<]
TUDelft

Delft University of Technology

A scaling methodology for axial buckling of sandwich composite cylindrical shells

Uriol Balbin, Ines

DOI
10.4233/uuid:63254d10-9a39-44b0-bfe3-4e4bbcd55c74

Publication date
2025

Document Version
Final published version

Citation (APA)

Uriol Balbin, I. (2025). A scaling methodology for axial buckling of sandwich composite cylindrical shells.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:63254d10-9a239-44b0-
bfe3-4e4bbc455c74

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.4233/uuid:63254d10-9a39-44b0-bfe3-4e4bbc455c74
https://doi.org/10.4233/uuid:63254d10-9a39-44b0-bfe3-4e4bbc455c74
https://doi.org/10.4233/uuid:63254d10-9a39-44b0-bfe3-4e4bbc455c74

A scaling methodology
for axial buckling of
sandwich composite

cylindrical shells

Ines Uriol Balbin







A SCALING METHODOLOGY FOR AXIAL BUCKLING
OF SANDWICH COMPOSITE CYLINDRICAL SHELLS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus Prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board of Doctorates,
to be defended publicly on
Thursday 19th, June 2025 at 15.00 o’clock

by

Ines URIOL BALBIN

Master of Science in Aerospace Engineering,
Universitat Politecnica de Valencia, Valencia, Spain,



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson

Prof.dr. C. Bisagni, Delft University of Technology, promotor
Prof.dr.ir. R. De Breuker, Delft University of Technology, promotor
Independent members:

Prof.dr.-Ing. B. Kriegesmann, Technische Universitdt Hamburg, Germany
Prof.dr. A. Pirrera, University of Bristol, United Kingdom

Prof. C.A. Dransfeld, Delft University of Technology

Dr.-Ing. S.G.P. Castro, Delft University of Technology

Prof.dr.ir. R. Benedictus, Delft University of Technology, reserve member

Delft
e t University of
Technology

Keywords: Buckling, Scaling, Sandwich composite
Printed by: Ipskamp

Front & Back: ~ Cover by Ines Uriol Balbin and Luca Flessati

Copyright © 2025 by I. Uriol Balbin
ISBN 978-94-6518-065-6

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.


http://repository.tudelft.nl/

Itis OK






CONTENTS

Summary ix
Samenvatting xi
Nomenclature xiii
1 Introduction 1
1.1 Background and Motivation . . . . . . . ... ... .. L., 1

1.2 ResearchQuestions. . . . . . . . . . . . . . . e, 4

1.3 Methodology . . . . . . . . . . . . e e e 5

1.4 OverviewoftheThesis . . . . . . . ... .. ... .. ... 6

2 Literature Review 9
2.1 BucklingofShells. . . . . . .. ... ... ... . ... 9
2.1.1 Analytical Models for Predicting Shell Buckling Behaviour. . . . . . 11

2.1.2 Simulation Tools for Predicting Shell Buckling Behaviour . . . . . . 13

2.2 ScalingMethods . . . . . .. .. ... e 17
2.2.1 DimensionalAnalysis . . . . . .. ... ... .00, 18

2.2.2 Similarity between Governing Equations. . . . . . . . .. ... .. 19

2.2.3 Similarity between Nondimensional Governing Equations. . . . . . 20



vi CONTENTS

3 Nondimensional Buckling Formulation Including Transverse Shear Effects
3.1 Model Assumptions and Coordinate System . . . . . .. ... ... ...
3.2 Equilibrium and Compatibility Equations . . . . . . .. ... ... ...

3.2.1 Strain-Displacement Equations . . . . . . .. ... ... ... ..
3.2.2 Constitutive Equations. . . . . . . . . . . ... 0oL
3.2.3 Equilibriumequations. . . . . . ... ... . 00000
3.2.4 Compatibilityequations . . . . . . ... ... ... 0L
3.3 Linearized Buckling Equations . . . . . . . .. ... ... ........
3.4 Design Space Analysis via Nondimensional Parameters. . . . . . . . . ..
3.5 Finite elementverification . . . . . . .. ... ... ... 0.,

3.6 Conclusions. . . . . . . . . . . e e e e e e e e e e e e

4 Imperfections in the Nondimensional Buckling Formulation
4.1 Modeling of Imperfections . . . . . . ... ... ... ..
4.2 Equilibrium and Compatibility Equations . . . . . . ... ... ... ..
4.3 Nonlinear Deformations of Imperfect Cylindrical Shells . . . . . . .. ..

4.4 Influence of Nondimensional Parameters in the Imperfection Sensitivity
of Cylindrical Shells. . . . . . . ... ... ... . .. ...

45 Conclusions. . . . . . . v i e e e e e e e e e e e e e e e

5 Scaling Methodology
5.1 BaselineStructures . . . . . . . . . .. Lo o oo
5.2 Scaling Strategies . . . . . . . ... Lo Lo e
5.2.1 ScalingStrategyl . . . . . . . . . . . i i i e e

5.2.2 ScalingStrategy2 . . . . . . . . .. ... o



CONTENTS vii

5.3 Sensitivity Study of the Geometrical Parameters . . . . . . ... .. ... 91
54 Conclusions. . . . . . . . .. L L e 93

6 Numerical Analysis and Comparison with Available Data 95
6.1 Numerical Analysis . . . . . . . ... ... Lo oo 97
6.1.1 LinearAnalysis. . . . . . . . . .. . . L o e 98

6.1.2 Non-linearAnalysis . . . . . . . . . .. ... .. 100

6.2 Comparison with Available TestData . . . . . ... ... ... ...... 106
6.3 Conclusions. . . . . . . . . . . e e e e e e e e e e 110

7 Conclusion 111
7.1 Key Findings and Contributions . . . . . . ... .. .. ... ...... 111
7.1.1 Shear Transverse Effects Influence. . . . . . . ... .. ... ... 112

7.1.2 Imperfection Sensitivity . . . . . . . . .. .. ... 0L 112

7.1.3 Analysis-Based Methodology . . . . .. ... ... ... ..... 113

7.1.4 Predictions in differentscales . . . . . . ... ... ... ... .. 114

7.15 Contributions . . . . . . .. ... o oo 115

7.2 Recommendations for Future Research. . . . . . ... ... ... .. .. 115
Bibliography 117
Acknowledgements 129
A Scaled structures 131
Al Baseline2. . . . . . . . . e e e 131
ALl Strategyl . . . . ..o e e e 132

Al2 Strategy 2 . . . oo o e e e e e e 133



viii CONTENTS

A2 Baseline3. . . . . . . . . . e 135
A21 Strategyl . . . . ..o e 135

A22 Strategy2 . . . .o oo e e e e 137

A3 Baselined. . . . . . . . . e 139
A3.1 Strategyl . . . . o oL e e 139

A3.2 Strategy2 . . ..o e e e e e e e e 141
Curriculum Vitae 143

List of Publications 145



SUMMARY

This thesis investigates the buckling behavior of sandwich composite cylindrical shells,
which can be part of the primary structure of launch vehicles. The work focuses on de-
veloping a scaling methodology using nondimensional parameters, aiming to create a
reliable framework for scaling down large composite structures to manageable labora-
tory sizes, while preserving their buckling response.

The thesis first reviews the state-of-the-art approaches for studying shell buckling,
including analytical, numerical, and experimental techniques. Furthermore, different
scaling methodologies utilized in structural analysis are reviewed. Inspired by the liter-
ature, the proposed scaling method starts from the redefinition of buckling equations
in their nondimensional form allowing to naturally derive the scaling laws from their
components. However, a limitation of this approach is the necessity of a comprehensive
nondimensional formulation of the problem.

The need for a comprehensive nondimensional formulation leads to the first two
research questions. The first question, addressed in the third chapter is, To what ex-
tent do the shear transverse effects influence the buckling response in sandwich composite
structures of different scales? To answer this question, the study first extends the nondi-
mensional buckling equations to include transverse shear effects. The second question,
addressed in the fourth chapter, is, What is the theoretical influence of imperfection sensi-
tivity in the buckling response of sandwich composite shells of different scales? To answer
this question, the nondimensional formulation is extended to account for imperfections,
by including a trigonometric function approach.

Once the nondimensional formulation is defined, the work moves to the task of using
it to define a systematic scaling methodology. The third question deals with this specific
aspect of the work and is, How can a systematic methodology be designed to scale down
composite cylindrical shells while preserving their buckling response? To answer this third
question, the thesis proposes a novel scaling methodology, presenting two distinct scal-
ing strategies. The first strategy involves scaling sandwich composite shells while retain-
ing similar structural properties. This approach faces challenges due to manufacturing
constraints, particularly in scaling down thicknesses. The second strategy scales from
sandwich composite shells to equivalent composite laminate shells, which are easier to
manufacture but introduce new challenges when comparing the two structural types.
Both strategies offer trade-offs: while the first one provides more accurate scaling, the
second one is more feasible for laboratory-scale testing.

ix



X SUMMARY

Finally, the fourth question is What are the discrepancies between analytical predic-
tions and experimental observations of buckling behavior in different scales of composite
shell structures produced with the systematic methodology? To tackle the fourth question,
analytical and numerical results are compared with the available large scale and labora-
tory tests, these latter designed by following the second scaling strategy. A key challenge
identified in the research is the discrepancy between analytical predictions and experi-
mental results. Although the theoretical model predicts an 8% error in the nondimen-
sional load between full-scale and laboratory-scale models, experimental results reveal
a larger 22% error. The gap between theoretical predictions and experimental obser-
vations highlights the need for further refinement of the scaling methodology and, in
particular, of the modeling of imperfections.

The thesis concludes with an overview of the research questions and recommenda-
tions for future research, suggesting more extensive testing, in particular of laboratory-
scale sandwich composite structures. Additionally, the incorporation of more detailed
models of imperfections into the nondimensional framework is recommended to im-
prove the alignment between theoretical and experimental results. Overall, this research
provides significant contributions to scaling methods and offers a solid foundation for
future improvements in the scaled testing of large-scale sandwich composite shells.



SAMENVATTING

Dit proefschrift onderzoekt het knikgedrag van sandwich-composiet cilinders, die deel
kunnen uitmaken van de primaire structuur van draagraketten. Het werk richt zich op
het ontwikkelen van een schaalmethodologie met behulp van dimensieloze parameters,
met als doel een betrouwbaar kader te creéren om grote composietstructuren terug te
schalen naar beheersbare laboratoriumafmetingen, terwijl hun knikgedrag behouden
blijft.

Het proefschrift begint met een overzicht van de meest geavanceerde benaderingen
voor het bestuderen van knikgedrag van schalen, waaronder analytische, numerieke en
experimentele technieken. Bovendien worden verschillende schaalmethodologieén die
in structurele analyses worden gebruikt, besproken. Geinspireerd door de literatuur be-
gint de voorgestelde schaalmethode met het herdefiniéren van de knikvergelijkingen in
hun dimensieloze vorm, waardoor de schaalwetten op natuurlijke wijze uit hun com-
ponenten kunnen worden afgeleid. Een beperking van deze benadering is echter de
noodzaak van een uitgebreide dimensieloze formulering van het probleem.

De noodzaak van een uitgebreide dimensieloze formulering leidt tot de eerste twee
onderzoeksvragen. De eerste vraag, behandeld in hoofdstuk drie, is: In hoeverre bein-
vloeden de schuiftransversale effecten de knikrespons in sandwich-composietstructuren
op verschillende schalen? Om deze vraag te beantwoorden breidt de studie eerst de
dimensieloze knikvergelijkingen uit om schuiftransversale effecten mee te nemen. De
tweede vraag, behandeld in hoofdstuk vier, is: Wat is de theoretische invioed van im-
perfectiegevoeligheid op de knikrespons van sandwich-composietschalen op verschillende
schalen? Om deze vraag te beantwoorden wordt de dimensieloze formulering uitgebreid
om imperfecties mee te nemen door middel van een benadering met trigonometrische
functies.

Zodra de dimensieloze formulering is gedefinieerd, richt het werk zich op het ge-
bruik hiervan om een systematische schaalmethodologie te definiéren. De derde vraag
gaat specifiek in op dit aspect van het werk en luidt: Hoe kan een systematische method-
ologie worden ontworpen om composiet cilinders te verkleinen terwijl hun knikgedrag
behouden blijft? Om deze derde vraag te beantwoorden stelt de proefschrift een nieuwe
schaalmethodologie voor, waarbij twee verschillende schaalstrategieén worden gepre-
senteerd. De eerste strategie omvat het schalen van sandwich-composietschalen met
behoud van vergelijkbare structurele eigenschappen. Deze aanpak stuit op uitdagin-
gen vanwege fabricagebeperkingen, met name bij het verkleinen van diktes. De tweede
strategie schaalt van een sandwich-composietschalen naar een equivalente composiet-
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laminaatschalen, die makkelijker te maken zijn, maar ook nieuwe uitdagingen oplev-
eren bij het vergelijken van beide typen. Beide strategieén bieden afwegingen: terwijl
de eerste strategie nauwkeurigere schaalresultaten oplevert, is de tweede beter haalbaar
voor testen op laboratoriumschaal.

Tot slot is de vierde vraag: Wat zijn de discrepanties tussen analytische en numerieke
voorspellingen en experimentele waarnemingen van knikgedrag op verschillende schalen
van composiet schaalstructuren geproduceerd met de systematische methodologie? Om
de vierde vraag aan te pakken, worden analytische en numerieke resultaten vergeleken
met beschikbare tests op grote schaal en op laboratoriumschaal, waarbij deze laatste zijn
ontworpen volgens de tweede schaalstrategie. Een belangrijke uitdaging die in het on-
derzoek wordt geidentificeerd, is de discrepantie tussen analytische voorspellingen en
experimentele resultaten. Hoewel het theoretische model een fout van 8% in de dimen-
sieloze belasting voorspelt tussen volledige en laboratoriumschaalmodellen, onthullen
experimentele resultaten een grotere fout van 22%. De kloof tussen theoretische voor-
spellingen en experimentele waarnemingen benadrukt de noodzaak van verdere verfi-
jning van de schaalmethodologie en met name van het modelleren van imperfecties.

De proefschrift sluit af met een overzicht van de onderzoeksvragen en aanbevelin-
gen voor toekomstig onderzoek, waarbij meer uitgebreide tests worden voorgesteld, met
name van sandwich-composietstructuren op laboratoriumschaal. Daarnaast wordt aan-
bevolen om meer gedetailleerde modellen van imperfecties in het dimensieloze raamw-
erk op te nemen om de overeenstemming tussen theoretische en experimentele resul-
taten te verbeteren. Dit onderzoek levert een significante bijdrage aan de ontwikkeling
van schaalmethoden en biedt een solide fundament voor toekomstige optimalisaties in
het geschaalde testen van grootschalige sandwich-composietschalen



NOMENCLATURE

ABBREVIATIONS
Abbreviation Definition
DESICOS DESign guideline for Imperfection sensitive COm-
posite launcher Structures
DIC Digital Image Correlation
FEA Finite Element Analysis
FSDT First-order Shear Deformation Theory
IS Imperfection Sensitivity
ISS International Space Station
KDF KnockDown Factor
NESC NASA Engineering and Safety Center
SBKF Shell Buckling Knockdown Factor
SLS Space Launch System
SPLA Single Perturbation Load Approach
SYMBOLS
Symbol Definition Unit
aij Components of the compliance matrix [N/mm]
blg,b1y,b2¢,b2;  Median surface slope amplitudes [-]
B1,B> Normalized components of the change of slope of [-]
the normal to the undeformed mid-surface
B1,B; Prebuckling normalized components of the change  [-]
of slope of the normal to the undeformed mid-
surface
By, B> Small perturbation at buckling of the normalized [-]
components of the change of slope of the normal to
the undeformed mid-surface
D;; Components of the bending stiffness matrix [N mm]
Ex,Ey Lamina Young’s Moduli [MPa]

Nondimensional strains

xiii

[-]



xiv NOMENCLATURE
Symbol Definition Unit
E),EY, Nondimensional strains at the reference surface [-]

F Nondimensional stress function [-]

F Nondimensional prebuckling stress function [-]

F Small perturbation at buckling of the nondimen- [-]
sional stress function

Fp Particular solution of the stress function [-]

Fy, Homogeneous solution of the stress function [-]

F Nondimensional buckling load with transverse [-]
shear

Fo Nondimensional buckling load without transverse [-]
shear

Fi Nondimensional buckling load including imperfec-  [-]
tions

Gx Gy Core Shear moduli [MPa]

Gxy Lamina Shear Modulus [MPa]

h Distance between the midsurface of the inner and [mm]
outer facesheets

H(z1,2) Function dependent on the solution and the im- [-]
posed imperfection

ki1, ko Coefficients of the homogeneous solution that sat-  [-]
isfy the boundary conditions

L Length of the shell [mm)]

m Half-waves in the longitudinal direction [-]

My, My, Myy Moment per unit length resultants [N]

M1, Moo, Mo Nondimensional moment resultants [-]

n Number of waves in the circumferential direction [-]

Ny, Ny, Nyy Force per unit length resultants [N/mm)]

Mi, Nz, N2 Nondimensional force resultants [-]

P Axial buckling load including transverse shear [kN]

Py Axial buckling load without including transverse [kN]
shear

p; Axial buckling load including imperfections (kN]

Qx, Qy Transverse shear stress resultants [N/mm)]

211,22 Nondimensional transverse shear resultants [-]

R Radius of the shell middle surface [mm]

r Number of stacking repetitions [-]

tr Facesheet thickness [mm)]

te Core thickness [mm]

u Axial displacement [mm]

U Nondimensional axial displacement [-]

v Circumferential displacement [mm]

v Nondimensional circumferential displacement (-]

w Radial displacement [mm)]

wr Nondimensional amplitude of the imperfection [-1



NOMENCLATURE

Symbol Definition Unit

Wy, W Radial displacement amplitudes [-]

w Nondimensional radial displacement [-]

w Nondimensional prebuckling radial displacement [-]

W Small perturbation at buckling of the radial dis- [-]
placement

Wi Deviations in the shell reference surface [-]

Wiotal Sum of the radial displacement field and the devia-  [-]
tions

X Axial direction [mm)]

¥ Circumferential direction [mm)]

z Radial direction [mm]

z1 Nondimensional axial direction [-1

) Nondimensional circumferential direction [-]

z3 Nondimensional radial direction [-]

am In-plane stiffness weighted geometry parameter [-]

ap Out-of-plane stiffness weighted geometry parame-  [-]
ter

B Flexural orthotropy parameter -

Bx, By Components of the change of slope of the normal to  [-]
the undeformed mid-surface

Yxy:Yyzr Yz Strains components [-]

}/2 y Strain component at the reference surface [-]

T12,T23,T13 Nondimensional strains [-]

T (1)2 Nondimensional strain component at the reference  [-]
surface

0 Average shortening [mm)]

A Nondimensional average shortening [-]

€x €y Strains components [-]

€, e(} Strains components at the reference surface [-]

0 Facesheet angle [

u Membrane orthotropy parameter [-]

Vxy Lamina poisson ratio [-]

Vm Membrane poisson ratio [-]

Vi Flexural poisson ratio [-]

¢ Transverse ratio [-]

X1, X2 Nondimensional transverse shear parameters [-]

wr Imperfection amplitude [mm]







INTRODUCTION

Non est ad astra mollis e terris via

Seneca

1.1. BACKGROUND AND MOTIVATION

HE importance of space technology in modern society cannot be overstated, par-

ticularly for applications such as Earth observation, which are both essential to our
daily lives and profitable. For example, the Copernicus program, a European Earth ob-
servation initiative, is projected to generate profits 10 times higher than its costs [1]. This
highlights the incredible potential of space technology, both to provide meaningful in-
sights into our environment and to be a source of economic prosperity.

Every space mission begins with a launch, which is one of the most delicate and
cost-intensive parts of the process. Failure to launch has severe consequences, includ-
ing the cost of the payload and relaunch, an investigation of the failure, and subsequent
mitigation measures [2]. Furthermore, the launch vehicle imposes restrictions on the
maximum mass and volume of any spacecraft, necessitating sophisticated structures in
space.

For these reasons, the primary structures of launch vehicles have traditionally been
designed conservatively [3]. The emergence of reusable launch vehicles, the reduction of
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launch costs, and the rapid development of the field are forcing launch vehicle compa-
nies to reconsider this approach [4]. The reduction in weight of the primary structure can
lower launch costs and/or increase the payload, making the launch vehicle more com-
petitive. The current and developing European launchers (Fig. 1.1) are rapidly adapting
to this new paradigm. This shift in design methodology has led to technological ad-
vances in materials and the use of new methods for structural analysis.
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Figure 1.1: European launchers in operation and development in 2022 !

In the process of designing the primary structures of launch vehicles, a significant
amount of focus has been placed on the design of cylindrical because these shells are an
essential component in many different types of lightweight structures. However, cylin-
drical shells, especially those found in launch vehicle structures, are buckling-critical
structures. Therefore, the critical axial buckling load is a critical design consideration,
and understanding the buckling behavior is key for modern high performance applica-
tions. In particular, shell buckling under compression loads is of significant interest. For
this reason, understanding the buckling behavior of cylindrical shells is critical in de-
signing the primary structures of launch vehicles that are lightweight yet strong enough
to withstand high compression loads.

Over the past decades, there have been considerable research efforts to analyze and
improve the buckling strength of cylindrical shells under compression loads. One of the
best-known programs is the NASA Shell Buckling Knockdown Factor (SBKF) program fi-
nanced by NASA Engineering and Safety Center (NESC), which aimed to develop and
validate methods for predicting the ultimate strength of thin-walled structural compo-
nents under axial compression loads. The program involved a series of full-scale tests
on cylindrical shells like the one seen in Fig. 1.2 of different geometries, materials, and
fabrication methods. The results of the tests were used to calibrate and validate numer-
ical models and to establish design criteria and safety factors for shell structures used in
aerospace applications [5]. The SBKF program has greatly contributed to the develop-
ment of more reliable and efficient structural designs for space launch vehicles as well as
other aerospace applications. The data collected from the SBKF program, as well as the

Lhttps://europeanspaceflight.com/european-rocket-index/



1.1. BACKGROUND AND MOTIVATION 3

resulting knockdown factors [6], will also have a big impact on non-aerospace engineer-
ing projects that require thin-walled structures to safely withstand compressive loads.
[7, 8]

Figure 1.2: Shell Buckling Knockdown Factor test article

One of the materials tested during the SBKF [9, 10] was the sandwich composite
material. In sandwich composite materials, as seen Fig. 1.3, two rigid facesheets are
separated by a strong and lightweight core material, such as a honeycomb structure or
foam. This arrangement results in a high stiffness-to-weight ratio, which makes sand-
wich composites useful for lightweight constructions. Sandwich composites are utilized
extensively in the space sector due to their superior mechanical qualities, which include
high specific strength and stiffness. Compared to other similar technical solutions, hon-
eycomb sandwich composite constructions were shown by Sleight et al. [11] to have the
best mass, cost, technological maturity, damage tolerance, and ability to be constructed,
repaired, and inspected.

In the context of space launch vehicles, the use of sandwich composites in the prin-
cipal components permits a substantial weight and cost reduction while preserving the
requisite structural performance. Sandwich composite structures and composite lam-
inate structures are the principal types of structures utilized in the construction of the
most recent generation of space launchers, such as Ariane 6 and Space Launch System
(SLS) [12].

When it comes to the design of cylindrical shells for launch vehicles, conducting
extensive testing campaigns on the scale of the one that was carried out by the SBKF
program has been standard practice [13]. In addition, testing is an extremely valuable

2https:/ /www.nasa.gov/ offices/nesc/home/FeatureShellBucklingTest.html
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Facesheets:
Carry tension and
compression loads

AN
\

pal

Core:
Carry shear loads

Figure 1.3: Sandwich composite configuration.

resource for those who are researching the buckling of cylindrical sandwich compos-
ite shells. This is because testing validates the numerical and analytical methods that
are utilized by design professionals [14]. However, full-scale testing of large cylindrical
sandwich shells has two major limitations that limit its usefulness. In the first place, the
outcomes of the tests are extremely reliant on the characteristics of the manufacturing
process and the imperfection signature of the shell [15]. Secondly, the cost of testing is
high not only due to the high number of tests that are required but also due to the large
scale of the structures that are taken into consideration [16]. Despite these drawbacks,
testing is still a vital tool for validating the performance of cylindrical sandwich shells.

In this context, this thesis aims to develop a scaling methodology to replicate large-
scale cylindrical shell buckling in standard laboratory testing size. Shell buckling behav-
ior is an important requirement in the design of primary structures for launch vehicles,
and the use of a scaling methodology offers a promising alternative to the challenges
associated with full-scale testing.

1.2. RESEARCH QUESTIONS

HE thesis topic is the study of instability of cylindrical sandwich composite shells,

typical of space components. Within this large topic, the objective is to characterize
the buckling response of these large shells through an analytically scaled down model,
that can be verified computationally and finally tested in a laboratory scale, where the
results are applicable to the large structure.

The challenges and expected contributions of this thesis can be summarized by the
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following four research questions.

RQ1 To what extent do the shear transverse effects influence the buckling response in
sandwich composite structures of different scales?

By adding transverse shear effects into the nondimensional formulation, this study
improves our knowledge of the design space in the buckling behavior of sandwich
composite shells. The addition of transverse shear in the nondimensional formu-
lation for buckling was previously unexplored, hence this study makes an impor-
tant contribution to the discipline.

RQ2 What is the theoretical influence of imperfection sensitivity in the buckling re-
sponse of sandwich composite shells of different scales?

Addressing the impact of imperfection sensitivity in the buckling response is a crit-
ical and challenging aspect of designing of sandwich composite cylindrical shells.
This is a well researched issue, and the current state of the art will be presented in
Chapter 2. Creating a theoretical framework inside the nondimensional formula-
tion to account for imperfections at various scales, results in useful insights into
the buckling response of both full-scale and scaled-down models.

RQ3 How can a systematic methodology be designed to scale down composite cylindri-
cal shells while preserving their buckling response?

This research question addresses the main contribution of this dissertation: the
establishment of a systematic scaling approach for sandwich composite cylindri-
cal shells using a nondimensional theoretical framework. This offers two theo-
retical strategies for developing reduced-scale models that replicate the buckling
behavior of full-scale sandwich composite structures.

RQ4 What are the discrepancies between analytical predictions and experimental ob-
servations of buckling behaviour in different scales of composite shell structures
produced with the systematic methodology?

The study reveals some inconsistencies between the proposed theoretical models,
and the experimental findings of scaled-down composite shells. The methodology
established in this research offers a theoretical framework for scaling; neverthe-
less, more experimental validation is required to fully understand and tackle these
discrepancies. This work’s novelty is in recognizing these gaps and suggesting di-
rections for future study, especially on improvements of the scaling approach and
the better alignment of theoretical predictions with empirical behavior.

