictability, the ITCM accounts for
multiple ee orientations per position in the task and
even pre-grasps can be taken into account. Further-
more, the ITCM scores base poses using the visibility
of the task and manipulability.

Contrary to related work, this research designed
and tested a positioning method for telemanipulation.

In this related work, autonomous manipulation
was tested in the real world [11] or in simulation
[8, 9, 10, 13]. The performance of these methods was
evaluated with computation time and success rate.
However, with an operator, different metrics become
relevant.

An experiment was set up to test if the ITCM
method can predict suitable positions for telemanip-
ulation. It was investigated if this method is able to
differentiate advantageous from less advantageous
base poses. Also the execution with telemanipulation
was compared between the ITCM selected and the
manually selected pose. Three conditions are com-
pared: an expert selected pose (Expert), the lowest
(ITCM-low) and highest (ITCM-high) scoring pose of
the TS-ITCM.

The results confirm the hypothesis that the ITCM-
high condition has higher performance and lower
effort than the ITCM-low condition. The task com-
pletion time increased with 71% from the ITCM-high
to the ITCM-low condition. The operator effort was
lower in the ITCM-high than in the ITCM-low con-
dition: cumulative steering angle 78% and cumula-
tive steering translation 34%. No difference has been
found in the weighted workload or spectral arc length
between the two conditions. Although the steering
input in cumulative steering angles and translations
seems to vary as much as the task completion time
(see Appendix F), no difference has been found in the
steering smoothness. It seems that similar steering tac-
tics were used across conditions. Thus the increase of
control effort stems from a longer duration of control.
It can be concluded that the combined manipulability
and visibility score accurately predicts which base
pose is better suited. Furthermore, it can be deduced
that the task is possible from all base poses in the TS-
ITCM as it is possible to do the task from the worst
scoring base pose.

The hypothesis can be confirmed that performance
and effort are equal or better from the ITCH-high
than the Expert condition. Because the results show
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no differences between any of the metrics of these
conditions. It was conspicuous that the base poses of
both conditions were just just 14 cm apart and the yaw
angle difference was only 2.8◦, while the TS-ITCM
was 1.2 m long and 40 cm wide. That both conditions
poses are close, suggests that the used scoring method
results in a similar pose as human preferences. It can
be concluded that the ITCM method is able to predict
a base pose which is a good alternative for manual
placement.

In this experiment some factors introduced variance
in the resulting metrics. Firstly, the participants were
instructed to correct the cup if the researcher stated
that it was not in the circle, not all repetitions of the
task were the same. Secondly, some participants had
none and some participants had telemanipulation
experience. Lastly, varying latency in the WiFi signal
and variability in the force-torque sensor could not be
controlled during the experiment. Nonetheless, the
results clearly indicate the importance of base pose
selection and the capability of the designed ITCM
model.

Overall, it can be concluded that the ITCM method
predicts advantageous base poses for telemanipula-
tion.

This means that for semi-autonomous mobile ma-
nipulators, the operator does not need to position the
robot anymore. It saves time and prevents operator
error. The applicability of the method is not limited to
domestic environments. However, the robot must be
semi-autonomous, otherwise the robot’s workspace
could not be recorded. In that case a method for
autonomous grasping would be better suited.

The ITCM model is also beneficial for autonomous
tasks on a semi-autonomous robot. Because if the
autonomous task fails, the robot is already in a good
position for telemanipulation. With the ITCM model
the need to position and reposition the robot for a
telemanipulation task is thus removed.

With the ITCM model, the robot and the human
supplement each other’s skills. A robot is good in
measuring its position and computing the TS-ITCM
and a human is good in doing the manipulation task.

A limitation of the way the ITCM is merged in a
TS-ITCM is that it constitutes of discretised grids.
Therefore points only really are at the same points
if rotated with 90◦ and/or translated with a factor
of the grid’s distance. Therefore, only side and top
grasps can currently be merged, sampling more ee

poses is thus not useful with this merge method.
To be able to generate a task, a path and a starting

location are needed. While this information is needed

for autonomous manipulation, it does not mean that
the task can be done autonomously.

The calculation of the visibility score is under the
assumption that the camera’s position is fixed. The
consequential error in position is not more than 10 cm,
but it does not influence which base pose has the
highest score.

Because the ITCM is based on recorded configura-
tions, changes in the robot setup require re-recording
of the workspace. The same applies to telemanipula-
tion settings; the size of the usable workspace of the
slave can then increase or decrease.

A. Future work

In future work, a task generation method could be
made based on sensor data and natural human as-
signments. In this experiment parameters were used
to generate a task on which the TS-ITCM was based,
but in domestic environments the robot needs to rely
on sensor input. To give tasks to a home-care robot
interfaces have been developed that use speech [25],
a point-and-click interface [26, 27] or gesture recogni-
tion [28]. To make these methods suitable for telema-
nipulation, instead of selecting one orientation the not
possible orientations need to be identified per grasp
position.

For this experiment the robot’s workspace was
recorded manually. However, it could also be done
entirely in simulation, with accurate joint-limits and
self collisions of the master and slave. Or with the the
real slave and master, but aided by the master devices
actuators. In this way the workspace can be ensured
to be sampled uniformly and completely.

The maximum load of a robot arm is dependent
on its configuration, by using the dynamic manip-
ulability [29, 30] to calculate base poses’ scores for
different loads, maps could be made. When a task is
generated the anticipated load could then be taken
into account when selecting the weight specific ITCM
and generating the TS-ITCM. The limitation of four
grasp orientations for side and top grasps per task po-
sition can be expanded to six by using an equilateral
triangle instead of a square discretisation grid. In that
way tasks could be represented more naturally. If the
robot is capable of detecting the object and the grasp,
a scoring model for grasps (see for example: [31, 32])
could be used and the score could propagate to the
base options.

For mobile manipulators which have a non pris-
matic lift joint, taking the lift height into account is
not as straightforward. Due to the additional horizon-
tal displacement, the orientations of the base poses
in the map will not meet in positions as ordered in
a grid. Therefore the merge method used here will
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not work. To prevent this, the tool extention method
presented by [10] can be used. Instead of attaching a
tool to the ee, a variable translation is added to the
base of the arm. This will come at computational cost,
as a six dimensional array is implemented.

Other use of the ITCM could be to aid the operator
in picking a good base position. Or the other way
around, visualising the workspace from the current
base pose.

For sequential tasks, the ITCM method can be fur-
ther developed to find if there is a set of base poses
from which both tasks can be executed. In this way
repositioning between tasks can be negated.

For a future experiment, it is interesting to compare
the robustness of expert positioning to positioning
with the ITCM model. For tasks with a lower amount
of base pose options, it could be tested if an expert is
able to find a possible position at all and if the base
pose predicted by the ITCM model to be advanta-
geous results in an executable task.

The presented model is only applied with a tele-
manipulation setup in which the master’s position
is statically linked to the slave’s position. Meaning
that the same master pose always results in the same
slave goal pose. Although the configurations can be
recorded in this way excellently, the resulting map
will contain more base poses because of the less strict
telemanipulation constraints. For future research, it
can be investigated if other master slave relations have
influence on the predictive capabilities of the ITCM
model.

VI. Conclusion

In this study, a model (TS-ITCM) to select an advan-
tageous mobile manipulator position for telemanip-
ulation has been designed. It has been investigated
if this model can replace positioning by an operator
and if there actually is a difference within the base
poses from which the task is reachable. Participants
executed a task with a physical slave in three con-
ditions: driven by an expert operator to a position,
the highest and lowest scoring pose in the TS-ITCM.
The presented model can be used to position a mobile
manipulator such that an operator can do a task via
telemanipulation.

Based on the experimental conditions tested, we
can conclude that:
• The highest scoring base pose of the TS-ITCM re-

sulted in similar performance and operator effort
as the position selected by the expert. Partici-
pants regarded this pose as easier than the expert
selected pose.
• The highest scoring base pose of the TS-ITCM

resulted in significantly better performance and

effort than the lowest scoring. The ITCM model
is thus effective in predicting how suitable a base
pose will be for telemanipulation.
• The lowest scoring TS-ITCM base pose resulted

in a do-able task. This suggests, together with
the validity of the scoring model, that from all
base poses in the TS-ITCM the task is do-able.

The experiment shows that the base pose influences
the telemanipulation performance and operator ef-
fort. The base poses selected by the ITCM result in
a reachable task and that the scoring model of the
ITCM accurately predicts advantageous and non ad-
vantageous poses.

The ITCM model is thus useful for semi-
autonomous mobile manipulators. With it, such
robots can navigate to an advantageous base pose
from which the operator can do the task as good as
from a human selected position without repositioning
the robot.
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Appendices
A. On-line part
To create a task specific map of the IHCM (Appendix B) and ITCM (Appendix C), a task needs to be generated.
Maps need to be merged and those maps need to be interpreted by the robot relative to a certain task in real
life, as shown in Figure 12. These general on-line aspects of these methods are discussed in this appendix.

Merge maps

Task generation

Detect task
location

TS-Map

On-line

base poseMap

Figure 12: A map and a specified task is used to generate maps that are merged to a task specific map (TS-Map). To find
where this goal position relative to the current base pose, the origin of the task is detected.

1. Task generation

The positioning methods: Inverse Human Capability Map (IHCM) and the Inverse Telemanipulation Capability
Map (ITCM), need a way to describe the task in order to generate maps that can then be merged to find a
suitable base pose. In this section it is shown how tasks are generated and what should be taken into account
in that process. For this research project, tasks are generated based on parameters collected from the user via
an interface. These generated poses can resemble opening a drawer, a sliding door cabinet or a rotating door
cabinet and pick and place tasks.

Task generation for autonomous grasping is done by for example Vahrenkamp et al. [1]. They generate a path
of Tool Centre Points (TCP) poses a long a curve, see Figure 13. For each TCP, a transformation of the ICM
was made to match the generated TCP. The intersection between the maps (overlap of the maps) is used by
Vahrenkamp et al. to constrain the on-line search for a suitable base pose. But because map merging in the
ITCM project is done by reusing the pre-computed data with the aim of limiting on-line computation, the
TCP positions and orientations are constrained. The TCP’s must be placed in the same grid as used for the
discretisation of the base poses in the IHCM and ITCM.

Because the robot Marco as used in this project has a lift on which the arm is mounted, the shoulder height can
be selected by the positioning method as well. Instead of searching for base poses with a vertical robot on a
specific height, a height range is used corresponding with the lift’s range. And due to the telemanipulation

Figure 13: A path for opening a dishwasher, with the resulting Inverse Capability Map of Vahrenkamp et al. [1].
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(a) Radius: 25 cm (b) Radius: 30 cm (c) Radius: 50 cm

Figure 14: Comparison of position error due to 5 cm discretisation grid for three different curved paths. Each circle is a
position on the grid near the curved path. Both the colour and the size of the circle represent the distance to the path (i.e.
the error). A green small circle is a low error, a big red circle is a large error.

(a) Without pre-grasp. (b) With pre-grasp (c) The same curved path used on a fridge.

Figure 15: The same task with and without pre-grasp. The red circles to denote the selected positions. The green lines start
from the TCP position and direction denotes the orientation of the gripper. The green lines corresponds with the green
y-axis on the gripper, see Figure 47 (p. 43).

context, the task as generated by the robot might not be executed in that way by the operator. The orientation
of the selected grasp is not known, therefore it would be nice to select multiple options per grasp position.
To further limit the amount of possible base poses, the implemented task generation method can generate
pre-grasps as well.

By searching for not one, but for a number of possible grasp orientations, the amount of possible base-positions
is increased. For example, a cup can be picked up from multiple directions with a side grasp, it should not
mean that the robot should stand somewhere where it can reach all possible grasps the best.

