

Delft University of Technology

Curriculum-Based Reinforcement Learning for Quadrupedal Jumping
A Reference-Free Design
Atanassov, Vassil; Ding, Jiatao; Kober, Jens; Havoutis, Ioannis; Santina, Cosimo Della

DOI
10.1109/MRA.2024.3487325
Publication date
2025
Document Version
Final published version
Published in
IEEE Robotics and Automation Magazine

Citation (APA)
Atanassov, V., Ding, J., Kober, J., Havoutis, I., & Santina, C. D. (2025). Curriculum-Based Reinforcement
Learning for Quadrupedal Jumping: A Reference-Free Design. IEEE Robotics and Automation Magazine,
32(2), 35-48. https://doi.org/10.1109/MRA.2024.3487325

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MRA.2024.3487325
https://doi.org/10.1109/MRA.2024.3487325

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the

author uses the Dutch legislation to make this work public.

https://repository.tudelft.nl/
https://www.openaccess.nl/en

351070-9932/24©2024IEEE JUNE 2025 IEEE ROBOTICS & AUTOMATION MAGAZINE

By Vassil Atanassov , Jiatao Ding ,
Jens Kober , Ioannis Havoutis ,
and Cosimo Della Santina

Curriculum-Based
Reinforcement
Learning for
Quadrupedal
Jumping

Deep reinforcement learning (DRL) has emerged as a promis-
ing solution to mastering explosive and versatile quadrupedal
jumping skills. However, current DRL-based frameworks usu-
ally rely on pre-existing reference trajectories obtained by
capturing animal motions or transferring experience from
existing controllers. This work aims to prove that learning
dynamic jumping is possible without relying on imitating a
reference trajectory by leveraging a curriculum design. Start-
ing from a vertical in-place jump, we generalize the learned
policy to forward and diagonal jumps and, finally, we learn to
jump across obstacles. Conditioned on the desired landing
location, orientation, and obstacle dimensions, the proposed
approach yields a wide range of omnidirectional jumping
motions in real-world experiments. In particular, we achieve a
90-cm forward jump, exceeding all previous records for simi-
lar robots. Additionally, the robot can reliably execute contin-
uous jumping on soft grassy grounds, which is especially

remarkable as such conditions were not included in the train-
ing stage.

INTRODUCTION
Through millions of years of evolution, legged animals have
adapted to locomote in highly complex and discontinuous
environments that widely exist in nature. Goats, for example,
are capable of scaling nearly vertical mountainsides and
jumping across chasms several times their body length. While
many works have tackled dynamic locomotion [1], [2], [3],
achieving such complex controlled behavior is still an open
challenge.

Quadrupedal jumping has traditionally been investigated
through model-based control, where an accurate model of the
dynamical system is needed to generate optimal control inputs
[4], [5], [6], [7]. In addition, these methods rely on various heu-
ristics to render the approach feasible, limiting the search space
and resulting in conservative performance.

In contrast to model-based optimization, model-free rein-
forcement learning (RL) has emerged as an effective alternative

Digital Object Identifier 10.1109/MRA.2024.3487325
Date of publication 20 November 2024; date of current version 14 June 2025.

A Reference-Free Design

©SHUTTERSTOCK.C
OM/ZENITX

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0006-7323-1485
https://orcid.org/0000-0002-2396-9688
https://orcid.org/0000-0001-7257-5434
https://orcid.org/0000-0002-4371-4623
https://orcid.org/0000-0003-1067-1134
http://SHUTTERSTOCK.COM

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 202536

that does not require expert knowledge for control engineer-
ing and tedious gain tuning. Especially, deep RL (DRL) has
shown impressive generalization and robustness capabilities
in executing locomotion tasks [1], [2], [8], [9], [10]. For quadru-
pedal jumping, a series of correct actions need to be taken for
the robot to succeed. Paired with an inherently sparse reward
structure (the robot has either jumped or not), it is exception-
ally hard for the robot to learn, as most of its trials will fail.
Current RL approaches tackle this by directly transferring
skills from demonstrations [11], [12] or optimal controllers
[13], [14], [15]. However, balancing the degree to which the
agent should imitate the demonstration and generalize to new
tasks is nontrivial.

In this work, we push robots to learn to jump on their
own by combining curriculum learning (CL) with DRL,
eliminating the reliability of precomputed motion references
(Figure 1). By conditioning the policy on the desired land-
ing location and orientation, our approach produces versatile
jumping motions with just one single policy. Furthermore, by
incorporating partial knowledge of the obstacles surrounding
it, the robot learns different maneuvers adapted to complex
real-world scenarios.

The main contributions are summarized as follows:
 ■ We propose a curriculum-based DRL framework that is

capable of learning jumping motions without requiring
motion capture data or a reference trajectory.

 ■ We generalize across a wide range of jumps with a single
policy for both indoor and outdoor environments. With
our method, the real robot can jump 90 cm forward,
which, to the best of our knowledge, is the longest dis-
tance achieved on quadrupeds of a similar size. It has

been demonstrated that continuous jumping across grass-
land and robust jumping across uneven terrains can be
achieved in a zero-shot manner.

 ■ We achieve jumping over obstacles and more complex ter-
rains of various sizes by conditioning the policy on some
partial environmental information in an additional curricu-
lum stage.
In the “Related Work” section, we review the existing

RL-based jumping controllers. In the following two sections,
we separately present the curriculum design and DRL formu-
lation. After extensively evaluating our method in the “Exper-
imental Validation” section, we conclude this work with a
thorough discussion in the final section.

RELATED WORK

RL FOR QUADRUPEDAL JUMPING
DRL is a promising solution for accomplishing jumping tasks
by offloading the computational complexity to offline train-
ing. One approach to learning quadrupedal jumping is by
learning from demonstrations, such as from trajectories gen-
erated through optimal control [13], [14], or hand-tuned refer-
ence motions [11], [12]. To address the challenges associated
with the selection of relevant states to mimic and manage
conflicting objectives, generative adversarial imitation learn-
ing has recently been widely adopted [16], [17], [18], even
when dealing with partially incomplete demonstrations [11].
In [19], transfer learning is used to learn policies capable of
diverse agile motions from a database of existing RL and
model-based controllers. However, most imitation-based
methods have so far shown a limited generalization capability

(a)

(b)

(c)

FIGURE 1. The Go1 robot (a) jumps across grassland, (b) jumps down onto grassland, and (c) jumps across a gap onto a lower box.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

37JUNE 2025 IEEE ROBOTICS & AUTOMATION MAGAZINE

beyond the imitation domain. Furthermore, many of the
aforementioned works rely on learning a separate policy for
each unique type of motion rather than a common task- or
goal-conditioned policy.