1.3. METHODOLOGY

HE thesis addresses the outlined questions using a combination of analytical and nu-
T merical techniques. This enables the development of a comprehensive understand-
ing of the structure’s behavior and the identification of the primary influencing factors
in the scaling strategies.
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Broadly speaking, the following four-step methodology was utilized to answer the
outlined research questions:

Nondimensionalization: The first step is to use a systematic nondimensionalization
procedure to make a mathematical model of the structure. The model is based on
the governing equations and accounts for the structure’s geometry, material, and
loading factors. The nondimensionalization approach makes it easier to analyze
the structure and identify the major elements that impact its buckling behavior.

Development of Scaling Strategies: The second step is to create two scaling strategies
by used the nondimensional factors identified in step one. On the basis of a phys-
ical understanding of the baseline structures, scaling laws are utilized to establish
the characteristics of the scaled models. Two scaling strategies are developed and
examined to find the best approach for the specific structures under considera-
tion.

Finite Element Analysis: In the third step, finite element analysis (FEA) is used to verify
the mathematical model created in the first step and the scaling strategies devel-
oped in the second. The FEA is performed using the commercial software Abaqus.
The outcomes of the FEA are compared to those of the mathematical model to
ensure their accuracy and identify any issues.

Data Analysis: The final step in the methodology is to analyze the data obtained from
the mathematical model, FEA, and external experimental testing. The analysis
involves identifying the key factors that affect the behavior of the structure and
quantifying their effects. The results of the analysis will be used to assess the ef-
fectiveness of the scaling strategy.

1.4. OVERVIEW OF THE THESIS

T HE work is organized into 7 chapters, as shown in Fig. 1.4. The figure shows the
research question addressed in each chapter as well as the methodologies used.

In this first chapter, a brief background on the topic is presented, as well as the the-
sis objective, research questions and methodology. Chapter 2 expands on the relevant
background and contains a review of the relevant literature in the two key topics of this
thesis: Shell Buckling and Scaling Methodologies.

Chapter 3 contains a detailed description of the analytical formulation for sandwich
cylindrical shells in the nondimensional form. The formulation described here is valid
for sandwich cylinders with composite faces with a shear-deformable core under ax-
ial compression. Chapter 4 expands the analytical formulation for the same sandwich
shells to include initial geometrical imperfections.



1.4. OVERVIEW OF THE THESIS 7

The scaling methodology is presented in Chapter 5. Two different scaling strategies
are presented and the sensitivity to the different geometrical parameters is discussed.

In Chapter 6 the numerical verification of the structures is discussed as well as the
comparison with experimental results. Two tests of different scales are compared us-
ing the scaling methodology proposed. Finally, Chapter 7 reflects on the results as well
as the research questions formulated, presents the conclusions of the thesis, and intro-
duces some future research recommendation.

O rerrrnnnreranns @ INTRODUCTION

e U @ LITERATURE REVIEW

Methedology: Nondimensionalization

O ®
CHAPTER A Methodology: Nondimensionalization

P S @ RQ3: SCALING METHODOLOGY

‘ CHA pTER 5 ' Methodology: Development of Scaling Strategies

@ ®
CHAPTER 6 Methodology: Finite Element Analysis and Data Analysis

O rrerrrrrrennnnns @ CONCLUSION

Figure 1.4: Thesis Outline.
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Las experiencias de hoy
son el recuerdo de marfiana

Isabel Allende

This chapter describes the literature relevant to the challenges described in the in-
troduction. It is divided into two separate but connected sections, each of which is nec-
essary to understand the research questions outlined. In the first part, shell buckling is
discussed by looking at analytical models and simulation tools previously used to char-
acterize the phenomenon. Since this is a broad topic, extensively studied in the litera-
ture, the focus is on the shell buckling under axial compression in sandwich compos-
ite cylinders. The second part moves the discussion to the scaling methods, including
dimensional analysis and similarities between governing equations. Collectively, these
parts constitute the fundamental basis for the study and provide a framework to under-
stand the novel scaling method proposed in this thesis.

2.1. BUCKLING OF SHELLS

HELL buckling is a highly non-linear phenomenon, where manufacturing imperfec-
tions significantly reduce the buckling load. This reduction is typically considered in
design through the use of buckling knockdown factors, which are derived from exper-
imental data. A key source for these factors is the recently updated NASA SP-8007 [6],

9
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which provides knockdown factors for various shell types, including orthotropic shells
and sandwich shells with isotropic facing sheets.

The 2020 update to SP-8007 was made under the Shell Buckling Knockdown Factor
Program [17], addressing limitations in the original 1968 standard. One significant limi-
tation was the overly conservative design approach, which considered the worst possible
imperfection. Furthermore, in 1968, limited data were available for composite shells. In
2012, Takano [18] compiled test data on composite cylindrical shells, which formed the
basis for new statistically-derived knockdown factors for composite cylinders.

Even with these updated design guidelines, shell buckling requires a combination
of experimental, analytical, and numerical approaches to obtain accurate solutions [19].
The challenge with using newer analysis methods is that they require detailed knowledge
of the initial geometric imperfections, which is rarely available. For prototypes, imper-
fections can be measured experimentally (as seen in Fig. 2.1) and incorporated into the
theoretical analysis to accurately predict the buckling load. However, this approach is
impractical for mass-produced shells, and still does not address the challenge of design-
ing the shell before the prototype is produced.

2 ' K H 4 J. ) 4 dAT
Circumferential angle (radians)

Figure 2.1: Measured initial shape of the ARIANE shell AR23-1. [20]

Due to the critical importance of this type of structure and the limitations of the
knockdown factors, axially loaded cylindrical shells have been thoroughly investigated
through analysis, simulation, testing, and a combination of all of them. The relevant
literature referring to each of them is detailed in the following sections.
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2.1.1. ANALYTICAL MODELS FOR PREDICTING SHELL BUCKLING BEHAVIOUR

Analytical models are the first tool designers use to predict the buckling behavior of the
structure. Analytical calculations are faster and more flexible to dimension and/or mate-
rial changes [21]. However, making the right assumptions and choosing the appropriate
analytical model is a prerequisite to getting acceptable results.

The buckling behavior of sandwich shells in general and composite sandwich shells
in particular have been studied by several authors [22, 23]. Two particular aspects of the
analytical model have a significant influence on the accuracy of the analytical results
for sandwich composite shells [24]. The first is the modeling of the shear-deformable
core and the second is the inclusion of the imperfection sensitivity characteristic of shell
buckling in general.

The first aspect is modeling the shear deformable core. This is important since the
facesheets of the sandwich are generally thin compared to the total thickness of the
sandwich structure. Therefore, modelling of the facesheets using the two-dimensional
classical laminate theory (i.e. without accounting for the transverse shear behaviour)
is considered sufficiently accurate for buckling purposes. In cases where delamination
problems [25] or thermal dynamic behavior [26, 27] want to be studied, the authors have
used shear deformation modelling for the laminate composite shells as well.

Modelling the core without considering the transverse normal stress can be done for
cases with a metallic honeycomb core, where the core is very stiff in the through-the-
thickness direction. However, in most cases, the core has a low transverse shear mod-
ulus, and modeling it with the two-dimensional classical laminate theory is inadequate
and will result in a very stiff formulation [28, 29].

Several solutions for modeling the shear-deformable core of the buckling of sand-
wich plates and shells are available in the literature [30] and are briefly discussed here.
These modeling approaches can be divided into categories depending on the variation
of the displacement components through the thickness. The two approaches are or-
der First-order shear deformation theory and higher order theory. The difference in the
deformation pattern for sandwich structures is illustrated in Fig. 2.2. Choosing one or
the other can be relevant depending on the specific case. For instance, Szekrenyes [28]
clearly lustrates how the mayor modeling approaches result in diverse results for the case
of a delaminated sandwich shell.

Most analytical modeling approaches are based on a first order shear deformation
theory (FSDT) [31, 32]. In the FSDT, the core cross section, normal to the mid-surface of
the undeformed state, remains flat but not normal in the deformed state. For sandwich
structures, the first order shear deformation plate theory has been used with thin and
soft core layers [33]. A correction factor must be used to adjust the transverse shear
stiffness [34, 35, 36]. The correction factor ensures that the shear strain energy calculated
using FSDT matches the actual shear strain energy [37].
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Un-deformed State

Bottom Face

Figure 2.2: Deformation pattern through the thickness of the sandwich shell: (a) First-order shear
deformation theory. (b) High-order theory. [24]

Other models are based on a higher-order theory [38]. Higher-order, in this case,
does not refer to the order of the final system of differential equations but to the num-
ber of terms in the power series expansion of the displacements. Higher-order theo-
ries account for shear rotations and parabolic variation of the shear stresses, which have
the advantage of eliminating the need for shear correction factors [39].Finally, other au-
thors have proposed more complex formulations such as incorporating the kinematics
of first-order shear deformation theory with zigzag layer functions [40] or a sublaminate
formulation [41].

Modeling the imperfection sensitivity is not exclusive to sandwich cylindrical shells,
since this is an intrinsic part of the shell buckling behavior. Imperfection sensitivity is
widely acknowledged to be the main cause of discrepancy between the experimental
data and analytical prediction [42]. This was acknowledged early on, and a series of
theories were developed to explain the roots of difference [43, 44].

Koiter [45] was the first to propose the concept of imperfection sensitivity and to de-
velop an analysis method for shells under buckling. Koiter demonstrated that the imper-
fection sensitivity of shell structures is closely linked to their initial postbuckling behav-
ior. Specifically, interest lies in the variation of the loading parameter, A, in the vicinity
of the bifurcation point, A = A, where A represents the loading parameter, and § is the
amplitude of the buckling mode, normalized by the wall thickness, ¢. If the shell exhibits
aunique buckling mode associated with the lowest buckling load, its buckling and initial
postbuckling behavior can be described accordingly.
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Traditional defects are generally considered as the global or local initial imperfec-
tions of cylindrical shells due to an unsatisfactory manufacturing process or other ex-
ternal factors [46, 47]. It is generally believed that defects incurred during the manufac-
turing process or while in-service are the most important reasons for the reduction in
load bearing capacity of cylindrical shells. Subsequently, various types of defects were
investigated in the pursuit of the most unfavourable form of defects.

For example, Koiter et al. [48] used a trigonometric series expansion method and a
small parameter perturbation method to study the influence of axisymmetric defects in
the form of trigonometric functions on the buckling of cylindrical shells.

Coupling the Ritz or Galerkin method to a small parameter perturbation method are
the most-used methods to introduce the imperfection sensitivity [49]. However, these
methods have some limitations such as the solution assumed in the Galerkin and the
Ritz method usually does not satisfy the simply supported boundary conditions [50],
and the small parameter perturbation converges quite slowly for the buckling problem
of cylindrical shells. Other alternative would be the use of the Hamilton system to elas-
tic mechanics [51]. Following this approach, Liao [52] introduced the concept of homo-
topy in topology and differential geometry in the analytical approximation of differential
equations for the buckling of isotropic cylindrical shells.

Regarding the type of defects, a distinction must be made between local defects (i.e.
a localized thickness variation) with periodic defects (i.e. variation of the thickness at
the mandrel joint) since local defects reduce the buckling load more substantially [53].
To introduce periodic defects, a trigonometric imperfection, partly inward and partly
outward [54] is considered to be the easiest method to introduce the sensitivity to the
imperfections. An asymptotic formula for buckling of cylindrical shells with uniform,
axisymmetric and parabolic thickness defects has also been developed [55]. To study
local defects, exponential functions are the most commonly used method [56]. Specific
types of local defects such as structural cracks or corrosion defects [57, 58] lead to com-
plex analytical solutions even in the case of isotropic shells.

2.1.2. SIMULATION TOOLS FOR PREDICTING SHELL BUCKLING BEHAVIOUR

Simulation tools are widely used to predict the buckling behaviour, including load and
modes, of sandwich composite cylindrical shells [59, 60]. They present the advantage of
allowing a greater detail in the design features such as the inclusion of cut-outs [61, 62]
or cracks [63].

Therefore, in order to develop an accurate finite element model, a wider range of
properties of the shell must be known. For instance, the imperfection signature plays
an important role in the numerical study of shell buckling phenomena due to the high
sensitivity of these structures to imperfections [64]. An imperfection signature is defined
as the specific pattern and magnitude of deviations from the ideal geometry of a shell.
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This imperfection signature is best derived from the physical specimen, but this strat-
egy is very resource-consuming, because it requires the production of the specimen be-
fore running the simulation. Arbocz pioneered the use of measured imperfections in
shell buckling simulations. A reference database of measured imperfection was created
[65] such the data could be used in future simulations before having the specimen.

An incomplete imperfection signature of the test specimen can also be implemented
in the finite element model with accurate results. In 2000, Bisagni used the measured
imperfection signature of the central part of the shell [66]. The imperfection signature
was completed for the areas without measurements with a linear interpolation up to
the nominal geometry in the edges. These simulations, made with both Riks analysis
and nonlinear dynamic analysis overestimated the buckling loads from the experiments.
Waullschleger [67] also found in a different set of composite cylindrical shells that the
numerical results with a partial imperfection signature overestimated the experimental
results.

Pseudo-random imperfections can also be introduced into the wall geometry to carry
out nonlinear analysis. Lincoln et al. [68], to examine the improved buckling response
of shells manufactured via Continuous Tow Shearing introduced a pseudo-random vari-
ation in the radial node coordinate across the shell, with the size ranging from 0 to the
wall thickness. This method was used across different cylinders to allow for a compari-
son and establish some guidelines.

In 2002, NASA Langley Research Center Hilburger [69], included in their simulation
more types of imperfections: ply thickness variations, ply gaps, and fiber volume frac-
tion. Moreover, they attempted to introduce uncertainty producing prediction ranges
[70]. The best and worst cases were determined by combinatorial analysis. The results
confirmed that a higher imperfection amplitude leads to a lower buckling load. The er-
rors in the buckling predictions were under 10%. In this type of simulations, the numer-
ically predicted loads were still overestimating the experimental results.

The inclusion of variances in fiber volume fraction (FVF) in the measured imperfec-
tion models was further studied by Broggi [71]. In this study, the measured variations
in thickness were used to obtain the FVE since changes in the percentage of resin were
believed to account for most of the thickness variation. However, the FVF-variation-
inclusive model predicted a buckling load less acurately than the model using with mea-
sured imperfections only. The influence of variations in ply gaps [72] was also consid-
ered. However, it was found that an accurate variation of the ply gaps in the imperfection
models did not produce significantly different results.

Since these methods require a large amount of information about the shells, the Sin-
gle Perturbation Load Approach (SPLA) [73] was developed to address this limitation.
The errors between the test and the simulation were between 4% and 12% and resulted in
less conservative estimates than the NASA SP-8007 guidelines. Recent studies have built
upon this method in the context of large wind turbine towers which are also buckling-
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sensitive structures [74].

The thickness imperfection may be calculated or measured [75]. In the first case,
where the thickness is calculated, the outer surface measurements minus the inner sur-
face measurements produce the shell thickness distribution. One technique to mea-
sure the inner and outer surface is structured light scanning [76]. In the second case,
where the thickness is measured, direct ultrasonic measurement may be performed on
test specimens [77].

This thickness imperfection can be directly introduced in the model via the node
positions if solid or continuum shell elements are used. If conventional shell elements
are used, the thickness variation can be input to the thickness of the core [76] in the case
of sandwich constructions or just the composite layers in the case of a solid laminate
[771.

Another aspect of the measured imperfections is that often the geometric imperfec-
tion measurement data points do not correspond precisely to the node coordinates of
the shell finite element model [78]. To introduce the imperfection data into the mesh
from the measurements, interpolation or curve fitting techniques are required. The
method chosen has some influence on the accuracy of the results [79], but extensive
comparisons have not been made in cylindrical sandwich composite shells.

Among the different types of interpolation used in the literature, the simplest one,
linear interpolation, appears to be the most common [80, 81, 67]. However, more ad-
vanced interpolation methods, such as inverse distance-weighted interpolation, have
also been used by some researchers [82, 83]. In this interpolation method, each point
is the result of the weighted mean of the closest measured points. The weighted inter-
polation provides a smoother surface since it avoids one of the shortcommings of linear
interpolation, which is the inclusion of measurement system noise. An example of the
model with inverse distance-weighted interpolation can be seen in Fig. 2.3.

Curve fitting can also be used successfully [84]. For instance, Fourier analysis can be
used to generate mean imperfection signatures. This can be particularly convenient to
compare if some manufacturing techniques produce variations in the thickness ampli-
tude at certain frequencies.

Modeling the test set-up to some extent can also influence the accuracy of the results.
In some cases, only the potting used in the experiment to facilitate load introduction was
included in the numerical model [85, 77]. In the experiments on the composite shells of
the NASA Langley Shell Buckling Knockdown factor program [76], the full setup was in-
cluded load orientation lines and assembly at the edges of the shell. The introduction of
a more complete model reduced the difference between the simulation and test results.
The remaining differences were attributed to an asymmetry in the load introduction of
that specific test setup [77] or inaccurate material properties [76].




16 2. LITERATURE REVIEW

(a) (b)

Figure 2.3: FE model of the test cylinder: (a) perfect model and (b) with actual surface morphology deviated
from a perfect cylinder scaled by 50 times. [82]

Schillo [86] attempted to study in detail the influence of load asymmetry in the test
setup in a series of simulations of filament-wound composite cylindrical shells that also
included measured geometric imperfections. Furthermore, researchers used microscopy
to measure the material properties instead of using the nominal material data. This
study established the importance of loading imperfections on buckling behavior. The
loading imperfections were found to have five times more influence on the buckling load
than the measured imperfection. This study is noteworthy because it intentionally ap-
plied large loading imperfections, revealing that the NASA standard SP-8007 was not a
conservative estimation in this case.

Another unusual result was found by Wu in 2013 [87], where the imperfect shells
produced a higher buckling load than the one predicted by the perfect model. This
study researched the buckling behavior of two variable-strength composite shells. In this
type of composite shell, the manufacturing process (filament winding) introduces fiber
tows that overlap, resulting in an intrinsic thickness difference. However, other studies
with variable stiffness shells [85, 88] have found that the experimental buckling load was
lower than the load of the perfect shell. These studies also produced simulations with a
high degree of accuracy, provided that the measured geometric imperfections were in-
cluded in the model.

Hartwich et al. [89] also found in a series of tests designed to analyze the influence of
manufacturing on the imperfection sensitivity that the filament winding samples pose a
more regular imperfection shape than the layered ones. The experimental results sup-
port the notion that more regular imperfection patterns, even those with higher imper-
fection amplitudes, reduce buckling load less than more irregular ones, such as those
caused by fiber overlap.
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Unlike many measured imperfection approach studies, Hilburger [69] produced a
window of buckling behavior predictions rather than single predictions of combinations
of imperfections. Combinatorial analysis was used to create high and low bounds for
the ranges. In practice, this approach to characterizing uncertainty in model parameters
could be applied to any combination of properties. The fact that different measurement
systems in the work of Labans [88] produced different numerical buckling load predic-
tions suggests that it may be useful to generate a range of predictions as Hilburger [69]
did.

Another significant difference was highlighted by Friedrich and Schroder [90], when
they studied numerically the discrepancy between boundary conditions and load intro-
duction of full-scale built-in and sub-scale experimental shell structures. They aimed
to study potential inaccuracies between launch vehicle structures, which are loaded in
a load-controlled manner, and most lab buckling experiments, which are conducted in
a displacement-controlled manner. Their study also produced results that indicated a
high dependency of boundary conditions on the collapse loads.

Finally, Wagner et al. [91] introduced a comparison between geometric imperfection
signatures, probabilistic and deterministic lower bound methods for differently manu-
factured shells under axial compression. Their findings indicate that the use of measured
geometric imperfection is often unreliable for the analyzed shells, as the associated test
buckling loads are frequently underestimated. The probabilistic analysis incorporating
geometric and wall thickness imperfections was conducted; however, even at elevated
reliability levels, this analysis yielded non-conservative estimations of buckling loads.

2.2. SCALING METHODS

HE study of the buckling behavior of large shell structures through full-size tests is
T complex and expensive. To the high cost of the shell itself, one must add the cost
of the equipment necesary to perform test in large structures. For this reason, scaled
structures are often preferred to evaluate the buckling behavior. For metallic structures,
such scaled cylinders have already been proven effective for developing design guide-
lines [92]. However, scaling down representative large sandwich composite structures
can be challenging because of the high number of parameters involved in the stiffness
properties of the structure such as the thickness, the materials and the ply orientations.
The design of a scaled structure needs to be considered carefully in order to obtain a
comparable result. Moreover, the scale change should account for the manufacturing
and facility constraints of the new scale.

It is important to distinguish between changes in scale and changes in size. A scale
change, as defined by Simitses et al.[93], refers to the changes in the geometric dimen-
sions or to the changes in the response to external causes such as the force. On the other
hand, changes in size relate to the changes in material strength or stiffness. The changes
in size are rarely considered [94], after all the material properties obtained from coupon
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Figure 2.4: A schematic for predicting the structural behavior of an enlarged prototype using testing results
from a scaled model. [98]

testing are regularly used for full structure calculations.

One scaling approach consists in considering each possible scaled configuration on
a case-by-case basis. An European Union project with the goal of examining the im-
perfection sensitivity of large composite shell structures named DESICOS (New Robust
DESign Guideline for Imperfection Sensitive COmposite Launcher Structures) utilized
this approach. The scaled configurations were chosen by an iteration process where the
focus was to keep some geometric relations (i.e. Radius to thickness, R/t and Length to
Radius, L/R) and the lowest eigenvalue equal to the original structure [95].

More formal methodologies have also been developed [96] and this section describes
different scaling methods that have been used in shells with several degrees of success.
To have a correct scaling between two or more systems, similitude theory prescribes that
the relations between the mathematical parameters that describe our systems must be
enforced. If a relation between the mathematical parameters between different systems
can be established, this is usually called a scaling law [97]. Via the scaling laws the pa-
rameters between the two structures can be converted. In this work, two scales are con-
sidered. The larger one will be named the baseline structure, and the smaller system will
be named the scaled structure. A schematic for predicting the structural behavior of an
large scale prototype using testing results from a scaled model is shown in Fig. 2.4.

When all the established scaling laws are obeyed, this is known as complete similar-
ity. In some cases not all of them can be fulfilled at once. This can be due to an incom-
patibility between the defined scaling laws or practical problems such as manufacturing
or laboratory constraints. In those cases only partial similarity can be achieved since
one or more scaling laws have to be disregarded. The importance of all scaling laws is
not equal in most cases [99]. Identifying and enforcing the scaling laws with the highest
influence becomes critical to the success of the scaling process.

2.2.1. DIMENSIONAL ANALYSIS

The earliest formal scaling method is the use of dimensional analysis to design scaled
structures [100]. This method is based on the Pi-Buckingham theorem and consists on
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identifying all the system variables and from them produce a series of independent nor-
malized parameters. These parameters are then treated as the scaling laws [101]. Struc-
tures are considered to have complete similarity between the baseline structure and its
scaled structure when all the independent normalized parameters are equal in both con-
figurations.

Parameter selection is of paramount importance, since some parameters are easier
to measure and calculate, and others are easier to modify when searching for the scaled
configuration. Consequently this method relies heavily on the experience and knowl-
edge of the physical problem [102]. The main disadvantage of this methodology is the
difficulty in identifying the scaling laws. Therefore, it is not commonly used for problems
with a large number of design parameters.

Nevertheless, it has been heavily and successfully used to scale down and test struc-
tures from launch vehicles [103]. Saturn I [104] and Saturn V[105] vibrations characteris-
tics were studied with scaled models obtained with this method. Scaled test to study the
dynamic behavior were also made for the Space Shuttle [106] and the ISS (International
Space Station)[107].

Dimensional analysis has also been applied to steel shells subjected to impact load-
ing [108], where it was observed that small structures resist perforation better than large
structures. In this case, it is understood that the size change (material properties: strain
rate sensitivity and fracture) plays also an important role.

2.2.2. SIMILARITY BETWEEN GOVERNING EQUATIONS

If the governing equations of the phenomena are known, another formal method for
scaling is based on similarity between governing equations. The principle of this method
is that both the baseline structure and the scaled one are ruled by the same set of equa-
tions, which can be either the differential equations or the solution equation. Vibration
problems are particularly amenable to this type of scaling [109].

This method is powerful in obtaining complete and partial similarity laws for the de-
sign of scaled structures, because it avoids the difficulty of identifying the normalized
parameters. The main advantage of this method is that the scaling laws are deduced
directly from each parameter in the governing equations. The difficulty is in simultane-
ously fulfilling all the scaling laws while remaining within the design and manufacturing
constraints. The consequence is that in most cases the scaled model that is produced
fulfills only partially the similarity laws. For these cases, the lack of complete similarity
limits the applicability of the results. In case complete similitude is obtained, the scaling
of both buckling load and the buckling mode shapes is realised [110].

This method was thoroughly used by Simitses [111, 112, 113], who studied exten-
sively the case of scaling down laminated cylindrical shells. The method was applied to
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vibration studies and buckling of shells under axial compression with and without im-
perfection. The scaling laws obtained do not allow for a large range of design freedom,
therefore, the partial similarity and some distortion in the parameters were needed. The
accuracy of the predictions was shown to vary depending not only in the amplitude of
the distortion but also the parameters distorted. For instance, distortion of the num-
ber of plies or length still produced accurate results, whereas minimal distortion of the
thickness or the radius resulted in inaccurate buckling predictions.

Avariation of the method was developed in 2018 by Coutinho et al. [98]. This method
tried to avoid the pitfall that scaling laws are considered for each individual application,
which can be time consuming. In the method, a general approach, with less assump-
tion is described. The method relies on three levels of a modular approach. There are
six modules on the first level, which contain the scaling laws that correspond to the
equations of the plate (strain-displacement, equations of motion...), kept with a mini-
mal number of assumptions. These scaling laws are combined on the second level. If
several bodies are considered in the structure, the third level allows for the interaction
between them by imposing internal forces and displacements continuity at the inter-
faces. The method is applied successfully to a simply supported stiffened plate under
uniform pressure, with good agreement between numerical results of both scales. This
method could be extended to the scaling of other types of structures such as shells. Par-
tial similitude could also be considered to enhance the method possibilities.

2.2.3. SIMILARITY BETWEEN NONDIMENSIONAL GOVERNING EQUATIONS

Finally, the use of nondimensional governing equations is also a scaling procedure. In
this case the nondimensional parameters of the equations become the scaling laws. If
the nondimensional parameters that conform the equations are equal in the baseline
and scaled case, similarity can be obtained. The parameters depend on the nondimen-
sionalisation procedure and some systems might be more suitable than others for dif-
ferent systems. The nondimensionalisation procedure is time consuming, but once the
system is devised the determination of the scaling laws is straightforward.

