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Abstract

Structural health monitoring of maritime and offshore structures can contribute to the reduction of the
amount of uncertainty in assessment of the operational loads and the structural integrity. Such a survey can
also reduce the large safety margins during the design and optimize the conservative inspection and mainte-
nance schedules. One of the emerging variants of structural health monitoring are the so-called digital twin
systems that not only allow the monitoring of the structures, but can also simulate the past or the future state
of the structural integrity.
In the context of this thesis, the feasibility of a digital twin system for the structural health assessment of
marine structures based on machine learning algorithms and utilization of big data is examined. The main
research question is if the digital twin technology can be enhanced with machine learning to accurately mon-
itor the structural health of marine structures in terms of loading and fatigue damage accumulation.
In order to answer this question four modules have been developed and tested. The first module uses artificial
neural networks trained on operational data to predict the fatigue damage accumulation and the frequency
that corresponds to the maximum stress power density. The error of the developed networks turned out to
be negligible in the investigated cases, with standard deviation of less than 4% in the predictions. The peak
frequency of the stress power density is predicted using a random forest regression algorithm. The optimized
version of the algorithm has led to an accuracy of 93% with standard deviation of less than 1% in the predic-
tions.
The second module is used to recalibrate the design response amplitude operators of the structure using the
predictions of the first module or the operational data, if available. The design response amplitude operators
are scaled and shifted in order to minimize the deviation between the spectral fatigue calculations and the
predicted (or measured) data.The third module is a static/quasi-static load-reconstruction module. Using
on-board strain measurements it is able to calibrate the loading of the structure based on a reformulation of
the conventional finite element problem for static and quasi-static loading. A sensitivity analysis of the algo-
rithm effectiveness have been performed using multiple load cases in which the reconstruction error turned
out negligible.
The fourth and final module relates to structural reliability analysis. This module is based on the estimation of
the Hansofer-Lind reliability index as a minimization problem. The employed optimization engine is a vari-
ation of the particle swarm optimization algorithm using chaotic system behaviour to iteratively calculate
the user-defined parameters. The limit state equation is formulated in a way that it takes the uncertainties
related to the fatigue damage accumulation prediction model and Miner’s Rule into consideration. Uncer-
tainties related to the material and the fabrication process are not taken into account.
The developed modules have been tested on structural details of a vessel monitored in the scope of Monitas
Joint Industry Project (JIP). About a year’s worth of data has been used to train the machine learning algo-
rithms.

i





Contents

List of Figures iv

List of Tables vi

Nomenclature vii

1 Introduction 1
1.1 The Monitas Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Advisory Hull Monitoring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Structural Health Monitoring using Digital Twin Technology. . . . . . . . . . . . . . . . 3
1.4.1.1 What is a Digital Twin? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.1.2 Digital Twin Applications for SHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.2 Fatigue Analysis Using Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2.1 Predicting Fatigue Damage with Machine Learning . . . . . . . . . . . . . . . . . 5

1.4.3 Load Reconstruction using In-Situ Measurements . . . . . . . . . . . . . . . . . . . . . 8
1.4.3.1 Static and Quasi-Static Load Reconstruction . . . . . . . . . . . . . . . . . . . . . 8
1.4.3.2 Dynamic Load Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.4 Structural Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.4.1 Structural Reliability Analysis Applications . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.5 Literature Review Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Knowledge Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Machine Learning Regression Algorithms 14
2.1 What is Machine Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Gradient Tree Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Finite Element Method Reformulation 19
3.1 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Load Magnitude Calibration FEM Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Reformulation of the load vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Translation of strain measurements to nodal equations . . . . . . . . . . . . . . . . . . 20
3.2.3 Reformulation of the equilibrium equation . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Structural Reliability Analysis using Chaotic Particle Swarm Optimization 22
4.1 Hansofer-Lind Reliability Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Structural Reliability Analysis as an Optimization Problem . . . . . . . . . . . . . . . . . . . . 23
4.3 Chaotic Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Damage and Response Prediction 26
5.1 Data Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Damage Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Feature Selection for Damage Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.3 Data Processing Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.4 Model Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ii



CONTENTS iii

5.3 Response Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.1 Feature Selection for Response Peak Frequency Prediction . . . . . . . . . . . . . . . . 40
5.3.2 Model Selection for Response Peak Frequency Prediction . . . . . . . . . . . . . . . . . 43
5.3.3 Fine-tuning and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 RAO Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Load Magnitude Calibration Algorithm 49
6.1 Description of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Verification of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.1 Error in the Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.2 Averaging a Varying Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.3 Effect of Measurement Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.4 Reconstruction of a Load with Quadratic Shape . . . . . . . . . . . . . . . . . . . . . . 53
6.3.5 Effect of Multiaxiality on Load Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.6 Load Reconstruction on a Stiffened Panel . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Structural Reliability Analysis Framework 57
7.1 Limit State Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Typical Weekly Fatigue Damage PDF Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Calculation of the Reliability Index and the Probability of Failure . . . . . . . . . . . . . . . . . 61

8 Conclusions and Future Research Recommendations 63
8.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.1.1 Feasibility of Development of a Digital Twin Model based on Machine Learning Algo-
rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.1.2 Accuracy of Fatigue Damage Accumulation Prediction. . . . . . . . . . . . . . . . . . . 63
8.1.3 Integration of a Structural Reliability Analysis Module . . . . . . . . . . . . . . . . . . . 64
8.1.4 Utilization of Operational Data to Monitor Operational Conditions . . . . . . . . . . . . 64

8.2 Future Research Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.1 On-line Training Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.2 Training on a Multi-Year Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.3 Consideration of Material and Fabrication Sources of Uncertainty. . . . . . . . . . . . . 65
8.2.4 Improved Advisory Hull Monitoring System . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 66

A Data Acquisition 72
A.1 Location of the Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 Weather Buoy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



List of Figures

1.1 A field production unit in its operating environment . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Advisory Hull Monitoring System, Bonga FPSO [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Architecture of Digital Twin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 McCulloch-Pitts neuron[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Linear support vector regression problem[3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Gradient Boosting[3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The shape of concatenated matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Hansofer Lindt Index Visualization [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Particle Swarm Optimization algorithm flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Strain time-series when strain gauge is functioning properly . . . . . . . . . . . . . . . . . . . . . 26
5.2 Strain time-series that has been flagged as corrupted . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 (Rθ , Rω, Peak Energy) Feature Visualization, November 2018, Side Shell Sensor . . . . . . . . . . 30
5.6 Final Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.7 The effect of optimizer on the performance of the neural network . . . . . . . . . . . . . . . . . . 35
5.8 The effect of learning rate on the performance of the neural network . . . . . . . . . . . . . . . . 36
5.9 The effect of batch size on the performance of the neural network . . . . . . . . . . . . . . . . . . 36
5.10 Model accuracy of LBSG3 fitted with a normal distribution . . . . . . . . . . . . . . . . . . . . . . 37
5.11 Model accuracy of LBSG4 fitted with a normal distribution . . . . . . . . . . . . . . . . . . . . . . 38
5.12 Model accuracy of LSG10 fitted with a normal distribution . . . . . . . . . . . . . . . . . . . . . . 38
5.13 Model accuracy of LSG11 fitted with a normal distribution . . . . . . . . . . . . . . . . . . . . . . 38
5.14 Model accuracy of LSG12 fitted with a normal distribution . . . . . . . . . . . . . . . . . . . . . . 39
5.15 True vs Predicted fatigue damage accumulation at LBSG3 . . . . . . . . . . . . . . . . . . . . . . . 39
5.16 True vs Predicted fatigue damage accumulation at LBSG4 . . . . . . . . . . . . . . . . . . . . . . . 39
5.17 True vs Predicted fatigue damage accumulation at LSG10 . . . . . . . . . . . . . . . . . . . . . . . 40
5.18 True vs Predicted fatigue damage accumulation at LSG11 . . . . . . . . . . . . . . . . . . . . . . . 40
5.19 True vs Predicted fatigue damage accumulation at LSG12 . . . . . . . . . . . . . . . . . . . . . . . 40
5.20 (Peak Frequency, Hs , E) Feature Visualization, April 2018, Side Shell Sensor . . . . . . . . . . . . . 41
5.21 (T0, Hs , E) Feature Visualization, December 2018, Deck Sensor . . . . . . . . . . . . . . . . . . . . 42
5.22 True vs Predicted LBSG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.23 True vs Predicted LBSG4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.24 True vs Predicted LSG10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.25 True vs Predicted LSG11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.26 True vs Predicted LSG12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.27 Design vs Calibrated RAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 Verification Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Sensitivity of calibration to introduced error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Model used to examine uniform load approximation capability . . . . . . . . . . . . . . . . . . . . 52
6.4 Error in total load magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5 Model used to examine the effect of strain gauge location . . . . . . . . . . . . . . . . . . . . . . . 53
6.6 Model used to examine the reconstruction of a quadratic load . . . . . . . . . . . . . . . . . . . . 54
6.7 Total load magnitude error of the reconstruction of a quadratic load . . . . . . . . . . . . . . . . . 54
6.8 Multiaxial Loading Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.9 Calibration error with respect to the level of multiaxiality . . . . . . . . . . . . . . . . . . . . . . . 55
6.10 Stiffened Panel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iv



LIST OF FIGURES v

7.1 Principal Component 1 Fitted with PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Principal Component 2 Fitted with PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Principal Component 3 Fitted with PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 Principal Component 4 Fitted with PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.5 Principal Component 5 Fitted with PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.6 Principal Component 6 Fitted with PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.7 Typical Weekly Fatigue Damage PDF LBSG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.8 Typical Weekly Fatigue Damage PDF LSG12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.9 Reliability Index and Probability of Failure LBSG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.10 Reliability Index and Probability of Failure LSG12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.1 Prediction of fatigue damage accumulation for a deck location using the Monitas framework [5] 64
8.2 Prediction of fatigue damage accumulation for a side-shell location using the Monitas frame-

work [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.1 Location of the LBSGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Location of the LSGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.3 SEAWATCH Wavescan Buoy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



List of Tables

5.1 Pearson correlation coefficient of features and labels . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Pearson correlation coefficient of features and labels . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Cross Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Performance of the fine-tuned Random Forest model . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Convergence Study results of RAO calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Calibration error with respect to measurement location . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Calibration error in a multiaxial load state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Calibration error for a stiffened panel structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



Nomenclature

Acronyms

AH MS Advisory Hull Monitoring System

AI Artificial Intelligence

AI M Asset Integrity Management

AI S Automatic Identification System

AN N Artificial Neural Network

B I M Building Information Modeling

C PSO Chaotic Particle Swarm Optimization

DNV Det Norske Veritas

DT Digital Twin

F E A Finite Element Analysis

F E M Finite Element Method

FORM First Order Reliability Method

F PSO Floating Production Storage Offloading

F PU Floating Production Unit

I MR Inspection Maintenance Repair

J I P Joint Industry Project

LBSG Long Base Strain Gauge

LHS Latin Hypercube Sampling

LMC Load Magnitude Calibration

M AE Mean Absolute Error

M APE Mean Absolute Percentage Error

ML Machine Learning

MSE Mean Squared Error

MSLE Mean Squared Logarithmic Error

PC A Principal Component Analysis

PDF Probability Density Function

PSO Particle Swarm Optimization

R AO Response Amplitude Operator

RB I Risk Based Inspection

ReLU Rectified Linear Unit

RSM Response Surface Modeling

SH M Structural Health Monitoring

SV M Support Vector Machine

vii



Chapter 1
Introduction

In a world pushing for digitalization, the marine industry could be no exception. In the past few years, struc-
tural integrity assessment strategies have evolved to include hull monitoring systems and digital twin tech-
nologies. Such systems can deepen the understanding of how structures respond and provide valuable in-
sights in terms of how fatigue is accumulated. New information that is available through such systems can
be utilized for risk-based inspection purposes, maintenance and lifetime extension of the structures.

Figure 1.1: A field production unit in its operating environment

1.1. The Monitas Group
The Monitas Joint Industry Project (JIP) was initiated in 2006 supported by 18 participants including the
major oil companies and classification societies. During the first phase of this project an Advisory Hull Mon-
itoring System(AHMS) was developed. The Glas Dowr(Bluewater) Field Production Storage and Operation
Unit (FPSO), during its operation offshore South Africa, was used as a test bed for the development of the
AHMS [6]. The aim of AHMS was to monitor the fatigue integrity of FPSOs. The first phase of the project was
concluded in 2013.
In 2014, the Monitas Group was founded aiming to further develop the added value of advisory monitor-
ing systems for integrity management [7]. During this period AHMS has been installed on board the Glas
Dowr FPSO (Bluewater), the USAN FPSO (ExxonMobil), the CLOV FPSO (TOTAL), the Ichthys FPSO (IN-
PEX), the Moho Nord Field Production Unit (FPU) (TOTAL) and the Bonga FPSO (Shell) and the Aoka Mizu
FPSO(Bluewater). The operation of the AHMS on board the above mentioned vessels has result in the acqui-
sition of invaluable data that can provide valuable insight and deeper understanding of the fatigue damage
evolution during the lifetime of marine structures. Part of this data will be utilized within this project for the
development of a digital twin for structural health monitoring purposes. The main objectives of the Monitas
Group are listed below:

1



1.2. Advisory Hull Monitoring System 2

• Prevention of unexpected failures resulting in loss of production

• Rational Inspection, Maintenance and Repair (IMR)

• Improved design of future units

• Justification of rational life-time extension decisions

• Assess operational conditions for future design

• Provide advice on operation

1.2. Advisory Hull Monitoring System
The significance of monitoring the fatigue accumulation in marine structures has already been implied. In
order to access this problem the AHMS has been developed within the Monitas JIP. This system provides feed-
back to the operator about the fatigue accumulation rate and if it deviates from the expectation the system
provides possible explanations about the deviation origin. Within the AHMS, both environmental conditions
and strain measurements are utilized in order to access the accumulation of fatigue damage independently.
Both fatigue damage calculations are compared to the design calculations in order to draw conclusions re-
garding the performance of the hull structure. The environmental data is acquired through a weather buoy.
The response data is collected through a system of strain gauges and long base strain gauges located on the
hull structure. The AHMS is custom made for each vessel on which it is installed. A typical layout, installed
on board the Bonga FPSO, is illustrated in Figure 1.2. The information provided by the AHMS regards only
the damage history of the unit [5]. In order to use the data collected by the AHMS for the determination of
optimal inspection, repair and maintenance methods or to justify lifetime extension, a system that provides
insight in future damage accumulation is required.

Figure 1.2: Advisory Hull Monitoring System, Bonga FPSO [1]

1.3. Problem Statement
In marine structures, the loading typically involves wave-induced loads, wind-induced loads, and inertia
loads resulting from motions of the structure. Such loads can affect the structure in a global or a local level.
The most typical cases of loading are global hull girder bending and local panel water pressure. Such loading
comes with inherent uncertainty due to the stochastic nature of the sea state [1]. This inherent uncertainty
affects the accuracy of the hydro-mechanic modeling of marine structures. The necessity for safe operation of
marine structures combined with the above-mentioned uncertainty leads to the incorporation of large safety
factors in the calculation of fatigue accumulation in marine structures [5].
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In order for the safety margins required by classification societies to be achieved, marine structures are sig-
nificantly over-designed in numerous occasions. This over-design results in excessive economical cost of the
structures. In order to avoid excessive costs while ensuring safety of operations, the fatigue accumulation pro-
cess should be carefully examined and translated to rational safety margins that do not lead to over-designed
structures.
Under this perspective, there are a lot of benefits to be gained from the development of state-of-the-art struc-
tural health monitoring systems [6]. A digital twin built for structural health monitoring purposes seems as a
highly promising solution since it provides such benefits while being in line with the push for digitalization.

1.4. Literature Review
Performing a state of the art literature review is a pivotal step in order to understand the relevant published
research, assess the knowledge gap and come up with innovative suggestions. The scientific research fields
that are considered in the context of this literature review are:

• Digital twin technology for Structural Health Monitoring (SHM) applications

• Fatigue analysis using Machine Learning (ML) algorithms

• Load reconstruction techniques that utilize in-situ measurements

• Structural reliability analysis

1.4.1. Structural Health Monitoring using Digital Twin Technology
In recent years substantial effort has been put towards the digitalization of the global fleet. A significant
amount of this effort has been focused on the development of digital twins. One of the most promising areas
where digital twin technologies can be applied is the health monitoring of structures. In order to understand
the ways in which a digital twin can prove beneficial for structural health monitoring, an important first step
is to review the definition of a digital twin.

1.4.1.1 What is a Digital Twin?

Several definitions of a digital twin have been proposed. Grieves and Vickers[8] define a digital twin as "a
set of virtual information construct that fully describes a potential or actual physical manufactured product",
while in the context of Digital Built Britain, a digital twin is defined as "a realistic digital representation of
assets, processes or systems in the built or natural environment" [9].
A digital twin as it will be established in the scope of this project, is best described by the definition given by
Lu et al [10]. "Living digital simulation models that are able to learn and update from multiple sources, and
to represent and predict the current and future conditions of the physical counterparts correspondingly and
timely". This definition is deemed to be the most accurate one and learning from multiple sources is the pillar
of the digital twin system proposed to be developed in the scope of this project. Utilizing machine learning
methods and combining weather and response data, the digital twin will aim to predict the fatigue damage
accumulation of the structures under study as well as their operational response and load spectrums.