To incorporate these extra possibilities instead of an intersection, a union of the maps belonging to the possible
grasps is made per position. In this union, the maximum score is used to represent the best configuration
possible from that position. Thereafter the maps of all positions are combined by making taking the intersection
of the possible Thereafter an intersection is made of the ICM’s for all positions as described earlier to get
the ICM for the task. Additionally, a pre-grasp option has been implemented in this projects task generation
method. Because the approach and retreat from a grasp should be reachable as well.

Curved paths are generated based on the radius, the number of samples, the angle at which the path starts
and ends and the height of the task. As can be seen in Figure 14 the positions with zero x or y distance are
almost limited to those exactly on the curve, at least if the radius is a multiple of 5 cm. For the selected curved
path, positions are generated around it. The distance to the path (dist =

√
x2 + y2) is calculated for all positions.

If m samples are needed, the first m points on the discretiation grid with the lowest distance to the curved path
are selected.

The orientation options for the curved path are not static however. Because this path is envisioned to be used
for opening and closing doors, care is taken that no orientations are used that will let the gripper collide with
the door. For different positions, different orientations are selected, this is shown in Figure 15.

Note that the task generation of curved paths is only implemented in the horizontal plane.

Linear paths are generated based on distance, the supplied distance and the height of the task. But positions
can only be used if they are on the grid. The distance between every position should thus be the product of
a natural number and the discretisation distance (in this case 5 cm). This could lead to selecting more or less
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(a) 3 samples, distance 0.15 cm (b) 3 samples, distance 0.20 cm

Figure 16: Two linear tasks with 3 samples. To get the task positions on the discretisation grid with a distance of 0.15 cm,
the distance between each position is 5 cm and 4 positions are used. For a distance of 20 cm, placing the task positions 10 cm
apart results in three task positions. The green lines and red circles are explained in the caption of Figure 15.

Figure 17: Interface to set parameters as used in this project. This is made with the dynamic reconfigure package.

positions than the selected amount of samples, an example is shown in Figure 16. The orientations are the same
for all positions and are set with the options start_angle_grasp and end_angle_grasp in the menu shown in
Figure 17.

Pre-grasp positions are added if the option is selected in the menu (Figure 17). These can be added any
multiple of the discretisation distance in the negative direction of the grasp. An example is shown in Figure 15b.

2. Merge maps

As positioning methods have been developed by among others: Zacharias et al. [2], Vahrenkamp et al. [1] and
Abolghasemi et al. [3], each has introduced a way of combining a set of capability/reachability maps. The
reachability map of Zacharias et al. is combined by doing a cross-correlation following the spheres in which the
task is discretised [2]. As this method does not give a lift height or base orientation as a result it is not suitable
for our robot. The method of Abolghasemi et al. created their own score and approximated the description of
that score with Gaussians, because that might influence the trueness of the scores it is not chosen to follow such
a method [4]. Vahrenkamp et al. used their original maps to deduce were there was an overlap between all
maps. In this overlapping region they applied a new discretisation of possible base poses. Thereafter for all
new base poses it was checked if all task’s TCPs were kinematically reachable.

None of these methods were used in this project. In this project the computation time is reduced by reusing the
original sets of maps, this was possible because the task generation could be constrained to fit to the same grid
the maps were discretised to. This was deemed a valid task simplification because the task execution will be
done by a telemanipulation operator and could thus be done differently than the generated task.

As can be seen in Figure 18, the exact placement of the ee positions ensures that if two base options overlap,
they overlap exactly. There is thus no need to interpolate with Gaussians or re-sample in the overlapping area.
For each gripper pose, all the possible base poses are transformed to be relative to a single fixed coordinate
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Figure 18: Overlap between two map’s belonging to two end effector positions ‘*’. One map is denoted with a ‘·’, the other
with ‘o’. The overlapping area has grey circles. To simplify no orientations are taken into account.

Figure 19: The green lines represent a pick-and-place task and is generated linearly. Each position has three possible
orientations and a pre-grasp. See Figure 15 how these green lines represent possible gripper poses. For each gripper (green
line) the pre computed ITCM is transformed according to its pose. Each circle thus represents a collection of base poses.
For the three orientations per position, the intersection of base poses of the grasp and pre-grasp gripper For each gripper
orientation, the intersection of grasp and pre-grasp base poses is made. Per position (pick or place in this case), a union of
these intersections is made. The union of these three intersections represents the ITCM for that position (blue and red). The
intersection of these ITCMs is the TS-ITCM and is represented by the purple area.

frame, the task frame. These transformed base poses belonging to a gripper pose are called a set of base poses.
In three steps all the separate sets of base poses are combined into a single task specific map.

First, if the gripper orientations have a pre-grasp, the grasp as well as the pre grasp should be reached for all
base positions for that grasp pose. The set of base poses suitable for that grasp pose is thus the intersection5 of
the base poses of the grasp and pre-grasp ee pose. When the intersection of two sets of base poses is taken, the
lowest score of the same base pose is used in the new set. Because the when manipulating at two points, the
point that makes the manipulation hard will have more influence on the performance, effort and difficulty of
the manipulation task.

Secondly, per position, extra gripper orientations are added because the eventual grasp orientation is not known
by the robot. These extra orientations have additional base pose options. Because it is not the goal to find a base
pose from which all orientations can be used, the intersection method is not suitable. Thus a union6 is made of
the base pose sets of all orientations of the same position. If there are multiple base poses with the same pose in
the original sets, the highest score is used for the unioned set. Because the gripper orientations belonging to the
lower scores will probably not be used because the operator will find them less intuitive.

Lastly to combine all base poses per position, an intersection of the base pose sets per position is taken. Again
the lowest score is used for the remaining base poses. An overview for a pick-and-place task of this process is
shown in Figure 19.

5In set theory, the intersection is the set that contains only elements from both original sets.
6In set theory, the union is the set in which all elements from the other sets are present.
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3. Laser scan for task detection

In the experiments, the laser scanner of the robot was used to measure the position and orientation of the robot
with respect to the task. Previously, the RGBD camera was used for this same purpose, but due to specifics of
the setup used, there were to many deviations from the real world to be accurately used.

In Figure 21 the experiment setup is depicted. The task is always in the same place on the table. Thus if the
table is detected correctly, the pose of the task with respect to the robot is known (or vise versa). To this end,
one of the table’s legs is widened to be able to distinguish it from the other legs.

The laser scan data is published at 10 Hz. Per scan, the two closest blobs are interpreted as the table legs.
Of which the left one has a lot more data points than the right table leg. The average location of the data
points is used to determine the locations of the table legs for this time-step. An moving average of the last ten
leg locations is used to determine the table location. Because the table was stationary this did not cause any
problems in positioning the robot.

From these leg positions a fixed transform to the pick position of the task is known. This pick position is then
used as task frame and as origin of the task specific Inverse Telemanipulation Capability Map. The result is
shown in Figure 20.

Figure 20: Visualisation in Rviz of table legs, robot, and TS-ITCM. The white dots are the measurements from the laser
scanner, the wide part is the left table leg, the smaller one is the right table leg and one of the hinter table legs can
also be seen. The pink dots denote the position and time averaged tabel leg locations. The green and red lines with
‘ICM_start’ denote the fixed task frame on which the TS-ITCM is based. A model of the robot is visualized as well with the
base_footprint frame, this frame needs to be collocated with corresponding orientation to the frame in the TS-ITCM.
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Figure 21: Experiment setup with cardboard attached to the table to differentiate the left from the right table leg.
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B. Inverse Human Capability Map (IHCM)

The Inverse Human Capability Map is based on the Inverse Capability Map. Which is presented as the Oriented
Reachability Map by Vahrenkamp et al. [1]. The IHCM differs from the ICM in how the maps are merged to as
is discussed in Appendix A. The method to score base poses is complemented by a task visibility score to make
the map more human operator compatible. The task generation part is extended as well with pre grasps and
multiple orientations per position, but as those are additions to the online part, these are discussed in Appendix
A as well. In Figure 22 an overview is given how the task specific Inverse Human Capability Map (TS-IHCM) is
constructed.

Discretise
workspace

Test poses Generate
IHCM

Merge maps

Task generation

TS-IHCM

Docker

On-line

IHCM

Figure 22: A discretisation of the robot’s workspace is generated and tested to be reachable with a simulation in a docker
[2] container. Based on these results the general Inverse Human Capability Map (IHCM) is generated. This map is then
used on-line to create a task specific IHCM (TS-IHCM) as is discussed in Appendix A.

1. Off line part IHCM

Because the capabilities of the robot’s arm do not change, the map can be calculated off-line. As has been shown
in Figure 22 this consists out of three separate parts. After these parts the computation of the visibility score is
discussed.

1) Discretise workspace

Because the mapping cannot be done for all possible position and orientations (hereafter poses), a discretization
must be made. For human interpretation it is beneficial if for each base position all orientations are tested, in
contrast to scattered combinations of positions and orientations, see for this difference Figure 23.

To ensure that from the same position multiple orientations are tested to end up with a map as in Figure 23a.
The poses are discretized from the gripper_grasp_link to the base_footprint as follows: A three dimensional
grid of base_footprint positions around the gripper_grasp_link frame (for simplicity used as origin) with
an equal distance in x y and z from each other is created. The robot Marco with the relevant frames is shown in
Figure 47 (Appendix E p. 43). For this research a resolution of 5 cm is used and because the maximum length of
the arm is 87 cm, the cube is 2 by 2 by 2 meters. The shoulder frame is the first joint of the arm (arm_1_link),
but with zero rotation with respect to the base of the robot. The base_footprint poses are then transformed
to shoulder poses as seen from the static gripper_grasp_link frame, this results in the transform depicted
in Figure 24a. This is useful because we can than more accurately dismiss poses based on the distance to
the gripper_grasp_link frame. Only the shoulder positions that are within a sphere of 90 cm (a bit longer
than the maximum reach of the arm) from the gripper_grasp_link are considered for evaluation with inverse
kinematics, in order to reduce unnecessary IK computations.

Then the possible orientations of the end effector are generated. To get a complete mapping, orientations can be
varied in all directions or if the application will ask only for side and/or top grasps the discretization can be
limited to those as well.

Finally the transform from the gripper_grasp_link to the shoulder frame is written to a .txt file as illustrated
in Figure 24.

Because of memory limitations of matlab, the complete set of samples is split per position in separate files.
These are combined and split by a bash script to a number of files corresponding with the amount of nodes in
the launch file. By using 20 nodes to test the poses, better use can be made of the computers processing power.
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(a) base_footprint (b) shoulder
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Figure 23: IHCM with samples generated from the base_footprint frame or from the shoulder frame. The left side of the
map has been cut of better see the small lines. If the different base orientations are grouped per base position, the map is
easy to interpret by humans and easier to merge by the computer.

gripper_grasp_link

shoulder
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gripper_grasp_link

shoulder

arm_7_link

base_footprint
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results
test
IK

(b) Test poses

gripper_grasp_link

shoulder

ggl
shT

(c) Generate IHCM

Figure 24: Frame transformations used for the discretization, pose testing and IHCM generation. See Figure 47 (Appendix
E p. 43) for the relative location of these coordinate frames in the robot.

2) Test poses

To find a configuration of the robot arm for a given position and orientation, an Inverse Kinematic equation
must be solved. For redundant robot arms, there could be found multiple solutions or none at all. Solving an
Inverse Kinematic (IK) equation for a redundant kinematic chain, is thus partly stochastic. Although finding a
solution for one pose can be quite fast, for an 7 degree of freedom arm around 0.5 ms [3], doing it for 32 million
samples would take 4 h. That is the reason for exploring the workspace off-line as opposed to on-line.

As can be seen in Figure 22, the base_footprint poses are tested in a docker container. In this docker container
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the robot can be simulated with gazebo and the same software as would be running on the real robot. For the
Inverse Kinematics (IK) tests, trac-ik [3] is used because of the high solve rate and quick solve time.