Beyond their scaling applications, nondimensional parameters and equations are
developed because they are extremely useful to navigate a large design space [114]. For
instance, many different constructions may correspond to the same set of nondimen-
sional parameters, and the relative magnitudes of the parameters can be used to identify
special cases in which one or more parameters are negligible. From 2002-2008, Weaver
et al. [115] made extensive use of nondimensionalisation procedures and parameters to
gain insight into the behavior of laminated composite structures. In their study, to ac-
count for the effects of flexural-twist and extension-twist anisotropies on the buckling of
compression-loaded cylindrical shells, correction factors derived from the nondimen-
sionalisation procedures were calculated. In the field of the buckling of sandwich com-
posite structures with shear deformable core, nondimensional parameters have been
used to study and characterize plates [116].
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In their investigation of the free vibration of stiffened shells, Tokamani et al. [117]
made use of nondimensional parameters and equations for scaling purposes. In their
scaling analysis the stiffeners were smeared, and the nondimensional frequency is ob-
tained in terms of nondimensional parameters from nondimensional equations. The
scaling laws were derived via substituting the parameters from the baseline in the nondi-
mensional equation of the scaled shell. If the number of scaling laws is fewer than the
number of variables, the process has a larger design freedom. This can be used to adapt
to the manufacturing constraints obtaining the same accuracy at a reduced cost.

Other application where nondimensional parameters and equations were developed
and successfully used for scaling is solar sail systems. Solar sails must be large by de-
sign, and the calculation of the deflection of the sail, modeled as a thin plate, and the
deflection of the boom, modeled as a beam, is required. Nondimensional equations for
this system, including the interactions, were proposed, and the parameters that conform
them were established as scaling laws. Canfield et al.[118] used these nondimensional
equations to use the results of a solar sail with a side length of 10 meters to propose larger
designs (20 to 40 meters of side length).

Hilburger, et al. [119] also used the nondimensional equations based on Reissner-
Mindlin plate theory to obtain scaling laws for sandwich composite plates subjected to
combined loads. The main advantage of this method is that the results of the buck-
ling equations are also in nondimensional form and can be compared with the different
scales. This approach not only benefits from the use of scaling laws directly derived from
the governing equations, but also provides the framework to evaluate the response.

However, even if the nondimensional parameters and equations provide an excellent
scaling system and analysis framework, it should be noted that even in the cases of full
similarity the results might diverge due to the simplifications applied in the governing
equations. The user needs to make sure the equations describe account for phenomena
that is relevant only in the scaled configurations or vice versa.
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Cuéntame un cuento de niimeros,
hdblame del dos y el tres

-del ocho que es al revés

igual que yo del derecho-.

Gloria Fuertes

This chapter aims to extend the existing nondimensionalisation formulation devel-
oped by Nemeth [121] to sandwich composite cylindrical shells with a shear deformable
core under axial compression. This is done in order to later use the nondimensional
equations as the basis for the scaling process.

To obtain the axial nondimensional buckling load, first, the problem and its assump-
tions are described. This includes the geometry and properties of the shell, as well as the
nondimensional reference system and nondimensional displacements. Then, the fun-
damental relations are explained and derived both in the dimensional and nondimen-
sional form: strain-displacement relations, constitutive equations, equilibrium equa-

This chapter has been published in Thin-Walled Structures 161, 107393 (2021) [120].
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tions and compatibility equations. The equilibrium and compatibility equations are lin-
earized, possible solutions according to the boundary conditions are proposed, and the
eigenvalue problem resultant is solved for the buckling load.

Finally, in order to illustrate the usefulness of the nondimensional equations and
parameters, several shells are selected. The buckling response as well as the influence
of the transverse shear of the core are among the differences that can be tracked via the
nondimensional parameters.

3.1. MODEL ASSUMPTIONS AND COORDINATE SYSTEM

ANDWICH composite structures provide bending and in-plane extensional rigidity

with composite facesheets separated by a low density core, which provides as well
transverse shear rigidity to the construction. The laminated sandwich shells under con-
sideration are composed of identical inner and outer facesheets and a core made of a
shear deformable material. The facesheets are made of several laminae whose fibers can
be oriented in any direction and any stacking sequence of the laminae is permissible.

The geometry of the shell is characterized by its length L, radius of the middle surface
R, facesheet thickness tf) and core thickness ¢, as depicted in Figs. 3.1 and 3.2. Consis-
tent with the shells formulation, the assumption that the shell thickness is small com-
pared to the radius is made. The mid-surface of the sandwich construction is the refer-
ence surface. The distance between the mid-surfaces of the inner and outer facesheets,
h, is also defined.

In this study, both facesheets are assumed to have equal thickness and are placed
symmetrically with respect to the mid-surface of the sandwich construction. The nor-
mals of the laminate point outward, namely z and z3 in Fig. 3.2, and thus the entire
sandwich is geometrically symmetric, even if the layups of the facesheets differ. Each
ply in both facesheets is modeled as orthotropic, linear elastic, and of constant thick-
ness, resulting in a shell of constant overall thickness.

The transverse shear stiffness of the facesheets is neglected in this model, consistent
with standard assumptions in sandwich structure analysis[122], where the facesheets are
considered sufficiently thin and stiff compared to the much thicker and more compliant
core. The core, which is orthotropic with one axis of orthotropy aligned with the shell
axis, is linear elastic and of constant thickness. Its transverse shear stiffness is assumed to
be dominant and is retained in the formulation. This assumption is applied consistently
throughout the thesis.

The coordinate system x, y, z is measured with respect to the reference surface in
the axial, circumferential and radial directions respectively as depicted in Fig. 3.2. The
nondimensional or normalized coordinates, z;, z; and z3 are:
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Figure 3.1: Cylindrical Sandwich Shell Section.
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Figure 3.2: Cylindrical Shell Geometry and Coordinate System.
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ad 3.1)
z1== .
)
y
Zp == 3.2
2= 4 (3.2)
£ (3.3)
zZ3 = .
V12v/ai1az D11 Dy

where the a;; are membrane compliances and the D;; are bending stiffnesses of the en-
tire sandwich and are calculated using the classical laminate theory.

The denominator v/12V/aj; az; D11 D2z of Eq. (3.3) represents the equivalent thick-
ness of the sandwich structure. In the particular case where the structure is made of an
isotropic material instead of a sandwich composite, the value of the equivalent thickness
is the value of the exact thickness.

The components of displacement u, v and w of a point on the shell are the com-
ponents in the x, y and z directions. The nondimensional displacements U, V, W are
defined as:

L
U=——— u (3.4)
vaiiaz D11 Dy

R
| — (3.5)
vaiaz D11 Dy

1
W= — ——w (3.6)
vai az D11 D2

The transverse shear stiffness is provided primarily by the core; therefore, only the
transverse shear stiffness of the core is included in the formulation. The transverse
shear stresses are assumed constant through the core thickness. To model the trans-
verse shear stiffness the first-order shear deformation theory of Cheung and Tennyson
[123] is adopted.

Unlike classical first-order shear deformation theories that require a shear correction
factor, the formulation of Cheung and Tennyson [123] does not explicitly introduce such
a factor. Instead, shear deformation is captured directly through kinematic assumptions
and the definition of an effective displacement field across the core, using a geometri-
cally defined distance & (seeFig. 3.1). Thus, no separate shear correction factor is re-
quired in this model. This theory satisfies the continuity of transverse shear stresses
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at the facesheet-core interfaces and enforces zero shear stress on the free surfaces. As
a result, a linear variation of the in-plane displacement components through the core
thickness is obtained.

The shell is considered to have simply supported boundary conditions. Three as-
sumptions are made in order to proceed with the analysis. First, no failure between the
facesheet and the core is assumed. Second, in the laminate there is no slippage between
plies, as well as no inter-cell buckling in the core. Finally, the normal stiffness of the core
is considered very large, therefore instability associated with wrinkling of facesheets is
not included.

The process to obtain the buckling load and mode of the shell follows the classical
procedure [124]. First, the strains-displacement relations are established according to
the proposed assumptions. Secondly, the equilibrium and compatibility equations are
developed step by step and transformed into the nondimensional formulation. In order
to obtain these equations, the strains-displacement relations are adapted to nondimen-
sional form. The nondimensional linear buckling equations are obtained applying the
adjacent equilibrium criterion [100] and a nondimensional axial buckling load solution
is presented for the formulation with and without core transverse shear.

3.2. EQUILIBRIUM AND COMPATIBILITY EQUATIONS

HE equations used in the present study are relatively well known in their dimensional

form [124]. The current nondimensionalisation keeps a similar format as the dimen-
sional equations and it is here applied to axial compression. The formulation also can
be used for other load cases.

First, the displacement field distribution and the strain displacement relations are
presented. Then, the stress resultants and constitute equations are considered and the
nonlinear equilibrium equations and the strain compatibility equations are obtained.

3.2.1. STRAIN-DISPLACEMENT EQUATIONS
Using the nonlinear strain-displacement relations, where the strains are considered to

be small but the rotations are moderate, strains components €y, €y, Yxy, ¥xz and y . can
be expressed as:

0p, ou 1(0w\® 0P
_ 0 OPx _Ou 1[ow)\"  OPx 3.7
Cx =Ty T ox Z(Ox) “ox 3.7)
3 F) 1(ow)*> 0
eyzeo_zﬂ:_”JrBJr_(_“’) _ %y 3.8)
Y "oy oay R 2\ody ay
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0By 0 61/ ou owow 0By 0
Yey=Yx)' -2 ( Y ﬂ)= —t——— ( Y ﬁx) 3.9)
o0y oy Gx 0y O0x 0y ax oy
ow
Yxz= (a — ﬁy) (3.10)
ow
Yyz= (5 —ﬁx) (3.11)

0 .0
where €5, €

and 7y,° are the components of the strains at the reference surface and

Bx and By are the components of the change of slope of the normal to the undeformed

mid-surface.

These components, §x and fy, are already nondimensional. However, for the pur-
poses of this formulation, it is more convenient to create new nondimensional param-
eters that account for the geometry and material stiffness. Thus, two new nondimen-

sional parameters, B and By, are established:

L
By =

R
B =

4
vai az D11 Do

4
vai az D11 D2

Bx (3.12)

By (3.13)

The strain equations shown in Egs. (3.7) to (3.11) can be also defined in terms of
the nondimensional coordinates and displacements as can be seen in Egs. (3.1) to (3.6),
(3.12) and (3.13), where the nondimensional strains, E;;, Es2, I'12, I'13 and I'»3 are ex-

pressed as:
B - L? . U 1 (aW) 031 (3.14)
"7 VananbubDy © 0z 2\0z 021 '
R%e, v R 1(0W)> aB1
Epz=————— =t ——— W+ | — (3.15)
vanazpDi Dy 0z v/aynaznDiDa 2\ 0z 522
I, = LR ov LU ou 0W ow (032 N aBl) (3.16)
12 v CluazlelDzz Ve xy = 6Z1 6 6Z1 0Z2 0Z1 6Z2 ’
r —RZ ow B (3.17)
13= =3, b2 :
vaiiagpD11Dy Yz 0z
L? ow
[a3 = (3.18)

- =— -B
vain azp D11 Dy Yyz 0z

Due to the chosen nondimensionalization procedure, as seen in Egs. (3.10), (3.14),
(3.16) and (3.18) most the equations in their nondimensional format only include the
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derivations of nondimensional displacements U,V,W and the components of the change
of slope of the normal B;, B, with respect to the introduced nondimensional coordinates
Z1, Z22.

However, in Eq. (3.15), there is also the term: R/ v/ay;az»D11D22. With few modi-
fications this term can be expressed as Z, a nondimensional parameter known as the

Batdorf-Stein parameter.

R
Z= (3.19)

V12v/ay1az D11 Dy,

The Batdorf-Stein parameter, Z, formally introduced by Nemeth [125], relates the
radius with the membrane compliances and bending stiffnesses. The Batdorf-Stein pa-
rameter is similar in character to a radius to thickness ratio R/t because it relates the
shell radius R to an equivalent thickness v/12V/ay; az; D11 D2;. If an isotropic material
were used this value would match the thickness exactly.

With the addition of the Batdorf-Stein parameter, the Eq. (3.15) results then as:

1%
Eyp = g—+\/_zw+ (3.20)

OW) B 631
0 Y4 622

From the Egs. (3.14), (3.16) and (3.20), the nondimensional expressions of the refer-
ence surface strains can be obtained:

5 - ou . 1 (6W)2 (3.21)
11_621 2 6Z1 ’
1% oW \?
E = — +V1I2ZW+ = 3.22
25, " (azZ) (.22

o 0V U owow (3.23)
12 021 022 6z1 aZZ ’

In a similar way as the strains at any point of the shell are described in Egs. (3.14),
(3.16) and (3.20), the nondimensional values of the mid-surface strains Ej1, Exz and I'1»
are thus expressed as:

L2

== 0 (3.24)
U VanapbnDn
R2
E)=—— (3.25)
ay aze D11 D2p
LR
9, = 0 (3.26)

Yx
vanaxpDiiDy 'Y
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3.2.2. CONSTITUTIVE EQUATIONS

In deriving a set of nondimensional constitutive equations, it is desirable to keep the
number of parameters that characterize the material behavior to a minimum. Here, the
semi-inverted constitutive equations are used, considering that the sandwich structure
is symmetric, even if the laminates that conform the facesheets are not.

€S = an Ny +a;Ny (3.27)
€)= a12Nx + aznN, (3.28)
Y%, = a6 Nxy (3.29)

where Ny, Ny and Ny are the force components per unit length. The nondimensional
components of these forces: 411, A22 and 472, can be defined as:

M1= ———=Nyx (3.30)

Nog=——=N, (3.31)

Mp = ———=Nyy (3.32)

Combining the in-plane equations shown Egs. (3.27) and (3.28) with the definitions
of the nondimensional strains shown in Egs. (3.24) and (3.25), and nondimensional stresses
shown in Egs. (3.30) and (3.31) and, operating, the following nondimensional in-plane
relations are obtained:

LZ an aro

Ed=— | — M+ — M 3.33

1= 52\ 0, 11 Din 22 (3.33)
a R? [ap;

EY = M+ — | N 3.34

22 Va1 dro 1 LZ an 22 ( )

Three new terms are highlighted in Egs. (3.33) and (3.34). Upon inspection, these
three terms can be expressed with the help of only two nondimensional parameters a,

and v,,, as defined by Nemeth [125]:
R
am = =42 (3.35)
L ann
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a
Vi = — e (3.36)

v a1 az2

Combining the in-plane shear equation in Eq. (3.29) with the definition of the nondi-
mensional strain from Eq. (3.26) and nondimensional in-plane shear stress in Eq. (3.32)
and operating, the following relation is obtained:

L ags Dy,
M, ==—2_./=22 4 3.37
127 R vanaz \| D~ ? (3:37)

Operating it can become:
L |D 2a12 + a a
T== 32( R )Mz (3.38)
RV D \2yanaz aniazx

The above equation can be expressed with the help of three nondimensional param-
eters as defined by Nemeth [125]: v, which has already been defined in Eq. (3.36), and

two new ones: @y, and y:
R ,/D
ap=—i/ =L (3.39)
L\ Dy

_ 2a12 + aes

2y/araz

(3.40)

The parameters a,, defined in Eq. (3.35)) and @}, defined in Eq. (3.39) are called the
stiffness weighted geometry parameters, because they relate the geometry of the shell:
the radius and the length, with the stiffness of the composite laminate. The membrane
orthotropy parameter, u defined in Eq. (3.40)) and membrane Poisson ratio, v,, defined
in Eq. (3.36) relate to the membrane compliance and are mostly dependent on the ma-
terial properties and facesheet layup.

If the nondimensional parameters defined in Egs. (3.35), (3.36), (3.39) and (3.40) are
included in the in-plane relations from Egs. (3.33), (3.34) and (3.38) a more compact
formulation can be expressed:

1
— v 0

E) as, " S

Ep|=|-vm d? 0 Naa (3.41)

i, 0 o 2EEVm) | [ A
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Under the current assumptions, the bend-twist anisotropy is treated as negligible.
This means that even if the value is not zero, the influence of the bend-twist terms com-
pared to other bending terms is considered small. This assumption might not be valid
for all laminates especially for cases where the facesheets have a low ply number. Under
this assumption, the moment per unit length resultants are defined as:

0By
My=—-|(Dj1—+Djp— 3.42
x ( 17y + D ay) (3.42)
0Px aﬁy)
M, =—|Dio——+ Dyy— 3.43
y ( 125 + D22 3y (3.43)
aﬁ}’ aﬁx
Myy = _D66(_6x + By ) (3.44)

In a similar way to the nondimensional force resultants described in Egs. (3.30) to (3.32),
the nondimensional moment resultants are introduced as follows:

RZ
M = ————=M, (3.45)

4
\ allaZZD:i')ngz

LZ
My = —— M, (3.46)

4/ 3 N3
arn a22D11D22

RL
My = ———r M, (3.47)

4/ 3 N3
a11a22D11D22

Combining the moment equations shown in Egs. (3.42) and (3.43) with the defini-
tions of the nondimensional change of slope to the normal of the undeformed mid-
surface described in Egs. (3.12) and (3.13) and nondimensional moments from Eqgs. (3.45)
to (3.47) the following relations are obtained:

R? |Dy 0B D1, 0B

T e (3.48)
L=\ D2; 0z1 /D11 Dg; 022
R? |Dy, 0B D 0B

My = ——5\ | T - e — (3.49)
L#\ D2; 0z, /D11 D3 021

In these relations, two terms appear that can be expressed through the nondimen-
sional parameters a and vj, as introduced by Nemeth [125]. The parameter @, used in
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the in-plane relations, is already defined in Eq. (3.39) and the parameter v, is expressed

as:
Dy,

Vp = ——l (3.50)
v D11 D22

The nondimensional parameter, v, similarly to v, from Eq. (3.36), is called the flex-
ural Poisson ratio and relates the bending stiffness terms of the sandwich composite.

If the moment equation Eq. (3.44) and the expression of nondimensional moment
Eq. (3.47) are taken in combination with the definitions of the nondimensional change
of slope to the normal of the undeformed mid-surface described in Egs. (3.12) and (3.13),
the following relation is obtained:

D 0B, 0B
My =—4$(—2 —1) (3.51)
v D11D2o aZl 622
Manipulating this equation, it can be obtained that it is equivalent to:
1 (Di12+2D D 0B, 0B
My =~ | = ——= )(—2+—1) (3.52)
2\ VDD VDuD2)\0z1 0z

In this expression, two parameters can be extracted. On the one hand, the flexu-
ral Poisson ratio, v;, described in Eq. (3.50). On the other hand, the flexural orthotropy
parameter, 3, defined as:

_ D12 +2Dgg

(3.53)
vD11D22

B

The flexural orthotropy parameter § is analogous to the membrane orthotropy pa-
rameter p defined in Eq. (3.40). It describes the interaction between the terms of the
bending stiffness matrix and as such is highly dependent on the facesheet layup and
material properties. The dependence on the core thickness is low because it affects sim-
ilarly the terms on the numerator and denominator. This is particularly valuable to study
separately the influence of the thickness and the influence of the material properties.

If the nondimensional parameters are included in the moment expressions defined
in Egs. (3.48), (3.49) and (3.52) the result is:

ya ai Vp 0 Oﬁ
021
1 0B,
Mo | == VD — 0 -— 3.54
22 “i 9% (3.54)
- 0B, OB
A2 0 0 (P-v) | | 952, OB

2 0Z1 aZZ
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Finally, the transverse shear stress resultants Q and Q, can be expressed under the
current model assumptions as:

ow

Qx=Gyh (W - ﬁx) (3.55)
ow

Qy:Gyh(a—ﬁy) (3.56)

In the nondimensional form, following a similar procedure as with the force and mo-
ment resultants, the transverse shear force resultants 27; and 25, are defined as:

LR?
211 = ———0Qx (3.57)
\4/ allaZZD?l)ngz
L%R
Dp=———Q, (3.58)

4/ 3 3
a11a22D11D22

Combining the transverse shear force resultant definition Egs. (3.55) to (3.58) and
the slope components Egs. (3.12) and (3.13), the corresponding constitutive equations
for the transverse shear force resultants in nondimensional form are obtained:

G hR? oW

2= 2 (-
H VD11D;y 0z

By1) (3.59)

GyhL* oW

=——(——-B)) (3.60)
VD11D3; 0% 2

22

From this expressions, two clear terms emerge and thus two new nondimensional
parameters can be defined as:
GyhR?

Nn=———

vD11D2
GyhL?

X2 = —F——

vD11D2

(3.61)

(3.62)

The nondimensional parameters y; and y, were not part of the nondimensional-
ization proposed by Nemeth [125]. The objective of the two new nondimensional pa-
rameters is to represent the influence of the core shear properties with respect to the
sandwich bending stiffness and the geometry properties of the shell. The influence of
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these parameters will give an indication of the importance of the transverse shear in the
buckling loads of the shell.

Instead of considering y; and y» separately, a transverse ratio ¢ is defined:

Qzﬂ(ﬂ)z

oG \R (3.63)
1 X

(l):

This is a more convenient way of studying the problem since the properties of the
core G and Gy are not independent from each other and must be considered together.
The parameter ¢ also presents an advantage for cases with isotropic core materials,
where the transverse ratio ¢ depends only on the geometry of the shell, as G, = G,,.

With the inclusion of the y; and y» the transverse shear force resultants are:

ow
2u —[7“ 0] ou (3.64)
ng 0 (P)Cl ow ’
— -B
622

3.2.3. EQUILIBRIUM EQUATIONS
Assuming that the transverse normal stiffness of the sandwich shell is infinite, and con-

sidering the nondimensional formulation presented so far, the nondimensional equilib-
rium equations of forces and moments for a thin cylindrical shell are:

oM1 1 oM
+— =0

3.65
0z; a, 0z ( )
1 0N 0N
2 ) (3.66)
ap 6z1 622
02, 02 *w 2 ew *w
T M —— + = My + Mo | ——-V12Z|=0 (3.67)
0z1 0z azf ap 02102 Z%
oMy OM
9y = Ly 22 (3.68)
0Z1 6Z2
Moy OM
Dy = 22y 712 (3.69)
02 0z1

The first two equations of equilibrium, Egs. (3.65) and (3.66), are satisfied introduc-
ing the stress function F(z;,2z) defined as:
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0°F

M1 = - (3.70)
Gzz
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Nop = P (3.71)
Gzl

Mo _ 0*F 3.72)

a, 02102 )

If equilibrium equations as expressed via the stress function F in Egs. (3.70) to (3.72)
are substituted in the third equilibrium equation Eq. (3.67), it yields:

My 0P My O Mo

OZ% 021621 625
(3.73)
0*°F *W 0*°F o*W  *F (W
— - +—|—5-V12Z|=0
0z5 0z 02102 0210z, 022 | 022

If the moment expressions as defined in Eqs. (3.45) to (3.47) are introduced in Eq. (3.73),
ityields:

_azaf‘Bl_ B 10°B, _ °B
b azi’ Gzlazg a%} 6z§ 625622
0*F 0°W 0’F *W  6°F|[6*wW
__oF _IEIOW 13y
022 0z 0210z 02102z, 022 | 022

(3.74)

Finally, if the moment expressions Eq. (3.54) and the transverse force expressions Eq. (3.64)
are used in the moment equilibrium equations in Egs. (3.68) and (3.69), the following re-
lations are obtained:

B —a2@+l(ﬁ—v )@_1('34_1/) aZBZ - 6_W (3.75)
R F R R ¥ N A P P P '

By L L OB L OB OW (3.76)
BT ez T2t e T2 M anan M oa '

The nondimensional equilibrium equations are represented in Egs. (3.75) and (3.76)
with the nondimensional transverse shear parameters highlighted.
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3.2.4. COMPATIBILITY EQUATIONS

The compatibility equation restricts how the strains can vary over the shell so that a con-

tinuous displacement field could be found for the assumed strain field. The out of plane

displacement variation, w, in terms of the mid-surface strains eg, eg’, and y?cy is:

020 0% yﬂy:lyw+(ﬁwr 0% w 62w
0y  0x®? Odxy R 0x?

— | == 3.77

Introducing the nondimensional mid-surface strains as described in Egs. (3.21) to (3.23),
the derivatives of the nondimensional out-of-plane displacement as defined in the Eq. (3.6),
and the Batdorf-Stein parameter from Eq. (3.19), the Eq. (3.77) is converted into the fol-
lowing nondimensional compatibility equation.

PEY 32EY. 821 2 12 2W2 W 2W
11 2 12 _ \/ﬁza 0 0°Wa (3.78)

+ —_— —
2 2 2 2 2 2 2
0z5 0z; 02122 0z; R*\ 0z5 0z; 0z5

Introducing the constitutive equations Eq. (3.41) and the described stress function F
Egs. (3.70) to (3.72) the nondimensional compatibility equation becomes:

, 0*F 1 0'F a*'F *w 12 (Pw\® o*w Pw
(3.79)

o T vzl T -
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3.3. LINEARIZED BUCKLING EQUATIONS

HE linearized equations for the determination of the critical buckling load at the bi-

furcation point can be derived by the application of the adjacent equilibrium cri-
terion [100]. To investigate the existence of adjacent equilibrium configurations, it is
assumed that the following variables W, F, By and B, are given by:

W=W+W (3.80)

F=F+F (3.81)
By =B, +B (3.82)
By =B, + B, (3.83)

where W, F, B; and B, represent the prebuckling solutions along the fundamental path
and W, F, B; and B, represent small perturbations at buckling. Assuming the shell is
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sufficiently long, the prebuckling displacement W and the prebuckling slope B; and B,
are considered constant. This means that previous to the buckling event, both the out-
of-plane displacement and the slopes are independent of the spatial coordinates z; and
2.

The scope of this study is limited to shells under only axial compression to investi-
gate the influence of the transverse shear on the axial buckling load, P. However, the
nondimensionalisation until here can be utilized for other load cases. The equations are
to be solved for a value of the nondimensional buckling force. In the case of axial com-
pression, the nondimensional buckling force, %, expresses the buckling load P related
to the bending stiffness of the shell and the cylindrical shell radius:

R
F=-P——— (3.84)
2mv/D11 Dz

The prebuckling force component in the axial direction, N1, as defined in Eq. (3.70),
represents the nondimensional axial buckling force, %, as shown in Eq. (3.84). If only an
axial load is considered, and deeming the expression of the stress function as defined in
Egs. (3.71) and (3.72), the prebuckling force components N5, and A1, are equal to zero.

