
Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

Validating Type Checkers
Using Property-Based Testing

Casper Bach Poulsen Cas van der RestSára Juhošová

Delft University of Technology

ABSTRACT

Manually testing definitional interpreters
and their type checkers is a tedious and
error-prone process which can largely bene-
fit from automation. This study evaluates
the effectiveness of property-based testing
on errors in type checkers. Metrics used
include the ability to catch different types
of errors as well as the ability to provide
a good margin of confidence in the results.
We define two languages in Haskell and
identify properties which should hold for
their type checkers. Using a bottom-up ap-
proach to expression generation, we evalu-
ate the effectiveness of property-based test-
ing on test suites of type checkers with vari-
ous types of errors. The method proves
to be effective for both the simple and the
complex language and manages to catch all
defined error types with at least one prop-
erty to a sufficient degree of confidence. We
conclude that property-based testing is an
effective tool to help with manual grading of
type checkers for definitional interpreters.

1 Introduction

Writing definitional interpreters for simple lan-
guages is commonly part of the curriculum for
bachelors of computer science. They are a type
of interpreter written for a language defined
and interpreted using a different, usually better
understood, programming language [1]. Their
grading can often be time-consuming and, with
larger student cohorts, can quickly become in-
feasible. Researching methods for automatic
grading of these interpreters is therefore an at-
tractive area of research to the staff of such
courses.

The question of automated testing and val-
idation of programmes has been researched
widely due to the large efforts that need to go
into these things when they are done manu-
ally. Examples of attempts to automate this pro-
cess include property-based testing [2], fuzzing
[3], symbolic executors [4], and checking pro-
gramme equivalence [5]. Most of these are de-
signed as tools to complement the manual pro-
cess and make it easier - they are not meant to
replace it.

Many of these solutions have already
worked with programmes written in func-
tional styles, such as the influential paper by
Claessen and Hughes introducing QuickCheck
[2], the property-based testing framework for
Haskell. Instead of writing specific test cases,
property-based testing generates large batches
of (pseudo-)random input and asserts proper-
ties about it.

Consider the Haskell method reverse ::

[a] -> [a] which takes a list of elements and
returns it in reversed order. We can determine
two properties for it: (1) reverse (reverse xs)

== xs and (2) if length xs <= 1 then reverse

xs == xs. The first one simply asserts that for
any randomly generated list, the reverse of the
reverse should be equivalent to the original list.
The second one uses a precondition (namely that
of the list having zero or one element) to assert
that the reverse of such a list should be equival-
ent to the original.

Pałka et al. [6] have already explored the
principles of property-based testing in relation
to testing compilers. They introduced methods
which come in equally handy for definitional in-
terpreters and allow for the generation of useful
terms to assert determined properties on. Our
research draws largely on their work and at-
tempts to analyse its effectiveness in this new

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

context. We also expand it to work on a more
complex language than they work with in their
paper.

An important aspect to consider when test-
ing definitional interpreters is the existence of its
type checker. As claimed by Pierce [7, p. 1], “by
far the most popular and best established light-
weight formal methods [for helping ensure that
a system behaves correctly with respect to some
specification, implicit or explicit, of its desired
behavior] are type systems”. Type systems have
become widespread among programming lan-
guages and generally require programmes to be
run through type checkers before being passed
on to the interpreter.

The presence of a type checker implies that
if an interpreter is being tested by running it on
some expression, that input expression must be
well-typed to even pass to the interpreter. Fur-
thermore, the type checker itself must be tested
to ensure the overall validity of the definitional
interpreter. Exploring the possibilities of gen-
erating well-typed input expressions for defin-
itional interpreters allows for the potential to
both test type checkers and avoid the unneces-
sary raising of errors in the interpreters that fol-
low.

We have decided to explore the potential of
property-based testing to automatically validate
type checkers for three reasons. Firstly, it is able
to create large amounts of test cases in a short
time. Secondly, it provides examples of input
which fail for a property, meaning that we are
not only aware that it found a bug but also get an
intuition as to where that bug could be. Lastly,
property-based testing has trusted frameworks
in many programming languages, making it a
robust and flexible option.

This paper answers the following research
question: How effective is property-based test-
ing for automatically validating type checkers for
definitional interpreters? It focuses primarily on
judging the extent to which property-based test-
ing is able to find bugs in type checkers. The
metrics used for determining this effectiveness
include the frequency of catching a buggy im-
plementation as well as the amount of tests
needed to find a counterexample to incorrect im-
plementations. We also reflect on which types of
bugs this style of testing is able to find within the

type checkers and why it might not be suitable
for some.

To answer this research question, we defined
two languages in Haskell along with their prop-
erties and generators. Then, we analysed how
well property-based testing does on finding
bugs in a test suite of type checkers. We found
that well-typed expression generators catch a
specific set of errors almost every test run under
the correct settings, while a different set of errors
needs to be attacked with ill-typed expressions.
We present the following contributions:

1. A Haskell implementation of two lan-
guages of varying complexity and refer-
ence implementations of their type check-
ers (available in our public GitLab Repos-
itory1).

2. A definition and implementation of their
properties which can be used for property-
based testing (presented in Section 3.1).