1.4.1.2 Digital Twin Applications for SHM

The benefits of virtual hull monitoring (Digital Twin) for SHM have been examined by Defence Research and
Development Canada for the Canadian Department of National Defence [11]. Within the scope of this report,
multiple developments in the fields of hull monitoring, digital twins, and risk based inspection were put un-
der consideration in order to estimate the value of information. The utilization of various data in order to
calculate fatigue damage accumulation is proposed. More specifically, according to the study, heading data,
hindcast data, loading condition and ship speed can be combined in order to generate the operational profile
of the ship. This operational profile can then be coupled with a hydro-mechanical analysis of the vessel in
order to calculate the fatigue damage accumulation. It is also suggested that digital twin technologies should
be updated with in-situ measurements to improve the accuracy. Finally it is concluded that a digital twin
coupled with inspection and maintenance data can be used in order to optimize the maintenance practises.
The above mentioned study focuses on fast displacement vessels. However, similar approaches as the ones
suggested have been adopted in heavy applications in the marine and offshore industry.
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Offshore Applications Numerous research studies have been focused on the development of intriguing
digital twin applications for structural health monitoring of offshore structures. Tygesen et al. [12] have ex-
amined the possibility of developing a digital twin that can adapt to the changing behaviour of a marine
structure throughout its lifetime. They called this application a "True Digital Twin". The concept of this true
digital twin is to couple the measurements that are performed by a structural health monitoring system with
the behaviour of the digital twin model. Such a coupling will allow the evaluation of the performance of the
digital twin against actual measurements and the recalibration of the model in order to minimize errors. In
this way it will be able to capture the actual behaviour of the structure under study. The development of the
above-mentioned digital twin has been performed in three levels using a fixed offshore platform as a case
study. In the first level, the behaviour of the structure was screened and then compared with the behaviour
of an uncoupled finite element model. The comparison was based on the correlation of the measured and
predicted dynamic structural response. The real modal parameters of the structure were determined using
accelerometers and stochastic sub-space identification [13]. In the second level, the FE model was updated in
order to mimic the behaviour of the actual structure. The updating was performed using Bayesian FE model
updating [14] and utilizing the real modal parameters that were identified in the first level. Levels 1 and 2
made sure that the actual structural behaviour was captured. However, in order to develop a digital twin able
to capture the fatigue performance of the structure the wave model should be calibrated as well. This was
done in Level 3 using data collected form strain gauges and accelerometers. This data was used to calibrate
the drag and inertia hydrodynamic parameters of the Morison equation [15].
Boutrot et al. proposed a methodology for the lifetime extension of aging offshore units based on 3D digital
twin models [16]. The focus of proposed the methodology under study is put on the structure degradation
mechanisms of fatigue and corrosion. The digital-twin used, is a 3D model of the monitored structure with
attached metadata. This metadata can be design factors, Inspection Maintenance and Repair factors, Risk
Based Inspection (RBI) factors and condition measurements. This metadata is frequently updated to ensure
that the digital twin model corresponds to the state of the physical asset. The metadata are utilized in order
to calculate the corrosion rate and remaining material, and also to create accurate FEM models of the struc-
ture. The above mentioned 3D digital twin is used as the cornerstone of an Asset Integrity Management (AIM)
platform.

Marine Applications Many digital twin applications have also been developed by Det Norske Veritas (DNV)
as indicated in reference [17]. One of them, called "Nerves of Steel", has been developed in order to limit un-
expected failures on a ship hulls due to wave-induced damage. The digital twin model combines sensor
data with wave loading and response models in order to calculated the risk of hull damage caused by waves.
Furthermore, by constantly updating the hull model it is able to predict experienced fatigue loads, extreme
loads, and seakeeping of the monitored vessel. It has already been applied on a range of container ships,
FPSOs, semi-submersibles, flare towers, pipelines, and fixed platforms [18].
Another novel application of digital twin technology for SHM has been proposed by Hulkonnen et al. [19]. In
this study, a digital twin was developed in order to evaluate the remaining fatigue lifetime of ship hull struc-
tures. The proposed digital twin uses big data regarding the position of the ship and the weather in order to
evaluate the operational conditions of the ship. The position data is collected from Automatic Identification
System (AIS) messages, while the weather data is collected from multiple sources. The collected data are used
in order to recreate the wave spectrum corresponding to the sea area where the ship is operating. When this
wave spectrum is combined with the design Response Amplitude Operators (RAO) of the ship that were cal-
culated with the 3D panel method, spectral fatigue analysis can be performed leading to the estimation of the
resulting damage.

Other Applications Digital twin technologies for SHM are not restricted to maritime applications. Exten-
sive research is focused on the development of digital twins for structural applications from the aerospace,
automotive, civil, and material science sectors. A near real-time structural health monitoring digital twin, has
been developed by NASA for probabilistic damage prediction of aerospace structures [20]. The fact the the
digital twin is operating at almost real time makes a physics-based simulations framework prohibitive due to
the high computational cost related to it. The computational cost is even higher when uncertainty quantifi-
cation needs to be integrated to the analysis. In order to bypass the problem of high computational times, a
different approach was adopted. The analysis was posed as an inverse problem model based-diagnosis [21])
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and then a probabilistic solution was formed using Bayesian statistics. The inverse problem in this case was
the estimation of parameters that characterize the existence of damage in the structure using in-situ mea-
surements (strain,vibrations etc.). The Bayesian solution is the likehood of damaged conditions based on the
measured response. Because this probability distribution cannot be calculated analytically, it was generated
using sampling algorithms based on the Markov Chain Monte Carlo algorithm [22] and optimized for low
computational cost.
Krobot Z. et al. examined the use of a digital twin model to support the maintenance of military automotive
vehicles [23]. In the scope of this study a digital twin was deployed to monitor the operational condition of
the automatic transmission system of an LMV Iveco military vehicle. Using Matlab Simulink tool, an accurate
model containing all the operational parts of the automatic transmission was generated. This model using as
input the rotational speed of the primary shaft of the gearbox can estimate the rotational speed of the output
shaft of the transmission. This was verified using operational data from three different vehicles. Coupling the
developed digital twin with data loggers and a telemetry module allows the service crew to perform diagnos-
tics and maintenance while having the vehicles actual operational profile available.
In the civil engineering sector, an innovative study was performed by Ye C. et al. about the feasibility of
using digital twin technology to model the structural health of bridges [24]. The study is focused on real-
time data management using Building Information Modeling (BIM), physics-based approaches, data-driven
approaches and data-centering approaches [25] which are essentially a combination of physics-based and
data-driven approaches. Using this analysis as a theoretical foundation, the framework for development of
a digital twin model for SHM is proposed. The suggested framework is to use a Gaussian Process in order to
minimize the errors of an FE model taking advantage of real-time data that is collected by monitoring systems
placed on the bridge.
The feasibility of a rather radical use of digital twin technologies is put under study in references [26] and [27].
The first part of the study focuses on the prediction of fatigue lifetime before the accumulation of observable
damage. In order to achieve this, fracture mechanics and material science concepts are put under consid-
eration. More specifically, the predictive capability is enabled by a digital twin model that predicts the crack
growth from initiation until failure using micro-structure based modelling on multiple scales. To achieve
this, two modules are used in-line. The first module operates in the microstructurally small fatigue crack
scale and explicitly incorporates the variability in microstructure. It generates multiple statistically equiva-
lent microstructures, of the material under study. Using 3D FE models of the generated microstructures the
scatter in crack growth curves is estimated and then used to evaluate probability density functions (PDFs)
of parameters that are forward-propagated to the second module of the digital twin. The second module
works in the microstructurally large fatigue scale and is based on linear fracture mechanics principles. This
model simulates the fatigue crack growth using Paris’s law taking into consideration the uncertainty in the
crack growth rate that is propagated from the first module. The transition from the one module to the other
happens at a predetermined crack length. Both models are calibrated using data collected from fatigue tests
on specimens [28] of the material under study. The second part of the research is focused on a generalized
method for the reduction of uncertainty using in-situ diagnostics and prognostics in a probabilistic fatigue
lifetime prediction framework. The method suggested at the second part can only be utilized after size of the
fatigue crack becomes observable.

1.4.2. Fatigue Analysis Using Machine Learning
The scientific interest for Machine Learning applications and Artificial Intelligence (AI) in general has sky-
rocketed in recent years. The reason behind the re-ignition of interest in this specific field of study is no other
than the rapid increase in computational power, that enables the use of algorithms that were once considered
as utopian. Nowadays, machine learning has conquered the industry and is at the heart of many high-tech
products and applications. Under this perspective, maritime applications could be no exception.

1.4.2.1 Predicting Fatigue Damage with Machine Learning

Nowadays, machine learning has applications in most field of studies and fatigue analysis could be no excep-
tion. An abundance of applications can be found both in the marine and offshore energy industries. A wide
range of applications has been examined in order to define the current state of research regarding machine
learning for prediction of fatigue damage. Applications from other industries such as aerospace and civil en-
gineering have been taken under consideration as well.
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Offshore Applications Wong and Kim propose the use of an artificial neural network (ANN) in order to pre-
dict vortex-induced fatigue damage of top tensioned risers [29]. The database required for the training and
testing of the ANN was built using simulations performed with Orcina’s Orcaflex software. Six features were
selected as input for the ANN. The features were sampled using Latin Hypercube Sampling (LHS) [30]. The
ANN model consisted of one input layer, one hidden layer and one output layer. It was tuned with respect
to the activation function, the optimization algorithm, the cost function, the mini-batch size, the number
of neurons, and the learning rate. The predicted fatigue damage was very close to the damage value esti-
mated using Orcaflex. However, low prediction error is expected in applications using a simulation-generated
database, due to the consistency of the data.
Another interesting framework for fatigue analysis of steel catenary risers has been developed by Hegazi et al.
[31]. In the scope of this framework, the use of an ANN is suggested in order to predict the transfer functions
needed to translate the wave spectrum to a stress spectrum. The input of the model are features regarding
both the sea state and the geometry of the risers. The ANN practically substitutes the RAO transfer functions
that are commonly calculated through hydro-mechanical simulations [32]. The results of this new framework
where compared against the results of numerical simulations resulting in errors less than 5%. The main ben-
efit of the developed framework is once again a significant reduction in terms of computational time.
Taking a more industry-focused approach Engebretsen et al.[33] propose a methodology for the estimation of
fatigue damage accumulation using field measurements and machine learning algorithms . In this approach,
field measurements of operational and environmental data are used in order to train a machine learning
model that predicts the heading and motions of the FPSO that is used as a case study. The performance of
five different machine learning models was evaluated. The algorithms tested were:

• Extra Randomized Tree

• Random Forest

• Decision Tree

• Gradient Boosting

• K-Nearest Neighbours

After selecting the best performing ML algorithm, a fatigue counter is established by coupling the predicted
heading and motions with a fatigue analysis software such as BFLEX that relates vessel motions to local stress
at the flexible riser. Using this methodology, a live fatigue counter can be built that provides valuable insight
in terms of fatigue lifetime consumption.
A hydrid model of an ANN and FEA has been developed for short-term wave-induced fatigue analysis of flex-
ible pipes [34]. The main objective of this study was to reduce the high computational time required by time
domain stochastic wave dynamic analyses but proposing a surrogate model. The model is called hybrid since
it combines FEA with ML. It uses FEA and analytical calculations to create short time series of the structural
response and motions. Then using an ANN, it predicts the rest of the response time series. Fatigue dam-
age accumulation is calculated from the response time series using Rainflow Counting [35] and Miner’s rule
[36]. The ANN consists of three fully connected dense layers in total. Because of the dynamic nature of the
problem, an auto-regressive neural network with exogenous inputs [37] was used in order to account for the
memory effect of the system. A free-hanging flexible pipe connected to a spread-moored FPSO was used as a
case study. The model was tested for 88 sea-states each one of them requiring 4000s of FEA simulation time,
while the hybrid model needed about 500s to perform the same simulation. The authors suggest that there is
more to be gained in longer simulations.
The same model was also successfully applied to steel catenary risers [38]. A steel catenary riser connected
to a semisubmersible platform was used as a case study. The resulting error in terms of fatigue damage pre-
diction was far below 1%. The hybrid model was tested on a 3-hour time series generated using FEA. The
required computational time of the hybrid model was 20 times lower compared to the time required for the
full FEA.
Due to the intended transition towards renewable energy, a lot of research has been focused on offshore wind
turbines. Müller et al.[39] studied the fatigue damage assessment of floating offshore wind turbines using
Response Surface Modeling (RSM) coupled with an ANN and LHS. The proposed method is a computation-
ally inexpensive alternative to time-domain simulations. Initially, a probabilistic analysis was performed for
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the environmental parameters that affect damage accumulation of a floating offshore wind turbine (wave
height, wind speed etc.). Then using LHS, samples of these environmental parameters were generated. Using
simulation software, the damage equivalent loading for these samples was calculated. Afterwards, the ANN
was trained to predict the damage equivalent loading using the dataset generated. Taking advantage of the
low computational cost of the ANN, the response surface was created. It is noted that due to the uncertainty
inherent to the ANN, the resulting response surface is slightly different between different runs of the method.
By increasing the number of samples in the dataset this uncertainty is minimized. The algorithm was tested
on a hypothetical semi-submersible concrete wind turbine that is a combination of the DTU10MW [40] ref-
erence turbine with the SWE triple-spar developed in the INNWIND EU project [41].
Another alternative to the time-domain approach for the fatigue analysis of offshore wind turbines is pro-
vided by Kim et al. [42]. In order to reduce the required computational time, a frequency-domain method
is introduced. In the proposed method the wave fatigue damage is described through ’conventional fatigue
analysis’ because the wave-induced RAO is invariant with the wave height and wind speed if the transfer
function is calculated based on linear wave theory. However, for calculation of the wind fatigue damage, a
different approach is suggested. This reasoning behind this alternative proposal is that the wind-induced
RAO is different for different mean wind speeds. In order to avoid time-costly simulations to obtain the RAO
for each and every encountered wind speed, the use of ANN is proposed. The role of the ANN is to predict
a correction factor that scales a reference wind-induced RAO for different wind speeds. For the WWHybrid
system used as a case study, the number of required simulations was dropped from 41 to 7 due to the intro-
duction of the ANN.

Marine Applications The application of machine learning for fatigue analysis applications is not restricted
to the offshore energy industry. The use of a deep-learning multi-layer ANN for fatigue accumulation pre-
diction of a tanker’s cargo-hold is suggested by Lee et al. [43]. In this study, the residual fatigue life of the
structure is defined as the difference between the calculated fatigue life using simulation software and the
predicted fatigue life. In order to predict the fatigue life of the structure, a multi-layer ANN is utilized in or-
der to predict the strain time series at the examined location. The ANN takes as an input the acceleration,
the roll, and the pitch ship motion as well as the previous predicted strain value. The strain time series is
then translated to damage using a cycle counting method. The model was trained using data generated from
simulations. The study concludes that using this framework only short term forecasts (order of days) can be
produced accurately.
With a rather fundamental approach, Christiansen et al. examined the possibility of reducing the training er-
ror of an ANN that predicts the tension forces on an anchor chain by using error an error function designed for
this specific purpose [44]. In the scope of this study, an ANN is trained using different error functions based
on the Minkowski-R error [45] in order to evaluate the effect of the selected error function on the performance
of the model. The performance of the model is evaluated by comparing the predicted fatigue accumulation
with the fatigue accumulation that is estimated using time-domain simulation software for the same sea
states. The model used as a case study is based on a simplified version of the multi-layer ANN developed for
the prediction of the dynamic response of mooring lines [46]. The study concludes that using weighted error
functions deteriorate the performance of the model, while using higher order error functions only slightly
increases the performance of the model.

Other Applications Novel applications of machine learning algorithms in the field of fatigue analysis can
also be found in other industries. The performance of machine learning algorithms in the quantification of
fatigue damage in structural details of slender coastal bridges is put under examination by Lu et al.[47]. The
machine learning algorithms under examination are:

• Support Vector Machine

• Artificial Neural Network

• Random Forest

• Gradient Boosting
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The input of the models are parameters related to the wind, wave, and vehicle loading of the bridge under
study. The output is the resulting fatigue damage. The models are trained using data generated through FEA.
As it is common with ML models trained on simulation data, all the algorithms achieve high accuracy. The
best performing algorithm in terms of error and variability minimization for the application under study is
the Gradient Boosting. Using the trained ML models, the fatigue damage PDF is also generated and then a
Monte Carlo structural reliability analysis is performed.

