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By Vassil Atanassov , Jiatao Ding , 
Jens Kober , Ioannis Havoutis , 
and Cosimo Della Santina

Curriculum-Based 
Reinforcement 
Learning for 
Quadrupedal 
Jumping

Deep reinforcement learning (DRL) has emerged as a promis-
ing solution to mastering explosive and versatile quadrupedal 
jumping skills. However, current DRL-based frameworks usu-
ally rely on pre-existing reference trajectories obtained by 
capturing animal motions or transferring experience from 
existing controllers. This work aims to prove that learning 
dynamic jumping is possible without relying on imitating a 
reference trajectory by leveraging a curriculum design. Start-
ing from a vertical in-place jump, we generalize the learned 
policy to forward and diagonal jumps and, finally, we learn to 
jump across obstacles. Conditioned on the desired landing 
location, orientation, and obstacle dimensions, the proposed 
approach yields a wide range of omnidirectional jumping 
motions in real-world experiments. In particular, we achieve a 
90-cm forward jump, exceeding all previous records for simi-
lar robots. Additionally, the robot can reliably execute contin-
uous jumping on soft grassy grounds, which is especially 

remarkable as such conditions were not included in the train-
ing stage.

INTRODUCTION
Through millions of years of evolution, legged animals have 
adapted to locomote in highly complex and discontinuous 
environments that widely exist in nature. Goats, for example, 
are capable of scaling nearly vertical mountainsides and 
jumping across chasms several times their body length. While 
many works have tackled dynamic locomotion [1], [2], [3], 
achieving such complex controlled behavior is still an open 
challenge.

Quadrupedal jumping has traditionally been investigated 
through model-based control, where an accurate model of the 
dynamical system is needed to generate optimal control inputs 
[4], [5], [6], [7]. In addition, these methods rely on various heu-
ristics to render the approach feasible, limiting the search space 
and resulting in conservative performance.

In contrast to model-based optimization, model-free rein-
forcement learning (RL) has emerged as an effective alternative 
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that does not require expert knowledge for control engineer-
ing and tedious gain tuning. Especially, deep RL (DRL) has 
shown impressive generalization and robustness capabilities 
in executing locomotion tasks [1], [2], [8], [9], [10]. For quadru-
pedal jumping, a series of correct actions need to be taken for 
the robot to succeed. Paired with an inherently sparse reward 
structure (the robot has either jumped or not), it is exception-
ally hard for the robot to learn, as most of its trials will fail. 
Current RL approaches tackle this by directly transferring 
skills from demonstrations [11], [12] or optimal controllers 
[13], [14], [15]. However, balancing the degree to which the 
agent should imitate the demonstration and generalize to new 
tasks is nontrivial.

In this work, we push robots to learn to jump on their 
own by combining curriculum learning (CL) with DRL, 
eliminating the reliability of precomputed motion references 
(Figure 1). By conditioning the policy on the desired land-
ing location and orientation, our approach produces versatile 
jumping motions with just one single policy. Furthermore, by 
incorporating partial knowledge of the obstacles surrounding 
it, the robot learns different maneuvers adapted to complex 
real-world scenarios.

The main contributions are summarized as follows:
 ■ We propose a curriculum-based DRL framework that is 

capable of learning jumping motions without requiring 
motion capture data or a reference trajectory.

 ■ We generalize across a wide range of jumps with a single 
policy for both indoor and outdoor environments. With 
our method, the real robot can jump 90 cm forward, 
which, to the best of our knowledge, is the longest dis-
tance achieved on quadrupeds of a similar size. It has 

been demonstrated that continuous jumping across grass-
land and robust jumping across uneven terrains can be 
achieved in a zero-shot manner.

 ■ We achieve jumping over obstacles and more complex ter-
rains of various sizes by conditioning the policy on some 
partial environmental information in an additional curricu-
lum stage.
In the “Related Work” section, we review the existing  

RL-based jumping controllers. In the following two sections, 
we separately present the curriculum design and DRL formu-
lation. After extensively evaluating our method in the “Exper-
imental Validation” section, we conclude this work with a 
thorough discussion in the final section.

RELATED WORK

RL FOR QUADRUPEDAL JUMPING
DRL is a promising solution for accomplishing jumping tasks 
by offloading the computational complexity to offline train-
ing. One approach to learning quadrupedal jumping is by 
learning from demonstrations, such as from trajectories gen-
erated through optimal control [13], [14], or hand-tuned refer-
ence motions [11], [12]. To address the challenges associated 
with the selection of relevant states to mimic and manage 
conflicting objectives, generative adversarial imitation learn-
ing has recently been widely adopted [16], [17], [18], even 
when dealing with partially incomplete demonstrations [11]. 
In [19], transfer learning is used to learn policies capable of 
diverse agile motions from a database of existing RL and 
model-based controllers. However, most imitation-based 
methods have so far shown a limited generalization capability 

(a)

(b)

(c)

FIGURE 1. The Go1 robot (a) jumps across grassland, (b) jumps down onto grassland, and (c) jumps across a gap onto a lower box.
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beyond the imitation domain. Furthermore, many of the 
aforementioned works rely on learning a separate policy for 
each unique type of motion rather than a common task- or 
goal-conditioned policy.