3. An approach to generating well-typed ex-
pressions for both of these languages (de-
scribed in Section 3.2).

The paper begins by describing the problem
tackled by the research in Section 2 and present-
ing the contributions in Section 3. Sections 4 and
5 present, discuss, and reflect on the results. Sec-
tion 6 offers some context and possibilities for
further work. Finally, Section 7 summarizes and
concludes the research.

2 Writing a Type Checker

The languages whose type checkers we validate
are defined as algebraic data types in Haskell.
An example of both a language and its possible
types can be found in Listing 1. This simple lan-
guage can only have expressions whose type is
either an integer or a boolean.

1 data Type = TInt | TBool

2
3 data Expr = Id String

4 | True | False

5 | Num Int

6 | Eq Expr Expr

Listing 1: Language & Type Definition

1https://gitlab.ewi.tudelft.nl/cse3000-auto-test/typed-expression-generators

2

https://gitlab.ewi.tudelft.nl/cse3000-auto-test/typed-expression-generators

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

The outline for a type checker of such a
language is shown in Listing 2. This type
checker takes an expression and an environment
(defined as a list of pairs of strings and types)
and outputs the type of the expression. If the
expression is ill-typed, the type checker should
throw an error.

1 type TEnvironment =

2 [(String , Type)]

3 data Error = TypeError

4 | InterpError

5
6 typeOf :: Expr -> TEnvironment ->

Either Error Type

7 typeOf e env = ...

Listing 2: Type Checker Outline

The idea behind this research is to determ-
ine the effectiveness of property-based testing
on finding errors in such type checkers. These
errors can be of two types: (1) incorrectly typing
a well-typed expression and (2) not recognizing
an ill-typed expression.

Consider the two implementations of an in-
teger equality type check in Listing 3. An error
of type (1) would arise when A incorrectly types
the expressions Eq (Num 1) (Num 4) as TInt in-
stead of a TBool. Typing this expression using
B would yield the correct result. An error of
type (2) would occur when typing expression
Eq True (Num 4) using B, since it would not
check the sub-expressions. On the other hand,
A would correctly throw a TypeError.

1 -- Type Checker A

2 typeOf (Eq left right) nv =

3 do

4 l <- typeOf left nv

5 r <- typeOf right nv

6 case (l, r) of

7 (TInt , TInt) -> return TInt

8 _ -> Left TypeError

1 -- Type Checker B

2 typeOf (Eq left right) nv =

3 Right TBool

Listing 3: Integer Equality

This research focuses on detecting both of
these error types. Because generating well-typed
expressions is a more complex problem, we fo-
cus primarily on the methods behind that. How-
ever, neither a well-typed nor an ill-typed gener-
ator is sufficient on its own for catching all error

types. Therefore, in the results, we use a com-
bination of both.

2.1 A Note on Notation

In this paper, variables are denoted as small let-
ters of the Latin alphabet (x, y, ...), types are de-
noted as small letters of the Greek alphabet (σ,
τ, ...), and terms or expressions are denoted us-
ing capital letter of the Latin alphabet (M, N, ...).
A function type is denoted as σ → τ where σ is
the type of the input parameter and τ is the out-
put type of the function. A list type is denoted
as [σ], representing a list of elements of type σ.
The symbols T and C are used to denote type
checkers.

A binding x : σ indicates that variable x has
type σ. An environment is represented as a list of
bindings Γ. The notation [x : σ]Γ denotes that
the variable x is now bound as σ in environment
Γ regardless of what (if anything) it was bound
as before. Choosing an arbitrary element x from a
collection X is indicated as x ∈R X.

Typing judgements of the form Γ ` M : σ are
used to denote that M is well-typed as σ if all its
free variables are bound within Γ. The expres-
sion Γ `T M : σ denotes that a type checker T
has judged expression M to be of type σ with
environment Γ.

The syntax definition for the language imple-
mented in Listing 1 would be the following:

σ, τ, ... ::= Int | Bool
M, N, ... ::= x

| true | false
| i ∈ Z

| M == N

3 Testing Lambda Calculus

We decided to explore the effectiveness of
property-based testing on two languages of dif-
ferent complexity. We define them both in this
section along with their properties. The gener-
ation of their terms is explained in the last sub-
section.

In this section, we only discuss the languages
using their syntax definitions. To view their
implementation in Haskell as well as the suite

3

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

of type checkers and generators, the interested
reader can explore the source code on the public
GitLab repository or look at Appendix A - C.

σ, τ, ... ::= Int | Bool
| σ→ τ

M, N, ... ::= x
| λx : σ.M
| M N

Figure 1: STLC Definition

Simply-Typed Lambda Calculus (STLC). The
simplest language of sufficient interest for this
project is the simply-typed lambda calculus
whose definition can be seen in Figure 1. It deals
only in variables, lambda expressions, and func-
tion applications, all of which are typed as either
an integer, a boolean, or a function.