1.4.3. Load Reconstruction using In-Situ Measurements
Calculation of fatigue accumulation in marine and offshore structures is subjected to many uncertainties. A
major source of uncertainty is the hydro-mechanical modeling of the structure. Adopting wave load mod-
elling parameters from codes and standards frequently leads to overly conservative predictions of fatigue
lifetime. Subsequently, in order to achieve a high fidelity digital twin, in-situ measurements coupled with
load reconstruction techniques should be used to calibrate the actual loading on the structures. The research
regarding load reconstruction is divided in two large fields: static (and quasi-static) load reconstruction and
dynamic load reconstruction.

1.4.3.1 Static and Quasi-Static Load Reconstruction

The methodologies that have been developed to reconstruct static and quasi-static loads are based on strain
gauge measurements. The measurement data that is collected can be used to reconstruct the loads as long
as the superposition principle holds. The precision of the reconstruction is dictated by both the number and
the location of the strain gauges [48].
The framework that is used as a basis for later developments in the field was developed in 1991 by Masroor
and Zachary [49]. In this analysis, the generation of a coefficient matrix is suggested in order to reconstruct
the loads applied on the structure. This matrix is used to map measured strain values to corresponding ap-
plied load magnitudes. The coefficient matrix is generated through an experimental procedure, in which the
loads and the corresponding deformation of the structure are measured. The introduction of error due to
measurement inaccuracy and simplifications is also examined within this study.
Based on this framework, Wickham et al. [50] proposed a methodology to determine the optimum location
and angular orientations for strain gauge placement. The methodology utilizes the k-exchange algorithm
[51] in order to generate the D-optimal design that leads to the best reconstruction of the loads. The number
of strain gauges was selected through an arbitrary threshold for maximum variance in the results. A finite
element model of a C-spring was used as a case study.
Despite the fact that the framework for the reconstruction of static and quasi-static loads using a coefficient
matrix was developed in 1991 recent applications of it can be found in current research. Riccioli F. [52] uses
a retrofit of this framework for piezoelectric sensors in his research. Using a spectral elemental model [53] of
the problem under study, he maps the measured voltage of piezoelectric sensors to forces through the sitff-
ness matrix of the model and a matrix that maps measured voltage to displacements. He then uses Lagrange
polynomials to translate the forces into an acting pressure. The location of the sensors in order to provide
optimal results is also optimized using the Gauss-Lobatto-Legendre scheme [54].

1.4.3.2 Dynamic Load Reconstruction

The reconstruction of dynamic loads is a far more complicated field of study compared to the reconstruc-
tion of static and quasi-static loads. Chang et al. [55] developed a framework to reconstruct unknown time-
dependent external forces based on the response of the structure. The inherent error in response measure-
ment usually makes the reconstruction of forces in time-domain an ill-posed problem. In order to solve this
problem, the use of the implicit Landweber method is proposed. The load identification and reconstruction
was achieved by utilising the concept of response sensitivity and a genetic algorithm strategy. The effective-
ness and robustness of the method was demonstrated by means of both numerical simulations and physical
tests. The selection of proper convergence criteria was highly dependent on the level of noise in the data.
A different approach for the load reconstruction for advanced grid-stiffened composite plates is suggested by
Zhang et al.[56]. The load reconstruction problem here is translated to an optimization problem. Initially a
forward state-space model is generated using the governing equations of the structures response. Then the
load reconstruction is performed by minimizing the error between the measured structural response and the
forward model. This minimization is performed using an outer loop that searches for the position of the load
and an inner loop reconstructing the load history. The accuracy and effectiveness of the method was verified
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by comparison of the results to both FEM simulations and physical experiments.
Using a similar approach, Hashemi and Kargarnovin [57] tried to identify the impact force on a simply sup-
ported beam based on the measured response . The inverse problem is once again converted in a minimiza-
tion problem between a numerical model of the structure and the measured response. The minimization
problem is solved through the use of a genetic algorithm primarily formulated by Holland [58]. The effects
of measurement noise and measurement location on the quality of the reconstruction are examined as well.
The study concludes that the proposed approach is insensitive to the location of the measurements and ad-
equately robust to measurement noise.
Another study suggests the use of an inverse FEM procedure to reconstruct the load and shape of a membrane
using strain-measurements [59]. The inverse problem of structural displacement reconstruction is addressed
through the application of a variational formulation [60]. With the displacement field available the pressure
distribution on the membrane is reconstructed. The proposed method was verified using both the results of
a direct simulation and experimental data.

1.4.4. Structural Reliability Analysis
Every aspect of offshore and marine engineering design contains a certain extent of uncertainty considera-
tion. This uncertainty is related to environmental exposure, loading, material properties etc. The theoretical
framework that can be utilized to consider these uncertainties and translate them to a comprehensive deci-
sion scheme is called reliability analysis [61]. As Melchers and Beck [62] define it structural reliability analysis
is "the calculation and prediction of the probability of limit state violation for an engineered structural system
at any stage during its life". Common limit states for structures are:

• Ultimate Strength Limit State

• Fatigue Strength Limit State

• Serviceability Limit State

Structural reliability methods are categorized in different levels according to their complexity. These levels
are [63]:

• Level I: First Moments Methods

• Level II: Second Moment Methods

• Level III: Full Probabilistic Methods

• Level IV: Full Probabilistic Methods coupled with Cost Benefit Analysis

The computational complexity of the method increases as the level of the method increases.

1.4.4.1 Structural Reliability Analysis Applications

In the context of this literature study the focus was put on the more sophisticated methods of Level II and III
as they provide the most accurate results in terms of probability of failure.
Cardoso et al. [64] examined a full probabilistic method that combines Monte Carlo simulation with an Ar-
tificial Neural Network. The proposed method uses the neural network in order to predict the value of the
limit state function taking the random variables under study as input. The neural network is trained on a
simulation-generated database. This way the computational cost of the Monte Carlo simulation is signifi-
cantly reduced. The validity of the method is proved through structural examples. The study concludes that
there are considerable benefits to be gained by the coupling of Monte Carlo Simulations and Neural Net-
works.
A similar approach was suggested by Budzik and Potrzeszcz-Sut [65]. Once again a neural network was used
in order to generate explicit neural limit state functions that substitute the conventional implicit limit state
functions. The structure under examination was a spatial truss susceptible to stability loss. The random vari-
ables were uncorrelated and the ANN was trained on simulation data. The Hansofer Lind method [66], which
is a First Order Reliability Method (FORM), was coupled with the ANN to predict the probability of failure of
the structure. In order to verify that FORM can produce accurate predictions, it was tested against a second
order reliability method and a Monte Carlo simulation reliability analysis. The maximum relative prediction
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error of these methods was 3.2%. Because of this low error the study concludes that the use of FORM can lead
to accurate predictions.
Structural reliability analysis can also be transformed to an optimization problem. Such an approach is pro-
posed by Elegbede [67]. In the scope of this study, reliabilty analysis was performed through the minimization
of the Hansofer-Lindt reliability index. In order to apply the suggested methodology. the random variables
had to be transformed to normal Gaussian variables. This can be done using the Rosenblatt [68], Nataf [69], or
Plain Linear transformation. The minimization of the Hansofer-Lindt index was posed as a constrained op-
timization problem with the limit function being equal to zero as the acting constraint. The Particle Swarm
Optimization (PSO) algorithm[70] was used as the optimization engine. This selection was based on the
consideration that genetic algorithms are generally good in finding global optimums unlike gradient based
algorithms. The proposed methodology was tested on a number of structural examples.
This methodology is pushed even further on the optimization front by Zhao et al.[71]. In the suggested
methodology, the reliability analysis is converted once again to an optimization problem through the mini-
mization of the reliability index [72]. The major difference now is that the PSO algorithm is coupled with a
chaotic system to avoid the selection of initial parameters that can lead to an ill-posed optimization problem.
This coupling is achieved by updating the PSO parameters using a system that exhibits chaotic dynamics.
The chaotic system used in this study is a special set-up of the logistic equation [73]. The feasibility of the
method is verified through numerical examples.

1.4.5. Literature Review Conclusions
The extensive on-going research is indicative of the high potential of using digital twin systems for struc-
tural health monitoring. The main advantage of digital twin systems is that, contrary to conventional health
monitoring systems, they can also be used to simulate past or future states of the structure during which mea-
surements are not available. Through the examined literature, it becomes clear that digital twin models can
be based on different modeling techniques such as probabilistic models, FE models, analytical models etc.
Most of the studies that were examined are based on a physics-based model using real data only to calibrate
the model. It also becomes evident that a digital twin system should be able to recreate the behaviour of the
actual structure utilizing in-situ measurements.
Looking through the recent developments of structural health monitoring ML applications, it becomes evi-
dent that ANNs are selected in most applications since they perform better in highly non-linear problems.
After carefully examining the applications of machine learning algorithms for fatigue analysis purposes, one
can conclude that the ML algorithms are used as a inexpensive computational substitute of some part of the
fatigue analysis methodology applied. Moreover, the majority of these algorithms are trained on simulation
data. This means that any error associated with the simulation model is propagated to the ANN. Further-
more, achieving accurate predictions of simulation results is something to be expected since the results are
based on deterministic equations. Measurement data on the other hand contain measurement noise and
usually deviate from applied engineering models. These facts raise a question whether an ANN trained on
measurement data could predict fatigue accumulation in a consistent and accurate manner.
Taking into consideration the findings of this literature review, it can be concluded that dynamic load recon-
struction is a vibrant field of research. However, the applications that are examined require a dense cloud of
measurements in order to be accurate. If dense measurements are not available, a quasi-static load recon-
struction approach should be considered.
In the field of structural reliability analysis, the utilization of ANNs in order to reduce the computational ef-
fort of reliability analysis methods is a common occurrence, especially in Monte Carlo simulations. However,
when the probability of failure is low, Monte Carlo algorithms are not desirably efficient. In such cases FORM
methods are preferred. When FORM methods are coupled with genetic algorithms they require lower com-
putational time and their ability to locate global optimum points is also satisfactory.

1.5. Knowledge Gap
As it has been observed during the Literature Review various applications of digital twin technologies have
been developed for structural health monitoring purposes. One generally common aspect in all the applica-
tions was a framework for fatigue accumulation estimation which utilizes physics-based models using in-situ
measurements as means to calibrate these models.
Moreover, during the Literature Review, it became evident that there have been multiple attempts to utilize
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machine learning algorithms for prediction of fatigue damage accumulation. Almost the entirety of the ex-
amined applications were once again based on physics-based models using machine learning to substitute
(small) parts of the fatigue analysis process. Moreover, all of the studied applications that were able to predict
future damage accumulation have been trained using data-sets generated through numerical simulations.
The combination of the above-mentioned observation leads to the following question:

Can the digital twin technology be enhanced with machine learning to accurately monitor the structural
health of marine structures in terms of loading and fatigue damage accumulation?

In order to answer the above-mentioned question in a consistent and accurate manner it was broken down to
several research questions. The research questions have been formulated in a way that they fill the knowledge
gap while contributing to the general objectives of the Monitas Group.

• Is it feasible to develop a digital twin model based on machine learning algorithms?

• How accurately can machine learning algorithms predict fatigue damage accumulation trained on big
data?

• Can a structural reliability analysis module be integrated into a digital twin model?

• How can the collected operational data be used to monitor operational conditions of marine structures?

The methodology described below consists a framework within which these question can be answered thus
filling the corresponding knowledge gap.

1.6. Methodology
A brief overview of the proposed methodology is illustrated in Figure 1.3. The input of the digital twin model
will be the wave energy spectrum of the environment where the structure is operating. This spectrum can ei-
ther be measured using buoys or reconstructed through other measured data (hindcast etc.). Afterwards, the
features required by the machine learning (ML) algorithms will be extracted from the wave spectrum. Two
machine learning models will be utilized. One for the prediction of damage accumulation corresponding to
the wave spectrum and the other one will predict the frequency corresponding to the maximum stress power
density. Both models will be trained using data that is acquired by strain gauges installed on the structure.
For the task of damage prediction, an Artificial Neural Network (ANN) will be used. This selection is based on
the fact that ANNs perform better than other ML algorithms in highly non-linear problems. The performance
of multiple ML algorithms will be tested in order to select the optimal model for the prediction of the peak
stress power density frequency.
In order to assess the feasibility of an improved tool that can be utilized for the justification of lifetime exten-
sion a reliability analysis method will also be developed. Taking the examined literature into consideration a
methodology based on a Chaotic Particle Swarm Optimization (CPSO) algorithm will be coupled with a FORM
and an ANN that replaces the conventional limit function. The ANN that will be used is the one previously
trained to predict fatigue damage accumulation. The selection of a FORM coupled with a CPSO algorithm is
grounded in the fact that the algorithm should be efficient even for low failure probability. It is expected that
this method will require low computational effort while providing accurate results.
Finally a framework that enables direct load reconstruction based on strain measurements will be developed.
The aim of this framework is to provide better insight in the operational conditions of the structure and en-
able comparison with the design conditions in order to improve future designs. Because monitoring systems
with dense measurement points are not common on-board marine structures an inverse FEM quasi-static
approach based on the methodology developed by Masroor and Zachary [49] will be pursued.

1.7. Scope and Objectives
The methodology that is proposed consists an attempt to minimize the cost related to preventing unexpected
fatigue failures through the development of a digital twin that accurately predicts fatigue accumulation in
marine structures combining big data with machine learning techniques. This effort is motivated by the high
uncertainty that is inherent in the fatigue calculations of marine structures as well as the high risk associated
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Figure 1.3: Architecture of Digital Twin

with on site repairs at the remote and potentially harsh environments where such structures are operating.
By increasing the accuracy of fatigue damage accumulation predictions this study aims to contribute to the
reduction of the operational expenses of marine structures. The main objectives of this project can be sum-
marized in the following points:

• Evaluation of feasibility of development of a high fidelity digital twin model for the prediction of fatigue
lifetime consumption of marine structures using operational data and machine learning algorithms

• Assessment of the operational condition by means of load reconstruction using in-situ measurements
and finite element modelling

• Development of a method capable of probabilistic lifetime estimation of the structure utilizing avail-
able data and the developed fatigue damage accumulation prediction module

• Validation of the above mentioned modules using an operating Field Production Unit as a case study

1.8. Report Outline
In the initial parts of the report the theoretical basis of the methodology is set. In Chapter 2 the ML algorithms
used in the context of this project and their operational principles are shortly described. Chapter 3 set the ba-
sis of the quasi-static load reconstruction module. It presents a reformulation of the classic FEM formulation
that can be utilised for direct load reconstruction using strain measurements. Finally Chapter 4 is focused
on the reliability analysis module. In its context, the CPSO algorithm is presented, as well as the approach of
reliability analysis as an optimization problem.
The later parts of the report are focused on the feasibility study of the modules utilizing the theoretical ba-
sis that was set in the previous chapters. Chapter 5 describes the development procedure of the ML models
responsible for the prediction of the fatigue damage accumulation and the frequency in which the stress
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spectral density is maximum. The procedure is presented using data collected during the operation of an
FPU operating in West African coast,in the context of Monitas JIP. Chapter 6 the algorithm responsible for
quasi-static load reconstruction and a sensitivity study regarding the performance of the algorithm. Finally,
Chapter 7 presents the framework in which a reliability analysis can be performed for a marine structure
coupling the theory of Chapter 4 and the damage accumulation prediction model built in Chapter 5. The
framework is applied on structural details of the West Africa FPU.
Finally, in Chapter 8 the conclusions of the research are presented as well as suggestions for future research.
The data acquisition, processing and storage process is presented in Appendix 1.



Chapter 2
Machine Learning Regression
Algorithms

The scientific interest for Machine Learning applications and Artificial Intelligence in general has sky-rocketed
in recent years. The reason behind the re-ignition of interest in this specific field of study is no other than
the rapid increase in computational power, that enables the use of algorithms that were once considered
as utopian. Nowadays, machine learning has conquered the industry and is at the heart of many high-tech
products and applications. Under this perspective, maritime applications could be no exception.

2.1. What is Machine Learning?
The term machine learning was initially used by Samuel Arthur, a pioneer in computer gaming and artificial
intelligence, in 1959 [74]. Some research was focused on machine learning during the 1960s and 70s but
was later abandoned due to the computational complexity of the developed algorithms. The recent machine
learning ’tsunami’ has started in 2006 when Geoffrey Hinton published a method capable of training deep
artificial neural networks [75]. Machine Learning is essentially a sub-space of AI. Machine Learning systems
are rather trained and not explicitly programmed [76]. As defined by IBM "Machine Learning is a branch of
artificial intelligence focused on building applications that learn from data and improve their accuracy over
time without being programmed to do so" [77]. Machine Learning and especially Deep Learning algorithms
are greatly benefited by the existence of large amounts of available data. They can train themselves to achieve
results far superior to the ones of conventional data fitting algorithms. This high performance of machine
learning when big data is available can prove highly beneficial to the development a high-fidelity digital twin
model.

