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Abstract

This report presents the results of the graduation thesis from the TU Delft, performed
at TNO unit Defence, Safety and Security, expertise group Weapon Systems. The goal
of this graduation project is to develop a controller for a projectile equipped with the
Precision Guidance Kit (PGK). The PGK is a Course Correction Fuze (CCF) which
can be used to retrofit ’dumb’ artillery projectiles. It has canards to provide course
correction and contains a GPS sensor to determine it’s position and velocity.

The dynamics of the projectile are described by a nonlinear 6 Degrees of Freedom (DoF)
non-rolling body frame model. A static model is made of the PGK where its aerody-
namics are calculated using Computational Fluid Dynamics.

A Jacobian based guidance algorithm is developed for the 6 DoF model which calculates
the changes in velocity needed along the perturbed trajectory to set the projectile back
on the ideal path towards the target. These guidance signals function as a reference to
be tracked by the controller.

A switching mode controller is designed, tuned and tested empirically in simulation.
A nonlinear controller is designed to set the PGK actuator at an angle based on the
guidance signals. Three switching laws are designed, the first to set the starting time
of the controller, the second to switch the actuator off when the projectile is on a new
ideal trajectory, and a third to avoid chattering, excessive switching, between the control
modes.

The combination of the PGK actuator, the Jacobian guidance and the switching con-
troller is shown to provide course correction successfully for four different trajectories
with random offsets in initial velocity and pitch and yaw angle. The average miss dis-
tance and Circular Error Probable are decreased by 90%, to less than 50 m, without
destabilizing the projectile.
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Chapter 1

Introduction

Most of the innovation on modern weapon systems currently contributes to improving
accuracy. Among the many motivations driving this effort are reduction of collateral
damage, tactical advantages, and costs. Military operations are often conducted in ur-
ban environments, which makes artillery support rather tricky because there is great
risk of collateral damage. When the projectiles can be delivered at higher accuracy at
longer range, there is less collateral damage, and the operating speed increases, since
the gun has to be repositioned less. Also the gun can operate at a larger distance from
the enemy which increases the safety. Less rounds are needed to effectively engage the
target, which provides another tactical advantage: the element of surprise, and of course
a reduction in cost.

Currently the gun is aimed based on the target coordinates and meteorological data
available previous to launch. The error in the gun-orientation and the muzzle veloc-
ity error have a large impact on the delivery accuracy when firing artillery projectiles.
Conventional artillery uses unguided projectiles or dumb munition with low accuracy,
half of the shells land more than 300m from the target when fired at maximum range [1].

Guided missiles offer a great increase in precision but also in cost, because of the propul-
sion, high-end sensors, actuators and Guidance Navigation and Control (GNC) systems.
Retrofitting so called dumb ammunition with a Course Correction Fuze (CCF) fills the
gap between precise, but expensive guided missiles and cheap, but inaccurate conven-
tional artillery rounds. A Course Correction Fuze replaces the original fuze of the pro-
jectile and has built in sensors and actuators to provide course correction. This way the
existing stockpiles of ballistic shells will be used with increases in accuracy and range,
and decreases in collateral damage and round expenditure. Due to extreme accelerations
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2 Introduction

at launch and limited amount of available space the sensors and actuators are subject
to challenging requirements, which complicate the design of Course Correction Fuzes.

This study focuses on the ATK XM1156 Precision Guidance Kit (PGK), a mechanically
simple Course Correction Fuze for spin-stabilized 155 mm ammunition. The simplicity
of the PGK ensures low cost and easy implementation, but creates additional require-
ments on the controller. The PGK fits in the conventional 155 mm deep fuze well and is
screwed onto the projectile like the original fuze, compatibility with other calibers, 105
mm for example will be introduced in future increments [2]. The available size of the
fuze is limited, and not all of the usual sensors and actuators which are used for guided
missiles can be placed in the fuze head, for this the controller has to compensate.

1-1 Literature study

In preparation for this thesis a literature study was performed, of which a summary is
presented in this section. The literature survey presents an overview of available CCFs,
the most commonly used dynamical models, and focuses on different types of guidance
and control currently applied to artillery projectiles equipped with a CCF.

1-1-1 Models

The Models of ballistic projectiles commonly use the highly nonlinear 6 Degrees of Free-
dom (DoF) Equations of Motion (EoM) as a starting point and are based on references
[3, 4, 5]. It is shown how this model can be transformed to the non rolling body frame,
used for spin-stabilized ammunition in reference [6]. This model is used for unguided
spinners, but also as simplified model for guided projectiles, where forces on a general
guidance-fuze are taken into account without specifying the actuators.
Both 6 DoF and 7 DoF models are highly nonlinear and are usually linearized before
they are used in controller design as in references [7, 8, 9, 10]. Projectile linear theory
or Linear Parameter Varying (LPV) techniques can be used to obtain a linear model
[11, 12, 13, 14]. The more simplified models neglect the coupling between the yaw and
pitch dynamics, so two separate controllers can be designed for the lateral and longi-
tudinal control. However, more complex and detailed models show that the pitch and
yaw channel dynamics are tightly coupled, therefore a multivariable feedback law is re-
quired. Designing separate controllers for each axis could lead to poor performance or
even instability [15]. and more complex control techniques are required. The linearized
models based on projectile linear theory have the benefit of less computational power
requirements and the combination with an LPV technique provides a more accurate
system model.
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1-1 Literature study 3

1-1-2 Control techniques

Switching control can be found everywhere in daily life. For example in the ther-
mostats to heat your house often a simple bang-bang switching controller is used, when
the temperature drops below the lower boundary the heating is switched on, when
the temperature rises to above the top boundary the heating is switched off again
[16]. In general switching control combines continuous dynamics with discrete switching
events[17]. Switching controllers are amongst others used in combination with gain-
scheduling controllers, which are one of the most popular control techniques for missile
autopilot design [18, 19]. Stability and the avoidance of chattering, excessive switching
between modes, are two typical challenges because of the involved switching [19, 20, 17].
Lyapunov’s stability theory for general nonlinear systems can be used to find switching
signals that preserve stability [17].

MPC is used in projectile guidance. However important differences are noted, mostly
caused by the type of projectile, actuator, or application. Some of the different applica-
tions of Model Predictive Control (MPC) are: fin-stabilized projectiles[7, 8], proportional
actuators, or direct-fire projectiles[7]. MPC has not yet been applied to control actuators
like the PGK, but it looks promising.

Other control methods can also be applied to guided projectiles. Linear quadratic
optimal control is used in [21, 22], both on projectiles with movable canards on the
nose. H∞ control methods are used in multiple studies by the French-German research
Institute of Saint Louis (ISL): in combination with PID control in [23]; H2 and H∞

constraints are compared in [24]; Mixed sensitivity H∞ control is used to design a gain
scheduled controller in [15]; In [25, 26] H∞ loop shaping is used. Different forms of PID
controllers are used in [27, 28, 29].

1-1-3 Conclusion

of the literature study is that a nonlinear 6 DoF non-rolling body frame model is the
best suitable model to describe the dynamics of a spin stabilized projectile. This model
is to be used as simulation model and can serve as the starting point for linearization.
Linear models are often chosen for guided projectiles, as the computational power in
the fuze is limited. A combination of (modified) projectile linear theory and jacobian
linearization results in an accurate LPV model.
Switching mode control and MPC are both common control methods used in guided
munitions, although they has not been applied to this kind of actuator. Stability and
chattering are two main challenges to be dealt with. H∞ provides robustness but does
not have the ability to deal with constraints. Linear MPC seems to be a logical choice
for a controller as it has the possibility of dealing with constraints, stability, and uses
linear models to decrease computational requirements.
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4 Introduction

1-2 Problem description

The problem statement is phrased with the following research question: How to design
and evaluate a controller for a 155 mm spin-stabilized gunfired projectile equipped with
the Precision Guidance Kit? The design criteria are:

• Robustness: Provide course correction without destabilizing the projectile

• Performance: Result in a Circular Error Probable (CEP) of less than 50m

initial
conditions

Projectile
Dynamics

Guidance
signals

Guidance

PGK
angle

Controller

actuator forces

PGK

state

on/off

Calculate nominal
trajectory

target
 coordinates

Figure 1-1: block diagram

The block diagram shown in figure 1-1 shows the entire system. With an exception of
the first block, that calculates the nominal trajectory based on the target, all blocks
need to be designed.

First of all a model of the projectile and the actuator is needed. The switching controller
and MPC controller require different models. The switching controller uses nonlinear
models, and the MPC controller uses linear models. So linearization of both the projectile
and actuator model is needed. Secondly a Guidance algorithm has to be designed to
create inputs for the controllers. Last but not least both controllers need to be designed.

Linear MPC control proved to be a significant challenge for the highly nonlinear simu-
lation model. Application of MPC in closed-loop simulations was not achieved in this
thesis. Therefore the structure of this thesis is somewhat unconventional. The design
and results of the switching controller are discussed completely, but the work concerning
the MPC, including theoretical derivation of the MPC structure and a working example
of a controlled pendulum, is presented as a stepping stone for further research. The
following research objectives are reached:

• Modeling the projectile and the PGK

• Linearization of the projectile and actuator model
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1-3 Thesis outline 5

• Implementing the Guidance algorithm

• Designing the switching mode controller

• Evaluation of the controller in simulation

1-3 Thesis outline

This thesis is structured in the following way. Chapter 2 describes the models used to
describe the projectile and actuator dynamics. This includes the translations between
the different reference frames. the description of the actuator, and the linearization of
both projectile and actuator model. The guidance is explained in chapter 3, where the
structure of the guidance algorithm is discussed and a simplified proportional example is
used for demonstration. The design of the switching controller and the MPC structure
is shown in chapter 4. Chapter 5 includes the simulations conducted with the switching
mode controller. Finally the conclusion and recommendations of this graduation work
can be found in chapter 6.

At the back of this thesis there is an appendix including the mathematical derivations
of the jacobian linearization that are found to be too tedious for the main matter of this
thesis.
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Chapter 2

Model

This chapter describes the dynamical models of the projectile and actuator that are
used for guidance, control, and simulation. In section 2-1 the projectile model is shown
in three subsections each describing a different reference frame. The inertial frame or
Earth frame, the body frame, and the non-rolling body frame, which is an intermediate
frame between the inertial and body frame. The transformations between these different
reference coordinate systems are included [6]. The full-nonlinear 6 Degrees of Freedom
(DoF) non-rolling body frame model, based on references [3, 4, 5], is used as high-fidelity
simulation model.
The actuator is described in section 2-2. A general description of the actuator is given
and the nonlinear actuator model is shown.
The 6 DoF non-rolling body model is linearized according to projectile linear theory [13]
and is shown in section 2-3. The resulting Linear Parameter Varying (LPV) model is
verified by comparison to the nonlinear model and the same is done for the actuator
model.

2-1 Projectile model

This section describes the Equations of Motion (EoM) of the projectile body with 6
DoF. Starting at the inertial reference frame, the equations of motion are transformed
to the body frame. An intermediate frame, the non-rolling body frame, is a commonly
used reference frame for highly spinning projectiles because of the lower computational
demand. This model will be used as simulation model, and as a starting point for a
linear control model.
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8 Model

2-1-1 Inertial reference frame

The Flat earth frame is used as inertial reference frame. This frame omits the rotation
and curvature of the earth, which is sufficiently accurate for short flight trajectories [11].
The x-axis is positive towards the target, parallel to the surface of the earth. The y-axis
is perpendicular to the x-axis, parallel to the earth’s surface and positive to the right
when looking from gun to target. The z-axis is perpendicular to both x- and y-axis and
positive downwards as in figure 2-1a.

(a) Earth coordinate system (b) Body coordinate system

Figure 2-1: Used coordinate systems

Source: [11]

2-1-2 Body frame

Standard Euler angles are used to transfer the earth frame to the rolling body frame,
which has its origin at the center of mass of the projectile. The x-axis of this frame
points forward out of the nose of the projectile. The y-axis is positive to the right,
and z-axis downwards, when looking along the x-axis in positive direction. Where u, v,
and w are the velocity vector components, p, q, and r are the angular velocity vector
components, and α and β are the angle of attack and sideslip, respectively, see figure
2-1b. I is the inertia matrix, FX , FY , and FZ the force components, and MX , MY , and
MZ the moment components. The 6 DoF EOM! (EOM!) are given by:







u̇
v̇
ẇ






=

1

m







FX

FY

FZ






−







0 −r q
r 0 −p
−q p 0













u
v
w






(2-1)
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ṗ
q̇
ṙ






=

[

I
]

−1













MX

MY

MZ






−







0 −r q
r 0 −p
−q p 0







[

I
]







p
q
r












. (2-2)

Equations (2-3) and (2-4) relate the body frame to the earth frame.