- 0°F
M=o =F (3.85)
0z;
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2 0z8  ap 02102 (3.86)

Combining all the presented derivations shown in Egs. (3.74) to (3.76), (3.79) to (3.83),
(3.85) and (3.86) the following linearized buckling equations are obtained:

B B 1 3B 3B 2w 0*F
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For simplicity, Egs. (3.89) and (3.90) can be also expressed as follows:

B _a_lzgazél_‘_i(ﬁ_v )@—i(ﬁ+v) 62B2 _ﬂ (3.91)
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Recalling that for simply supported boundary conditions: W = §>W/ 6zf =0atz =
[0, 1]; then these equations admit separable solutions of the form:

W = Asin(mnz;)sin(nz,) (3.93)
F = Bsin(mmnz;)sin(nz,) (3.94)
l§1 = Ccos(mmz;)sin(nzy) (3.95)
B, = Dsin(mmnz;) cos(nz,) (3.96)

The non-dimensional buckling load %, which is the desired solution of the derived
equations, is obtained by solving the eigenvalue problem. The value is found for the
combination of coefficients m and n that gives the lowest non-dimensional buckling
load value. These values represent the buckling mode of the shell. The value of m is
associated with the number of half-waves in the longitudinal direction, while the value
of n is the value associated with the number of waves in the circumferential direction. In
the case of an axisymmetric solution, the value of 7 is equal to 1.

To analyze the effect of the transverse shear, the equations without taking it into
account are also considered. In this case, the transverse shear strains, €y, €y, from
Egs. (3.10) and (3.11), or as defined in their nondimensional form I';3, I'23 in Egs. (3.17)
and (3.18), are negligible compared to other strain components and, therefore:

ow

By =— (3.97)
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By=— (3.98)
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This consideration simplifies some of the equations and reduces the number of vari-
ables to only the nondimensional out-of-plane displacement, W, and the nondimen-
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sional stress function, F. The constitutive equation Eq. (3.54) becomes:

M s 0 [ oW
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Therefore the equilibrium equation described in Eq. (3.73) becomes:
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The axial buckling load in this particular case is denotated as P, to differentiate it
with the complete formulation with transverse shear. The nondimensional buckling
force without transverse shear, %, is thus defined in analogous way as the buckling load
with transverse shear, %, seen in Egs. (3.84) and (3.85).

- 0°F R
M=—=F%F=—Py——— (3.101)
" 6Z§ 0 027[\/D11D22

The criterion is applied as described in Egs. (3.80) and (3.81), where W and F rep-
resent the prebuckling solutions along the fundamental path and, W and F, represent
small perturbations at buckling. Considering that the initial prebuckling displacement,
W, is constant, the linearized buckling equations in this case become:

oW o'W 10w 62
2
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These linearized equations were also described by Nemeth and Schultz [125] as the
linearized governing equations for laminate configurations. Assuming again simply sup-
ported boundary conditions (W = 2w/ sz =0 at z; = [0,1]), and separable solutions
defined in Eqgs. (3.93) and (3.94), an eigenvalue problem can be solved to determine
the nondimensional buckling load. The value is found for the combination of m and
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n coefficients that gives the lowest nondimensional buckling load value, %;. The values
of m and n describe the buckling mode of the shell, since they represent the number
halfwaves in the longitudinal direction and the waves in the circumferential direction
respectively.

Upon inspection of the linearized equations with and without transverse shear, the
influence of y; and y; is revealed as the main difference between them. In the case
where these nondimensional parameters have large values, Egs. (3.89) and (3.90) be-
come:

L 0w

B =27 (3.104)
0Z1

L 0w

By = — (3.105)
aZZ

The remaining governing equations Egs. (3.87) and (3.88) are as represented in Egs. (3.102)
and (3.103).

The values of y; and y2, as defined in Eqs. (3.61) and (3.62), represent the influence
of the transverse shear effects of the core. In the cases where the values of y; and y» are
large, it indicates that the core material is very stiff and thus the influence of the trans-
verse shear effects is negligible. In this case, the value of the nondimensional buckling
load, with & and without % transverse shear effects will be the same.

This nondimensional formulation of the shell can be amended to include imperfec-
tions. When the imperfections are included the eigenvalue solution described here is no
longer applicable.

3.4. DESIGN SPACE ANALYSIS VIA NONDIMENSIONAL PARAM -
ETERS

UILDING on the framework established in the previous section, and to demonstrate
how nondimensional parameters can enhance the understanding of sandwich com-
posite buckling behavior, various shell configurations are compared.

The goal is threefold. First, it highlights how cylindrical shells with different mate-
rials and dimensions can exhibit similar buckling behavior. Second, it shows how to
effectively navigate the design space of sandwich composite shells, identifying the pa-
rameters that have the greatest influence on the buckling response. And third, it exam-
ines cases where the inclusion of transverse shear is necessary, thus requiring the use of
the more complete formulation.
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The dimensions of the shells, the facesheet laminate, core thickness and modulus
are reported in Table 3.1. For all shell, the facesheets are made of the same carbon fiber
material, with the properties: Ex = 150GPa, Ey = 10GPa, Gy, = 6GPa, vy, = 0.3 and

ty = 0.131mm.
Table 3.1: Properties of the shells.

Properties Shell1 Shell2 Shell3 Shell4 Shell5 Shell6
Radius, R [mm] 400 1400 400 400 400 400
Length, L [mm] 800 2800 800 800 800 1600

Facesheet

+ + + + + +
laminate [o] (—45)5 (—45)32 (—45)3 (—45)5 (—45)3 (—45)5
Core thickness, , - 10 2.5 1 1 2.5
teore (mm]
Core shear
modulus, G 120 70 360 120 70 120
[MPa]

The nondimensional parameters a,,,&p, 4, B, Vp, Z, x1 and ¢ of the analyzed shells
are reported in Table 3.2 together with the obtained nondimensional force with trans-
verse shear &, without transverse shear %, and the ratio between them % / .

Table 3.2: Nondimensional parameters of the shells.

Parameter Shell1 Shell2 Shell3 Shell4 Shell5 Shell6
Am 0.5 0.5 0.5 0.5 0.5 0.25
ap 0.5 0.5 0.5 0.5 0.5 0.25

7 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
B 2.4 2.4 24 24 2.4 2.4
Vi 0.75 0.75 0.75 0.75 0.75 0.75
Z 50 50 50 100 100 50
X1 500 500 1500 970 570 500
0] 4 4 4 4 4 16
F 294 294 341 567 478 293
Fo 361 361 366 692 692 359
F 1S 0.81 0.81 0.93 0.82 0.69 0.81

To demonstrate how nondimensional results are applicable to different shells of dif-
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ferent scales, Shell 1 and Shell 2 are compared and their differences and similarities high-
lighted. Shell 2 is 3.5 times larger than Shell 1, and in both cases the length is double the
radius. The laminate of the facesheet of Shell 1 is (+45°); with 4 plies, whereas the lam-
inate of the facesheet in Shell 2 is (+45°), with 8 plies. The core material, isotropic in
both shells, is Rohacell 200 for Shell 1 and Rohacell 110 for Shell 2. The relevant differ-
ence between these materials is the shear moduli, G, as shown in Table 3.1. The thickness
of the core of the two shells is also different.

In spite of these shells being of different scales, the set of nondimensional parameters
that rule the nondimensional linearized equations is the same, as shown in Table 3.2. As
a result, both the nondimensional force with transverse shear and without transverse
shear are the same in both shells. Therefore, the ratio between both nondimensional
buckling forces & /%, = 0.81 is the same as well.

In order to examine how the change in the different parameters affects the relation
F 1%y and explain how to navigate the design space of sandwich composite shells with
the help of nondimensional parameters, another shell is considered, named Shell 3 as
described in Table 3.1. This shell has the same geometry, both radius and length, as Shell
1. The Shell 3 facesheets are made of the same carbon fiber material as the Shell 1, the
layup is also (£45°);, and the core thickness is also 2.5 mm. The only difference between
Shell 3 and Shell 1 is the type of core material, which in this case is Rohacell 300, which
is an isotropic foam G = 360 MPa that is stiffer than the foam used in Shell 1.

The set of nondimensional parameters for Shell 1 and Shell 3 is the same except for
the value of y;. In order to analyze the differences and study the trends, in Fig. 3.3 it is
shown how the transverse shear buckling load ratio, & /%, is influenced by the nondi-
mensional transverse shear y; for the sandwich shell with the Batdorf-Stein parameter
Z =50.

Fig. 3.3 and Table 3.2 indicate that as the nondimensional transverse shear parame-
ter y; increases, the difference between the buckling loads with and without accounting
for transverse shear becomes smaller. This suggests that higher values of y; improve the
accuracy of the buckling load prediction when transverse shear effects are not consid-
ered.

The curve in Fig. 3.3 is nonlinear and shows a steep increase for the values of y; under
500. For the values over 500, the curve increase is more gradual. In the range depicted
in Fig. 3.3, the curve also does not reach the value 1. This indicates that for this range
of sandwich cylindrical shells, the transverse shear effects are not entirely negligible, in-
ducing an error of at least 5% in the buckling load.

For the shells considered, as can be seen in Fig. 3.3, Shell 1 has a higher influence on
the transverse shear in the solution % /%, = 0.81, than Shell 3 % /%, = 0.93. This is due
to the fact that a stiffer core leads to a decrease in the influence of the transverse shear
strains with respect to the rest of the strain components.
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Figure 3.3: Effect of core shear parameter y; on the transverse shear buckling load ratio & /% for Z = 50,
where the numbers in black are the shell numbers.

Shell 4 is now considered, where the geometry and facesheet laminate properties are
the same as Shell 1 as seen Table 3.1. Regarding the core, Shell 4 has the same material as
Shell 1 G = 120M Pa, but the thickness of the core is reduced to only 1mm. This case is a
limit case because it goes close to infringing one of the assumptions of the methodology
described in Section 3.1, that is, the core must be much thicker than the facesheet. In
this case, the core is still double the thickness of the facesheet, so it is assumed that the
method is still valid. Most nondimensional parameters remain the same as shown in Ta-
ble 3.2, except the transverse shear parameter y; = 970 and the Batdorf-Stein parameter
Z =100.

Fig. 3.4 shows for a sandwich shell with Batdorf-Stein parameters Z = 50 and Z =
100 how the transverse shear buckling load ratio is influenced by the nondimensional
transverse shear y;. This is important because a variation in the shell that produces a
change in the value of Z (i.e. core thickness) also produces a change in the value of y;.
A change in core thickness from 2.5 mm for Shell 1 to 1 mm in Shell 4 changes both
parameters y; and Z such that the influence is not easy to discern. In this particular
scenario, the change in thickness does not produce a significant change in the influence
of the transverse shear, going from % /%, = 0.81 for Shell 1 to & /%, = 0.82 for Shell 4.

Although the difference in the influence of the transverse shear remains similar, the
buckling response of Shell 1 and Shell 4 is very different, as noted in the values of the
nondimensional buckling load ranging from % = 294 in Shell 1 to & = 567 in Shell 4.
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Figure 3.4: Effect of core shear parameter y; on the transverse shear buckling load ratio & /% for Z = 50 and
Z =100, where the numbers in black are the shell numbers.

Therefore the ratio & /% is only an indication of the relevance of the transverse shear
and not of the overall buckling response.

In Fig. 3.4, the influence of the transverse shear is higher for higher values of Z, which
is a representative ratio of the radius versus the thickness. To observe this effect, Shell
5 is defined. The geometry and facesheet laminate properties of Shell 5 are the same as
Shell 1 as seen in Table 3.1. Shell 5 has a core of a less stiff material G = 70MPa than
Shell 1, and the thickness is reduced to only 1mm. Most nondimensional parameters
remain the same, as shown in Table 3.2, except the Batdorf-Stein parameter Z = 100 and
the transverse shear parameter y; = 570.

A higher value of Z with a similar value of y;, will have a more pronounced influence
on the transverse shear. For instance, the Shell 5 ratio is & / %y = 0.69, considerably lower
than the Shell 1 ratio & /%, = 0.82.

Another interesting observation can be made by analysing the difference between
Shell 4 and Shell 5. Both shells have the same core thickness, and therefore the value
of the nondimensional buckling load without transverse shear is the same: %y = 692.
However, when calculating the nondimensional buckling load including the transverse
shear, for Shell 4 it is &# = 567 (18% lower than %;) and for Shell 5 it is & = 478 (31%
lower than %,). This is a significant disparity, especially given that the shell cores are
composed of a similar material (isotropic foam), differing only in their shear modulus
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properties. This speaks to the higher influence of the shear parameters for higher values
of Batdorf-Stein parameters Z.

Finally, in order to study the influence of the length, Shell 6 is considered. Shell 6
has the same radius, facesheet laminate, core material and core thickness as Shell 1.
However, the length of Shell 6 (L = 1600 mm) is double the length of Shell 1 (L = 800
mm). Therefore, Shell 1 and Shell 6 have different weighted geometry parameters a,,
aj and different transverse ratio ¢. In order to study the effect of these parameters, it
is plotted the transverse shear buckling load ratio, %/ % versus the weighted geometry
parameters (&, @) for the sandwich shells with shear ratios ¢ = 0.5, ¢ =2, ¢ =4 and
¢ =161in Fig. 3.5.
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Figure 3.5: Effect of weighted geometry parameters (@, ap) on the transverse shear buckling load ratio
(FI1Fy) forp=0.5,¢=1,¢p =2, ¢p=4and ¢ = 16, where the numbers in black are the shell numbers.

If the same facesheet properties are kept, since the facesheet layup is (+45°);, the
variation of @, and a, is dependent only on the variation of geometry ratio (L/R). Fig. 3.5
shows that low values of @, and aj, in combination with low values of ¢ can produce
a big change in the transverse shear buckling load ratio, &% /%,. However, the change
between Shell 1 and Shell 6 is not significant enough to change either the buckling be-
havior or the influence of the transverse shear % /%, = 0.82. For shells with moderate
length with respect to the radius, the influence of a,,, @}, and ¢ does not play a signifi-
cantrole.
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3.5. FINITE ELEMENT VERIFICATION

N order to verify the results and trends, for the shells described in Table 3.1 the buck-

ling loads are compared with numerical results. The goal is to check the results ob-
tained in Section 3.4, and analyze if the assumptions of the formulation hold even in the
limit cases.

These numerical results are determined using the commercial general-purpose fi-
nite element code Abaqus, where a linear buckling analysis is performed. Since the con-
sidered sandwich cylindrical shells are assumed to be thin shells with thin cores, S4R
reduced-integration four-noded shell elements are used in the finite element analysis.
The models use elements of approximately 10mm x 10mm for Shell 1, 3, 4, 5 and 6 and
30mm x 30mm for Shell 2. Since the analytical equations are proposed considering sim-
ply supported conditions, simply supported conditions are used as well in the numerical
analysis.

The results are reported in Table 3.3. The analytical load, Py is calculated using
the formula in Eq. (3.101), and the analytical load, P is calculated using the formula
in Eq. (3.84). The difference between the analytical load (P) and the numerical value
(Pyum) is also included in the table.

Table 3.3: Buckling load of the shells.

Results Shelll Shell2 Shell3 Shell4 Shell5 Shell6
Analytical load, Py 4707 675 328 328 653
[kN]
Analyticalload, P | 3826 630 269 227 533
[kN]
Numerical load
’ 551 3881 631 290 265 551

Analytical-numerical

difference [%) -3.02 -1.40 -0.18 -7.17 -14.26  -3.16

The numerical results show reasonable agreement(< 5%) with the analytical formu-
lation for Shell 1, Shell 2, Shell 3 and Shell 6. For Shell 4, which is considered a limit
case, results show a higher difference (—7.17%) between the analytical and the numeri-
cal result. The case is a limit case because the thickness of the core is comparable to the
thickness of the facesheets. The assumption that the transverse shear is only carried by
the core is no longer true. In this case, the transverse shear properties of the facesheets
should also be taken into account and therefore the Cheung and Tennyson shear model
used here [123] is no longer applicable.

A large discrepancy can also be seen in Shell 5. For Shell 5, which has the same
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thickness (1mm) but a less stiff core material as Shell 4, results show that the analyt-
ical formulation overestimates the influence of the transverse shear by —14.26%. This
indicates that the reduction of the buckling load due to the transverse shear is signifi-
cant (Pyym,m/ Py = 0.81) but not as high as predicted (P/Py = 0.69). This result reinforces
the need to limit the application of the methodology to cases where the core thickness is
significantly larger than the facesheets as established in the definition of the methodol-

ogy.

Aside of the numerical buckling values, it is interesting to compare the buckling
modes of the out-of-plane displacement w. The first comparison is between Shell 1
and Shell 2 which, as indicated, are shells of different scales, with different facesheet
layup, core thickness and material. However, the nondimensional parameters that rule
the buckling phenomena are the same and thus they have the same nondimensional
buckling load (). The dimensional loads are different, as seen in Table 3.3, but they
share the same eigenmode shape as seen in Fig. 3.6. The figure shows the first eigen-
mode shape for the out-of-plane displacement w.

Shell 1 Shell 2

Figure 3.6: Comparison of the first buckling mode of Shell 1 and Shell 2.

Regarding the comparison between shells of the same geometry (radius and length)
it can be observed that they all have axisymmetric shape in Fig. 3.7. This is consistent
with the eigenvalue solution obtained analytically as indicated in Eq. (3.93). Fig. 3.7 also
shows the out-of plane displacement (w) for the first eigenmode. Each solution has a
different number of half-waves: 11 for Shell 1, 10 for Shell 3, 14 for Shell 4 and 16 for
Shell 5.
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Figure 3.7: Comparison of the first buckling mode of Shell 1, Shell 3, Shell 4 and Shell 5.

Finally, the buckling shapes of Shell 1 and Shell 6, for which the buckling load (P) as
well as the buckling nondimensional load (&) are very similar, are compared in Fig. 3.8.
The buckling shape is axisymmetric in both cases but the number of half-waves is 11 for
Shell 1 and 21 for Shell 2.

& =
— R

Shell 1 Shell 6

Figure 3.8: Comparison of the first buckling mode of Shell 1 and Shell 6.

3.6. CONCLUSIONS

His chapter presents the development of nondimensional equations for axial buck-

ling of sandwich composite cylindrical shells with and without a shear deformable
core. A systematic nondimensionalization is applied from the coordinates of the shell
up to the linearized buckling equations. The equations offer the advantage to present a
similar format as their dimensional counterparts making their use more intuitive.

A solution for the nondimensional bucklingload is derived from the linearized nondi-
mensional equations. The nondimensional buckling load is an effective parameter to
compare the buckling phenomena for different types of shells of different scale. The
nondimensional buckling load & obtained considering the core transverse shear is com-
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pared to the nondimensional buckling load %, obtained neglecting the core transverse
shear.

Using the nondimensional parameters, it is possible to navigate the design space of
different shells and to investigate the impact of changes in the properties of the shells
towards the buckling response. More specifically, the focus is on the reduction of the
buckling load due to the influence of the core transverse shear effects and the relation
between the load and other factors of the shells. The transverse shear buckling load ratio
F | % represents this influence.

The study shows that the Batdorf-Stein parameter Z and the nondimensional trans-
verse shear parameter y; influence the transverse shear buckling load ratio % /% the
most. Shells with a stiffer core material, represented with a higher nondimensional
transverse shear parameter y1, are less influenced by the core transverse shear. For the
same value of y1, thinner shells, as represented by a higher Batdorf-Stein parameter Z,
exhibit a higher transverse shear influence.

The study also investigates the influence of the shear modulus ratio ¢ and the weighted
geometry nondimensional parameters «,;,, aj; on the transverse shear buckling load ra-
tio &/ %. For the applications considered (shells of moderate length with respect to the
radius), the influence of these parameters is small.

Overall, the analysis and results can be used to design sandwich composite cylindri-
cal shells. However, these results are only valid for the perfect shell case. Accounting for
the imperfection will be introduced in the next chapter.



IMPERFECTIONS IN THE
NONDIMENSIONAL BUCKLING
FORMULATION

No tengas miedo de la perfeccién,
nunca la alcanzards.

Salvador Dali

The goal of this chapter is to extend the nondimensionalization formulation devel-
oped in Chapter 3 to include shells with imperfections. As outlined in Chapter 2, imper-
fections can be modeled in a variety of ways. In this nondimensionalization, a trigono-
metric function is used, similar to the approach taken by Schultz et al. [126]. The trigono-
metric function approach is particularly useful when the position and magnitude of im-
perfections are unknown. Additionally, the trigonometric function approach allows for
imperfections to be accounted for efficiently, as the function provides a global descrip-
tion of the imperfection pattern.

In this case, to solve the nondimensional equations including a trigonometric im-
perfection signature, the use of the eigenvalue problem as described in Chapter 3 is not
possible. A homogeneous partial differential equation with constant coefficients is pro-
duced, where the solution is dependent on the imperfection amplitude. By using the

51
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amplitude of the imperfection as a parameter, a set of solutions can be found that de-
scribe how the shells behave at different levels of imperfection. These solutions, along
with the nondimensional parameters, can then be used to find the buckling load of the
shell at different scales.

4.1. MODELING OF IMPERFECTIONS

HE nondimensional formulation of the cylindrical shell described in Chapter 3 can

be amended to include imperfections. In order to do so, first it must be considered
that the normalized coordinates, as shown in Figs. 3.1 and 3.2, are defined for0 < z; < 1,
0<zy<2mand -1/2<z3<1/2.

The shell reference surface is defined by z3 = 0, and therefore the nondimensional
components of the displacement of the reference shell surface are U(zy,z2), V(z1,22)
and W(z, z2), where z; and z; are the coordinates for the reference surface. These sur-
face displacements are measured with respect to a geometrically perfect, idealized ref-
erence surface. This displacement function is normalized with the following expression,
analogous to the normalization of the W component of the displacement in Eq. (3.6):

1

W= ———
4
vai az D11 D2

where w; denotes the dimensional expression of surface displacements.

The imperfections in the cylindrical shell geometry are often introduced by devia-
tions in the shell’s reference surface, denoted as Wj(z;, z2), which represent the out-of-
plane displacements. These imperfections can originate from various manufacturing
defects, material inconsistencies, or loading-induced deformations, and are generally
superimposed on the idealized reference geometry. To account for these imperfections
in the nondimensional formulation, a perturbation method is often employed, where
the displacement field of the imperfect shell is expressed as a sum of the displacement
field of the perfect shell and a perturbation term that represents the imperfections.

Mathematically, this can be represented as:

Wiotal (21, 22) = W (z1, 22) + Wi(z1, 22) (4.2)

where Wiqtq is the total displacement field, W is the displacement field for the perfect
shell, and W;(z;, z») is the perturbation due to imperfections. It assumed that W;(z;, zp) <<
W (z1, z2), because these imperfections are typically small. The magnitude and pattern
of the imperfection field W; can be derived from experimental data or assumed based
on common manufacturing tolerances.
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4.2. EQUILIBRIUM AND COMPATIBILITY EQUATIONS

0 analyze the response of a shell with relatively small initial imperfections, measured
T with respect to this idealized shell reference, an imperfection function Wy is intro-
duced. When the shell is unloaded and free of stress and strain, this imperfection func-
tion is a distribution of small deviations in the z3 direction that are always perpendicular
to the tangent of the reference surface.

Once the axial load is applied, the nondimensional normal displacement is given by
the equation presented in Eq. (4.2). The nondimensional shell normal displacement is
the sum of two components: W, which describes the response to an axially loaded shell,
and Wj, which is a measure of the magnitude of initial imperfections on the shell. If
this normal displacement is applied to the strain displacement-relations from Eqgs. (3.21)
to (3.23), the strain-displacement relations can be updated to:

g0 90U 1(0W)2+(6W)(6W1) 43)
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Once the new strain displacement relations are defined, then the equilibrium equa-
tions, defined in Egs. (3.74) to (3.76), are updated as follows:
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Similarly the nondimensional compatibility equations from Eq. (3.79) becomes:
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4.3. NONLINEAR DEFORMATIONS OF IMPERFECT CYLINDRICAL
SHELLS

N order to solve this new set of nonlinear equations Eqs. (4.6) to (4.9), a radial dis-
I placement approximation is taken. The slopes of the median surfaces B; and B, are
also defined as a functional representation that meets the simply supported boundary
conditions.

W =wo+unsinrnmjzy)sin(nrzy) (4.10)
By =blog+blicos2nmyzi)sin(nyz,) (4.11)
By = b2g+ b21sin(2nmyzy)cos(n;zp) (4.12)

where wy and w,; are the unknown radial displacement amplitudes, and b1y, bl,,
b2y, and b2, are the unknown median surface slope amplitudes. These unknown ampli-
tudes will have to be calculated in order to describe the shell displacements.

The compatibility equation Eq. (4.9) is a nonhomogeneous partial differential equa-
tion with constant coefficients in terms of the stress function F and can be expressed as
follows:

0*F(z1,22) 1 0*F(z1,2) 0*F(z1,22)

2 ) ) y

a;, ———— + — = H(z1,22) 4.13

"ozt az, 0z 0220z5 b @13
where H(z1, z) is a function that is dependent on the solution of W and the imposed

imperfection.

A simple trigonometric function that is dependent on the buckling shape of the per-
fect shell and an amplitude parameter is chosen as the imperfection function. This func-
tion is presented in Eq. (4.10).

Wr=wrsin(2nmyzy)sin(nyzy) (4.14)

where w; represents the nondimensional amplitude of the imperfection, m; is associ-
ated with the number of halfwaves in the longitudinal direction, and »; is the value as-
sociated with the number of waves in the circumferential direction.
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Regarding the stress function F, it was already described in Egs. (3.70) to (3.72) and
the solution takes the form of:
F=Fy+F, (4.15)

The particular solution (F) is found using the method of undetermined coefficients in
terms of the unknown radial displacement amplitudes: wy and w; from Eq. (4.10).

The homogeneous solution (Fj) to equation Eq. (4.13) is constructed with the fol-
lowing form:
Fp=k12 + ko2 (4.16)

where the coefficients k; and k; are such that they satisfy the boundary conditions
and are related to the stresses in the axial and circumferential directions.

The first boundary condition that must be met is that the nondimensional force .47,
is equal to the applied nondimensional force at z; = 0 and z; = 1. This condition is
assumed to be true in an integrated matter of the coordinate z, from 0 to 27. Therefore,
taking Eq. (3.70) and integrating for z, from 0 to 27, the k; coefficient can be defined as
follows:

_ g:applied

o (4.17)

k1

were Fappiied iS the nondimensional axial load applied to the cylinder.

The second boundary condition relates to the circumferential displacement. This
boundary condition establishes that for z; = 0 and z; = 1, the value of the circumferential
displacement must be zero, as both edges have simply supported conditions. In order
to calculate it, first, the Eq. (4.4) is used to express the derivative of the circumferential
displacement (0V/0z,) in terms of the W and E

)% 0%F 0*°F 1(0W\*> ow aw,
—_—’Vm—z—\/EZW+a3na—2—E( ) ———I (418)
Z.

0zz "0z 0z1) 0z 0z

The circumferential displacement V is found by integrating Eq. (4.18) with respect to
the z, coordinate. From this equation, the coefficient k, is determined in terms of w0
and wl.

Once the function F has been defined, applying the Galerkin method to the equi-
librium equations Eqgs. (4.6) to (4.8), 6 arithmetic equations can be obtained with 6 un-
knowns: w0, wl, blg, bly, b2y and b2;.