2.2. Artificial Neural Network
The Artificial Neural Network is one of the most widely used Machine Learning Algorithms. As its name im-
plies it is based on biological learning systems that are composed of complicated networks of interconnected
simple units.
These simple units in both biological and artificial neural networks are called neurons. In biological net-
works neurons are the cells responsible for reception,transmission and processing of signals. The functions
they perform on a unit level are very simple. However, when they are combined they produce very powerful
networks. The same goes for artificial neural networks. Each neuron receives one input(xi ) from every neu-
ron that it is connected to and then goes on to calculate the weighted sum of these inputs using pre-assigned
weights(wi ):

z =
n∑

i=1
wi xi (2.1)

Then the weighted input summation is fed to an activation function that provides an output y . The opera-
tion of such neurons, also known as McCulloch-Pitts neurons [2], is illustrated in Figure 2.1. The selection
of the application function is of utmost importance as it defines the computational properties of the neural
network. The application function should have a monotonically increasing behaviour within a given range
and have a constant value outside of this range. The most commonly used activation function, which is also
used in the scope of this study, is the Rectified Linear Unit (ReLU) function [78]. The neurons of an artificial
neural network are arranged into layers. The first layer is called the input layer, the intermediate ones hidden
layer and the final one output layer. In most neural network applications dense-layers are used which means
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that all the neurons of one layer are connected to all the neurons of the previous and the next level. The neu-
ral networks with more than one hidden layer are called multi-layer networks. The architecture of a neural
network with a single hidden layer can be seen in Figure 2.2

Figure 2.1: McCulloch-Pitts neuron[2]

The process of estimating the values of the weights that are connecting the neurons of a neural network is
referred to as training the neural network. Artificial neural networks are trained using the back-propagation
algorithm [79]. The algorithm consists from a forward and a backward step. In the forward step, one input is
selected and its effect is propagated throughout the network until a response is produced. In the backward
step the error between the produced and the desired response is calculated and then back-propagated to the
start of the network adjusting the connection weights. The procedure is repeated until a stopping criterion is
met. Different function can be used to calculate the error, with the most common of them being the mean
squared error [44]:

E(t ) = 1

2

n∑
i=1

(yi − vi )2 (2.2)

The minimization of the error is achieved using gradient based optimization functions. A well trained net-
work is able to provide accurate predictions for input which is not contained in the training set.

Figure 2.2: Neural Network Architecture

2.3. Support Vector Regression
Support vector machines (SVMs) are very powerful machine learning models. They are most commonly used
for classification problems, but they can also be used for linear and non-linear regression problems as the one
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under examination. The regression problem is a generalization of the classification problem [80], in which
the model instead of returning an output from a finite set of possible outputs, it returns a continuous-valued
output.

Figure 2.3: Linear support vector regression problem[3]

In order to solve binary classification problems support vector machines formulate them as convex opti-
mization problems [81]. The optimization problem entails finding the maximum margin separating the hy-
perplane, while correctly classifying as many training points as possible. In a given dot product space a hy-
perplane can be described as:

[w] · [x]+b = 0 (2.3)

where [w] is the orthogonal vector to the hyperplane. The separating hyperplane can be estimated by mini-
mizing:

1

2
||[w]||2 (2.4)

Because of their sparse solution and their good generalization capability SVMs can be adapted to address
regression problems. The generalization of support vector machines to solve regression problems is achieved
through the introduction of an ε-insensitive region around the decision function [82]. Taking advantage of
Vapnik’s ε-insensitive approach, a flexible tube of minimal radius,called the ε-tube, is formed symmetrically
around the calculated decision function as it can be observed in Figure 2.3. This means that when the error
has absolute values lower than a pre-defined threshold it is ignored. In this manner, points located outside
the tube limits are penalized, while those located within the tube do not receive penalty. The optimization
problem is reformulated in order to estimate the ε-tube that best approximates the continuous function. The
ε-tube function has the following shape [47]:

C
N∑

n−1
(ξn − ξ̂i )+ 1

2
||[w]||2 (2.5)

Under the constraints:

tn ≥ y(xn)−ε− ξ̂n (2.6)

tn ≤ y(xn)+ε+ξn (2.7)

ξn ≥ 0 (2.8)

ξ̂n ≥ 0 (2.9)
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Where ξn and ξ̂n are slack parameters and C is a regularization parameter. Through the introduction of La-
grangian variables and the elimination of the corresponding variables the dual problem is given by maximiz-
ing:

L(a, â) =−1

2

N∑
n−1

N∑
m−1

(an − ân)(am − ˆam)k(xn , xm)−ε
N∑

n−1
(an + ân)+

N∑
n−1

(an − ân)tn (2.10)

Under the constraints:
0 ≤ an ≤C (2.11)

0 ≤ ân ≤C (2.12)

in which the kernel k(x, x ′) = φ(x)Tφ(x ′) and an , ân are Lagrange multipliers. The kernel function is used in
order to transform the data to higher dimension space where it is easier for them to get separated. The most
common kernel functions are:

• Polynomial function

• Gaussian function

• Radial base function[83]

Solving the dual problem the regression function can be obtained as follows:

y(x) =
N∑

n−1
(an − ân)k(x, xn)+b (2.13)

2.4. Gradient Tree Boosting
Boosting or hypothesis boosting refers to ensemble methods that combine several weak models in a strong
model. The idea is to train predictors sequentially and each predictor tries to improve the performance of the
previous predictor [3].
One of the most used boosting methods is Gradient Tree Boosting. Gradient tree boosting is essentially a
combination of Decision Trees [84], which are used as a base estimator, which the principles of hypothesis
boosting. In gradient tree boosting each weak learner (decision tree) is trained on the error of the previous
one. The mathematical formulation of the prediction of a gradient tree boosting algorithm is [85]:

ŷi = FM (xi ) =
M∑

i=1
hm(xi ) (2.14)

where hm are the decision trees which are utilized as base estimators. The constant M is the number of base
estimator to be used and is defined by the user. By default, the initial model F0 is selected as the constant that
minimizes the error function.
The above stated formulation means that similar to other boosting methods the gradient tree boosting is built
in a greedy fashion [86]:

Fm(x) = Fm−1(x)+hm(x) (2.15)

Each newly added tree hm is trained to minimize a sum of losses given the previous ensemble model Fm−1:

hm = ar g mi nLm = ar g mi n
n∑

i=1
l (yi ,Fm−1(xi )+h(xi )) (2.16)

where l (yi ,F (xi )) is defined be the selection of the error function. Using a first order Taylor based approxi-
mation l can be estimated as:

l (yi ,Fm−1(xi )+h(xi )) ≈ l (yi ,Fm−1(xi ))+h(xi )
∂l (yi ,Fm−1(xi ))

∂Fm−1(xi )
(2.17)

The quantity ∂l (yi ,Fm−1(xi ))
∂Fm−1(xi ) is easy to calculate for any Fm−1 since the error function is differentiable. Combin-

ing equations 2.16 and 2.17 and removing the constant terms we get:

hm = ar g mi n
n∑

i=1
h(xi )gi (2.18)

Where gi = ∂l (yi ,Fm−1(xi ))
∂Fm−1(xi ) . In order to minimize 2.18 the decision tree is fitted to predict a value that is pro-

portional to the negative gradient −gi . The gradients are updated at each iteration. The iterative process of
gradient tree boosting is illustrated in Figure 2.4.
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Figure 2.4: Gradient Boosting[3]

2.5. Random Forest
Decision tree algorithms tend to overfit complicated problems. In order to address this problem the random
forest algorithm has been developed [87]. The random forest algorithm is an ensemble model of decision
trees, in which each tree is trained on a random set of variables. Following the law of large number the algo-
rithm always converges, which solves the overfitting problem [88]. The method of training base estimators
on subspaces of the feature space is an efficient method of reducing bias in the model.
In original implementation of the random forest model each tree has a vote for the most popular class of
the input X . However, in the implementation used in the scope of this project the classifiers are combined
by averaging their probabilistic prediction, instead of letting each classifier vote for a single class [85].The
mathematical formulation of the output of the ensemble model is [47]:

H(x) = ar g max
k∑

i=1
I (hi (X ,Θ) = Y ) (2.19)

in which θ are random feature vectors, hi are decision trees, Y is the output variable of each tree and I is the
characteristic function. The maximum generalization error of the random forest depends on the correlation
of the trees and their strength [88]. The concept of the algorithm is illustrated in Figure 2.5.

Figure 2.5: Random Forest



Chapter 3
Finite Element Method Reformulation

The present chapter deals with the formulation of the inverse Finite Element Method approach for in-situ
assessment of the operational load. The stiffness matrices of the structures studied in this project have been
collected as an output of Abaqus. The reformulation of the problem as well as its solution have been imple-
mented in Python. The results have been verified using Abaqus.

3.1. Finite Element Method
The finite element method is by far the most widely used method in computational mechanics. It allows
obtaining approximate solutions for boundary values problems in engineering. The procedure allows the
continuum to be discretized in a number of elements with known behaviour and then it formulates the global
problem by assembling all the elemental equations [89]. It involves three major steps which are no other than,
pre-processing, solution and post-processing. During pre-processing the equilibrium equation is formulated
[90]. The steps for the formulation of the equilibrium equation are the following ones:

• Discretize domain into elements.

• Assume approximate functions as behaviour of the element.

• Set-up equilibrium equation in element level.

• Assemble the local equations to form the global equilibrium equation.

• Apply boundary conditions and loads.

In the case of a static or quasi-static problem the resulting equilibrium equation is:

[K ][u] = [F ] (3.1)

where K is the global stiffness matrix of the structure, u is the displacement vector and F is the load vector.

3.2. Load Magnitude Calibration FEM Reformulation
As it becomes evident in order to solve the classical formulation of the equilibrium equation of FEM, the
properties of the structure, the boundary conditions and the external loading need to be known. However, in
many cases the loading of the structure is not known and its measurement is too costly or complicated. Under
certain circumstances, with a proper reformulation of the problem, the theoretical background behind FEM
can be used to estimate the magnitude of the load. The prerequisite circumstances are the following two:

• The "shape" of the expected load is known.

• Strain measurements can be performed on the structure.

Saying the shape of the expected load needs to be known, it is meant that one needs to know the location and
the direction of the applied load as well as its intensity compared to a maximum value. The reason for these
prerequisites will be explained in the following sections.
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3.2.1. Reformulation of the load vector
In the classical FEM approach the load vector is a vector containing a number of cells equal to the degrees of
freedom of the discretized structure. The value of each cell of the load vector corresponds to the magnitude
of the load applied in the corresponding direction of the cell in the global system. This means that the load
vector has the following format:

[F ] = [
f1x , f1y , f1z , f1xr , f1yr , f1zr l ..., fix , fi y , fiz , fixr , fi yr , fizr

]′
(3.2)

where the value fi is the magnitude of the load.
This can be re-written as:

[F ] = a[b] (3.3)

where a is the absolute maximum value of the load vector. This means that [b] will be a vector whose values
are in the range [-1,1]. The information that vector [b] contains, are essentially the ones needed as prerequi-
sites. Namely the nodes where load is applied, the direction of the load and its comparative magnitude. This
vector [b] will be referred to as the shape vector from now on. The absolute maximum value of the load vector
a will be named calibration factor. The description of more complicated load cases can be achieved through
the decomposition of the load vector to a linear combination of shape vectors and calibration factors. In this
case the load vector can be written as:

[F ] =
n∑

i=1
ai [b]i (3.4)

In this case, each shape vector bi and calibration factor ai refer to a local part of the loading. This means
that the comparative magnitude between the different parts of the loading is no longer of importance, since
a different calibration factor is assigned to their shape vector.

3.2.2. Translation of strain measurements to nodal equations
The most common way of measuring strain is the use of strain gauges. If it is assumed that each end of a
strain gauge is attached to a node then what the strain gauge does is measure the deformation of the line that
is connecting the two nodes. By the definition of strain [91] the following equation holds:

ε= ∆l

l
= u2 −u1

l
(3.5)

where ε is the deformation l is the distance between the nodes and ui is the displacement of each node on
the axis on which the calculated strain value is referred to. Equation 3.5 can also be written as:

[0, ...,0,−1, ...,1,0, ...,0][u] = ε∗ l (3.6)

where u is the displacement vector.

3.2.3. Reformulation of the equilibrium equation
Inserting equation 3.3 to the FEM equilibrium equation, it now becomes:

[K ][u] =
n∑

i=1
ai [b]i (3.7)

Under the assumption that the shape vector is known and the calibration factor is unknown, it means that
one more free variable is added to the system. The system is now under-determined, which means that an
infinity of non-trivial solutions exists [92].
The equation 3.6 that describes the strain measurement can used as a constraint. The addition of this ex-
tra equation in the system will make the rank of the system equal to the number of the free variables, thus
resulting in a unique solution. After inserting the equation and rearranging the system can be re-written as:

[A][x] = [y] (3.8)

where [A] is the stiffness matrix [K ] horizontally concatenated with the shape vector [b] and vertically con-
catenated with equation 3.6, [x] is the displacement vector [u] vertically concatenated with calibration factor
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Figure 3.1: The shape of concatenated matrices

a and [y] only contains zeros with the exception of the last cell where the value ε∗ l is assigned. The shape
of the concatenated matrices is shown in Figure 3.1. As it becomes evident, the number of calibration factors
that can be calculated is equal to the number of the strain measurements available. The solution of the sys-
tem described by the equation 3.8 will result in the estimation of the nodal displacements and the calibration
factors.



Chapter 4
Structural Reliability Analysis using
Chaotic Particle Swarm Optimization

In the context of time invariant structural reliability analysis the design variables x on which there is a certain
degree of uncertainty are described using a random vector [X ]. Afterwards, the limit state function G(X )
is generated that defines the limit between the survival and the failure domain. The limit state function is
defined to have the following properties:

• If G(X ) < 0 the structure is in the failure domain

• If G(X ) = 0 the structure is in a limit state

• If G(X ) > 0 the structure is the survival domain

The value of the limit state function Z =G(X ) is called safety margin of the structure. According to the defini-
tion of the limit state function is the safety margin is less or equal to zero the structure fails. Taking this into
account the failure domain is defined as D = [X εRn ,G(X ) ≤ 0]. The probability of failure of the structure can
be calculated as:

P f =
∫

D
fX (x)d x (4.1)

Where fX (x) is the joint probability density function of the design variables. Over the last decades several
approaches have been developed to solve Equation 4.1. The main of these approaches are [4]:

• Direct integration over the failure domain. Such methods have very high accuracy. However, in order
to implement them the joint probability density function needs to be known.

• Monte Carlo simulations. Such methods are accurate and easy to implement for all kinds of applica-
tions. However, in order to accurately estimate low values of probability of failure many samples are
required to achieve convergence thus making them computationally expensive.

• First or Second order reliability methods using the response surface method or reliability index. The
accuracy of such methods depends on the formulation of the limit state function. For low values of the
probability of failure they are computationally inexpensive compared to their alternatives.

• Discrete approximation. Such methods are used in complex systems. Their accuracy depends on the
quality of the approximation.

Taking the strengths and weaknesses of these approaches into consideration a FORM was selected to be used
in the context of this study. This choice is motivated by the fact that low values of probability of failure are
expected to be encountered during the lifetime of marine structures. The framework that will be developed
in the scope of this research consists of the minimization of the Hansofer-Lind reliability index using an im-
plementation of the Chaotic Particle Swarm Optimization algorithm.