ẋE

ẏE

żE






=







cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ













u
v
w







(2-3)







φ̇

θ̇

ψ̇






=







1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sin φ

cos θ
cos φ
cos θ













p
q
r






(2-4)

The force vector F = [FX FY FZ ]T can be decomposed into four elements, namely an
aerodynamic force acting on the projectile body, Fb, the Magnus force, Fm, caused by
the combination of the spinning of the projectile and angle of attack, the gravity, Fg, and
the actuator force Fa. The actuator model is discussed in section 2-2, but the other three
forces are shown below. Here q̄ is the dynamic pressure, S the aerodynamic reference
surface of the projectile, d the diameter of the projectile, V the total velocity. CA0 and
CA2 are the terms of the aerodynamic drag coefficient, CNα is the normal coefficient,
and Cypα the Magnus force coefficient. The normal coefficient is the same for Y and Z
direction because of projectile symmetry. The aerodynamic coefficients are obtained by
table lookup, as a function of Mach number M.

F =







X
Y
Z






= Fb + Fm + Fg + Fa (2-5)

Fb = −q̄S







CA0 + CA2

(

v2+w2

V 2

)

CNα
v
V

CNα
w
V






(2-6)

Fm = −q̄S
(pd

V

)







0
Cypα

w
V

−Cypα
v
V






(2-7)

Fg = mg







− sin θ
cos θ sinφ
cos θ cosφ






(2-8)
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F = −q̄S

















CA0 + CA2

(

v2+w2

V 2

)

CNα
v
V

CNα
w
V






+

(

pad
V

)







0
Cypα

w
V

−Cypα
v
V

















+mg







− sin θ
cos θ sinφ
cos θ cosφ






+ Fa (2-9)

The moments M = [MX MY MZ ]T are decomposed in the same way as the forces. The
moment caused by aerodynamics on the body, Mb, and the Magnus effect, Mm, are
shown. Additionally there is a term containing the damping, Md. And the actuator
moments are Ma, explained in more detail in section 2-2. Cmα is the aerodynamic body
overturning moment coefficient, Cnpα the Magnus moment coefficient, and Clp, Cmq, and
Cnr the damping moment coefficients. Which are also obtained by table lookup based
on the Mach number, however the Magnus moment coefficient is also a function of α′,
which is the angle of incidence. α′ = arccos u

V .

M =







MX

MY

MZ






= Mb +Mm +Md +Ma (2-10)

Mb = q̄Sd







0
Cmα

w
V

−Cmα
v
V






(2-11)

Mm = −q̄Sd
(pad

V

)







0
Cnpα

v
V

Cnpα
w
V






(2-12)

Md = q̄Sd
( d

V

)







Clpp
Cmqq
Cnrr






(2-13)

M = q̄Sd

















0
Cmα

w
V

−Cmα
v
V






−

(pad

V

)







0
Cnpα

v
V

Cnpα
w
V






+

( d

V

)







Clpp
Cmqq
Cnrr

















+Ma (2-14)

2-1-3 Non-rolling body frame

The last coordinate system used is the non-rolling body frame (or body fixed plane
frame) [6, 30]. This frame will pitch and yaw with the projectile, but not roll, which
makes it a convenient frame for spinning projectiles. In the body frame the forces acting
on the projectile body rotate with the body which requires significant computational
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power since the roll rate is high (order of magnitude 200 Hz). In the non-rolling body
frame these forces are decoupled from the rolling of the projectile, but still follow the
changes in pitch and yaw. Rewriting the equations from the body frame to the non-
rolling body frame does not change the physics, it is a mathematical ’trick’ to decrease
computational time.

In the non-rolling body frame, φ = 0, and φ̇ = 0, which will lead to p = −r tan θ. The 6
DoF equations of motion, in the non-rolling body frame are







u̇
v̇
ẇ






=

1

m







FX

FY

FZ






−







0 −r q
r 0 r tan θ
−q −r tan θ 0













u
v
w






(2-15)







ṗ
q̇
ṙ






=

[

I
]

−1













MX

MY

MZ






−







0 −r q
r 0 r tan θ
−q −r tan θ 0







[

I
]







p
q
r












(2-16)







ẋE

ẏE

żE






=







cos θ cosψ − sinψ sin θ cosψ
cos θ sinψ cosψ sin θ sinψ
− sin θ 0 cos θ













u
v
w






(2-17)







φ̇

θ̇

ψ̇






=







1 0 tan θ
0 1 0
0 0 1

cos θ













p
q
r






(2-18)

As φ = 0 the equation of the gravitational force will change to

Fg = mg







− sin θ
0

cos θ






(2-19)

The equations of aerodynamic forces and moments are identical to those in the rolling
body frame. The variables change however, since they are now calculated in the non-
rolling body frame. Therefore the total equation describing the forces changes to

F = −q̄S

















CA0 + CA2

(

v2+w2

V 2

)

CNα
v
V

CNα
w
V






+

(

pad
V

)







0
Cypα

w
V

−Cypα
v
V

















+mg







− sin θ
0

cos θ






+ Fa (2-20)

while the equation describing the moments remains the same as in the rolling body
frame.
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M = q̄Sd

















0
Cmα

w
V

−Cmα
v
V






−

(pad

V

)







0
Cnpα

v
V

Cnpα
w
V






+

( d

V

)







Clpp
Cmqq
Cnrr

















+Ma (2-21)

2-1-4 Nominal trajectory

The trajectory without actuator forces and moments, and without an initial offset is
called the nominal trajectory. The target is known before launch and ideally the initial
firing settings will launching the projectile on a trajectory that will end at the target
position, this trajectory is the nominal trajectory. In practice however there are errors in
the initial settings that will cause the trajectory to deviate, for which the actuator will
compensate. Still the nominal trajectory is used for guidance and control as the actual
trajectories are close to the nominal trajectory. The nominal trajectory is known before
launch, so any calculations involving the nominal trajectory can be done off-line and do
not use the limited computational power in flight. In this report the nominal trajectory
is used to show the working the actuator model in section 2-2-2 and in the construction
and verification of the linear projectile model in sections 2-3-1, and 2-3-2 respectively.

The initial state of this nominal trajectory is

x0 =
[

u0 v0 w0 p0 q0 r0 xE0
yE0

zE0
φ0 θ0 ψ0

]T

=
[

655m/s 0 0 1324/s 0 0 0 0 0 0 45◦ 0
]T
.

The trajectory is shown in figure 2-2 and has a final position of [xE yE zE ] = [21855 665
0] m.
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2
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Figure 2-2: nominal trajectory

2-2 Actuator model

This section is split in two parts. The first part explains how the actuator, the Precision
Guidance Kit (PGK), looks and functions. The second part will discuss the modeling
of the actuator and ends with the equations that describe Fa and Ma to complete the
equations of motion from the previous section.
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2-2-1 Actuator description

Figure 2-3: ATK XM1156 Precision Guidance Kit

Source: [31]

The ATK XM1156 PGK can be used to retrofit unguided munitions, see figure 2-3. The
regular ’dumb’ fuze of the projectile can be replaced by the PGK which can deal with
the detonation, like the old fuze, and adds guidance possibilities at the same time. It is
a roll-decoupled fuze, which means that the fuze can rotate with respect to the projectile
body. It is equipped with four canards, two for anti-roll rotation of the nose and two to
generate lift for the course correction. Because of the anti-roll canards the fuze will spin
in the opposite direction of the projectile’s spin when in flight. The ring with the canards
can be despun using a roll-brake. When the braking power is fully applied, the ring will
act as if fixed to the projectile. Without braking the ring will spin freely in the opposite
direction of the projectile’s spin. And when the braking power is somewhere in between,
the ring can be fixed with respect to the earth. If the PGK ring is set fixed with respect
to the earth it can deliver force and moment in a certain direction. It’s important to
note that the PGK is not a proportional actuator, the direction of the actuator forces
and moments can be chosen, but the magnitude cannot. So the controller will have two
options, apply the actuator at a certain angle, or letting it spin freely. When the last
setting is chosen there will be no resulting actuator forces perpendicular to the projectiles
movement, only a drag force.
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Flift

Flift

Froll

Froll

Figure 2-4: schematic front-view of PGK

So the steering canards can be stabilized in the proper roll attitude to generate a lift
force in the desired direction. The two roll canards only facilitate the rotation of the ring,
so it can be set at certain angle, see figure 2-4 for a schematic front-view of the PGK.
This concept is originally proposed by [32] and differs from the other Course Correction
Fuzes (CCFs) by its simplicity; there is no deployment of drag brakes, spin brakes or
canards and there is no motor or extra battery required since an alternator generates
power from the spinning of the fuze with respect to the body. The only sensor the PGK
uses is a Global Positioning System (GPS) sensor with roll angle determination by a
magnetometer [2]. The PGK promises to deliver significant improvements to projectile
accuracy, achieving a Circular Error Probable (CEP) of less than 50 m [33].

2-2-2 Nonlinear actuator model

The nonlinear actuator model is a simplification. In reality the PGK is actuated by
a brake, counteracting the torque caused by aerodynamics. The brake torque can be
regulated, when this is zero the PGK ring can spin freely, when it’s maximized the PGK
ring is rotating with the body, and somewhere in between the PGK ring can be set fixed
with respect to the surroundings. This model is calculating the forces and moments in
the fin frame caused by the actuator, given the state of the projectile and the angle of
the PGK ring. This is a static model, all dynamics of the actuator are omitted in this
simplification.

The aerodynamic coefficients are calculated with Computational Fluid Dynamics (CFD)
software, and are defined in the fin frame. The forces and moments in the fin frame,
respectively FF and MF are defined as follows. With q̄ the dynamic pressure, Sr the
reference surface of the fins, lr the reference length of the fins, C.. the aerodynamic
coefficients, M the Mach number, and αF in the angle of attack of the Fins.
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FF = q̄Sr







CAF in(M, αF in)
CYF in(M, αF in)
CNF in(M, αF in)






(2-22)

MF = q̄Srlr







CLLF in(M, αF in)
CMF in(M, αF in)
CLNF in(M, αF in)






(2-23)

The Mach number, M, depends on the velocity and altitude, which are part of the
current state, x(t), and the angle of attack of the PGK Fins depend on the current state
and the angle of the PGK ring, αP GK . So these equations can be rewritten to:

FF = q̄Sr







CAF in(x(t), αP GK)
CYF in(x(t), αP GK)
CNF in(x(t), αP GK)






(2-24)

MF = q̄Srlr







CLLF in(x(t), αP GK)
CMF in(x(t), αP GK)
CLNF in(x(t), αP GK)






(2-25)

Since these Forces and Moments are located in the fin frame, at the nose of the projectile,
a translation is necessary for them to be applied to the equations of motion in the non-
rolling body frame. The forces remain the same, but the moment caused by these forces
needs to be taken into account. The translation across the x-axis from the nose to the
CoG of the projectile body is −0.43m

Fa =







Fax

Fay

Faz






= q̄Sr







CAF in(x(t), αP GK)
CYF in(x(t), αP GK)
CNF in(x(t), αP GK)






(2-26)

Ma = q̄Srlr







CLLF in(x(t), αP GK)
CMF in(x(t), αP GK)
CLNF in(x(t), αP GK)






+







0
0.43Faz

−0.43Fay






(2-27)

Fa and Ma are the actuator forces and moments, and can be substituted into equation
(2-20) and (2-21). In figures 2-5, 2-6 and 2-7 the resulting forces and moments in y and
z direction are shown. These are snapshots of the actuator model at a quarter, halfway
and at three quarters of the nominal trajectory previously discussed in section 2-1-4.
At this point the PGK is rotated with αP GK increasing from 0 to 2π. The magnitude
of the actuator forces and moments change along the trajectory, as the velocity of the
projectile changes. As can be seen from the figures the shape of the force and moment
plots is similar for the different times along the trajectory.
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Figure 2-5: actuator model at a quarter of the nominal trajectory
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Figure 2-6: actuator model halfway nominal trajectory
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Figure 2-7: actuator model at three quarters of the nominal trajectory

2-3 Linearization

In section 2-1 and section 2-2 the nonlinear models of the projectile and actuator are
discussed. These models are often linearized to save computational time or to be used
in combination with linear controllers. This section describes how the projectile and
actuator model are linearized, and also compares them to the nonlinear models for
validation.

2-3-1 Linear projectile model

Some simplifications to the non-rolling projectile model are made according to projectile
linear theory [13]:

• V and p are large compared to θ, ψ, v, w, q, and r, such that products of small
quantities and their derivatives are negligible.

• V , p are slowly changing and considered to be constant for small time steps.

• u is large compared to v and w: u ≈ V .

• small angles of attack: α ≈ w
V , and β ≈ v

V .

• since the shell has cylindrical symmetry: Iyy = Izz.