The transforms from the .txt file generated by the ‘discretise workspace’ part are read by the program
to test if there is an arm configuration. As shown in Figure 24b, the gripper_grasp_link frame is trans-
formed to the arm_7_link frame. This is because there simulated robot did not have a gripper and thus no
gripper_grasp_link frame in the arm’s kinematic chain. There are no moving joints between the arm_7_link
and the gripper_grasp_link frame, therefore the transform is constant over all poses. Also the shoulder frame
is transformed back to the base_footprint frame, taking the current lift height into account of the simulated
robot.

The read pose is thus now represented as a pose of the arm_7_link in the base_footprint frame. This pose is
tested to be reachable or not. If it is reachable, the found configuration is used to compute the manipulability as
presented by [4] with the joint limit penalization as presented by [5, p. 114]. How this is done can be read in
Appendix 1), except that the Jacobian is generated by the MoveIt! ROS package. Only the poses which could
be reached are written to the result file. These are not the tested poses (from the base_footprint frame), but
the poses from the shoulder to the gripper_grasp_link frame ( sh

gglT). In this file each line represents one pose

and corresponding score. score x y z qx qy qz qw

3) Generate IHCM

The result files produced by all 20 nodes are then merged into one .mat file. This mat file is then used to

Because the samples are first generated in the grid we would like to seem them in (base_footprint frames
expressed in the gripper_grasp_link frame: ggl

base f T), to test the validity of the poses they are inverted to sh
gglT.

To get the poses back in the grid we would like to seem them in, the shoulder poses need to be inverted back
and thus be defined with respect to the gripper_grasp_link frame, as shown in Figure 24c.

The poses are then saved with the rotation expressed as a rotation matrix instead of a quaternion. Because
with rotation matrices, it is easier to check if a rotation is unique than with quaternions. And when using
the collection of rated possible base positions, it can quickly be evaluated if a possible shoulder pose has an
orientation that enables the robot to stand upright.

As last step double shoulder poses are removed (a margin of 0.0001 is used), the maximum manipula-
bility score is kept. The suitable shoulder poses are stored in a .txt file per row, with in each row:

score x y z R1,1 R1,2 R1,3 R2,1 R2,2 R2,3 R3,1 R3,2 R3,3 An additional .txt file is saved
with the size of the array. In that way the cpp program can preallocate memory before reading the file.

2. visibility score

The visibility score is calculated the combination of a yaw score and a pitch score. The best visibility of the
grasp is assumed to be with zero yaw and a pitch of 45◦ downwards. The score is designed to be maximum (1)
at those goals and minimum (0) outside of the visible limit. The visible limit is seen as the joint limits of the
camera with the field of view added. Below this text, the bounds are calculated as the joint limit plus or minus
half of the field of view. The joint limits are in the yaw direction 75◦ and the field of view is 58◦ both from the
neutral in both ways. In the pitch direction the joint limit is downwards 60◦ and 45◦ upwards with a field of
view of 45◦ from the neutral in both ways. These scoring formulas result in the scoring landscape as seen in
Figure 25.

yawgoal = 0o yawlb = −75o − 1
2

58o yawub = 75 +
1
2

58o (10)

pitchgoal = −45o pitchlb = −60o − 1
2

45o pitchub = 45 +
1
2

45o (11)

yaw = atan
(

diry

dirx

)
pitch = atan

 dirz√
dir2

x + dir2
y

 (12)
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Figure 25: Visibility score is depicted in colour as shown by the colour bar as function of yaw and pitch. The lowest score is
0 and is thus represented in blue, these are mostly view angles outside the reach of the head. The highest reachable score is
white and is near the view-goal (x).

yawscore =

1−
∣∣∣ yaw−yawgoal

yawub−yawgoal

∣∣∣ ifyawlb ≤ yaw ≤ yawub

0 otherwise
(13)

pitchscore =

1−
∣∣∣ pitch−pitchgoal

pitchub−pitchgoal

∣∣∣ ifpitchlb ≤ pitch ≤ pitchub

0 otherwise
(14)

visibscore =
(
yawscore + pitchscore

)
· 1

2
(15)

The yaw and pitch are calculated not from the actual pose of the robot’s head but the position of the xtion_link
frame when the head_1_joint and head_2_joint have an angle of 0◦. In other words, if the head is in
the horizontal, straightforward position as depicted in figure 26. The difference in camera position to the
gripper_grasp_link due to the links after the head joints, is thus neglected in calculating the yaw and pitch
angles. From the shoulder frame (arm_1_link in the same orientation as torso_lift_link) the position of the
camera is calculated with the fixed transform sh

camT. Subtracting the tool centre point’s (tcp) location from that
of the camera (cam) in the frame of the shoulder, results in a vector describing the direction the camera should
look to have the tcp in the middle of the sensor.

shPcam = [0.136, 0.043, 0.155]T (16)

dir = shPtcp − shPcam (17)

This direction vector in normalized, such that the length of the vector equals 1.0. Combining manipulability
and visibility is done similarly to how the yaw and the pitch scores are combined. However, to ensure that
the manipulability (manip) and the visibility (visib) have the same weighing in the average total score. The
visibility score and the manipulability score are first normalized such that the lowest value of each score vector
is zero and the highest value of each scoring vector is 1. Thereafter the average is calculated and used to further
evaluate the shoulder poses.

score =
visib_score + manip_score

2
(18)

3. Results & discussion

In Figure 27 the resulting task specific IHCMs are shown for various kitchen related tasks. Conspicuous about
these maps is that base options are very close to the gripper poses of the task. It can be imagined that from
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(a) Perspective view (b) Side view

Figure 26: Transformation frames from torso_lift_link to xtion_link and the arm_1_link as seen from the side and in
perspective.

these positions, the gripper will be to close to the base and a self collision seems inevitable.

While testing the IHCM, this suspicion was confirmed. It occurred that the task was not reachable from a base
pose in the TS-IHCM, see Figure 29. This could be due to the fact that telemanipulation constraints are not
taken into account in the generation of the IHCM. Although the trac-ik and MoveIt! combination said to be
taking joint limits and self collisions into account, it could be that it is not the case. To create a map which
contains only the possible base poses, the ITCM is developed, see Appendix C.

Referring back to the visibility score as introduced in the IHCM method in this Appendix, a comparison is made
between scoring method with manipulability, the manipulability and yaw score and the combined visibility and
manipulability score. This is shown in Figure 28. It can be seen that no clear better regions can be seen with the
manipulability score, 28. The yaw and manipulability score result in the pose which was used in the failed
manipulation in Figure 29.

By taking into account the visibility of the object, a bias is created for base poses which point towards the task
positions. This can be seen in Figure 28.
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(a) Linear path of 60 cm with 4 gripper positions..
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1.00.750.50.250.0

(b) Curved path with a radius of 20 cm with 3 gripper
positions.

(c) Curved path with a radius of 40 cm with 4 gripper
positions.

(d) Curved path with a radius of 40 cm with 4 gripper
positions.

Figure 27: The linear path has the same gripper orientation for each gripper position, and the curved path has different
gripper orientations per position.
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Figure 28: Pick and place task, generated with a two position linear path of 35 cm.
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Figure 29: Base pose selected with the IHCM that resulted in a task that was not executable with telemanipulation. Irrelevant
background blurred.
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C. Inverse Telemanipulation Capability Map (ITCM)
After implementing the Inverse Capability Map (ICM) as described by Vahrenkamp et al. [1] and extending it to
the IHCM (see Appendix B). It became clear during tests that constraints of the telemanipulation setup should
be considered too. With a base pose selected with either the ICM or the IHCM, it would occur that the the task
would be carried out with a highest manipulability possible. The task could however not be reached because
the workspace of the master device is limited and not the entire workspace of the robot can thus be explored.
Because Vahrenkamp’s ICM is designed for autonomous grasping, it suffices to only regard the kinematic
properties of the robot’s arm.

This caused inspiration to use data from the actual telemanipulation setup in order to take all the limitations
into account. The scheme to create a task specific ITCM is shown in 30, in this appendix only the map generation
is discussed. This is the off-line part as shown in the figure. The online part is discussed in Appendix A. How
the data for the ITCM map is gathered is described in section 1. The recorded joint states are then used to
compute the robot’s Inverse Telemanipulation Capability Map (ITCM). The joint states are also used to compute
the manipulability of base poses with respect to the gripper, see section 3). The visibility score is calculated
online because it was already implemented for the IHCM and is discussed in Appendix B. The ITCM is saved
as a .txt files which is then interpreted by the same on-line part as used for the ICM and IHCM (Appendix
B) methods, see Appendix A (p. 13) for the implementation. With the generated grasps resembling the task,
the task specific ITCM (TS-ITCM) can be constructed for various tasks. These can be seen for various tasks in
section 3.

Record arm
configurations

Generate
ITCM

Merge maps

Task generation

TS-ITCM

On-line

ITCM

Figure 30: Schematic of the generation of a task specific ITCM. A distinction is made between off-line processes (the white
blocks) and on-line processes (the coloured blocks).

1. Gather data

In order to take all constraints of the telemanipulation setup into account, the workspace was explored using
the same master device (a geomagic touch omni [2]) and with the same settings as in normal operation. The
telemanipulation setup is described in the paper’s methods section, see page 5.

To limit the amount of data used in the ITCM for the experiment, only the grasp poses that could be used in
the experiment were sampled. This means that the lift height of the Marco robot was fixed at 91 cm (the ICM
and IHCM both selected it as the best lift-height for this task). The task was picking and placing a cup on the
same table. To describe this task, only a side grasps were used and because the table does not vary in height
all grasps were on the same height (41 cm). To get a proof of concept map for this task, the commands of the
master device were edited to keep the roll, pitch and height of the gripper constant. To this end the rostopic
/geo_haptic_state_m was re-maped to /geo_haptic_state_prefilter and a new node was put in between
these topics to edit all messages, see Figure 31.

Although the height command of the master side was fixed, that did not mean that the end effector of the slave
was not going to go up or down. The slave controller calculates a path towards the new pose, this path is not
optimised to keep the end effector on the same height. Therefore excursions were made outside of prescribed
plane during the recording.

During 53 min and 17 s the topics /joint_states and /tf are saved in three consecutive .bag files. The /tf
topic was recorded as a back-up, this topic consists of the so called transform tree. The joint states are more
important than just the transform between the shoulder frame and the arm_7_link, because the manipulability
computation is dependent on the configuration of the arm. The /joint_states topic contains messages of type
sensor_msgs/JointState, publishes at 50 Hz and has besides the arm joints of interest also all other joints of
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Marco, see Listing 1. These messages thus resemble the state of the generalized coordinates of the robot. The
arm joints we are interested in are revolute, therefore the position is in rad and the velocity is in rad

s . The arm
joint positions are in the range between −π and π. For the ITCM only the position field is used, of which only
the values corresponding to the arm joints are used.