To reduce the dependency on a motion prior, [20] used a
variational autoencoder to encapsulate motion capture data
into a latent space and then combine it with a Bayesian diver-
sity search to discover viable takeoff states. In [21], Margolis
et al. trained a high-level motion-planning module to produce
desired center of mass (CoM) trajectories for small hops, con-
ditioned on visual inputs and then tracked by a model-based
controller. In [13], deviations to reference trajectories generat-
ed by a nonlinear optimal trajectory [5] were learned, provid-
ing better generalization to out-of-training domains. Similarly,
the researchers in [22] taught action residuals to a model-
based controller to achieve continuous jumping. Another work
focusing on continuous hopping [23] used a learned centroidal
policy to output desired CoM trajectories, which are tracked
by a quadratic programming-based ground reaction force con-
troller. Rudin et al. [24] showed cat-like jumping in low grav-
ity by using a more complex reward function without imitating
motion clips. However, this approach has not yet been veri-
fied on Earth-like gravitational conditions. Recently, Vezzi et
al. [25] proposed learning to jump by combining a first-stage
evolution strategy with a second-stage DRL. Unlike [25], our
approach offers reduced complexity by using proximal pol-
icy optimization (PPO) [26] for all curriculum stages, and it
is capable of executing a range of jumps conditioned on the
desired jumping length and orientation rather than a single
distance-maximizing jump.

CL IN DYNAMIC QUADRUPEDAL LOCOMOTION
CL is a training framework that progressively provides more
challenging data or tasks as the policy improves. As the name
suggests, the idea behind the approach borrows from human
education, where complex tasks are taught by breaking them
into simpler parts.

In legged locomotion, CL has seen wide use, mainly in
terms of terrain adaptation. Xie et al. [27] showed how an
adaptive curriculum can be used to
learn stepping-stone skills much more
efficiently than other methods, like
uniform sampling. Similarly, other
automatic CL methods have been pro-
posed to vary environmental param-
eters based on the performance of the
agents [10] rather than using a manu-
ally specified curriculum. Hwangbo
et al. [1] employed a curriculum of
adaptive regularization reward scales.
In [28], parkour locomotion skills
were learned through a well-designed
 terrain curriculum with a single policy,
which was then distilled to a extero-
ception-conditioned policy. Similar
parkour skills were acquired in [29],

but the method requires separate policies for each skill as
well as a perception and navigation network, which greatly
increases the computational complexity. Barkour [30] uses a
similar approach but distills the specialist controllers into a
single generalist transformer policy. To learn dynamic park-
our skills, [31] adopted a two-stage curriculum, transitioning
from soft to hard dynamic constraints in the second stage.

In contrast to all of these works, we propose a task-based
curriculum, which alters the task structure and objectives rath-
er than the reward scales or environment properties. Recently,
[12] used multistage training to learn imitation-based vertical
jumping and then transferred that knowledge to forward jump-
ing. While similar to our approach, however, there are a cou-
ple of significant differences: we do not require any reference
trajectories, and we learn a single unified policy for versatile
jumping motions.

CURRICULUM DESIGN
Defining and constraining the behavior of jumping across
specific distances is challenging, as it combines two distinct
behaviors: that of “jumping” and that of reaching a desired
spatial point. Furthermore, an easily learnable local optimum
exists, where the robot could simply walk (or crawl) toward
the target point without actually jumping. To avoid converg-
ing to such undesired behavior, we use CL to decompose the
problem into several simpler subtasks.

In our approach, we adopt two types of curricula—on a
local difficulty level and on a task level, as can be seen in Fig-
ure 2. The former involves progressively (and automatically)
making the environment more complex as the agent succeeds.
In particular, upon successful jumps, we increase the range of
desired jumping distances and obstacle heights that we sample
from. The task-level curriculum is, on the other hand, manual-
ly selected and consists of training the agent for a certain num-
ber of steps at a given task. After mastering the easier jumping
skill, the policy is loaded onto the next task, which might be
defined differently and contains a new set of rewards.

In the remainder, we describe each of these task-level and
difficulty curricula in the progressive order of training.

FIGURE 2. The curricula: (a) jumping in place, (b) long-distance jump, and (c) long-distance
jump with obstacles. The latter two vary the jump distance/orientation and obstacle height,
respectively.

Distance
Curriculum

Obstacle
Curriculum

Constant

+ Height and Upward
Velocity Initialization

+ Forward and Lateral
Commands
+ Forward Pushes

Police π1

(a) (b) (c)

Police π2 Police π3

+ Obstacles
+ Obstacle Information

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 202538

STAGE 1: JUMPING IN PLACE
Vertical jumping without traversing a certain horizontal dis-
tance, i.e., jumping in place, is the basic component of agile
jumping. However, the lack of reference results in a learning
problem with sparse rewards, given that the agent needs to
first learn certain behaviors (e.g., squatting down and then
pushing hard against the ground to take off) before it can
reach the reward-rich states (i.e., being high in the air). As the
robot does not experience these jumping-specific rewards ini-
tially, it is prone to converging to a local optimum, such as
standing in place, where small rewards are collected safely.

To avoid getting stuck in this local optimum behavior, we
adopt a modified form of the reference state initialization
(RSI) technique [32]. In imitation learning, RSI initializes the
agent at random points of the reference trajectory, allowing the
agent to explore such reward-rich states before it has learned
the actions necessary to reach them. As we do not use a refer-
ence trajectory, we instead modify RSI to sample a random
height and upward velocity from a predefined range.

STAGE 2: LONG-DISTANCE JUMP
Once the robot has converged to a jumping-in-place behavior, we
further train it to perform precise forward and diagonal jumps.
The first part of the command vector g R13! (see Figure 3) in
the observations specifies the desired landing point and orienta-
tion to create a goal-conditioned policy. Similarly to the jumping-
in-place subtask, we also adopt a curriculum-style sampling for
desired landing points, where successful agents are progressed to
more difficult environments where the desired jumping distance
and landing yaw are sampled from a greater range.

STAGE 3: LONG-DISTANCE JUMP ACROSS OBSTACLES
Finally, we introduce obstacles in the environment. Without
loss of generality, we choose three classes of obstacles, includ-
ing thin barrier-like objects, box-shaped obstacles, and slopes.
Depending on the desired landing pose and the obstacle loca-
tion and type, the agent needs to either jump onto or over it.
While it is possible to learn a general behavior that can accom-
plish this without any exteroception, such a behavior will be
conservative, suboptimal, and potentially much less robust.

With this in mind, we incorporate
information about the distance to the
center of the obstacles and its general
dimensions (length, width, and height).
In the real world, we manually specify
these parameters.1

Similar to the previous stage, we start
with obstacles of smaller height. Then,
successful robots progress toward more
challenging terrains, whereas failing
ones are demoted to easier environments.
To ensure that the robot remembers the
previously learned behavior, we also ran-
domly send a certain percentage of robots
to jump on flat ground, as in stage 2.

DRL FORMULATION
This section details the DRL formulation, as illustrated in
Figure 4. First, preliminaries are introduced. Then, we define
the key components of goal-conditioned RL, including obser-
vations, actions, and reward functions. Finally, we introduce
our domain randomization scheme to mitigate the
 simulation-to-reality (sim2real) gap.