Finally, the nondimensional axial displacement can be calculated by rearranging Eq. (4.3)
as:
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021

This equation (Eq. (4.19)) can be integrated to obtain the displacement U as a func-
tion of z,. For comparison purposes, this study uses the shortening A which is the av-
erage nondimensional displacement obtained integrating U from 0 to 27. The dimen-
sional form of the shortening ¢ is calculated in the same way in Eq. (4.20):

L
A= —oo————§ (4.20)
vaiazp D11 Dy

A complete solution path is obtained by solving A for monotonically increasing val-
ues of the load & p;eq Over the desired loading range. Eventually, a further increase of
the load in the solution path can’t be sustained and the cylinder must buckle to acquire a
stable equilibrium configuration. This is the load where buckling of the cylindrical shell
with imperfection occurs, denoted from now on as %;. This value is lower than the value
of linear buckling load (%) calculated in Eq. (3.84). This linear buckling load includes
the transverse shear effects described in Chapter 3.

To describe this relation, the imperfection sensitivity (IS) is defined as the load of the
shell with imperfections(%;) divided by the load of the shell without imperfections ().
Since the nondimensionalisation of these two variable is analogous, the IS can also ex-
press the ratio between the buckling load of the imperfect shell P; (kN) and the buckling
load of the perfect shell P (kN), as seen in Eq. (4.21).

=211 @.21)

The load path of the solution is dependent on the value of the imperfection ampli-
tude wj (Eq. (4.10), which can be introduced to study different imperfection amplitudes.

4.4. INFLUENCE OF NONDIMENSIONAL PARAMETERS IN THE
IMPERFECTION SENSITIVITY OF CYLINDRICAL SHELLS

o illustrate the results derived from the presented nondimensional imperfection for-

mulation, the shells from Section 3.4 are compared. The comparison is used to show
how different shells are influenced by different imperfection amplitude values as well as
to evaluate the influence of the nondimensional parameters presented in Chapter 3.
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Due to the nondimensional nature of the parameter, the imperfection amplitude wy
produces different values of dimensionsional imperfection amplitude, wy for each shell.
This is shown in Table 4.1. Although the expression for wj, shown in Eq. (4.1)), includes
other parameters, it is mainly dominated by the shell thickness. Shell 1, Shell 3 and Shell
6 have similar shell thicknesses, and thus the imperfection amplitude is similar. Similar
phenomena happens for Shell 4 and Shell 5. Shell 2 is much larger than the rest and
therefore it has a larger imperfection amplitude.

Table 4.1: Imperfection amplitude w;[mm] for the different shells.

Shell 1 Shell 2 Shell 3 Shell 4 Shell 5 Shell 6

wr=0.1 0.23mm 0.79mm 0.22mm 0.12mm 0.12mm 0.23mm
wr=0.2 0.45mm 1.59mm 0.44mm 0.23mm 0.23mm 0.45mm
wr=0.3 0.68mm 2.38mm 0.66mm 0.35mm 0.35mm 0.68mm

wr=0.4 0.91lmm 3.17mm 0.88mm 0.47mm 0.47mm 0.91mm

For the six different shells the load imperfection sensitivity (IS) can be seen in the
following figure (Fig. 4.1) for different values of imperfection amplitude w;.
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Imperfection Amplitude, w,
Figure 4.1: Imperfection Sensitivity with respect to imperfection amplitude wy.

Shell 1 and Shell 2 share all the nondimensional parameters, and this translates to
the imperfection sensitivity. This means that for the same level of nondimensional im-
perfection amplitude (wy), the imperfection sensitivity (IS) is the same. Both shells also
have the same nondimensional load (%;) vs. shortening curve (A) that can be seen in
Fig. 4.2.
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Figure 4.2: Nondimensional load (;) against the nondimensional shortening (A) for Shell 1 and Shell 2.

This demonstrates that nondimensional results are applicable to different shells of
different scales. Since Shell 2 is much larger than Shell 1, the critical load and maximum
shortening are also much larger in the dimensional form. This can be seen in Table 4.2.

Table 4.2: Load and shortening for Shell 1 and Shell 2.

Shell 1 Shell 2
Ir;lfflﬁiizn Load, P; [kN] Shor[:relﬁ?g’ % Load, P; [kN] Shor[flﬁ?g’ 0
w; =0.1 447.8 2.9 3166.4 24.6
wy=0.2 396.5 25 2810.6 23.7
wy =03 356.7 23 2514.8 23.0
wy =0.4 321.0 2.1 2264.7 22.2
w; =05 287.4 1.8 2037.9 215

Aside of Shell 1 and Shell 2, it can be seen in Fig. 4.1 that the different shells respond
differently to the same imperfection amplitude (w;). This can also been seen clearly in
their respective load-shortening curves shown in Fig. 4.3. However, it is hard to elucidate
from these figures which parameters drive the change in the imperfection sensitivity
(IS), so a step by step approach must be taken.

First, a comparison between Shell 1 and Shell 3 is made. The main difference be-
tween those two shells is the y; parameter, due to change in the core material. The rest
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Figure 4.3: Nondimensional load (%) against the nondimensional shortening (A) for Shell 3, Shell 4, Shell 5,

and Shell 6.
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of the set of nondimensional parameters for Shell 1 and Shell 3 is the same. In Fig. 4.4,
the influence of the nondimensional transverse shear y; on the imperfection sensitivity
IS is illustrated for a sandwich shell with the Batdorf-Stein parameter Z = 50 to ana-
lyze the differences and study the trends. The figure includes the values for five different
imperfection amplitudes w; = 0.1, w; =0.2, w; =0.3, w; =0.4 and w; =0.5
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Figure 4.4: Effect of core shear parameter (1) on the Imperfection Sensitivity (%;/%) for Z = 50.

The curve in Fig. 4.4 is not linear. There is a sharp increase in the value of IS under
X1 < 500, then the curve stabilizes and converges to a value depending on the level of
imperfection amplitude. This indicates that for a shell with high values of y; the im-
portance of this parameter is reduced. This is aligned with the conclusion in Chapter 2,
where it was demonstrated that the influence of the transverse shear parameters is rel-
evant for low y; values. A lower transverse shear parameter is linked to a less stiff core,
which lowers the critical buckling load both in the case of the shell with and without
imperfections.

For the shells considered, as can be seen in Fig. 4.4, the difference due to the change
is small and, as already established, dependent on the imperfection amplitude. For in-
stance, for an imperfection amplitude of w; = 0.1, the difference in the imperfection sen-
sitivity between Shell 1 and 3 is of 3% and for an imperfection amplitude of w; = 0.5 the
difference is of 12%. For subsequent analysis, just the imperfection amplitude w; = 0.5
is shown to better spot trends.

Then, to study the influence of both the transverse shear parameter y; and the Batdorf-
Stein parameter Z, Shell 4 and Shell 5 are considered. These two parameters respond to
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changes in the core material and the core thickness. For Shell 4, the thickness of the core
is much smaller than in Shell 1. This directly influences a change in the transverse shear
parameter y; and the Batdorf-Stein parameter Z. Shell 5 has the same thickness as Shell
4 as well as a much less stiff core material, which reduces the value of y;.

In order to analyze the differences and study the trends, Fig. 4.5 shows, for a sandwich
shell with Batdorf-Stein parameters Z = 50 and Z = 100,the imperfection sensitivity IS =
;1 F with respect to the nondimensional transverse shear y;.
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Figure 4.5: Effect of core shear parameter (y1) on the Imperfection Sensitivity (%;/%) for Z =50 and Z =100
with imperfection amplitude w; = 0.5.

It can be seen that an increase in the Batdorf-Stein parameter for the same value of
the transverse shear parameter yi, reduces the imperfection sensitivity value (IS). This
means that the shell is more sensitive to imperfections for higher Batdorf-Stein param-
eters. A clearer way to expose this result is depicted in Fig. 4.6. The Imperfection Sensi-
tivity (IS) is displayed versus the Batdorf-Stein parameter Z for the following transverse
shear parameter values: y; =500, y; = 1000, and y; = 1500.

In Fig. 4.6, the importance of Z parameter is highlighted. Although the relationship
in non-linear and dependent on the transverse shear value as well as the imperfection
sensitivity, there is a significant reduction of the IS value for higher values of Z, indicating
that slender shells are more influenced by the imperfections. This conclusion is aligned
with the available literature [124, 127].

For the shells considered, as can be seen in Figs. 4.5 and 4.6, there is some significant
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Figure 4.6: Effect of the Batdorf Stein parameter (Z) on the Imperfection Sensitivity (%; /%) for
x1=500,x1 = 1000, and y; = 1500 with imperfection amplitude w; = 0.5.

differences in their imperfection amplitude. For instance, for an imperfection amplitude
of wy = 0.5, between Shell 1 and Shell 5 the difference is of 24%, whereas between Shell 1
and Shell 5 the difference is of only 3%. This is due to two factors, that compound on each
other. First, Shell 4 and Shell 5 are more slender compared to Shell 1, which increases
their sensitivity to imperfection. And second, Shell 5 has a core material with very low
stiffness which in turn also increases the imperfection sensitivity. The results also prove
that for sandwich shells, the transverse shear effects must be taken into account in order
to have accurate results. The Batdorf-Stein parameter Z is insufficient to explain the
variation between shells.

Then, the other parameters, namely the a,, and aj, are considered. These parame-
ters, if only a facesheet with an orthotropic facesheet layup ( (£45),) is considered, act as
a geometry ratio parameters, which is turn highlights the importance of the stiffness.

In order to study the influence of the geometry ratio, Shell 6 is considered. Shell 1 and
Shell 6 have different weighted geometry parameters (a,,, ap) and different transverse
ratio (¢) because the length of Shell 6 (L = 1600 mm) is double the length of Shell 1
(L = 800 mm). To examine the impact of these factors, the IS is displayed against the
weighted geometric parameters for the sandwich shells with shear ratios ¢ = 1, ¢ = 2,
¢=4,and ¢ =16in Fig. 4.7.
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Fig. 4.7 shows that low values of a,, and a}, (<0.2), in combination with low values of
¢ < 4 can produce alarge variation, between 15-25%, in the imperfection sensitivity. This
is an unrealistic scenario for most shells considered since the length needs to be much
larger than the radius, which makes Euler buckling more likely than shell buckling. In
this particular example, the change between Shell 1 and Shell 6 is very small. For shells
with orthotropic facesheet layup (£45°); with moderate length with respect to the radius,
the influence of a,;, a and ¢ does not play a significant role.

Finally, the influence of the facesheet lay-up needs to be considered. In theory, this
is best done using the nondimensional parameters i and 3, who represent the in-plane
and out-of-plane stiffness of the shell. However, a change on the facesheet lay-up di-
rectly affects all the rest of the nondimensional parameters, so these two parameters
cannot be studied in isolation. For this reason, a specific lay-up is considered: (+8)s,
and the rest of the parameters are the same as in Shell 1. The angle 0 is varied from 0° to
90° and the variation on the nondimensional parameters p and § as well as the imper-
fection sensitivity for each Shell is reported in Fig. 4.8.

Fig. 4.8 illustrates that the fluctuation of the angle 8 has a little impact on the imper-
fection sensitivity of the shell, contingent upon the imperfection amplitude. In general,
the highest value of IS is found for shells closer to 0°. The difference between the shells
with 45° is from 4% for the lowest imperfection amplitude up to 16% for the highest im-
perfection amplitude. The values close to 90° are not as high as the values at 0°. The
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difference ranges between 2% up to 6%.

Finally, it must be pointed out that the similar imperfection sensitivity does not sig-
nify similar buckling response. In fact, as can be seen in Fig. 4.9, the buckling loads
for the shells with the same imperfection amplitudes are also impacted up to 40% by
changes in the 6 angle, and therefore by the change in the p and § parameters.

It can be seen in both the nondimensional buckling load graph of Fig. 4.9a and the
buckling load graph of Fig. 4.9b, that the highest buckling load happens when the values
of p and B are the closest in value. The larger difference between those two parameters
produces a lower buckling load. This is also consistent with the available literature [125].
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4.5, CONCLUSIONS

HE derivation of nondimensional equations for axial buckling of sandwich com-
T posite cylindrical shells including a trigonometric imperfection is discussed in this
chapter. A systematic nondimensionalization is applied because nondimensional im-
perfection parameters are useful for comparing buckling phenomena for various shell
types and scales.

A solution for the nondimensional buckling load is derived from the equilibrium and
compatibility equations including an initial geometric imperfection. This model uses
the bifurcation buckling modes of the shell without imperfections as initial geometric
imperfections. The limit buckling load &%; for each imperfection amplitude w; occurs
when the shell cannot support more load. The Imperfection Sensitivity (IS) is defined as
the ratio between &%; and &.

Using the nondimensional parameters, it is possible to navigate the design space of
different shells and to investigate the impact of changes in the properties of the shells to-
wards imperfection sensitivity. The study shows that the nondimensional imperfection
amplitude wj plays the largest role in the solution.

The study also shows that the Batdorf-Stein parameter Z and the nondimensional
transverse shear parameter y; play a large role as well in the imperfection sensitivity
Z;1Z. Shells with a stiffer core material, represented with a higher nondimensional
transverse shear parameter y, are less sensitive to imperfections. For the same value of
%1, shells with a higher Batdorf-Stein parameter Z, present a higher sensitivity to imper-
fections.

The study also investigates the influence of the geometry of the shell via the weighted
geometry parameters on the imperfection sensitivity. In the examples examined, the
impact of these parameters in the imperfection sensitivity is minimal in moderately long
shells with relation to the radius.

Finally, the influence of the in-plane and out-of-plane stiffness of the facesheets is
considered. These factors are best represented by the nondimensional parameters
and B. However, altering these parameters only had a minor impact on imperfection
sensitivity.

Overall, the analysis and results can be used to design sandwich composite cylindri-
cal shells as well as to account for an initial imperfection factor in the scaling methodol-
ogy developed in the following chapter.



SCALING METHODOLOGY

Entonces fue cuando empecé a darme cuenta
de que se aguantan mucho mejor

las contrariedades grandes

que las pequerias nimiedades de cada dia

Carmen Laforet

An analytical scaling methodology for compression-loaded sandwich composite cylin-
drical shells is presented is this chapter. This scaling methodology is based on the nondi-
mensionalization of the buckling equations presented in Chapters 3 and 4. The goal of
this methodology is to provide a tool to facilitate the study of the buckling behavior of
large shell structures via reduced-scale shell structures.

The appeal of developing a systematic analysis-based scaling methodology stems
from the drawbacks of performing multiple full-scale tests. Testing is expensive, not only
due to the high number of tests required but also due to the large scale of the structures
considered. An analysis-based methodology would allow for the rapid formulation of
scaled-down structures suitable for smaller laboratories. The analytical, numerical, and
experimental results of these scaled-down structures can then be used in the design of
large-scale structures, thereby reducing the number of large-scale tests.

The difficulty in developing such an analysis-based methodology lies in the high de-

Parts of this chapter have been published in AIAA Journal 1-10, 107393 (2020) [128].
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pendency of test results on geometry variations and the shell’s imperfection signature. A
successful methodology requires accurate modeling of the phenomena, the selection of
appropriate scaling laws, and the investigation of feasibility areas. The approach taken
in this chapter makes use of a nondimensional formulation of the equations, where the
components of the equations become the scaling laws.

The use of nondimensional governing equations requires comprehensive nondimen-
sional formulations to describe the problem, such as the one developed by Nemeth
[125]. These equations offer the advantage of having a similar format to their dimen-
sional counterparts, making their use more intuitive. A systematic nondimensionaliza-
tion is applied from the coordinates of the shell up to the buckling equations of the sand-
wich composite cylindrical shell [120]. Two particular challenges in the modeling are the
inclusion of transverse shear effects in the sandwich core which were discussed in Chap-
ter 3 and the inclusion of imperfections in the shell which were discussed in Chapter 4.

Once the nondimensional governing equations are developed, this methodology takes
advantage of the fact that shells of different sizes can share the same set of nondimen-
sional parameters. Therefore, as shown in detail in Chapters 3 and 4, the buckling load,
the influence of transverse shear on the buckling load, and the influence of imperfec-
tions can be observed and studied through this set of parameters.

For this reason, the nondimensional parameters are used as metrics to describe sim-
ilarity. If different cylindrical shells have identical nondimensional parameters, their
nondimensional buckling responses must also be identical. Therefore, the goal is to de-
velop a methodology to design scaled configurations with nondimensional parameters
that match as closely as possible the nondimensional parameters of the baseline config-
urations.

The innovative aspect of this methodology is that the parameters are decoupled, al-
lowing each parameter to be calculated in a specific order. The potential of this ap-
proach is very high, but finding an exact match of all nondimensional parameters can
be challenging. Manufacturing and material constraints can limit the applicability of
the results. Feasibility areas must be defined depending on the structures that need to
be scaled. These structures will be discussed in detail in the following section.

5.1. BASELINE STRUCTURES

OR the purposes of demonstrating the scaling methodology, several baseline struc-

tures, shown in Table 5.1), will be analyzed. These baseline structures were con-
sidered during the Shell Buckling Knock-Down Factor program [129]. In particular, they
were considered in the part of the program dealing with large sandwich composite struc-
tures [92].

The main properties of these baseline designs are described in Table 5.1. All baseline
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structures have the same radius of 1.2 m [47 in] and length of 2.3 m [91 in]. All baseline
structures are made of carbon fiber facesheets, and the core is made of aluminum hon-
eycomb. More details regarding the materials can be found in the technical reports of
each baseline structure [9, 10, 16, 130].

Table 5.1: Baseline Structures Properties.

Parameter Baseline 1 Baseline 2 Baseline 3 Baseline 4

Facesheet /o 0/g01, (46070, [+30/90], [+30/90/0]
lay-up

Ply Thickness 0.145 0.180 0.137 0.137

[mm] [0.0057 in] [0.0071 in] [0.0054 in] [0.0054 in]
Core

thickness 6.35 [0.25 in] 5.08 [0.20 in] 5.08 [0.20 in] 7.62 [0.30 in]
(mm]
Total

Thickness 8.38 [0.33in] 7.24 [0.28 in] 6.45 [0.25 in] 9.82 [0.39 in]
(mm]

Table 5.2: Baseline Structures Nondimensional Parameters, Z is highlighted due to its importance.

Parameter Baseline 1 Baseline 2 Baseline 3 Baseline 4

am 0.56 0.52 0.58 0.59

ap 0.56 0.52 0.58 0.59

u 0.75 1.00 0.64 1.59

B 1.17 1.00 1.25 0.78

VA 87.9 106.7 111.0 77.6

X1 2039.6 2167.3 3959.3 1467.9

X2 3403.7 3616.8 6607.3 2449.8

These designs were chosen because they have nondimensional parameters within
the range of real-scale launch vehicle structures. For instance, for the real-scale launch
vehicle structures, the values of Z are estimated to be between 65 and 120. A selection
of suitable structures from this range was chosen. The nondimensional parameters that
correspond to these baseline structures are shown in Table 5.2. It can be seen that the
values of Z fall within the estimated values of the structures of the real-scale launch
vehicle.

The test article cited as CTA8.1 in the Schultz et al. report [16] corresponds with the
first design, Baseline 1. The tested design included some manufacturing and load intro-
duction details. The shell had a six-ply padup, and aluminum end rings were mounted
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to the shell to allow integration with the test setup. Moreover, the specimen underwent
several repairs to address some flaws discovered during the non-destructive evaluation.
The other structures are Baseline 2, which corresponds to the test article CTA8.2 [10],
Baseline 3, which corresponds to the test article CTA8.3 [9] and Baseline 4, which corre-
sponds to test article CTA8.4 [130]; all with similar design of load introduction details.

5.2. SCALING STRATEGIES

D URING this PhD research, two different scaling strategies were developed. Both use
asimilar method, but each is suitable for a different case and has its own advantages
and disadvantages. The two scaling methods are presented in Fig. 5.1.

BASELINE Scaling Strategy 1 R It(s)
/

L®

o SCALED

Facesheet
Deformable Core /

Scaling Strategy 2

Figure 5.1: Sketch of the two different scaling strategies.

The first strategy scales from a baseline sandwich structure to a scaled sandwich
structure. This method is constrained by the manufacturing limits in the thickness of the
core of the scaled structure. Depending on the size of the baseline structure, the scaled
structure can produce thickness values that are not feasible. Furthermore, as shown in
Chapter 3, the transverse shear parameter (y;) decreases substantially for lower thick-
ness values. In some scale cases, it is not feasible to replicate this parameter with existing
materials. These reasons amount to a manufacturing challenge where, even if a scaled
structure is possible in theory, it cannot be produced.
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The second strategy scales from a baseline sandwich structure to a monolithic lam-
inate structure. This strategy avoids the manufacturing problems described for the pre-
vious strategy, but has the issue of obtaining the desired thickness with a specific layout.
The main challenge in this case is to compare the two different types of structures. It is
particularly challenging to compare imperfection levels.

5.2.1. SCALING STRATEGY 1

I N Scaling strategy 1 (as shown in Fig. 5.1), the cylindrical structure that needs to be
scaled, called the baseline configuration, is a cylindrical sandwich composite shell
with carbon fiber facesheets and an aluminum honeycomb core. The result of the struc-
tural scaling, referred to as the scaled configuration, is also a cylindrical sandwich com-
posite shell. The scaled cylindrical shell may have different material properties for both
the facesheets and the core. The full Scaling strategy outline is depicted in Fig. 5.2 and
will be described step by step in this section.

In this study, for the composite laminate facesheets in a scaled configuration, two
families of stacking sequences are considered. The methodology is amenable to other
families of stacking sequences.

 Family I: A symmetric balanced laminate [0/ — 0]

e Family II: An unsymmetric balanced three-ply laminate [#/0/ — 0]

In both families, the ply stacking sequence is a function of only the variable 8. This
is done to reduce the number of parameters involved in the methodology. Note that
although the second stacking sequence family is an unsymmetric laminate, when used
for the facesheets in the sandwich cylinder, the resulting full sandwich shell is symmetric
about the midsurface. The equations considered treat the entire sandwich structure as a
balanced and symmetric laminate, neglecting bend-twist anisotropy effects.

For the purposes of these analyses, the Rohacell WF foams [131] were considered as
core materials. Other materials such as balsa wood could also be considered for the
core if higher shear stiffness is required. Rohacell WF foams were developed for the
aerospace industry and are based on polymethacrylimide (PMI) chemistry. Rohacell WF
foams have an isotropic nature, meaning they exhibit uniform mechanical properties in
all directions. This means that the parameter ¢ described in Eq. (3.63) depends only on
the geometry of the shell, as G, = Gy.

These foams enable highly efficient manufacturing processes, as they allow the pro-
duction of sandwich components in a single co-curing step, and they are compatible
with autoclave and vacuum infusion processes. In addition to the processing advan-
tages, the closed-cell structure of the foam ensures that resin remains only at the core-
face sheet interface, preventing excess resin from adding unnecessary weight. For these
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SCALING STRATEGY I
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Figure 5.2: Diagram of Scaling Strategy 1.
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reasons, the Rohacell WF foams are a good choice for applying the scaling methodology
to the baseline structures discussed in Table 5.1.

The scaling methodology is based on the nondimensional form of the buckling equa-
tions defined in Chapter 3. The buckling response is formulated by the six nondimen-
sional parameters: y, 8, @, @p, Z, and y; and the scaling laws are the nondimensional
parameters in these equations.

The first pair of parameters considered in the scaling methodology are the mem-
brane orthotropy parameter, u, from Eq. (3.40), and the flexural orthotropy parameter,
B, from Eq. (3.53). These two parameters relate the in-plane compliance matrix and the
bending stiffness matrix parameters, and are independent of geometry. They are a func-
tion of the material properties, the ply stacking sequence, and the core thickness.

For the two families of stacking sequences defined, the parameters ¢ and f only de-
pend strongly on the ply angle 6. This is because p and f are not highly sensitive to
changes in the core and facesheet thickness. This insensitivity is due to the fact that ﬂ
thickness contributes to the numerator and denominator in similar ways in both Eq. (3.40)
and Eq. (3.53), and the high in-plane stiffness of the facesheets compared to typical core
materials makes the influence of the core stiffness negligible.

3y

2 \ Family I: (6/-6)s TN
— 15 /.a...;l,a 6/ es\ — fe=25mm
- J \ S N SN te =5mm
SR
.......... t, = 10 mm
Or\

'0 \% i f '0 -t =20 mm

15 30 45 60 75 90 : 15 30 45 60 75 90
0[] o[

Figure 5.3: Variation of p and 8 with respect to 6 for Family I.

This phenomenon can be seen in Fig. 5.3, where the values of the parameters y and
B are obtained as a function of the angle 8 for the Family I stacking sequence [0/ — 6]
for different core thicknesses. Here, it can be seen that the variation of the values of u
with the thickness of the core is less than 10% for all ply angles. The maximum difference
occurs near the 0 and 90-degree ply angles. For §, there are no differences in the values
for the different core thicknesses.

A similar distribution of the parameters ¢ and f as a function of the angle 8 for the
Family II stacking sequence for different core thicknesses is shown in Fig. 5.4. In this
case, up to 15% can be found close to 0°. Again, for the parameter 3, there is no difference
in the values for the different core thicknesses.

From the curves in Figs. 5.3 and 5.4, it can be seen that for most values of y and S,
there are two possible angles that produce equivalent membrane and flexural orthotropy
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Figure 5.4: Variation of ¢ and § with respect to 6 for Family II.

parameters, and therefore two possible configurations for the scaled cylindrical shells.

— Scaled 1.1.1.1
Family |
[6/-8];

— Scaled 1.1.1.2

Baseline 1 —— Scaling Strategy 1

— Scaled 1.1.11.1
Family Il
[6/0/-6]

— Scaled 1.1.11.2

Figure 5.5: Labeling scheme for the scaled configurations in Scaling strategy 1.

Therefore, in most cases, there will be two possible solutions for scaled configura-
tions. Thus, the naming convention that will be used is that the two configurations ob-
tained from Baseline 1 via Scaling strategy 1 will be referred to as Scaled 1.1.1.1 and Scaled
1.1.1.2 for the first family [8/ — 0] and Scaled 1.1.11.1 and Scaled 1.1.11.2 for the second
family [6/0/ —0]. This labeling scheme, shown in more detail in Fig. 5.5, can be extended
to as many baseline configurations as desired. It can also be extended to other facesheet
stacking sequence families.

After the ply angle for each stacking sequence has been defined, the next parameters
to be evaluated are a,,; (Eq. (3.35)) and a, (Eq. (3.39)). Both parameters are a function of
the ratio R/L, the ply angle (6), and the thickness of the core (z.).