σ, τ, ... ::= Int | Bool
| [σ]

| σ→ τ

M, N, ... ::= x
| true | false
| i ∈ Z

| [] : σ

| unop M
| M binop N
| λ f : (σ→ τ) x.M
| M N
| let x = M in N
| if M then N1 else N2

unop ::= ¬
| head | tail
| is-nil | is-list

binop ::= ∧ | ∨
| + | ∗
| == | <
| cons

Figure 2: PCF Definition

Programming Computable Functions (PCF).
The simply-typed lambda calculus can be ex-
panded with both more types and more expres-
sions. For its complex alternative, we decided to
use the language defined in Figure 2, where a list
type is added as well as a few native operations,
including let bindings and if-then-else ex-
pressions. Because it is a variation of Program-
ming Computable Functions [8], we will refer to
it as such in this paper.

3.1 Properties

For the simply-typed lambda calculus, we have
identified three properties which can be defined
for all implementations of its type checker. Their
Haskell implementation can be found in Ap-
pendix B and their definition is as follows:

CMP Given two different implementations of a
type checker (T, C), they should both eval-
uate to the same type given the same in-
put expression M (or both throw an error).
More specifically, we are interested here in
comparing to a reference type checker im-
plementation.

(Γ `T M : σ) ⇐⇒ (Γ `C M : σ) (1)

GEN If an expression M is generated using the
bottom-up approach from type σ with en-
vironment Γ (as described in Section 3.2),
running the type checker T on that expres-
sion with environment Γ should yield the
type σ.

(Γ ` M : σ) =⇒ (Γ `T M : σ) (2)

APP Given an expression M of type σ → τ and
an expression N of type σ (both under en-
vironment Γ), running the type checker T
on expression MN should yield the type τ.

(Γ ` M : σ→ τ) ∧ (Γ ` N : σ)

=⇒ (Γ ` M N : τ)
(3)

For the PCF, all of the properties defined
above also hold. It is, furthermore, also possible
to make expression-specific properties. For ex-
ample, if M and N are both of type Int, then the
expression M + N should also be typed as Int.

4

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

This type of property can be defined for all the
unop and binop operators as well as the let and
the if. It can be used to replace writing manual
tests for these expression types.

3.2 Input Generation

The main idea behind the input generation re-
volves around choosing a type and then choos-
ing an applicable rule to generate an expression
of that type. Here, we draw on the work of Pałka
et al. [6], who present these generation rules for
the Simply-Typed Lambda Calculus. We define
our own for the PCF language.

The choice of type can either be arbitrary
(useful in the instance of property GEN) or in-
tentional (like in property APP). In either case, a
generator for Type needs to be defined. In our
design, a depth parameter limits the maximum
size of the type to omit the possibility of infinite
recursion. For the PCF, a list depth parameter is
added to control the type size of elements in a
list. The mathematical definition for both type
generators can be found in Figures 3 and 4.

The expression generation itself works on
a very similar principle. The generation func-
tion takes as parameters a depth, a type, and
an environment. Then, based on the first two
parameters, a generation rule is chosen from a
set of applicable ones and run with all three
parameters to generate input. Some of these
rules recursively use other rules to generate
sub-expressions. Others only consider a certain
subset of possible outputs because they should
never be called by impossible combinations. The
functions which regulate the applicable rules for
our languages are defined in Figures 5 and 6.
The rules are all explained below:

Var(d, σ, Γ) picks a random variable x from Γ of
type σ

Lam(d, σ→ τ, Γ) picks a random x from a pool
of variable names (and a random f from
a pool of function names), generates an
arbitrary term with M parameters (d −
1, τ, [x : σ]Γ), and returns λx : σ.M (or
λ f : (σ→ τ) x.M)

App(d, τ, Γ) generates an arbitrary type σ, an
arbitrary term M with parameters (d −
1, σ → τ, Γ), an arbitrary term N with
parameters (d− 1, σ, Γ), and returns M N

Prim(d, σ, Γ) generates an arbitrary boolean,
number, or list, depending on σ

Nat(d, σ, Γ) generates an arbitrary unop or
binop, depending on σ

If(d, σ, Γ) generates an arbitrary term M with
parameters (d − 1, Bool, Γ), two arbitrary
terms N1 and N2 with parameters (d −
1, σ, Γ), and returns if M then N1 else N2

Bind(d, σ, Γ) picks a random x from a pool of
variable names, generates a random type τ
of depth 1, an arbitrary expression M with
parameters (d − 1, τ, Γ), an arbitrary ex-
pression N with parameters (d − 1, σ, [x :
τ]Γ), and returns let x = M in N

There can be a case that the generation is un-
successful and for such reasons, the actual gen-
erator works with the Maybe monad. In case a
rule does not successfully generate an expres-
sion, it returns a Nothing to the recursive call
one step higher. That call then either attempts
to use the Var rule or the Prim rule or simply re-
turns a Nothing itself.

There are also, of course, other backtracking
options, such as trying out any of the other pos-
sible rules. We have found, however, that this
one is easy to implement and at the same time
sufficient for successfully generating terms in
the languages we have defined above as long as
arbitrary types are not generated with a too high
depth. Providing a basic environment which
already contains variables of the basic types to
the STLC allows the Var rule to often be suffi-
cient. In PCF, we have the option to generate
an integer or a boolean in addition to choosing
a variable from the environment. Since we use
Haskell library methods for those, we are guar-
anteed a successful result for the simple types.

