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Abstract—Wind turbines usually cause significant interference
in the conventional radar operations which might degrade the
detection capabilities. Wind turbines do not only block the radar
beam focusing on a specific target, thus creating shadowing
effects, but also impose Doppler spectra contamination due to
the continuous blade rotation. Therefore in order to identify,
detect and possibly mitigate the presence of Wind Turbine
Clutter (WTC), fundamental features of the blades rotation
need to be estimated, such as rotation (angular) velocity. This
information can be directly extracted by initially evaluating the
angular displacement of the blades between successive radar
measurements. In this paper, a method to estimate this rotation
angle is proposed which is based on both radar polarimetry and
estimation theory.

Index Terms—wind turbine, angular velocity estimation, radar
polarimetry

I. INTRODUCTION

Wind energy is increasingly becoming mainstream and
competitive among the conventional sources of energy as
its electric capacity has been continuously increased during
the past 10 years, especially in North Europe such as the
Netherlands [1].

The power output and the efficiency of wind turbine is a
function of the size of the blades (70− 90 m), the blades
rotation speed (10− 30 rpm) as well as the turbine heights
(100− 200 m). An extended installation of such wind turbines
(wind farms), each of them characterized by a large Radar
Cross Section (RCS), impacts on the operational capabilities of
radar systems. Due to their high rotational velocity, the rotating
blades of wind turbines generate strong clutter returns with
wide continuous Doppler spectra and therefore might mask
objects of interest and distort their estimated features [2][3].
Suppression and mitigation of WTC still remains one of the
challenging tasks in the radar community [4][5].

A fundamental approach to detect the presence of this type
of clutter is to automatically evaluate its rotation speed by
estimating the blades displacement angle from at least two
sequential measurements. In case of an aspect angle different
than zero, this angle can be identified through the use of
wind turbine spectrogram. However, when the radar beam axis
and the rotation axis coincide, the estimation task becomes
an extremely tough and complicated process. Nevertheless,
this task can be facilitated by considering the fact that the
RCS of a wind turbine varies for different transmitted polar-
izations. [6]. Therefore, in this paper we attempt to form a

simple estimation rule for the angular velocity by exploiting
fundamental principles of radar polarimetry. This rule is based
on multiple sequential polarimetric time measurements while
estimation theory is used in order to extract properly the
rotational angle. Consequently, the angular velocity can be
easily further calculated by multiplying the extracted angle
with the time period between two successive radar coherent
processing intervals (CPI).

This paper organized as follows: In Section II the received
data model is formulated in terms of polarimetry. In Section
III the numerical estimation approach is derived for both the
back-scattered signal and the rotation angle. In Section IV,
simulated results of the model in Section II are presented for
a predetermined angular displacement. Section V provides a
summary of this research.

II. RECEIVED DATA MODEL

A typical three-blade wind turbine, is characterized by a
symmetrical construction as the angular displacement of the
blades is 120o. Due to this, the actual total response remains
approximately constant between measurements on each polari-
metric channel. According to [7], when a monostatic measure-
ment configuration is used, the polarization scattering matrix
(PSM) of any target is characterized by three (unknown)
complex scattering coefficients (in this case SHV = SV H ).
Let us assume that for an instant moment of time, say t1, the
PSM obtained from Wind Turbine will be (noiseless case):

SWT (t1) =

 SWT
HH (t1) SWT

HV (t1)

SWT
HV (t1) SWT

V V (t1)

 (1)

where all of the elements in the above matrix are implied to
be complex quantities. We now perform a new measurement,
say at time moment t2. Within the time interval ∆t = t2 −
t1, we consider that the wind turbine has been rotated with
angular velocity Ω on a rotation angle α = Ω∆t along the
radar line of sight and moreover this angle is less than 120o

(faster rotation will create an ambiguity). The new polarization
scattering matrix SWT (t2) after rotation is related with the
initial PSM SWT (t1), as follows:

SWT (t2) = U (α)
T
SWT (t1)U (α) (2)
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F (a) =


cos2 α sinα cosα sinα cosα sin2 α

− sinα cosα cos2 α − sin2 α sinα cosα
− sinα cosα cos2 α − sin2 α sinα cosα

sin2 α − sinα cosα − sinα cosα cos2 α



where
U (α) =

[
cosα − sinα
sinα cosα

]
Hereafter we omit the notation ’WT’ for reading purposes. Af-
ter performing some typical mathematical calculations on the
above matrix expression, we can directly obtain the vectorized
form of (1):