The ply angle 8 has already been determined, and it can be demonstrated that the
influence of the thickness of the core is also negligible for these two parameters. This
is attributed to the fact that thickness contributes to the numerator and denominator
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in similar ways in both Eq. (3.35) and Eq. (3.39). Moreover, the values of a,, and a;, are
equal for low thickness values. The values of «,, have more variation with respect to the
thickness and will require reiteration at the end of the process to obtain an exact match.
This phenomenon can be seen in Fig. 5.6, where the values of the parameters a,, and a;,
are obtained as a function of the geometry ratio R/ L for different thicknesses of the core.

1 / 1 /
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Figure 5.6: Variation of a;; and aj, with respect to to R/ L for Family I and Family II.

Based on these trends and pending a final iteration, the thickness of the core is set
aside in this step. As aresult, it is considered that for a given facesheet stacking sequence,
the relationships between the parameters a,,, and a, and R/ L are linear. This means that
for each value of the a,, and aj parameters, a single solution can be found for R/L.

Extremes in the value of the ratio R/L can raise concerns about the validity of the
equations used. If the cylinder is relatively long, with a low R/L ratio, the dominant
structural phenomenon could be global bending instead of axial buckling. If the cylin-
der is relatively short, with a high R/L ratio, the influence of the boundary conditions
can change the buckling response and the imperfection sensitivity. To stay within the
assumptions described in Chapter 3 and Chapter 4, the values of R/L are fixed to be
between 0.2 and 0.6.

As described in Fig. 5.5, each family produces two solutions for the angle 8. One
solution is closer to 0°, making it more axially stiff, and the second one is closer to 90
degrees, making it more circumferentially stiff. Given that the parameters «,, and ay, are
also a ratio between the axial and circumferential stiffness (see Egs. (3.35) and (3.39)),
the first scaled solution will produce a lower R/L than the second scaled solution. This
phenomenon can be seen in Fig. 5.7. It can also be inferred from the equations that a
more axially stiff configuration will produce higher values of critical buckling load, even
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if the nondimensional buckling load is the same in both configurations.

Since the scaled solutions from Family II have a middle ply with 0 degrees orienta-
tion, by definition, they will be more axially stiff than the scaled solution from Family I.
Therefore, as seen in Fig. 5.7, they will tend to have a lower R/L. This trend is particularly
noticeable in the scaled configurations with high values of 6.

1.2

1t
0.8}

T
<06
S

0.4

0.2

08
~ 0.6}
§}
04
0.2 T RIL=06

0 ; 0

15 30 45 60 75 90 15 30 45 60 75 90
0[] e[

Figure 5.7: Variation of a,;, and a}, with respect to 0 for different values of R/ L for fixed core thickness f; = 2.5.

The next parameter to evaluate is the Batdorf-Stein Z (Eq. (3.19)), which is a function
of radius, axial and circumferential membrane compliances, and bending stiffness. This
parameter represents the ratio between radius and equivalent thickness. Given that the
facesheet stacking sequence and R/L for the scaled configurations have been selected,
the baseline value of Z can be maintained in the scaled configurations with the right
combination of radius, R, and core thickness, ..

From the formulation of the Batdorf-Stein parameter Z in Eq. (3.19), a linear cor-
relation between Z and the radius is observed. As shown in Fig. 5.8, Z also exhibits a
particularly pronounced sensitivity to core thickness. These findings highlight the sig-
nificant influence of core thickness on the behavior of the Z parameter.

It is important to note that Rohacell 200WF foam, an isotropic material with a shear
modulus of G = 120 MPa, was selected as the material for the core in this particular il-
lustration (Fig. 5.8). However, as seen in the Fig. 5.9, the effect of the core material on
the Batdorf-Stein parameters is virtually negligible. These observed patterns are con-
sistent with the findings discussed in Chapter 3, highlighting the predominance of core
thickness over core material with regard to the Z parameter.
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Figure 5.8: Variation of Z with respect to the core thickness for different values of shell radius with Rohacell
200WF as core material.
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Figure 5.9: Variation of Z with respect to the radius for different foam core materials (R = 400 mm).

As previously discussed, the nondimensional buckling load is extremely sensitive to
changes in Z, and therefore, achieving good agreement for this parameter is paramount
to establish a reliable scaling strategy. The linear relationship between Z and the radius,
along with its strong dependency on core thickness, emphasizes the need for accurate
characterization and control of these factors in this methodology. This precision is es-
sential to ensure that the scaling strategy effectively captures the critical buckling behav-
ior, enabling us to extrapolate meaningful results for various structures and conditions.

However, it is important to note that the two main parameters that can be modified,
namely the radius and the core thickness, are often subject to limitations imposed by
manufacturing and laboratory constraints. These constraints may include practical lim-
itations on the range of sizes that can be produced or tested, as well as restrictions related
to available materials and equipment. A sensitivity analysis of these parameters is dis-
cussed in Section 5.3, as they are integral to determining the feasibility and applicability
of the scaling approach in real-world engineering contexts.

The final parameter to evaluate is the transverse shear parameter: y;, which is a func-
tion of radius, axial and circumferential membrane compliances, and bending stiffness.

Given that the facesheet stacking sequence and R/L for the scaled configurations
have been selected, as well as the radius and core thickness, the baseline value of y;
could be maintained with the appropriate core material. Of course, this is less straight-
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forward than the other choices because, the core material has multiple variable coupled
together.
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Figure 5.10: Variation of y; with respect to the core thickness for different foam core materials (R=400mm).

It is important to note that the y; parameter, like the Z parameter, has a strong in-
fluence of the radius and core thickness. However, the trends are quite distinct. It is
observed in Fig. 5.11 that the value of y; varies with the changes in the radius.
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Figure 5.11: Variation of y; with respect to the thickness for a core material Rohacell 200WF for different
values of core thickness.

It can also be observed, that, unlike the Z parameter, y; parameter does have a
strong dependence in the core material, specially of the shear modulus. This phenom-
ena can be seen in Fig. 5.10, where material with a higher shear modulus (Rohacell
300WE G=360 MPa) will have much higher values of y;, than a material with a lower
shear modulus (Rohacell 71WE G=34 MPa). This phenomena can be utilized to achieve
reasonable agreement with the value of the baseline structure, without modifying the
obtained core thickness and radius from parameter Z. Reevaluating the core material at
this late stage allows for a better agreement in all non-dimensional parameters without
compromising the value of Z.

The process outlined can be summarized in Fig. 5.2, where the values of the facesheet
angle, length, core thickness and core material are set up. All the configurations that
correspond to the baseline structures described in Table 5.1 are presented in Appendix A.

To discuss the quality of the scaling, the scaled structures of Baseline 1 are also pre-
sented in Table 5.3. These scaled structures correspond to the closest match of param-
eters in each of the scaling steps. However, matching exactly all the parameters is not
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possible. It is particularly hard to match exactly the value of y;, because the suitable
materials are not available at a required precise transverse shear value.

Table 5.3: Scaled Structures Properties for the Scaling Strategy 1 of Baseline 1.
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Table 5.4: Buckling Response.

Nondimensional Buckling Load

Shell Buckling Load [-] (kN] m [ nl
Baseline 1 565 4706 10 1
Scaled 1.1.1.1 556 730 11 1
Scaled 1.1.1.2 543 713 11 1
Scaled 1.1.1L.1 567 586 10 1
Scaled 1.1.11.2 551 786 11 1

A way to visualize the error is shown in Fig. 5.12, where the nondimensional param-
eters involved in the scaling methodology are plotted, along with the final nondimen-
sional load. The graph represents the relative error of each nondimensional parameter
of the scaled structures with respect to Baseline 1, as detailed in Table 5.2. From the
graph, it is evident that structure 1.1.I1.1 offers the best overall match, including a low
6% discrepancy in y, resulting in the smallest error in the final nondimensional buck-
ling load, & (less than 1%). This suggests that 1.1.11.1 is a strong candidate for scaled
testing.

However, this choice must be weighed against manufacturing constraints. For in-
stance, structure 1.1.1I.1 requires a core thickness of 2 mm using Rohacell 300WF foam.
The typical thickness tolerance for this material is +0.2 mm, representing a 10% varia-
tion. Due to the linear dependency of Z on the thickness, this variation could have a
substantial influence on the actual buckling load in the manufactured specimen. Nev-
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ertheless, this limitation is shared by all the configurations under consideration, as they
all use the same material and have similar core thicknesses (1.8-1.9 mm).

The observed error values for p and f stem from their strong sensitivity to the pre-
cise angle used, as shown in Fig. 5.3. In particular, these parameters change rapidly in the
ranges between 0-30° and 60-90°, making them especially susceptible to small angular
deviations. On the contrary, for ranges between 30-60°, the error is very small as testi-
fied by 1.1.I1.2. Also in this case manufacturing considerations play a role, as producing
structures with angles defined to decimal precision is impractical.

Another interesting observation is that although a better match of y; typically im-
proves scaling accuracy, the nondimensional buckling load & can still be closely ap-
proximated if other parameters, especially Z, are accurately scaled.

Nondimensional Parameters

10%
5%
0%

-5%

-10%
-15%
-20%
-25%
-30%

Error

B1.1.0.1 81.1.1.2 81.1.I1LL1 &1.1.11.2

Figure 5.12: Error in the Nondimensional Parameters between Baseline 1 and the Scaled Structures with
Scaling Strategy 1.

When comparing the Baseline 1 and the Scaled 1.1.11.1 more closely, we can see that
not only the nondimensional buckling load is matched but also the buckling pattern
(m,n). The dimensional and nondimensional buckling values for the structures depicted
in Fig. 5.12 are reported in the Table 5.4.
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5.2.2. SCALING STRATEGY 2

N the Scaling strategy 2, as shown in Fig. 5.1, the cylindrical structure that needs to be
I scaled (the baseline configuration) is still a cylindrical sandwich composite shell with
carbon fiber facesheets and an aluminum honeycomb core. However, unlike Scaling
strategy 1, the result of structural scaling (scaled configuration) is not a cylindrical sand-
wich composite shell. In this case, the scaled configuration is a composite laminate. The
material of this composite laminate may be different from the material of the composite
laminate that conforms to the facesheets of the baseline configuration. The full strategy
outline is depicted in Fig. 5.13 and will be described step by step in this section.

For the scaled cylindrical composite shell, a large number of different stacking se-
quences are possible. For the purpose of this study, six families of stacking sequences
are considered for the facesheets. Again like in the Scaling strategy 1, the methodology is
amenable to other families of stacking sequences. All stacking sequences are a function
of only two variables: the ply angle 8 and the number of repetitions r. These facesheet
stacking sequence families are:

* Family I: A unsymmetric laminate with 2r layers ([8/ —01)

Family II: A unsymmetric laminate with 3r layers ([6/0/ —01),

Family III: A symmetric laminate with 4r layers ([6/ —01),
* Family IV: A symmetric laminate with 5r layers ([6/ —0/90]5),
* Family V: A symmetric laminate with 61 layers ([6/0/ —01]5),

* Family VI: A symmetric laminate with 7r layers ([6/0/ —6/90])

Note that in this case, unlike in the Scaling strategy 1, in order to be able to compare
the sandwich shell from the baseline shell and composite laminate from the scaled shell,
the buckling equations: Eq. (3.102) and Eq. (3.103)) are formulated under the assump-
tions that transverse-shear deformations can be neglected. The considered equations
also neglect the bend-twist anisotropy effects. In particular, as shown in detail in Chap-
ter 3, neglecting transverse-shear deformations may not be universally valid. This as-
sumption will limit the effectiveness of the scaling and thus must be closely monitored.

The buckling response in this strategy is formulated with the five nondimensional
parameters: y, B, @, ap, and Z. The transverse deformation parameter y; is not in-
cluded here because the scaled structure does not include a core material. The nondi-
mensional parameters are used as the metrics to describe similarity, and, as in the previ-
ous strategy, the nondimensional buckling responses of different cylinders with identical
nondimensional parameters should be identical.
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SCALING STRATEGY II
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Figure 5.13: Diagram of Scaling Strategy 2.
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Similarly to Section 5.2.1, the first pair of parameters considered in the scaling method-
ology are the membrane orthotropy parameter, y, from Eq. (3.40), and the flexural or-
thotropy parameter, §, from Eq. (3.53). The two parameters relate the in-plane com-
pliance matrix and the bending stiffness matrix parameters, and in this case, they are
a function of the material properties and the ply stacking sequence. Therefore, given a
specific facesheet material, the membrane and the flexural orthrotopy parameter can be
established by the angle value 6 and the number of repetitions r.

From the curves in Figs. 5.14 to 5.19, it can be seen that there’s no variation of the
orthotropy parameter p on the number of repetitions.

On the other hand there is a substantial variation of the orthotropy parameter § de-
pending on the number of repetitions for some families. In particular, Family II (Fig. 5.15),
Family IV (Fig. 5.17), Family V (Fig. 5.18) and Family VI (Fig. 5.19) show some variability,
while Family I (Fig. 5.14) and Family III (Fig. 5.16) don't.

The influence of the number of repetitions is quite high for a low number of repeti-
tions (low laminate thickness). Therefore it is recommended to start the scaling process
assuming a number of repetitions equal to 3 and iterate later if necessary. By assuming
that the number of repetitions is equal to 3 or higher, the influence of the facesheet repe-
titions can be considered negligible for all the considered patterns, and thus establishing
that the driving parameter is the angle 6.
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Figure 5.14: Variation of p and f with respect to 6 for Family I.
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Figure 5.15: Variation of i and  with respect to 6 for Family II.
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Figure 5.19: Variation of ¢ and § with respect to 6 for Family VI.
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Examining the distinctions among families facilitates an understanding of their dif-
ferences and clarifies the contexts in which certain families are more appropriate for
specific purposes. For example, Family I and Family III exhibit a perfectly symmetri-
cal curve, while the other families display a slight inclination towards either the 0 or 90
direction, contingent upon the values incorporated in the stacking sequence.

From the curves in Figs. 5.14 to 5.19, the angles required for each family to maintain
the baseline values of p and f are obtained. For the laminate families considered, there
are two possible angles that produce equivalent membrane and flexural orthotropy pa-
rameters, and therefore two possible configurations for the scaled cylindrical shells.

Therefore, in most cases, there will be two possible solutions for scaled configura-
tions. In this case, a similar labeling scheme to that defined in Scaling strategy 1 shown
in Fig. 5.5 will be used. For instance, the scaled models from Baseline 1 will range from
Scaled 1.2.1.1 to Scaled 1.2.VI.2. The labeling scheme can be seen in the Fig. 5.20.

—| Scaled 1.2.1.1
Family | |
([8/=6Dx
— Scaled 1.2.1.2
—| Scaled 1.2.11.1
Family Il
([6/0/—6])
— Scaled 1.2.11.2
—| Scaled 1.2.11l.1
Family Il
([6/—6]s)x
— Scaled 1.2.111.2
Baseline 1 = Scaling Strategy 2 |~
— Scaled 1.2.IV.1
|| Famiylv ||
([6/-6/90]5);
— Scaled 1.2.IV.2
—| Scaled 1.2.V.1
Family V
([8/0/—019)x
| Scaled 1.2.V.2
—| Scaled 1.2.VI.1
|| Familyvi ||
([6/0/-86/90]5),
— Scaled 1.2.VI.2

Figure 5.20: Labelling scheme for the scaled configurations in the Strategy 2.

After the ply angle for each stacking sequence has been defined, the next parameters



86 5. SCALING METHODOLOGY

to be evaluated are a,, (Eq. (3.35)) and a, (Eq. (3.39)). Both parameters are a function of
the ratio (R/L), the ply angle (0) and the number of repetitions (r) .

Given that the ply angle 0 has been established, it can be proven that the impact
of the pattern repetition is also negligible for these two parameters. This is attributed
to the fact that the pattern repetition (r) contributes to numerator and denominator in
similar ways in both Eq. (3.35) and Eq. (3.39), a similar phenomenon already observed
for in Scaling strategy 1 with the thickness. Thus, pending a final iteration, the pattern
repetition is set aside in this step.

As aresult, it is considered that for a given facesheet stacking sequence, the relation-
ships between the parameters a,, and aj and R/L are linear. This means that for each
value of the @, and aj parameters, a single solution can be found for R/ L.

This can be observed in Figs. 5.21 to 5.26 where the values of the parameters «,, and
ayp are obtained as a function of the geometry ratio R/L for Family I, for different ply
angles 0.

Family-I:-( mily-1:-(6/-6);

15 30 45 60 75 90 15 30 45 60 75 90
o] 0[]

Figure 5.21: Variation of a;, and aj, with respect to 6 for Family L.

Family 1:-(8

- Famiy i (@/o/-g), — Rb=02

—-— RIL=06

15 30 45 60 75 90 15 30 45 60 75 90
or] or]

Figure 5.22: Variation of a;;, and aj, with respect to 6 for Family II.

The final parameter to evaluate is the Batdorf-Stein Z (Eq. (3.19) ) which is a function
of radius, axial and circumferential membrane compliances, and bending stiffness. This
parameters represents the ratio between Radius and equivalent thickness. Given that
the facesheet stacking sequence and R/L for the scaled configurations have been down
selected, the baseline value of Z can be maintained in the scaled configurations with the
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Figure 5.23: Variation of a;;, and aj, with respect to 6 for Family III.
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Figure 5.25: Variation of @, and aj, with respect to 8 for Family V.
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Figure 5.26: Variation of @, and aj, with respect to 6 for Family VI.
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right combination of radius, R, and facesheet repetition, r.

The observations shown in Figs. 5.27 to 5.29 reveal a linear correlation between the
Z parameter and the radius, with a particularly pronounced sensitivity to the repetition
parameters, especially evident at lower values. These findings demonstrate the signifi-
cant impact of repetition parameter on the Z parameter.
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Figure 5.27: Variation of Z with respect to the radius for Families I-11 for 6 = 30°.
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Figure 5.28: Variation of Z with respect to the radius for Families ITI-IV for 6 = 30°.
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Figure 5.29: Variation of Z with respect to the radius for Families V-VI for 6 = 30°.

The process outlined can be summarized in Fig. 5.13, where the values of the facesheet
angle, number of lay-up repetitions and length are set up. The configurations for Scal-
ing strategy 2 that correspond to the baseline structures described in Table 5.1 are also
presented in Appendix A.
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However, to discuss the quality of the scaling, the scaled structures of Baseline 1 are
isolated in this case and shown in Table 5.5. These scaled structures correspond to the
closest match of parameters in each of the scaling steps.

The first observation that can be made is that some of the scaled structures are iden-
tical. The scaled structures from Family II and Family V are the same due to the even
number of repetitions in Family II. The same happens with the scaled configurations of
Family I and Family III. This even repetition results in no distinction between the two
families, leading to the same properties for both and, logically, the same buckling re-
sponse.

Table 5.5: Scaled structures properties for the Scaling Strategy 2 of Baseline 1.

Shell Facesheet lay-up thiTc(lltIEltss Iﬁrlllrg;]h I?oicdkl[ﬁ\?]
(mm]
Scaled 1.2.1.1 A7/ -17)12 4.21 1267 2214
Scaled 1.2.1.2 73/ =73)12 4.21 387 2210
Scaled 1.2.11.1 (23/0/ —23)g 4.21 1229 2278
Scaled 1.2.11.2 (56/0/ —56)g 4.21 733 3431
Scaled 1.2.11I.1 ([17/-171)s 4.21 1267 2214
Scaled 1.2.111.2 ([73/ =736 4.21 387 2210
Scaled 1.2.1V.1 ([28/ —28/9015)5 4.38 811 3666
Scaled 1.2.1V.2 ([70/ —70/90]5)5 4.38 392 2441
Scaled 1.2.V.1 ([23/0/ —23]5)4 4.21 1229 2278
Scaled 1.2.V.2 ([56/0/ —56]5)4 4.21 733 3431
Scaled 1.2.VI.1 (140/0/ —40/9015)4 491 808 4566
Scaled 1.2.VI.2 ([47/0/ —47/90]5)4 491 744 4681

One of the drawbacks of this methodology is that the number of repetitions (r), un-
like the core thickness of the Scaling strategy 1, is an integer, and therefore an exact
match of the Batdorf-Stein parameter is not possible for all families. For instance, for
Family VI which is the family with the highest number of plies, the error for Z, as seen
in Fig. 5.30, is 13%, which is larger than for other families. Choosing the right family for
each baseline structure will be an essential part of the process.

The error of all the nondimensional parameters included in this scaling strategy is
shown in Fig. 5.30. The graph represents the difference between the value of the base-
line nondimensional parameter of each scaled structure with respect to the values of
Baseline 1 as reported in Table 5.2.
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Another interesting detail is that even in cases where the error in all parameters is
under 4%, such as Scaled Structures 1.2.1I1.1 and 1.2.111.2, the nondimensional buckling
load error is larger, approximately 9%. This difference is built in the assumptions of the
second scaling strategy that tries to replicate the buckling response of sandwich com-
posite laminate.

Nondimensional Parameters
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-5%

Error

-10%

-15%

mi2IL1al2I2el2Iviel 2 v
g12v.l gl2vzal2VvLlel.2VIi2

Figure 5.30: Error in the Nondimensional Parameters between Baseline 3 and the Scaled Structures with
Scaling Strategy 2.

For Baseline 1 where y; = 2000 and Z = 90, as show in Chapter 3, the difference be-
tween the buckling load including or not including the transverse shear effects is already
8%. This built-in discrepancy must be accounted for when selecting the right scaling
strategy.

When comparing Baseline 1 and the Scaled Structures more closely, another im-
portant thing to consider in the buckling pattern (m,n). The nondimensional and di-
mensional buckling load values as well as the buckling pattern are reported in Table 5.6.
Overall it seems that this second scaling strategy, even accounting for the implicit error
of neglecting the transverse shear effects, also produces reasonable results that would be
able to replicate the buckling response of the Baseline structure.
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Table 5.6: Buckling Response

Nondimensional Buckling Load

Shell Buckling Load [-] (KN] - nll

Baseline 1 565 4706 10 1
Scaled 1.2.11L.1 616 2214 10 1
Scaled 1.2.I11.2 615 2210 10 1
Scaled 1.2.IV.1 596 3666 10 1
Scaled 1.2.IV.2 592 2441 10 1
Scaled 1.2.V.1 612 2278 10 1
Scaled 1.2.V.2 612 3431 10 1
Scaled 1.2.VIL.1 529 4566 9 1
Scaled 1.2.V1.2 528 4681 9 1

5.3. SENSITIVITY STUDY OF THE GEOMETRICAL PARAMETERS

ACH scaling approach has advantages and disadvantages. For the most part, it would

be ideal to use the first methodology, since the scaled and baseline structures have a
similar construction. However, this is not always possible. For instance, available labora-
tory testing equipment constrains radius (R) values, and the minimum manufacturable
core thickness constrains the lower bound for this variable (¢.¢;e).

For this reason, it is important to assess how robust are the structures produced with
the different methodologies to parameter variations. Thus, the sensitivity of the different
input parameters into the nondimensional parameters is discussed in the section. As de-
scribed, each of the scaling strategies can generate multiple design options. These scaled
designs also provide a range of options to choose from. Each of these design options of-
fers a variety of advantages and drawbacks, depending on the specific application. The
user must select the design option that best suits their needs, taking into account the
manufacturing constraints, the size of the available laboratory facilities and the required
scaling accuracy.

There are four parameters that were considered in the sensitivity analysis of Scaling
strategy 1: ply thickness, core thickness, radius and length. For the scaled configurations
reported in Table 5.3, the nominal ply thickness used is 0.175 mm, as reported by the
manufacturer. For the ply angle, in the scaled configurations reported, the closest integer
was chosen for determining the ply angle. The shell radius, fixed to a nominal value of
R =400 mm for the reported configurations in Table 5.3. Finally, for the shell length, in
the scaled configurations reported, the closest integer was chosen.
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For these four factors, the sensitivity analysis is shown in Fig. 5.31. As anticipated,
the core thickness and the radius have an large importance in the quality of the scaling.

Error in Nondimensional Load
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Figure 5.31: Sensitivity to geometrical parameters for Scaled 1.1.11.1 in the Buckling Nondimensional Load.

On the other hand, there are only three parameters that were considered in the sen-
sitivity analysis of Scaling strategy 1: ply thickness, core thickness, radius and length.
For the scaled configurations reported, the nominal ply thickness used is 0.175 mm, as
reported by the manufacturer. For the ply angle, in the scaled configurations reported,
the closest integer was chosen for determining the ply angle. The shell radius, fixed to a
nominal value of R=400mm for the reported configurations. Finally, for the shell length,
in the scaled configurations reported, the closest integer was chosen.

For these three factors, the sensitivity analysis is shown in Fig. 5.32. Since the nomi-
nal case here has an already much larger error in the Nondimensional Load, this is com-
pounded with the importance of the ply thickness, the length and the radius.
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Figure 5.32: Sensitivity to geometrical parameters for Scaled 1.2.V.1 in the Buckling Nondimensional Load.
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5.4. CONCLUSIONS

HIS chapter presents an analytical scaling methodology designed to study the buck-

ling behavior of large, compression-loaded sandwich composite cylindrical shells.
This approach is based on the nondimensionalization of buckling equations presented
in Chapters 3 and 4.

The baseline structures analyzed are from the Shell Buckling Knock-Down Factor
(SBKF) program [129], focusing on large sandwich composite cylindrical shells made
from carbon fiber facesheets and aluminum honeycomb cores. All the baseline configu-
rations share similar dimensions, with a radius of 1.2 meters and a length of 2.3 meters,
though they differ in the thickness and stacking sequence of the materials. These base-
line designs serve as references for applying the scaling methodology.

Two scaling strategies are introduced in the study. The first strategy scales from a
baseline sandwich structure to a smaller sandwich shell, maintaining the same struc-
tural characteristics but encountering manufacturing challenges, particularly with pro-
ducing scaled thicknesses. This method works by adjusting the geometry and material
properties to match the nondimensional buckling response of the original structure. The
second strategy scales the sandwich composite shell to a monolithic laminate structure.
While this approach avoids the manufacturing limitations of the first strategy, it intro-
duces new challenges, especially in comparing the buckling behavior of two different
structural types. In this strategy, transverse shear deformations are neglected, leading to
inaccuracies in predicting the buckling response.

A sensitivity study of the geometrical parameters, such as core thickness, ply thick-
ness, radius, and length, was conducted for both strategies. The results show that the
thickness and radius are the most influential factors in determining the accuracy of the
scaled models. Scaling strategy 1 is more sensitive to these variations, though it provides
a closer match to the buckling behavior of the baseline structures. Strategy 2, although
easier to implement due to fewer manufacturing constraints, introduces inherent errors,
particularly when transverse shear effects are significant.

In conclusion, the scaling strategies outlined in this dissertation effectively facilitate
the examination of buckling behavior in large composite shell structures through testing
at reduced dimensions. While Scaling strategy 1 provides a more accurate reproduction
of the original structure’s behavior, it faces practical manufacturing constraints. Scaling
strategy 2, on the other hand, is more practical but less accurate due to the assumptions
made in the modeling process. Both strategies provide valuable insights and contribute
to the broader understanding of scaling techniques in structural analysis.






