
 
 

Delft University of Technology

Equivalent Transmission Line Models for the Analysis of Edge Effects in Finite Connected
and Tightly-Coupled Arrays

Cavallo, Daniele; Syed, Waqas H.; Neto, Andrea

DOI
10.1109/TAP.2017.2670616
Publication date
2016
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Antennas and Propagation

Citation (APA)
Cavallo, D., Syed, W. H., & Neto, A. (2016). Equivalent Transmission Line Models for the Analysis of Edge
Effects in Finite Connected and Tightly-Coupled Arrays. IEEE Transactions on Antennas and Propagation,
65(4), 1788-1796. https://doi.org/10.1109/TAP.2017.2670616

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TAP.2017.2670616
https://doi.org/10.1109/TAP.2017.2670616


1

Equivalent Transmission Line Models for the
Analysis of Edge Effects in Finite Connected and

Tightly-Coupled Arrays
D. Cavallo, Member, IEEE, W. H. Syed, Student Member, IEEE, and A. Neto, Fellow, IEEE

Abstract— In this paper we present an analysis of the edge
effects in wideband connected arrays of slots and dipoles. Due to
the strong mutual coupling between the elements, these arrays
can support the propagation of guided waves along their surface.
Such waves arise from the edges of the finite array and can be
especially detrimental for the performance, since they can travel
within the array without geometrical spreading. In this work we
introduce Green’s function based equivalent transmission line
models to describe the propagation of the guided waves. The
elements’ active impedances are represented as periodic loads
on these transmission lines. The equivalent models can be used
as a simple and convenient tool to control and minimize the edge
effects. Finite array simulations of relevant array structures are
discussed. The evidence is that the active impedance and the
inter-element capacitance can be tuned to attenuate and reflect
the edge-born waves.

Index Terms— Connected arrays, edge effects, finite arrays,
truncation effects.

I. INTRODUCTION

CONNECTED arrays have become increasingly popular
in the last decade for wideband, wide-scanning phased-

array applications. Several designs have been presented in
the literature, based on either slot or dipole elements, and
have been shown to achieve broad impedance bandwidths
within a large scanning range and low cross polarization. Slot-
based designs were presented in [1] and more recently in [2],
whereas dipole-based arrays were developed in [3]–[6]. By
connected-dipole arrays we refer to elements that are either
electrically connected or capacitively coupled as originally
proposed in [7]: in both configurations, the broadband behavior
is achieved by intentionally introducing high mutual coupling
between the feeds.

The edge effects in this type of arrays can be especially
severe, due to the presence of waves that are generated at
the truncated edges of the array and can propagate along
the array surface. Although this phenomenon also occurs in
narrow-band arrays [8], it is more significant in wideband
connected arrays: because of the electrical connection between
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Fig. 1. Connected arrays of (a) dipoles and (b) slots with equivalent generator
source and impedance.

neighboring feeds, the edge-born waves can propagate almost
unattenuated throughout the array aperture and can give rise
to strong resonances [9].

In this work, we derive Green’s function based equivalent
transmission line models to describe the propagation of guided
waves along the array surface. These models are useful to
clarify the dependence of the propagation from the load
impedance of the array elements (Zl and Yl in Fig. 1). Such
dependence is different for slots and dipoles with consequent
implications on the finite array performance.

The influence of the truncation on the active input
impedance of the array elements is then investigated in detail.
The analysis is based on a numerical spectral domain method
derived by the authors in [2], [9] that accounts for the
array finiteness. This approach allows, on the one hand, the
assessment of the performance of the finite array already at
the early design phase and, on the other hand, the simulation
of large arrays with minor computational resources.

In Sec. II, the theoretical approach used to derive the
equivalent transmission lines is described, considering the
canonical cases of a single infinitely long strip in free space
and the complementary problem of a single slot. In Sec.
III, the same formulation is generalized to different array
configurations, and validated by comparison with full-wave
simulations performed with a commercial electromagnetic
solver. Numerical examples referring to several realistic array
structures are reported in Sec. IV, with the aim to provide
useful guidelines for the design of connected arrays. Finally
conclusions are drawn in Sec. V.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
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Fig. 2. Single infinitely long (a) dipole and (b) slot in free space.