Since V and p are considered to be constant, their derivatives are zero and can be left
out of the equations of motion, changing it to a 4 DoF system. The remaining four states
are dependent on the values for V0 and p0, so these are updated along the trajectory,
which makes it a parameter varying model.
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0 r tan θ 0 V
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(2-28)

Now eliminating the products of small quantities, and applying assumption of constant
V = V0 and p = p0, and Iyy = Izz
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(2-29)

Using linearization along the nominal trajectory these 4 DoF equations can be writ-
ten into a linear equation describing the deviation of the trajectory from the nominal
trajectory.

Taking the first term of the Taylor expansion, the Jacobian, from (2-29) results in
equation (2-30), for details of this derivation see Appendix A:

A =











−Aj −Bj 0 −V0

Bj −Aj V0 0
−Cj Ej Fj −Gj
−Ej −Cj Gj Fj











(2-30)

where

Aj =
1

mV0

q̄SCNa (2-31)

Bj =
1

mV0

q̄S
p0d

V0

Cypa (2-32)

Cj = I−1
yy

q̄Sd

V0

p0d

V0

Cnpa (2-33)

Ej = I−1
yy

q̄Sd

V0

Cma (2-34)

Fj = I−1
yy

q̄Sd

V0

dCnr (2-35)

Gj = I−1
yy Ixxp0 (2-36)

As can be seen, the elements in matrix A still depend on V0 and p0, which are considered
to be constant for small time intervals. Therefore matrix A will be updated along the
trajectory, resulting in an LPV system describing the deviation dynamics,

δ̇x(t) = A(V0, p0)δx(t) where δx(t) = x(t)− x̄(t) (2-37)

where x̄ is the nominal state.
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2-3-2 Validation of linearized projectile model

To validate the assumptions and simplifications leading to the LPV model (2-37), it is
compared to the non-linear model with the same initial offset from the nominal trajec-
tory. Four cases are shown: the first without offset, so the nonlinear trajectory in this
case is the nominal trajectory, the second with a .5◦ offset in initial pitch angle, the
third with a .5◦ offset in initial yaw angle, and the fourth with a 10 m/s offset in initial
velocity. Since deviation in these initial values are the main cause of delivery error of
projectiles, they will be varied in the later simulations to test the controller. Therefore
the linear model should be valid for these forms of deviation. As a measure of accuracy
the Root-Mean-Square Error (RMSE) relative to the traveled distance is used. The rel-
ative RMSE should be small, in the order of 1%. Finally the influence of the sampling
time is analyzed.

zero offset There is no initial offset with respect to the nominal trajectory, so the
nonlinear trajectory equals the nominal trajectory.
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Figure 2-8: comparison trajectories zero offset

The two trajectories are shown in figure 2-8a, and are almost equal. The RMSE relative
to the traveled distance is in the order of 1× 10−4.

pitch offset An offset of .5◦ is applied to the initial pitch angle of the nominal trajectory.
Both the nonlinear and the linear trajectory will therefore deviate from the nominal
trajectory.

D. Mutters Master of Science Thesis



2-3 Linearization 21

0

1000

2000

3000

4000

5000

6000

1000

-z
 [
m

]

y [m]

500

104
x [m]

2.520 1.510.50

nonlinear

linear

(a) Trajectory pitch deviation

0 0.5 1 1.5 2 2.5 3

traveled distance [m] ×104

7.5

8

8.5

9

9.5

10

10.5

re
la

ti
v
e
 m

e
a
n
 s

q
u
a
re

d
 e

rr
o
r 

[-
]

×10-3

(b) RMSE relative to traveled distance

Figure 2-9: comparison trajectories pitch offset

The two trajectories are shown in figure 2-9a. The relative RMSE is in the order of
5× 10−3, and the maximum of the relative RMSE as can be seen from 2-9b it’s maximum
is around the apex of the trajectory, where the velocity is minimal.

yaw offset Similar to the pitch offset, in this case a yaw offset of .5◦ is applied to the
nominal trajectory’s initial condition.
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Figure 2-10: comparison trajectories yaw offset

The two trajectories are shown in figure 2-10a. The relative RMSE shown in figure 2-10b
is in the order of 4× 10−3, with the maximum around the apex of the trajectory.

initial velocity offset A deviation of 10m/s is applied to the nominal initial conditions.
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Figure 2-11: comparison trajectories velocity offset

The two trajectories are shown in figure 2-11a. The relative RMSE shown in figure 2-11b
is in the order of 9× 10−3, with the maximum around the beginning of the apex of the
trajectory.

sampling time The sampling time is increased from 0.01s to 0.1s and 0.5s, and the
zero offset and pitch offset simulation are repeated. Figure 2-12 shows that the RMSE
increases with the sampling time for the zero offset simulation. The pitch offset simula-
tion shows almost no change in RMSE between Ts = 0.01s and Ts = 0.1, but when the
sampling time is increased to Ts = 0.5s the error also increases, as can be seen in figure
2-13.
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Figure 2-12: comparison sampling time for zero offset simulation
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Figure 2-13: comparison sampling time for pitch offset simulation

2-3-3 Linearized actuator model

The nonlinear actuator model described in equations (2-26) and (2-27) is written in short
as

[

Fa

Ma

]

= fP GK(x(t), αP GK) (2-38)

.

A small increase in PGK angle is applied, δαP GK
, resulting in a slightly different actuator

force and moment, F+
a , and M+

a . This actuator model is linearized in the same way as
the projectile model, however the linearization is done numerically instead of analytically.
The actuator model contains a highly nonlinear transformation from fin frame to body
frame, therefore numerical linearization is more appropriate.
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[

F+
a

M+
a

]

= fP GK(x(t), αP GK + δαP GK
) (2-39)

so the gradient mlin is

mlin =

[

F+
a

M+
a

]

−

[

Fa

Ma

]

δαP GK

(2-40)

The new force and moment vector according to the linear actuator model are:

[

Flin

Mlin

]

= mlin ∗ dαP GK +

[

Fa

Ma

]

(2-41)

which can be rewritten as

[

δF

δM

]

=

[

Flin

Mlin

]

−

[

Fa

Ma

]

= mlin ∗ dαP GK = B ∗ dαP GK . (2-42)

So the linearized actuator model describing the deviation dynamics of the actuator is
B = mlin.
In figure 2-14 to 2-18 and table 2-1 you can see the effect of the size of the update step
dαP GK on the accuracy of the linearization.
dα = 0.001 is chosen for the local linearization, a sensitivity analysis on this value is
performed at the end of this section in table 2-2.
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Figure 2-14: Linear actuator model, update step dα = 0.001 ∗ 2π
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Figure 2-15: Linear actuator model, update step dα = 0.01 ∗ 2π
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Figure 2-16: Linear actuator model, update step dα = 0.02 ∗ 2π
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Figure 2-17: Linear actuator model, update step dα = 0.05 ∗ 2π
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Figure 2-18: Linear actuator model, update step dα = 0.1 ∗ 2π

dαP GK [2π] 0.001 0.01 0.02 0.05 0.1
mean error 1.2419× 10−5 0.0015 0.0059 0.0368 0.1452

Table 2-1: influence of dαP GK on the error, with dα = 0.001

In table 2-2 it can be seen that the mean error is minimal when dα = dαP GK , this
is caused by the definition of the linear model. Then why is dα = 0.001 chosen as
linearization value? To avoid the underestimation of the forces and moments caused by
the actuator. When dα < dαP GK the forces from the linear model are larger than those
of the nonlinear model, therefore the control effort will be lower.
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dαlin [2π] 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.2
mean error [×10−4] 11.8 8.85 5.91 2.96 0.00 2.96 5.91 8.86 11.8 14.8

Table 2-2: influence of dα on the error, with dαP GK = 0.01 ∗ 2π

2-4 Conclusion

The dynamical models are described in this chapter, as are the transformations between
the different coordinate systems. The nonlinear 6 DoF non-rolling body frame projectile
model serves as a simulation model as well as the base for the linear projectile model.
The derivation of the LPV projectile model and the linear actuator model is shown,
based on projectile linear theory and Jacobian linearization. The linear models are
both validated and are capable of accurately describing the projectile and the actuator
with the expected changes in initial velocity, pitch angle, yaw angle and sampling time.
Therefore they can be used in (linear) controller design.
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Chapter 3

Guidance

In Guidance Navigation and Control (GNC) systems, the guidance provides the desired
trajectory, the navigation determines the current state, and the control manipulates
the actuator to follow the trajectory determined by the guidance. In this chapter the
guidance is explained. The navigation is assumed to be ideal, so at any time the state of
the projectile is known. To illustrate how the guidance works, a proportional controller
and proportional actuator are used. This will greatly simplify the control problem and
results in a simulation in which the possibilities and limitations of the guidance can be
shown. The actuator and controller can be seen as ideal, so the resulting error will be
caused by the guidance and not by the actuator or controller. Therefore this chapter
ends with a perfect benchmark for the controller designed for the PGK in chapter 4.

3-1 Jacobian guidance

The guidance is developed by TNO and is modified and applied to the 6DoF non-rolling
body frame in this chapter. It is a Jacobian based guidance, which calculates the change
in velocity needed to deliver the projectile at the desired end-point. This is done by
analyzing changes in the velocity along the nominal trajectory, and their effect on the
end-point.
Intuitively this effect will change along the trajectory, velocity added at the beginning
of the trajectory will cause a larger deviation of the end-point, than additional velocity
a second before impact.
A Jacobian matrix is acquired of the effects of a deviation in velocity ∆Vx, ∆Vy and ∆Vz

on the deviation of the impact point in range and cross-range direction ∆R and ∆CR.
This Jacobian matrix is calculated along the nominal trajectory, is computationally
expensive but can be done off line so it does not use the scarce computational power
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available in the actuator itself. It is commonly assumed that the projectile trajectory is
close enough to the nominal trajectory for this jacobian matrix to be used.

[

∆R
∆CR

]

= Jguidance(t)







∆Vx

∆Vy

∆Vz






(3-1)

where

Jguidance(t) =











∂R

∂Vx

∂R

∂Vy

∂R

∂Vz

∂CR

∂Vx

∂CR

∂Vy

∂CR

∂Vz











(3-2)

The elements of the jacobian matrix are calculated multiple times along the trajectory,
and are interpolated between calculation points, see figure 3-1. The green and yellow
line are printed in bold to highlight that ∆Vy has the largest effect on ∆CR, and ∆Vz

has the largest effect on ∆R. An increase in ∆Vz has a negative effect on the range, this
is because the z-axis is positive downwards and it makes sense that the projectile will
have a decreased range, with an increased velocity pointed towards the surface.
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Figure 3-1: Jacobian elements along nominal trajectory

With this information, the effect that a change in velocity somewhere along the trajectory
has on the location of the impact point is known. The goal of the guidance is to show
the change in velocity needed to minimize the error between expected impact point and
the desired impact point. So the inverse relationship is needed. At any time along the
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trajectory, the impact point can be calculated using the current state. And the range
and cross-range deviation ∆R and ∆CR from the impact point to the desired impact
point can be obtained.

[

∆R(t)
∆CR(t)

]

= Jguidance(t)Tvi







uEn(t)− uE(t)
vEn(t)− vE(t)
wEn(t)− wE(t)






+ Iguidance







xEn(t)− xE(t)
yEn(t)− yE(t)
zEn(t)− zE(t)






(3-3)

Tvi =







cos θ cosψ − sinψ sin θ cosψ
cos θ sinψ cosψ sin θ sinψ
− sin θ 0 cos θ






, and Iguidance =

[

1 0 ||uEn ||
0 1 ||vEn ||

]

(3-4)

Where Tvi is the transformation matrix from the initial frame, or earth frame, to the
non-rolling body frame. The second term in equation (3-3) is to compensate for the fact
that this extrapolation method calculates the final position at the impact time of the
nominal trajectory. This position is not exactly at ground level and this is corrected
using the norms of the expected final velocity in x and y direction in matrix Iguidance.

A change in velocity needs to be applied to the projectile to end up with a desired change
in impact point of, so the resulting delta between predicted impact point and desired
impact point will be zero. The desired changes in velocity ∆V ∗

y , and ∆V ∗

z will be used
as a reference signal for the controller. Since the PGK does not provide the possibility
to change the velocity in x direction, that term is not used as a reference signal. This
results in

[

∆V ∗

x

∆V ∗

y

]

=

[

0 1 0
0 0 1

]

J+

guidance

[

∆R(t)
∆CR(t)

]

, (3-5)

where J+

guidance is the Moore-Penrose inverse, or pseudo-inverse, of Jguidance.

3-2 Guidance example

The guidance provides reference signals ∆V ∗

y , and ∆V ∗

z as described in the previous
section. The guidance is applied to a simplified problem, the nonlinear 6 DoF non-rolling
body frame projectile model is used, but the actuator is assumed to be proportional.