In case the entire expression is unsuccess-
fully generated, a new type is generated and
the process is repeated again until success. The
Haskell implementation of this loop can be
found in Appendix C, Listing 9. This can, in
theory, lead to infinite recursion. However, the
chance of that is so small, it has never caused
us a problem throughout all the tests we ran. A
timeout or attempt-limit condition can be added
to help mitigate this issue when using the gen-
erator. Lowering the type depth also lowers the
risks, since the environment is more likely to be
able to provide a variable.

5

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

arb(dt) =

{
x ∈R {Int, Bool} if dt ≤ 0
x ∈R {Int, Bool, arb(dt − 1)→ arb(dt − 1)} else

Figure 3: Type Generation (STLC)

arb(dt, dlist) =

{
x ∈R {Int, Bool} if dt ≤ 0
x ∈R {Int, Bool, arb(dt − 1)→ arb(dt − 1), [arb(dlist)]} else

Figure 4: Type Generation (PCF)

4 Results

In this section, we present and discuss the res-
ults of the research. For both of the languages, a
test suite of type checkers was devised and each
type checker was tested with 100 tests run 100
times on each property. We refer to each 100 tests
as a “test run” within an “iteration” of 100 runs.
To capture all the relevant information, we de-
cided to present three values in the results:

ecf: (error-catching frequency) the percentage of
test runs which caught the error

avg: from all test runs which caught the error,
the average of the number of tests needed

max: from all test runs which caught the er-
ror, the maximum of the number of tests
needed

4.1 STLC Results

The following test suite was used to test the ef-
fectiveness of the generator and properties for
the Simply-Typed Lambda Calculus:

a no case match for the variable

b no case match for the lambda

c no case match for the application

d incorrect binding in the lambda (binding is
appended to the list and thus old binding
is used in case of overlap)

e no binding for the lambda parameter

f parameter and body type are swapped in
function type

g application returns the parameter type in-
stead of the body type

h no check whether the parameter and argu-
ment type match in an application

i no type check at all for the type of an argu-
ment in an application

We present the results for the analysis of the
STLC when run with expression depth 10, type
depth 2, and size 3 for the variable pool2. We
also provided a basic environment as input into
the generator to facilitate generation of more
varied expressions. The contents of the basic en-
vironment can be found in Appendix D.

a b c d e f g h i
CMP 100 100 100 50 96 100 100 0 0
GEN 100 100 100 60 99 100 100 0 0
APP 100 100 100 88 100 100 100 0 0
MIS 100 100 100 0 0 95 12 100 100

Table 1: Results for the error-catching frequency of
the properties on STLC (in %)

Table 1 gives an overview of the ecf for all
the properties on all the type checkers defined in
the test suite. Tables 2 - 4 provide more informa-
tion about these properties within each test run.

a b c d e f g h i
avg 1 3 4 46 19 3 5 - -
max 1 17 15 97 71 21 26 - -

Table 2: Results for CMP (STLC)

a b c d e f g h i
avg 1 2 3 45 16 2 5 - -
max 1 9 13 100 82 8 20 - -

Table 3: Results for GEN (STLC)
2The raw data for these results can be found in this repository: https://gitlab.ewi.tudelft.nl/cse3000-auto-test/

sara-results.

6

https://gitlab.ewi.tudelft.nl/cse3000-auto-test/sara-results
https://gitlab.ewi.tudelft.nl/cse3000-auto-test/sara-results

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

rule(d, σ) =

 Var if d ≤ 0
x ∈R {App, Lam, Var} if d > 0 and isFun(σ)
x ∈R {App, Var} else

Figure 5: Rule Choice Function (STLC)

rule(d, σ) =

Var if d ≤ 0 and isFun(σ)
x ∈R {Prim, Var} if d ≤ 0 and not isFun(σ)
x ∈R {App, Bind, If, Nat, Var} if d > 0 and isFun(σ)
x ∈R {App, Bind, If, Lam, Var} else

Figure 6: Rule Choice Function (PCF)

a b c d e f g h i
avg 1 1 1 38 7 1 1 - -
max 1 3 1 93 54 5 3 - -

Table 4: Results for APP (STLC)

The first type of errors introduced was a
missing case match for an expression (a-c).
These are the ones on which all the properties
had a perfect ecf, with GEN and CMP being only
slightly slower than the almost immediate APP.

The second type of errors is that of mis-
bound variables (d-e). While e, which simply
has no binding for the lambda parameter, was
always caught by all three properties, d had a
significantly lower success rate in all but the APP
property. This success is closely correlated with
the size of the variable pool.

Figure 7: variable pool size vs. #test runs which
caught the error

To display this, we ran 100 iterations of 100
test runs for variable pool sizes from 1 until 26.

Figure 7 displays the number of test runs per it-
eration which successfully caught the error. A
downwards trend is easily spotted as the size of
the variable pool increases. Figure 8 displays the
average number of tests which had to be run to
catch an error. Conversely, an upwards trend
can be spotted as the size of the variable pool
increases. Based on this information, we sug-
gest using variable pools of size smaller than 4
to guarantee as much success as possible.

Figure 8: variable pool size vs. average #tests needed
to catch the error (excluding runs where the error was
not caught)

The third type of errors is simple mistakes
in returning the wrong type (f-g). These errors
seem to be trivially caught by all three proper-
ties, with APP once again proving to be the most
reliable.