II. ANALYSIS OF SINGLE ELEMENTS

A peculiar property of connected arrays is the propensity
to support guided waves along the array. These waves are
generated within the array whenever a discontinuity is present.
For instance, if a finite number of feeding ports is considered
along the direction of connection, the disrupted periodicity at
the edges excites waves that propagate along the array.

To highlight the fundamental edge-effect phenomena occur-
ring in connected arrays, it is helpful to first analyze the case
of a single isolated dipole or slot in free space, shown in Fig.
2(a) and (b), respectively.

A. Current on an Infinite Dipole in Free Space

Figure 2(a) shows a single dipole in free space, with infinite
length and electrically narrow width wd, fed with a delta
gap of longitudinal dimension δd. By applying the separation
of variables to the spatial current distribution, the equivalent
surface electric current on the strip can be expressed as
j(x, y) = i(x)jt(y), where jt(y) represents the edge-singular
transverse distribution. The x-dependent electric current i(x)
can be expressed as an inverse Fourier transform [9], [10]:

i(x) = − 1

2π

∞∫
−∞

V0sinc( δd2 kx)

Dd(kx)− Rd

wd

e−jkxxdkx (1)

where kx is the spectral counterpart of the spatial variable
x and Rd represents a surface resistance, associated with the
Ohmic losses of the metal. V0 is the input voltage across the
gap, due to the equivalent Thevenin generator representing the
delta-gap excitation (see inset of Fig. 1(a)).

The spectral function Dd(kx) appearing in the denominator
of the integrand in (1) is given by [10], [11]:

Dd(kx) =
1

2π

∞∫
−∞

GEJxx (kx, ky)J0(wd

2 ky)dky =

− ζ(k20 − k2x)

4k0
J0(wd

4

√
k20 − k2x)H

(2)
0 (wd

4

√
k20 − k2x) . (2)

GEJxx indicates the xx-component of the spectral dyadic
Green’s function that relates the electric field to electric
sources. J0 is the zeroth order Bessel function, H(2)

0 is the
Hankel function of zeroth order and second kind, and ζ and k0
are the free-space impedance and wavenumber, respectively.

Fig. 3. (a) Singularities on the kx-complex plane and integration path used
to implement (1); (b) normalized current along a strip depicted in Fig. 2(a),
for wd = δd = λ/30 and Rd = 0Ω: comparison between CST and the
numerical integral in (1).

Fig. 4. Positions of the poles of the function (Dd(kx)−Rd/wd)−1 in the
complex plane for different values of the Omhic losses (Rd).

To validate the expression in (1), the integral can be solved
numerically by integration over the path depicted in Fig. 3(a).
The result of the integration is compared with a simulation
performed with CST Microwave Studio [12] in Fig. 3(b),
showing good agreement. The curves refer to Rd = 0Ω and
to the geometrical parameters wd = δd = λ/30, with λ being
the wavelength at the calculation frequency.

It can be noted that the integrand in (1) exhibits branch and
polar singularities, associated with the space-wave and modal
contributions, respectively. For lossless strips, i.e. Rd = 0, it
is evident from (2) that the poles coincide with the branch
points in kx = ±k0. In this case, the residue contribution
associated with the polar singularities cannot be extracted and
the integral in (1) can only be performed asymptotically (for
large values of |x|) as described in [13]. However, under
the assumption of small but non-zero losses, the poles move
slightly away from the branch points of the square root and
the residue associated with these poles can be evaluated. To
clarify this aspect, Fig. 4 shows the singularities of the function
(Dd(kx) − Rd/wd)

−1 in the complex kx-plane near to the
branch point, for different values of Rd, ranging from 0 to
5Ω. The geometrical parameters are set as wd = δd = λ/30.
It is clear from Fig. 4 that, due to Ohmic losses, the pole kxp
moves away from the branch point, and the distance increases
proportionally to the surface resistance of the metal strip. Thus,
we can calculate the contribution of the integral due to the pole
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Fig. 5. Comparison between the total current in (1) and the residue
contribution in (3), for wd = δd = λ/30, Vg = 1V and Rd = 0.25Ω.

by applying the residue theorem, leading to

ires(x) = j
V0sinc( δd2 kxp)

D′d(kxp)
e−jkxpx (3)

where the prime (′) indicates the operation of differentiation.
The poles kxp can be easily evaluated by using any local-
search algorithm (e.g. Newton’s method) to find the zeros of
the denominator of the integrand in (1), starting from an initial
point near to k0.

