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HIGHLIGHTS

« A cyclic joint constitutive model is proposed for the Distinct Element Method framework.

« The model integrates a yield surface, softening laws, and energy dissipation.

+ A novel exponential dilatancy-decay law is embedded in a standard uplift-correction contact update.
» The model is validated against material and full-scale structural tests.

« Simulations accurately capture rocking, shear, and hybrid failure modes.

ARTICLE INFO ABSTRACT

Keywords: This paper presents a cyclic joint constitutive model within a Distinct Element Method framework to simulate the
Unreinforced masonry in-plane response of unreinforced masonry structures. The model combines multi-surface failure criteria, includ-
Distinct element method ing tensile cut-off, Coulomb friction, and an elliptical compression cap. It incorporates exponential softening, a

Constitutive model
Multi-surface plasticity
Damage mechanics
Cyclic behavior

unified damage scalar for stiffness degradation, and a hardening-softening law for compression. Shear-induced
dilatancy is captured via an uplift-correction mechanism with an exponential dilatancy-decay law, while stiff-
ness degradation governs energy dissipation. The model is validated at both material and structural scales.
Material-level simulations of cyclic compression and shear tests show close agreement with experimental data.
Structural-scale validation on full-height calcium-silicate walls under combined compression and cyclic lateral
loading demonstrates the ability to reproduce rocking-dominated, shear-dominated, and hybrid failure mecha-
nisms . The model successfully replicated global hysteretic force—drift loops, capturing stiffness decay and energy
dissipation, as well as local failures like cracking, sliding, and toe crushing. The model also reproduced the drift-
dependent transition from rocking to friction-controlled sliding, a key mechanism for earthquake assessment. By
integrating these features into a single, efficient framework, the proposed constitutive model provides a robust
tool for evaluating seismic performance and conserving heritage.

1. Introduction computational mechanics has led to the development of increasingly
sophisticated constitutive models for simulating the mechanical behav-
ior of masonry structures under various loading scenarios. According to
the classification by Lourengo [1], modelling strategies can be broadly
divided into three categories. Macro-modelling approaches either repre-
sent masonry as an equivalent frame [2-4] or treat it as a homogenized
continuum [5-7]. Simplified micro-modelling strategies represent the

Until now, masonry has remained one of the most widespread and
historically important construction materials worldwide. However, its
inherently heterogeneous and quasi-brittle nature poses ongoing chal-
lenges for accurate numerical modelling, both at the material and
structural scales. Over the past few decades, significant progress in
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$k_n$


$k_s$


\begin {equation}\label {eq:Equation_of_motion} m_i\,d\mathbf {v}_i = \left [\left (\sum _{j\in \mathcal {C}_i}\mathbf {F}_{i,j}^{{\mathrm {{\textrm {c}}}},t}\right )+\mathbf {F}_i^{{\textrm {ext}},t}+\mathbf {F}_i^{{\textrm {w}},t}-\mathbf {F}_i^{{\textrm {d}},t}\right ]\,dt\end {equation}
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$\mathbf {F}_{i}^{{\textrm {d}},t}$


\begin {equation}\label {eq:Rotational_velocities} \mathbf {I}_id\boldsymbol {\omega }_i = \left (\mathbf {M}^t_{i}-\mathbf {M}_{i}^{{\textrm {d}},t}\right )\,dt\end {equation}
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$t$


$\Delta t$


$\left [t^- = t-\Delta t /2,t^+ = t+\Delta t /2\right ]$


$t$


$\left [t^-,t^+\right ]$


\begin {equation}\label {eq:velocity_increment_form} m_i\int _{t^-}^{t^+}{d\mathbf {v}_i}=\int _{t^-}^{t^+}{\left [\left (\sum _{j\in \mathcal {C}_i}\mathbf {F}_{i,j}^{{\mathrm {{\textrm {c}}}},t}\right )+\mathbf {F}_i^{{\textrm {ext}},t}+\mathbf {F}_i^{{\textrm {w}},t}-\mathbf {F}_i^{{\textrm {d}},t}\right ]\,{d} t}\end {equation}