To reduce the dependency on a motion prior, [20] used a 
variational autoencoder to encapsulate motion capture data 
into a latent space and then combine it with a Bayesian diver-
sity search to discover viable takeoff states. In [21], Margolis 
et al. trained a high-level motion-planning module to produce 
desired center of mass (CoM)  trajectories for small hops, con-
ditioned on visual inputs and then tracked by a model-based 
controller. In [13], deviations to reference trajectories generat-
ed by a nonlinear optimal trajectory [5] were learned, provid-
ing better generalization to out-of-training domains. Similarly, 
the researchers in [22] taught action residuals to a model-
based controller to achieve continuous jumping. Another work 
focusing on continuous hopping [23] used a learned centroidal 
policy to output desired CoM trajectories, which are tracked 
by a quadratic programming-based ground reaction force con-
troller. Rudin et al. [24] showed cat-like jumping in low grav-
ity by using a more complex reward function without imitating 
motion clips. However, this approach has not yet been veri-
fied on Earth-like gravitational conditions. Recently, Vezzi et 
al. [25] proposed learning to jump by combining a first-stage 
evolution strategy with a second-stage DRL. Unlike [25], our 
approach offers reduced complexity by using proximal pol-
icy optimization (PPO) [26] for all curriculum stages, and it 
is capable of executing a range of jumps conditioned on the 
desired jumping length and orientation rather than a single 
distance-maximizing jump.

CL IN DYNAMIC QUADRUPEDAL LOCOMOTION
CL is a training framework that progressively provides more 
challenging data or tasks as the policy improves. As the name 
suggests, the idea behind the approach borrows from human 
education, where complex tasks are taught by breaking them 
into simpler parts.

In legged locomotion, CL has seen wide use, mainly in 
terms of terrain adaptation. Xie et al. [27] showed how an 
adaptive curriculum can be used to 
learn stepping-stone skills much more 
efficiently than other methods, like 
uniform sampling. Similarly, other 
automatic CL methods have been pro-
posed to vary environmental param-
eters based on the performance of the 
agents [10] rather than using a manu-
ally specified curriculum. Hwangbo 
et al. [1] employed a curriculum of 
adaptive regularization reward scales. 
In [28], parkour locomotion skills 
were learned through a well-designed 
 terrain curriculum with a single policy, 
which was then distilled to a extero-
ception-conditioned policy. Similar 
parkour skills were acquired in [29], 

but the method requires separate policies for each skill as 
well as a perception and navigation network, which greatly 
increases the computational complexity. Barkour [30] uses a 
similar approach but distills the specialist controllers into a 
single generalist transformer policy. To learn dynamic park-
our skills, [31] adopted a two-stage curriculum, transitioning 
from soft to hard dynamic constraints in the second stage. 

In contrast to all of these works, we propose a task-based 
curriculum, which alters the task structure and objectives rath-
er than the reward scales or environment properties. Recently, 
[12] used multistage training to learn imitation-based vertical 
jumping and then transferred that knowledge to forward jump-
ing. While similar to our approach, however, there are a cou-
ple of significant differences: we do not require any reference 
trajectories, and we learn a single unified policy for versatile 
jumping motions.

CURRICULUM DESIGN
Defining and constraining the behavior of jumping across 
specific distances is challenging, as it combines two distinct 
behaviors: that of “jumping” and that of reaching a desired 
spatial point. Furthermore, an easily learnable local optimum 
exists, where the robot could simply walk (or crawl) toward 
the target point without actually jumping. To avoid converg-
ing to such undesired behavior, we use CL to decompose the 
problem into several simpler subtasks.

In our approach, we adopt two types of curricula—on a 
local difficulty level and on a task level, as can be seen in Fig-
ure 2. The former involves progressively (and automatically) 
making the environment more complex as the agent succeeds. 
In particular, upon successful jumps, we increase the range of 
desired jumping distances and obstacle heights that we sample 
from. The task-level curriculum is, on the other hand, manual-
ly selected and consists of training the agent for a certain num-
ber of steps at a given task. After mastering the easier jumping 
skill, the policy is loaded onto the next task, which might be 
defined differently and contains a new set of rewards.

In the remainder, we describe each of these task-level and 
difficulty curricula in the progressive order of training.

FIGURE 2. The curricula: (a) jumping in place, (b) long-distance jump, and (c) long-distance 
jump with obstacles. The latter two vary the jump distance/orientation and obstacle height, 
respectively. 

Distance
Curriculum

Obstacle
Curriculum

Constant

+ Height and Upward
Velocity Initialization

+ Forward and Lateral
Commands
+ Forward Pushes

Police π1

(a) (b) (c)

Police π2 Police π3

+ Obstacles
+ Obstacle Information
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STAGE 1: JUMPING IN PLACE
Vertical jumping without traversing a certain horizontal dis-
tance, i.e., jumping in place, is the basic component of agile 
jumping. However, the lack of reference results in a learning 
problem with sparse rewards, given that the agent needs to 
first learn certain behaviors (e.g., squatting down and then 
pushing hard against the ground to take off) before it can 
reach the reward-rich states (i.e., being high in the air). As the 
robot does not experience these jumping-specific rewards ini-
tially, it is prone to converging to a local optimum, such as 
standing in place, where small rewards are collected safely.