Lastly, errors which stem from ill-typed ex-
pressions were not caught at all by any of the
properties. This, of course, has an obvious ex-
planation: we used generators for well-typed ex-

7

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

pressions. To mitigate this issue, we wrote a
simple bogus generator which takes no notice of
what type it generates for sub-expressions. We
ran this on the test suite using the simple MIS

property of “if this bogus generator generates an
expression that fails on the correct type checker,
it should also fail on the incorrect one” which is
equivalent to the CMP property but uses a differ-
ent generator.

a b c d e f g h i
avg 1 1 1 - - 32 47 1 1
max 1 1 1 - - 96 86 1 1

Table 5: Results for MIS (STLC)

As can be seen in Figures 1 and 5, this ap-
proach worked perfectly for the last two buggy
type checkers as well as for the first three miss-
ing case matches. For the remaining four type
checkers, the errors are subtle enough to of-
ten pass undetected since they often first throw
an error on the ill-typed expression before even
having a chance to return their incorrect typ-
ing. This shows that both the ill-typed and the
well-typed generators are necessary to be able to
catch the various different types of errors.

4.2 PCF Results

The results for the PCF were very similar to
those of the STLC. We analysed the results when
run with expression depth 10, type depth 2, list
depth 1, and variable pool size 3. The following
test suite was used:

a no case match for the integer

b no case match for the tail unary operator

c no case match for the let case

d the == case match returns an Int type

e lambda doesn’t bind the function name in
the environment

f lambda doesn’t bind the function name or
the parameter in the environment

g unop and binop don’t check the types of
their sub-expressions

h if doesn’t check type equality of the then

and else case

i no check whether the condition of if has a
Bool type

Table 6 displays the overview for the ecf of
all the properties on the whole test suite. We de-
cided to only include the avg and max values in
Appendix E, since their range is very similar to
that of the matching error types from the STLC
test suite.

a b c d e f g h i
CMP 100 100 100 100 100 100 0 0 0
GEN 100 100 100 100 100 100 0 0 0
APP 100 100 100 100 100 100 0 0 0
MIS 100 100 100 0 0 0 100 4 6

Table 6: Results for the error-catching frequency of
the properties on PCF (in %)

Just as in the STLC, the properties which
used the well-typed generator effectively caught
errors in type checkers which missed a case
match, returned an incorrect type, or had incor-
rect bindings. Similarly, the MIS property which
uses the ill-typed generator caught errors in type
checkers which missed a case match or didn’t
check types of sub-expressions.

However, we can spot a lower effectiveness
on type checkers h and i where errors only oc-
cur in one specific case match. This is simply
because unlike the STLC language which has 3
possible expression types, this one has 21. That
does mean that, in theory, less than 5% of the
generated content is the expression type needed
to catch the error. Possible solution to making
the ecf higher include tweaking the distribution
of the generated expressions as well as including
more tests within one test run.

4.3 Generation Speed

We also analysed the generation speed of the
expressions with each of the four generators
(STLC (well-typed), STLC-ILL, PCF (well-typed),
PCF-ILL). For expression depths ranging from 1-
20, we measured the time it took to generate 100
expressions with each generator. This process
was repeated 100 times.

Initially, an upwards trend was expected in
time taken with the increase of the expression
depths. However, this proved to not be the
case. Upon further evaluation, we determined
the cause. While higher expression depths al-
low for deeper expressions, the reaching of those
maxima is still very unlikely. Therefore, Table
7 displays the average, median, and maximum

8

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

values analysed over the results from all the ex-
pression depths combined.

STLC STLC-ILL PCF PCF-ILL

avg 0.0068 0.0065 0.0032 0.0029
med 0.0022 0.0020 0.0010 0.0010
max 0.0690 0.0677 0.0419 0.0814

Table 7: Generation speed (in seconds) of 100 ex-
pressions analysed over 100 runs for each expression
depth ranging from 1-20

From the data gathered, it is shown that even
in the maximal case, the generation of 100 ex-
pressions takes below a tenth of a second. This
means that even with the test start-up and the
property checking, this approach is fast enough
to be useful as a feedback tool as well as as a
grading tool.

5 Reflection

In this section, we reflect on the threats to the
validity of our research. Furthermore, we also
discuss the ethical aspects of our research and
reflect on its reproducibility. With this, we aim
to inform the reader of important things to con-
sider when using it for future work.

5.1 Threats to Validity

Firstly, we consider whether the results are rep-
resentative. We ran all the test runs with 100 it-
erations, trying to see how often a bug would
be caught by the properties. Granted, it is pos-
sible to examine these statistics on more itera-
tions. However, we often obtained results close
to the extremas (either 0 or 100). This leads us to
believe that the results are representative.

Secondly, we consider the scalability of this
solution. Obviously, the more complex the
defined languages get, the more complex the
generators become. The problem is that this is
not a general solution and so it will always take
time and effort to setup up a generator for each
language with even a little variance. Luckily,
this process becomes quite automatic once the
basic rules (App, Lam, and Var) have been im-
plemented and is easily scalable to more granu-
lar languages. One simply needs to be aware of

the output type each new expressions can have
and define rules based on this knowledge. For
example, generating a if expression of type σ
simply requires generating two expressions of
type σ and wrapping them in an if layer.