The guidance signals are the deviations in normal velocity that would set the projectile
onto a new desired trajectory leading to the target. A simple proportional control
law is used to demonstrate the guidance. These signals,∆V ∗

y,z, are multiplied by two
proportional control gains, K1,2 and applied directly to the equations of motion in the
non-rolling body frame as specific force Fsy,z .
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[

Fsy

Fsz

]

=

[

K1∆V ∗

y

K2∆V ∗

z

]

(3-6)
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(3-7)
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=

[

I
]
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[

I
]







p
q
r












(3-8)

The combination of the guidance and this simple controller is significantly reducing the
delivery error. An initial deviation of ±1◦ in pitch and yaw angle is used to show the
effect of the guidance and control in this example. The gains in this example are set at
K1 = K2 = 1, without any further tuning the guidance and control are already working
satisfactory.
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Figure 3-2: proportional forces example guidance

As can be seen in figure 3-2c about 4 seconds are needed for the guidance and control to
change the trajectory of the projectile so it is on track to hit the target. After 4 seconds
the guidance commands (and thus the specific forces since K1 = K2 = 1) are close to 0.
So there are no, or small, changes in velocity needed to reach the desired destination.
Just before impact the forces blow up. This can be explained by the remaining error.
With this guidance and control there is still a miss-distance of almost 7m. Just before
impact there is little time to reach the target without an error. When the time to impact
goes to 0, the required delta velocity to reach a delivery error of zero goes to infinity.
This can also be seen in figure 3-2b.

The miss distance, or delivery error, ε, is defined as
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ε =







εx

εy

εz






=







xE(timpact)
yE(timpact)
zE(timpact)






−







Tx

Ty

Tz






, (3-9)

where Tx,y,z are the target coordinates, and (x, y, z)E(timpact) the simulated coordinates
in the earth frame at time of impact. The delivery errors of the uncontrolled and
controlled simulations with the different offsets for initial pitch and yaw angle are listed
in table 3-1. As can be seen in the table, the guidance in combination with a simple
actuator and controller is capable of dealing with offsets of 1◦ in all directions. These
offsets will cause delivery errors of around 400m for the uncontrolled trajectory. This
guidance and controller can reduce the error to a couple of meters. Note that the
simulation stops right before the projectile hits the ground, in the second row of table
3-1 this is quite large. The projectile is still 6m above ground when the simulation stops,
although the delivery error is already greatly reduced, it could be reduced further when
the simulation stops at exactly 0 as is the case for the other simulations shown in this
table.

This test is repeated for another proportional actuator, controlling only the moments.
The controller gains are K1 = K2 = 0.5, resulting in a trajectory and guidance signals
as shown in figure 3-3. The resulting miss distances can be found in table 3-1, and are
significantly smaller than the uncontrolled miss distances, but slightly larger than those
of the actuator using specific forces.

[
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Msz

]
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ṙ






=

[

I
]

−1













L
M
N






−







0 −r q
r 0 r tan θ
−q −r tan θ 0







[

I
]







p
q
r












+







0
Msz

−Msy






(3-12)
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Figure 3-3: proportional moments example guidance

Table 3-1: proportional example guidance: delivery error for different offsets

offset [◦] uncontrolled [m] controlled by Fs [m] controlled by Ms [m]
θ ψ εx εy εz εx εy εz εx εy εz

0 0 0 0 0 0 0 0 0 0 0
+1 +1 -12.6 401 0 4.2 0.5 6.1 10.1 5.8 0
+1 -1 75.6 -359 0 0.5 0 0 8.6 -2.8 0
-1 +1 -99.9 354 0 -0.7 0 0 -12.9 3.8 0
-1 -1 -13.2 -402 0 -0.6 0 0 -17.6 -5.3 0
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3-3 Conclusion

In this chapter the principles of the jacobian guidance are explained. The mathematical
derivation of the guidance signals are included. These signals will function as a reference
to be tracked by a controller. To demonstrate the capabilities of the guidance, two simple
proportional actuators are used, one providing only forces, and one only moments. These
actuators are combined with a proportional controller. This combination results in a
decrease of delivery errors by at least 95% for initial offsets in pitch and yaw angles of
1◦.
While the actuator and controller are to be changed for more realistic ones in the next
chapter, the guidance is as described in this chapter. So any increase in delivery error
can be attributed to the actuator and controller.
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Chapter 4

Control

This chapter is divided into two main parts, one for each controller. Firstly the guidance
as previously described will be combined with the nonlinear actuator model and an
empirical switching mode controller. The specific effect that the actuator setting has
on the impact point and the guidance signals is analyzed. Based on that an empirical
switching mode controller is designed. The switching points of the controller are analyzed
based on their effect on miss distance and actuator signals. This analysis finishes with a
tuning for the switching controller that successfully provides course correction with the
Precision Guidance Kit (PGK) actuator.

Secondly the Model Predictive Control (MPC) controller is detailed. The structure of the
MPC is shown, including the control model, how the prediction matrices are constructed,
as well as the performance signal and the cost function. This is explained by solving
the control problem of stabilizing a downward facing pendulum. This can function as a
stepping stone for a model based controller to provide course correction in combination
with the PGK.

4-1 Switching controller

A logic-based switching controller is a controller whose subsystems include not only fa-
miliar static or dynamical components such as the PGK model in this particular case.
These kind of controllers contain event-driven logic and associated switches as well. In
systems like this the logical component acts as the mode changer[34].
Switching control can be found everywhere in daily life. For example in the thermostats
to heat your house often a simple switching controller is used, when the temperature
drops below the lower boundary the heating is switched on, when the temperature rises

Master of Science Thesis D. Mutters



38 Control

to above the top boundary the heating is switched off again [16]. In general switch-
ing control combines continuous dynamics with discrete switching events[17]. In the
thermostat example the discrete mode changer is based on logics, if T > Tupperboundary

control action is zero. When the temperature decreases and reaches the lower boundary
T < Tlowerboundary, the controller is switched on again. The system used to control the
temperature, when the switching controller turns it on, can be linear or nonlinear, but
the switching itself is by definition discrete.
Switching controllers are amongst others used in combination with gain-scheduling con-
trollers, which are one of the most popular control techniques for missile autopilot design
[18, 19]. Stabilization and the avoidance of chattering are two typical challenges because
of the involved switching [19, 20].

In this section the guidance as previously described will be combined with the nonlinear
actuator model and an empirical switching mode controller. The effect that the actuator
setting has on the impact point and the guidance signals is analyzed, and a switching
mode controller is designed based on that. The switching laws are stepwise constructed
subsequently, and tuned based on sensitivity analyses to end up with the switching
controller. Stability is not theoretically proven, but is shown in simulation in chapter
5. Chattering, excessive switching between two switching laws, is dealt with by the
switching laws.

4-1-1 Impact point analysis

The PGK actuator model is described in section 2-2. The forces and moments caused
by the actuator are known at a certain point along the trajectory, for a certain actuator
angle setting. But the effect that these forces have on the projectile trajectory and the
impact point are not shown yet.

A simple experiment is performed in which the PGK model is applied at a constant
angle for 5 seconds. Four simulations are done, at PGK angles αP GK = 0, 1

2
π, π, and

3

2
π. The time interval for the actuation is between 20s and 25s, at this time interval the

vibrations from the launch are dampened and the projectile dynamics are stable. This
is repeated for another 4 simulations in which the actuation of the PGK is done between
40s and 45s. This is to find out if actuation before and after apogee affect the trajectory
in a different manner.

As an example the trajectory and PGK forces and moments are shown when the PGK
actuator model is applied from 20s to 25s at an angle of αP GK = 0. The end points are
shown in table 4-1. The trajectory, forces and moments are shown in figure 4-1.
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Table 4-1: PGK model test end point coordinates in m

x y z
without actuator 21376 2198 0
with actuator 21245 2567 0
difference -132 370 0
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Figure 4-1: PGK model test: actuation between 20s and 25s, at αP GK = 0π

The forces, moments, and impact points of the 8 simulations with varying PGK angles
and actuation times are shown in figure 4-2. The drag force caused by the actuator, Fax ,
is also shown. As stated before in section 2-2, this force is almost not influenced by the
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PGK settings at all. For example, at t = 20s, for these four different values of αP GK

the actuator drag force varies between Fax = −23.6N to Fax = −21.8N , and therefore
the analysis focuses on the actuator forces Fay , and Faz , since they do change a lot with
the PGK angle.
When the actuator is applied from 20s to 25s the change in impact point is larger than
from 40s to 45s, this has two main causes. The total velocity of the projectile is higher
from 20s to 25s, therefore the PGK forces and moments will also be larger. And the
remaining flight time is larger at 20s, so a change in velocity has a larger effect on the
impact point. Note the exception for αP GK = 3/4 π, which is caused by the difference
in pitch angle. For this application of the PGK, where the initial pitch angle is always
45◦ or less, it is only important that an increase in force in -z direction will increase the
range. An increase of force in this direction pre-apogee may cause a decrease in range
for larger initial pitch angles, but post-apogee it will cause an increase in range for both
scenarios.
It can be seen table 4-2, and in figure 4-2a that changes in x and y direction can be
achieved in both negative and positive direction. So a suitable controller should be able
to provide the desired course correction.

Table 4-2: PGK model test results changes in impact point

actuation time interval αP GK [rad] change in impact point [m]
dx dy dz

20s-25s 0 -132 370 0
40s-45s 0 -52 186 0
20s-25s 1/2 π -256 -41 0
40s-45s 1/2 π -165 -25 6
20s-25s π -32 -260 0
40s-45s π -3 -104 0
20s-25s 3/2 π 122 12 0
40s-45s 3/2 π 140 17 0

D. Mutters Master of Science Thesis



4-1 Switching controller 41

2.1 2.12 2.14 2.16

x [m] ×10
4

2000

2100

2200

2300

2400

2500

y
 [
m

]

no actuator

20s 0π

20s 1/2 π

20s π

20s 3/2 π

40s 0π

40s 1/2 π

40s π

40s 3/2 π

(a) impact points

-400 -200 0 200

dx [m]

-200

-100

0

100

200

300

d
y
 [
m

]

no actuator

20s 0π

20s 1/2 π

20s π

20s 3/2 π

40s 0π

40s 1/2 π

40s π

40s 3/2 π

(b) delta impact points

-60 -40 -20 0 20 40 60 80

Fa
y
 [N]

-60

-40

-20

0

20

40

60

F
a

z
 [

N
]

no actuator

20s 0π

20s 1/2 π

20s π

20s 3/2 π

40s 0π

40s 1/2 π

40s π

40s 3/2 π

(c) forces

-5 0 5

Ma
y
 [Nm]

-4

-2

0

2

M
a

z
 [
N

m
]

no actuator

20s 0π

20s 1/2 π

20s π

20s 3/2 π

40s 0π

40s 1/2 π

40s π

40s 3/2 π

(d) moments

Figure 4-2: PGK model test results

4-1-2 Controlling the PGK angle

In the previous section the effect of the actuator on the impact point is shown. To control
the PGK angle a second analysis is necessary. The required forces and moments to track
the reference signal provided by the guidance need to be found. The same example is
used as before, the PGK actuator model is applied from 20s to 25s at an angle of 0π.
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Figure 4-3: effect of actuator on guidance

In figure 4-3 the effect of the actuator on the guidance signals can be seen. The red line,
∆V ∗

z remains mostly unaffected, but the blue line shows a clear negative change of ∆V ∗

y .
This is repeated for the three other angles, and the results are shown in table 4-3.

Table 4-3: effect of actuator setting on guidance signals

αP GK [rad] Fay [N ] Faz [N ] May [Nm] Maz [Nm] ∆V ∗

y ∆V ∗

z

0 75.6 0.7 0.1 −5.0 ↓ -
1/2 π 0.1 63.1 4.1 0.0 - ↓
1 −52.5 0.7 0.0 3.4 ↑ -
3/2 π 0.1 −64.9 −4.3 0.0 - ↑

Given the guidance signals ∆V ∗

y and ∆V ∗

z , the angle of the PGK, αP GK , can be de-
termined to apply the required forces and moments to the projectile to provide course
correction. This is the part of the control block diagram shown in blue in figure 4-4.
The calculation for PGK angle is as shown in figure 4-5.
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Projectile
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Calculate nominal
trajectory

Figure 4-4: BlockdiagramPGKangle

Figure 4-5: αP GK

The function arctan, or tan−1 is limited to values on the interval (−1/2π, 1/2π). To
calculate αP GK the function atan2 is used, which results in the value for the angle in all
four quadrants on the interval (−π, π].

αP GK = atan2(∆V ∗

z ,∆V
∗

y ) (4-1)

where atan2 is defined as
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atan2(y, x) =



































arctan( y
x) if x > 0,

arctan( y
x) + π if x < 0 and y ≥ 0,

arctan( y
x)− π if x < 0 and y < 0,

1/2π if x = 0 and y > 0,
−1/2π if x > 0 and y < 0
undefined if x = 0 and y = 0.

(4-2)

4-1-3 Switching criteria

In this section the controller described in (4-1) is implemented in a switching control
law. The switching criteria are explained and tuned based on a sensitivity analysis on
the resulting delivery error and actuator signals. The analysis is performed using the
nominal trajectory described in section 2-1-4, with an offset of +1◦ in initial pitch and
yaw angle.