To avoid getting stuck in this local optimum behavior, we 
adopt a modified form of the reference state initialization 
(RSI) technique [32]. In imitation learning, RSI initializes the 
agent at random points of the reference trajectory, allowing the 
agent to explore such reward-rich states before it has learned 
the actions necessary to reach them. As we do not use a refer-
ence trajectory, we instead modify RSI to sample a random 
height and upward velocity from a predefined range.

STAGE 2: LONG-DISTANCE JUMP
Once the robot has converged to a jumping-in-place behavior, we 
further train it to perform precise forward and diagonal jumps. 
The first part of the command vector g R13!  (see Figure 3) in 
the observations specifies the desired landing point and orienta-
tion to create a goal-conditioned policy. Similarly to the jumping-
in-place subtask, we also adopt a curriculum-style sampling for 
desired landing points, where successful agents are progressed to 
more difficult environments where the desired jumping distance 
and landing yaw are sampled from a greater range.

STAGE 3: LONG-DISTANCE JUMP ACROSS OBSTACLES
Finally, we introduce obstacles in the environment. Without 
loss of generality, we choose three classes of obstacles, includ-
ing thin barrier-like objects, box-shaped obstacles, and slopes. 
Depending on the desired landing pose and the obstacle loca-
tion and type, the agent needs to either jump onto or over it. 
While it is possible to learn a general behavior that can accom-
plish this without any exteroception, such a behavior will be 
conservative, suboptimal, and potentially much less robust. 

With this in mind, we incorporate 
information about the distance to the 
center of the obstacles and its general 
dimensions (length, width, and height). 
In the real world, we manually specify 
these parameters.1

Similar to the previous stage, we start 
with obstacles of smaller height. Then, 
successful robots progress toward more 
challenging terrains, whereas failing 
ones are demoted to easier environments. 
To ensure that the robot remembers the 
previously learned behavior, we also ran-
domly send a certain percentage of robots 
to jump on flat ground, as in stage 2.

DRL FORMULATION
This section details the DRL formulation, as illustrated in 
Figure 4. First, preliminaries are introduced. Then, we define 
the key components of goal-conditioned RL, including obser-
vations, actions, and reward functions. Finally, we introduce 
our domain randomization scheme to mitigate the 
 simulation-to-reality (sim2real) gap.

PRELIMINARIES
RL infers a policy ( )a st t;r  of how to act by constantly inter-
acting with the environment. The RL problem is typically for-
mulated as a Markov decision process, where, at each step, the 
agent interacts with the environment by taking an action 

Aat ! . Subsequently, it receives the new states of the envi-
ronment s Ot 1 !+  in the form of observation and the associat-
ed reward Rt  that it has earned. Based on the observed state 
st 1+  and its policy ( ),a st t1 1;r + +  the agent can then choose a 
new action .at 1+  In this way, the RL algorithm optimizes 
behaviors that yield high rewards. In goal-conditioned RL, the 
action policy can also be conditioned on specific goals, i.e., 

( , ).a s gt t;r  Such a policy can be used to produce diverse 
behaviors depending on the specific command g, enabling the 
learning of multiple distinct behaviors under a single policy.

In this work, we formulate the following objective: find-
ing a policy ( , )a s g;r  that maximizes the cumulative sum of 
rewards earned over the task duration. As often immediate 
rewards are more valuable than rewards in the distant future, 
a discount factor ( , ]0 1!c  is commonly used. Mathemati-
cally, the full objective of maximizing the sum of discounted 
rewards J, known as the return, can be written as

 ( )argmax J R s sE ( )p
t

t
t

T

0
π 0r c= =+x x

=

r = G/  (1)

where Rt  is the immediate reward at time t and s0  is the initial 
state. The expectation of the return is taken over a trajectory x  
sampled by following the policy. We optimize this objective 

1A separate module that estimates obstacle dimensions could be utilized. One future 
work would be linking exteroceptive sensors to the policy and removing the param-
eterization of the world around the robot.
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FIGURE 3. The definition of observations. The command g and jump toggle j are provided 
by the user, while the remaining observations are either directly read from the sensors or 
estimated using sensory data.
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using the PPO algorithm, with both the 
actor and the critic parameterized by a 
multilayer perceptron (MLP) network.