Listing 1: Example of a sensor_msgs/JointState message on the /joint_states topic.

header:
seq: 54567
stamp:
secs: 1531842924
nsecs: 956858817

frame_id: ’’
name: [’arm_1_joint’, ’arm_2_joint’, ’arm_3_joint’, ’arm_4_joint’, ’arm_5_joint’, ’

↪→ arm_6_joint’, ’arm_7_joint’, ’head_1_joint’, ’head_2_joint’, ’torso_lift_joint’, ’
↪→ wheel_left_joint’, ’wheel_right_joint’, ’caster_back_left_1_joint’, ’
↪→ caster_back_left_2_joint’, ’caster_front_left_1_joint’, ’caster_front_left_2_joint’, ’
↪→ caster_back_right_1_joint’, ’caster_back_right_2_joint’, ’caster_front_right_1_joint’,
↪→ ’caster_front_right_2_joint’]

position: [1.0058956265627637, -0.6668913466995965, -1.354832333675927, 0.7812407815765756,
↪→ -0.6853028725871546, 0.591213316532442, 1.7869163059953614, -0.010122909649999998,
↪→ -0.07086036754999998, 0.34834603143986886, 0.028439153439153438, 0.02513227513227513,
↪→ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

velocity: [0.11516672210821845, 0.017456504899373546, -2.93139096977664e-08,
↪→ -0.18246975967800516, -0.8855937909277602, 0.22133122678905787, 0.8436615362030537,
↪→ 0.0, 0.0, -0.0009925644529267174, -2.4405701631994282e-15, 0.002955700326565297, 0.0,
↪→ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

effort: [0.301, 1.325, 0.666, 0.018, 0.016, -0.085, -0.085, 0.0, 0.0, 0.043, 1.002, -0.272,
↪→ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

2. Generation of map (off-line)

This section describes how the recorded configurations were imported into matlab, the manipulability was
calculated and how the poses were inverted to get all the base positions as seen from one end effector. The
inverted poses are then binned to the same discretisation grid as has been used for the ICM and IHCM methods,
5 cm in translational and 1/8 rad in rotational dimensions.

The discretization is done to:

• enable the search to a base position from which multiple tool centre points can be reached.
• reduce memory size and computation time on the robot
• increase interpretability of the ITCM (see Figure 32 (p. 28) )

Figure 31: ROS nodes (elipses) and topics (rectangles) relevant to the ITCM data gathering filter. The orange topic has
been remapped from /geo_haptic_state_m to /geo_haptic_state_prefilter, the orange node changes the contents of
the messages to comply to relevant search space.
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Figure 32: Comparison of raw and discretized poses and their manipulability. Each line in the graph represents the y-axis
of the gripper_grasp_link frame, see Figure 47 (Appendix E p. 43). The lines colour represents the manipulability score
(normalized between zero and one). The robot is placed in the picture for context. In Figure 32a one tenth of the data is
used to be able to plot it.

The visibility score is calculated on the robot during operation (on-line), see Appendix section 2 (p. 21).

1) Manipulability

Yoshikawa [3] presented a method to calculate the homogeneity of the possible directions of movement of
a robot arm based on the kinematics of the robot’s arm. A kinematic model (KM) of the arm is used with
generalized coordinates (q). This describes the end effector state (ξ) as a function of the armâĂŹs model which
is dependent on the generalized coordinates.

ξ = kinematic model(q) (19)

The Jacobian of the kinematic model, or Instaneous Kinematic Model (IKM), describes the velocity the end
effector can obtain in all directions for equal changes in joint angles. This is called the instantaneous velocity of
the end effector.

w =
σmin

σmax
[3] (20)

The homogeneity is evaluated using a singular value decomposition (SVD) (J(q) = U Σ T). The positive diagonal
matrix Σ stands for the scaling of the singular vectors, i.e. the singular values. If the minimal and maximum
scaling are more equal, in that case the instantaneous velocity in all translational and rotational directions is
more homogeneous. The manipulability (w) is calculated as fraction of the smallest singular value divided by
the largest singular value.

2) Joint limit penalization

Vahrenkamp et al. [1] said that the same analysis of the manipulability is used as presented in [4]. There
Vahrenkamp et al. presented a method of taking the joint limits into account, where it is also considered if
the joint is moving towards or away from the nearest limit and if the joint near the limit is important or that it
can be compensated by a redundant joint. This would complicate the manipulability calculation tremendously,
and was not deemed necessary to test if positioning the robot autonomously would have merits. Therefore the
same joint limit calculation is used, without taking the direction of movement into account. This joint limit
penalization method has been presented in [5, p. 114].

P = 1− exp
−k·

7

∏
i=1

(θi − θi,lb) (θi,ub − θi)

(θi,ub − θi,lb)
2

[5, p. 114] (21)

Because of the seven degrees of freedom a value of is used for k. The joint limit correct manipulability is
calculated by multiplying the manipulability with the joint limit penalty.

wcorrected = w · P [5, p. 114] (22)
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Figure 33: Joint limit penalization factors per base pose as seen from the gripper_grasp_link. Each line corresponds
with the x-axis of a possible base_footprint frame as seen from the gripper_grasp_link frame. The lines are coloured
according to the joint limit penalization factor with which the manipulability is multiplied. A penalization factor 1 hence
does not influence the eventual manipulability, whereas a low penalization factor lowers the eventual manipulability.
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Figure 34: Comparison between the ITCM with and without joint limit penalization. The base poses which are blue in
Figure 33 can be seen to be lower scoring in the joint limit penalized ITCM.

The penalization factor per base pose is shown in Figure 33. The effect on the manipulability per base pose is
shown in Figure 34 as an comparison between with and without joint-limit penalization.

3) From joint states to ITCM

From the recorded joint states and the kinematic model, it can be calculated what the positions of each link of
the arm was. In matlab, the Robotic Systems Toolbox of Mathworks is used to import the model of the arm of
the Marco robot and to calculate link locations for all the joint states. The Robotics Toolbox of Peter Corke [6]
is used to calculate the Jacobian (Inverse Kinematic Model) of the arm. This Jacobian is needed to calculate
the manipulability, see above. With the joint states, the transform from the shoulder to the arm_7_link can
be calculated ( sh

a7lT, which is written in code as: sh_ggl_T). Because a7l
gglT is constant, we can calculate sh

gglT by
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Table 3: Difference mean(std) of used recorded pose and discretized pose for translation ([m]) and rotation ([rad]).

Translation [m] Rotation [rad]

x 0.0112(0.0078) 0.0107(0.0253)
y 0.0109(0.0079) 0.0129(0.0167)
z 0.0100(0.0070) 0.0604(0.0649)

multiplying sh
a7lT and a7l

gglT.

sh
gglT = sh

a7lT ·
a7l
gglT (23)

Because we are only interested in the gripper_grasp_link poses on a certain height (for the purpose of the
experiment), only poses within a margin of half the descretization resolution either way are used. Thereafter
the poses are inverted from gripper_grasp_link poses in the shoulder frame, to base_footprint poses in the
world frame. Besides inverting the sh

gglT pose, the fixed transforms of w
gglT and base

shTT are also needed.

ggl
shT = sh

gglT
T sh

baseT = base
shTT (24)

w
baseT = w

gglT ·
ggl
shT · sh

baseT (25)

The inverted poses are then fitted to a six dimensional grid with a resolution of 5 cm in translational dimensions
and 1/8 π rad in rotational dimensions. To let the grid be an as close enough match to the recorded poses,
the distance in position and orientation to the nearest grid pose are calculated. A distance score is made that
combines the position and orientation distance, which enables sorting on one metric. First for all recorded
poses the distance in translational and rotational sense are calculated, these are normalized between zero and
one and subsequently multiplied with each other per pose. The pose with the lowest distance score is selected,
and it’s joint-limit corrected manipulability is used for that grid pose.

The differences in translational dimensions between the original and the grid position are shown in Figure
35 (p. 31) and in Figure 36 (p. 32) the differences in rotational dimensions are shown. The values are never
higher then half of the grid’s resolution (0.025 m or 0.1963 rad), the mean is around 0.01 m (x, y, z), 0.01 rad (roll
and pitch), 0.06 rad (yaw), which can be seen together with the standard deviation in Table 3. In translational
dimensions, no particular thing can be noted about the spread of the distance between the selected and the
measured pose. In rotational dimensions it is notable that the mean deviation is 0.01 rad which is a sixth of the
mean deviation in yaw. This could be due to the fact that only the yaw angle of the gripper was steered by the
master device, whereas the roll and pitch directions had the command to stay stationary. However, the z axis
was also fixed during the recording. That the differences between the sampled and grid poses are not less in
the x axis might be explainable due to optimisation of the controller of the slave. As has been suggested in
section 1.

4) Data format

The resulting base_footprint poses in the gripper_grasp_link frame ( ggl
baseT) are written to a .txt file with

the joint limit corrected manipulability score. In this file each line represents one pose and corresponding score.
score x y z R1,1 R1,2 R1,3 R2,1 R2,2 R2,3 R3,1 R3,2 R3,3

R =

R1,1 R1,2 R1,3

R2,1 R2,2 R2,3

R3,1 R3,2 R3,3

 (26)

This can than be interpreted on the robot (on-line) by the software described in Appendix A (p. 13).

3. Example tasks

As has been shown in the appendix regarding the online part (Appendix A), tasks can be generated to resemble
opening doors, drawers or picking and placing objects. This can be seen in Figure 37.
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Figure 35: Difference between the grid position and selected sampled pose in meters. Gripper added for illustrative
purposes.

4. Discussion and recommendations

For my research, the data was gathered in a plane, with a fixed lift height and only one rotational degree of
freedom. To apply this method for tasks with other grasp orientations or lift heights, the workspace sampling
should be expanded. An option to take the variability of the lift into account is to do the exploration at the
lowest lift level, such that the base of this robot obstructs as much of the workspace that it possibly could, and
the highest lift level such that the base obstructs a negligible part of the arm’s workspace. For tasks that are on
the floor, the lowest level map could be used and for tasks higher than a certain level the map made with the
highest lift level could be used, because the base would not be a problem. Furthermore gripper poses close to
the base do not have good manipulability and visibility which makes it unlikely that they would be chosen
base poses unless very few options are available.

Care should be taken not to sample to much orientations. Due to the task generation and map merge method
I implemented, only side and top grasps can be combined. Otherwise the points of the square grids do not
coincide and values would not be able to be compared without interpolating. To be able to use the ITCM for all
tasks that can be generated with the presented task generator, an ITCM must be generated that also covers
the height of the entire workspace and top (and if need be bottom) grasps. To do an exhaustive workspace
exploration to gather the data needed for a complete ITCM, three methods are envisioned:

• Complete simulation
A high fidelity simulation of the telemanipulation setup is then needed, especially workspace scaling
between the master and the slave device, the whole body controller, and the joint limits should be modelled
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Figure 36: Difference between the grid and used sampled pose in radians. Gripper added for illustrative purposes.

accurately. The simulation setup could be an advantage if the real setup has limited availability.
• Master simulation

Instead of editing the ee goal as is being send by the master, as has been done for this project, the ee goals
can also be generated. To successfully do this, kinematics and self-collisions of the master device should be
known accurately, as well as the resolution.
• Master actuation

In the setup used for this project, the master device was capable of exerting force in translational directions.
To make sure that all positions are sampled adequately these forces could be controlled to steer the master
device to certain positions, maybe even corresponding to the eventual discretisation grid. The operator
than still needs to operate the master in such a way that the relevant orientations are sufficiently sampled.

Besides the sampling, the ITCM method could benefit from taking the manipulability of the master devices
configuration into account. Due to the fact that the Geomagic Touch Omni has six degrees of freedom and
the space in which it operates has six degrees of freedom as well, the master device is non redundant. This is
because it makes it easier to see what the operator is doing, what commands it gives. This ensures that for a
given master pose, the masters configuration and thus the manipulability is set.

The development of this robot placement method has been influenced by the robot Marco. For example, if
the lift is not generalisable as a prismatic but as a revolute joint, the possible base orientations would only
coincide in the same position for a specific lift height. Because the transform between the shoulder and
the base_footprint frame would than have a variable distance. This distance is taken into account while
discretising the recorded poses and is thus done off-line, on-line adaptation to varying distance in the horizontal
plane could thus not be taken into account. Continuing on the lift, the footprint of Marco’s base is rather
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(a) Linear path of 60 cm with 4 gripper positions.. (b) Curved path with a radius of 20 cm with 3 gripper
positions.

(c) Curved path with a radius of 40 cm with 4 gripper
positions.

(d) Curved path with a radius of 40 cm with 4 gripper
positions.