L (t2) = F (α)L (t1) (3)

where:

L (ti) =


SHH (ti)
SHV (ti)
SHV (ti)
SV V (ti)

 , i = 1, 2,

while F (α) is shown at the top of this page.
Since we have three measured and unknown complex po-

larimetric coefficients, these 4 × 1 vectors that include these
elements can be reformulated as 3 × 1 vectors through the
following expression:

x (t2) = W (α)x (t1) , (4)

where:

x (ti) =

 SHH (ti)
SHV (ti)
SV V (ti)

 , i = 1, 2,

and

W (α) =
1

2


1 + cos 2α

√
2 sin 2α 1− cos 2α

−
√

2 sin 2α 2 cos 2α
√

2 sin 2α

1− cos 2α −
√

2 sin 2α 1 + cos 2α


Consequently it turns out that a simple polarimetric received

data model in case of a monostatic radar system, when mul-
tiple successive measurements (N) of rotated with a constant
angular velocity target are obtained, can be formulated as
follows:

t0 : z0 = x+ c0 + n0 (5)
t1 : z1 = W (α)x+ c1 + n1

t2 : z2 = W (2α)x+ c2 + n2

.

tN−1 : zN−1 = W ((N − 1)α)x+ cN−1 + nN−1

where it has been used the equalityW (α)·W (α) = W (2α).
In this system of equations zi , i = 0, 1, ...N − 1 denotes
the received data on each measurement (3× 1 vector) , ni,
i = 0, 1, ...N−1 is a complex zero mean White Gaussian noise
with covariance matrix Cn = σ2

nI , ci, i = 0, 1, ...N − 1

is environmental clutter with known polarimetric covariance
matrix Σc [8], x = [SHH , SHV , SV V ]T is the actual complex
polarimetric back-scattered signal of wind turbine and W (α)
is the rotation matrix, as defined before, for a specific rotation
angle α. The time interval between sequential measurements
∆t = t2−t1 in this study assumed to be constant and depends
on the polarimetric radar architecture. It can be equal to the
coherent processing interval (CPI) for a radar that estimates
the targets PSM after Doppler processing, or to pulse repetition
interval (PRI) for a radar that directly estimates the PSM from
every received pulse. Gathering all of these N measurements,
we can easily rewrite the above system in a more systematic
matrix form:


z0
z1
z2
.

zN−1

 =



I
W (α)
W (2α)

.

.

.
W ((N − 1)α)


x+



c0
c1
c2
.
.
.

cN−1


+



n0
n1
n2
.
.
.

nN−1


(6)

or, alternatively:

z = F (α)x+ c+ n, (7)

where now z, c and n are 3N × 1 complex vectors while
F (α) is a 3N × 3 real matrix.

III. MAXIMUM LIKELIHOOD ESTIMATION OF THE
ROTATION ANGLE

As we experience a complex white Gaussian noise with zero
mean and covariance Cn the data will also follow a complex
Gaussian distribution with mean F (α)x and total covariance
matrix Q = Σc+Cn or alternatively z ∼ CN (F (α)x, Q).
The probability density function (PDF) of the data can then
be explicitly formulated as [9]:

p (z;x, α) =
1

det (πQ)
×

exp
[
− (z − F (α)x)

H
Q−1 (z − F (α)x)

]
(8)

where H denotes complex conjugate transpose or Hermitian.
We initially consider that the rotation angle is known and
so will be the matrix F (α). This means that the previous
PDF is converted into a likelihood function p (z;x) over the
unknown complex vector x. Taking the natural logarithm of
this likelihood function we have:

ln p (z;x) =− (z − F (α)x)
H
Q−1 (z − F (α)x)

− ln (det (πQ))
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By taking now the derivative with respect to xH of the
above expression and equating it to zero we obtain the Maxi-
mum Likelihood Estimation (MLE) of the complex vector:

x̂MLE =
(
F (α)

T
Q−1F (α)

)−1

F (α)
T
Q−1z,

where Q = σ2
nI + Σc.