OBSERVATION AND ACTION SPACE

OBSERVATION SPACE
Using a memory of previous observa-
tions and actions allows the agent to 
implicitly reason about its own dynamics 
and the interaction with the environment 
[1], [10]. Here, we use a concatenated his-
tory of the last N steps as input to the 
policy.2 As illustrated in Figure 4, the 
observation space consists of the histori-
cal base linear velocity ,v R N3! #  base 
angular velocity R N3!~ #  (both in the base frame), joint posi-
tion ,q R N12! #  joint velocity ,q R N12! #o  previous actions 

,a Rt
N

1
12! #

-  base orientation (as a quaternion) ,q R N4! #r  
and foot contact states .c R N4! #

Note that our policy is also conditioned on the com-
mand g R13!  and jump toggle { , }j 0 1!  (see the green 
block in Figure 4). As illustrated in Figure 5, the command 

[ , , , ]dimg p q pdes des obs obsT! r  contains the desired land-
ing position ( ),p Rdes

3T !  the desired landing orientation 
( ),q Rdes

4!r  the center of the obstacle (p Robs
3!  if present), 

2In practice, we found that using the last 20 steps is sufficient for the task while also 
being fast for training.

and its dimensions (dim Robs
3!  including height, width, and 

length).3 Due to the lack of long-term memory in the feed-
forward neural network, we use the jump toggle j to indicate 
whether the robot has already jumped, similar to [32]. Howev-
er, in our case, the jump toggle also serves as a control switch, 
where the robot remains standing until its value is changed.

ACTION SPACE
Our policy generates the 12 actuated joint angles ( )q Rdes 12!  
for jumping control. Particularly, we learn the deviations 

3In the training process, we sample the landing pose and obtain the obstacle parame-
ters from the simulator. In the real world, the command vector is specified by the user.
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•

FIGURE 4. A control diagram of the system. The observations ot  include the user command (in green) and a history of system states 
(in yellow). The policy is parameterized by a neural network (shown in blue). The output actions at 1+  are added to the nominal joint 
angles qnom  and passed through a low-pass filter. The desired joint angles are then tracked via a PD controller, which computes 
torque commands. PD: proportional derivative.
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FIGURE 5. The command vector g for a forward jump onto an obstacle. In the first two 
training stages ( Ir  and ),IIr  where no obstacles are considered, the information of the 
obstacle is set to zero. 
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from the nominal joint positions .q Rnom 12!  To smooth the 
output actions, we used an exponential moving average low-
pass filter with a cutoff frequency of 5 Hz. The filtered 
actions are then scaled and added to qnom  to generate qdes  for 
the motor servos, i.e., .q a qdes nom= +  A proportional deriva-
tive (PD) feedback controller then produces the desired 
torque at a higher frequency, as shown in Figure 4. To guar-
antee safety, we clip qdes  within the feasibility range when 
the real joint angles approach the limits.

REWARDS
Ideally, we expect the agent to accomplish the task while 
maximizing the rewards it receives. However, a poor choice 
of reward scaling could lead the agent to converge to the 
local minima, e.g., standing behavior without jumping, 

where only certain penalties, like energy cost and joint 
acceleration, are minimized. To avoid this, instead of naively 
summing them, we multiply the positive component of the 
reward by the exponent of the squared negative  component, 
i.e., ( / ).r r retotal

2< < v= -+ - 4 This allows the agent to always 
receive a strictly positive reward, scaled down by the amount 
of penalties, which improves the learning stability.

As listed in Table 1, three phases are used to describe when 
each reward is given. In particular, stance indicates that the 
robot has been given a command to jump but is still on the  
ground. Then, flight is triggered when the robot is in midair  

4For conciseness, the notation ( / )xe < < v- 2  is used to represent passing the squared 
error x< <2  through an exponential kernel of the form ( / ).xexp < < v- 2  This ensures 
the reward is positive and scales it between zero and one.