\begin {equation}\label {eq:vel_increment} \Delta \mathbf {v}_\mathbf {i}^{t} := \mathbf {v}_i^{t^+} - \mathbf {v}_i^{t^-}\end {equation}


$t$


\begin {equation}\label {eq:discrete_form} m_i\Delta \mathbf {v}_i^{t} \approx \left [\left (\sum _{j\in \mathcal {C}_i}\mathbf {F}_{i,j}^{{\mathrm {{\textrm {c}}}},t}\right )+\mathbf {F}_i^{{\textrm {ext}},t}+\mathbf {F}_i^{{\textrm {w}},t}-\mathbf {F}_i^{{\textrm {d}},t}\right ]\,\Delta t\end {equation}


$\left [t^-,t^+\right ]$


\begin {equation}\label {eq:omega_increment_form} \mathbf {I}_\mathbf {i}\ \int _{t^-}^{t^+}{d\boldsymbol {\omega }_{i}}=\int _{t^-}^{t^+}{\left (\mathbf {M}^t_i-\mathbf {M}_i^{{\textrm {d}},t}\right )\,{\textrm {d}}t},\end {equation}


\begin {equation}\label {eq:omega_increment} \Delta \boldsymbol {\omega }_\mathbf {i}^{t}:= \boldsymbol {\omega _i}^{t+} - \boldsymbol {\omega _i}^{t-},\end {equation}


\begin {equation}\label {eq:angular_discrete_form} \mathbf {I}_\mathbf {i}\ \Delta \boldsymbol {\omega }_\mathbf {i}^{t} \approx \left (\mathbf {M}^t_i-\mathbf {M}_i^{{\textrm {d}},t}\right )\,\Delta t.\end {equation}


$\mathbf {F}_\mathbf {i}^{{\textrm {d}},t}$


$\mathbf {M}_\mathbf {i}^{{\textrm {d}},t}$


$t^-$


\begin {equation}\label {eq:damping_force_and_moment} \mathbf {F}_i^{d,t} = \alpha \left \| \sum \mathbf F_i^{\,t} \right \| \,{\textrm {sgn}}\left ({\mathbf {v}_i}^{\,t^-}\right ) \quad {\textrm {and}} \quad \mathbf {M}_\mathbf {i}^{{\textrm {d}},t} = \alpha \left \| \sum \mathbf {M}_i^{\,t} \right \| \,{\textrm {sgn}}\left ({\boldsymbol {\omega }}_i^{\,t^-}\right )\end {equation}
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$\alpha $


$\Delta t$


$\lVert \mathbf {R}_i\rVert $


\begin {equation}\label {eq:residual_norm} \frac {\lVert \mathbf {R}_i\rVert }{\lVert \mathbf {F}_i^{ext}\rVert }\quad {\textrm {where}} \quad \mathbf {R}_i = \sum {\mathbf {F}_i^c+\mathbf {F}_i^{ext}+\mathbf {F}_i^{w}-\mathbf {F}_i^d} \approx 0\end {equation}


$\mathbf {v}^{t^+}$


$\boldsymbol {\omega }^{t^+}$


\begin {equation}\label {eq:updated_position} \mathbf {x}_i(t+\Delta t)=\mathbf {x}_i(t) + \mathbf {v}_i^{t^+}\Delta t\end {equation}


$\mathbf {x}$


$\Delta t$


\begin {equation}\label {eq:linear_elastic_forces} \Delta F^n = k^nA^c\Delta u^n \quad {\textrm {and}} \quad \Delta \boldsymbol {\mathbf {F^s}} = k^sA^c\Delta \boldsymbol {\mathbf {u^s}}\end {equation}
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\begin {equation}\label {eq:stable_timestep} \Delta t_{block} = \frac {2}{\omega _{max}}\end {equation}