Furthermore, as we saw in Section 4.3, once
these generators are implemented, the size and
complexity of the language does not seem to af-
fect the speed of the generation. Since the two
languages we defined vary greatly in complex-
ity, we believe that the solution is in general scal-
able to larger languages.

5.2 Ethical Aspects

The first ethical aspect to consider for this re-
search is that of objectivity. While the test suite
of type checkers which were explored has been
written with the goal to explore as many types of
bugs as possible, it was still only written by the
authors of this paper and not directly gathered
from students. We did, however, use the know-
ledge gathered by teaching assistants from the
CPL3 course to write this and thus believe to
have captured a sufficient variety of possible er-
rors.

The second ethical aspect to consider is the
idea of fairness. While automated validation
eases the grading process for the course staff,
it takes away the benefits that come from per-
sonal attention to the students when used on its
own. It can also result in unequal grading for
similar submissions due to the random factor
of property-based testing. For this reason, we
not only included whether a bug was caught
by a test run but also the number of the test it
was caught on. We strongly recommend that
course staff use this information to their advant-
age and evaluate the risks of not complementing
the automated validation with manual grading.

5.3 Reproducibility

When it comes to reproducibility, the biggest
problem of this research is the aspect of ran-
domness in the written generators. Even while
the code for the languages and their generators
and properties is publicly available on an open
source repository, simply running the code will
result in slightly different results. We decided

3CSE2120: Concepts of Programming Languages

9

https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=55114

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

to not solve this by seeding the random input,
since we believe this would create a bias in our
results. Instead, this issue is mitigated by in-
cluding the log of generated inputs for all the
evaluations done in Section 4 in a public repos-
itory. This means that the output is easily verifi-
able by simply taking these inputs and running
them on the defined type checkers.

6 Context & Further Work

Property-based testing allows for running large
amounts of tests with little effort once the setup
has been completed. This setup, however, takes
quite a bit of effort as it does not port directly
from one language to another (unlike with other
forms of automated validation such as symbolic
execution). This means that for every language
and type checker, a new generator must be
written for both well-typed expressions and ill-
typed expressions. Furthermore, for every pro-
gramming language in which the type checked
language is defined, this needs to be done anew.
Interesting further research could explore the
possibilities of automating this process within
one programming language.

While this study was specific to type check-
ers, using this research and evaluating its ef-
fectiveness on the definitional interpreters them-
selves could prove useful. The work by Claessen
et al. [9], for example, examines generation of
uniformly distributed data. Comparing and
combining this research with the one done
by them gives opportunities for exercising a
definitional interpreter with uniform distribu-
tion while also ensuring that the expression
passes through the type checker (which, in that
case, would not be under test).

Aside from searching for a way to generate
well-distributed data, targeted property-based
testing is another approach to generating bet-
ter expressions and obtaining better results. In-
troduced by Löscher and Sagonas [10], targeted
property-based testing is “an enhanced form
of [property-based testing] that makes its input
generator component of a [property-based test-
ing] tool guided by a search strategy instead of
being random”. Research into this field could
help improve discovering errors which only ap-
pear in one of many expressions types (such as

were discussed in Section 4.2).
Furthermore, conducting research on gen-

erating ill-typed, yet not completely bogus ex-
pressions would help improve the ability to
catch errors in type checkers which are too leni-
ent. While defining such a generator was quite
trivial for the Simply-Typed Lambda Calculus, it
proved to be a bit more challenging for the com-
plex one. The distribution is not clearly decided
and more refined methods should be explored
for obtaining an optimal one.

Finally, we suggest research into expression
shrinking. While property-based testing is able
to detect bugs using a property, the counter-
example it finds is often too big and “noisy”.
QuickCheck includes an option for users to
define a way to “shrink” their expression to
something simpler yet still breaking to the prop-
erty [11]. Researching ways to effectively shrink
input expressions into definitional interpreters
would allow for both better understanding of
the bugs as well as for the option of providing
useful and easily obtainable feedback to the stu-
dents.

7 Conclusion

Our goals were to evaluate the effectiveness
of property-based testing on type checkers for
definitional interpreters. We have found that
using a combination of two generators (one for
well-typed and one for ill-typed expressions)
and merely two properties enables the test suite
to catch errors of all defined types for languages
of various degrees of complexity.

There are a few factors within these generat-
ors which can affect distribution and effective-
ness. For example, keeping the variable pool
size to a minimum offers more security in catch-
ing binding errors and generating less deep
types has a higher success rate of expression
generation. These factors can be modified and
adapted to suite the entity using this approach.

In conclusion, this method of automated val-
idation for type checkers of definitional inter-
preters is fast, effective, and easily scalable once
implemented for a first simple language.