NAME TYPE STANCE FLIGHT LANDING 

Landing  
position 

Sparse 0 0 ( ( ) / )w p pe ,pland des
2

landp < < vR- -

Landing  
orientation 

Sparse 0 0 ( ( ( ) /logw e )q qori land
1

des
2

ori,land)< < v- -r r

Maximum  
height 

Sparse 0 0 ( ( . ) / ))w he 0 9 ,max maxh p
2

z< < v-

Jumping Sparse 0 0 wjump

Base  
position 

Dense ( ( . / ))w pe 0 20 ,p z p,st
2

stz z< < v- - ( ( . / ))w pe 0 7, ,p z pfl
2

flz z< < v- -  ( ( / ))w e p p, ,lpl des
2

p < < vR- -

Orientation  
tracking 

Dense ( ( ( / ))logw e q q,ori st base
1

des
2

ori,st)< < v- -r r 0 ( ( ( ) / ))logw e q q ,ori,l base
1

des
2

ori l)< < v- -r r

Base linear  
velocity 

Dense 0 ( ( / ))w e v v,x y vdes
2

v ,x y < < vR- -  0 

Base angular  
velocity

Dense 0 ( ( / ))w e des
2< < v~ ~R- - ~~  . ( ( / ))w0 1 e 2< < v~R- ~~

Feet  
clearance 

Dense 0 ( [ . , . , . ] )w p p 0 0 0 0 0 15feet feet feet
0 2< <- + -  0 

Symmetry Dense ( ( )w q qsym joint right
2

left; ;R -

Nominal  
pose 

Dense ( ( / )w q qe ,j j qnom
2

q joint < < vR- - 0.1 ( ( / )w e q q ,j j qjoint nom
2

q < < vR- - ( ( / )w e q q ,j j qjoint nom
2

q < < vR- -

Energy Dense ( )w qT
energy x o

Base  
acceleration 

Dense w vacc
2; ;o

Contact  
change 

Dense ( ( ) ( ))w c t c t 1c feet foot footR - -

Maintain  
contact 

Dense ( )w c tcontact feet footR 0 0 

Contact  
forces 

Dense w F FF i
n

i0
f

c ; ;R -=
r

Action rate Dense ( ) ( )w t t 1a aa joint
2; ;R - -

Joint  
acceleration 

Dense w qq jjoint
2; ;R pp

Joint limits Dense w q q lim,q j jjoint
2

lim ; ;R -

The light orange color indicates task-based rewards, while the light purple shade describes regularization rewards. w#  is the weight, v#  is a scaling 
factor for the exponential kernel, and ( )e $  and ( )log $  separately denote the exponent and logarithm operation.

TABLE 1. Rewards definition.
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and has no contact with the ground. Finally, the landing 
begins upon landing and lasts until the end of the episode. In 
each phase, task-based rewards (in orange) and regulariza-
tion rewards (in violet) are considered. On the other hand, the 
rewards items can be divided into sparse type and dense type, 
where the former is given once per episode (typically at the 
end), and the latter is given once per each simulation step that 
satisfies the conditions.

TASK REWARDS
First, sparse rewards are introduced to encourage the general 
behavior for accomplishing the desired jumping task, includ-
ing those of detecting contact (“landing”) after several steps 
of no contact (“flight”), the maximum height the agent 
reached, and whether it has landed at the desired position 
with the desired orientation. These rewards are only given 
once at the end of the episode, marked by “sparse” in Table 1. 
In addition, dense task-related objectives are also defined to 
simplify the exploration, including

 ■ tracking the desired linear velocity ( )v , ,x y
b

des  and yaw angu-
lar velocity while in flight and tracking zero angular veloc-
ity after landing

 ■ squatting down to a height of 0.2 m while on the ground 
and tracking a certain height in the air

 ■ maintaining a constant base position and tracking the 
desired orientation after landing.
Notably, to ensure enough clearance when jumping forward 

and over obstacles, we introduce a foot clearance reward that 
tracks the nominal foot position (i.e., at the nominal joint angles 

)qnom  on the xy-plane and, simultaneously, minimizes the z-dis-
tance between each foot and the CoM. This objective encour-
ages the robot to tuck its legs in close to its body while in the air.

REGULARIZATION REWARDS
As we do not imprint any reference motions onto the agent, 
auxiliary regularization rewards are needed to achieve 
smooth, feasible, and safe behavior. Specifically, we penalize 
the action rate, together with any violations of predefined soft 
limits for the joint position. Furthermore, the instantaneous 
energy power, computed as the dot product between the actu-
ator torque and joint velocity, is penalized for generating an 
energy-efficient motion. Considering that various quadrupe-
dal jumps seen in nature exhibit high left- and right-side sym-
metry, we drive the robot toward maintaining this symmetry 
with an additional reward. Finally, we noticed that the robot 
often stomped its feet rapidly during the squat-down stage in 
the training process. To eliminate this unnecessary behavior, 
we add a small reward for maintaining contact in the first few 
steps of the episode as well as a penalty on frequent contact 
state changes.

TERMINATION
We terminate each episode when the following events 
occur:

 ■ collision between body links and the environment
 ■ base height lower than 0.12 m

 ■ orientation error larger than 3 rad
 ■ landing position error bigger than 0.15 m.

DOMAIN RANDOMIZATION
To bridge the gap between simulation and real-world scenari-
os, we implement zero-shot domain randomization. The 
ground friction, restitution, and link mass are sampled at ran-
dom at the start of every episode. In addition, we add a ran-
dom offset to the joint encoder values, randomize 
proportional and derivative gains of the PD controller, and 
randomize the strength of the motors for every episode. The 
range of each randomized variable is listed in Table 2.

For hardware control, unmodeled communication delays 
and latencies strongly weaken the performance of learn-
ing-based policies. To tackle this issue, at the beginning of 
each episode, we sample a latency value from the range of 

[ , ]l 0 40 ms.!  Then, at each step, we add a small random 
value to reflect the effect of stochastic communication delays.

EXPERIMENTAL VALIDATION
In this section, we first validate the policy trained on the first 
two curriculum stages (i.e., policy ,2r  shown in Figure 2), 
through various experiments—forward and diagonal jumps, 
continuous jumps, and robust jumping in the presence of 
environmental disturbances and uneven terrains. Then, we 
validate the policy after the final training stage (policy )3r  
when jumping onto and over obstacles. For the deployment, 
we used a naive velocity state estimator that uses the inverse 
kinematics (IK) to estimate the body velocity while in con-
tact with the ground and integrates the inertial measurement 
unit acceleration data in midair.