Three switching laws are used and are stepwise added to the controller in this section.
The first one determines when to switch on the controller after launch. At the beginning
of the trajectory there are multiple vibrations present, which are dampened by the stable
design or spin of the projectile. Therefore it is common practice not to start the control
from the beginning of the trajectory, but after a certain time tc.
To avoid excessive control action the second switching law is added. This law will shut
the controller off when the guidance signals are below a certain threshold. When the
projectile is on a trajectory ending at the target, the guidance signals are zero. For any
other trajectory the guidance will calculate a certain ∆V that needs to be applied to
the projectile for it to end up at the desired location. However if this trajectory is close
enough to the ideal trajectory, or the guidance signals smaller than threshold Gc the
controller will be switched off by this control law. The third law is added to prevent
excessive switching, or chattering, when the actuator is turned off at time t = toff by
the second control law, it can only be switched on again after a certain downtime at
time t = toff + td. The three parameters tc, Gc, and td are analyzed, resulting in the
final switching mode controller. This will cause a larger hysteresis loop but chattering
is avoided.

Controller starting time tc

[

Fa

Ma

]

=

{

0 if t < tc,
fP GK(x(t), αP GK) for all other situations.

(4-3)

Common in controlling ballistic projectiles is to start actuation at apogee, so any vibra-
tions caused by the launch are dampened, and an increase in pitch angle extends the
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range, which is not always the case before apogee. Choosing to activate the acPGK be-
fore apogee may increase the course correction it can provide. An analysis is performed
with different controller starting times tc.
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Figure 4-6: tc sensitivity analysis

A sensitivity analysis of tc on the final miss distance is performed, as can be seen in
figure 4-6. An initial offset of +1◦ in pitch and yaw angle is used for this simulation. As
can be seen any starting time between 2s and 50s will result in a zero miss distance. As
this uncontrolled trajectory hits the ground after 75.5s any tc > 75.5s will result in the
uncontrolled trajectory. Applying control from the start results in larger miss distance
than the uncontrolled trajectory. The controller starting time of tc = 10 is chosen, this
allows some margin for other trajectories that might need longer to stabilize, but allows
control for the most part of the trajectory resulting in larger possible course corrections.
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Figure 4-7: tc = 10s

As can be seen in figure 4-7 adding the first of the switching criteria results in an improve-
ment in miss distance, from 401m without a controller, to 0.4m with this controller. The
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figure also shows that for the first 10s the actuator is switched off, the actuator forces
and moments are zero. When the PGK is activated it takes roughly from 10s to 20s
to set the projectile on a new ideal trajectory. The guidance commands are close to
zero after 20s, so no further course correction is required. However the only thing this
controller can change is the direction of the actuator forces and moments by changing
αP GK , it does not have the capability yet to switch off the actuator. As shown in figure
4-7, the PGK angle is extremely noisy from 20s until impact, this results in a noisy
actuator force and moment. That’s why the second switching law is added, the guidance
threshold Gc, which switches the actuator off when the trajectory is within a certain
margin of a new ideal trajectory.

Guidance threshold Gc

[

Fa

Ma

]

=











0 if t < tc, or

∣

∣

∣

∣

∣

∆V ∗

y

∆V ∗

z

∣

∣

∣

∣

∣

< Gc,

fP GK(x(t), αP GK) for all other situations.

(4-4)

A same sort of analysis is done on the guidance threshold Gc. When the guidance signals
are too small, i.e. the current trajectory is within the boundaries of Gc, the controller
will shut off the actuator. This is described in equation (5-1) by switching condition
∣

∣

∣

∣

∣

∆V ∗

y

∆V ∗

z

∣

∣

∣

∣

∣

< Gc.
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Figure 4-8: Gc sensitivity analysis

As to be expected the addition of the guidance threshold switching criterium does not
increase performance when looking at the final miss distance. However it should elim-
inate the excessive changes in αP GK . A threshold value Gc = 2m/s is chosen as a
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compromise, this eliminates the undesired changes in the PGK angle, without increas-
ing the miss distance too much. Figure 4-9 shows that the PGK ring is not excessively
rotated. However figures 4-9b, and 4-9c show that the actuator is switched on and off
multiple times per second, which is undesirable and unrealistic. There are no dynamics
in the actuator model, but as the PGK ring is freely spinning when switched ’off’ the
’on’ switching is not instant. Therefore the downtime switching constraint is added as
the third and last of the switching criteria.
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Figure 4-9: Gc = 2 m/s
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Actuator downtime td

To avoid excessive on and off switching of the actuator a downtime td is introduced.
When the actuator is switched off, at t = toff , the actuator cannot be switched on
before t = toff + td. Just as the guidance threshold this constraint will not decrease the
miss distance, but this will more accurately describe reality. As the delivery error should
not increase too much, an analysis is done showing the effect of td on miss distance.

[

Fa

Ma

]

=











0 if t < tc, or

∣

∣

∣

∣

∣

∆V ∗

y

∆V ∗

z

∣

∣

∣

∣

∣

< Gc, or t < toff + td,

fP GK(x(t), αP GK) for all other situations.

(4-5)
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Figure 4-10: td sensitivity analysis

As can be seen from figure 4-10 any downtime smaller than 10s doesn’t significantly
change the miss distance. A downtime of td = 5s is chosen to have a safety margin on
both sides. This results in the trajectory, forces, moments, guidance signals and PGK
angle as displayed in figure 4-11
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Figure 4-11: td = 5s
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Tuning for a depressed trajectory

The switching controller is tuned for a specific trajectory, and these settings will be used
in chapter 5, however they might not be optimal for other trajectories. To give insight
into the optimality of the settings, a shorter, more depressed trajectory is used. This
nominal trajectory has an initial condition

x0 =
[

u0 v0 w0 p0 q0 r0 xE0
yE0

zE0
φ0 θ0 ψ0

]T

=
[

330m/s 0 0 800/s 0 0 0 0 0 0 25◦ 0
]T
,

and a final position of [xE yE zE ] = [7352 78 0] m. An offset of +1◦ in initial pitch and
yaw angle is used to perform the controller tuning following the same steps as before.
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Figure 4-12: switching parameters analyses for depressed trajectory

The analyses are based on the plots shown in figure 4-12. The controller starting time,
tc, should be below 10s and is set to 5s to have some safety margins. The miss distance
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increases twice as fast with the guidance threshold, Gc, which is therefore set at 1m/s.
Increasing the downtime, td also causes the miss distance to increase, so it’s set to 1s.
These settings result in the following trajectory, forces, moments, guidance signals and
PGK angle as displayed in figure 4-13.
If for this trajectory the previous tuning is used, where the controller starting time is
tc = 10s, the guidance threshold Gc = 2m/s, and the downtime td = 5s. The trajectory,
forces, moments, guidance signals and PGK angle are different as displayed in figure
4-14. From the PGK force and moment plots it can be seen that these settings are
less suitable for these kind of trajectories. Which can be explained by the shorter flight
time. When the controller starts at 10s more than a third of the depressed trajectory
has passed, leaving less time for course correction. Not changing the downtime has the
same effect.
Even though the tuning in the second case is far from optimal, the miss distance is still
decreased from 232m to 65m, however the specific tuning results in a miss distance of
28m. Therefore a tuning for every nominal trajectory, or a class of nominal trajectories
is advised. To derive such a tuning schedule requires a too large effort to include in this
report. The tuning for the first nominal trajectory, tc = 10s, Gc = 2m/s, and td = 5s is
used for simulations in the following chapter.
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Figure 4-13: td = 5s

D. Mutters Master of Science Thesis



4-1 Switching controller 55

6000

x [m]

4000

20000
200
400
600

y [m]

800
h
 [
m

]

0 0

nominal

without control

with control

(a) trajectory

0 5 10 15 20 25 30

t [s]

-60

-40

-20

0

20

40

60

80

P
G

K
 f
o
rc

e
 [
N

]

F
x

F
y

F
z

(b) forces

0 5 10 15 20 25 30

t [s]

-4

-2

0

2

4

6
P

G
K

 m
o
m

e
n
t 
[N

m
]

M
x

M
y

M
z

(c) moments

0 5 10 15 20 25 30

t [s]

-4000

-2000

0

2000

4000

6000

8000

G
u
id

a
n
c
e
 c

o
m

m
a
n
d
s

∆V
y

*

∆V
z

*

(d) guidance signals

0 5 10 15 20 25 30

t [s]

-1

0

1

2

3

α
P

G
K
 [
ra

d
]

(e) PGK angle

Figure 4-14: td = 5s
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4-2 Model predictive control

Model Predictive Control (MPC) is, as the name says, a control method that uses a
model of the system to predict the system states into the future, depending on the
control inputs. These control inputs are optimized to obtain desired predicted states.
MPC is carried out in the time domain, and uses a discrete state-space model, also called
plant, to describe the system, which will generally look like

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
.

Where k denotes the discrete time, x(k) the state vector, u(k) the control input vector,
y(k) the measured output vector, and A, B, C, and D matrices specifying the static and
dynamic behavior of the plant model.

An MPC controller is implemented by solving an optimization program, such as 4-6 [35].
As can be seen one of the benefits of MPC is that constraints can be added. In the case
of guided projectiles the constraints will for example guarantee stability, and the cost
function will optimize the control actions given these constraints.















































min
u
J(k,Np, Nm, x(k), x̂k, uk)

subject to

x̂(k + 1) = Ax̂(k) +Bu(k)

G1uk ≤ g1

G2uk ≤ g2

"stability constraints"

(4-6)

Where J(k,Np, Nm, x(k), x̂k, uk) is the cost function, x̂k the predicted plant states, and
uk the control outputs. The subscript k is the instant at which these sequences are
computed. The plant states are predicted a number of steps into the future, until the
prediction horizon, and the control inputs are calculated until the control horizon and
look like this:

x̂k = (x̂(k + 1|k), x̂(k + 2|k), ..., x̂(k +Np|k)) (4-7)

uk = (u(k|k), u(k + 1|k), ..., u(k +Nm − 1|k)) (4-8)

where Np is the prediction horizon and Nm the control horizon. As shown in figure 4-15,
the control horizon or input horizon is the number of future optimal control actions taken
into account when calculating the current optimal control, and the prediction horizon or
output horizon is the number of predicted outputs taken into account. When Nm < Np

the input at the control horizon is taken constant for all predicted outputs until the
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Figure 4-15: Model Predictive Control Scheme

Source: [36]

prediction horizon.
Depending on the optimization algorithm used (linear programming, quadratic program-
ming, etc.) the form of the cost function J may differ.

The following basic MPC algorithm [36] shows how the optimization program 4-6 is
used:

1) Get the new state x(k)

2) Solve the optimization program 4-6

3) Apply u(k)

4) k ← k + 1. Go to 1)

(4-9)

Even though the control actions until the control horizon are calculated, only the current
action u(k) is applied to the plant. The remaining optimal control inputs are not used
as inputs and a new optimal control problem is solved at all future time steps.

To show the MPC structure designed in this section a simple test-case is used. Finally
a first step is made to apply this method to provide course correction for the projectile
using the PGK.

4-2-1 Pendulum

A frictionless pendulum is used as test-case, where m is the mass of the bob, l the
length of the weightless rod, g the gravitational constant, θ the angle of he pendulum,
and τ , the torque at the rotating point as control action. The pendulum is controlled
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in the downward position, cause this is a stable equilibrium. This resembles the true
objective, the projectile control. The projectile is also stable along the trajectory because
of the high spin rate. This example is noiseless, and unconstrained which results in an
optimization problem that can be solved analytically.

Figure 4-16: pendulum schematic

The dynamics of the pendulum model as in figure 4-16 are as follows

Iθ̈ +mgl sin θ = τ (4-10)

where

I = ml2, x1 = θ, x2 = θ̇, u = τ (4-11)

this results in nonlinear system description f(x, u), which will be used for simulation.

ẋ = f(x, u) =

[

ẋ1

ẋ2

]

=

[

x2
1

ml2
(u−mgl sin x1)

]

(4-12)

A linear model is needed since linear MPC is used for controlling the system. The linear
model is obtained by small angle approximation, sin θ ≈ θ, substituting this in equation
(4-12) results in

ẋ =

[

x2
1

ml2
(u−mglx1)

]

. (4-13)
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In state-space representation, assuming the pendulum angle θ can be measured directly,
this will be

ẋ = Ax+Bu (4-14)

y = Cx+Du, (4-15)

with

A =

[

0 1

−
g

l
0

]

, B =





0
1

ml2



 , C =
[

1 0
]

, D = 0.

MPC structure

The MPC structure is based on the TU Delft DCSC lecture notes on MPC [37]. As a
control model, and as base for the prediction model, the state space representation of
the pendulum dynamics as described in equation (4-14) are used.