4.1. Hansofer-Lind Reliability Index
The Hansofer-Lind reliability index [93] is defined in a Gaussian standard space (Λ) where the design variables
are uncorrelated. The limit state function defines a n-th dimensional limit surface(Γ) in the design space (Ψ).
This limit surface can be translated to the Gaussian space Λ to be Σ = T (Γ). Then the Hansofer-Lind index
(βHL) is defined as the minimum distance between the origin of spaceΛ and a point that evolves on the limit
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surface Σ. A visualization of the definition of Hansofer-Lind index is given in Figure 4.1.
The matrix formulation of the Hansofer-Lind index for correlated design variables is [94]:

βhl = mi n
√

([X ]− [µ])T [C ]−1([X ]− [µ]) (4.2)

where [µ] is the vector of the mean values of the design variables and C is the covariance matrix. This can
also be re-written as [95]:

βhl = mi n
√

(
xi −µi

σi
)T [R]−1(

xi −µi

σi
) (4.3)

where R is the correlation matrix.
If the design variables in equation 4.3 have a Gaussian distribution the it can be written as:

βhl = mi n
√

[u]T [R]−1[u] (4.4)

in which [u] is the vector of design variables in the standard Gaussian space. For uncorrelated variables this
becomes [4]:

βhl = mi n
n∑

i=1
u2

i (4.5)

Figure 4.1: Hansofer Lindt Index Visualization [4]

4.2. Structural Reliability Analysis as an Optimization Problem
As it becomes evident from the definition of the Hansofer-Lind reliability index the calculation of the relia-
bility index is essentially a constrained minimization problem. The value of the reliability index needs to be
minimized under the constraint that the limit state function needs to be equal to zero. Taking into account the
matrix formulation of the Hansofer-Lind reliability index the mathematical formulation of the minimization
problem is:

mi n
√

(
xi −µi

σi
)T [R]−1(

xi −µi

σi
) (4.6)

Under the constraint:
G(X ) = 0 (4.7)

Using the penalty method to apply constraints objective function of the problem can be reformulated as:

mi n[
√

(
xi −µi

σi
)T [R]−1(

xi −µi

σi
)+M ∗G(X )] (4.8)

where M is the penalty coefficient. The value of the penalty coefficient should be properly selected to avoid
ill-posing of the minimization problem. Solving the constrained minimization problem stated by Equation
4.8 the Hansofer-Lind reliability index can be estimated. Then the probability of failure can be calculated as:

P f = 1−Φ(βHL) (4.9)

in whichΦ is the cumulative distribution function of the standard Gaussian distribution.
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4.3. Chaotic Particle Swarm Optimization
The Chaotic Particle Swarm Optimization algorithm is variation of the Particle Swarm Optimization genetic
algorithm introduced by Kennedy and Eberhart [96]. The method is based on simulating the social behaviour
of flocks of birds.
In the classic PSO implementation an initial population is generated randomly in the search space Ω. Each
particle of the initial population is assigned an initial velocity equal to zero. The size of the population de-
pends on the trade-off between performance and computation time. Larger populations result in a more
consistent performance of the algorithm. However, they are related to higher computation times.
At each iteration of the algorithm all the particles are evaluated with respect to the value of the objective func-
tion that they result into. Afterwards, their velocities and positions are updated accordingly. The velocity of
the particles is updated according to the following equation:

vh+1
i j = w ∗ vh

i j + c1 ∗ r1 ∗ (Pbest h
i j −xh

i j )+ c2 ∗ r2 ∗ (Gbest h −xh
i j ) (4.10)

in which i is the range of the population and j is the dimensions of the search space. Pbest is the best
performing location of each particle and Gbest is the best performing location of all the particles. Moreover,
w is a deterministic parameter called an inertia parameter, c1 and c2 are deterministic parameters and r1

and r1 are samples of a uniform random variable. The velocity updating procedure consists of two main
contributors:

• The own experience of each particle taken into consideration through the term (Pbest h
i j −xh

i j )

• The experience of the whole population taken into consideration through the term (Gbest h −xh
i j )

After the update of the particles’ velocities, their positions are updated according to the equation:

xh+1
i j = xh

i j + vh+1
i j (4.11)

This process is repeated until a termination criterion is fulfilled. An flowchart of the PSO algorithm is pre-
sented in Figure 4.2.
The selection of the parameters w , r1 and r2 is regarded to be crucial for the performance and robustness of
the algorithm [71]. The inertia parameter controls the effect of the previous velocity on the updated veloc-
ity. A larger value of the inertia parameter makes the PSO algorithm look for the global optimum in a larger
area. On the negative side, larger values of the inertia parameter reduce the precision of the algorithm. The
selection of w is a trade-off between exploration and exploitation. What is more, fixed values of the r1 and r2

parameters cannot always ensure ergodicity within the search space.
To avoid being trapped in local optima the Chaotic Particle Swarm Optimization algorithm expands the con-
ventional implemation of the PSO by utilising a chaotic system for the selection of the above mentioned
parameters. Chaos as Zhao et al. definite it is "a characteristic of a non-linear system involving a bounded
unstable dynamic behaviour that exhibits sensitive dependence on the initial conditions and includes infi-
nite unstable periodic motions" [71]. The utilization of such a system to determine the parameters of a PSO
algorithm enhances the search behaviour of the algorithm.
The chaotic system that has been selected is the logistic equation:

xn+1 =µ∗xn ∗ (1−xn) (4.12)

0 ≤ x0 ≤ 1 (4.13)

Despite its deterministic behaviour the logistic equation displays chaotic dynamics when µ 6= 4 and x0 6=
0,0.25,0.5,0.75,1. The selection of the logistic equation as the chaotic system for this implementation is mo-
tivated by its computational simplicity and the fact the output space of the equation matches the definition
space of the user-defined parameters of the PSO algorithm.
Taking that into account the equations that control the behaviour of the PSO parameters in the CPSO imple-
mentation are:

wn+1 =µ∗wn ∗ (1−wn) (4.14)

0 ≤ w0 ≤ 1 (4.15)

and
ri (n+1) =µ∗ ri (n) ∗ (1− ri (n)) (4.16)

0 ≤ ri (0) ≤ 1 (4.17)

where i = 1,2 and w(0),ri (0) 6= 0,0.25,0.5,0.75,1.
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Figure 4.2: Particle Swarm Optimization algorithm flowchart



Chapter 5
Damage and Response Prediction

A considerable amount of sea state and response data has been acquired within the Monitas Group. In the
scope of this project a part of this data, regarding the West Africa unit, has been utilized in order to create a
digital twin of certain structures of the unit as a case study. Specifically, two machine learning models have
been developed and trained using the available data. The first of these models is used to predict the fatigue
damage accumulated during a half-hour sea state receiving as input the wave energy spectrum of the sea
state. The second one aims to predict the frequency at which the peak of the stress power density spectrum is
encountered. The predicted damage and frequency are then used in order to scale and shift the design RAOs
which can afterwards be used to calculate the response of the structure.
It is strongly advised to read Appendix 1 before proceeding with this Chapter.

5.1. Data Filtering
The above mentioned data was acquired using a weather buoy as well as an AHMS similar to the one installed
on-board the Bonga FPSO [1]. The data was stored in half-hour samples. The weather buoy was acquiring
the wave energy spectrum of the sea state, while the AHMS was recording time-series of strain at multiple
locations. The data from the weather buoy and the AHMS was acquired and saved independently. As a result,
data was not always available for both the sea state and the structure response, because either the buoy or
the sensors were occasionally out of service. Furthermore, sometimes the collected data was corrupted due
to malfunction of the data acquisition system. The above stated facts make it clear that the data had to be
filtered and then matched in order to end up with a usable dataset.
After careful examination of the data samples in which one of the strain gauges was possibly malfunctioning,
it was derived that the recorded strain was fluctuating around a mean with an infinitesimal amplitude as it
can be seen in Figure 5.2. The amplitude of the time-series when the strain gauge is functioning normally is
illustrated in Figure 5.1 for comparison. This infinitesimal amplitude served as an indication that when this
time-series of strain was translated to fatigue damage, utilizing the rainflow counting algorithm and the S-N
curve of the structure, it would result in unrealistically small values of fatigue damage. Taking advantage of
this fact, the corrupted sensor data was removed by calculating the corresponding fatigue damage of each
data sample and applying a high-pass filter. More specifically, data samples corresponding to a fatigue dam-
age value lower than 10−10 were flagged as corrupted and removed. This value was selected after inspection
of the available data.
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Figure 5.1: Strain time-series when strain gauge is functioning properly
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Figure 5.2: Strain time-series that has been flagged as corrupted

After the corrupted sensor data was removed, the remaining sensor and buoy data were matched, leaving
only the samples when both response and sea-state information were available in the dataset.
Due to the lack of a straightforward way to filter the buoy data, the filtering was achieved by comparison to the
sensor data. More specifically, the accumulated fatigue damage of each sample was calculated using spectral
fatigue analysis and cycle counting methods for the buoy and the sensor data correspondingly. If the buoy
data was acquired without being corrupted the calculated fatigue damage was expected to be comparable to
the fatigue damage that was calculated using the corresponding sensor data. Some deviation was expected
due to the inherent inaccuracy of the design RAOs. Based on this assumption, all the buoy data samples, of
which the calculated fatigue damage was less than 10% of the fatigue damage calculated using the sensor
data, were flagged as corrupted. Different threshold values were tested with only minor effect on the filtering
process. Only an one sided margin was used. This decision was driven by the fact that when the weather buoy
was on-board the vessel for maintenance it could only measure the part of the wave energy that was trans-
ferred to the vessel. This assumption was verified by the data, since there were no fatigue damage estimations
in a higher order of magnitude than the measured fatigue damage.This filtering process resulted to the final
form of the dataset, in which both the corrupted buoy and sensor data have been removed.

5.2. Damage Prediction
With the final form of the dataset available, the machine learning model responsible for the fatigue damage
prediction could be developed. The model selected for this application is an ANN, since the fatigue damage
accumulation is a highly non-linear problem. The first step in the process of developing an artificial neural
network is the selection and extraction of the features. It is followed selection of the network’s architecture,
the processing of the feature and label data and finally the training and evaluation of the model.

5.2.1. Feature Selection for Damage Prediction
In engineering applications it is fairly common for quantities involved in the analytical calculations to be
selected as features. This happens because their involvement in the analytical calculations serves as a strong
indicator that they are closely related to the quantity that needs to be predicted.
For the application at hand, the features were extracted from the wave energy spectrum data. The features
were carefully selected in order to capture the information contained in the wave energy spectrum. The
information that were deemed as crucial were the location of the peak energy as well as the magnitude of the
energy content and its spread around the peak. In order to capture the above mentioned information, the
following features were selected in order to be examined:

• Peak energy frequency

• Peak energy direction

• Peak energy magnitude

• Direction range

• Frequency range
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• Zero-up crossing period

• Mean wave period

• Significant wave height

The peak energy frequency, peak energy direction and peak energy magnitude represent the coordinates of
the maximum energy point in the (frequency, direction,energy) space. The direction range is defined as the
range of wave headings in which the energy content is at least 10% of the maximum energy:

Rθ = θmax10% −θmi n10% (5.1)

The frequency range is defined likewise as the range of wave frequencies in which the energy content is at
least 10% of the maximum energy:

Rω =ωmax10% −ωmi n10% (5.2)

The zero-up crossing frequency is calculated using the following formula where m0 is they zero order spectral
moment and m2 is the second order spectral moment:

T0 = 2π

√
m0

m2
(5.3)

The spectral moments can be calculated using the following equation:

mi =
∫
ωi Sσ(ω)dω (5.4)

Where i is the order of the moment, Sσ is the stress spectrum and ω is the frequency. The equation used to
calculate the mean wave period is:

Tm = 2π
m0

m1
(5.5)

where m1 is the first order spectral moment.
The significant wave height has been calculated using the zero order spectral moment:

Hs = 4
p

m0 (5.6)

Subsequently to their extraction, the features where visualized. The purpose of the features’ visualization is
the optical assessment of data clusters and underlying trends in order to verify their relevance to the quantity
that needs to be predicted.
In figure 5.3a the underlying relationship between significant wave height (Hs ), zero-up crossing period (T0),
peak energy and fatigue damage was examined. The zero-up crossing period was assigned to x-axis, the sig-
nificant wave height to y-axis, the peak energy level was indicated by the area of each scatter point and the
colour was related to the fatigue damage. The data points illustrated correspond to one month of filtered
data. As it becomes evident there is a clear trend in the illustration. Sea-states resulting to low fatigue dam-
age accumulation are related to low significant wave height and zero up crossing period values and low peak
energy content. The more Hs , T0 and maximum energy increase the more the resulting fatigue damage ac-
cumulation increases. This observation is in line with wave and fatigue analysis theory since significant wave
height serves as an indicator of the wave’s energy content and waves with a higher energy content usually
result in higher deformations and thus higher fatigue damage.
As it becomes clear in Figure 5.3b, fatigue damage accumulation also increases as mean period increases.
This is also in line with what was expected from theory. A higher mean period means a higher wavelength
and larger waves result in higher fatigue damage accumulation in structures stressed in a global loading state.
For structures stressed in a local manner, such as a side shell structure, lower periods (higher frequency) re-
sult in more stress cycles which might result in more overall damage accumulation. This phenomenon has
been observed for side shell sensors in the dataset under study during the winter months when the weather
is calmer. One can also conclude that the direction of peak energy in most sea-states is spread in a 90°range
around the heading of the vessel. Furthermore, it can be noticed that sea-states with a peak energy direction
from 0° to 45° tend to have higher energy content and result in more damage than sea-states spread from 0°
to −45°.



5.2. Damage Prediction 29

(a) (Hs , T0, Peak Energy) Feature Visualization, July 2017, Side Shell Sensor

(b) (θpeak , Tm , Peak Energy) Feature Visualization, September 2018, Deck Sensor
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Figure 5.4 serves the purpose of depicting the relationship between direction range, frequency range peak
energy and fatigue damage accumulation. It was concluded that the more spread wave energy spectrums
both in terms of frequency and direction are related to lower wave energy peaks. An underlying relationship
between the peak energy and the fatigue damage seems to be existent. However, this relationship is not
entirely straightforward by means of visual inspection.

Figure 5.4: (Rθ , Rω, Peak Energy) Feature Visualization, November 2018, Side Shell Sensor

When the connection between peak energy content, mean wave period, frequency range and damage was put
under consideration, interesting conclusions were drawn. First of all, it is clear, through Figure 5.5a, that sea-
states related to low fatigue accumulations formed a cluster at low mean wave periods and low peak energy
levels. As the mean wave period and peak energy values increased, the resulting fatigue damage increased as
well. However, for mean wave period values larger than 10s this trend seems to become more complicated.
This is stated because high and mid damage sea states seem to become rather mixed for high peak energy
contents and mean wave periods. It seems that the fatigue damage accumulation reaches a peak for sea-
states with a mean wave period about 10.5s and then drops again. It is possible that this happens due a
lower energy transfer from the waves to the vessel in these higher wave periods. The complexity of such
an underlying connection between the features and the label serves as a strong indication that a properly
selected and tuned machine learning regression algorithm can outperform a heuristic regression model.
Finally, the connection between significant wave height, peak frequency and frequency range was put under
consideration. As it is indicated in Figure 5.5b the relationship between these values is much clearer. High
damage sea-states, seem to be connected with high significant wave heights and low frequency spreading. It
was also observed that such states have low peak frequencies.
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(a) (Tm , Peak Energy, Rω) Feature Visualization, August 2018, Side Shell Sensor

(b) (Peak Frequency, Hs , Rω) Feature Visualization, October 2018, Deck Sensor

Besides visual inspection, which is a qualitative method of feature assessment, quantitative methods can be
utilized as well. One of them is the calculation of the population Pearson correlation coefficient between
the features and the label, which in this cases is the damage accumulation. Population Pearson correlation
coefficient is indicative of the linear correlation of the features and the fatigue damage accumulation. How-
ever, in the case of fatigue damage accumulation strongly non-linear relations are observed as well. Under
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this perspective the correlation coefficient can serve as a mere guideline and not as an absolute measure of
feature evaluation.
The population Pearson correlation coefficient was calculated using the following formula [97]:

ρXi Y = cov(Xi ,Y )

σXσY
(5.7)

Where features are denoted with Xi and the label values with Y . σX andσY are correspondingly the standard
deviation of the feature and the label. The function cov refers to the covariance of the feature and the label.
It was calculated as it follows [98]:

cov(X ,Y ) = E [(X −µX )(Y −µY )] (5.8)

In equation 5.8 E stands for the expectation of the value and µX and µY for the mean of the feature and
the label. The results obtained from the calculation of the population Pearson correlation coefficient are
presented in Table 5.1. LBSG3 and LBSG4 are long base strain gauges placed on the deck of the vessel while
LSG10, LSG11 and LSG11 are strain gauges located on a side shell structure.

Table 5.1: Pearson correlation coefficient of features and labels

LBSG3 Damage LBSG4 Damage LSG10 Damage LSG11 Damage LSG12 Damage
Peak Energy 0.744 0.748 0.751 0.708 0.740
Peak Frequency -0.264 -0.278 -0.286 -0.255 -0.274
Peak Direction -0.006 0.014 0.043 0.017 0.033
Frequency Range -0.403 -0.409 -0.422 -0.367 -0.405
Direction Range -0.145 -0.148 -0.153 -0.116 -0.140
Significant Wave Height 0.781 0.770 0.790 0.768 0.791
Zero Up Crossing Period 0.595 0.603 0.605 0.535 0.584
Mean Wave Period 0.583 0.595 0.599 0.527 0.575

As it is becomes obvious, the Peak Energy and the Significant Wave Height are the strongest features, in terms
of linear correlation, since they have a Pearson correlation coefficient value larger than 0.7 with all the labels,
which implies a very strong correlation. On the other hand, Peak Direction and Direction Range have Pearson
correlation coefficients close to zero, which indicates that they are not linearly related to the fatigue damage
accumulation. Taking into account the weak correlation of the peak energy direction and the direction range
to the fatigue damage and the fact that no clear connection is indicated in the feature visualizations, peak
energy direction and direction range were removed from the feature vector. This means that the final form of
the feature vector, after the feature assessment, is:

[PeakEner g y,ωpeak ,Rω, Hs ,T0,Ts ] (5.9)

After the final selection of the features they were extracted from the available data thus building the final
form of the dataset. The full dataset was then split to a training set, which will be used for the training of
the network, and a test set on which the performance of the final model will be evaluated. It is important
that the ANN has never seen the test set contents in order for the evaluation results to be accurate. The train
set consists of 80% of the available data and the test set of the remaining 20%. The train-test split ratio was
selected according to common practice.