The expression in (3) represents a contribution of the current
propagating along the strip that can be associated with a
damped wave with very small exponential attenuation due to
Ohmic losses. In Fig. 5 the residue contribution is compared
to the total current for the same geometry considered in Fig.
3 and setting Rd = 0.25Ω. As expected, the contribution
due to the polar singularity represents only a portion of the
total current, which also contains the branch-point contribu-
tion. However, considering only the residue component is
convenient to interpret the propagation along the strip as an
equivalent transmission line, as depicted in Fig. 6(a). The
physical dimensions of the feed are represented in terms
of transformers with turn ratio n = sinc(kxpδd/2). The
characteristic impedance Z0,d of the equivalent transmission
line needs to be defined and interpreted.

B. Characteristic Impedance of a Single Infinite Dipole in
Free Space

The characteristic impedance is the ratio between voltage
and current traveling along the strip Z0,d(x) = vres(x)/ires(x).
While the expression of ires(x) was given in (3), we define the
residue contribution of the voltage vres(x) as the integral, from
zero to infinity, of the electric field transverse to the direction
of propagation. The steps of such calculation are described in
Appendix A and lead to

Z0,d =
D′d(kxp)

2j
. (4)

Equation (4) is consistent with the typical definition of
characteristic impedance used for spectral-domain represen-
tation of transverse electromagnetic (TEM) or quasi-TEM
transmission lines [14]. The function D′d is defined in (21)

Fig. 6. (a) Equivalent transmission line representing the residue current
contribution of a single dipole in free space and (b) characteristic impedance
values for wd = λ/30 and varying surface resistance Rd.

in Appendix B, and can be approximated as

D′d(kxp) ≈
ζkxp
2k0

H
(2)
0 (wd

4

√
k20 − k2xp) (5)

under the assumption of electrically narrow strip (wd � λ).
It is evident from (5) that only in the case of non-zero losses
we can evaluate the derivative, whereas in the absence of losses
(for which kxp = k0) we encounter the logarithmic singularity
of the Hankel function.

The results for the impedance calculated as in (4) are
reported in Fig. 6(b) as a function of the dissipation losses
(Rd) for a strip with width wd = λ/30. It can be observed
that the characteristic impedance exhibits an almost constant
imaginary part that can be associated with the lossy (radiative)
nature of the propagation along a single strip. This can be
easily demonstrated by expanding the Hankel function in (5)
for small arguments which leads, after a few algebraic steps
reported in Appendix B, to the following expression:

Z0,d ≈ −
ζ

2π

(
ln
∣∣∣∣√2k0|ε|wd

8

∣∣∣∣+ γ

)
+ j

ζ

8
(6)

where ε = kxp − k0 and γ ≈ 0.577 is the Euler’s constant.
The constant imaginary part Im{Z0,d} ≈ ζ/8 is consistent
with the value observed in Fig. 6(b).

C. Single Slot in Free Space

Proceeding in the same manner, we can evaluate the equiva-
lent transmission line of a slot in free space. The steps are very
similar to the ones followed for the dipole in the last section
and therefore will be omitted. With reference to Fig. 7(a),
the transformers have turn ratio n = sinc(kxpδs/2) and the
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Fig. 7. (a) Equivalent transmission line of a single slot in free space and (b)
characteristic impedance for ws = λ/30 and varying shunt resistance Rs.

characteristic impedance of the equivalent transmission line is
given by

Z0,s = − 2j

D′s(kxp)
(7)

where the function Ds(kx) is defined as

Ds(kx)=
(k20−k2x)

ζk0
J0(wd

4

√
k20−k2x)H

(2)
0 (wd

4

√
k20−k2x) . (8)

The result of the characteristic impedance for a slot of width
ws = λ/30 is shown in Fig. 7(b), as a function of the losses.
For the case of slots, the Ohmic losses of the metal can be
represented as an equivalent shunt resistance Rs distributed
along the slot length.