PRELIMINARIES
RL infers a policy ()a st t;r of how to act by constantly inter-
acting with the environment. The RL problem is typically for-
mulated as a Markov decision process, where, at each step, the
agent interacts with the environment by taking an action

Aat ! . Subsequently, it receives the new states of the envi-
ronment s Ot 1 !+ in the form of observation and the associat-
ed reward Rt that it has earned. Based on the observed state
st 1+ and its policy (),a st t1 1;r + + the agent can then choose a
new action .at 1+ In this way, the RL algorithm optimizes
behaviors that yield high rewards. In goal-conditioned RL, the
action policy can also be conditioned on specific goals, i.e.,

(,).a s gt t;r Such a policy can be used to produce diverse
behaviors depending on the specific command g, enabling the
learning of multiple distinct behaviors under a single policy.

In this work, we formulate the following objective: find-
ing a policy (,)a s g;r that maximizes the cumulative sum of
rewards earned over the task duration. As often immediate
rewards are more valuable than rewards in the distant future,
a discount factor (,]0 1!c is commonly used. Mathemati-
cally, the full objective of maximizing the sum of discounted
rewards J, known as the return, can be written as

 ()argmax J R s sE ()p
t

t
t

T

0
π 0r c= =+x x

=

r = G/ (1)

where Rt is the immediate reward at time t and s0 is the initial
state. The expectation of the return is taken over a trajectory x
sampled by following the policy. We optimize this objective

1A separate module that estimates obstacle dimensions could be utilized. One future
work would be linking exteroceptive sensors to the policy and removing the param-
eterization of the world around the robot.

User
Input

Concatenate

ot ∈ R14 + 50N

R12 × N

R12 × N

R12 × N

R3 × N

R3 × N

R4 × N

R4 × N

R13

qmea

g
j R1

Legend

User Input

Sensors
State Estimate

Sensors Joint Positions

Joint Velocities

Previous Actions

Base Linear Velocity

Base Angular Velocity

Base Quaternion

Contact States

Command
Jump Toggle

t,...t–N

vb
t,...t–N

at–1,...,t–1–N

wb
t,...t–N

q
t,...t–N

ct,...t–N

qmea
t,...t–N

•

FIGURE 3. The definition of observations. The command g and jump toggle j are provided
by the user, while the remaining observations are either directly read from the sensors or
estimated using sensory data.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

39JUNE 2025 IEEE ROBOTICS & AUTOMATION MAGAZINE

using the PPO algorithm, with both the
actor and the critic parameterized by a
multilayer perceptron (MLP) network.

OBSERVATION AND ACTION SPACE

OBSERVATION SPACE
Using a memory of previous observa-
tions and actions allows the agent to
implicitly reason about its own dynamics
and the interaction with the environment
[1], [10]. Here, we use a concatenated his-
tory of the last N steps as input to the
policy.2 As illustrated in Figure 4, the
observation space consists of the histori-
cal base linear velocity ,v R N3! # base
angular velocity R N3!~ # (both in the base frame), joint posi-
tion ,q R N12! # joint velocity ,q R N12! #o previous actions

,a Rt
N

1
12! #

- base orientation (as a quaternion) ,q R N4! #r
and foot contact states .c R N4! #

Note that our policy is also conditioned on the com-
mand g R13! and jump toggle { , }j 0 1! (see the green
block in Figure 4). As illustrated in Figure 5, the command

[, , ,]dimg p q pdes des obs obsT! r contains the desired land-
ing position (),p Rdes

3T ! the desired landing orientation
(),q Rdes

4!r the center of the obstacle (p Robs
3! if present),

2In practice, we found that using the last 20 steps is sufficient for the task while also
being fast for training.

and its dimensions (dim Robs
3! including height, width, and

length).3 Due to the lack of long-term memory in the feed-
forward neural network, we use the jump toggle j to indicate
whether the robot has already jumped, similar to [32]. Howev-
er, in our case, the jump toggle also serves as a control switch,
where the robot remains standing until its value is changed.

ACTION SPACE
Our policy generates the 12 actuated joint angles ()q Rdes 12!
for jumping control. Particularly, we learn the deviations

3In the training process, we sample the landing pose and obtain the obstacle parame-
ters from the simulator. In the real world, the command vector is specified by the user.

User Input

at + 1 ∈A

ot ∈ O

qnom

Low-Level
Control
10 KHz

Policy π (aZs)
50 Hz

Desired Joint Position
Deviations

+

PD Controller

Low-Pass
Filter

Observations

Robot

Joint Positions
Joint Velocities
Previous Actions
Base Linear Velocity
Base Angular Velocity
Base Quaternion
Contact States

Command
Jump Toggle

qraw
t+1

qdesττt+1 t+1

qmea ,
t+1

qmea
t+1

•

FIGURE 4. A control diagram of the system. The observations ot include the user command (in green) and a history of system states
(in yellow). The policy is parameterized by a neural network (shown in blue). The output actions at 1+ are added to the nominal joint
angles qnom and passed through a low-pass filter. The desired joint angles are then tracked via a PD controller, which computes
torque commands. PD: proportional derivative.

Length

Distance
∆ddes

[∆ddes, qdes, pobs, dimobs]

Yaw
Goal

Pobs
Width

Height

Obstacle
Information

Landing
Pose

Command g =

FIGURE 5. The command vector g for a forward jump onto an obstacle. In the first two
training stages (Ir and),IIr where no obstacles are considered, the information of the
obstacle is set to zero.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 202540

from the nominal joint positions .q Rnom 12! To smooth the
output actions, we used an exponential moving average low-
pass filter with a cutoff frequency of 5 Hz. The filtered
actions are then scaled and added to qnom to generate qdes for
the motor servos, i.e., .q a qdes nom= + A proportional deriva-
tive (PD) feedback controller then produces the desired
torque at a higher frequency, as shown in Figure 4. To guar-
antee safety, we clip qdes within the feasibility range when
the real joint angles approach the limits.

REWARDS
Ideally, we expect the agent to accomplish the task while
maximizing the rewards it receives. However, a poor choice
of reward scaling could lead the agent to converge to the
local minima, e.g., standing behavior without jumping,

where only certain penalties, like energy cost and joint
acceleration, are minimized. To avoid this, instead of naively
summing them, we multiply the positive component of the
reward by the exponent of the squared negative component,
i.e., (/).r r retotal

2< < v= -+ - 4 This allows the agent to always
receive a strictly positive reward, scaled down by the amount
of penalties, which improves the learning stability.

As listed in Table 1, three phases are used to describe when
each reward is given. In particular, stance indicates that the
robot has been given a command to jump but is still on the
ground. Then, flight is triggered when the robot is in midair

4For conciseness, the notation (/)xe < < v- 2 is used to represent passing the squared
error x< <2 through an exponential kernel of the form (/).xexp < < v- 2 This ensures
the reward is positive and scales it between zero and one.