NUMERICAL ANALYSIS AND
COMPARISON WITH AVAILABLE
DATA

Observar sin pensar
es tan peligroso como
pensar sin observar.

Santiago Ramon y Cajal

The objective of this chapter is to contrast the theoretical results obtained from the
nondimensional formulation outlined in Chapters 3 and 4 as well as the scaling method-
ology of Chapter 5 with the numerical analysis and available experimental results. Two
particular cases are examined, one at the full scale (CTA8.1) and the other at the labora-
tory scale (NDL-1), as the results of both experiments have been published [16, 132].

The outcomes of these tests will yield insights into the structural behavior and the
validity of the scaling methodology, as the test specimen NDL-1 was developed using the
second strategy of the scaling methodology. The specimen NDL-1 was designed using
configuration Scaled 1.2.V.1 as the starting point.

Scaled 1.2.V.1 may appear to be an odd choice among all of the configurations pro-
posed in Chapter 5 for Baseline 1. For example, Scaled 1.1.1I.1 had a significantly lower

95
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error in the nondimensional buckling load than Scaled 1.2.V.1, with an error of 0.5% ver-
sus 8.4%. The reason for choosing a structure of the second scaling strategy instead of
the first one lies in the difficulty of manufacturing precisely the core thickness of 2 mm,
required for this configuration. As shown in Fig. 5.31, there is a high sensitivity to the core
thickness on the scaling quality. Manufacturing tolerances for this foam are reported to
be 1 mm, which would be a large variation and therefore the lower nondimensional error
would not be achieved.

Even then, other configurations of the second scaling strategy have lower nondimen-
sional error than Scaled 1.2.V.1. For instance Scaled 1.2.IV.1 and Scaled 1.2.IV.2, as well
as Scaled 1.2.IV.1 and Scaled 1.2.1V.1 both have values around 5% error. The reason for
avoiding these configurations was the difficulty in using the 90° ply in the hand-laid
manufacturing that was used here. Other reasons for rejecting configurations were a
high buckling load, higher than the maximum 2500 kN the machine provided, and a
very short length, which would have made the load introduction path challenging.

Scaled 1.2.V.1 was also modified with respect to the ideal configuration due to lab-
oratory limitations. The length required was 1229 mm was reduced to 1220 due to the
maximum mandrel size available. However, this reduction in the length is only 1% and
the influence of the length has already proved in Fig. 5.32 to be small in the quality of the
scaling.

The process of designing NDL-1 from CTA8.1 is depicted in Fig. 6.1. The scaling
strategies proposed in Chapter 6 only apply to the idealized shells; they do not apply to
test articles with additional features required for experiments. Therefore, Baseline 1 and
Scaled 1.2.V.1, two simplified shell designs, were used as a bridge between the CTA8.1
and NDL-1 designs.

Full Scale Laboratory Scale

Test article CTAS.1 NDL-1

i )

Scaling
Wisfreis oy mm) Scaled 1.2.V.1

Idealized Structure Baseline | =

Figure 6.1: Chart showing the test articles and idealized structures considered.

A major difference between CTA8.1 and Baseline 1, and between NDL-1 and Scaled
1.2.VI are the pad-ups and potting surfaces. Pad-ups assist in transferring load from the
edge regions to the central portion of the shell. Furthermore, they induce buckling to
occur in this central acreage during testing, thus ensuring that the stability phenomenon
can be studied in a controlled manner. The introduction of the pad-ups reduced the
effective length of the shell further, as well as added some increased stiffness due to the
extra plies.
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On top of the pad-ups, the test specimens also include potting and end rings. They
act as stabilizing media that provide a partial clamping effect on the shell’s edges; this is
not a fully clamped condition because the potting itself is able to deform. The potting’s
surface area also helps facilitate load transfer from the test apparatus into the shell by
minimizing the risk of damage to the the shell’s edges.

The structures were studied first via numerical analysis. The simulations were per-
formed using the finite element analysis (FEA) software Abaqus. First, the goal is to show
that the analytical model produced accurate results that closely matched those obtained
from numerical simulations. Then, the results of numerical simulations are compared
to determine the efficacy of the scaling method. Finally the test results are contrasted
and the quality of the scaling this case assessed.

6.1. NUMERICAL ANALYSIS

I N this section, numerical analysis will be applied to the idealized structures described
in Fig. 6.1. Broadly speaking, Abaqus offers two types of elements that are suitable for
the three-dimensional analysis of thin-walled shells: conventional shell elements and
continuum shell elements seen in Fig. 6.2.

Conventional Shell Elements
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Figure 6.2: Element types used in the simplified analysis. !

Both static and dynamic methods can utilize the conventional shell elements in-
cluded in Abaqus. Some elements, such as S4S, incorporate the influence of transverse
shear deformation and thickness variation. Continuum shells fully discretize a three-

1From the Abaqus Analysis User’'s Manual
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dimensional body, as opposed to conventional shells that just discretize a reference sur-
face. The continuum shell elements are versatile because they enable finite membrane
deformation and significant rotations, making them well-suited for nonlinear geometric
analysis. These factors encompass the influence of transverse shear deformation and
variations in thickness, which are relevant to the proposed analysis.

Continuum shell elements utilize the principles of first-order layer-wise composite
theory. Unlike traditional shells, continuum shell elements allow for stacking to achieve
a more precise response throughout the thickness. By stacking continuum shell pieces,
it becomes possible to make more accurate predictions of transverse shear stress and
force, as well as anticipate the force that causes pinching across the thickness. It is im-
portant to use caution while stacking a limited number of continuum shell parts, as the
convergence may not follow a consistent pattern.

To assess the different elements and their suitability to capture the transverse shear
impact in the buckling behaviour for the different scale changes, the set of linear analy-
ses was executed by using the two types of elements: S4R, and SC8R. The S4R is a con-
ventional stress/displacement shell element with 4 nodes and reduced integration, and
the SC8R eight-node continuum shell element with reduced integration.

The comparison of both elements resulted from initial uncertainty about which was
best for this particular problem. In Chapter 3, the conventional element was used for the
initial analytical model verification. However, thinner core shells demonstrated a greater
effect of transverse shear, suggesting the need for a more complex element to accurately
depict the transverse shear for the sandwich structure.

6.1.1. LINEAR ANALYSIS

The linear eigenvalue analyses of the baseline and scaled cylindrical shell will be the pri-
mary focus of this section. These analyses were carried out to provide a set of buckling
loads before making the transition to non-linear analyses. A linear perturbation step,
which calculates the stiffness matrix eigenvalues, is commonly used to calculate cylin-
drical sandwich shell critical buckling loads. The lowest eigenvalue indicates the basic
buckling load, while each eigenvalue is a scaling factor used to the specified load to at-
tain a critical buckling situation. The related eigenmodes reveal shell buckling patterns
under loads.

The analytical equations are formulated under simply supported conditions; there-
fore, these conditions are also applied in the numerical analysis. Axial compressive
forces are applied uniformly along the shell’s top using a surface load. Mesh size also
has an impact on the accuracy of eigenvalue buckling analysis. A highly meshed model
better represents local deformations and stress gradients, especially near high curvature
or abrupt geometry changes. Mesh convergence investigations should ensure that re-
finement does not affect eigenvalues. For the Baseline 1, as defined in table Table 5.1,
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the mesh convergence analysis can be seen in Fig. 6.3. It can be seen that both types
of elements (S4R and SC8R) converge to a solution below 1% of error in under 2000 ele-
ments.
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Figure 6.3: Mesh Convergence analysis of Baseline 1.

Looking directly at the buckling load values, in Table 6.1, as expected based on the lit-
erature, the numerical buckling load and the analytically calculated results with the for-
mulation including transverse shear, are in good agreement for both types of elements
S4R and SC8R.

Table 6.1: Buckling Load comparison for Baseline Structures

Shell Analytical Calculation  Conventional Shell (S4R)  Continuum Shell (SC8R)
Baseline 1 4706 kN 4806 kN 4805 kN
Scaled 1.2.V.1 2278 kN 2217 kN 2207 kN

Moreover, the modeshapes resulting from the eigenvalue analyses were used as im-
perfections in subsequent sections. For Baseline 1, the first modeshapes calculated us-
ing S4R elements are shown in Fig. 6.4. These modeshapes have an overall axisymmetric
shape, with minor differences in the deformation patterns. The axisymmetric character
of the modeshapes corresponds to the expected analytically determined buckling be-
havior. The visual representation of these eigenmodes provides useful insights into the
structure’s global deformation trends, which are necessary for understanding the load
redistribution mechanisms that contribute to buckling.
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Figure 6.4: Magnitude of the radial displacement of Baseline 1 for the first 4 Eigenmodes.

6.1.2. NON-LINEAR ANALYSIS

For the non-linear analysis of shell buckling, implicit and explicit numerical time inte-
gration schemes were considered since each of them offers advantages over the other,
which results in certain trade-offs. Implicit analysis solves a system of equations using
information from the current and next-time steps simultaneously. This requires a large
matrix inversion for every increment, which can be computationally expensive. Explicit
analysis does not have this constraint, only solving one increment at a time, and then
moving on to the next. However, this requires much smaller time increments than im-
plicit analysis because the time step must be less than the time it takes a sound wave
to pass across an element, as well as to avoid error accumulating over large periods of
simulation.

The advantage of explicit analysis is that it can capture the inertial effects present in
models. Whether or not axial compression buckling simulations require these inertial ef-
fects to be included, however, is not entirely straightforward for investigation of pre- and
initial buckling behavior (in contrast to post-buckling). This is because end-shortening
rates used in experiments are on the order of millimeters per minute or less, whereas the
overall scale of the cylindrical shells is often on the order of meters.

However, even with this consideration and based on the literature results, the type of
analysis that was used is dynamic implicit. The main advantage of the choice for implicit
analysis is due to the computational efficiency compared to explicit analysis. That said,
the choice for a dynamic type of analysis also presents the advantage of capturing better
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the drop in stiffness and load-carrying ability of the cylindrical structure when it buckles.
In general space structures are designed to not buckle for their design load, but the post-
buckling field is interesting to capture to see when failure would happen.

For these analyses, the boundary conditions are simply supported conditions in both
ends of the shells, which allow rotation while preventing translational movement except
in the top surface axial direction. In this case, instead of introducing a surface load, a
displacement-driven boundary condition will be added. For displacement-driven load-
ing, one end of the cylinder is constrained to move axially while maintaining uniform
displacement across the edge. The rate of the displacement plays an important role in
obtaining accurate results.

For a more detailed analysis, an imperfection signature must be included in the sim-
ulation. Previous to the manufacturing of the specimen, there is a lack of detail regarding
the real imperfection. Numerous approaches can be taken regarding this issue, as dis-
cussed previously in Chapter 2 which is at the core of the problem of the imperfection
sensitivity of cylindrical shells.

The most conservative approach is to include an axisymmetric imperfection for dif-
ferent amplitudes concerning the thickness. This allows for a verification of the ana-
lytical formulation of Chapter 4, and an easy comparison between the nondimensional
results and the buckling loads. The process begins with performing an eigenvalue analy-
sis to identify the dominant buckling mode shapes and their corresponding eigenvalues.
A scaled version of the dominant eigenmode is then introduced into the finite element
model as an imperfection. This imperfection is defined with the amplitude expressed as
a fraction of the shell thickness.

Table 6.2: Buckling Load comparison for Baseline 1 with Imperfection Amplitude.

. Analytical Numerical
Analytical .
. . . Knock- Numerical Knock-
Imperfection Amplitude Calculation
Down Value [kN] Down
[kN]
Factor Factor
wr=0.1 (wy =0.4 mm) 4075 0.87 4228 0.88
wy=0.2 (wy =0.8 mm) 3717 0.79 3844 0.80
wr=0.5 (w; =2.0 mm) 2901 0.62 3027 0.63

In this study, since the objective is to study the influence of the nondimensional im-
perfection values reported in Chapter 4 case the imperfection included are the values
calculated from Eq. (4.1). In Table 6.2 the numerical and analytical results for Baseline 1
can be seen. These results were calculated with a 5 mm/s displacement rate. For each
calculated nondimensional imperfection, the corresponding buckling load and Knock-
Down Factor (KDF) are reported. The numerical KDF is calculated with respect to the
buckling load obtained from the eigenvalue analysis. It can be observed that for the ide-
alized shell Baseline 1 the numerical and analytical results are in good agreement.
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Then, the values of CTA8.1 numerical analysis reported by Schultz et al. [16] are com-
pared with the equivalent Baseline 1 structure. This numerical prediction introduced
the measurements of the structure into the formulation. Moreover, the test specimen
was modeled in detail, including load introduction pad-ups and potting end rings.

For this post-test prediction, adjusting for material nonlinearities was 3758 kN [845
kips]. This value falls closely to the nondimensional imperfection amplitude w; = 0.2.
The stiffness obtained in this case is also similar as can be seen in Fig. 6.5a in their di-
mensional format and in Fig. 6.5b in their nondimensional format. It is important to
mention that the conversion to the nondimensional values which depend on the shell
length (L), Radius (R), components of the compliance matrix (a;;), and components of
the bending stiffness matrix (D; ;) are all taken from the idealized structure: Baseline 1.
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(a) Comparison of the dimensional numerical results with nondimensional imperfection amplitude
wr =0.1and wy = 0.2, compared with the numerical results of CTA8.1.
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(b) Comparison of the nondimensional numerical results with nondimensional imperfection amplitude
wy =0.1and wy = 0.2, compared with the numerical results of CTA8.1.

Figure 6.5: Comparison numerical results of Baseline 1 with nondimensional imperfection amplitude
wr =0.1 and wy = 0.2, compared with the numerical results of CTA8.1. [16]
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The postbuckling shapes of these three imperfection levels can be seen in Fig. 6.6.
The magnitude of the displacement at postbuckling is reported in mm. The images are
taken at a displacement in the Z component equal to 9mm.

(a) Baseline 1 with w; =0.1 (w; = 0.8 (b) Baseline 1 with w; =0.2 (w; =0.8 (c) Baseline 1 with w; =0.5 (w7 =2.0
mm) mm) mm)

Figure 6.6: Magnitude of the displacement (expressed in mm) at postbuckling for Baseline 1.

A similar analysis can be performed for the scale structure, which compares the ide-
alized structure Scaled 1.2.V.1 with the test model NDL-1. First, the comparison of the
dynamic implicit analysis results for Scaled 1.2.V.1 with their analytical counterparts can
be seen in Table 6.3. The analysis had simply supported boundary conditions and a
displacement-driven boundary condition on the top edge. The results were calculated
with a 1 mm/s displacement rate.

Table 6.3: Buckling Load comparison for Scaled 1.2.V.1 with Imperfection Amplitude

. Analytical Numerical
Analytical .
Imperfection Amplitude Calculation Knock- Numerical Knock-
P p Down Value [kN] Down
[kN]

Factor Factor
wr;=0.1 (wy =0.13 mm) 1887 0.83 1884 0.85
wr=0.2 (wy =0.26 mm) 1732 0.76 1707 0.77
wr =0.5 (wr =0.66 mm) 1357 0.60 1352 0.61

The comparison between analytical and numerical values shows good agreement in
this case, between 1% and 3% difference. However, most notably, the numerical KDF
for the same level of nondimensional imperfection amplitude remains similar in both
scales: Baseline 1 and Scaled 1.2.V.1. For example, for Baseline 1 the numerical KDF for
wr =0.11s 0.88 (see Table 6.2, whereas for Scaled 1.2.V.1 the numerical KDF for w; = 0.1
0.85, a difference of only 3.5%. For w; = 0.2, the difference between the numerical KDF
in the scales is 3.8% and for w; = 0.5 is 3.2%.

Then a comparison of the idealized shell with the numerical analysis of the test model
NDL-1, as described by Rudd et al. [132] is done. The shell of NDL-1 was manufactured
via hand layup of 12.5-mm wide tows of the preimpregnated carbon-fiber-epoxy com-
posite IM7-8552. Four layups comprise the shell: a primary layup (the same as the sim-
plified shell, Scaled 1.2.V.1) and three pad-up sections found on either end of the shell.
On top of the Pad-ups, the test specimen NDL-1 also includes potting and end rings, but
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these, unlike in the analysis of CTA8.1 were not included in the fully detailed numerical
analysis.
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Figure 6.7: NDL-1 Measurements. [132]

The imperfection introduced in the fully numerical model is shown in Fig. 6.7 and
consists of inner and outer surface data that had 11.5 million and 28 million 3D-scan
points, respectively, with areal densities of4.1 and 9.5 points per square millimeter. Both
surfaces have a ring-shaped imperfection between axial positions of 125 mm and 175
mm around their circumference. This indicates that the mandrel was likely doubly ma-
chined here during finishing and transferred to the shell during manufacturing.

The results of the analysis produce a buckling load of 2150 kN, which in turn results in
anondimensional buckling load of 578. The comparison in the dimensional and nondi-
mensional format is shown in Fig. 6.8. This value falls above the lowest nondimensional
imperfection amplitude considered w; = 0.1, unlike in the Baseline case where it was
close to the imperfection amplitude w; = 0.2. The stiffness obtained is also similar to
the value from nondimensional imperfection amplitude w; = 0.1.

The conversion to the nondimensional values which depend on the shell length (L),
Radius (R), components of the compliance matrix (a; j), and components of the bending
stiffness matrix (D;;) are all taken from the idealized structure: Scaled 1.2.V.1, and as
such do not include the pad-ups or the variation in thickness.
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Unfortunately, the calculated nondimensional buckling load of 578 for test model
NDL-1, does not match the nondimensional buckling load from the CTA8.1 test which
is 451. The fully numerical model does match extremely well with the subsequent ex-
periment [132]. This suggests that there are some limitations in the replication of the
buckling response with this scaling methodology. This will be discussed in the following
section.

2500
2000 /
Z wweeeee Scaled 1.2.V.1 with wl =
=] 0.1
g 1500 - - -Scaled 1.2.V.1 withwl=
Q
A 0.2
E" 1000 ——NDL-1 with Measured
% Imperfection [126]
=
m
500
0
0 0.5 1 15 2 25

Displacement [mm]

(a) Comparison of the dimensional numerical results with nondimensional imperfection amplitude
wr =0.1 and wy = 0.2, compared with the numerical results of NDL-1.
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(b) Comparison of the nondimensional numerical results with nondimensional imperfection amplitude
wy =0.1 and wy = 0.2, compared with the numerical results of NDL-1.

Figure 6.8: Comparison numerical results of Baseline 1 with nondimensional imperfection amplitude
wy =0.1 and wy = 0.2, compared with the numerical results of NDL-1. [132]
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6.2. COMPARISON WITH AVAILABLE TEST DATA

HE results from two published axial compression buckling tests are explored in this

Section. The objective is to evaluate the scaling methodology described in Chapter 5
and to identify its limitations. Therefore, the test results are presented in both dimen-
sional and nondimensional forms. Both tests were performed by NASA, and in both
cases the structures were loaded to failure, which occurred immediately upon buckling,
as expected.

The first test, conducted on the baseline structure, is referred to as CTA8.1. This
structure serves as the reference, with its buckling response intended to be replicated
in the scaled model. Schultz et al. [16] provided a detailed description of the test article,
the experimental procedure, and the results. The idealized version of this test article was
presented in Chapter 5 as Baseline 1. The test article and setup are shown in Fig. 6.9a.

The second test, performed on the scaled structure, is referred to as NDL-1. This test
article was designed to replicate, as closely as possible, the buckling response of CTA8.1.
The idealized version of this test article was presented in Chapter 5 as Scaled 1.2.V.1.
Rudd et al. [132] provided a description of the test article, the experimental procedure,
and the results. NDL-1 is shown in the load frame prior to testing in Fig. 6.9b.

(a) Baseline structure test: CTA8.1. [16] (b) Scaled structure test: NDL-1. [132]

Figure 6.9: Test setup; photos courtesy of NASA.

The buckling test facility used to test CTA8.1 at the NASA Marshall Space Flight Cen-
ter (MSFC) had previously been used to test eight large-scale stiffened metallic cylin-
drical shells [133]. For the large scale test CTA8.1, test data were obtained from var-
ious sources. Load was measured via load cells installed in the load lines. Displace-
ment was recorded using 28 electrical displacement transducers. To measure strains, 256
electrical-resistance strain gauges and approximately 16,000 fiber-optic strain sensor
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locations were employed. In addition, eight low-speed digital image correlation (DIC)
photogrammetry systems were used to capture full-field strains and displacements. Dur-
ing the dynamic buckling event, six high-speed DIC systems measured strains and dis-
placements.

The buckling test facility used for NDL-1 at NASA Langley employed similar but re-
duced equipment. Monitoring stations were used to observe full-field displacements
and strains using low-speed DIC, along with real-time load and axial displacement mea-
surements. Test data for NDL-1 were gathered from several sources. Load was measured
using a load cell. Displacement was measured by six direct current differential transduc-
ers (DCDTs) placed around the load frame. To measure strains on both the inner and
outer surfaces, 12 axially oriented gauges were spaced at regular intervals. Additionally,
four inner and four outer meridian gauges measured circumferential strain at the same
angular positions. Finally, eight DIC systems recorded the experiment: four low-speed
and four high-speed systems, with each system comprising two cameras.

For the purposes of this study, only the load and the average displacement recorded
were compared to assess the quality of the scaling. To that aim, first of all the experi-
mental buckling load is compared in Table 6.5. As established in the literature, the Knock
Down Factor (KDF) initially predicted was conservative for both shells. The larger shell,
CTA8.1, had a lower KDE which is indicative of the larger influence of imperfections on
the larger shells and the influence of imperfections in the core and facesheets interface.

Table 6.4: Experimental buckling load results from CTA81 [16] and NDL-1. [132]

Shell Buckling Load [kN] KDFreal KDF predicted with SP-8007

CTA-8.1 3811 0.87 0.61
NDL-1 2077 0.95 0.79

These results can also be observed in Fig. 6.10 in the dimensional form and in Fig. 6.11
the nondimensional form. The first observation that can be made is that although the
stiffness and strength of both shells is very different in dimensional form, there is a high
agreement in the nondimensional stiffness, but some differences in the nondimensional
buckling load.

To a certain degree this was expected by the assumptions made by the scaling pro-
cess, which, as described in Chapter 5, uses the second scaling strategy, going from a
sandwich composite cylinder with composite facesheets to a composite structure with
no core. This, as described in detail in Chapter 3 has a penalty regarding the lack of inclu-
sion of transverse shear effects. In fact, in the assessment of the scaling quality depicted
in Chapter 5 a variation of 8% with respect to the non-dimensional buckling load was
already expected even in the perfect shell Fig. 5.30.

Nevertheless, the observed test error in the nondimensional buckling load is sub-
stantially larger than the previously predicted value of 8%, reaching a difference of 22%
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instead. This is a considerable deviation from the expected value. This departure from
the error margin that was projected gives rise to the possibility that there are underlying
elements or variables that have not been taken into consideration that are affecting the
accuracy of the findings. Therefore, it is of the important to conduct a more in-depth
investigation into the possible factors that led to this disparity. Among the possible ex-
planations are the modeling assumptions, or the fundamental difference in the manu-
facturing process between a sandwich composite and a composite laminate.
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Figure 6.10: Averaged axial DIC-derived dimensional load-displacement behavior.
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Figure 6.11: Averaged axial DIC-derived non-dimensional load-shortening behavior.

interesting comparison relates to the predicted buckling load at different levels of
nondimensional imperfection amplitude. As discussed in Chapter 4, the use of a nondi-
mensional imperfection factor (w;) allows for a consistent comparison of imperfection
sensitivity across different scales. In Table 6.5, both dimensional and nondimensional
buckling loads are shown for the scaled shell (Scaled 1.2.V.1) and its test counterpart
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(NDL-1), as well as for the baseline structure (Baseline 1) and its corresponding test
(CTA-8.1).

The theoretical nondimensional buckling loads follow similar trends for both the
baseline and scaled structures as w; increases. However, when comparing with test re-
sults, the experimental value for NDL-1 corresponds to a nondimensional imperfection
amplitude of w; < 0.1, whereas for CTA-8.1 it falls within the range 0.1 < w; < 0.2. These
values are consistent with the numerical responses examined in Fig. 6.5 and Fig. 6.8.
This discrepancy illustrates a key limitation: although the nondimensional formulation
enables meaningful comparison of imperfection amplitude effects, it does not capture
the exact imperfection shape, which is critical to the real buckling response.

Table 6.5: Dimensional and Nondimensional Load Comparison.

Shell Buckling Load Nondimensional

[kN] Buckling Load [-]
NDL-1 2077 558
Scaled 1.2.V.1 with w; = 0.1 (w; =0.13 mm) 1887 507
Scaled 1.2.V.1 with w; =0.2 (w; = 0.26 mm) 1732 465
Scaled 1.2.V.1 with w; = 0.3 (w; = 0.39 mm) 1593 428
Scaled 1.2.V.1 with w; =0.4 (w; = 0.52 mm) 1468 394
Scaled 1.2.V.1 with w; = 0.5 (w; = 0.66 mm) 1357 364
CTA-8.1 3811 457
Baseline 1 with w; =0.1 (w; = 0.4 mm) 4075 489
Baseline 1 with w; =0.2 (wy = 0.8 mm) 3717 446
Baseline 1 with w; =0.3 (w; =1.2 mm) 3406 409
Baseline 1 with w; =0.4 (wy = 1.6 mm) 3141 377
Baseline 1 with w; =0.5 (w; = 2.0 mm) 2901 348

It is important to note that the objective of the scaling methodology was not to repli-
cate the imperfection sensitivity curve of the baseline, but rather to study how struc-
tures with comparable relative imperfection levels behave in global buckling. Designing
a scaling strategy to reproduce the same imperfect buckling load would require previous
knowledge of the full imperfection profile, an impractical design approach. Instead, the
methodology isolates the imperfection sensitivity trends without embedding the result
into the setup.

These findings demonstrate both the utility and limitations of the current approach:
while imperfection amplitude scaling provides valuable insight into sensitivity trends,
it also reveals that variations in the expected imperfection, unavoidable in real-world
specimens, can significantly affect the buckling load.
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6.3. CONCLUSIONS

The numerical analysis performed in this chapter is contrasted with the analytical mod-
els developed in previous sections. Both the conventional shell elements (S4R) and con-
tinuum shell elements (SC8R) accurately captured the buckling behavior of cylindrical
shells under axial compression, with mesh convergence results demonstrating less than
1% error. This confirms the efficacy of the analytical model, particularly in predicting
the perfect shell buckling loads.