III. ANALYSIS OF ARRAY STRUCTURES

In this section we generalize the equivalent transmission line
representation for structures that are closer to realistic array
configurations.

A. Dipole and Slot with Periodic Loads

We first consider the case of a single dipole (or slot) with
a number of periodically displaced feeds, as shown in Fig. 8.
Each feed in a dipole structure consists of a voltage source
and a series resistance Zl, whereas the sources in the slot
case can be represented as a current generator with a shunt
admittance Yl. From the point of view of the guided edge-
born waves, the periodic feeds represent resistive loads (series
for dipole and shunt for slots) located at periodic positions
within the equivalent transmission line. The equivalent models
are shown in Fig. 8, where we approximated the turn ratio of
the transformers as n ≈ 1. This approximation is valid for
electrically small delta-gap feeds.

Fig. 8. Geometry and equivalent transmission line of (a) single dipole and
(b) single slot with periodic loads.

Fig. 9. (a) Normalized current in a dipole loaded periodically with Zl = 50Ω
and Zl = 400Ω; (b) normalized voltage in a slot periodic with periodic shunt
loads Zl = 50Ω and Zl = 400Ω. Both the dipole and the slot have width
wd = ws = λ/30 and are loaded with 9 resistors located at periodic distance
dx = 0.5λ.

To outline the dependence of the guided waves from the
loads, we show in Fig. 9(a) the normalized current magnitude
in a dipole loaded with 9 resistors located at periodic distance
dx = 0.5λ. Two cases are compared, one with Zl = 50Ω and
Zl = 400Ω. Stronger attenuation of the current is observed for
the higher load resistance, due to power dissipation. On the
contrary, the normalized voltage in a slot with periodic shunt
loads exhibits an inverse dependence from the load resistance:
since the loads are in parallel for the slot case, the voltage
correspondent to Zl = 50Ω decays faster than the case of
Zl = 400Ω. In both cases (dipoles or slots), the current or
the voltage oscillate in the region where the loads are located
due to the reflections in each transmission line section that
generate standing waves.

B. Two-Dimensional Dipole Array with Backing Reflector

We now consider an array of connected dipoles in the
presence of a ground plane (Fig. 10). We assume the array to
be infinitely periodic in y, while loaded with a finite number of
resistors along x periodically spaced. We assume for simplicity
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Fig. 10. (a) Connected array of dipoles with ground plane excited at one
edge and (b) equivalent transmission line.

Fig. 11. Normalized current on one of the dipole in the array configuration as
in Fig. 10(a). The geometrical parameters are wd = δd = λ/30, h = λ/4,
dx = dy = λ/2, with λ being the wavelength at the frequency f0. Each
dipole is loaded with 10 resistors. Current calculated using the transmission
line model in Fig. 10(b) is compared with CST simulations, for frequency
(a)f0 and (b)f0/2.

that all the dipoles are fed in phase at x = 0. The expression
of the characteristic impedance of the equivalent transmission
line becomes

Z0,d∞ =
D′d∞(kxp)

2j
(9)

with

Dd∞(kx) =
1

dy

∞∑
my=−∞

GEJBR,xx(kx, kym)J0(wd

2 kym) . (10)

GEJBR,xx indicates the xx-component of the spectral dyadic
Green’s function for the stratification under analysis, i.e.
considering a backing reflector (BR) at distance h from the
dipoles. The discrete wavenumber kym = −2πmy/dy repre-
sents the my-th Floquet modes arising from the periodicity
along y.

The normalized current on the axis of one of the dipoles
in the array configuration is reported in Fig. 11, considering
10 resistors on each dipole. The geometrical parameters are
set as wd = δd = λ/30, h = λ/4, dx = dy = λ/2, with
λ being the wavelength at the frequency f0, and the surface
resistance of the metal is Rd = 0.1Ω. The current calculated
using the transmission line model in Fig. 10(b) is compared
with CST simulations, at the frequencies f0 and f0/2. It can be
observed that, as for the single dipole in free-space, the high-
resistance loads increase the attenuation rate of the current.
There is a good agreement between the full-wave simulations

Fig. 12. (a) Connected array of slots with ground plane excited at one edge
and (b) equivalent transmission line.