The cost function J , which the MPC will minimize by optimizing the future inputs, is
based on the performance signal z.

J(u, k) =
N−1
∑

j=0

zT (k + j|k)z(k + j|k) (4-16)

The predictions of a signal over horizon N are denoted with a tilde. So with the predic-
tions of the performance signal z̃(k), and the prediction of the control inputs ṽ(k)

z̃(k) =













z(k|k)
z(k + 1|k)

...
z(k +N − 1|k)













, ṽ(k) =













u(k|k)
u(k + 1|k)

...
u(k +N − 1|k)













(4-17)

the cost function can be written as

J(ṽ, k) = z̃T (k)z̃(k) (4-18)

The performance signal z(k) is constructed to track a reference signal, but also includes
a control penalty to avoid excessive control action.

z(k) =

[

Q1/2(r(k)− y(k))
R1/2u(k)

]

=

[

−Q1/2C
0

]

x(k) +

[

Q1/2

0

]

r(k) +

[

0
R1/2

]

u(k) (4-19)
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where Q and R are weights.

z(k) = C2x(k) +D22r(k) +D23u(k) (4-20)

where

C2 =

[

−Q1/2C
0

]

, D22 =

[

Q1/2

0

]

, D23 =

[

0
R1/2

]

(4-21)

The signal z(k) can be split in two parts, one part influenced by the control inputs, and
a part that is unaffected by the control input. The second part is called the free-response
signal, z0(k)[37]. And z(k) = z0(k) when the control input is set to zero (for instance
after the control horizon):

z(k) = z0(k) +D23u(k) (4-22)

z0(k) = C2x(k) +D22r(k) (4-23)

So the predictions z̃(k) are

z̃(k) = z̃0(k) + D̃23ṽ(k) (4-24)

z̃0(k) = C̃2x(k) + D̃22r̃(k) (4-25)

with

C̃2 =

















C2

C2A
C2A

2

...
C2A

N−1

















, D̃22 =



















D22 0 . . . 0 0
0 D22 . . . 0 0

0 0
. . .

...
...

...
. . . D22 0

0 . . . 0 D22



















,

D̃23 =



















D23 0 . . . 0 0
C2B D23 . . . 0 0

C2AB3 C2B3

. . .
...

...
...

. . . D23 0
C2A

N−2B3 . . . C2B3 D23



















This makes the cost function to minimize J(ṽ, k))
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J(ṽ, k) = z̃T (k)z̃(k) (4-26)

=
(

z̃T
0 (k) + ṽT (k)D̃T

23

) (

z̃0(k) + D̃23ṽ(k)
)

(4-27)

= ṽT (k)D̃T
23D̃23ṽ(k) + 2ṽT (k)D̃T

23z̃0(k) + z̃T
0 (k)z̃0(k) (4-28)

choose

H = 2D̃T
23D̃23, f(k) = 2D̃T

23z̃0(k), c(k) = z̃T
0 (k)z̃0(k) (4-29)

then

J(ṽ, k) = ṽT (k)Hṽ(k) + 2ṽT (k)f(k) + c(k) (4-30)

minimizing J(ṽ, k) can be done by setting the gradient of J to zero:

∂J(ṽ, k)

∂ṽ
= Hṽ(k) + f(k) = 0 (4-31)

for invertible H the solution is

ṽ(k) = −H−1f(k) (4-32)

= −(D̃T
23D̃23)−1D̃T

23z̃0(k) (4-33)

= −(D̃T
23D̃23)−1D̃T

23(C̃2x(k) + D̃22r̃(k)) (4-34)

This vector ṽ(k) contains all future control inputs the MPC has determined on timestep
k, the first control action v(k|k) of vector ṽ(k) is selected and applied to the system.
According to the receding horizon principle a new vector ṽ is calculated at the next
timestep k + 1 with the horizon also moved one timestep.

v(k|k) =
[

I 0 . . . 0
]

ṽ(k) = Evṽ(k) (4-35)

so finally the control signal at time k is

v(k|k) = Evṽ(k) (4-36)

= −Ev(D̃T
23D̃23)−1D̃T

23(C̃2x(k) + D̃22r̃(k)) (4-37)

= −Fx(k) +Drr̃(k) (4-38)

where

F = Ev(D̃T
23D̃23)−1D̃T

23C̃2 (4-39)

Dr = −(D̃T
23D̃23)−1D̃T

23D̃22 (4-40)

Ev =
[

I 0 . . . 0
]

(4-41)
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Simulations

The nonlinear simulations are started with pendulum the pendulum at an angle of
θ = 10◦, and the angular velocity θ̇ = 0◦/s. The reference is set to the stable position
of r = 0◦.

simulation settings
sampling time dt 0.01 s

initial state x0

[

10 0
]T

◦, ◦/s

reference r 0◦

gravitational acceleration g 9.81 m/s2

length l 0.3 m
mass m 0.2 kg

MPC settings
sampling time dt 0.01 s
prediction horizon N 100
reference tracking weights Q 1
control penalty weight R 0.1

In figure 4-17 the controlled state, control inputs and delta reference are plotted. As
can be seen the controller is able to set the pendulum in the desired, stable, position
θ = r = 0◦.
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Figure 4-17: MPC stabilizing pendulum at θ = 0 degrees

To show how the receding horizon principle works a look at the predicted control inputs
and state over the prediction horizon. Figure 4-18 shows how the predictions from
discrete time k to k + N change for increasing k. Only the current control action is
applied, before a new optimization is done according to the receding horizon principle.
So when all first elements of these predictions are plotted over time this will by definition
result in figure 4-17.
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Figure 4-18: MPC predictions from discrete times k to k +N

The controller is also able to stabilize the pendulum at another angle, where the system
is not stable, for example at r = −10◦ as can be seen in figure 4-19. Contrary to the
previous example, when the pendulum was stabilized at an equilibrium point, these plots
show a steady state error, and a non-zero steady state control input. This steady state
error is not caused by a mismatch between the nonlinear simulation model and the linear
control model. This can be seen from the predictions ỹ and ṽ in figures 4-19e and 4-19d.
These figures show the predictions, based on the linear control model, and they also
show a steady state error. The steady state error is caused by the mismatch in control
objectives, minimizing the control action, and minimizing the error, these cannot both
be fulfilled. An optimum is found between the size of the steady state error and the
control input based on tuning weights Q and R. Increasing R, the control penalty, the
steady state control input will decrease, but this will increase the steady state error.
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Figure 4-19: MPC stabilizing pendulum at θ = −10 degrees
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4-2-2 PGK

The same MPC structure can be used to provide course correction by controlling the
PGK actuator. However there are some fundamental differences caused by the lineariza-
tion of both the projectile and the actuator model. As previously stated in chapter 2 the
linearization of these models results in them describing the deviation dynamics rather
than directly deriving the current state.

So control model will be

ḋx = Adx+Bdu (4-42)

dy = Cdx+Ddu, (4-43)

with A the linearized projectile model from equation (2-30), B the linearized actuator

model from equation (2-40), C =

[

1 0 0 0
0 1 0 0

]

as they can be derived from the Global

Positioning System (GPS) measurements, and D = 0.

The Guidance as described in chapter 3 is used as the reference signal for this controller
to track. As the guidance signals are already delta velocities, they can directly be used
in this linearized MPC structure. The result of this controller will be an incremental
control action du with respect to the u0 around which is linearized. The control action
used for simulation is therefore u = u0 + du.

This MPC framework can be seen as a foundation for course correction by the PGK
actuator, but needs further elaboration as is suggested in the recommendations in chap-
ter 6.

4-3 Conclusion

In this chapter the empirical switching mode controller is described. A sensitivity analy-
sis on the switching parameters tc, the controller starting time, Gc, the guidance thresh-
old, and td the controller downtime in between switches, is performed, resulting in the
following controller.

[

Fa

Ma

]

=











0 if t < tc, or

∣

∣

∣

∣

∣

∆V ∗

y

∆V ∗

z

∣

∣

∣

∣

∣

< Gc, or t < toff + td,

fP GK(x(t), αP GK) for all other situations.

tc = 10s, Gc = 2m/s, and td = 5s.

with Fa, and Ma the actuator forces and moments, ∆V ∗

y,z the guidance commands,
toff the last time at which the controller is switched off, fP GK the nonlinear actuator
model as described in section 2-2-2, x(t) the state at time t, and αP GK the angle of the
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PGK ring. This tuning is specific to one nominal trajectory and it is shown that it still
provides course correction without causing instability for a depressed trajectory, however
the performance could be improved by changing the tuning for different trajectories.
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Chapter 5

Simulations

The Precision Guidance Kit (PGK) and switching controller are simulated on four dif-
ferent nominal trajectories using the models as described in chapter 2. The switching
controller designed in chapter 4 is tested on four different nominal trajectories. For
each trajectory 100 simulations are performed with random offsets, as in a Monte-Carlo
simulation, for which the controller will provide course correction to end up as close
as possible to the target. These offsets are applied to the initial pitch angle θ0, yaw
angle ψ0, and initial velocity V0 and are uniformly distributed. The offset is uniformly
distributed between −1◦ and 1◦ for the pitch and yaw angle, and between −5m/s and
5m/s for the initial velocity.

The two main parameters that determine a nominal trajectory are the initial velocity
and pitch angle, so these are varied, resulting in four different nominal trajectories.

• trajectory 1: high velocity, high pitch angle

• trajectory 2: high velocity, low pitch angle

• trajectory 3: low velocity, high pitch angle

• trajectory 4: low velocity, low pitch angle

The initial state is shown for each scenario, and the resulting nominal trajectory. The
impact point of the nominal trajectory is used as the target for the trajectories with
the offsets on the initial state. As the impact point is per definition at zE = 0, the zE

coordinates of impact points are omitted from the analysis. Therefore the miss distance,
or delivery error, εx,y is
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[

εx

εy

]

=

[

xE(timpact)
yE(timpact)

]

−

[

Tx

Ty

]

, (5-1)

where (x, y)E(timpact) are the x and y coordinates in the Earth reference frame at the
time of impact, and Tx,y the target coordinates in the same reference frame.

For each trajectory the miss distances of the impact points for the uncontrolled and
controlled trajectories are analyzed. The Circular Error Probable (CEP) is a common
measure for accuracy of weapon systems, it is defined as the radius of the circle in which
50% of the projectiles are expected to land. This circle is centered on the mean of all the
impact points, which does not have to be the target point. The deviation of the mean
impact point and the target, the so called bias, is therefore added to the analysis.

5-1 trajectory 1: high velocity, high pitch angle

The initial state of the first nominal trajectory is

x0 =
[

u0 v0 w0 p0 q0 r0 xE0
yE0

zE0
φ0 θ0 ψ0

]T

=
[

700m/s 0 0 1200/s 0 0 0 0 0 0 45◦ 5◦

]T

resulting in the nominal trajectory as shown in figure 5-1, with final coordinates xE(timpact),
and yE(timpact).

[

xE(timpact)
yE(timpact)

]

=

[

Tx

Ty

]

=

[

23785m
2738m

]
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Figure 5-1: nominal trajectory 1
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Figure 5-2: miss distance trajectory 1

The miss distances of the 100 simulations are plotted in figure 5-2. As can be seen
from the figure the PGK combined with the switching mode controller greatly reduces
the spread of impact points. Even though the offset in initial conditions is uniformly
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distributed, it can be seen that the uncontrolled impact points are not. These have
a larger spread in εy, approximately between −400m and 400m, than in εx, which is
approximately between −250m and 250m. This can be explained by the initial pitch
angle of the nominal trajectory, which is θ0 = 45◦. This is the optimal pitch angle for
long trajectories, any increase or decrease in pitch angle will shorten the trajectory only
slightly. So the main cause of εx is the offset of the initial velocity, which is shown to
have less of an effect on the impact point in the range direction than an offset in yaw
angle has in the cross-range direction.
A more zoomed in plot of the controlled miss distances is shown in figure 5-3. As can
be seen the spread of the impact points of the controlled trajectories are slightly oval,
with a larger spread in the range direction. This has to be caused by the PGK since
the spread of the uncontrolled impact points is larger in the cross-range direction. This
will be discussed further for the next trajectories, where spread of the controlled miss
distances is more clearly oval shaped.
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Figure 5-3: miss distance trajectory 1 close up

The average distance is listed in table 5-1, as well as the CEP and the bias. The average
miss distance is reduced by 96%, and the CEP is reduced by 98%.