5.2.2. Network Architecture
It is a widespread opinion that building neural networks is more of an art than it is a science [76]. Deciding
the final architecture of a network is an intuitive process and it is based on the developer’s experience and
instinct.
Reviewing literature regarding similar applications is crucial in order to define an initial design point for the
network’s architecture. After examining several application in the context of the literature study that has been
performed in the scope of this project, it has been decided that a multi-layer network would be optimal to re-
sult in accurate fatigue damage accumulation predictions. Due to the large quantity of available data a larger
number of neurons could be properly trained with the back-propagation algorithm.
In order to be able to monitor the performance of the network during the architecture design phase 20% of
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the training dataset was set aside as a validation set. The performance of the network can now be evaluated
on the validation set, thus leaving the test set uncompromised. The initial design approach was a neural
network with two dense fully connected layers each one of them consisting of 100 neurons. Afterwards, the
number of neurons in the layers was iteratively increased until it reached its final value of 512 neurons in
each layer. After that point no significant increase in the networks performance was observed. However, it
was noticed that the network was performing significantly better in the training set than in the validation set.
This is a strong indication that the network is overfitting the data.
In order to address this problem a dropout layer was introduced [99]. Dropout layers are a common tool to
prevent overfitting in deep learning applications. Their function is to set the output weights of the weakest
neurons to zero, thus killing the connection of these neurons with subsequent layers. The percentage of the
neurons to be killed is predefined by the user. In the application under study a 20% dropout layer was se-
lected. The dropout ratio was decided through an iterative trial and error procedure. After the introduction,
of the dropout layer the performance of the neural network on the train set and the validation set converged.
The final architecture of the network is presented in Figure 5.6.
The activation function used in all the layers, except the output layer, is the ReLU. The ReLU activation func-
tion has a definition space from minus infinity to infinity and is partially linear from minus infinity to zero
and from zero to infinity. This partial linearity means that the calculation of the function gradient is compu-
tationally inexpensive and that using ReLU gives the ability to the network to approximate non-linear prob-
lems. The output layer has a linear activation function in order to be able to return non-bounded continuous
values.

Figure 5.6: Final Neural Network Architecture

5.2.3. Data Processing Pipeline
Before training a neural network on a dataset the features and labels need to be processed beforehand. This
happens because they have different ranges and magnitudes which disturbs the function of the neural net-
work. In order for the neural network to function efficiently the data should be regularized to have a range
from [-1,1]. In the application under examination a different processing pipeline has been selected for the
features and the labels. The features are initially regularized using the MinMax scaling algorithm [100]. The
mathematical formulation of this regularization algorithm is the one below:

Xstd = X −Xmi n

Xmax −Xmi n
(5.10)

Xscaled = Xstd ∗ (Fmax −Fmi n)+Fmi n (5.11)

In which X is the space of the feature that is being scaled and F is the whole feature space. The application
of this transformation results in a transformed feature space with a range [0,1]. This regularization algorithm
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was selected on the grounds that it results in the best performance of the neural network.
After the MinMax scaling, a Principal Component Analysis (PCA) [101] was performed on the transformed
features. The purpose of the PCA was neither the dimensionality reduction nor the improvement of the per-
formance of the ANN. It was applied in order to transform the features to the principal components of the
feature space which removes the linear correlation between them. Having uncorrelated data is needed for
sampling will be performed in Chapter 7. PCA is an orthogonal linear transformation that transforms the
data to a new coordinate system in which variance is successively increased between principal components.
Mathematically PCA is defined as a set of weights wk that maps each row xi of an X space (in this case the
feature space) to a new space of principal component scores ti :

ti = xi ∗wk (5.12)

In order for the variance to be maximized the first weight is calculated as shown below:

[w1] = ar g max
∑

(t1)2
i = ar g max

∑
(xi w)2 (5.13)

Writing this in matrix form gives:

[w1] = ar g max||[X ][w]||2 = ar g max([w]T [X ]T [X ][w]) (5.14)

The quantity to be maximised can be recognised as a Rayleigh quotient [102]. A standard result for a positive
semi-definite matrix such as [X ]T [X ] is that the quotient’s maximum value is the largest eigenvalue of the
matrix, which is true when w is the corresponding eigenvector.
The kth principal component can be calculated as:

[X̂k ] = [X ]−
k−1∑
s=1

[X ][ws ][ws ]T (5.15)

Then the weight vector that results in the maximum variance can be calculated as:

[wk ] = ar g max||[X̂k ][w]||2 = ar g max
[w]T [X̂k ]T [X̂k ][w]

[w]T [w]
(5.16)

This returns the remaining eigenvectors of [X ]T [X ], with the maximum values for the quantity in brackets
given by their corresponding eigenvalues. Thus the weight vectors are eigenvectors of [X ]T [X ]. The appli-
cation of the PCA after the MinMax scaling results in features in the range of [-1,1], due to the change of the
coordinate system performed by the PCA.
As it has already been mentioned, the data processing pipeline is different for the labels(damage accumula-
tion). In this case the values are scaled using the maximum absolute value of the labels:

Xscaled = X

|Xmax |
(5.17)

This scaling algorithm normally results is a range [-1,1]. However, in the case of damage accumulation, be-
cause there are no negative damage values, the resulting range is [0,1].

5.2.4. Model Training and Evaluation
With the features and labels of the application extracted and processed the training of the neural network
is now feasible. In order to achieve optimum performance of the models the training procedure was op-
timized.The optimization was performed using the data of LBSG3 and the resulting hyperparameters were
applied to all the models. This was done under the assumption that the datasets are highly similar and thus
the models would display similar behaviour. The most influential aspects of a model’s training procedure are:

• The Error Function

• The Optimizer

• The Learning Rate

• The Batch Size
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The error function is of utmost importance, since it dictates the way in which the training model penalizes
deviations between the prediction and the label during the training phase. The available error functions, in
Keras deep API where the model has been developed, for regression problems are[103]:

• Mean Squared Error (MSE)

• Mean Absolute Error (MAE)

• Mean Absolute Percentage Error (MAPE)

• Mean Squared Logarithmic Error (MSLE)

• Cosine Similarity

• Huber

• LogCosh

After studying relevant literature and the documentation of each error function it has been decided that the
Mean Squared Error function should be used in the scope of this research. The motivation behind this deci-
sion is that MSE severely penalizes large errors, while it is more tolerant with low error values. This leads to a
consistent model that avoids large errors in its prediction.
Having selected the error function the rest of the aspects could now be optimized. They were optimized
in a sequential manner. It is possible that such an approach will not lead to a global optimum. However,
it is preferred since it is much cheaper from a computational perspective and less time consuming than a
global optimization approach that takes all the aspects into consideration simultaneously. Furthermore in
order to reduce the required time for the training of the network an early stopping approach was selected.
This means that if the performance of the model is not significantly improving after a pre-defined number of
epochs(training iterations) the training procedure is terminated. Early stopping was coupled with a learning
rate reduction strategy to break possible plateaus in the training procedure.
The first aspect to be optimized is the Optimizer. The ptimizer is nothing more than the optimization algo-
rithm responsible for the weight estimation during the training of the network. Three different algorithms
where taken into consideration:

• Adam

• Adamax

• Nadam

Adam is an algorithm for first-order gradient-based optimization of stochastic objective functions, based on
adaptive estimates of lower-order moments. The other two optimizers are variations of the Adam algorithm
[104]. Adamax is a variant of Adam based on the infinity norm. Nadam is essentially Adam with the addition
of Nesterov momentum [105].
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Figure 5.7: The effect of optimizer on the performance of the neural network
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The selection of the optimizers to be tested was done after examining the available documentation [106]. The
neural network has been trained using all three optimizers and its performance was evaluated on the valida-
tion set. The results are depicted in Figure 5.7. As it can be observed the performance of the model is almost
identical for the Adam and Nadam optimizers. However, the implementation of Adam is considerably faster,
thus leading to lower training time despite the larger number of epochs needed to achieve convergence. On
these grounds Adam has been selected as the optimizer of the artificial neural network for this application.
After selecting the optimizer the learning rate of the algorithm was optimized. The learning rate is a hyper-
parameter that controls how much the model should change with response to the estimated error in each
epoch. The best way to determine the optimal learning rate is through a sensitivity analysis. The examined
range of learning rates for the neural network under study was [0.001,0.00005]. The of the range selection was
performed taking into account that the default learning rate of the Adam optimizer is 0.001 [107].
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Figure 5.8: The effect of learning rate on the performance of the neural network

As it can be witnessed in Figure 5.8 the neural network performs better for higher learning rates. The MSE
converges to its minimum value for a learning range equal to 0.0009.
The last hyperparameter of the neural network to be optimized is the Batch Size. Batch size is a term that
refers to the number of training samples used in one training iteration. The batch size is usually selected to
be a power of two. This is done in order to optimize the performance of GPU where the training of the neural
network takes place. In the scope of the neural network under study the values of 32,64,128 and 256 where
tested as possible batch size options. As it is illustrated in Figure 5.9 the optimal performance of the model is
achieved for a batch size of 64.
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Figure 5.9: The effect of batch size on the performance of the neural network



5.2. Damage Prediction 37

The final configuration of the hyperparameters of the neural network is:

• Error Function: Mean Squared Error

• Optimizer : Adam

• Learning Rate : 0.0009

• Batch Size : 64

In order to determine the performance of the final configuration the neural network the model was iteratively
trained and evaluated on random train-test set splits for a total of 10 iterations on each sensor location. The
accuracy of the model was evaluated in terms of how accurately the fatigue damage accumulation is predicted
on a moving weekly basis. The accuracy is defined as:

Accur ac y = Damag epr edi cted

Damag etr ue
∗100 (5.18)

The selection of a moving weekly basis was based on the fact that using a moving week about 2000 accuracy
results are generated for each iteration. Otherwise only about 300 accuracy results are generated. A large
set of accuracy results is required in order to obtain a converged mean value and standard deviation. The
moving weekly basis was selected instead of more iterations was preferred because of the high amount of time
required for each iteration(about 15 minutes for 10 iterations) and the process would have to be repeated for
a total of 5 sensor locations. The accuracy results were fitted with normal distributions with the following
parameters:

• LBSG3 Mean: 100.3% Standard Deviation: 3.12%

• LBSG4 Mean: 100.7% Standard Deviation: 3.92%

• LSG10 Mean: 99.3% Standard Deviation: 3.5%

• LSG11 Mean: 99.9% Standard Deviation: 4.2%

• LSG12 Mean: 100.9% Standard Deviation: 3.4%

The fitting of the model accuracy results for each sensor location is presented in Figures 5.10, 5.11, 5.12,
5.13 and 5.14. These results serve as proof that the proposed artificial neural networks can accurately and
consistently predict the fatigue damage accumulation for all the sensor locations on a weekly basis.

Figure 5.10: Model accuracy of LBSG3 fitted with a normal distribution
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Figure 5.11: Model accuracy of LBSG4 fitted with a normal distribution

Figure 5.12: Model accuracy of LSG10 fitted with a normal distribution

Figure 5.13: Model accuracy of LSG11 fitted with a normal distribution
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Figure 5.14: Model accuracy of LSG12 fitted with a normal distribution

The performance of the developed neural networks over the whole test set is also displayed in Figures 5.15,
5.16, 5.17, 5.18 and 5.19,. As it can be observed the predicted fatigue damage accumulation is almost iden-
tical with the measured one, with all the models only slightly over- or under-predicting. Moreover, the per-
formance of the models serves as a verification of the assumption that they would have a similar behaviour.
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Figure 5.15: True vs Predicted fatigue damage accumulation at LBSG3
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Figure 5.16: True vs Predicted fatigue damage accumulation at LBSG4
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Figure 5.17: True vs Predicted fatigue damage accumulation at LSG10
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Figure 5.18: True vs Predicted fatigue damage accumulation at LSG11
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Figure 5.19: True vs Predicted fatigue damage accumulation at LSG12

5.3. Response Prediction
After developing the machine learning models that predict the fatigue damage accumulation at the structural
details, the models that predict the frequency, in which the peak stress power density is located at, were
developed. The extraction of these frequencies, in order to be used as label values, was performed using the
strain times-series that were recorded and a Python package that translates them to power density spectrums
that was provided by MARIN. The extraction was performed on the filtered dataset.

5.3.1. Feature Selection for Response Peak Frequency Prediction
The features considered for the fatigue damage predicting application provide information regarding the
wave spectrum that were deemed relevant for the frequency prediction problem as well. In order to select
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the features for this application the same features were once again taken into consideration:

• Peak energy frequency

• Peak energy direction

• Peak energy magnitude

• Direction range

• Frequency range

• Zero-up crossing period

• Mean wave period

• Significant wave height

Initially, the features were visualized in order to inspect the formation of clusters or any underlying trends.
As it can be observed in Figure 5.20, the significant wave height seems to have a weak relationship with the
frequency where the maximum stress power density is observed. Higher wave heights are related to lower
maximum stress power density frequencies. This was expected, since higher wave heights are usually related
to sea states with lower frequency contents. From the same illustration one can also conclude that for sea
states where the maximum wave energy is located at a higher frequency the maximum stress power density is
also located at a higher frequency. The data in the illustration appear in vertical lines. This happens because
the peak energy frequency is not a continuous variable due to the way that data is stored during the data
acquisition procedure.

Figure 5.20: (Peak Frequency, Hs , E) Feature Visualization, April 2018, Side Shell Sensor
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The inverse proportional relationship of the significant wave height and the maximum stress power density
frequency can also be verified in Figure 5.21 . An inverse proportional relationship between the zero up cross-
ing period and the maximum stress power density frequency also seems to appear. However, this relationship
is not entirely clear since the low and high maximum stress power density frequency data clusters overlap to
a certain extent. What becomes more clear is that sea state with lower maximum wave energy content result
in higher maximum stress frequencies.

Figure 5.21: (T0, Hs , E) Feature Visualization, December 2018, Deck Sensor

After the visual inspection of the features the linear correlation between the maximum stress power density
frequency and the features was examined. This was once again done through the calculation of the popu-
lation Pearson correlation coefficient. As it is displayed in Table 5.2 the linear correlation of the features is
weaker than for the damage prediction application. Once again all the features that do not display an ab-
solute correlation value larger than 0.2 for all the sensor locations were dropped. This means that the Peak
Direction, Frequency Range and Direction Range features were dropped. The final feature vector has the
following form:

[PeakEner g y,ωpeak , Hs ,T0,Ts ] (5.19)

After the final selection of the features they were extracted from the available data thus building the final form
of the dataset. The full dataset was then split to a training set and a test set with a ratio of 80-20 according to
common practice. The test set was seen by the model only during the final evaluation.
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Table 5.2: Pearson correlation coefficient of features and labels

LBSG3 Peak
Stress Frequency

LBSG4 Peak
Stress Frequency

LSG10 Peak
Stress Frequency

LSG11 Peak
Stress Frequency

LSG12 Peak
Stress Frequency

Peak Energy -0.276 -0.269 -0.313 -0.319 -0.320
Peak Frequency 0.399 0.377 0.434 0.441 0.441
Peak Direction -0.199 -0.179 -0.173 -0.173 -0.177
Frequency Range 0.143 0.127 0.196 0.208 0.210
Direction Range 0.046 0.041 0.069 0.076 0.077
Significant Wave
Height

-0.242 -0.241 -0.286 -0.294 -0.293

Zero Up Crossing
Period

-0.286 -0.273 -0.334 -0.343 -0.345

Mean Wave Period -0.350 -0.336 -0.397 -0.406 -0.408

5.3.2. Model Selection for Response Peak Frequency Prediction
In order to select the appropriate model for the prediction of the frequency that corresponds to the maximum
stress power density three different models were tested:

• Random Forest

• Support Vector Regression

• Gradient Tree Boosting

The values of the hyperparameters of these algorithms were initialized based on values used in similar appli-
cations. Then through trial and error these parameters where slightly altered to bring the performance of the
algorithms closer to the optimum.
The hyperparameters of the Random Forest were set to be:

• Number of Estimators:100

• Bagging: Enabled

• Number of Features: Auto

Where the number of estimators refers to the number of decision trees and the number of features to the
number of features used for the training of each decision tree.Bagging is a meta-algorithm designed to im-
prove the performance and the stability of machine learning methods that are based on decision trees[108].
The hyperparameters of the Support Vector regression were selected to be:

• Kernel Function:Radial Base Function

• C:20

• ε:1e-2

The mathematical meaning of each one of these hyperparameters was explained in Chapter 2.
For the Gradient Tree Boosting model the following selection of hyperparameters was made:

• Number of Estimators:100

• Learning Rate: 0.1

The Number of Estimators refers to the number of decision trees that are utilized in order to minimize the
residual error. Learning Rate determines affects the correction rate in the error function in each stage of the
algorithm. The contribution of each tree is shrunk by the learning rate. Learning rates below 1.0 are used in
order to avoid overfitting of the results.
Using the above mentioned hyperparameters for each one the models, their performance was evaluated us-
ing cross validation. This means that each model was tested and evaluated multiple times using a different
training and validation set each time. The statistics of the performance metric were exported afterwards. The
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Table 5.3: Cross Validation Results

Random Forest Support Vector Machine Gradient Tree Boosting
Mean RMSE 0.066 0.072 0.066
RMSE STD 0.002 0.0024 0.0022

selected metric for this application is the root of the mean squared error. The number of training and evalu-
ation iterations for this application, taking into account the required computational time, was selected to be
10. Since cross-validation is a time demanding process the comparison was done using only LBSG3 data. It
was assumed that the models perform in a similar way in all sensor locations. The results of the cross valida-
tion are presented in Table 5.3.