NAME TYPE STANCE FLIGHT LANDING

Landing
position

Sparse 0 0 (() /)w p pe ,pland des
2

landp < < vR- -

Landing
orientation

Sparse 0 0 ((() /logw e)q qori land
1

des
2

ori,land)< < v- -r r

Maximum
height

Sparse 0 0 ((.) /))w he 0 9 ,max maxh p
2

z< < v-

Jumping Sparse 0 0 wjump

Base
position

Dense ((. /))w pe 0 20 ,p z p,st
2

stz z< < v- - ((. /))w pe 0 7, ,p z pfl
2

flz z< < v- - ((/))w e p p, ,lpl des
2

p < < vR- -

Orientation
tracking

Dense (((/))logw e q q,ori st base
1

des
2

ori,st)< < v- -r r 0 ((() /))logw e q q ,ori,l base
1

des
2

ori l)< < v- -r r

Base linear
velocity

Dense 0 ((/))w e v v,x y vdes
2

v ,x y < < vR- - 0

Base angular
velocity

Dense 0 ((/))w e des
2< < v~ ~R- - ~~ . ((/))w0 1 e 2< < v~R- ~~

Feet
clearance

Dense 0 ([. , . , .])w p p 0 0 0 0 0 15feet feet feet
0 2< <- + - 0

Symmetry Dense (()w q qsym joint right
2

left; ;R -

Nominal
pose

Dense ((/)w q qe ,j j qnom
2

q joint < < vR- - 0.1 ((/)w e q q ,j j qjoint nom
2

q < < vR- - ((/)w e q q ,j j qjoint nom
2

q < < vR- -

Energy Dense ()w qT
energy x o

Base
acceleration

Dense w vacc
2; ;o

Contact
change

Dense (() ())w c t c t 1c feet foot footR - -

Maintain
contact

Dense ()w c tcontact feet footR 0 0

Contact
forces

Dense w F FF i
n

i0
f

c ; ;R -=
r

Action rate Dense () ()w t t 1a aa joint
2; ;R - -

Joint
acceleration

Dense w qq jjoint
2; ;R pp

Joint limits Dense w q q lim,q j jjoint
2

lim ; ;R -

The light orange color indicates task-based rewards, while the light purple shade describes regularization rewards. w# is the weight, v# is a scaling
factor for the exponential kernel, and ()e $ and ()log $ separately denote the exponent and logarithm operation.

TABLE 1. Rewards definition.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

41JUNE 2025 IEEE ROBOTICS & AUTOMATION MAGAZINE

and has no contact with the ground. Finally, the landing
begins upon landing and lasts until the end of the episode. In
each phase, task-based rewards (in orange) and regulariza-
tion rewards (in violet) are considered. On the other hand, the
rewards items can be divided into sparse type and dense type,
where the former is given once per episode (typically at the
end), and the latter is given once per each simulation step that
satisfies the conditions.

TASK REWARDS
First, sparse rewards are introduced to encourage the general
behavior for accomplishing the desired jumping task, includ-
ing those of detecting contact (“landing”) after several steps
of no contact (“flight”), the maximum height the agent
reached, and whether it has landed at the desired position
with the desired orientation. These rewards are only given
once at the end of the episode, marked by “sparse” in Table 1.
In addition, dense task-related objectives are also defined to
simplify the exploration, including

 ■ tracking the desired linear velocity ()v , ,x y
b

des and yaw angu-
lar velocity while in flight and tracking zero angular veloc-
ity after landing

 ■ squatting down to a height of 0.2 m while on the ground
and tracking a certain height in the air

 ■ maintaining a constant base position and tracking the
desired orientation after landing.
Notably, to ensure enough clearance when jumping forward

and over obstacles, we introduce a foot clearance reward that
tracks the nominal foot position (i.e., at the nominal joint angles

)qnom on the xy-plane and, simultaneously, minimizes the z-dis-
tance between each foot and the CoM. This objective encour-
ages the robot to tuck its legs in close to its body while in the air.

REGULARIZATION REWARDS
As we do not imprint any reference motions onto the agent,
auxiliary regularization rewards are needed to achieve
smooth, feasible, and safe behavior. Specifically, we penalize
the action rate, together with any violations of predefined soft
limits for the joint position. Furthermore, the instantaneous
energy power, computed as the dot product between the actu-
ator torque and joint velocity, is penalized for generating an
energy-efficient motion. Considering that various quadrupe-
dal jumps seen in nature exhibit high left- and right-side sym-
metry, we drive the robot toward maintaining this symmetry
with an additional reward. Finally, we noticed that the robot
often stomped its feet rapidly during the squat-down stage in
the training process. To eliminate this unnecessary behavior,
we add a small reward for maintaining contact in the first few
steps of the episode as well as a penalty on frequent contact
state changes.

TERMINATION
We terminate each episode when the following events
occur:

 ■ collision between body links and the environment
 ■ base height lower than 0.12 m

 ■ orientation error larger than 3 rad
 ■ landing position error bigger than 0.15 m.

DOMAIN RANDOMIZATION
To bridge the gap between simulation and real-world scenari-
os, we implement zero-shot domain randomization. The
ground friction, restitution, and link mass are sampled at ran-
dom at the start of every episode. In addition, we add a ran-
dom offset to the joint encoder values, randomize
proportional and derivative gains of the PD controller, and
randomize the strength of the motors for every episode. The
range of each randomized variable is listed in Table 2.

For hardware control, unmodeled communication delays
and latencies strongly weaken the performance of learn-
ing-based policies. To tackle this issue, at the beginning of
each episode, we sample a latency value from the range of

[,]l 0 40 ms.! Then, at each step, we add a small random
value to reflect the effect of stochastic communication delays.

EXPERIMENTAL VALIDATION
In this section, we first validate the policy trained on the first
two curriculum stages (i.e., policy ,2r shown in Figure 2),
through various experiments—forward and diagonal jumps,
continuous jumps, and robust jumping in the presence of
environmental disturbances and uneven terrains. Then, we
validate the policy after the final training stage (policy)3r
when jumping onto and over obstacles. For the deployment,
we used a naive velocity state estimator that uses the inverse
kinematics (IK) to estimate the body velocity while in con-
tact with the ground and integrates the inertial measurement
unit acceleration data in midair.

TRAINING SETUP
The implementation is based on the open source Legged gym
environment [9]. Specifically, we use 4,096 agents and 24
environmental steps per agent per update step. For the
 vertical jump, we train for 3,000 iterations, while, for the

NAME RANDOMIZATION RANGE

Ground friction [0.01, 3]

Ground restitution [0, 0.4]

Additional payload [–1, 3] kg

Link mass factor [0.7, 1.3] ×

CoM displacement [–0.1, 0.1] m

Episodic latency [0, 40] ms

Extra per-step latency [–5, 5] ms

Motor strength factor [0.9, 1.1] ×

Joint offsets [–0.02, 0.02] rad

PD gains factor [0.9, 1.1] ×

Joint friction [0.0, 0.04]

Joint damping [0, 0.01] N · m · s · rad–1

TABLE 2. Randomized variables and their ranges.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 202542

forward jump without and with obstacles, we train for 10,000
steps each. The actor policy and the critic are parameterized
by a shared MLP with three hidden layers of dimensions
[256, 128, 64], with exponential linear unit activations after
each layer. Using a single RTX 3090 GPU, the three highly
parallelized training stages took approximately 1.4, 4.1, and
4.8 h, respectively.

The policy operates at a frequency of 50 Hz, and the simu-
lation runs at 200 Hz. We performed all of the experiments
on the Unitree Go1. During the simulation validations, we
use a constant joint friction value of 0.03, joint damping of
0.01 N · m · s · rad–1 and a constant latency of 40 ms.