Table 5-1: simulations results trajectory 1

uncontrolled controlled
average miss distance [m] 257 10
CEP [m] 264 6
bias [m] [3.8 -8.1]T [-1.0 -5.2]T
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5-2 trajectory 2: high velocity, low pitch angle

The initial state of the second nominal trajectory is

x0 =
[

u0 v0 w0 p0 q0 r0 xE0
yE0

zE0
φ0 θ0 ψ0

]T

=
[

700m/s 0 0 1200/s 0 0 0 0 0 0 25◦ 5◦

]T

resulting in the nominal trajectory as shown in figure 5-4, with final coordinates and
target
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Figure 5-4: nominal trajectory 2
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Figure 5-5: miss distance trajectory 2

The miss distances of the 100 simulations are plotted in figure 5-5. As can be seen from
the figure the PGK combined with the switching mode controller also reduces the spread
of impact points for this trajectory with lower initial pitch angle. The figure shows also
that the spread in impact points from the controlled trajectories are not shaped like a
circle. εx is harder to control to zero than εy. This is not caused by a low Jacobian
elements in the guidance as can be seen in figure 5-6. This plot shows that the impact
point in range direction could be corrected by manipulating ∆Vz up to the end of the
trajectory. So the miss distance and its distribution is caused by the controller.
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Figure 5-6: Jacobian elements nominal trajectory

The average miss distance is listed in table 5-2, as well as the CEP and the bias. The
average miss distance is reduced by 92%, and the CEP is reduced by 93%.

Table 5-2: simulations results trajectory 2

uncontrolled controlled
average miss distance [m] 274 22
CEP [m] 270 18
bias [m] [-15 3.2]T [-3.9 -0.1]T
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5-3 trajectory 3: low velocity, high pitch angle

The initial state of the third nominal trajectory is

x0 =
[

u0 v0 w0 p0 q0 r0 xE0
yE0

zE0
φ0 θ0 ψ0

]T

=
[

330m/s 0 0 800/s 0 0 0 0 0 0 45◦ 0
]T

resulting in the nominal trajectory as shown in figure 5-7, with final coordinates and
target
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Figure 5-7: nominal trajectory 3
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Figure 5-8: miss distance trajectory 3

The miss distances of the 100 simulations are plotted in figure 5-8. As can be seen from
the figure the PGK combined with the switching mode controller also reduces the spread
of impact points for a trajectory with lower initial velocity. The mean miss distance is
listed in table 5-3, as well as the CEP and the bias. The average miss distance is reduced
by 92%, and the CEP is reduced by 92%.

Table 5-3: simulations results trajectory 3

uncontrolled controlled
mean miss distance [m] 144 12
CEP [m] 154 12
bias [m] [-8.2 9.6]T [-2.4 -0.7]T
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5-4 trajectory 4: low velocity, low pitch angle

The initial state of the fourth nominal trajectory is

x0 =
[

u0 v0 w0 p0 q0 r0 xE0
yE0

zE0
φ0 θ0 ψ0

]T

=
[

330m/s 0 0 800/s 0 0 0 0 0 0 25◦ 0
]T

resulting in the nominal trajectory as shown in figure 5-9, with final coordinates and
target
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Figure 5-9: nominal trajectory 4
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Figure 5-10: miss distance trajectory 4

The miss distances of the 100 simulations are plotted in figure 5-10. As can be seen
from the figure the PGK combined with the switching mode controller also reduces the
spread of impact points for trajectories with a lower initial velocity and pitch angle. The
mean miss distance is listed in table 5-4, as well as the CEP and the bias. The average
miss distance is reduced by 72%, and the CEP is reduced by 70%. As can be seen in the
figure and the table this shorter and flatter trajectory is harder to control. The CEP
is still lower than the goal of 50m, but the relative improvements in miss distance and
CEP for this trajectory are the lowest of these four scenarios. The nominal trajectory of
this scenario varies the most from the trajectory on which the controller tuning is based.
As previously stated in section the performance could be improved by tuning for each
nominal trajectory. This simulation is repeated using the controller tuning specific for
this trajectory as found in section 4-1-3. This miss distance for the simulations with the
new tuning is shown in figure 5-11. The mean miss distance, CEP and bias are listed
in table 5-4 along with a new uncontrolled set, which is not equal to the first one, since
other random seeds are used. As can be seen the controlled miss distances are decreased
using this specific tuning, the average miss distance is reduced by 91% and the CEP by
92% with respect to the uncontrolled case. By using specific tuning an extra decrease of
20 percentage points in average miss distance and CEP is achieved. However the specific
tuning does not change the spread of the miss distance, which remains oval shaped.
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Figure 5-11: miss distance trajectory 4 with specific tuning

Table 5-4: simulations results trajectory 4

uncontrolled controlled uncontrolled 2
controlled with
specific tuning

mean miss distance [m] 149 41 143 13
CEP [m] 144 43 143 12
bias [m] [5.6 3.5]T [0.0 -0.3]T [-10.8 6.8]T [1.6 0.2]T

5-5 conclusion

In this chapter Monte-Carlo simulations of the PGK and the switching controller are
performed. This is done for four different nominal trajectories, varying in velocity and
pitch angle since these are the parameters with the largest influence on the trajectory.
For each simulation the initial velocity, pitch angle and yaw angle have a random offset,
for which the controller and actuator combination successfully compensates. It is shown
that the CEP is reduced to less than 50m, therefore the controller meets the design
criteria stated in section 1-2. The reduction in average miss distance and CEP are
relatively smaller for shorter and flatter trajectories. For trajectories with an even lower
velocity and/or pitch angle the PGK and switching controller designed in this thesis
might not be able to result in a CEP less than 50m. It is shown that specific tuning for
a set of launch conditions increases performance using a shorter and depressed trajectory
as an example. The controller provides more adequate control in cross-range direction
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than in range direction, however both remain within the desired boundaries as specified
by the design criteria.
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Chapter 6

Conclusions

The projectile dynamics are formulated as a nonlinear 6Degrees of Freedom (DoF) non-
rolling body frame model, and a nonlinear model is constructed for the Precision Guid-
ance Kit (PGK) actuator. Both these models are linearized for computational efficiency
and to be used in linear control applications. The principles of the Jacobian guidance
are explained. The mathematical derivation of the guidance signals are included. These
signals are desired changes in normal body velocities ∆V ∗

y,z, and function as a reference
to be tracked by a controller. To demonstrate the capabilities of the guidance, two sim-
ple proportional actuators are used, one providing only forces, and one only moments.
These actuators are combined with a proportional controller. This combination results
in a decrease of delivery errors by at least 95% for initial offsets in pitch and yaw angles
of 1◦.
While the actuator and controller are to be changed for more realistic ones in the next
chapter, the guidance is as described in this chapter. So any increase in delivery error
can be attributed to the actuator and controller. The switching mode controller is de-
scribed. A sensitivity analysis on the switching parameters tc, the controller starting
time, Gc, the guidance threshold, and td the controller downtime in between switches,
is performed, resulting in an empirically tuned switching controller. This tuning is spe-
cific to one nominal trajectory and it is shown that it still provides course correction
without causing instability for a depressed trajectory, however the performance could
be improved by changing the tuning for different trajectories. Monte-Carlo simulations
of the PGK and the switching controller are performed. This is done for four different
nominal trajectories, varying in velocity and pitch angle since these are the parameters
with the largest influence on the trajectory. For each simulation the initial velocity, pitch
angle and yaw angle have a uniformly distributed random offset, for which the controller
and actuator combination successfully compensates. It is shown that the Circular Error
Probable (CEP) is reduced to less than 50m, therefore the controller meets the design
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criteria. The reduction in average miss distance and CEP are relatively smaller for
shorter and flatter trajectories, since the controller is not tuned specifically for such a
trajectory. It is shown that specific tuning for a specific launch conditions increases per-
formance, using a shorter and depressed trajectory as an example. The controller results
in higher miss distances in range direction than in cross-range direction, however both
remain within the desired boundaries as specified by the design criteria. The switching
controller has easy to tune settings. It calculates the PGK angle, αP GK continuously,
and uses state-dependent switching to turn the actuator on or off. Even though the
design might be simple, the combination between this controller, the actuator model,
and the guidance algorithm decreases the average miss distance and CEP by 90%.

As the guidance algorithm in combination with an ideal, proportional actuator decreases
the average miss distance by 95%, there is only a 5 percentage point drop in performance
caused by the switching controller in combination with the PGK. As the PGK actuator
is not ideal, it accounts for a part of this reduction in performance which cannot be
solved by using different control methods. Still the selection of other, more sophisticated,
controllers might further increase the performance, however small, if this is desired.

6-1 Recommendations

The first recommendation is to complete the Model Predictive Control (MPC) controller.
Although the linear projectile model and the linear model for the PGK will decrease the
computational requirements, it looks like the actuator’s behavior is too nonlinear. With
a small enough time step a linear model should closely resemble the nonlinear model so
it should be able to work, but the computational benefits will disappear too. Therefore
it is recommended to consider a nonlinear MPC for the control of the PGK.

Other nonlinear control approaches could also be used to control the PGK actuator
more efficiently. For example nonlinear dynamic inversion, this control strategy is used
mostly in aircraft control and has proven to be an easy and robust option for controlling
nonlinear systems.

Stability of the switching mode controller is shown in simulation, but this should be
proven theoretically as well. This is left out of the scope of this report, but is recom-
mended for further research.

The PGK model is simplified and assumed to be static, for a given projectile state and
angle of the PGK ring the actuator forces and moments are calculated. In reality the
angle cannot be set directly, a torque caused by the brake in the actuator will slow
the spin rate of the ring and allows it to be set in at a certain angle. This step is
recommended to resemble reality more closely. It will however complicate the actuator
model, and provides an extra (highly nonlinear) challenge for the controller. One of
the problems that will rise are the actuator forces and moments that will disturb the
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trajectory when the actuator ring is despun, or when the brake is released and the ring
will start to spin because of the anti-roll canards.

In this thesis the guidance is benchmarked with an ideal proportional actuator resulting
in miss distances within 1m, so it is safe to say that the error caused by the guidance
is small. But the remaining delivery error will be partly caused by the controller and
partly by the actuator. If the largest part is caused by limitations of the actuator even an
ideal controller only provides a slight performance increase. This is advised to analyze
for further research.

The switching mode controller is tuned for a specific case, resulting in a controller that
provides course correction succesfully for the four different scenario’s tested in this thesis.
However it is shown that the performance can be improved by tuning the controller for
each launch. Another recommendation is to do this by scheduling controller settings for
sets of launch conditions. For example actuation can start earlier on the trajectory if
the initial velocity is lower, since the vibration caused by the launch will be dampened
earlier as well. The downtime of the controller might also be adjusted according to the
distance to the target. In practice this would provide no additional action, since the
target coordinates are loaded into the PGK pre-launch, so the controller tuning could
be adjusted automatically based on the target information.

The inaccuracy of the GPS and angle measurements used by the guidance is not taken
into account. The navigation, or state estimation is assumed to be perfect. This is left
out of the scope of this report, however this should be included to complete this control
engineering problem.
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α α′ β φ, θ, ψ αP GK δαP GK
δαP GK

δx(t) ∆Vx,y,z ∆R ∆CR ∆V ∗

y,z ε

u, v, w p, q, r I FX , FY , FZ MX ,MY ,MZ xE , yE , zE Fb Fm Fg Fa q̄ S d V C∗ Mb Mm

Md Ma FF MF Sr lr M x(t) x̄(t) Ts t timpact K Ay,z tc toff tc GC J z v(k) N k Q R
C̃2, D̃22, D̃23 dt r(k) g m z̃ ṽ ỹ Tx,y CA0,A2 CNα Cypα Cmα Cnpα Clp,mq,nr
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Appendix A

Jacobian linearization

The Linear Parameter Varying (LPV) based linear projectile model derived in chapter
2 is linearized around the nominal trajectory. So this model describes the deviations
around the nominal trajectory and not the projectile dynamics directly. In equations
(2-30 - 2-36) the Jacobian matrix that describes the deviation dynamics is shown. In
this Appendix the derivation will be shown in more detail, based on [38].

A-1 Deviation dynamics

Linearization around a trajectoy is done in the following way. The general idea is to
make a Taylor expansion around a known solution so let (x0, u0) denote a solution
to ẋ = f(x, u) and concider another known solution. And consider another solution
(x(t), u(t)) = (x0 + δx, u0 + δu):

ẋ(t) = f(x0 + δx, u0 + δu) (A-1)

= f(x0, u0) +
∂f

∂x
(x0, u0)δx +

∂f

∂u
(x0, u0)δu +O(||δx, δu||

2), (A-2)

so the deviation dynamics are

δ̇x =
∂f

∂x
(x0, u0)δx +

∂f

∂u
(x0, u0)δu +O(||δx, δu||). (A-3)
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For small deviations (δx, δu) this results in

δ̇x(t) = A(t)δx(t) +B(t)δu(t) (A-4)

A(t) =
∂f

∂x

∣

∣

∣

∣x(t) = x̄(t)
u(t) = ū(t)

(A-5)

B(t) =
∂f

∂u

∣

∣

∣

∣x(t) = x̄(t)
u(t) = ū(t)

(A-6)

Note that in contrast to linearization around an equilibrium, matrices A, and B are time
dependent when linearizing along the trajectory.