Fig. 13. Normalized voltage on one of the slots in the array configuration as
in Fig. 12(a). The geometrical parameters are ws = δs = λ/30, h = λ/4,
dx = dy = λ/2, with λ being the wavelength at the frequency f0. Each
slot is loaded with 10 resistors. Voltage calculated using the transmission line
model in Fig. 12(b) is compared with CST simulations, for frequency (a)f0
and (b)f0/2.

and the simplified transmission line model in the estimation
of the current decay.

A number of spikes can be observed in the CST results,
in correspondence of the loads. This is because the loads are
implemented in CST as a surface resistance distributed on a
small square area (wd×wd). Since the transverse distributions
are different on the metal and the resistive sheets, the value
of the current on the dipole axis abruptly peaks in the loads.
This effect is not considered in the transmission line model,
where the resistors are assumed to be lumped and do not have
physical dimensions.

C. Two-Dimensional Slot Array with Backing Reflector

The connected slot array in the presence of a ground plane
is depicted in Fig. 12. The expression of the characteristic
impedance of the equivalent transmission line is given by

Z0,s∞ = − 2j

D′s∞(kxp)
(11)

with

Ds∞(kx) =
1

dy

∞∑
my=−∞

GHMBR,xx(kx, kym)J0(ws

2 kym) (12)

where GHMBR,xx is the xx-component of the spectral dyadic
Green’s function linking the magnetic field to the magnetic
sources, in the presence of the backing reflector. The normal-
ized voltage on the axis of one of the slots is shown in Fig. 13,
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Fig. 14. (a) Array of tightly coupled dipoles with ground plane excited at
one edge and (b) equivalent transmission line.

Fig. 15. Normalized current on one of the dipole in the array configuration as
in Fig. 14(a). The geometrical parameters are wd = δd = λ/30, h = λ/4,
dx = dy = λ/2, with λ being the wavelength at the frequency f0. Each
dipole is loaded with 10 resistors with Zl = 50Ω. Current calculated using
an inter-element capacitance of 0.2 pF are compared with connected dipoles
with no capacitance, for frequency (a)f0 = 10 GHz and (b)f0/2 = 5 GHz.

considering 10 resistors on each slot. The parameters are set
as ws = δd = λ/30, h = λ/4, dx = dy = λ/2, Rs = 105Ω.
Unlike the dipole structure, the low-resistance loads increase
the attenuation rate of the voltage, being in parallel to the
transmission line. There is a good agreement between the full-
wave simulations and the simplified transmission line model.

D. Tightly Coupled Array with Backing Reflector

Another relevant case to investigate is the configuration
when the array of dipoles includes inter-element capacitance,
to realize the so-called tightly-coupled array concept [4]. In
Fig. 14(a) the geometry of the capacitively-coupled dipoles
in the presence of a ground plane is shown. The equivalent
transmission line model becomes the one in Fig. 14(b) where,
in addition to the periodic resistive loads, also series capaci-
tances are present along the line. To understand the effect of
the capacitance on the waves propagating along the array, we
report in Fig. 15 the normalized current on the strip, comparing
the case of connected dipoles (Figs. 10 and 11) with the case
when the same array includes an inter-element capacitance
C = 0.2 pF. The frequencies of calculation are f0 = 10
GHz and f0/2 = 5 GHz. It can be noted that the presence
of the additional series capacitance results in a comparatively
faster decay of the current magnitude, because of the increased
reflection in the transmission line sections.

IV. INVESTIGATION ON THE ARRAY ACTIVE IMPEDANCE

In this section, the finite edge effects in connected arrays are
investigated by quantifying the variation of the active voltage
standing wave ratio (VSWR) within the arrays. Simulations of
finite×infinite arrays are performed using the semi-analytical
solutions developed in [2], [9], [15]. The active VSWR for
arrays composed by 9 × ∞ elements is shown in Fig. 16
and compared with the infinite array solution. To highlight the
dependence of the edge effects from the matching impedance
of the elements, we consider three cases:

1) Connected array of dipoles in the presence of a back-
ing reflector (inset of Fig. 16(a)), normalized to input
impedance Zl = 400Ω.