1.0

0.75

0.5

0.25

0.0

Figure 37: The linear path has the same gripper orientation for each gripper position, and the curved path has different
gripper orientations per position.

small. A larger footprint could make it harder to use a single (or two) ITCMs to describe the workspace for all
lift configurations. Also for the visibility score, it is assumed that the camera is always at the same position,
otherwise the displacements due to varying yaw and pitch angles would be taken into account. For Marco these
displacements are in the order of centimetres and can thus be neglected for the visibility score. For other robots
this might not be the case.

Although the ITCM is based on recorded configurations, the eventual map contains poses. Because mobile
manipulators generally have more degrees of freedom in their arms than six, the arm can reach most poses in
multiple ways. It is thus not necessarily so that the recorded configuration is actually the configuration that will
be used to do the task after the robot has been positioned. Also the grippers are placed within the restrictions
due to the merge method of the maps, such that they do not necessarily describe the task at the centimetre
precision or with not precisely the correct orientations. And what is the manipulability and visibility score of
the path in between a pick and a place position? On the other hand, the execution of the task is not set in stone.
The operator is free to do pick the object with an top-grasp when it is positioned for a side grasp. Likewise, it
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is hard to imagine the workspace of a robot where two good reachable positions are not reachable from each
other. Thus a good reachable path is likely to exist between both positions.

In Figure 34 the ITCM can be seen for one gripper. It is notable that the map is larger on the left side than on
the right. This might be due to the manual sampling of the workspace. Although a sampling time of around 1 h
is quite extensive for an area of 1.2 m long and 40 cm wide. A more logical reason seems to be that the arm is
on the left side of the robot’s centre. This can be seen in Figure 47 (Appendix E, p. 43).

Although the task generation is restricted by the map discretisation, a wide range of tasks can be generated, as
has been shown in this appendix.

In practice, the robot will most likely not be positioned at the precise pose as selected by the TS-ITCM. This
maybe due to errors in sensors that detect the start pose of the task or sensors that localise and thus verify the
robot’s pose or both. Precise positioning might not be necessary, the highest scoring pose of the TS-ITCM in
the paper is not far away from the best pose of an expert operator. Moreover, the experiment was conducted
with real hardware thus the sensor errors discussed above were also present. This did not, however, cause
the performance to collapse nor the operator effort to increase. Abolghasemi et al. [7] developed a method
to estimate a reachability score with Gaussians. This would add another layer between the original and map
data, which increases the chance of base positions being labelled as possible while they are not. On the other
hand base poses which might result in a do-able tasks probably are not the best base positions. Estimating the
TS-ITCM with Gaussians could increase task generation flexibility because the discretisation grid would not be
so important.

Strengths of the ITCM methods are that it is based on data of the real world setup which wildly increases the
change of successful task execution and that the base poses are scored based on manipulability and visibility.
Additionally, the ITCM is usable to generate task specific maps for a wide range of tasks.
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D. Action Related Place (ARPlace)
Stulp et al. [1] proposed the Action-Related Place (ARPlace) method, in which a generalised success model
(GSM) is learned for a task. In [2] they expanded the ARPlace method to pick advantageous objects if multiple
are available or multiple objects from the same place if they are sufficiently close. And they showed how the
ARPlace method could be extended with various cost functions, for example distance to robot (when one of
multiple equal objects must be picked). Experience based learning is used to differentiate between reachable and
successful positions. Furthermore, instead of selecting a best position, the output of ARPlace is a distribution
representing the probability that a grasp from that position will be successful. This distribution is based on the
learned model as well as the state estimation of the robot and target object. Because the position is represented
as a probability distribution, a robot can navigate with ‘least commitment’. This enables a robot to cope with
changing task parameters and changing parameter knowledge of a robot.

ARPlace uses the reachability map as presented by Zacharias et al. [3] to distinguish between theoretically
reachable and unreachable positions. Thereafter it evaluates the success of theoretically reachable positions
through experience based learning. This learning is first done off-line in simulation and continues on-line in the
real world, the results are stored with respect to Task Relevant Parameters (TRP).

In this Appendix the implementation is briefly elaborated and the it’s shortcomings discussed.

1. Generate test configurations

Similar to the process in Appendix B, a file is generated with poses to be reached. In this case however the
robot would be ‘moved’ and the end effector (ee) goal would stay stationary. This is however compensated for
in the generation of ee goals for the inverse kinematics program.

The test results of the inverse kinematics (IK) are written to a file that can then be interpreted by the matlab

program. The matlab script takes as input the variation of the base position in x and y coordinates with respect
to the origin and the variation of the ee goal pose. The ee pose can be varied in distance from the table edge
and orientation around the goal object, see Figure 38. Rotation of the ee has not been investigated further. For
simplicity only a top grasp has been investigated and due to the Degrees of Freedom (DOF) in the wrist of the
tiago arm, no relevant results were expected. For a side grasp, the rotation does become relevant however. In
this implementation of the ARPlace method, not the goal object but the goal pose of the ee is varied. Because I
did not want to move the robot or re-initialize the simulation with different robot start positions, one single
start position is used. The robot is stationed at ‘world’ origin. To evaluate the ee poses from the varying base
positions, the pose needs to be transformed per varying base position to account for the non varying base.

Figure 38: Feature space of the robot and the goal object. [2]

2. Inverse kinematics

MoveIt is used to evaluate the theoretic reachability of ee locations from a slew of base positions. In matlab a
selection of base positions is generated for a selection of ee goals. The distance and rotation to these goals from
the base position are written to a .txt file. This file is read by a ROS node I wrote which uses the setFromIK
function from MoveIt! to evaluate if it is reachable. The result is written to a txt file which is interpreted by a
matlab program.
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Figure 39: Base positions relative to world origin (0,0), the ee goal is at x = 0.30 m. The base position from which the ee

goal is reachable are marked green, the boundary of the classification SVM is shown and the landmarks chosen from that
boundary.

The IK check can be extended by a simulation of the situation. Then an extra classifier SVM could be added to
destinghuish between robot positions from which simulation resulted in success and positions from which the
inverse kinematic check resulted in success. Another option is to use the manipulability measure [4], then a
regression SVM should be implemented to represent that information. Due to time constraints these options
were not implemented.

3. From reachability data to ARPlace

1) Support Vector Machine

Per ee goal the difference between robot poses from where it can reach the ee and robot poses from which it
cannot reach the ee goal can be described by an classification Support Vector Machine.

The data file from the MoveIt node is loaded in to matlab and per ee goal a classifier SVM is learned. The matlab
function fitcsvm has been used with an infinite BoxConstraint and KernelScale of 1. The BoxConstraint
represents the inverse of misclassified admissibility, I have chosen the largest possible value because I want to
avoid that base positions are included from which the ee goal could not have been reached. The KernelScale
represents σ. The data in the datafile (except the labels) would be divided by σ, but I have chosen σ = 1.

In addition to the results of the MoveIt test, an outer layer of positions with failed IK attempts is added to
ensure closed SVM’s.

Because we are going to use the SVM to generate a Point Distribution Model as opposed to using the SVM as a
classifier, all the data in the data-file is used to train the SVM. The resulting boundaries can be seen in 39 as the
black lines. The support vectors are denoted by the black rounds just a little bit bigger then the green and red
points.

2) Point Distribution Model

It can be seen in figure 39 that the boundaries shape is dependent on the distance of the ee goal to the tables
edge. In order to predict the shape and position of a boundary based on a new ee goal, a shape description is
needed. The shape will be described by landmarks on the boundary. Because the position of the boundary is
relevant is well, the boundaries will not be aligned before landmark selection.

3) Landmark selection

To select the landmarks these options have been identified:

• Manual selection by a person
• Automated selection based on properties of the shape
• Automated equidistant selection.
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• Automated selection based on minimization of a Point Distribution Model related cost function

In the image recognition domain, usually the landmarks are selected by people. To prevent variance due to
imprecise selection by humans, and to enable fast and low effort processing of the boundaries produced by the
SVM, I wanted automated selection. In the paper of [2] they used an optimization algorithm to minimize the
error between original and reconstructed contours and to maximize the amount of energy in the least amount
of degrees of freedom of the Point Distribution Model. One landmark at a time, the position is varied and
evaluated. They noted however that their algorithm is “the most computationally intensive step in the off-line
learning phase”.

Because neither the manual selection, nor the automated cost minimization seemed appealing, and because the
boundaries I got had a distinct ‘bean-like’ shape, I wrote some code to select landmarks based on the shape.
Points with the smallest x and y and points with the largest x and y were of interest because these are easily
selected with the help of a computer, see Figure 40a. Around the same height of the xmin landmark, there can
be seen a local xmin landmark, above and below a global and local xmax landmark can be seen.

Between these 6 points, 14 additional points are split between the segments of the boundary defined by the first
6 points. On those segments, the points are assigned equidistantly. Therefore the assumption is made that the
shape of the SVM’s boundary is constant enough to enable this method for landmark selection.

The selection of landmarks enables processing of the raw data by the point distribution model approach. The
resulting landmark distribution for all the boundaries currently analysed can be checked with the figure shown
in Figure 40b.

(a) Key landmarks used for landmark selection
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(b) The lines are the landmarks of all the boundaries and
the ∗ is the position of the same landmark number over all
boundaries.

Figure 40: Selection of landmarks and resulting landmarks for a number of different boundaries.

4) Calculating the Point Distribution Model

For each sample M in the task space (varying object location) a column of length equal to the amount of
landmarks (k) multiplied by the amount of dimensions the landmarks are defined in (in this case two), is added
to the matrix H.

H =



x1
1 x2

1 . . . xM
1

y1
1 y2

1 . . . yM
1

x1
2 x2

2 . . . xM
2

y1
2 y2

2 . . . yM
2

...
...

...
x1

k x2
k . . . xM

k
y1

k y2
k . . . yM

k



37



D ACTION RELATED PLACE (ARPLACE)

-0.6 -0.4 -0.2 0

x [m]

-1.5

-1

-0.5

0

0.5

1

1.5

y
 [

m
]

1
st

-0.4 -0.2 0

x [m]

-1

-0.5

0

0.5

1

2
nd

-0.4 -0.2 0

x [m]

-1

-0.5

0

0.5

1

3
rd

-0.4 -0.2 0

x [m]

-1

-0.5

0

0.5

1

4
th

Figure 41: The first four deformation modes (thin black lines) and the mean boundary (H) as a thick black line.

The mean of coordinates 1 till M is called H̄ and represents the average shape and location of the success
boundary. The point distribution model is defined as hnew = H̄ + P bnew. This means that we can generate new
boundaries based on the mean boundary (H̄), the deformation of the boundary per deformation mode (P) and
the objects location (bnew).

The P matrix is composed of the eigen vectors corresponding of the covariance matrix of H. To reduce
computational cost, the matrix P maybe composed only of the eigen vectors corresponding to the largest
eigenvalues of the covariance matrix. The sum of these largest eigenvalues should be more then the sum of all
the other eigen values.

Getting a feel for what the eigenvectors represent, we can isolate the effect of each eigenvector by forcing the
rest in the bnew vector to zero. Then we can multiply that eigenvector with it’s positive and negative eigen value.
For the first deformation mode that would be done like this:

h1st deformation mode = H̄ + P


0
...
√

σ1


How bnew is generated based on a goal object position, is shown in the generalized success model section.

5) Generalized Success Model

To generalize the knowledge in the PDM, we need to relate the change of the ee goal to the change of the
boundary relative to the mean boundary. The change of the boundary can be expressed by calculating for
each ee goal position, the linear regression between the difference between the boundary (Hm) for the ee goal
position m and the mean boundary H̄ and the matrix of eigen vectors P. We can calculate B as follows, and B
will be a matrix with as much rows as landmarks, multiplied by the amount of properties per landmark (for
20 landmarks and x and y as properties, this would be 20× 2 = 40) and B will have as much columns as M
boundaries.