On the other hand, the assessment of the scaling methodology, which compares the
full-scale structure (CTA8.1) with the scaled model (NDL-1), reveals both strengths and
limitations. While the dimensional stiffness of the full-scale and scaled models differ
significantly, their nondimensional stiffness shows high agreement. However, a notable
discrepancy arises in the predicted nondimensional buckling load, where the observed
error reaches 22%, substantially higher than the 8% error anticipated. This larger devia-
tion suggests that certain factors were not accounted for in the scaling process, possibly
due to differences in manufacturing or the inherent assumptions made in the model.
Such findings indicate that further refinement of the scaling approach is necessary, par-
ticularly when transitioning from sandwich composite cylinders to laminate structures
without cores.

Imperfection sensitivity emerges as a critical factor in determining the buckling be-
havior of cylindrical shells. Both numerical and experimental results indicate that im-
perfections, even in small amplitudes, significantly influence the buckling load. The
comparison between the baseline structure (CTA8.1) and the scaled structure (NDL-1)
underscores the difficulty in accurately predicting the effects of imperfections, especially
dealing with structures of different scales. These findings suggest that imperfections
must be modeled differently in the nondimensional formulation.

The experimental data, when compared to the predictions, further emphasizes the
limitations of the current scaling methodology. The differences observed between the
experimental results and the predictions highlight the need for more sophisticated tech-
niques to account for imperfections, material properties, and the core-to-laminate tran-
sition in composite structures. Such refinements are essential to improving the accuracy
of scaling methods and ensuring that predictions align more closely with experimental
outcomes.

In conclusion, future research should prioritize the separation of imperfection sen-
sitivity from other influencing factors, such as material differences and manufacturing
variations. This would allow for a more precise evaluation of the individual contribu-
tions of these factors to the overall structural behavior. By focusing on this aspect, the
precision of scaling methodologies can be improved, ultimately leading to more reliable
predictions of buckling behavior in scaled cylindrical shell structures.
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pero te digo adiés, para toda la vida,
aunque toda la vida siga pensando en ti

José Angel Buesa

This chapter concludes the thesis by describing the key finding and contributions
and by proposing future research recommendations. The chapter begins by examining
the most significant findings in relation to the proposed research questions. Following
this, recommendations are provided to guide further exploration into identified gaps or
limitations. Together, these conclusions summarize the study’s main outcomes and offer
a framework for advancing research within the field.

7.1. KEY FINDINGS AND CONTRIBUTIONS

HE key findings of this research are framed around the four primary research ques-

tions that guided the study. These questions focus on the impact of transverse shear
effects, imperfection sensitivity, the development of a systematic scaling methodology,
and the discrepancies between analytical and numerical predictions and experimental
results. In the following sections, each research question will be addressed, with an ex-
planation of the corresponding findings and their significance.

111
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7.1.1. SHEAR TRANSVERSE EFFECTS INFLUENCE

RQ1I: To what extent do the shear transverse effects influence the buckling response in
sandwich composite structures and how should it be modeled in the different scaled struc-
tures?

An advantage of extending the nondimensional governing equations to accurately
model the problem is that the nondimensional parameters created can be used for other
purposes beside the scaling laws. Using the nondimensional parameters, it is possible
to navigate the design space of different shells and to investigate the impact of changes
in the properties of the shells towards the buckling response.

More specifically, the focus is in the reduction of the buckling load due to the influ-
ence of the core transverse shear effects and the relation between the load and other
factors of the shells. This is represented via the nondimensional parameter y; over the
transverse shear buckling load ratio (% /.%).

It can be demonstrated that the nondimensional transverse shear parameter (y;)
in conjunction with the Batdorf-Stein parameter (Z) influence the most the transverse
shear buckling load ratio (%/%) [120]. Shells with a stiffer core material, represented
with a higher nondimensional transverse shear parameter (y;), are less influenced by
the core transverse shear. For the same value of y;, thinner shells, as represented by a
higher Batdorf-Stein parameter (Z), present a higher transverse shear influence.

It can also be seen how nondimensional buckling results are applicable to differ-
ent shells of different scales, which is key for the scaling methodology developed. Sev-
eral specific shells (numbered 1-6) are compared, and their differences and similari-
ties are highlighted. For instance, sandwich composite Shell 1 and Shell 2 share all the
same nondimensional parameters and therefore have the same nondimensional buck-
ling load with and without transverse shear influence. This is even if Shell 2 (radius: 1.4
m) is much larger than Shell 1 (radius: 0.4 m), Shell 2 has double the number of plies as
Shell 1, and the core material, while isotropic in both shells, has different properties.

7.1.2. IMPERFECTION SENSITIVITY

RQ2: How should the imperfection sensitivity in sandwich shell structures be modeled for
the scaled structures?

Modeling the imperfection sensitivity is not exclusive to sandwich cylindrical shells,
since this is an intrinsic part of the shell buckling behavior. Imperfection sensitivity is
widely acknowledged to be the main cause of discrepancy between the experimental
data and analytical prediction.

A trigonometric imperfection is included in the derivation of the nondimensional
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equations for axial buckling of sandwich composite cylindrical shells including trans-
verse shear. A solution for the nondimensional buckling load is derived from the equi-
librium and compatibility equations including an initial geometric imperfection. This
model uses the bifurcation buckling modes of the shell as initial geometric imperfec-
tions. The limit buckling load %; for each imperfection amplitude w; occurs when the
shell cannot support more load.

The nondimensional imperfection formulation allows to apply nondimensional re-
sults to different shells of different sizes. Even if the magnitude of the imperfection is
different in the different scales, the nondimensional load displacement results can be
compared.

Moreover, using the nondimensional parameters, it is possible to navigate the design
space of different shells and to investigate the impact of changes in the properties of the
shells on imperfection sensitivity. Overall, the analysis and results can be used to design
sandwich composite cylindrical shells as well as to account for an initial imperfection
factor in the scaling methodology developed.

7.1.3. ANALYSIS-BASED METHODOLOGY

RQ3: How can a systematic methodology be designed to scale down composite cylindrical
shells while preserving their buckling response?

The appeal of developing a systematic analysis-based scaling methodology stems
from the drawbacks of performing multiple full-scale tests. An analysis-based method-
ology would allow for the rapid formulation of scaled-down structures, fit for smaller
laboratories. The analytical, numerical and experimental results of these scaled-down
structures can then be used in the design of large-scale structures, thereby reducing the
number of large-scale tests.

The difficulty in developing such an analysis-based methodology is that test results
are highly dependent on geometry variations and the shell’s imperfection signature. A
successful methodology requires accurate modeling of the phenomena, the selection of
appropriate scaling laws, and the investigation of feasibility areas. The approach taken
in this thesis makes use of a nondimensional formulation of the equations, where the
components of the equations become the scaling laws.

Upon establishing the nondimensional governing equations, their parameters, and
solutions, the scaling procedure is then defined. For this thesis, two scaling strategies
were pursued. All of them make use of the nondimensional governing equations as scal-
inglaws, but each of them is suitable for a different case, and each has its own advantages
and disadvantages.

The first strategy scales from a baseline sandwich structure to a scaled sandwich
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structure. The manufacturing limitations in the thickness of the scaled structure’s core
limit this method. Depending on the size of the baseline structure, the scaled structure
can produce thickness values that are not feasible. For example, it is difficult to replicate
the nondimensional transverse shear parameter (y;) at low thickness values. It is also
not possible to replicate the nondimensional transverse shear parameter (y;) with exist-
ing materials in some scale ranges. Both reasons amount to a manufacturing challenge:
even if a scaled structure is possible in theory, it cannot be built, and thus the purpose of
the scaling procedure is not fulfilled.

The second strategy scales from a baseline sandwich structure to a solid laminate
structure. This strategy avoids the manufacturing problems described for the previous
one. The challenge in this case is to compare the two different types of structures. In
particular, itis challenging to compare imperfection levels.This type of strategy was used
for the test specimen produced and tested by Rudd et al. [132].

7.1.4. PREDICTIONS IN DIFFERENT SCALES

RQ4: What are the discrepancies between analytical predictions and experimental obser-
vations of buckling behaviour in different scales of composite shell structures produced
with the systematic methodology?

The evaluation of the systematic scaling methodology, which compares the test of a
full-scale structure to a scaled model, exposes both benefits and weaknesses. Although
the full-scale and scaled models have quite different dimensional stiffness, their nondi-
mensional stiffness is the same. However, a significant disparity develops in the pre-
dicted nondimensional buckling load, where the observed error exceeds 22%, much
more than the 8% error expected.

This significant deviation indicates that factors not accounted for in the analytical
models may have influenced the experimental outcomes. The difference suggests that
the assumptions made in the scaling methodology, particularly the transition from sand-
wich composite shells with facesheets to laminate composite structures, might not fully
capture the complexity of the buckling behavior in the scaled model.

Additionally, the discrepancy also highlights the impact of imperfection sensitivity.
Both analytical and numerical analyses incorporate imperfection factors, but the sen-
sitivity of the experimental results to imperfections, especially in scaled models, intro-
duces further discrepancies. Imperfections, can significantly alter the buckling load, and
the scaling methodology is unable to completely replicate these effects across different
scales.

Another source of discrepancy is the manufacturing limitations. For instance, differ-
ences in the thickness due to manufacturing tolerances in scaled structures versus full-
scale ones introduce inaccuracies in the numerical and analytical predictions. Moreover,
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in the scaled model (NDL-1), modifications were made to accommodate laboratory con-
straints, such as adjusting the length due to available mandrel size, even if they were not
expected to have large influence.

Therefore, the main discrepancies arise from the sensitivity to imperfections, manu-
facturing and laboratory limitations, and, most critically, limitations in the scaling method-
ology when transitioning between different structural configurations (sandwich com-
posite to laminate composite). The analytical and numerical models provide reasonable
approximations but fall short in accounting for all experimental variables, especially be-
fore the design is fully known.

7.1.5. CONTRIBUTIONS

This research main contribution lies on advancing the understanding of buckling in
sandwich composite cylindrical shells by expanding the nondimensional framework pro-
posed by Nemeth [125]. The newly defined nondimensional parameters, such as the
transverse shear parameter (y;) provide a means to study the interaction between ma-
terial properties, geometric configurations, and buckling responses for sandwich com-
posite shells of different scales.

The extended nondimensional framework was executed with a scaling application
as main purpose but the insights gained from this work enable a deeper understanding
of the role of transverse shear and imperfection sensitivity in determining the buckling
response. This allows for the prediction and comparison of buckling behavior across
different scales.

Moreover, the integration of these nondimensional parameters into a systematic scal-
ing methodology provides a novel approach for analyzing sandwich composite cylindri-
cal shells. From the limited experimental results available, the scaling methodology suc-
cessfully replicates the nondimensional stiffness of the large model in the scaled one,
demonstrating its potential as a scaling approach, even if it falls short to replicate the
nondimensional buckling load.

All together, by utilizing these newly defined parameters and scaling strategies, this
work delivers another tool for gaining insights in the design and analysis of both large-
scale and laboratory-scaled structures.

7.2. RECOMMENDATIONS FOR FUTURE RESEARCH

WHILE the developed framework and scaling methodologies provide valuable in-
sights into the buckling behavior of sandwich composite cylindrical shells, sev-
eral limitations were encountered during the research process. One of the primary chal-
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lenges is the inherent complexity in accurately capturing imperfection sensitivity in both
the analytical and numerical models. The nature of imperfections in real-world struc-
tures can vary significantly, leading to discrepancies when compared with idealized mod-
els. Although the developed nondimensional framework accounts for imperfections,
further refinement is necessary to better align the predictions with experimental out-
comes.

Another limitation is related to the boundary conditions and manufacturing con-
straints in scaled-down experimental models. In practical terms, it is difficult to manu-
facture small-scale models that precisely replicate the material properties, stiffness, and
geometry of full-scale structures. These variations, along with differences in the test-
ing environment, contribute to the observed discrepancies between the predicted and
actual buckling loads. The scaling methodology, while effective, still requires more em-
pirical validation to address these manufacturing challenges and improve the accuracy
of predictions across different scales.

Given the limitations identified, there are three avenues for future research that can
build upon the findings of this thesis. First, the nondimensional framework could be ex-
tended to incorporate more detailed modeling the structure and manufacturing induced
imperfections. This would enhance the accuracy of buckling load predictions.

Second, further experimental testing is essential to validate the proposed scaling
methodologies more comprehensively. In particular, testing on scaled sandwich com-
posite shells obtained with the first scaling strategy would provide deeper insights into
the relationship between theoretical predictions and real-world behavior. This was not
possible to do due to manufacturing limitations for the baseline structures proposed
during these project, but other baseline structures could be chosen to validate the method-

ology.

Lastly, it would be beneficial to explore new approaches to improving the alignment
between analytical, numerical, and experimental results. For instance, machine learn-
ing models could be applied to better capture the variability in imperfections. These
approaches could lead to more robust predictions of buckling behavior across a broader
range of composite shell structures.
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SCALED STRUCTURES

This appendix provides scaled configurations for each of the baseline structures with
the two scaling strategies discussed in the main text. The tables herein aim to provide a
comprehensive reference for the parameter values and range of possible structural con-
figurations.

The setups for Scaling Strategy 1, as shown in Fig. 5.2, include variations in the facesheet
angle, length, core thickness, and core material. The configurations for these setups, cor-
responding to the baseline parameters presented in Table 5.1, are detailed here.

Similarly, the setups for Scaling Strategy 2, as shown in Fig. 5.13, involve variations
in the facesheet angle, the number of lay-up repetitions, and the length. Configurations
for these setups, also corresponding to the baseline parameters in Table 5.1, are also
included in this appendix.

A.1. BASELINE 2

Baseline 2, which corresponds to the test article CTA8.2 whose test is described by Prezkop
et al. [10], is analyzed in this section. Scaling down this baseline structure has chal-
lenges because it has a thinner core than Baseline 2. The main properties of the shell are
reported in Table A.1.
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A. SCALED STRUCTURES

Table A.1: Baseline 2 Properties.

Facesheet Ply Thickness Core Thickness Total Thickness
lay-up [mm] [mm] [mm]
[£60/0]; 0.180 [0.0071in]  5.08 [0.20 in] 7.62 [0.30 in]

A.1.1. STRATEGY 1

HE scaled structures properties outlined in Table A.2 provide a detailed account of
the material and geometric adjustments made under Scaling Strategy 1, as well as

the buckling load in its dimensional form.

Table A.2: Scaled Structures Properties for the Scaling Strategy 1 of Baseline 2.

Shell Lay-up L[f;lrgrf]h thigﬁ;zss Mgferzal Iilzl(zikl[ll?l\%
[mm]

el gy w5 s el g

T T S T ™

S e a5 el o

The quality of the scaling for each design is reported in Fig. A.1. In Table A.3, the
buckling load and modes are compared for Baseline 2 and the scaled models with Strat-

egy 1.

Table A.3: Buckling Response of Baseline 2 and its corresponding scaling strategy 1 models.

Baseline 2 675 4428 12 5
Scaled 2.1.1.1 696 590 13 1
Scaled 2.1.1.2 672 570 9 10
Scaled 2.1.11.1 685 492 12 3
Scaled 2.1.11.2 664 692 13 1
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Figure A.1: Error in the Nondimensional Parameters between Baseline 2 and the Scaled Structures with
Scaling Strategy 1.

A.1.2. STRATEGY 2

The scaled structures properties outlined in Table A.4 provide a detailed account of the
material and geometric adjustments made under Scaling Strategy 2, as well as the buck-
ling load in its dimensional form.

As seen in the Table A.3, these buckling load and modes are compared for the Base-
line 2 and the scaled models with Strategy 2. The quality of the scaling for each design is
reported in Fig. A.2.

Note that for Baseline 2, unlike in Baseline 1, the repetition number for Scaled 2.2.11.1
and Scaled 2.2.11.2 is an odd number: 7. This means that the configurations wont be
exact to those of the Family V; and thus both are represented in Table A.5 and Fig. A.2.
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Table A.4: Scaled structures properties for the Scaling Strategy 2 of Baseline 2.

Shell Facesheet lay-up th;f:itlélltless I}f;lllgllt]ll Ii l;cdkl[ig\%
(mm]
Scaled 2.2.1.1 15(/ =15)10 3.51 1407 1551
Scaled 2.2.1.2 (75/ =75)10 3.51 412 1552
Scaled 2.2.11.1 (19/0/ -19)7 3.68 1392 1732
Scaled 2.2.11.2 (60/0/ —60)7 3.68 760 2791
Scaled 2.2.111.1 ([15/=15]4)s 3.51 1407 1551
Scaled 2.2.111.2 ([75/ =75]4)s 3.51 412 1552
Scaled 2.2.1V.1 ([25/ —25/90]5)4 3.51 915 2414
Scaled 2.2.1V.2 ([73/—73/90]5)4 3.51 415 1560
Scaled 2.2.V.1 ([19/0/ =19]4)3 3.15 1392 1272
Scaled 2.2.V.2 ([60/0/ —60]5)3 3.15 759 2048
Scaled 2.2.VI.1 ([31/0/ —31/90]5)3 3.68 972 2551
Scaled 2.2.VI.2 ([56/0/ —56/90]5)3 3.68 734 2787

Table A.5: Buckling Response of Baseline 2 and its corresponding scaling strategy 2 models.

Nondimensional Buckling Load

Shell Buckling Load [-] [kN] m [ nll

Baseline 2 675 4836 12 5
Scaled 2.2.11.1 710 1732 7 9
Scaled 2.2.11.2 710 2791 11 3
Scaled 2.2.111.1 748 1551 8 9
Scaled 2.2.111.2 749 1552 8 9
Scaled 2.2.1V.1 754 2414 4 9
Scaled 2.2.1V.2 747 1560 8 9

Scaled 2.2.V.1 828 1272 7 10
Scaled 2.2.V.2 830 2048 12 3
Scaled 2.2.VI.1 718 2551 2 7

Scaled 2.2.V1.2 713 2787 4 9
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Figure A.2: Error in the Nondimensional Parameters between Baseline 2 and the Scaled Structures with
Scaling Strategy 2.

A.2. BASELINE 3

The shell named Baseline 3 corresponds to the test article CTA8.3 which was described
by Song et al. [9]. The main shell properties are reported in Table A.6. This is the baseline
shell with the lowest total thickness evaluated, at only 6.45mm in total.

Table A.6: Baseline 3 Properties.

Facesheet Ply Thickness Core Thickness Total Thickness
lay-up [mm] [mm] [mm]
[+30/90] 0.137[0.0054 in]  5.08 [0.20 in] 6.45 [0.25 in]

A.2.1. STRATEGY 1

The scaled structures properties outlined in Table A.7 provide a detailed account of the
material and geometric adjustments made under Scaling Strategy 1, as well as the buck-
ling load in its dimensional form.

The quality of the scaling for each design is reported in Fig. A.3. In Table A.8, the
buckling load and modes are compared for the Baseline 3 and the scaled models with
Strategy 1.
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Table A.7: Scaled Structures Properties for the Scaling Strategy 1 of Baseline 3.

Length thi(cjl(zlrliss Core Buckling
[mm] Material Load [kN]
[mm]

Shell Lay-up

Scaled Rohacell
3111 18/ —18); 1208 1.2 300 WE 537

chlleg (721 —72), 377 1.2 Rohacell 536

300 WF
Scaled Rohacell
31111 (24/0/ —24) 1163 1.4 300 WE 442

Scaled Rohacell
31012 (54/0/ —54) 723 1.4 300 WE 606

Nondimensional Parameters
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Figure A.3: Error in the Nondimensional Parameters between Baseline 3 and the Scaled Structures with
Scaling Strategy 1.
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Table A.8: Buckling Response of Baseline 3 and its corresponding scaling strategy 1 models.

Nondimensional Buckling Load

Shell Buckling Load [-] (KN] - nll
Baseline 3 732 2444 11 1
Scaled 3.1.1.1 697 537 11 1
Scaled 3.1.1.2 696 536 11 1
Scaled 3.1.1I.1 726 442 11 1
Scaled 3.1.11.2 685 606 12 1

A.2.2. STRATEGY 2
The scaled structures properties outlined in Table A.9 provide a detailed account of the
material and geometric adjustments made under Scaling Strategy 2, as well as the buck-

ling load in its dimensional form.

Table A.9: Scaled structures properties for the Scaling Strategy 2 of Baseline 3.

Shell Facesheet lay-up thii(lltrizss I}frrlllgr;[]h fol;(z(ﬁ(rll\%
[mm]
Scaled 3.2.1.1 (18/-18)19 3.51 1208 1524
Scaled 3.2.1.2 (721 =72)10 3.51 377 1523
Scaled 3.2.11.1 (24/0/ -24)¢ 3.15 1170 1281
Scaled 3.2.11.2 (54/0/ —54)¢ 3.15 725 1860
Scaled 3.2.111.1 ([18/ —18]y)5 3.51 1208 1524
Scaled 3.2.111.2 ([72/ =72]4)5 3.51 377 1523
Scaled 3.2.1V.1 ([30/—30/90]4)s5 3.51 764 2270
Scaled 3.2.1V.2 (169/ —69/9015)5 3.51 383 1549
Scaled 3.2.V.1 ([24/0/ —24]5)3 3.15 1170 1281
Scaled 3.2.V.2 ([54/0/ —54]5)3 3.51 1208 1524
Scaled 3.2.VI.1 ([45/0/ —45/90]4)3 3.68 754 2585

As seen in the Table A.10, these buckling load and modes are compare for the Base-
line 3 and the scaled models with Strategy 2. The quality of the scaling for each design is
reported in Fig. A.4.
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Table A.10: Buckling Response of Baseline 3 and its corresponding scaling strategy 2 models.

Nondimensional Buckling Load

Shell Buckling Load [-] [KN] m [ nl

Baseline 3 732 2444 11 1
Scaled 3.2.11L.1 731 1523 10 1
Scaled 3.2.111.2 730 1523 10 1
Scaled 3.2.IV.1 733 2270 10 1
Scaled 3.2.IV.2 729 1549 10 1
Scaled 3.2.V.1 810 1281 11 1
Scaled 3.2.V.2 806 1860 11 1
Scaled 3.2.VI.1 707 2585 10 1

Note than in this case for Family VI there is only one solution. The reason for this is
that the closest match is the 45 angle and therefore there is no complementary solution.

Nondimensional Parameters

20%
15%
10%
5%
0%
-5%
-10%

Error

m3.2100.1 832112 8321IV.1 @321IV2 B832V.1 A3.2V.2 B3.2.VL]

Figure A.4: Error in the Nondimensional Parameters between Baseline 3 and the Scaled Structures with
Scaling Strategy 2.
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A.3. BASELINE 4

Finally the shell named Baseline 4 was also studied. This shell corresponds to test article
CTA8.4 [130]. This shell has the largest total thickness at a value of almost 10mm. The
main shell properties are reported in Table A.11.

Table A.11: Baseline 4 Properties.

Facesheet Ply Thickness Core Thickness Total Thickness
lay-up [mm] [mm)] [mm)]
[£30/90/0]; 0.137 [0.0054 in]  7.62 [0.30 in] 9.82[0.39 in]

A.3.1. STRATEGY 1

The scaled structures properties outlined in Table A.12 provide a detailed account of
the material and geometric adjustments made under Scaling Strategy 1, as well as the
buckling load in its dimensional form.

Table A.12: Scaled Structures Properties for the Scaling Strategy 1 of Baseline 4.

Shell Lay-up L[(;IIIIIgII]h thi((::l(z;zss Mgzerreial I?olililkl[gll\}g]
[mm]

o 02-, 1250 22 Ronacell 780

i.cla.lfg (78/ = 78)s 354 2.2 I;%l(l)i/c\g}l 732

iclai?i (15/07 =15 1242 25 I;%l(l)wwelzﬂ 625

icla}?c; (65/0/ —65) 630 2.4 I;%l(l)acWeFH 978

The quality of the scaling for each design is reported in Fig. A.5. In Table A.13, the
buckling load and modes are compared for the Baseline 4 and the scaled models with
Strategy 1.
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Nondimensional Parameters
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Figure A.5: Error in the Nondimensional Parameters between Baseline 4 and the Scaled Structures with
Scaling Strategy 1.

Table A.13: Buckling Response.

Nondimensional Buckling Load

Shell Buckling Load [-] [kN] ] nll
Baseline 4 431 5868 5 8
Scaled 4.1.1.1 445 780 5 8
Scaled 4.1.1.2 417 732 5 9
Scaled 4.1.11.1 435 625 4 8
Scaled 4.1.11.2 431 978 6 8
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A.3.2. STRATEGY 2

The scaled structures properties outlined in Table A.14 provide a detailed account of
the material and geometric adjustments made under Scaling Strategy 2, as well as the
buckling load in its dimensional form. Note that the buckling load values are very high
for many configurations, calling into question the approach in this case.

Table A.14: Scaled structures properties for the Scaling Strategy 2 of Baseline 4.

Total

Shell Facesheet lay-up thickness Iiilrgr;[]}l I?ol;iikl[tﬁ]
(mm]
Scaled 4.2.1.1 (12/ =12)14 491 1257 2624
Scaled 4.2.1.2 (78/ —78)14 491 352 461
Scaled 4.2.11.1 (15/0/ —15)10 5.26 1251 3035
Scaled 4.2.11.2 (65/0/ - 65)19 5.26 632 5225
Scaled 4.2.111.1 ([12/-12]4)7 491 1257 2624
Scaled 4.2.111.2 ([78/—=78]4)7 491 352 461
Scaled 4.2.1V.1 ([21/-21/9015)6 5.26 826 4882
Scaled 4.2.1V.2 176/ —76/9015)6 5.26 354 3087
Scaled 4.2.V.1 ([15/0/ —15]y)5 5.26 1251 3035
Scaled 4.2.V.2 ([65/0/ —65])5 5.26 632 5225
Scaled 4.2.VI.1 (125/0/ —25/9015)4 491 890 4032
Scaled 4.2.V1.2 ([63/0/ —63/90]5)4 491 602 4446

As seen in the Table A.15, these buckling load and modes are compare for the Base-
line 4 and the scaled models with Strategy 2. The quality of the scaling for each design is

reported in Fig. A.6.
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Table A.15: Buckling Response.

Nondimensional Buckling Load

Shell Buckling Load [-] [kN] ] nl
Baseline 4 431 5868 5 8
Scaled 4.2.111.1 461 2624 4 8
Scaled 4.2.111.2 461 2625 4 8
Scaled 4.2.1V.1 436 4882 4 8
Scaled 4.2.1V.2 440 3087 4 8
Scaled 4.2.V.1 431 3035 4 8
Scaled 4.2.V.2 434 5225 4 8
Scaled 4.2.VI.1 472 4032 4 8
Scaled 4.2.VI.2 458 4446 4 8
Nondimensional Parameters
O ap 2 ﬁ Z F
R W
10%
5%
5 0%
B 5%
S10% e = m e m e e e e e
-15% bt--mmmm e e e

m4. 2101 342112 @4.21V.1@4.2.1V.2
§42V.1 842V2 @42VL.1@42.VIL2

Figure A.6: Error in the Nondimensional Parameters between Baseline 4 and the Scaled Structures with
Scaling Strategy 2.
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