2) Array of capacitively-coupled dipoles in the presence
of a backing reflector and loaded with a dielectric slab
(inset of Fig. 16(b)), normalized to input impedance
Zl = 100Ω.

3) Connected array of slots in the presence of a backing
reflector and loaded with a dielectric slab (inset of Fig.
16(c)), normalized to input impedance Zl = 100Ω.

These three example have been selected because they all
exhibit bandwidths of at least one octave. The periods are
dx = dy = 8.43mm for all the geometries and the arrays scan
to θ = 30◦ in the plane ϕ = 0. The distance from the ground
plane is 4.7mm in all cases and the dielectric slabs have height
of 2.8mm and relative permittivity of εr = 2.2. The presence
of the dielectric superstrate allows to reduce the active input
impedance, that normally is close to the free-space impedance
(377Ω), to values of about 100Ω.

It is apparent that case 1 in Fig. 16(a) exhibits the smallest
variation of VSWR within the finite array. This is accordant
with the interpretation of the edge-effect phenomenon that we
gave in the previous sections. The edge-born waves quickly
attenuate along the array due to the high-resistance series
loads (Zl = 400Ω). From Fig. 16(b) it can be noted that,
although significantly wider bandwidth is obtained because of
the presence of the inter-element capacitance, higher varia-
tions of VSWR occur and some of the edge-element curves
appreciably diverge at lower frequencies from the infinite array
case. This is in line with the observation that low impedance
values for the port terminations do not attenuate the edge
waves effectively. Fluctuations of VSWR are also found for
the slot case in Fig. 16(c), with values remaining within a
±0.6 range around the infinite array solution.

V. CONCLUSIONS

We presented an investigation on the edge effects occurring
in wideband connected arrays of slots and dipoles. The analy-
sis is based on closed-form solutions derived from the spectral
Green’s function of connected arrays. The fundamental wave
propagation phenomena were described in terms of equivalent
transmission lines. The port impedance of each element was
shown to represent a series load for dipoles, whereas a shunt
load for slots. For this reason dipole arrays matched to low
impedances support almost unattenuated propagation of edge-
born guided waves along the aperture, which deteriorate the
finite array performance. On the contrary, slot designs with
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Fig. 16. Active VSWR for the elements of 9 × ∞ arrays, scanning to
θ = 30◦ in the plane ϕ = 0, compared with infinite array solution: (a) array
of connected dipoles, with 400Ω input impedance; (b) array of capacitively-
coupled dipoles with a superstrate, matched to 100Ω; (c) array of connected
slots with superstrate, matched to 100Ω.

low impedance strongly reflect the guided waves that remain
confined only at the edge elements. Capacitances between
adjacent array elements, as in tightly coupled arrays, can also
help attenuate the edge waves.

Numerical results of the active VSWR of finite connected
arrays were presented to support the theoretical analysis.

APPENDIX A
VOLTAGE SOLUTION FOR A SINGLE DIPOLE AS INTEGRAL

OF THE TRANSVERSE FIELD

To find a value of the characteristic impedance associated
with a single strip in free space, it is convenient to interpret
the voltage wave traveling along the strip as the integral of the
electric transverse field along a line that goes from the dipole
to infinity:

vres(x) = −
∞∫
0

ey(x, y)dy (13)

where ey represents the y-component of the spatial electric
field. By expressing the field as an inverse Fourier transform
of its spectrum Ey , one obtains

vres(x)=−
∞∫
0

1

4π2

∞∫
−∞

∫
Ey(kx, ky)e−jkxxe−jkyydkxdkydy . (14)

The spectrum is given by

Ey(kx, ky) = I(kx)J0(wd

2 ky)GEJyx (kx, ky) (15)

where GEJyx is the yx-component of the spectral dyadic Green’s
function. By substituting I(kx) from (1) in (14), and writing
explicitly the Green’s function, the voltage can be expressed,
after a few algebraic steps, as

vres(x) =
1

4π2

∞∫
−∞

∫
V0sinc( δd2 kx)