TRAINING SETUP
The implementation is based on the open source Legged gym 
environment [9]. Specifically, we use 4,096 agents and 24 
environmental steps per agent per update step. For the 
 vertical jump, we train for 3,000 iterations, while, for the 

NAME RANDOMIZATION RANGE 

Ground friction [0.01, 3] 

Ground restitution [0, 0.4] 

Additional payload [–1, 3] kg 

Link mass factor [0.7, 1.3] × 

CoM displacement [–0.1, 0.1] m 

Episodic latency [0, 40] ms 

Extra per-step latency [–5, 5] ms 

Motor strength factor [0.9, 1.1] × 

Joint offsets [–0.02, 0.02] rad 

PD gains factor [0.9, 1.1] × 

Joint friction [0.0, 0.04] 

Joint damping [0, 0.01] N · m · s · rad–1

TABLE 2. Randomized variables and their ranges.
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forward jump without and with obstacles, we train for 10,000 
steps each. The actor policy and the critic are parameterized 
by a shared MLP with three hidden layers of dimensions 
[256, 128, 64], with exponential linear unit activations after 
each layer. Using a single RTX 3090 GPU, the three highly 
parallelized training stages took approximately 1.4, 4.1, and 
4.8 h, respectively.

The policy operates at a frequency of 50 Hz, and the simu-
lation runs at 200 Hz. We performed all of the experiments 
on the Unitree Go1. During the simulation validations, we 
use a constant joint friction value of 0.03, joint damping of  
0.01 N · m · s · rad–1 and a constant latency of 40 ms.

VERSATILE JUMPING ON FLAT GROUND

FORWARD JUMPING
First, we evaluate the policy on a variety of forward jumps. 
Figure  6 compares hardware and simulation motions of a 
60-cm forward jump, while Figure 7 presents the quantitative 
results. As can be seen, the real-world behavior closely match-
es the simulated prediction. One noticeable deviation is in the 
peak torques at takeoff—where the measured torques deviate 
from both the desired torques (computed by the PD control 
law using the desired joint angles) and the simulation torques. 
Furthermore, larger joint angles for the hip and thigh are mea-
sured upon landing in real-world tests, likely due to poor 
impact modeling in the simulation. Finally, the Euler angles 
show a slight variation between the simulation and hardware. 
We believe that this mismatch is mainly due to the motor mod-
eling inaccuracies, coupled with the weight of the additional 
mass on top of the robot, shifting its CoM. Despite these state 
deviations, the jumping distance is well tracked, and the base 
velocity matches the expected behavior, showing a good sim-
2real adaptation. The controller was also robust to the particu-
larly noisy contact observations and velocity state estimates, 
which we attribute to both the extensive domain randomiza-
tion and the large amounts of noise that we simulate. As our 
curriculum gradually guides the robot toward accomplishing 

the task, it is easier for it to converge even in the presence of 
greater domain randomization and observation noise.

We then tested the maximum distance it could jump across. 
Figure 8(a) illustrates a 90-cm forward jump, with the target 
landing point shown by the yellow marker. Despite slipping 
on the soft pads as it lands, the robot recovers quickly, dem-
onstrating its robustness against uncertainties.5 To the best of 
our knowledge, this is the largest jumping distance achieved 
by robots of similar size and similar actuators (see Table 3).

DIAGONAL JUMPING
Figure  8(b) shows a diagonal jump of 50 30 cm#  with a 
desired yaw of .°30  Both the landing position and yaw are 
tracked accurately.

Furthermore, we evaluated the policy across the whole 
jumping range in simulation, the success rate and tracking 
metrics of which are presented in Figure 9. As can be seen 
from Figure 9(a), the tracking error is lowest for narrow jumps 
of a forward distance up to 50 cm. As both the longitudinal 
and lateral distances increase, so does the final landing error. 
Interestingly, most failed environments asymmetrically occur 
in the lower right corner of the plot. Figure 9(b) shows the 
same data but grouped by total desired distance versus actual 
achieved distance. We found that the data closely follow the 

°45  line (i.e., ideal performance) for the smaller jumps, with 
the gradient slowly decreasing after 50 cm.

JUMPING ONTO/ACROSS ROUGH TERRAIN
Here, we evaluate how well the policy performs in the pres-
ence of environmental disturbances, despite not being trained 
on uneven or rough ground. In this section, we ran several 
experiments, including jumping with obstacles surrounding 
the robot, blindly jumping from and onto a box, and jumping 
from asphalt onto a soft grassy terrain. As shown by the time 

5It is worth mentioning that we reward the position of the base upon landing, rather 
than the feet. As a result, in the trial, the base cleared the 90-cm distance, but the 
rear left foot landed a bit behind.
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FIGURE 6. The (a) real-world and (b) simulation execution of a forward jump. The yellow marker indicates the desired 60-cm jumping distance. 
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lapses in Figure 10(a) and (b), the policy enables robust jump-
ing onto both soft and stiff objects that could (and did) slip 
under the feet of the robot. The third row demonstrates that 
the robot could jump from hard asphalt onto soft grass, 
despite training on flat ground only.