10

https://gitlab.ewi.tudelft.nl/cse3000-auto-test/sara-results
https://gitlab.ewi.tudelft.nl/cse3000-auto-test/sara-results

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

REFERENCES

[1] J. C. Reynolds, “Definitional interpret-
ers for higher-order programming lan-
guages,” in Proceedings of the ACM An-
nual Conference - Volume 2, ser. ACM
’72, Boston, Massachusetts, USA: Asso-
ciation for Computing Machinery, 1972,
pp. 717–740, ISBN: 9781450374927. DOI:
10.1145/800194.805852. [Online]. Avail-
able: https : / / doi . org / 10 . 1145 /

800194.805852.

[2] K. Claessen and J. Hughes, “QuickCheck:
A Lightweight Tool for Random Test-
ing of Haskell Programs,” in ICFP ’00,
(Montréal, Canada), M. Odersky and P.
Wadler, Eds., ACM, 2000, pp. 268–279,
ISBN: 1-58113-202-6. DOI: 10 . 1145 /

351240.351266.

[3] B. P. Miller, L. Fredriksen and B. So, “An
empirical study of the reliability of unix
utilities,” Commun. ACM, vol. 33, no. 12,
pp. 32–44, Dec. 1990, ISSN: 0001-0782. DOI:
10.1145/96267.96279. [Online]. Avail-
able: https://doi.org/10.1145/96267.
96279.

[4] A. D. Mensing, H. van Antwerpen, C.
Bach Poulsen and E. Visser, “From defin-
itional interpreter to symbolic executor,”
in Proceedings of the 4th ACM SIGPLAN In-
ternational Workshop on Meta-Programming
Techniques and Reflection, ser. META 2019,
Athens, Greece: Association for Comput-
ing Machinery, 2019, pp. 11–20, ISBN:
978145
0369855. DOI: 10.1145/3358502.3361269.
[Online]. Available: https://doi.org/
10.1145/3358502.3361269.

[5] J. Clune, V. Ramamurthy, R. Martins and
U. A. Acar, “Program equivalence for as-
sisted grading of functional programs,”
vol. 4, no. OOPSLA, Nov. 2020. DOI:
10 . 1145 / 3428239. [Online]. Available:
https://doi.org/10.1145/3428239.

[6] M. H. Pałka, K. Claessen, A. Russo and J.
Hughes, “Testing an optimising compiler
by generating random lambda terms,” in
Proceedings of the 6th International Workshop
on Automation of Software Test, ser. AST

’11, Waikiki, Honolulu, HI, USA: Asso-
ciation for Computing Machinery, 2011,
pp. 91–97, ISBN: 9781450305921. DOI: 10.
1145/1982595.1982615. [Online]. Avail-
able: https : / / doi . org / 10 . 1145 /

1982595.1982615.

[7] B. C. Pierce, Types and Programming Lan-
guages. Massachusetts Institute of Techno-
logy: The MIT Press, 2002.

[8] I. Dasseville and M. Denecker, “Transpil-
ing programming computable functions
to answer set programs,” in. Jan. 2019,
pp. 3–17, ISBN: 978-3-030-16201-6. DOI:
10.1007/978-3-030-16202-3_1.

[9] K. Claessen, J. Duregård and M. H.
Pałka, “Generating constrained random
data with uniform distribution,” Journal of
Functional Programming, vol. 25, e8, 2015.
DOI: 10.1017/S0956796815000143.

[10] A. Löscher and K. Sagonas, “Targeted
property-based testing,” Jul. 2017, pp. 46–
56. DOI: 10.1145/3092703.3092711.

[11] P. Vasconcelos. (May 2021). “Property
Testing using QuickCheck,” [Online].
Available: https : / / www . dcc . fc .

up . pt / ~pbv / aulas / tapf / handouts /

quickcheck.html.

11

https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/3358502.3361269
https://doi.org/10.1145/3358502.3361269
https://doi.org/10.1145/3358502.3361269
https://doi.org/10.1145/3428239
https://doi.org/10.1145/3428239
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1007/978-3-030-16202-3_1
https://doi.org/10.1017/S0956796815000143
https://doi.org/10.1145/3092703.3092711
https://www.dcc.fc.up.pt/~pbv/aulas/tapf/handouts/quickcheck.html
https://www.dcc.fc.up.pt/~pbv/aulas/tapf/handouts/quickcheck.html
https://www.dcc.fc.up.pt/~pbv/aulas/tapf/handouts/quickcheck.html

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

APPENDICES

A Language Definitions (Code)

Here, we present the definitions for the lan-
guages in Haskell. Listing 4 displays the defini-
tion for the Simply-Typed Lambda Calculus and
Listing 5 displays the definition of the PCF lan-
guage which we used in this study.

1 data Type = TInt

2 | TBool

3 | TFun Type Type

4
5 data Expr = Id String

6 | Lambda (String , Type) Expr

7 | App Expr Expr

Listing 4: STLC Code

1 data Type = TInt | TBool

2 | TList Type

3 | TFun Type Type

4
5 data Expr = TrueE | FalseE

6 | And Expr Expr | Or Expr Expr

7 | Not Expr

8 | NumE Int

9 | Add Expr Expr | Mul Expr Expr

10 | Eq Expr Expr | Lt Expr Expr

11 | Nil Type | Cons Expr Expr

12 | Head Expr | Tail Expr

13 | IsNil Expr | IsList Expr

14 | Id String

15 -- name (param , pTy) rTy body

16 | Lam String (String , Type)

17 Type Expr

18 | App Expr Expr

19 | Let (String , Expr) Expr

20 | If Expr Expr Expr

Listing 5: PCF Code

B Properties (Code)

This appendix contains the code implementa-
tion of the properties used in the property-based
testing. They are shown in Listing 6.