A-2 Jacobian Linearization of projectile model

A =
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v̇ = −V0r +
1

m
Y (A-8)

Y = −q̄S
(

CNα
v

V0

+
p0d

V0

Cypα
w

V

)

(A-9)

∂v̇

∂v
= −

(

1

mV0

)

q̄SCNα (A-10)

∂v̇

∂w
= −

(

1

mV0

)

q̄S

(

p0d

V0

)

Cypα (A-11)

∂v̇

∂q
= 0 (A-12)

∂v̇

∂r
= −V0 (A-13)

ẇ = V0q +
1

m
Z (A-14)

Z = −q̄S
(

CNα
w

V0

−
p0d

V0

Cypα
v

V0

)

+mg cos θ (A-15)
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∂ẇ

∂q
= V0 (A-18)

∂ẇ
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Resulting in:

A =
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Aj =
1

mV0

q̄SCNa (A-33)

Bj =
1

mV0

q̄S
p0d

V0

Cypa (A-34)

Cj = I−1
yy

q̄Sd

V0

p0d

V0

Cnpa (A-35)

Ej = I−1
yy

q̄Sd

V0

Cma (A-36)

Fj = I−1
yy

q̄Sd

V0

dCnr (A-37)

Gj = I−1
yy Ixxp0 (A-38)

D. Mutters Master of Science Thesis



Bibliography

[1] T. Hillstrom and P. Osborne, “United Defense Course Correcting Fuze for the Pro-
jectile Guidance Kit Program The Need for Accuracy Direct Fire,” NDIA 49th
Annual Fuze Conference, pp. 1–11, 2005.

[2] T. Bybee, “Precision guidance kit,” 45th Annual NDIA Gun and Missile Systems
Conference, vol. 4, no. May, 2010.

[3] B. Etkin, Dynamics of Atmospheric Flight. Wiley, 1972.

[4] C. Murphy, Free flight motion of symmetric missiles. Ballistic Research Laborato-
ries, 1963.

[5] R. L. McCoy, Modern Exterior Ballistics: The Launch and Flight Dynamics of
Symmetric Projectiles. Schiffer, 1999.

[6] P. Wernert, S. Theodoulis, and Y. Morel, “Flight dynamics properties of 155 mm
spin-stabilized projectiles analyzed in different body frames,” AIAA Atmospheric
Flight Mechanics Conference, vol. August, 2010.

[7] D. Ollerenshaw and M. Costello, “Model Predictive Control of a Direct Fire Pro-
jectile Equipped With Canards,” Journal of Dynamic Systems, Measurement, and
Control, vol. 130, November 2008.

[8] F. Fresconi and M. Ilg, “Model Predictive Control of Agile Projectiles,” AIAA
Atmospheric Flight Mechanics Conference, pp. 2012–4860, August 2012.

[9] A. Elsaadany and Y. Wen-Jun, “Accuracy improvement capability of advanced pro-
jectile based on course correction fuze concept,” The Scientific World Journal, July
2014.

Master of Science Thesis D. Mutters



92 Bibliography

[10] A. J. Calise, M. Sharma, and J. E. Corban, “Adaptive Autopilot Design for Guided
Munitions,” Journal of Guidance, Control, and Dynamics, vol. 23, no. 5, September-
October, pp. 837–843, 2000.

[11] E. Gagnon and M. Lauzon, “Maneuverability Analysis of the Conventional 155
mm Gunnery Projectile,” AIAA Guidance, Navigation and Control Conference and
Exhibit, pp. 20–23, August 2007.

[12] E. Gagnon, “Low cost guidance and control solution for in-service unguided 155
mm artillery shell,” tech. rep., DRDC Valcartier, July 2009.

[13] M. Costello and A. Peterson, “Linear Theory of a Dual-Spin Projectile in At-
mospheric Flight,” Journal of Guidance, Control, and Dynamics, vol. 23, no. 5,
September-October, 2000.

[14] L. C. Hainz and M. Costello, “Modified projectile linear theory for rapid trajectory
prediction,” Journal of Guidance, Control, and Dynamics, vol. 28, pp. 1006–1014,
September-October 2005.

[15] S. Theodoulis, F. Sève, and P. Wernert, “Robust gain-scheduled autopilot design
for spin-stabilized projectiles with a course-correction fuze,” Aerospace Science and
Technology, vol. 42, pp. 477–489, 2015.

[16] S.-H. Cho and M. Zaheer-uddin, “An experimental study of multiple parameter
switching control for radiant floor heating systems,” Energy, vol. 24, no. 5, pp. 433
– 444, 1999.

[17] D. Liberzon, Switching in Systems and Control. BirkhÃďuser Boston, 2003.

[18] S. Lim and J. P. How, “Modeling and h-infinity control for switched linear
parameter-varying missile autopilot,” IEEE Transactions on Control Systems Tech-
nology, vol. 11, no. 6, pp. 830–838, 2003.

[19] C. Yuan, Y. Liu, F. Wu, and C. Duan, “Hybrid switched gain-scheduling control
for missile autopilot design,” Journal of Guidance, Control, and Dynamics, vol. 39,
08 2016.

[20] D. E. Miller, M. Chang, and E. J. Davison, “An approach to switching control:
Theory and application,” in Control Using Logic-Based Switching, pp. 234–247,
Springer-Verlag.

[21] F. Fresconi, I. Celmins, S. Silton, and M. Costello, “High maneuverability projectile
flight using low cost components,” Aerospace Science and Technology, 2015.

[22] J. W. C. Robinson and P. Strömbäck, “Velocity To Be Gained Guidance for a
Generic 2D Course Correcting Fuze,” AIAA Guidance, Navigation and Control
Conference, January 2015.

D. Mutters Master of Science Thesis



93

[23] S. Theodoulis, V. Gassmann, T. Brunner, and P. Wernert, “Robust Bank-to-Turn
Autopilot Design for a Class of 155mm Spin-Stabilized Canard-Guided Projectiles,”
AIAA Atmospheric Flight Mechanics (AFM) Conference, August 2013.

[24] S. Theodoulis, V. Gassmann, P. Wernert, L. Dritsas, I. Kitsios, and A. Tzes, “Guid-
ance and Control Design for a Class of Spin-Stabilized Fin-Controlled Projectiles,”
Journal of Guidance, Control, and Dynamics, vol. 36, no. 2, March-April, 2013.

[25] F. Sève, S. Theodoulis, P. Wernert, M. Zasadzinski, and M. Boutayeb, “Pitch/Yaw
Channels Control Design for a 155mm Projectile with Rotating Canards, using a
H∞ Loop-Shaping Design Procedure,” AIAA Guidance, Navigation and Control
Conference, January 2014.

[26] F. Sève, S. Theodoulis, P. Wernert, M. Zasadzinski, and M. Boutayeb, “Gain-
Scheduled H∞ Loop-Shaping Autopilot design for spin-stabilized canard-guided
projectiles,” AerospaceLab, pp. 1–24, September 2017.

[27] M. Costello, “Extended range of a gun launched smart projectile using controllable
canards,” 9th Annual Gun Dynamic Symposium, November 1998.

[28] A. J. Calise and H. A. El-Shirbiny, “An Analysis of Aerodynamic Control for Direct
Fire Spinning Projectiles,” AIAA Guidance, Navigation and Control Conference
and Exhibit, August 2001.

[29] J. Rogers and M. Costello, “Design of a Roll-Stabilized Mortar Projectile with
Reciprocating Canards,” Journal of Guidance, Control, and Dynamics, vol. July-
August, 2010.

[30] D. Zhu, S. Tang, J. Guo, and R. Chen, “Flight stability of a dual-spin projectile with
canards,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal
of Aerospace Engineering, vol. 229, no. 4, pp. 703–716, 2015.

[31] P. Burke and T. Pergolizzi, “XM1156 Precision Guidance Kit (PGK),” 52nd Annual
Fuze Conference, 2008.

[32] F. J. Regan and J. Smith, “Aeroballistics of a Terminally Corrected Spinning Pro-
jectile (TCSP),” Journal of Spacecraft and Rockets, vol. 12, p. 733, Dec. 1975.

[33] Orbital ATK, “M1156 pgk factsheet.” Advertising data from Orbital ATK,
"https://www.orbitalatk.com/defense-systems/armament-systems/pgk/, ac-
cessed 1 2018.

[34] A. S. Morse, ed., Control Using Logic-Based Switching. Springer Berlin Heidelberg,
1997.

[35] S. Misik, A. Cela, and Z. Bradac, “Optimal Predictive Control - A brief review of
theory and practice,” IFAC-PapersOnLine, 2016.

Master of Science Thesis D. Mutters

https://www.orbitalatk.com/defense-systems/armament-systems/pgk/


94 Bibliography

[36] A. Bemporad and M. Morari, “Robust Model Predictive Control: A Survey,” in
Garulli, A. and Tesi, A. (eds) Robustness in identification and control. Lecture
Notes in Control and Information Sciences, vol. 245, pp. 207–226, Springer, London,
1999.

[37] T. van de Boom and T. Backx, “Model predictive control, lecture notes for the
course sc4060,” September 2005.

[38] Packard, Poola, and Horowitz, “Dynamic systems and feedback,” 2002.

D. Mutters Master of Science Thesis



Glossary

List of Acronyms

3mE Mechanical, Maritime and Materials Engineering

DCSC Delft Center for Systems and Control

TU Delft Delft University of Technology

DUT Delft University of Technology

TNO the Netherlands organization for applied scientific research

MPC Model Predictive Control

PGK Precision Guidance Kit

CCF Course Correction Fuze

GNC Guidance Navigation and Control

DoF Degrees of Freedom

CEP Circular Error Probable

GPS Global Positioning System

LPV Linear Parameter Varying

PID Proportional-Integral-Derivative

ISL Institute of Saint Louis

EoM Equations of Motion

RMSE Root-Mean-Square Error
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96 Glossary

CFD Computational Fluid Dynamics

WS Weapon Systems

DSS Defence Safety and Security

List of Symbols

α Angle of attack [rad]

α′ The angle of incidence [rad]

αP GK Angle of the PGK ring [rad]

β Angle of sideslip [rad]

δx(t) Small deviation of state at time t [−]

δαP GK
Increment of the angle of the PGK ring [rad]

δαP GK
Small deviation of the angle of the PGK ring [rad]

∆CR Deviation of the impact point in cross-range direction [m]

∆R Deviation of the impact point in range direction [m]

∆Vx,y,z Deviation in velocity in x,y,z direction [m/s]

∆V ∗

y,z Desired deviation in velocity in y,z direction, also guidance signals [m/s]

φ, θ, ψ Euler angles for roll, pitch and yaw [rad]

ε Miss distance, or delivery error [m]

q̄ Dynamic pressure [Pa]

x̄(t) Nominal state at time t [−]

M Mach number [−]

C̃2, D̃22, D̃23 Prediction matrices

ṽ Prediction of control input

ỹ Prediction of measurement signal

z̃ Prediction of performance signal

Ay,z Specific force
[

m/s2
]

C∗ Aerodynamic coefficients [−]

CA0,A2 Aerodynamic drag force coefficient

Clp,mq,nr Damping moment coefficients

Cmα Aerodynamic overturning moment coefficient

CNα Aerodynamic normal force coefficient

Cnpα Magnus moment coefficient

Cypα Magnus force coefficient

d Diameter of the projectile
[

m2
]
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dt Sampling time

Fa Actuator force [N ]

Fb Aerodynamic force acting on the projectile body [N ]

FF Actuator force in fin frame [Nm]

Fg Gravity [N ]

Fm Magnus force [N ]

FX , FY , FZ Force components [N ]

g Gravitational acceleration

GC Guidance threshold [m/s]

I Inertia matrix

J Cost function

K Control gains [−]

k Discrete time

lr Reference length of the fins [m]

m Mass [kg]

Ma Actuator moment [Nm]

Mb Moment caused by aerodynamics on the projectile body [Nm]

Md Damping moment [Nm]

MF Actuator moment in fin frame [Nm]

Mm Magnus moment [Nm]

MX ,MY ,MZ Moment components [Nm]

N Prediction horizon

p, q, r Angular velocity vector components [rad/s]

Q Reference tracking weight

R Control penalty weight

r(k) Reference at time k

S Aerodynamic reference surface of the projectile
[

m2
]

Sr Reference surface of the fins
[

m2
]

t Time [s]

Ts Sampling time [s]

tc Controller starting time [s]

tc Downtime of the controller [s]

timpact Time at impact [s]

toff Time at which the controller is switched off [s]

Tx,y Target position x and y [m/s]

u, v, w Velocity vector components [m/s]

V Total velocity [m/s]

v(k) Control input at time k

Master of Science Thesis D. Mutters
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x(t) State at time t [−]

xE , yE , zE Position components in earth frame [m]

z Performance signal

A,B,C,D State space matrices

fP GK Nonlinear actuator model

D. Mutters Master of Science Thesis
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