Next, we tested the policy on a continuous jumping task, 
where a new command of a 40-cm forward jump is given fol-
lowing each jump without resetting the robot states. As seen 
in the fourth row of Figure 10, the policy is robust enough 
to execute a jump from a variety of different initial states. 

–0.5

–1

2

0

1

0

–2

–1

1

0

–2

2

0

0 2
Time (s)

Joint Angles Joint Velocities Joint Torques

4

0 2
Time (s)

4 0 2
Time (s)

4 0 2
Time (s)

4

0 2
Time (s)

40 2
Time (s)

Measured

Estimated

Desired

Desired

Sim

Sim

Flight Phase

Flight Phase

40 2
Time (s)

Base Angular Velocity Base Euler AnglesBase Velocity

(a)

(b)

4

0 2
Time (s)

4 0 2
Time (s)

4 0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4

0 2
Time (s)

4 0 2
Time (s)

4

A
ng

le
 (

R
ad

)

V
el

oc
ity

 (
R

ad
/s

)
V

el
oc

ity
 (

R
ad

/s
)

V
el

oc
ity

 (
R

ad
/s

)

V
el

oc
ity

 (
R

ad
/s

)
V

el
oc

ity
 (

R
ad

/s
)

V
el

oc
ity

 (
R

ad
/s

)

V
el

oc
ity

 (
m

/s
)

V
el

oc
ity

 (
m

/s
)

V
el

oc
ity

 (
m

/s
)

R
ol

l (
R

ad
)

x-
A

xi
s

y-
A

xi
s

z-
A

xi
s

P
itc

h 
(R

ad
)

Ya
w

 (
R

ad
)

To
rq

ue
 (

N
·m

)
To

rq
ue

 (
N

·m
)

To
rq

ue
 (

N
·m

)

H
ip

T
hi

gh
C

al
f

0.5

0

0.5A
ng

le
 (

R
ad

)
A

ng
le

 (
R

ad
)

1.5

1

0

10

0

10

–10

0

20

–20

0

0

10

20

–20

0

–25

–0.1

0

25

0

–0.25

0.25

0

–0.25

0.25

0

–2.5

2.5

0.2

0

FIGURE 7. Hardware and simulation quantitative results for the 60-cm forward jump. We show the desired values in green—which, for 
torques, are the ideal PD law torques and, for the base Euler angles, are zero. In blue, we show the value measurements and estimates 
from the hardware experiment, and, in red, we show the values from the simulator for the same task. (a) Joint angles, velocities, and 
torques for the front right leg during the 60-cm forward jump. The flight phase for the hardware experiment is indicated by the yellow-
shaded region. (b) Base angular and linear velocity during the 60-cm forward jump. The flight phase of the hardware test is indicated in 
light yellow. Sim: simulated. 

Authorized licensed use limited to: TU Delft Library. Downloaded on July 03,2025 at 07:45:59 UTC from IEEE Xplore.  Restrictions apply. 



IEEE ROBOTICS & AUTOMATION MAGAZINE     JUNE 202544

Despite the fact that the soft ground 
causes some hip angle deviation upon 
landing, the robot was able to execute 
at least nine consecutive jumps.

FORWARD JUMPING WITH 
OBSTACLES
To further demonstrate the versatility, 
we tested forward jumping with obsta-
cles, using policy .3r  To be brief, only 
two scenarios are presented here, 
including jumping over a 5-cm-tall 
thin obstacle and landing on a 10-cm 
box. In the first task, the robot had to 
jump across 80 cm to avoid collision. 
As seen in Figure 11(a), the robot suc-
ceeded in jumping over the barrier and 
landed successfully. In the second 
case, the robot had to jump across 
more than 70 cm while maintaining a 
large height. As a result, better perfor-
mance was observed, considering that 
a shorter forward distance enabled the 
robot to achieve a larger height 
throughout the flight.

COMPARISON WITH THE STATE 
OF THE ART
To better understand the strengths of 
our proposed method, we performed a 
detailed comparison of the kinody-
namic profiles for a 60-cm forward 
jump with the runner-up approach in 
Table  3—Extreme Parkour [28]. As 
can be seen in Figure 12, our method 
has a much more pronounced squat-
down phase compared to the baseline. 
We would like to emphasize that this is 
an emerging behavior and is learned 
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FIGURE 8. Hardware results for (a) a 90-cm forward jump and (b) a 50 × 30-cm diagonal jump with desired yaw of 30°. 
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[ , . ], [ . , . ] .x y0 1 2 0 3 0 3! ! -  Only eight environments have been terminated (of which just 
one was terminated due to body–ground contact), leading to a success rate of 99.9%. 
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even without the squat-down reward. This allows the robot to 
accelerate upward and jump much more explosively and with 
larger momentum, as shown by the linear velocity and torque 
peaks, compared to the baseline. We attribute our larger peak 
heights and maximal jump distance to this type of learned 
motion. Despite the fact that [28] has a large initial x-velocity 
[see the first plot in Figure 12(b)], it still achieves a smaller 
maximum jumping distance compared to ours. While [28] 
converges to a locally optimal and simpler behavior, our cur-
riculum and reward structure allow the robot to better explore 
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FIGURE 10. Several experiments showcasing the robustness of the policy 2r  to variations in the terrain: jumping across (a) discrete hard 
and (b) discrete soft objects, (c) an asphalt-to-grass jump, and (d) nine consecutive jumps on grass. 
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FIGURE 11. (a) Jumping over a 5-cm-tall, 5-cm-wide obstacle. (b) Jumping onto a 10-cm-tall box.