As it becomes evident from the results of the cross validation Random Forest and Gradient Tree Boosting
were equally accurate in their predictions. However, the lower standard deviation of the Random Forest im-
plies that it is more consistent in its performance. Taking this into account Random Forest was selected as
the prevailing model for this application.

5.3.3. Fine-tuning and Results
As it has already been stated, the selection of the hyperparameters was performed based on similar applica-
tions and it was then improved through a trial and error procedure. In order to obtain the best possible results
after the selection of Random Forest as the best of the three algorithms, its hyperparameters were now fine-
tuned using a grid search approach. This means that several different values and combination of values of
hyperparameters were tested and then the best performing model was selected. The hyperparameter values
that were tested are:

• Number of Estimators:[10, 50,100, 200, 400, 600]

• Bagging: [Enabled, Disabled]

• Number of Features: [Auto, Sqrt, Log2]

After testing all the possible combinations of the above mentioned values the best performing set up was:

• Number of Estimators:600

• Bagging: Enabled

• Number of Features:Sqrt

The grid search has once again been performed only taking LBSG3 into account. The performance of the
model is displayed in Table 5.4. The accuracy has been defined as:

accur ac y = fpr edi cted

ftr ue
∗100 (5.20)

As it can be observed the fine-tuned model performs slightly better than the set-up used during the com-
parison of the algorithms. The high accuracy and the low mean squared error of the model are indicative
of its high predictive capacity. Moreover, the low standard deviation of the mean squared error proves the
consistency of the models high accuracy.

Table 5.4: Performance of the fine-tuned Random Forest model

Accuracy 93.15%
Mean RMSE 0.065
RMSE Std 0.0018

The performance of the fine-tuned model is visualized in Figures 5.22, 5.23, 5.24, 5.25 and 5.26. As it can be
observed most of the instances are concentrated in close proximity to the 45°line. These illustrations indicate
the accurate and consistent behaviour of the final model. They also confirm the assumption that the model
performs similarly in all the sensor locations.
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Figure 5.22: True vs Predicted LBSG3

Figure 5.23: True vs Predicted LBSG4
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Figure 5.24: True vs Predicted LSG10

Figure 5.25: True vs Predicted LSG11
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Figure 5.26: True vs Predicted LSG12

5.4. RAO Calibration
As it has already been mentioned the hydro-mechanical modeling of marine structures is related to high
uncertainty. As a result the estimated RAOs of a structure are not always accurate. In order to address this un-
certainty, an RAO calibration framework has been developed. The developed RAO calibration process can be
performed either using actual measurements of using the predictions of the models that have been developed
in the previous sections. In order to calibrate the RAOs two parameters have been used:

• α a correction factor that shifts the frequency of the RAOs so that the sum of squared errors between
the measured and the calculated frequency of the maximum stress power density is minimized

• β a scaling parameter that calibrates the magnitude of the RAOs so that the fatigue damage calculated
through spectral fatigue analysis matches the predicted or measured fatigue damage

The calculation of the above-mentioned parameters is done using Scipy’s minimize function from the opti-
mization toolbox [109]. More specifically, Powell’s method was used to contrain the estimated parameters to
realistic values.
A converge study has been performed the results of which are illustrated in Table 5.5. As it becomes evident

Table 5.5: Convergence Study results of RAO calibration

LBSG3 LBSG4 LSG10 LSG11 LSG12
Nr. Of Samples alpha beta alpha beta alpha beta alpha beta alpha beta
10 -0.108 1.008 -1.000 9.125 -0.1685 1.0742 -0.041 0.579 -0.038 0.870
50 -0.004 0.848 -0.020 0.906 -0.1647 1.1695 0.042 0.562 -0.179 0.946
100 -0.003 0.840 -0.109 1.153 -0.1315 1.0710 0.043 0.551 -0.138 0.904
200 -0.141 1.137 -0.110 1.097 -0.0826 0.9834 0.016 0.534 -0.005 0.812
400 -0.081 0.982 -0.066 0.954 -0.1342 1.0082 0.019 0.538 0.000 0.821
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convergence has not been achieved in all sensor locations for a sample size up to 400 (200 hours). In order
to achieve convergence for a similar process implemented by MARIN 3 months worth of sample (4320 sam-
ples) were required [5]. The computational time required by the RAO calibration procedure did not allow for
a convergence study up to such a number of samples to be performed.
The results of the RAO calibration procedure for the RAO of LSG10 using α=−0.1315 and β= 1.071 are illus-
trated in Figure 5.27.
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Figure 5.27: Design vs Calibrated RAO



Chapter 6
Load Magnitude Calibration Algorithm

Calculation of fatigue accumulation in marine and offshore structures is subjected to many uncertainties. A
major source of uncertainty is the hydro-mechanic modeling of the structure [5]. Adopting wave load mod-
elling parameters from codes and standards frequently leads to overly conservative predictions of fatigue
lifetime. Subsequently, in order to achieve a high fidelity digital twin, in-situ measurements should be used
to calibrate the actual loading on the structures [12].
In the context of this research an algorithm has been developed that allows the calibration of the load mag-
nitude on a structure using strain measurements. The algorithm is based on a reformulation of the Finite
Element Method as it has been described in Chapter 3 and the advisory hull monitoring system installed on
the unit used as a case study, which is highly similar to the one installed on Bonga FPSO [1].

6.1. Description of the Algorithm
As it has already been stated in Chapter 3 by reformulating the classic FEM problem it is possible to end up
with an algorithm that not only calculates the displacement vector but also calibrates the load. The required
input for such an algorithm is:

• The stiffness matrix [K ] of the structure.

• The boundary conditions.

• Strain measurements somewhere on the structure.

• A shape vector that describes the application points, the direction and the comparative magnitude of
the load with respect to a maximum.

In the scope of this project, the stiffness matrix with the boundary conditions applied using the penalty
method [110] is exported from Abaqus. The strain measurements are acquired through the advisory hull
monitoring system and the shape vectors have been generated so as to model the major load components of
global hull bending and local water pressure [111]. The output of the algorithm is:

• The displacement vector, containing the displacement of each node.

• The calibration factor a.

All the calculations have been implemented in Python. Sparse data format has been used in order to decrease
memory usage and computation times. The solution of the linear system is performed using LU decomposi-
tion.

6.2. Verification of the Results
With the theoretical basis and the description of the algorithm in place, its functionality should now be ver-
ified. In order to do so, a simulation has been run using FEM with a known applied force. Then magnitude
of the force was regarded as an unknown, and the problem was simulated using the Load Magnitude Cali-
bration (LMC) algorithm. The strain data the were required, were obtained form the post-processing of the
initial FEM simulation. To avoid unnecessary complexity, the simple case of a fixed plate in uni-axial tension
was simulated for verification purposes.
More specifically, a plate with dimensions 2000mmx2000mm and a thickness of and a thickness of 1mm
has been selected. The material of the plate was set to be steel with a Young’s Modulus of 210000MPa. The
discretizetion was performed using S4 shell elements [112] with an element length of 40mm. The plate was

49
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Figure 6.1: Verification Model

fixed in the left end and a uniform tension load of 2040N was applied on the other end. The strain gauge was
modelled using a truss T3D2 [112] element which is a constant strain element. The area of the truss element
was set to be 1mm2 and its stiffness 1000MPa. They were selected to be so in order to be indicative of the
low stiffness of the strain gauge. The verification model is displayed in picture 6.1.
The total error in the load after the calibration was calculated as it is shown below:

er r or =

n∑
i=1

fi −
n∑

i=1
a ∗bi

n∑
i=1

fi

(6.1)

where fi are the components of the initial load vector, bi are the components of the shape vector and a is the
calibration factor. The calculated error was far below 0.01%. The calculated nodal displacements were also
identical with the ones of the FEM simulation.

6.3. Sensitivity Analysis
In the previous section the ability of the LMC algorithm, to provide the results it was expected to, has been
established.Subsequently, a sensitivity analysis was performed in order to monitor the behaviour of the al-
gorithm in more complex structures and loads. The performance of the algorithm in the following cases was
tested:

• The introduction of error in the measurement. A uniform tension load on the free edge was applied in
this case.

• The ability to find the average of a varying load using multiple measurements. The varying load that
was used had the shape of uniform tension load blocks with different magnitudes. The load was applied
on the free edge.

• The effect of the measurement location on the load calibration. A load identical to the varying load of
the previous case was applied.

• The reconstruction of a load with a quadratic shape using multiple measurements. The quadratic load
was applied on the free edge of the plate.

• The effect of multiaxiality. The examined load case was uniform tension loads of different magnitudes
applied on the free edges of the plate.
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• The effect of more complicated structures. A uniform pressure was applied on the structure as a load
case.

Examining the above mentioned cases provided better insight regarding the effectiveness and the robustness
of the algorithm.

6.3.1. Error in the Measurement
In all the experiments a certain degree of error is present in the acquired measurements. Because of this, it
was of utmost importance to monitor how the LMC algorithm responds to error introduced in the measure-
ments. Such an analysis enables the estimation of the error in the results, under the condition that a valid
estimation of the measurement error is in place.
For the above mentioned analysis, the example used for the verification of the functionality of the algorithm
was used once again. However, the strain data was distorted by the introduction of an error. The error was
introduced using the following formula:

εdi stor ted = εmeasur ed ∗ fe (6.2)

where fe is a scalar in the range [1,2]
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Figure 6.2: Sensitivity of calibration to introduced error

The analysis was performed for a number of different error levels and led to the conclusion that the error in
the calibration is equal to the error introduced in the measurement. The results of the analysis are shown in
Figure 6.2.

6.3.2. Averaging a Varying Load
The majority of the loads encountered in real-life applications are not uniform in magnitude. However, if their
amplitude is low they are frequently modelled as such for simplification of the load case. For this reason, the
ability of the algorithm to calculate the uniform equivalent of a varying load was examined. In order to test
the performance of the algorithm a new experiment was set in place. Once again an identical plate fixed on
the one side was used. In terms of loading, as load of varying magnitude was used in the FEM analysis as it
indicated in Figure 6.3.
In the Load Magnitude Calibration algorithm the load was modelled with the shape vector of a uniform load.
Many strain measurements were taken along the width of the plate. The algorithm was run multiple times us-
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Figure 6.3: Model used to examine uniform load approximation capability

ing each one of these measurements. The final calibration factor was estimated as the mean of the calibration
factors that have been calculated.

a =

n∑
i

ai

n
(6.3)

The error in the total load magnitude was estimated using Equation 6.1 and the mean calibration factor.As it
can be seen in Figure 6.4, the introduction of a second measurement point leads to a reduction of the error
value. The introduction of any further points of measurement makes the error value to fluctuate. The low
error values that are encountered for two or more measurement points serve as a strong indication that the
Load Magnitude Calibration algorithm has the ability to approximate varying load with an equivalent uniform
load. This averaging capability was expected due to the Saint Venant’s principle [113]. The interpretation of
Saint Venant’s principle indicates that the exact distribution of a load is not important far away from the
loaded region, as long as the resultants of the load are correct.
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Figure 6.4: Error in total load magnitude

6.3.3. Effect of Measurement Location
Another aspect of the algorithm worth investigating, is the degree in which the location of the measurements
is affecting the results. In order to examine this effect, a FEM model similar to the one used in the previous
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example was used. The only difference is that now strain gauges where placed to another location as well.
The exact model configuration is depicted in Figure 6.5.

Figure 6.5: Model used to examine the effect of strain gauge location

The major difference with respect to the previous case, was that now the load was modelled in its actual shape
using two shape vectors. This means that both measurements of each location would be used simultaneously.
The Load Magnitude Calibration algorithm was executed for each location of measurements generating the
results that are shown in Table 6.1. The formula used to calculate the error is:

er r or =

n∑
i=1

fi −
m∑

j=1

n∑
i=1

ai ∗bi j

n∑
i=1

fi

(6.4)

Table 6.1: Calibration error with respect to measurement location

Location 1 Location 2
Error in Low Magnitude Load Block 8.1% -6.34%
Error in High Magnitude Load Block -39.41% -2.96%
Error in Total Load Magnitude -7.35% -5.24%

This was expected since the loading at Location 1 has been almost completely redistributed according to the
Saint Venant’s principle[113] meaning that any local effects from the load blocks are almost completely lost.
This loss of information leads to the large error values that are witnessed. When Location 2 is examined,
where the strain field is still highly affected for the different load blocks in a local manner, the calibration
algorithm exhibits far superior results.

6.3.4. Reconstruction of a Load with Quadratic Shape
Loads with a more complicated shape are a common occurrence in engineering applications as well. Subse-
quently, it is essential to monitor the effectiveness of the algorithm in such loads. In order to do so a tension
load of quadratic shape was applied at the edge of the plate as it is illustrated in Figure 6.6. In the Load Magni-
tude Calibration algorithm the load was modelled using a number of measurement points each one of them
corresponding to the calibration of a uniform load block. The measurement points were placed close to the
loaded edge to ensure optimal efficiency of the calibration. The efficiency of the algorithm was measured
using the error in the estimation of total load magnitude as an indicator. Equation 6.4 was used to calculate
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the error. It has to be noted that the use of more measurement points enhances the shape representation of
the load since more load blocks are used, thus approximating the quadratic shape better.
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Figure 6.6: Model used to examine the reconstruction of a quadratic load

As it can be witnessed in Figure 6.7, when six or more measurement points are used the calibration error
drops below 2% after that point the addition of more measurement points, only enhances the representation
of the load in terms of shape representation. The error in the calibration of the total load magnitude starts
oscillating. This analysis indicates that using a coarse system of measurement points in combination with
the LMC algorithm can lead to an adequate load reconstruction both in terms of magnitude and shape.

Figure 6.7: Total load magnitude error of the reconstruction of a quadratic load

6.3.5. Effect of Multiaxiality on Load Reconstruction
Multiaxiality is a common state of loading in engineering applications and thus it was deemed crucial to
study the performance of the algorithm when the structure experiences multiaxial loading. The model that
was selected in order to monitor this aspect of the algorithm’s sensitivity is once again a plate, now loaded in
both directions with uniform loads as it is shown in Figure 6.8.
The analysis was performed in two parts. In the first part, the load along the width axis was not taken into
account in the calibration algorithm and only the load along the length axis was calibrated. As it was expected
this lead into an error in the calibration. The magnitude of this error is depicted in Figure 6.9 as a function of
the magnitude of the load along the width axis. It becomes evident that relationship between the error and
the load magnitude is linear. One can also conclude that for weak multiaxiality conditions the value of the
error is not significant and thus the secondary load can be disregarded in the calibration algorithm without
ending up with a considerable calibration error in the main load.
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Figure 6.8: Multiaxial Loading Model
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Figure 6.9: Calibration error with respect to the level of multiaxiality

However, multiaxiality is not always weak and thus disposable. To account for this, the second part of the
analysis was performed. In this part two measurement points were used simultaneously in order to calibrate
both loads. The measurement points where aligned both along the width and the length axis. As it becomes
evident by the results presented in Table 6.2, both loads can be accurately calibrated. Furthermore, the ori-
entation of the strain gauges has effects of lesser importance on the results.

Table 6.2: Calibration error in a multiaxial load state

Load X Error[%] Load Y Error[%]
2 Points in X-axis 0.007615490 0.0712379
2 Points in Y-axis 0.000466037 0.000430532
1 Point in each axis 0.000111665 0.000102558

6.3.6. Load Reconstruction on a Stiffened Panel
So far the algorithm was only tested on plates. In order to obtain a complete understanding of the behaviour
of the algorithm, it should be tested on more complicated structures as well. A stiffened panel has been se-
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lected as the structure on which the algorithm would be tested, since it is one of the most common structures
in marine applications. The stiffened panel was fixed along its circumference and subjected to a uniform
pressure. The geometry of the structure and the boundary conditions applied are illustrated in Figure 6.10.

Figure 6.10: Stiffened Panel Model

One strain gauge was placed on each stiffener and bay of the panel. The load was reconstructed using one
measurement at a time. The error was calculated using equation 6.1. As the contents of Table 6.3 show the
error is almost zero for all the measurement points. This is a strong indication that the algorithm can operate
effectively on stiffened panel structures subjected to a similar loadcase.