B =
[

B1 = PT (H1 − H̄) B2 = PT (H2 − H̄) . . . BM = PT (HM − H̄)
]

If we introduce a vector T in which the ee goal positions are stored: T = [ 0 0.05 0.10 ... 0.45 ]T .

The W matrix is calculated as the linear relation between the ee goal poses (T) and the boundary difference
matrix (B). Thus the W matrix describes the amount of change in the boundary as result of a change in ee goal
pose.

W =
([

1 T
])
\BT

With the W matrix, we can construct new deformation vectors (bnew) based on new ee goal positions. Because
W is the linear relation between T and B, rewriting the previous equation to insert a new ee goal position, gives
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Figure 42: Mean, original and reconstructed boundaries for a number of object distances. The green areas denotes an
incorrect exclusion by the reconstructed boundary, the red denotes an incorrect inclusion by the reconstructed boundary.

us the new deformation vector bnew. To check the power in each deformation mode the plot in Figure 41 is
made. It can be seen that the most power is present in the first deformation mode. This determines the amount
of eigenvectors there should be in the P matrix.

bnew =
([

1 tnew

]
W
)T

In Figure 42 a reconstruction error can be seen between the original boundaries and reconstructed boundaries
(the mean of all the original boundaries is shown for context). For this reconstruction, the first two deformation
modes of the PDM are used. It can be seen in figure 41 that the first two would represent enough of the
deformation energy to reconstruct the shape accurately. The reconstruction errors seen in Figure 42 vary
between a half centimeter and a couple of centimeters in each boundary.

6) Merge ARPlace

How the probabilistic map should be merged, is depended on if the maps concern the same object or not. If the
map concerns the same object from multiple directions, a union of the maps should be made. To make a union
of the map for each pixel in the map, the largest value is selected. Because the change of a successful grasp is
not increased if the robot is able to grasp it in multiple orientations.

If it concerns two (or more) objects from the same direction, the probability of two successful grasps from the
same position should be evaluated. Therefore, an element-wise multiplication of the two (or more) maps is
done (this is easy because they share the origin of the table as centre).

4. Generate ARPlace on-line

To evaluate the ARPlace method in simulation, ground truth data is used from the /gazebo/model_states topic.
The node pub_map_merged creates two goalobject_sub objects, which subscribe and save the ModelStates of
objects whose first part of their name correspond to ‘table’ (the surface) or ’coke’ (the object). See Figure 43.

For each ‘coke’ object found in the simulation an arplace_obj is generated in which an ARPlace distribution is
stored. If the probability of reaching all the ‘coke’ objects is larger then a value hard-coded in pub_map_merged,
that distribution is published, if not the distribution corresponding to the first ‘coke’ object is published. How
these maps are combined is explained in the previous section (6), p. 39).

To refrain the robot from navigating into the table, I wanted to subtract those disadvantageous positions from
the ARPlace distribution using a inflated obstacle costmap. To explore this I overlayed the ARPlace distribution
over the costmap, the result is shown in Figure 44. Considering we want to use the inflation layer to subtract
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from the ARPlace distribution, would the yellow square (denoted by the black arrow) be the best position or
should the value of the inflation layer be subtracted first? This question has been circumvented by excluding a
fixed distance from the tables edges in the ARPlace distribution.

Figure 43: Overview of the ARPlace method’s on-line part. The black parts are essential, the gray parts are for the polygon
visualisation in rviz.

Figure 44: ARPlace distribution overlayed on the inflated obstacle costmap. Black arrow added for illustrative purposes.

The height (z) and the distance to the edge (x) are varied in Figure 45. For two power-content percentages a
Generalized Success Model is made, for 90 % (3 DOF in GSM) and 99 % (7 DOF in GSM). For reconstruction a
polynomial fitting tool has been used instead of the linear method for the 1DOF case as has been discussed in
the rest of the report. A second degree polynomial has been used, following the method as used by [2].

Figure 45: Height and distance to the edge is varied.
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5. Evaluation

The ARPlace method of [2] has been implemented because it matched the most requirements from the literature
study. The goal of the literature study was to find an navigational goal selection method that could best be used
to support or replace positioning the robot preceding a telemanipulation task.

As a result of hands-on experience, the ARPlace method compliance to these requirements can be better
assessed. Although imprecise goal object locations could be handled by the other methods reviewed in the
literature study as well by doing a Monte-Carlo simulation, the ARPlace method has an advantage due to the
computationally-light matrix multiplication needed to find boundaries wherein a successful grasp is possible.
Evaluating which points are within how many boundaries is, however, computationally more expensive.
ARPlace keeps it’s advantage here.

The projected advantage of learning the limitations of the control algorithms of the robot by simulations is not
applicable to the telemanipulation case. Although ARPlace could learn from experience of grasps done with
telemanipulation to incorporate the new experiences the off-line part would have to be run again.

When the task description was extended from one to two parameters (xtable edge and γcup) in order to enable
side grasps, a large part of the generated boundaries were not usable because there were multiple boundaries
instead of one. This was not compatible with the Point-Distribution-Model, see Figure 45 (p. 40).

Stulp et al.’s ARPlace method uses autonomous grasping in simulation to find out from which positions grasps
are possible, however from these positions human telemanipulation strategies are not necessarily possible as
well. To account for these human strategies, splines can be added to the path in a similar way as extra objects
have been added.
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E. Telemanipulation system
The telemanipulation setup consisted of laptop with a Geomagic Touch [1] as the master and a protype Tiago
robot (Marco) as the slave. With both controllers connected over WiFi. The operator gives position and
orientation commands via the master and receives forces (no torque) as haptic feedback. The operator also
received visual feedback from the ‘cockpit’ software (see Figure 48) from the camera in the head and the camera
on the wrist of the robot. As the task was carried out behind the operator (see Figure 46), he or she could hear
when the cup touched the table.

The slave, Marco, is shown in Figure 47. The slave receives position and orientation goals and tries to reach
them with its arm_7_link frame. Commands are interpreted with respect to the base_footprint frame. If the
goal is out of the slave’s workspace, the controller mostly tries to obey the position command opposed to the
rotational command.

The master side is depicted in Figure 48 consists of a laptop running Ubuntu 14.04. In Figure 49 it is shown
how the commands from the omni are changed in between trials of the participant. Just as during the recording
of the ITCM, see Appendix C, the data (or messages) from the Geomagic Touch are passed through a new node.
But instead of always changing the messages, the messages are only edited after the pick-and-place task has
been completed. This is detected by keeping track of the condition of the experiment, and thus the location
of the task. The condition is fed in the software by the researcher. If the gripper_grasp_link has been near
the place location, but the master is near the start position, the the inserted node takes over control from the
geomagic touch. It sends commands to go to the original pose and to open the gripper. In this way the position
of the arm’s end effector and the state of gripper is the same before each start of the experiment.

Figure 46: Setup of experiment with an overlay of the different components of the telemanipulation setup.

References
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Figure 47: Robot model of Marco with relevant frames (base_footprint, torso_lift_link, xtion_rgb_optical_frame,
arm_1_link, arm_7_link, gripper_grasp_link). The axes are labelled with colours in the RGB, xyz standard. Thus Red is
the x axis, Green the y and Blue the z.

Figure 48: Overview of cockpit setup with Thrustmaster joystick, a generic laptop running ubuntu 14.04 with the cockpit
software developed by Heemskerk Innovative Technologies and Geomagic Touch Omni.

Figure 49: ROS nodes (elipses) and topics (rectangles) relevant to the experiment. Similar to Figure 31 (p. 27), the orange
nodes are added to take over control from the participant after and reset the configuration of the arm.
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F. Results of the experiment
The same control strategy was used for all conditions People do the same, it only takes longer.

1. Data acquisition

Data was recorded with the rosbag [1] system. In the ROS framework, programs (nodes) communicate via
topics. A node can publish on a topic and another can subscribe to it. With the rosbag program all messages on
the relevant topics are recorded, some topics are recorded would anything have gone wrong it could be used to
deduce what the problem is.

Data of the master and slave device was recorded at 1 kHz. It was filtered with a second order butterworth filter
with a cut-off frequency of 50 Hz in both the backwards and forwards direction (to prevent phase shift and
doubling the filter’s order). A cut-off frequency of 50 Hz was chosen because it is double the highest frequency
humans could produce (25 Hz [2]). And therefore nothing of the original signal would be filtered out, the result
can be seen in Figure 50. After it was filtered, the data was interpolated linearly to 50 Hz.

All other data was not at such high frequencies that down-sampling was necessary.
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(b) Zoomed in part of the trial

Figure 50: The x position of one participants trial is shown. On the left the entire trial and on the right a zoomed in part of
the trial. The top panels show the original data, the middle panels the filtered and interpolated data at 100 Hz and in the
bottom panels the data is once again filtered and interpolated to 50 Hz.

2. Raw data

In Figure 51 (p. 45) the travelled path of the slave can be seen in x y coordinates. It has been chosen to depict te
slave’s path instead of the masters, because it can be linked to the task and is therefore easier to interpret. From
the figure it is apparent that the table is not as easy to reach from the base pose belonging to the ITCM-low
condition as from either the base pose of the ITCM or Expert condition. The distance in x y is farther for the
ITCM-low than both the Expert and ITCM conditions. When comparing the ITCM with the Expert condition, it
is conspicuous that the gripper starts almost above the table in between the pick and place markers. Whereas
the gripper of the base position of the Expert condition starts in front the place marker around 10 cm away from
the table.

The distance to the place marker over time shows also a larger distance to be covered from the base pose
belonging to the ITCM-low condition (Figure 52 (p. 46)). Because the task is in six dimensions (translational
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Figure 51: Position of the gripper_grasp_link frame relative to the base_footprint for all repetitions part of the
experiment in the three different conditions. Each shade of grey are seven repetitions of one participant. A top view of the
Marco robot and the task in the different positions is added for context. The start of each repetition is denoted with a ‘*’.

and rotational) and the participants were mostly inexperienced, participants needed to learn how to do the
task. The mean of all participants did not show a clear learning effect during the experiment as can be seen
in Figure 53 (p. 46). Although some effect still can be seen (-3 s on average per repetition) for the ITCM-low
condition, this is not bad for the experiment. Because it is mostly relevant how good somebody can do the task
instantly from the position selected by a certain method and not how good people can do the task if they are
really trained to do it from a certain position. The mean is not plotted for the training because the amount of
samples is not equal per trial/repetition. The learning curve is fitted as a power law function (y = a · xb + c),
with the following result:

Condition a b c

Familiarisation 4779.81 −0.00291 −4694.52
Expert 43.80 −0.0824 −21.5 · 10−6

ITCM-high 37.79 −2.4 · 10−11 −0.0437
ITCM-low 7323.21 −0.000978 −7249.85

These lines are also shown in Figure 53 (p. 46).

45



F RESULTS OF THE EXPERIMENT

Figure 52: The distance between the gripper_grasp_link and the place marker of the task. Note the larger initial distance
for the ITCM-low condition.

Figure 53: The thick black line is the mean tct per repetition. The repetitions of one participant are connected with a thin
line a shade of grey. The colours of the dots correspond with the condition.

3. Definition and computation of metrics

The self reported difficulty score is not really a metric, it is just a away of asking people the same question and
comparing the answers.