VERSATILE JUMPING ON FLAT GROUND

FORWARD JUMPING
First, we evaluate the policy on a variety of forward jumps.
Figure 6 compares hardware and simulation motions of a
60-cm forward jump, while Figure 7 presents the quantitative
results. As can be seen, the real-world behavior closely match-
es the simulated prediction. One noticeable deviation is in the
peak torques at takeoff—where the measured torques deviate
from both the desired torques (computed by the PD control
law using the desired joint angles) and the simulation torques.
Furthermore, larger joint angles for the hip and thigh are mea-
sured upon landing in real-world tests, likely due to poor
impact modeling in the simulation. Finally, the Euler angles
show a slight variation between the simulation and hardware.
We believe that this mismatch is mainly due to the motor mod-
eling inaccuracies, coupled with the weight of the additional
mass on top of the robot, shifting its CoM. Despite these state
deviations, the jumping distance is well tracked, and the base
velocity matches the expected behavior, showing a good sim-
2real adaptation. The controller was also robust to the particu-
larly noisy contact observations and velocity state estimates,
which we attribute to both the extensive domain randomiza-
tion and the large amounts of noise that we simulate. As our
curriculum gradually guides the robot toward accomplishing

the task, it is easier for it to converge even in the presence of
greater domain randomization and observation noise.

We then tested the maximum distance it could jump across.
Figure 8(a) illustrates a 90-cm forward jump, with the target
landing point shown by the yellow marker. Despite slipping
on the soft pads as it lands, the robot recovers quickly, dem-
onstrating its robustness against uncertainties.5 To the best of
our knowledge, this is the largest jumping distance achieved
by robots of similar size and similar actuators (see Table 3).

DIAGONAL JUMPING
Figure 8(b) shows a diagonal jump of 50 30 cm# with a
desired yaw of .°30 Both the landing position and yaw are
tracked accurately.

Furthermore, we evaluated the policy across the whole
jumping range in simulation, the success rate and tracking
metrics of which are presented in Figure 9. As can be seen
from Figure 9(a), the tracking error is lowest for narrow jumps
of a forward distance up to 50 cm. As both the longitudinal
and lateral distances increase, so does the final landing error.
Interestingly, most failed environments asymmetrically occur
in the lower right corner of the plot. Figure 9(b) shows the
same data but grouped by total desired distance versus actual
achieved distance. We found that the data closely follow the

°45 line (i.e., ideal performance) for the smaller jumps, with
the gradient slowly decreasing after 50 cm.

JUMPING ONTO/ACROSS ROUGH TERRAIN
Here, we evaluate how well the policy performs in the pres-
ence of environmental disturbances, despite not being trained
on uneven or rough ground. In this section, we ran several
experiments, including jumping with obstacles surrounding
the robot, blindly jumping from and onto a box, and jumping
from asphalt onto a soft grassy terrain. As shown by the time

5It is worth mentioning that we reward the position of the base upon landing, rather
than the feet. As a result, in the trial, the base cleared the 90-cm distance, but the
rear left foot landed a bit behind.

60
 c

m
 F

or
w

ar
d

Ju
m

p

(a)

(b)

FIGURE 6. The (a) real-world and (b) simulation execution of a forward jump. The yellow marker indicates the desired 60-cm jumping distance.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

43JUNE 2025 IEEE ROBOTICS & AUTOMATION MAGAZINE

lapses in Figure 10(a) and (b), the policy enables robust jump-
ing onto both soft and stiff objects that could (and did) slip
under the feet of the robot. The third row demonstrates that
the robot could jump from hard asphalt onto soft grass,
despite training on flat ground only.

Next, we tested the policy on a continuous jumping task,
where a new command of a 40-cm forward jump is given fol-
lowing each jump without resetting the robot states. As seen
in the fourth row of Figure 10, the policy is robust enough
to execute a jump from a variety of different initial states.

–0.5

–1

2

0

1

0

–2

–1

1

0

–2

2

0

0 2
Time (s)

Joint Angles Joint Velocities Joint Torques

4

0 2
Time (s)

4 0 2
Time (s)

4 0 2
Time (s)

4

0 2
Time (s)

40 2
Time (s)

Measured

Estimated

Desired

Desired

Sim

Sim

Flight Phase

Flight Phase

40 2
Time (s)

Base Angular Velocity Base Euler AnglesBase Velocity

(a)

(b)

4

0 2
Time (s)

4 0 2
Time (s)

4 0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4 0 2
Time (s)

4

A
ng

le
 (

R
ad

)

V
el

oc
ity

 (
R

ad
/s

)
V

el
oc

ity
 (

R
ad

/s
)

V
el

oc
ity

 (
R

ad
/s

)

V
el

oc
ity

 (
R

ad
/s

)
V

el
oc

ity
 (

R
ad

/s
)

V
el

oc
ity

 (
R

ad
/s

)

V
el

oc
ity

 (
m

/s
)

V
el

oc
ity

 (
m

/s
)

V
el

oc
ity

 (
m

/s
)

R
ol

l (
R

ad
)

x-
A

xi
s

y-
A

xi
s

z-
A

xi
s

P
itc

h
(R

ad
)

Ya
w

 (
R

ad
)

To
rq

ue
 (

N
·m

)
To

rq
ue

 (
N

·m
)

To
rq

ue
 (

N
·m

)

H
ip

T
hi

gh
C

al
f

0.5

0

0.5A
ng

le
 (

R
ad

)
A

ng
le

 (
R

ad
)

1.5

1

0

10

0

10

–10

0

20

–20

0

0

10

20

–20

0

–25

–0.1

0

25

0

–0.25

0.25

0

–0.25

0.25

0

–2.5

2.5

0.2

0

FIGURE 7. Hardware and simulation quantitative results for the 60-cm forward jump. We show the desired values in green—which, for
torques, are the ideal PD law torques and, for the base Euler angles, are zero. In blue, we show the value measurements and estimates
from the hardware experiment, and, in red, we show the values from the simulator for the same task. (a) Joint angles, velocities, and
torques for the front right leg during the 60-cm forward jump. The flight phase for the hardware experiment is indicated by the yellow-
shaded region. (b) Base angular and linear velocity during the 60-cm forward jump. The flight phase of the hardware test is indicated in
light yellow. Sim: simulated.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 202544

Despite the fact that the soft ground
causes some hip angle deviation upon
landing, the robot was able to execute
at least nine consecutive jumps.

FORWARD JUMPING WITH
OBSTACLES
To further demonstrate the versatility,
we tested forward jumping with obsta-
cles, using policy .3r To be brief, only
two scenarios are presented here,
including jumping over a 5-cm-tall
thin obstacle and landing on a 10-cm
box. In the first task, the robot had to
jump across 80 cm to avoid collision.
As seen in Figure 11(a), the robot suc-
ceeded in jumping over the barrier and
landed successfully. In the second
case, the robot had to jump across
more than 70 cm while maintaining a
large height. As a result, better perfor-
mance was observed, considering that
a shorter forward distance enabled the
robot to achieve a larger height
throughout the flight.