Table 6.3: Calibration error for a stiffened panel structure

Error[%]
Sensor 1 0
Sensor 2 0
Sensor 3 3E-06
Sensor 4 1E-06
Sensor 5 0
Sensor 6 8E-06
Sensor 7 1.7E-05



Chapter 7
Structural Reliability Analysis Framework

The neural network models that have been developed in Chapter 5 provide the means to accurately predict
the evolution of fatigue damage accumulations in structural details of the FPU that is used as a case study.
Taking things one step further, these models will be utilized to develop a structural reliability analysis frame-
work based on the approach that is described in Chapter 4.

7.1. Limit State Function
The first step in the development of a structural reliability analysis framework is the definition of the limit
state function. The limit state function G(X ) consists of two parts:

• The resistance of the structure R(X )

• The loading of the structure S(X )

The mathematical formulation of the limit state function is:

G(X ) = R(X )−S(X ) (7.1)

In the application under consideration the resistance of the structure is the maximum fatigue damage accu-
mulation and the loading of the structure is the current fatigue damage accumulation of the structure.
As it has been shown in Chapter 5 the developed neural networks can accurately predict the fatigue damage
accumulation of the structural details on a weekly basis. However, if the structural reliability analysis needs
to be performed on a horizon of several years two major problems arise:

• How will the sea state during those years be forecasted?

• The expected computational time for the predictions is very high.

In order to bypass these problems a different approach has been selected. More specifically the fatigue dam-
age accumulation will be modeled through a design variable that will be named "Typical Weekly Fatigue Dam-
age" (Dweekl y ). The concept behind the definition of this random variable is based on the fact that in Miner’s
rule(linear damage accumulation) the order in which individual stress cycles are applied does not affect the
fatigue damage accumulation. According to this a year of data in which the features(the features are extracted
from half hour samples) in every week follow the yearly feature distribution of an actual year of data, and an
actual year of data with the features in the order they were acquired, will lead to exactly the same fatigue dam-
age accumulation. The fatigue damage accumulation of a week during which the features follow their yearly
distribution is the definition of the design variable "Typical Weekly Fatigue Damage". Taking the above men-
tioned facts and definitions into account, the "loading of the structure" component of the limit state function
for the application under study can be written as:

S(X ) = D tot al ≈ Number O f W eeks ∗Dweekl y (7.2)

It has to be noted that the accuracy of this equation is reduced to a certain extent when the number of weeks
under consideration do not account for an integer number of years since the typical weekly fatigue damage
disregards seasonal effects. What is more, this formulation of the loading equation does not take the accuracy
of the neural network under consideration. In order to account for the accuracy of the models it can be
reformulated as:

S(X ) = Number O f W eeks ∗ Dweekl y

Macc
(7.3)
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where the design variable Macc is the accuracy of the model.
According to Miner’s rule a structure fails when the fatigue damage accumulation is equal to 1.o. However,
while Miner’s rule works reasonably well on the average it has a considerable amount of uncertainty[114].
One the most commonly used models to account for this uncertainty has been developed by Wirsching [115].
According to this model the damage at failure(D f ai lur e can be described as a design variable with a lognormal
distribution that has a mean of 1.0 and a standard deviation of 0.3. Using Wirsching’s model the resistance
component of the limit function can be written as:

R(X ) = D f ai lur e (7.4)

This lead to the final form of the limit state function:

G(X ) = R(X )−S(X ) = D f ai lur e −Number O f W eeks ∗ Dweekl y

Macc
(7.5)

Where the design variables are D f ai lur e ,Dweekl y and Macc and the number of weeks the time horizon of the
reliability analysis.

7.2. Typical Weekly Fatigue Damage PDF Estimation
The probability distribution of the failure damage is defined by Wirsching’s model and the one of the accuracy
of the neural networks has been estimated during the evaluation of their performance in Chapter 5. However,
the probability density function of Dweekl y has been established yet. In order to determine the PDF of Dweekl y

the following steps were followed:

• The distributions best fitting the principal components of the features were determined.

• A large dataset of weeks following these distributions was generated.

• The fatigue damage accumulation of each typical week was predicted using the neural networks.

• The weekly fatigue damage accumulation value that were predicted were fitted in order to determine
the PDF.

In order to select the distribution that best fits each one of the principal components of the features the
following distributions were tested:

• Normal

• Lognormal

• Weibull

• Double Weibull

• Exponential

• Exponential Normal

• Exponential Weibull

• Exponential Power

• Generalized Normal

• Generalized Exponential

• Generalized Extreme

• Power Law

• Power Lognormal

• Power Normal

• Gamma

The fitting performance of the distribution was evaluated through the summation of squared errors. The
prevailing distributions for each principal component are listed below:

• Principal Component 1 : Exponential Power | Mean = -0.82 Std = 1.13 b = 2.12

• Principal Component 2 : Exponential Normal | Mean = -0.08 Std = 0.09 K = 0.84

• Principal Component 3 : Exponential Normal | Mean = -0.07 Std = 0.05 K = 1.23

• Principal Component 4 : Exponential Normal | Mean = -0.04 Std = 0.06 K = 0.70

• Principal Component 5 : Double Weibull | Mean = 0.00 Std = 0.02 c = 1.08

• Principal Component 6 : Exponential Weibull | Mean = -0.16 Std = 0.15 a = 3.27 c = 8.03

The PDFs of all the principal components are illustrated in Figures 7.1, 7.2, 7.3, 7.4, 7.5 and 7.6 .
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Figure 7.1: Principal Component 1 Fitted with PDF
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Figure 7.2: Principal Component 2 Fitted with PDF
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Figure 7.4: Principal Component 4 Fitted with PDF
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Figure 7.5: Principal Component 5 Fitted with PDF
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Since the principal components are uncorrelated by definition typical weeks can be sampled using the dis-
tributions of the principal components. Afterwards the damage of the typical weeks was calculated using the
neural networks developed in Chapter 5. In order to achieve convergence in the parameters of the typical
weekly fatigue damage distribution, 10000 typical weeks were generated. Because the computational time
demanded for this procedure is significant it was only performed for one deck sensor(LBSG3) and one side
shell sensor(LSG12). The PDF of the typical weekly fatigue damage of these sensors is displayed in Figures 7.7
and 7.8 . The data was fitted using a normal distribution.
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Figure 7.7: Typical Weekly Fatigue Damage PDF LBSG3
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Figure 7.8: Typical Weekly Fatigue Damage PDF LSG12

7.3. Calculation of the Reliability Index and the Probability of Failure
With the final form of the limit state function and the probability distributions of all the design variables
in place the reliability index and the probability of failure of the details could now be calculated using the
methodology that is described in Chapter 4.
The values of the parameters required by the CPSO algorithm has been selected as:

• w = 0.7

• c1 = 1.5

• c2 = 1.2

• r1 = 0.1

• r2 = 0.15

• M = 1000
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The performance of the CPSO algorithm has been compared with the performance of Monte Carlo for a time
horizon of 10 years and the resulting error for both sensors is less than 1%. The estimated reliability index
and probability of failure of the critical structural detail in proximity to LBSG3 for a time horizon from 1 to
25 years is displayed in Figure 7.9. The estimated reliability index and probability of failure of the critical
structural detail in proximity to LSG12 for a time horizon from 10 to 600 years is displayed in Figure 7.10. The
side shell structures have large safety margins since the failure of a side shell structure can compromise the
integrity of the whole asset. This fact explains the large number of years over which the probability of failure
of the side shell structure remains low. It has to be noted that the current reliability analysis does not take into
consideration the following parameters:

• Material Degradation effects

• Seasonal Effects

• Uncertainties related to the fatigue resistance curve

Figure 7.9: Reliability Index and Probability of Failure LBSG3

Figure 7.10: Reliability Index and Probability of Failure LSG12



Chapter 8
Conclusions and Future Research
Recommendations

8.1. Conclusions
In order to assess to what extent the main research question:

Can the digital twin technology be enhanced with machine learning to accurately monitor the structural
health of marine structures in terms of loading and fatigue damage accumulation?

has been answered a sort summary is given on the conclusions with regard to the research sub-questions.

8.1.1. Feasibility of Development of a Digital Twin Model based on Machine Learning Al-
gorithms

The model that has been proposed in the context of this graduation project is based on two machine learning
models. The proposed model is able to learn and update through multiple sources as it is trained using data
from multiple strain gauges and a weather buoy. Furthermore, it is able to accurately represent the past,
present and future behaviour of its physical counterpart in terms of fatigue damage accumulation. Taking
into account the definition of a digital twin model that has been given in Chapter 1 it can be concluded
that the model proposed in the scope of this project has all the required attributes to qualify as a digital
twin model. Under this perspective, the development of a digital twin model based on machine learning
algorithms has been proven to be feasible.
The main advantage of the proposed digital twin system compared to a conventional hull monitoring system
is that it can be used to calculate the fatigue damage accumulation of past and future states during which no
strain measurements are available. This means that using this digital twin system someone can estimate the
fatigue damage accumulation of a structure retrofitted with a hull monitoring system utilizing the collected
operational data in an optimized manner. Furthermore, the digital twin system can be used to monitor the
structure’s fatigue damage accumulation in expected future sea states and take preventive action in case of a
failure scenario.

8.1.2. Accuracy of Fatigue Damage Accumulation Prediction
As it has been shown in Chapter 5 the fatigue damage prediction accuracy achieved by the machine learning
regression model is very high. In all the locations taken under consideration the achieved accuracy is about
100% with a standard deviation less than 4%. A quantitative comparison of this newly developed fatigue dam-
age prediction framework with the corresponding framework already developed within the Monitas Group
cannot be performed since the predictions for the vessel used as a case study are not available. However, tak-
ing into account the results published by Hageman et al. [5], a qualitative comparison can be performed. The
results for a deck location and a side-shell location are illustrated in Figures 8.1 and 8.2 correspondingly. Be-
fore drawing any conclusions, it has to be noted the that these results are for a different unit a have a different
time horizon than the results presented in Chapter 5 since the number of samples in the test set corresponds
to a time horizon of about two months. Even with these significant differences taken into consideration, a
qualitative comparison of the figures serves as a strong indication that a lot may be gained from the adoption
of neural networks for the prediction of fatigue damage accumulation.
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Figure 8.1: Prediction of fatigue damage accumulation for a deck location using the Monitas framework [5]

Figure 8.2: Prediction of fatigue damage accumulation for a side-shell location using the Monitas framework [5]

8.1.3. Integration of a Structural Reliability Analysis Module
Utilizing the fatigue damage accumulation prediction module and based on Miner’s Rule assumption that
the order of individual stress cycles does not affect fatigue accumulation the distribution of the design vari-
able called "Typical Weekly Fatigue Damage" was obtained. Combining this design variable with a variable
that describes the accuracy of the prediction module and Wirsching’s model the limit state function of the
structural details under study was formulated. Then using the Hansofer Lind reliability index coupled with a
CPSO optimization algorithm a structural reliability analysis module was developed.
The developed structural reliability analysis module integrates the uncertainty of the prediction module as
well as the uncertainty related to Miner’s Rule. However, it does not take into consideration the uncertainty
related to the fatigue resistance curve and to environmental effects. Integrating the uncertainty related to the
fatigue resistance curve is expected to decrease the predicted probability of failure since a fatigue resistance
curve with a 97.7% safety margin was used in the damage calculation. The integration of material degradation
effects is expected to increase the probability of failure due to material degradation over the years. However,
this increase is expected to be only marginal due to protection measures that restrict the material degrada-
tion.
This module can be used in order to generate a rational inspection, maintenance and repair schedule for the
structure. Integrating more uncertainty sources in the module will lead to a schedule that contains smaller
safety margins.

8.1.4. Utilization of Operational Data to Monitor Operational Conditions
In the context of this graduation project, a novel algorithm for load reconstruction using strain measurements
has been proposed based on a reformulation of the static/quasi-static FEM problem. Utilizing this algorithm
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one can gain insight into the operational conditions of the structure using the strain measurements of the hull
monitoring system. The main benefit of the algorithm is that it can operate efficiently, as it has been shown
by the sensitivity analysis, even for sparse measurements (in terms of sensor location). The main restrictions
of the algorithm is that it is only accurate for static and quasi-static loading and that its accuracy is depended
on the accuracy of the FEM model of the structure. The significance of this restriction largely depends on the
operational conditions of the vessel. When slamming is not a common occurrence the significance of this
restriction is limited.
The insights obtained through the use of this load-reconstruction algorithm can be utilized in order to im-
prove the hydro-mechanical modeling of future designs.

8.2. Future Research Recommendations
In the scope of this study the feasibility of development of a digital twin for the structural health monitoring
of marine structures has been positively evaluated. Taking into account the research that has been performed
within this graduation project, the following recommendations are made in order to translate the proposed
digital twin model concept into a fully operational high fidelity digital twin model.

8.2.1. On-line Training Scheme
In this feasibility study the machine learning models where trained in an off-line manner. This means that
there was no live interaction between the AHMS, the weather buoy and the machine learning models. This
"lag" in the acquisition of new data means that the digital twin is not operating at its maximum efficiency.
This problem can be solved through the development of an on-line training scheme for the machine learning
models. A framework should be developed within which the newly acquired data will be transferred to the
machine learning models the moment they are acquired. In this way the digital twin model can always stay
up-to-date.

8.2.2. Training on a Multi-Year Dataset
In the context of this study a year’s worth of data was used to train the machine learning models. This means
that any possible effect of the structure’s degradation over the years on the rate of fatigue damage accumula-
tion has not been taken into account. Moreover, changes in the local climate of the vessel’s operational area
may substantially affect the performance of the models. In order to take such effects into account the use of
a multi-year dataset is required for the training of the machine learning algorithms. Moreover, in order for
such effects to be taken into consideration new features may need to be engineered as well.

8.2.3. Consideration of Material and Fabrication Sources of Uncertainty
The developed structural reliability analysis framework is only considering uncertainty related to the models
that are used. This means that any uncertainty related to the material and the fabrication process is disre-
garded. In order to improve the proposed framework these sources of uncertainty should be considered in
future research.

8.2.4. Improved Advisory Hull Monitoring System
The Advisory Hull Monitoring System concept currently used in the scope of the Monitas JIP provides useful
insight in the fatigue damage accumulation process. However, the sparse sensor placement does not allow
the implementation of a dynamic load reconstruction module. As part of future research an improved version
of the AHMS is proposed that has densely placed sensors in certain side shell areas near the waterline. In this
way additional insights could be gained regarding the dynamic phenomena taking place by means of dynamic
load reconstruction.
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Chapter A
Data Acquisition

As it has already been mentioned the proposed digital twin framework will be evaluated using data collected
form an FPU in the scope of the Monitas JIP. The data is collected through the sensors of an AHMS that is
installed on-board the vessel and a weather buoy that is located in the area of operation of the vessel. In this
appendix the location of the sensors whose data will be utilized in the scope of this research as well as the
data processing and storage procedure. It is important to be noted that none of the work presented in this
chapter has been performed in the context of this graduation project. It is merely presented to improve the
understanding of the case study.

A.1. Location of the Sensors
Five sensors are utilized to capture the response of the vessel in the scope of this study. More specifically two
Long Base Strain Gauges(LBSG) located on the deck of the vessel and three conventional strain gauges(LSG)
located on the side-shell of the vessel. All the five sensors are located on the same frame of the vessel. The
exact position of the LBSGs can be seen in Figure A.1 while the location of the LSGs in Figure A.2. The sensors
will be referred to as:

• LBSG3

• LBSG4

• LSG10

• LSG11

• LSG12

The strains recorded by the sensors are stored in h5 files each one of which contains a half hour time-series.Since
the sensors are located at non-critical points, the response captured by them has been translated to the re-
sponse of the closest fatigue critical points, which in this occasion are welded joints, with the use of stress
concentration factors.

A.2. Weather Buoy
The wave energy spectrum related to each sea-state is captured using Fugro’s SEAWATCH Wavescan Buoy
[116]. The buoy is able to capture the wave period with the accuracy of 2% and the major heading of the
waves with an accuracy of 0.3°. As it can be seen in Figure A.3 the buoy has a discus shape. Because of its
shape only the major heading of the waves is captured. The energy is then spread in all the directions using a
direction function [117]:

D(β) = Γ(1+ n
2 )

p
πΓ( 1

2 + n
2 )

∗ cosn(β−βp ) (A.1)

Where β is the relative spreading around the main direction and βp is the main direction. The parameter n
is set to be equal to 8 since the sea state in the operating area is swell driven and for swells n>7 is proposed
[117]. The resulting wave energy spectrum is stored in h5 files, each one of them corresponding to a half hour
sea state.
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Figure A.1: Location of the LBSGs

Figure A.2: Location of the LSGs
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Figure A.3: SEAWATCH Wavescan Buoy
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