If we replace this estimated vector of parameters, in the
PDF in (8) we obtain the following likelihood function with
respect to the rotation angle α:

p(z;α) =
1

det (πQ)
×

exp
[
− (z − F (α) x̂MLE)

H
Q−1 (z − F (α) x̂MLE)

]
Our goal now is to find the angle α that maximizes the

above likelihood function or alternatively that minimizes the
cost function G (α) :

α̂MLE = min
α
G (α) , (9)

where:

G (α) = (z − F (α) x̂MLE)
H
Q−1 (z − F (α) x̂MLE)

or:

G (α) = zHQ−1F (α)
(
F (α)

H
Q−1F (α)

)
F (α)Q−1z

Since it is almost impossible to find an analytical expression
for the estimated parameter α̂MLE , we solve this problem
numerically. This process includes the choice of an interval
of many possible rotation angles and search for the one that
minimizes the cost function. Consequently, the accuracy of the
estimation will hardly depends on the accuracy of the different
angles chosen.

IV. SIMULATIONS

We will now provide the results of the simulations regarding
with the estimation process analyzed previously. We will also
present how this cost function behaves for different number
of measurements

1) Rotation Angle Estimation: For our simulations we as-
sume that the surrounding clutter included in our received data
is grass with known or independently estimated polarimetric
covariance matrix [10]. We also consider that the statistics of
the clutter do not vary from measurement to measurement as
well as within each reception time.

In summary, all the parameters for our simulation are
provided in Table I. We assume that the highest SNR stems
from the vertical oriented blade, which explains the chosen
values for the received power on each channel.

Figure 1 depicts the behavior of the cost function G (a) for
this chosen angle range. We notice that the minimum of this
function lies very close to the expected rotation angle which
is 5.43 degrees.

Therefore the estimated angular velocity in this case turns
out to be Ω̂ = α̂/CPI .

Table I
VALUES OF SIMULATED PARAMETERS FOR ROTATION ANGLE ESTIMATION

Parameters Values of Parameters

α 5.43◦

n0,1,...,N−1 ∼ CN(0, 100I)

|SHH | (dB) 20 dB

|SHV | (dB) 13 dB

|SV V | (dB) 23 dB

N 100 measurements

angle range [−90◦ : 0.1◦ : 90◦]

2) Estimation Error vs Number of Measurements: In prin-
ciple one should expect an improvement on our estimation
accuracy as long as more measurements are processed. This
consideration is strongly confirmed by the next figure. In this
plot, the behaviour and the variation of the cost function is
shown for different number of coherently processed measure-
ments. The estimation of this parameter, as it was expected,
approaches very well the actual value after several processed
measurements while the SNR remains the same. This example
reveals the importance of the number of measurements for our
estimator in order to be required as low SNR level as possible.

As we notice, the sharpness of the cost function around
the actual value of the rotation angle increases as more
measurements are added. Consequently for a very high number
of measurements, this cost function tends to be a straight line
positioned on the actual value of this parameter.

Figure 3 presents the variation of the angle estimation
error with respect to different number of coherently processed
measurements, for the same expected rotation angle. The
same simulation parameters are used as before. We visually
recognize that at least 30 measurements are required in order
to achieve small errors in our estimation.

Figure 1. Cost function as a function of the rotation angle estimation.
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Figure 2. Cost function as a function of the rotation angle estimation for
different number of measurements.

V. CONCLUSIONS

In this paper we have investigated the novel idea to estimate
the instant rotation angle of wind turbine from polarimetric
radar data. This has been performed by combining radar
polarimetric modeling and estimation theory. We proposed a
model-based maximum likelihood estimation approach which
allows the incorporation of multiple received measurements.
As it was expected the accuracy of the estimation is im-
proved as more measurements are coherently processed. The
increase of the measurements generates multiple sub-optimum
estimated values, which might make difficult the application
of an iterative estimation algorithm. However, the ambiguity

Figure 3. Estimation error (degrees) as a function of the number of
measurements.

with respect to the true optimum value decreases. Although we
treated a simplified model for the received data, thanks to the
the proposed model-based solution, becomes straightforward
to extend the model formulation by introducing the wind
turbine mast contribution. The main purpose for the estimation
of the angular velocity is that it can be directly applied in a
detection rule which would be based on this unique feature.
The detection of the presence of a rotating object (a wind
turbine in our case) will then facilitate the mitigation of WTC
from the received data.
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