COMPARISON WITH THE STATE
OF THE ART
To better understand the strengths of
our proposed method, we performed a
detailed comparison of the kinody-
namic profiles for a 60-cm forward
jump with the runner-up approach in
Table 3—Extreme Parkour [28]. As
can be seen in Figure 12, our method
has a much more pronounced squat-
down phase compared to the baseline.
We would like to emphasize that this is
an emerging behavior and is learned

50
 c

m
 ×

 3
0

cm
Ju

m
p

(a)

(b)

90
 c

m

F
or

w
ar

d
Ju

m
p

FIGURE 8. Hardware results for (a) a 90-cm forward jump and (b) a 50 × 30-cm diagonal jump with desired yaw of 30°.

(a)

0
–0.3

0

0.2

0.4

0.6

0.8

1

1.2
Failed

0.3

–0.2

0.2

–0.1

0.1

0

0.2 0.4 0.6
Desired Distance x-Axis (m)

D
es

ire
d

D
is

ta
nc

e
y-

A
xi

s
(m

)

0.8 1 1.2

0 0.2 0.4 0.6

Desired Distance (m)

A
ct

ua
l D

is
ta

nc
e

(m
)

0.8 1 1.2

(b)

(c)

0.05

0.10

0.15

E
rr

or
 (

m
)

0.20

0.25

0.30

FIGURE 9. The simulation tracking performance as a function of the desired x- and y-axis
jumping distances: (a) the tracking performance in terms of the (b) overall desired versus
actual jumping distance, with (c) the error (in meters) shown by the color gradient. The
environments that have been terminated (due to any nonfoot–ground collisions) are
shown in red, and the black 45° dashed line indicates the ideal tracking performance.
Data are gathered from 8,000 simulated trials across the whole jumping range

[, .], [. , .] .x y0 1 2 0 3 0 3! ! - Only eight environments have been terminated (of which just
one was terminated due to body–ground contact), leading to a success rate of 99.9%.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

45JUNE 2025 IEEE ROBOTICS & AUTOMATION MAGAZINE

even without the squat-down reward. This allows the robot to
accelerate upward and jump much more explosively and with
larger momentum, as shown by the linear velocity and torque
peaks, compared to the baseline. We attribute our larger peak
heights and maximal jump distance to this type of learned
motion. Despite the fact that [28] has a large initial x-velocity
[see the first plot in Figure 12(b)], it still achieves a smaller
maximum jumping distance compared to ours. While [28]
converges to a locally optimal and simpler behavior, our cur-
riculum and reward structure allow the robot to better explore

(a)

(b)

(c)

(d)

C
on

tin
uo

us
A

sp
ha

lt-
G

ra
ss

S
of

t D
is

cr
et

e
H

ar
d

D
is

cr
et

e

FIGURE 10. Several experiments showcasing the robustness of the policy 2r to variations in the terrain: jumping across (a) discrete hard
and (b) discrete soft objects, (c) an asphalt-to-grass jump, and (d) nine consecutive jumps on grass.

O
ve

r
5

cm
 B

ar
rie

r
O

nt
o

10
 c

m
 B

ox

(a)

(b)

FIGURE 11. (a) Jumping over a 5-cm-tall, 5-cm-wide obstacle. (b) Jumping onto a 10-cm-tall box.

METHOD [19] [21] [30] [22] [23] [28] OURS

Jump
length (m)

0.2 0.26 0.5 0.6 0.7 0.8 0.9

Robot A1 Mini
Cheetah

Custom Go1 Go1 A1 Go1

Bold indicated the largest achieved distance (best result).

TABLE 3. Maximal jump length comparison with the state
of the art.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 202546

FIGURE 12. A comparison between Extreme Parkour [28] (red) and our work (green). We analyze the (a) base position, (b) base linear
velocity, (c) joint torques, and (d) base orientation (Euler angles) for a 60-cm jump for both methods.

Time (s)

Base Position

P
os

iti
on

 (
m

)
P

os
iti

on
 (

m
)

P
os

iti
on

 (
m

)

Base Line Velocity

Euler Angles

Parkour Ours Flight Parkour Flight Ours

V
el

oc
ity

 (
m

/s
)

V
el

oc
ity

 (
m

/s
)

V
el

oc
ity

 (
m

/s
)

To
rq

ue
 (

N
·m

)

Torques

To
rq

ue
 (

N
·m

)
To

rq
ue

 (
N

·m
)

R
ol

l
x-

A
xi

s

x-
A

xi
s

y-
A

xi
s

y-
A

xi
s

z-
A

xi
s

z-
A

xi
s

P
itc

h
Ya

w

H
ip

T
hi

gh
C

al
f

–0.5

–0.1

–2

2

0

0.5 1

0.5

0.1

0.6

0.4

0.2

0

0

–10

0

–20

20

0

0

0

Time (s)
0.5 10

Time (s)
0.5 10

Time (s)
0.5 10

Time (s)
0.5 10

Time (s)
0.5 10

Time (s)
(c) (d)

0.5 10

Time (s)
0.5 10

Time (s)
0.5 1

1

0

0

Time (s)
0.5 10

Time (s)
0.5 10

Time (s)
(a) (b)

0.5 10

0

1

2

A
ng

le
 (

R
ad

)
A

ng
le

 (
R

ad
)

A
ng

le
 (

R
ad

)

0

–0.25

0.25

0

–0.25

0.25

0.2

0

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

47JUNE 2025 IEEE ROBOTICS & AUTOMATION MAGAZINE

and learn how to jump, causing it to discover that squatting
down allows it to better accelerate its body and take off with
a larger momentum.

ABLATION STUDY
To better understand the effect of our curriculum, we com-
pared our approach to several baselines in Figure 13:

 ■ no RSI: training stage 1 without RSI,
i.e., no height and upward velocity ini-
tialization

 ■ no curriculum: directly training stage 2
without pretraining stage 1, but with
RSI height and velocity initialization.
For fairness, we train this baseline for
an additional 3,000 steps

 ■ no curriculum and no domain ran-
domization: same as “no curriculum”
but without any applied domain
 randomization

 ■ no curriculum and no RSI: same as
“no curriculum” but without any RSI.
As can be seen from Figure 13(a), the

RSI is required for learning the jumping-
in-place task. Without it, the agent con-
verges to a local optimum and fails to
complete the task. Despite the overall high reward, it can be
seen in Figure 13(b) that directly training the long-distance
jump also results in an early convergence to a standing behav-
ior, which highlights the need for our curriculum strategy.
Similarly, we also observe this behavior even without applying
domain randomization, which can have a regularizing effect.

DISCUSSION AND CONCLUSION
In this work, we present a curriculum-based end-to-end DRL
approach capable of learning a variety of precise short- and
long-distance jumps while also reaching the desired yaw
upon landing. Unlike many existing methods, we have
achieved this through a single policy, without the need for
reference trajectories and additional imitation rewards. Fur-
thermore, unlike other reference-free works, our curriculum
guides the robot to more effectively explore the task of jump-

ing and develop a much more agile and explosive style of
jumping, significantly outperforming existing methods. Our
framework is flexible, and it can be adopted to learn better
jumping skills in existing methods, which learn a separate set
of skills for different each task [29], [30], [31].