1 propCompare :: Expr -> TEnvironment ->

Property

2 propCompare e nv =

3 typeOf e nv == typeOfBuggy e nv

1 propGenerate :: Type -> TEnvironment

-> Property

2 propGenerate t nv = forAll (

typedArbitrary t) $ \e ->

3 case typeOfBuggy e nv of

4 Right res -> res == t

5 _ -> False

1 propApply :: Type -> Type ->

TEnvironment -> Property

2 propApply param body nv =

3 forAll (arbitraryLamAndApp param

body) $ \(lam , arg) ->

4 case typeOfBuggy lam nv of

5 Right (TFun _ b) ->

6 case typeOfBuggy (App lam arg)

nv of

7 Right t -> b == t

8 _ -> False

9 _ -> False

1 propMistyped :: Property

2 propMistyped = forAll mistyped $ \e ->

3 (case typeOf e basicEnv of

4 Left _ -> True

5 _ -> False) ==> case typeOfBuggy e

basicEnv of

6 Left _ -> True

7 _ -> False

Listing 6: Properties

C Generators (Code)

This appendix displays the code for the general
methods of the generators. Listing 7 displays the
arbitrary type generator for the STLC language.
Similarly, Listing 8 displays the arbitrary type
generator for the PCF language. Listing 9 con-
tains the implementation of the generation loop
for any arbitrary expression.

1 arbitrary :: Int -> Gen Type

2 arbitrary i

3 | d <= 0 = pickOf [TInt , TBool]

4 | otherwise = do

5 x <- chooseInt (1, 3)

6 case x of

7 1 -> do

8 p <- arbitrary (i-1)

9 TFun p <$> arbitrary (i-1)

10 _ -> pickOf [TInt , TBool]

Listing 7: STLC Type Generator

1 arbitrary :: Int -> Int -> Gen Type

2 arbitrary d ld

3 | d <= 0 = pickOf [TInt , TBool]

4 | otherwise = do

5 x <- chooseInt (1, 4)

6 case x of

12

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

7 1 -> do

8 TList <$> arbitrary ld

9 2 -> do

10 p <- arbitrary (i-1)

11 TFun p <$> arbitrary (i-1)

12 _ -> pickOf [TInt , TBool]

Listing 8: PCF Type Generator

1 arbitrary :: Gen Expr

2 arbitrary = do

3 t <- arbitrary

4 e <- arbitraryExpr (depth , t)

5 maybe arbitrary return e

6
7 arbitraryExpr :: (Int , Type) -> Gen (

Maybe Expr)

8 arbitraryExpr (i, t) = ...

Listing 9: Expression Generator

D Basic Environment (LC)

The basic environment in Listing 10 was used to
facilitate more varied generation for the Simply-
Typed Lambda Calculus:

1 basicEnv :: TEnvironment

2 basicEnv = [

3 ("tru", TBool),

4 ("fls", TBool),

5 ("not", TFun TBool TBool),

6 ("and", TFun TBool (TFun TBool TBool

)),

7 ("or", TFun TBool (TFun TBool TBool)

),

8 ("1", TInt),

9 ("2", TInt),

10 ("5", TInt),

11 ("10", TInt),

12 ("20", TInt),

13 ("50", TInt),

14 ("100", TInt),

15 ("200", TInt),

16 ("500", TInt),

17 ("neg", TFun TInt TInt),

18 ("*", TFun TInt (TFun TInt TInt)),

19 ("+", TFun TInt (TFun TInt TInt)),

20 ("isZero", TFun TInt TBool),

21 ("isNeg", TFun TInt TBool),

22 ("toInt", TFun TBool TInt)]

Listing 10: Basic Environment

E Detailed Results for PCF

Tables 8 - 11 contain the more detailed results for
the swiftness of the error detection with each of
the properties for the test suite.

a b c d e f g h i
avg 2 3 2 5 14 3 - - -
max 5 10 9 27 56 12 - - -

Table 8: Results for CMP (PCF)

a b c d e f g h i
avg 2 3 2 6 13 3 - - -
max 6 11 6 55 69 13 - - -

Table 9: Results for GEN (PCF)

a b c d e f g h i
avg 1 2 1 3 5 2 - - -
max 3 6 4 13 12 5 - - -

Table 10: Results for APP (PCF)

a b c d e f g h i
avg 2 6 2 - - - 5 60 76
max 5 52 10 - - - 28 92 98

Table 11: Results for MIS (PCF)

13

	Introduction
	Writing a Type Checker
	A Note on Notation

	Testing Lambda Calculus
	Properties
	Input Generation

	Results
	STLC Results
	PCF Results
	Generation Speed

	Reflection
	Threats to Validity
	Ethical Aspects
	Reproducibility

	Context & Further Work
	Conclusion
	REFERENCES
	Language Definitions (Code)
	Properties (Code)
	Generators (Code)
	Basic Environment (LC)
	Detailed Results for PCF