The weighted workload (wwl), is defined by [3] as the nasa-tlx. Scores are rated (r) on a template with 20
options for each of the six dimensions (m). The weight per dimension (w(m)) is used to multiply the rated value
and the total sum is divided by 15 to result in a value between zero and hundred. The score is calculated as

wwl =

6
∑

m=1
r(m) ∗ 5 ∗ w(m)

15
(27)

The cumulative steering angle (csa)is defined in [4] as the total amount of rotation that the operator exerted on
the master device. It is computed by summing all differences in orientation in consecutive time steps (s).

rpy = [roll pitch yaw]T (28)

csa =
s

∑
k=2

((rollk − rollk−1) + (pitchk − pitchk−1) + (yawk − yawk−1)) (29)

The cumulative steering translation (cst) is defined as the total amount of translational movement that has
been made by the input-point of the master device. It is computed by summing all differences in position in
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consecutive time steps (s).

cst =
s

∑
k=2

√
(xk − xk−1)

2 + (yk − yk−1)
2 + (zk − zk−1)

2 (30)

The spectral arc length (sal) is defined by Balasubramanian et al. [5] as the length of the curve that describes the
(amplitude and frequency normalized) Fourier magnitude spectrum up to a certain frequency. Because sal is a
metric for the smoothness of a speed profile, the direction of the speed is not used, only the absolute speed over
time. The computation is described in [5].

4. Results metrics

In addition to the results presented in the paper, in this section graphs of metrics are shown which did not
cary the main story line presented in the paper. Also, the steering effort by task time and the amount of
gripper actions per repetition are plotted. Per participant the mean of seven succesful repetitions is used for the
statistical analysis. The distribution of these means does not suggest that they are not normally distributed.
This has been tested with a Kolmogorov-Smirnov test see Table 5.

The top two graphs of Figure 54 show a significant increase in steering effort, as was reported in the paper. As
was also suggested in the paper, the amount of increase in travelled path is in the same ballpark as the increase
in task completion time (tct). Calculating the amount of rotation and translation that has been carried out in the
total task and divide it by the time of that instance of the task, gives us the average rotational and translational
velocity as depicted in the two bottom graphs of Figure 54. In Table 4 the mean and standard deviation of the
means per participant are shown and the result of the one way repeated measures ANOVA on those means per
participant. Together with the spectral arc length, see Figure 55, this suggests that participants did not alter
their steering effort per time, but merely took longer in the ITCM-low condition and therefore tasks from the
base pose belonging to that condition took more effort to complete.

The amount of gripper actions per repetition (Figure 58) does not show something interesting in the difference
between conditions.

Participants were instructed to correct the position of the cup if it was positioned not entirely within the circle
of the place marker. To investigate whether these corrections had influence on the difference found between
distributions of the condition’s tct, the task was segmented. The first segment is approach, this is from coupling
the master and slave until the gripper is first closed (the gripper starts open). The second segment is transfer,
this is from the end of approach until the gripper is first opened. The last segment is retreat, and starts at the
end of transfer and ends when the gripper is more than 30 cm away from the place task.

The approach segment is thus entirely correction free. In the transfer segment, there could be corrections in
grasping the cup and in the retreat segment there could be corrections in placing the cup. Similar to the tct, the
time for the approach and transfer is significantly longer in the ITCM-low condition compared to the ITCM
condition and no significant difference has been found between the ITCM and Expert condition. It is notable
that for the transfer and retreat segment, there are a couple of very fast and a couple of very slow repetitions.
This is reflected in the larger confidence interval of time for each segment in the ITCM-low condition than
the ITCM and Expert condition. The performance in the ITCM-low condition thus has a lot more variability
per participant than the ITCM and Expert conditions. It has been tested that these mean times are normally
distributed with a Kolmogorov-Smirnov test see Table 6.

In the retreat segment it can be seen that there is a large part of the repetitions between the 0 and 10 s. That the
other repetitions took longer is probably because corrections needed to be done. In those corrections precise
movement is a lot more important than in the normal retreat part. In the normal retreat part only when te
gripper is near the cup, the movement can still influence the outcome. This thus suggests that the tct difference
in ITCM and ITCM-low condition is due to the precision of the task. In Table 7 the mean and standard deviation
of the time per segement is given per condition, the results of the anova are shown and the post hoc test.
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Figure 54: Traveled path effort metrics and the same metric devided by the tct of its repetition. The large dot with the
whiskers is the mean of the participants means with the 95 % confidence interval. The coloured dots represent the mean per
participant and the grey lines link means of one participant and each grey dot represents a repetition. The horizontal bars
denote a post-hoc tests, where ‘n.s.’ stands for not significant, ‘*’ for p < 0.05, ‘**’ for p < 0.01 and ‘***’ for p < 0.001

Table 4: Descriptive and inferential statistics effort per time

Metric
Descriptive

ANOVA
Post-hoc

Expert ITCM-high ITCM-low ITCM-high – ITCM-low Expert – ITCM-high

csa
tct 0.20(0.04) 0.23(0.08) 0.24(0.06) [ rad

s ] F(15) = 0.6684, p = .527 p = .39 r = .09 p = .22 r = .24
cst
tct 5.59(1.40) 6.33(1.38) 5.10(1.52) [ m

s ] F(15) = 1.117, p = .353 p = .91 r = .42 p = .19 r = .28

Figure 55: Spectral arc length
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Figure 56: Weighted workload per participant for each condition, as resulted from the nasa-tlx.

Figure 57: Task completion time divided over segments. A one tailed t-test showed difference between ITCM and ITCM-low
condition for the approach and retreat segment. In the retreat segment such a difference is not significant. How to interpret
the graph see Figure 54.

Figure 58: Total gripper actions per repetition for each condition.
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Table 5: Probability that the means per participant are normally distributed for all metrics and conditions, as tested with
the Kolmogorov-Smirnovtest.

Metric Expert ITCM-high ITCM-low

tct .32 .51 .47

wwl .59 .88 .90

csa .48 .99 .41

cst .79 .99 .44

sal .52 .69 .87

Table 6: Probability that the mean time per participant are normally distributed per segment as tested with the Kolmogorov-
Smirnovtest.

Metric Expert ITCM-high ITCM-low

tapproach .61 .96 .94

ttransfer .91 .60 .24

tretreat .30 .27 .40
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Table 7: Descriptive and inferential statistics tct segment. Between ITCM and ITCM-low it is tested whether ITCM-low has
significantly higher tct, between ITCM and Expert it is tested whether ITCM is higher than Expert.

Metric
Descriptive

ANOVA
Post-hoc

Expert ITCM-high ITCM-low ITCM-high – ITCM-low Expert – ITCM-high

tapproach 19.31(7.01) 18.64(4.88) 32.83(11.68) [s] F(15) = 5.509, p < .05 p < .01 r = .66 p = .57 r = .061
ttransfer 11.43(3.01) 9.31(1.45) 16.85 (5.12) [s] F(15) = 7.271, p < .01 p < .01 r = .74 p = .92 r = .44
tretreat 8.93(3.74) 9.79(2.57) 14.97 (9.83) [s] F(15) = 1.64, p = .227 p = .12 r = .37 p = .33 r = .14
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G. Pilot study
Prior to the experiment, a pilot study was conducted to verify if the procedure was clear, generated usable data
and that participants would be able to learn how to handle the telemanipulation setup. The goals of this pilot
study are thus to get an indication of the amount of participants needed and to find how the experiment can be
improved.

1. Hypotheses

The hypotheses of the pilot study are the same as for the final experiment.

1. Telemanipulation performance and effort will be worse from the ITCM-low position than the ITCM-high
position.

2. Telemanipulation performance and effort will be better or equal from the ITCM-high position than the
Expert position.

2. Conditions

• Expert
• ITCM-high
• ITCM-low

3. Metrics

The performance of a robot in the care-home environment can be evaluated by the time the operator takes to
do the tasks with the robot and the amount of failures needed to reach seven successful trials for a condition.
To measure the effort of the operator both the translational and rotational steering input can be used. Besides
these metrics, the personal experience of the operator’s workload has been measured with a nasa-tlx (task
load index) questionnaire and the participants were asked to rate the difficulty of the task without a scale.

• Performance
abrev. unit

Number of failed attempts num f ail –
Task completion time tct s

• Effort
abrev. unit

Cumulative steering angle csa [rad]
Cumulative steering translation cst [mm]
Weighted workload wwl [-]
Difficulty score [-]

4. Experimental protocol

Two left handed participants and myself did the experiment. Data of the first participant was not saved correctly,
so my data was combined with the nasa-tlx and difficulty scores of the first participant. Moreover for the
second participant, the robot was positioned incorrectly with respect to the table. This caused the data gathered
through the pilot study to be not usable for the study.

The participants were asked to do the task as fast as possible while ensuring that: the object ends up within the
goal area and no unnecessary contacts are made. If the cup is placed outside of the area of the post-it, the cup
should be repositioned. The task fails if:

• a time limit is exceeded of 2 minutes.
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(a) Marco with the positions of the table taped to the floor (b) Cockpit with left handed participant

Figure 59: Cockpit and setup of the pilot experiment

Table 8: pilot results

Metric Expert ITCM-high ITCM-low ANOVA

tct [s] 26.91 (15.34) 21.28 (11.52) 46.93 (21.99) F(3) = 1.28, p = .40
cst [mm] 162.48 (27.41) 178.82 (41.80) 284.13 (42.53) F(3) = 6.07, p = .088
csa [rad] 6.24 (2.05) 5.82 (2.52) 15.93 (4.29) F(3) = 6.78, p = .077
sal [-] -16.28 (5.51) -13.22 (4.48) -20.62 (4.28) F(3) = 1.21, p = .41
wwl [-] 42.17 (4.95) 42.17 (26.63) 66.33 (6.60) F(3) = 1.50, p = .35

• the cup becomes unreachable from the robot’s current base pose (because it is swept of the table or dropped)

The participant first does a familiarization trial session consisting of:

• (1 min) free air movement (get a feel for the response speed)
• (2 min) workspace exploration (take on different end-effector poses)
• practice telemanipulation strategies

These were told to the participants. (use shadows and approach diagonally for depth information, check if
the cup is between the fingers by occlusion or movement)
• (7 successful executions) practice the task

Thereafter he/she fills in the nasa-tlx questionnaire. Then the participant will do in random order all conditions
the:

• (7 executions) training phase
• (7 successful executions) experiment

And for each condition the nasa-tlx and the difficulty score were administered.

5. Results

Figure 60 (p. 53), shows the main results of the two participants. Figures of additional metrics can be seen in
the figures in Figure 61 (p. 54).

No significant effects are seen between the means of all participants per conditions for all metrics. This has
been tested per metric with a one-way repeated measures ANOVA, the results are shown in Table 8 (p. 52).

Data from this pilot study indicates that a sample size of three participants would result in significant differences
between the ITCM-high and ITCM-low condition results.
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(a) Task completion time (b) Difficulty score (c) Fails

Figure 60: Main results of the pilot experiment. The Large dot with the whiskers is the mean of the participants means with
the 95 % confidence interval. The coloured dots represent the means per participant and the grey lines link means of one
participant. Each grey dot represents the result of a repetition, sorted per condition.

6. Consequences for final experiment

Changes to the procedure:

• Less participants
Originally it was conceived to have twelve participants (more than ten and dividable by the amount of
permutations of three conditions). But because the experiment takes a long time per participant (2 - 3
hours), this is not feasible.
• Task instruction

The task instruction will be limited to constrain only the final position of the cup, because spurious contacts
are not measured and do not lead to longer execution times.
• Fails not as metric

During the pilot it became apparent that whether a trial resulted in a fail was often coincidental. Most of
the times the participant would judge the tables edge to be closer, releasing the cup just before the tables
edge. Or the cup was pushed outside the arms reach while attempting to grasp it. Moreover due to the
incremental nature of the metric, it is chosen to leave it out of the final experiment.
• Time limit

No time limit will be used to cut off longer trials. This would otherwise bias the tct results.
• Save guard data

Data was lost while moving from cockpit laptop to usb-drive. To circumvent this, copy to usb-drive and
copy to another usb-drive as well.
• Force-feedback toggle

Toggling the forcefeedback by the participant was confusing for participant (to many buttons), not necessary
and caused the researcher to easily lose track of the force-feedback state.