Furthermore, through domain randomization, we success-
fully deployed the policy onto the real system and closely

matched the expected behavior from
the simulation. The system was robust
to the noisy sensor data, especially the
foot contact sensors and the velocity
state estimates. The jumps exhibited high
 accuracy, both in simulation and on the
hardware, in terms of tracking the desired
landing position and orientation. Further-
more, our policy achieved a 90-cm for-
ward jump on the Unitree Go1 robot, a
distance greater than those reported by
other model- and learning-based control-
lers. We demonstrated additional outdoor
tests, where the robot successfully per-
formed nine consecutive jumps on soft
grass despite only having been trained
on flat terrain in simulation. In addi-
tion, we showed that simulating obstacles

throughout training and conditioning the policy on their prop-
erties can enhance the mobility of the robot, allowing it to
safely leap over or land on objects of up to 10 cm.

When executing a long-distance jump, real animals exhibit
a four-legged contact phase, followed by an upward pitch and pure
rear-leg contact at takeoff. During landing, a mirrored behavior
is observed—the body is pitching downward, and contact is
first gained with the front legs. Previous model-based control
works [4], [5] have manually incorporated this contact schedule
into their optimizers. It would be interesting to investigate how
such behavior can be learned through DRL without supplying a
reference trajectory and validate its benefits compared to the style
of jumping exhibited here.

The number of rewards can be seen as a limitation of our
approach, although they are intuitive and relatively easy to
adjust. During our evaluation, we found that most of these

00

1010

15

20

25

30

35 Ours Ours
No RSI No RSI

No Curriculum
No Curriculum and No
Domain Randomization

20

30

40

50

2,0001,000 1,500 2,000 2,500500 4,0003,000 6,000 8,000 10,000 12,000
Update StepsUpdate Steps

(b)(a)

M
ea

n
R

ew
ar

d

M
ea

n
R

ew
ar

d

FIGURE 13. The mean reward throughout training for the (a) stage 1: jumping in place and (b) stage 2: long-distance jump tasks.

“
OUR POLICY ACHIEVED A
90-CM FORWARD JUMP
ON THE UNITREE GO1
ROBOT, A DISTANCE

GREATER THAN THOSE
REPORTED BY OTHER

MODEL- AND LEARNING-
BASED CONTROLLERS.

„

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 202548

rewards primarily serve to regularize the motion and are not
essential for learning the jumping behavior. It would be inter-
esting to investigate how improved exploration methods could
reduce the need for many of the dense rewards. Additionally, in
the future, we aim to enhance the robot’s mobility by general-
izing to a broader range of agile behaviors, including climbing
skills, various jumping styles, and acrobatic motions.

ACKNOWLEDGMENT
This work is supported in part by the EU project 101016970
NI and in part by the European Union’s Horizon Europe Pro-
gram from Project EMERGE under Grant 101070918. A
supplementary video can be found at https://www.youtube.
com/watch?v=nRaMCrwU5X8. The code associated with
this work can be found at https://github.com/vassil-atn/
Curriculum-Quadruped-Jumping-DRL. The corresponding
author is Jiatao Ding.

AUTHORS
Vassil Atanassov, Oxford Robotics Institute, Department of
Engineering Science, University of Oxford, OX1 3PJ Oxford,
U.K. E-mail: vassilatanassov@robots.ox.ac.uk.

Jiatao Ding, Department of Cognitive Robotics, Delft
University of Technology, 2628CD Delft, The Netherlands.
E-mail: j.ding-2@tudelft.nl.

Jens Kober, Department of Cognitive Robotics, Delft
University of Technology, 2628CD Delft, The Netherlands.
E-mail: j.kober@tudelft.nl.

Ioannis Havoutis, Oxford Robotics Institute, Department
of Engineering Science, University of Oxford, OX1 3PJ
Oxford, U.K. E-mail: ioannis@robots.ox.ac.uk.

Cosimo Della Santina, Department of Cognitive
Robotics, Delft University of Technology, 2628CD Delft, The
Netherlands, and the Institute of Robotics and Mechatronics,
German Aerospace Center, 82234 Wessling, Germany.
E-mail: cosimodellasantina@gmail.com.

REFERENCES
[1] J. Hwangbo et al., “Learning agile and dynamic motor skills for legged
robots,” Sci. Robot., vol. 4, no. 26, Jan. 2019, Art. no. eaau5872, doi: 10.1126/sci-
robotics.aau5872.

[2] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
robust perceptive locomotion for quadrupedal robots in the wild,” Sci. Robot., vol. 7,
no. 62, Jan. 2022, Art. no. eabk2822, doi: 10.1126/scirobotics.abk2822.

[3] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion in chal-
lenging terrains using egocentric vision,” 2022, arXiv:2211.07638.

[4] Q. Nguyen, M. J. Powell, B. Katz, J. D. Carlo, and S. Kim, “Optimized jump-
ing on the MIT cheetah 3 robot,” in Proc. Int. Conf. Robot. Automat., May 2019,
pp. 7448–7454, doi: 10.1109/ICRA.2019.8794449.

[5] C. Nguyen and Q. Nguyen, “Contact-timing and trajectory optimization for 3D
jumping on quadruped robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2022, pp. 11,994–11,999, doi: 10.1109/IROS47612.2022.9981284.

[6] J. Ding, V. Atanassov, E. Panichi, J. Kober, and C. D. Santina, “Robust quadru-
pedal jumping with impact-aware landing: Exploiting parallel elasticity,” IEEE
Trans. Robot., vol. 40, pp. 3212–3231, 2024, doi: 10.1109/TRO.2024.3411988.

[7] J. Ding, M. A. v. L. Sels, F. Angelini, J. Kober, and C. D. Santina, “Robust
jumping with an articulated soft quadruped via trajectory optimization and itera-
tive learning,” IEEE Robot. Autom. Lett., vol. 9, no. 1, pp. 255–262, Jan. 2023,
doi: 10.1109/LRA.2023.3331288.

[8] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: Rapid motor adaptation for
legged robots,” in Robotics: Science and Systems XVII, D. A. Shell, M. Toussaint,
and M. A. Hsieh, Eds., Robotics: Science and Systems Foundation, Jul. 2021, doi:
10.15607/RSS.2021.XVII.011.

[9] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in minutes
using massively parallel deep reinforcement learning,” in Proc. Conf. Robot
Learn., Jan. 2022, pp. 91–100.

[10] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning qua-
drupedal locomotion over challenging terrain,” Sci. Robot., vol. 5, no. 47, Oct.
2020, Art. no. eabc5986, doi: 10.1126/scirobotics.abc5986.

[11] C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grimminger, and G. Martius,
“Learning agile skills via adversarial imitation of rough partial demonstrations,”
in Proc. Conf. Robot Learn., 2022, vol. 205, pp. 342–352.