METHOD [19] [21] [30] [22] [23] [28] OURS

Jump  
length (m)

0.2 0.26 0.5 0.6 0.7 0.8 0.9 

Robot A1 Mini  
Cheetah

Custom Go1 Go1 A1 Go1 

Bold indicated the largest achieved distance (best result).

TABLE 3. Maximal jump length comparison with the state 
of the art. 
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FIGURE 12. A comparison between Extreme Parkour [28] (red) and our work (green). We analyze the (a) base position, (b) base linear 
velocity, (c) joint torques, and (d) base orientation (Euler angles) for a 60-cm jump for both methods. 
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and learn how to jump, causing it to discover that squatting 
down allows it to better accelerate its body and take off with 
a larger momentum.

ABLATION STUDY
To better understand the effect of our curriculum, we com-
pared our approach to several baselines in Figure 13:

 ■ no RSI: training stage 1 without RSI, 
i.e., no height and upward velocity ini-
tialization

 ■ no curriculum: directly training stage 2 
without pretraining stage 1, but with 
RSI height and velocity initialization. 
For fairness, we train this baseline for 
an additional 3,000 steps

 ■ no curriculum and no domain ran-
domization: same as “no curriculum” 
but without any applied domain 
 randomization

 ■ no curriculum and no RSI: same as 
“no curriculum” but without any RSI.
As can be seen from Figure 13(a), the 

RSI is required for learning the jumping-
in-place task. Without it, the agent con-
verges to a local optimum and fails to 
complete the task. Despite the overall high reward, it can be 
seen in Figure 13(b) that directly training the long-distance 
jump also results in an early convergence to a standing behav-
ior, which highlights the need for our curriculum strategy. 
Similarly, we also observe this behavior even without applying 
domain randomization, which can have a regularizing effect.

DISCUSSION AND CONCLUSION
In this work, we present a curriculum-based end-to-end DRL 
approach capable of learning a variety of precise short- and 
long-distance jumps while also reaching the desired yaw 
upon landing. Unlike many existing methods, we have 
achieved this through a single policy, without the need for 
reference trajectories and additional imitation rewards. Fur-
thermore, unlike other reference-free works, our curriculum 
guides the robot to more effectively explore the task of jump-

ing and develop a much more agile and explosive style of 
jumping, significantly outperforming existing methods. Our 
framework is flexible, and it can be adopted to learn better 
jumping skills in existing methods, which learn a separate set 
of skills for different each task [29], [30], [31]. 

Furthermore, through domain randomization, we success-
fully deployed the policy onto the real system and closely 

matched the expected behavior from 
the simulation. The system was robust 
to the noisy sensor data, especially the 
foot contact sensors and the velocity 
state estimates. The jumps exhibited high 
 accuracy, both in  simulation and on the 
hardware, in terms of tracking the desired 
landing position and orientation. Further-
more, our policy achieved a 90-cm for-
ward jump on the Unitree Go1 robot, a 
distance greater than those reported by 
other model- and learning-based control-
lers. We demonstrated additional outdoor 
tests, where the robot successfully per-
formed nine consecutive jumps on soft 
grass despite only having been trained 
on flat terrain in simulation. In addi-
tion, we showed that simulating obstacles 

throughout training and conditioning the policy on their prop-
erties can enhance the mobility of the robot, allowing it to 
safely leap over or land on objects of up to 10 cm.

When executing a long-distance jump, real animals exhibit 
a four-legged contact phase, followed by an upward pitch and pure 
rear-leg contact at takeoff. During landing, a mirrored behavior 
is observed—the body is pitching downward, and contact is 
first gained with the front legs. Previous model-based control 
works [4], [5] have manually incorporated this contact schedule 
into their optimizers. It would be interesting to investigate how 
such behavior can be learned through DRL without supplying a 
reference trajectory and validate its benefits compared to the style 
of jumping exhibited here. 

The number of rewards can be seen as a limitation of our 
approach, although they are intuitive and relatively easy to 
adjust. During our evaluation, we found that most of these 
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“
OUR POLICY ACHIEVED A 
90-CM FORWARD JUMP 
ON THE UNITREE GO1 
ROBOT, A DISTANCE 

GREATER THAN THOSE 
REPORTED BY OTHER 

MODEL- AND LEARNING-
BASED CONTROLLERS.

„
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rewards primarily serve to regularize the motion and are not 
essential for learning the jumping behavior. It would be inter-
esting to investigate how improved exploration methods could 
reduce the need for many of the dense rewards.  Additionally, in 
the future, we aim to enhance the robot’s mobility by general-
izing to a broader range of agile behaviors, including climbing 
skills, various jumping styles, and acrobatic motions.
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