Dd(kx)− Rd

wd

J0

(wd
2
ky

)
·

ζ

2k0

kxky
kz

e−jkxx

 ∞∫
0

e−jkyydy

 dkxdky . (16)

To satisfy the radiation condition, we impose
limy→∞ e−jkyy = 0. Thus performing the integration
in y, (16) becomes

vres(x) = −j ζ

4k0

1

2π

∞∫
−∞

V0sinc( δd2 kx)

Dd(kx)− Rd

wd

·

 1

π

∞∫
−∞

J0
(
wd

2 ky
)

kz
dky

 kxe
−jkxxdkx . (17)

By using the closed form solution of the integral between
parenthesis [16] and applying the residue theorem, we obtain

vres(x) = −V0sinc( δd2 kx)

ζkxp

4k0
J0

(
wd

4

√
k20 − k2xp

)
H

(2)
0

(
wd

4

√
k20 − k2xp

)
D′d(kxp)

e−jkxpx .

(18)

Finally, by substituting (5) in (18), the voltage can be
expressed as

vres(x) = −1

2
V0sinc( δd2 kxp)e

−jkxpx . (19)

APPENDIX B
DERIVATIVE OF Dd(kx) AND SMALL-LOSS

APPROXIMATION OF THE CHARACTERISTIC IMPEDANCE

The derivative of the spectral function Dd(kx) in (2) is given
by

D′d(kx) = − ζ

4k0
·

d

dkx

[
(k20 − k2x)J0

(
wd

4

√
k20 − k2x

)
H

(2)
0

(
wd

4

√
k20 − k2x

)]
.

(20)

To simplify the notation, let us define K = (k20−k2x)1/2. For
electrically narrow strips, we can approximate J0(Kwd/4) ≈
1, leading to

D′d(kx) ≈ − ζ

4k0

d

dkx

[
K2H

(2)
0

(
wd

4 K
)]

=

= − ζ

4k0

d

dK

[
K2H

(2)
0

(
wd

4 K
)] dK
dkx

=

=
ζkx
2k0

[
H

(2)
0

(
wd

4 K
)
− wd

8
KH

(2)
1

(
wd

4 K
)]
. (21)
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By neglecting the term proportional to K, we can express
(21) as

D′d(kx) ≈ ζkx
2k0

H
(2)
0

(
wd

4 K
)
. (22)

The Hankel function can be approximated with its expansion
for small arguments:

D′d(kxp) ≈
ζ

2

k0+ε

k0

[
1− 2j

π

(
ln(

√
k20−k2xpwd

8 ) + γ)

)]
(23)

where we evaluated the derivative in the pole kxp = k0 + ε
with ε � k0 in the case of small losses. In (23) we used the
Euler’s constant γ ≈ 0.577. The square root can be written as

kzp=±
√
k20−k2xp = ±

√
k20−(k0+ε)2 =±

√
−2k0ε−ε2

≈ ±
√
−2k0ε = ±j

√
2k0|ε|ej

6 ε/2 . (24)

The sign of the square root is chosen so that Im(kz) < 0,
which gives

kzp =
√

2k0|ε|ej(
6 ε/2−π/2) ≈

√
2k0|ε|e−j3π/4 (25)

since ε is almost a purely imaginary number lower than 0,
thus 6 ε ≈ −π/2. By substituting (25) in (23), and performing
some algebraic manipulations, we obtain

D′d(kxp) ≈ −j
ζ

π
ln
∣∣∣∣√2k0|ε|wd

8

∣∣∣∣− j ζπ γ − ζ/4 (26)

which leads to the approximated expression of the character-
istic impedance

Z0,d =
D′d(kxp)

2j
≈ − ζ

2π

(
ln
∣∣∣∣√2k0|ε|wd

8

∣∣∣∣+ γ

)
+ j

ζ

8
. (27)

The approximated characteristic admittance for the slot case
can be evaluated in a similar manner:

Z0,s =
−2j

D′s(kxp)
≈ ζ 1

− 2
π

(
ln
∣∣∣∣√2k0|ε|ws

8

∣∣∣∣+γ)+ j 12

. (28)
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