[12] Z. Li, X. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath, “Robust
and versatile bipedal jumping control through reinforcement learning,” in
Robotics: Science and System XIX, K. Bekris, K. Hauser, S. Herbert, and J. Yu,
Eds., Robotics: Science and Systems Foundation, Jul. 2023, doi: 10.15607/
RSS.2023.XIX.052.

[13] G. Bellegarda, C. Nguyen, and Q. Nguyen, “Robust quadruped jumping via
deep reinforcement learning,” 2023, arXiv:2011.07089.

[14] Y. Fuchioka, Z. Xie, and M. van de Panne, “OPT-Mimic: Imitation of opti-
mized trajectories for dynamic quadruped behaviors,” in Proc. Int. Conf. Robot.
Automat., 2023, pp. 5092–5098, doi: 10.1109/ICRA48891.2023.10160562.

[15] F. Yu, R. Batke, J. Dao, J. Hurst, K. Green, and A. Fern, “Dynamic bipedal
turning through sim-to-real reinforcement learning,” in Proc. IEEE-RAS 21st Int.
Conf. Humanoid Robots (Humanoids), Piscataway, NJ, USA: IEEE Press, Nov.
2022, pp. 903–910, doi: 10.1109/Humanoids53995.2022.10000225.

[16] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa, “AMP: Adversarial
motion priors for stylized physics-based character control,” ACM Trans. Graphics
(ToG), vol. 40, no. 4, pp. 1–20, 2021, doi: 10.1145/3476576.3476723.

[17] A. Escontrela et al., “Adversarial motion priors make good substitutes for
complex reward functions,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Piscataway, NJ, USA: IEEE Press, Oct. 2022, pp. 25–32, doi: 10.1109/
IROS47612.2022.9981973.

[18] E. Vollenweider, M. Bjelonic, V. Klemm, N. Rudin, J. Lee, and M. Hutter,
“Advanced skills through multiple adversarial motion priors in reinforcement
learning,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), Piscataway, NJ,
USA: IEEE Press, May 2023, pp. 5120–5126, doi: 10.1109/ICRA48891.2023.
10160751.

[19] L. M. Smith et al., “Learning and adapting agile locomotion skills by trans-
ferring experience,” 2023, arXiv:2304.09834.

[20] Z. Yin, Z. Yang, M. van de Panne, and K. Yin, “Discovering diverse athletic
jumping strategies,” ACM Trans. Graphics, vol. 40, no. 4, pp. 91:1–91:17, 2021,
doi: 10.1145/3450626.3459817.

[21] G. B. Margolis et al., “Learning to jump from pixels,” in Proc. Conf. Robot
Learn., PMLR, 2021, vol. 164, pp. 1025–1034.

[22] Y. Yang, X. Meng, W. Yu, T. Zhang, J. Tan, and B. Boots, “Continuous versa-
tile jumping using learned action residuals,” in Proc. Annu. Learn. Dyn. Control
Conf., Jun. 2023, pp. 770–782.

[23] Y. Yang et al., “CAJun: Continuous adaptive jumping using a learned cen-
troidal controller,” in Proc. 7th Conf. on Robot Learn., PMLR, Dec. 2023, pp.
2791–2806.

[24] N. Rudin, H. Kolvenbach, V. Tsounis, and M. Hutter, “Cat-like jumping and
landing of legged robots in low gravity using deep reinforcement learning,” IEEE
Trans. Robot., vol. 38, no. 1, pp. 317–328, Feb. 2022, doi: 10.1109/TRO.
2021.3084374.

[25] F. Vezzi, J. Ding, A. Raffin, J. Kober, and C. D. Santina, “Two-stage learning
of highly dynamic motions with rigid and articulated soft quadrupeds,” in Proc.
IEEE Int. Conf. Robot. Automat. (ICRA), Piscataway, NJ, USA: IEEE Press, May
2024, pp. 9720–9726, doi: 10.1109/ICRA57147.2024.10610561.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017, arXiv:1707.06347.

[27] Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne, “ALLSTEPS:
Curriculum-driven learning of stepping stone skills,” Comput. Graphics Forum,
vol. 39, no. 8, pp. 213–224, 2020, doi: 10.1111/cgf.14115.

[28] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with legged
robots,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), Piscataway, NJ, USA:
IEEE Press, May 2024, pp. 11,443–11,450, doi: 10.1109/ICRA57147.2024.10610200.

[29] D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour: Learning
agile navigation for quadrupedal robots,” Sci. Robot., vol. 9, no. 88, 2024, Art. no.
eadi7566, doi: 10.1126/scirobotics.adi7566.

[30] K. Caluwaerts et al., “Barkour: Benchmarking animal-level agility with
quadruped robots,” May 2023, arXiv:2305.14654.

[31] Z. Zhuang et al., “Robot parkour learning,” in Proc. 7th Conf. Robot Learn.,
J. Tan, M. Toussaint, and K. Darvish, Eds., Nov. 2023, PMLR, vol. 229, pp. 73–92.

[32] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “DeepMimic: Example-
guided deep reinforcement learning of physics-based character skills,” ACM Trans.
Graphics, vol. 37, no. 4, pp. 143:1–143:14, Jul. 2018, doi: 10.1145/3197517.3201311.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1126/scirobotics.aau5872
http://dx.doi.org/10.1126/scirobotics.aau5872
http://dx.doi.org/10.1126/scirobotics.abk2822
http://dx.doi.org/10.1109/ICRA.2019.8794449
http://dx.doi.org/10.1109/IROS47612.2022.9981284
http://dx.doi.org/10.1109/TRO.2024.3411988
http://dx.doi.org/10.1109/LRA.2023.3331288
http://dx.doi.org/10.15607/RSS.2021.XVII.011
http://dx.doi.org/10.1126/scirobotics.abc5986
http://dx.doi.org/10.15607/RSS.2023.XIX.052
http://dx.doi.org/10.15607/RSS.2023.XIX.052
http://dx.doi.org/10.1109/ICRA48891.2023.10160562
http://dx.doi.org/10.1109/Humanoids53995.2022.10000225
http://dx.doi.org/10.1145/3476576.3476723
http://dx.doi.org/10.1109/IROS47612.2022.9981973
http://dx.doi.org/10.1109/IROS47612.2022.9981973
http://dx.doi.org/10.1109/ICRA48891.2023.10160751
http://dx.doi.org/10.1109/ICRA48891.2023.10160751
http://dx.doi.org/10.1145/3450626.3459817
http://dx.doi.org/10.1109/TRO.2021.3084374
http://dx.doi.org/10.1109/TRO.2021.3084374
http://dx.doi.org/10.1109/ICRA57147.2024.10610561
http://dx.doi.org/10.1111/cgf.14115
http://dx.doi.org/10.1109/ICRA57147.2024.10610200
http://dx.doi.org/10.1126/scirobotics.adi7566
http://dx.doi.org/10.1145/3197517.3201311
https://www.youtube.com/watch?v=nRaMCrwU5X8
https://www.youtube.com/watch?v=nRaMCrwU5X8
https://github.com/vassil-atn/Curriculum-Quadruped-Jumping-DRL
https://github.com/vassil-atn/Curriculum-Quadruped-Jumping-DRL

	035_32mra02-atanassov-3487325