Changes to the familiarisation and instruction:

• Task strategy
It will be mandatory to use the prescribed task strategy. This is to reduce the risk of participants adopting
a new strategy during the experiment increasing the within subject variance not caused by the conditions.
• Giving an example

The researcher will show how the task strategy is employed for the next condition by doing the task himself
and reciting the different task strategy stages.
• Removing free air movement

During familiarisation stage, the participant will not do a free-air movement because it was not useful for
the participant to get familiar with the telemanipulation setup.

Changes to the setup:

• Overhead lighting
This will enable the participants to better see the distance between the gripper and the table by using
shadows on the table.
• Rotate 180◦
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Because the researcher is than able to sit near the participant and reset the position of the cup.
• Filter force feedback

The force feedback in the direction the gripper is pointing (y axes gripper, x axis sensor) had increased
noise during the pilot experiment. To prevent this during the experiment, the cut-off frequency of the filter
has been lowered from 100 Hz to 10 Hz.

7. Conclusions

The pilot experiment brought to light a lot of little improvements that can be made to the final experiment. It
has also come to light that the experiment takes a lot of time per participant. To keep the time needed to do
experiments manageable, not a lot of participants can be used. Fortunately the amount of participants needed
to get a statistical significant difference, with a large effect, between the ITCM-high and ITCM-low condition
would be around four. To get all possible order permutations of the conditions, the amount of participant needs
to be six. Thus it is decided to use six participants in the final experiment.

(a) Spectral arc length (b) Cumulative steering angles

(c) Cumulative steering translations (d) nasa-tlx

Figure 61: Additional results. See Figure 60 (p. 53) for general representation of metrics.
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H. Remarks participants

The following remarks are the results from the open questions “What was hard?”, “What was holding you back
from being better at the task” and spontaneous utterances of the participants. Remarks of which at least one
similar remarks have been said are aggregated in the Table 9.

Table 9: Overview of participants’ responses on the question what made the task hard. Only factors that have been
mentioned more than once have been included in this table.

Factors that made the task hard Expert ITCM ITCM-low

Transform between camera view and telemanipulation input 0 0 4
Cup easily pushed outside workspace 2 0 0
Easier 0 2 0
Grasping 1 0 1
Limited depth information (arm in front of shadow) 1 0 1
Retreat 1 0 1

1. Participant 1

1) Expert positioned

• Retreat was hard, grasping as well because it was far away from the robot.
• Thumb was acing (it was the last condition)

2) ITCM-high positioned

• Transferring the cup along the table was hard.
• A lot easier than ITCM-low.

3) ITCM-low positioned

• Retreat is the hardest part, it is really hard to grasp the object.
• It seems easy, but it is hard to tell why it is difficult

2. Participant 2

1) General remarks

• The participant found it hard to go straight with the gripper.
• Grasping the object is hard, the cup is more easily pushed than grasped.
• It is hard to judge depth of with the 2D screen.

2) Expert positioned

• Because the goal is far away, the arm needs to be stretched to reach the goal. This causes the shadow of the
gripper on the table to be behind the arm. Further limiting the depth information.
• Accidentally pushing the cup instead of grasping, quickly causes the cup to be unreachable because the

table is quite far away.

3) ITCM-high positioned

• The arm obstructs the view less compared to the expert condition.
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4) ITCM-low positioned

• Moving the gripper is hard because the view from the overhead camera is in a different frame than the
telemanipulation input.
• It is hard to find a place in the workspace of the robot where the gripper can be oriented in a way that a

grasp of the cup can be attempted.
• At the start of the movement the gripper is not visible in the overhead view. This part should thus be done

without visual feedback but from memory.

3. Participant 3

Participant had about 10 hours of telemanipulation experience, of which none with this setup.

1) General remarks

• The control loop and camera images of the robot are sometimes delayed due to instability of the WiFi
signal, therefore sometimes feedback should be anticipated instead of received.
• Touching the table feels not like a hard object where you cannot push through but more like a jumpy

pudding, this feels unnatural.
• The button to toggle the gripper state (closed/open) malfunctioned sometimes.

2) Expert positioned

• Grasping and placing the cup is very near the edge of the workspace of the master. So if you accidently
push the cup instead of grasp it in the first go, the cup is becomes unreachable.

3) ITCM-low positioned

• Because the camera is looks all the way to the right but the telemanipulation is still with respect to the
base_footprint frame of the robot, the control is unintuitive.

4. Participant 4

1) General remarks

• Moving the gripper slowly is a lot harder than keeping it steady when moving.
• In some orientations, the gripper suddenly takes on a different orientation. 7

• The master device, a Geomagic Touch Omni was not found to be ergonomic. This manifested itself in
confusing the couple toggle button and the gripper toggle button.
• The gripper toggle button was not always responsive.

2) ITCM-low positioned

• The participants reported that his hand got cramped because of the needed orientation of the pen.
• Transforming between the view of the head camera to the frame of the telemanipulation input was taxing

mentally.
• It is hard to get depth information out of the image because the arm is obstructing its shade on the table.

5. Participant 5

1) General remarks

• Holding the pen is physically taxing and uncomfortable; the hand is to high.
• Pressing the correct button on the pen was unintuitive.

7This is because the whole-body kinematic controller of the robot control the wrist of the arm, and not the gripper. Therefore, the robot
thinks it does a small correction on the orientation of the wrist. But this actually causes a larger displacement of the gripper.
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6. Participant 6

Participant had reported to have around 10 weeks of telemanipulation experience, of which more than half with
this setup.

1) General remarks

• Time pressure was holding him back from being better at the task.

2) Expert positioned

• An offset in the neutral bias of the force-torque sensor made holding the pen cost physical effort.

3) ITCM-high positioned

• This position was not hard, it was easy.

4) ITCM-low positioned

• The orientation of the table with respect to the robot made the task hard.
• Also the orientation of the robot with respect to the task view.
• However the view is clearer than the expert positioned
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I. Head camera views
The view the participants had from the cockpit is depicted per condition and for three different moments
depicted in Figure 62. The start moment, when the ee is in the start position before the participant couples the
master and slave. The pick moment, when the cup is picked from the table. The place moment, when the cup is
placed on the table. These images are cropped out of screen shots of the cockpit interface. The resolution and
compression is thus equal to what the operators could use.

(a) Expert: start configuration (b) Expert: pick (c) Expert: place

(d) ITCM: start configuration (e) ITCM: pick (f) ITCM: place

(g) ITCM-low: start configuration (h) ITCM-low: pick (i) ITCM-low: place

Figure 62: Different view points and arm configuration per condition (Expert, ITCM, ITCM-low) for the start of the task,
during pick and during placement of the cup. Shadows can be seen to help judging the height difference between the
gripper and the table. Also note that the gripper cannot be seen in the start position from the ITCM-low condition.
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J. Participant Information Sheet

Participant information 
Researcher: Karel Sirks 
Supervisors: ir. J.G.W Wildenbeest and dr.ir. D.A. Abbink 
Title: Comparing autonomous and manual navigational goal selection 
Date:  11th September 2018 

Purpose 
The purpose of this study is to make autonomous navigation more useful for semi-autonomous 
mobile robots. This could be applied to homecare-robots in domestic environments where they 
are able to navigate autonomously but manipulation would need to be controlled manually from 
a distance due to the higher variety in tasks.  
The result of this research will help these robots to select a base position from where an operator 
can successfully execute a task using telemanipulation. 

Task 
Your task is to pick up the purple cup and place it within the designated area.  
This should be done as fast as possible, while ensuring that the object ends up within the goal 
area.  
Time is measured from the beginning of manipulation until the robot’s gripper is outside of a 
sphere of 30cm near the placed cup. 

The researcher will say that the cup is not placed precise enough when the cup is no longer 
between the gripper’s fingers. No comment will be made if the cup is placed correctly. Misplaced 
cups should be corrected until the cup is in the right place. 
A trial is marked failed if the cup has become unreachable (e.g. because it has fallen or was 
pushed of the table).  

As participant you are asked to execute the pick-and-place task 7 times per condition for training 
and 7 times successfully per condition for the experiment. That means that failed executions do 
not count for the 7 times limit during the experiment. Between the training and each condition, 
there is time to relax and stretch. After each condition, the questionnaire will be administered, 
and a score of the difficulty will be asked. See Fig. 1 for the experimental overview. 

Fig. 1 Marco ready for the 

experiment. 
Fig. 2 Experimental protocol overview 
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No scale will be used for the difficulty rating, so give the first condition any number that feels 
good. Thereafter assign numbers for the other conditions in such a way that they match your 
subjective feeling about the difficulty. No zero or negative numbers may be used, otherwise there 
is no limit to the numbers you may use. Aim to let each number represent the difficulty you 
experienced. 
 
The entire experiment will take approximately two and a half hours. 
 
First a familiarization phase is done to get you familiar with the telemanipulation setup. This 
consist of four subphases: 

• Workspace exploration: explore the limits of the robots and the input devices workspace 
o Contact with table 

• Practice telemanipulation strategies: do the pick and place task and focus on these 
strategies: 

o shadows to estimate height/ distance to table 
o side of gripper to push object 
o finger of gripper to push object 
o a path diagonal to the robot to get depth information 
o occlusion of the fingers to infer that the object is within the gripper 
o movement of the object to infer that the object is within the gripper 

 
For performing the tasks the same strategy must be used by all participants.  

- Couple the input-device to the robot arm (dark grey button) 
- Lower the gripper to the height of the cup (such that cup is visible on gripper cam) 
- Orient the gripper 45o to the table if possible 
- Start approach of the cup 
- Check if gripper encloses the cup (occlusion fingers, how does the cup move if touched) 
- Grasp it with the finger tips (to make the retreat easier) 
- Transfer cup (do not go to far up, finding the height is difficult) 
- Release cup (light grey button) 
- Retreat from cup 
- If the cup is not within the black circle push it more 

towards the centre. Only re-grasp if it is not possible to 
push the cup more towards the centre.  

- Return the pen to its starting pose 
- Uncouple (dark grey button) 

 
 
Important: 

- Hold the pen firmly 
- Couple the pen and the robot arm if the position and 

orientation correspond 
- If gripper does not react. Just press the button another 

time. 
  

Fig. 3 45o approach to cup 
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Risks and benefits 
There are no direct benefits associated with partaking in this experiment.  
As this experiment uses an input device which gives force feedback (max 3Newton), delicate body 
parts (eyes) should stay out of the workspace of the Geomagic Touch. Another risk is fatigued 
arms because the input device does not compensate the gravity forces on the participants arm.  

Participation is voluntary 
The participant can withdraw from this study before, during and after the experiment, he or she 
could make this clear to the researcher personally or via the contact details given. No reason 
needs to be given to withdraw. Participation is voluntary. 

Personal information 
The following personal information will be collected: 

Name 
This is collected for the following purpose: 
o Date and time of experiment (in order to schedule) 
o Consent form (in order to verify consent) 

• Age, Gender 
This is collected for the following purpose: 
o To describe the demographic of the participants of this experiment 

• Remarks during or after the experiment concerning the experiment and/or positioning 
methods 
This is for the following purpose: 
o Evaluation of the experiment and/or positioning method 

No collected, recorded or otherwise processed information will be coupled to participant’s name. 
Participant may request access, rectification and/or erasure of personal data (Name).  
The participant may object to grant personal information.  
The retention period of the participants name is two weeks after the experiment has taken place. 
Other personal information will be used for reporting of the experiment. It will not be possible 
to trace back participants based on information in these reports. 

Feel free to ask questions before or after the experiment! 

Regards, 
Karel Sirks 
Msc Student, Mechanical Engineering 

Contact: 
k.sirks@student.tudelft.nl  

Location of experiment: 
HIT (Heemskerk Innovative Technology) 
Mijnbouwstraat 120, Delft 
Call on phone. Or: through the double doors take the stairs on the right; go right through the 
double doors and knock on the green doors near the HIT sign.  
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