$t_{block}$


$\omega _{max}$


$\alpha $


$F_1$


\begin {align}&\label {eq:yield_tens} F_1 = \sigma ^n - f_t(u^n_t)\\ &\label {eq:yield_shear} F_2 = \big \| \boldsymbol {\mathbf {\tau }} \big \| + \sigma _n {\textrm {tan}}\!\big ( \phi _{cv} + \psi (\boldsymbol {\mathbf {u}}^{s}) \big ) - c(\boldsymbol {\mathbf {u^s}})\\ &\label {eq:yield_comp} F_3 = C_{nn}\,\sigma _n^{\,2} + C_{ss}\,\big \|\boldsymbol {\mathbf {\tau }}\big \|^{2} + C_{n}\,\sigma _n - {[\sigma ^n(u^n_c)]}^{\,2}\end {align}


$F_2$


\begin {align}&\label {eq:yield_tens} F_1 = \sigma ^n - f_t(u^n_t)\\ &\label {eq:yield_shear} F_2 = \big \| \boldsymbol {\mathbf {\tau }} \big \| + \sigma _n {\textrm {tan}}\!\big ( \phi _{cv} + \psi (\boldsymbol {\mathbf {u}}^{s}) \big ) - c(\boldsymbol {\mathbf {u^s}})\\ &\label {eq:yield_comp} F_3 = C_{nn}\,\sigma _n^{\,2} + C_{ss}\,\big \|\boldsymbol {\mathbf {\tau }}\big \|^{2} + C_{n}\,\sigma _n - {[\sigma ^n(u^n_c)]}^{\,2}\end {align}


$F_3$


\begin {align}&\label {eq:yield_tens} F_1 = \sigma ^n - f_t(u^n_t)\\ &\label {eq:yield_shear} F_2 = \big \| \boldsymbol {\mathbf {\tau }} \big \| + \sigma _n {\textrm {tan}}\!\big ( \phi _{cv} + \psi (\boldsymbol {\mathbf {u}}^{s}) \big ) - c(\boldsymbol {\mathbf {u^s}})\\ &\label {eq:yield_comp} F_3 = C_{nn}\,\sigma _n^{\,2} + C_{ss}\,\big \|\boldsymbol {\mathbf {\tau }}\big \|^{2} + C_{n}\,\sigma _n - {[\sigma ^n(u^n_c)]}^{\,2}\end {align}


$u^n_c$
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$\sigma ^n(u^n_c)$


$u^n_c$
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$C_{ss}$


$C_n$


\begin {align}&\label {eq:dt_tension} f_t(u^n_t) = \left [1-d_t(u^n_t)\right ]\ f_t, \qquad d_t(u^n_t) = 1-exp\left [-\frac {f_t}{G_f^I}\left (u^n_t-\frac {f_t}{k^n}\right )\right ]\\ &\label {eq:ds_shear} \boldsymbol {\mathbf {\tau }}(\boldsymbol {\mathbf {u^s}}) = c(\boldsymbol {\mathbf {u^s}}) - \sigma ^n{\textrm {tan}}\left (\phi _{cv}+\psi _0\right )\end {align}


\begin {align}&\label {eq:dt_tension} f_t(u^n_t) = \left [1-d_t(u^n_t)\right ]\ f_t, \qquad d_t(u^n_t) = 1-exp\left [-\frac {f_t}{G_f^I}\left (u^n_t-\frac {f_t}{k^n}\right )\right ]\\ &\label {eq:ds_shear} \boldsymbol {\mathbf {\tau }}(\boldsymbol {\mathbf {u^s}}) = c(\boldsymbol {\mathbf {u^s}}) - \sigma ^n{\textrm {tan}}\left (\phi _{cv}+\psi _0\right )\end {align}


$d_t(u^n_t)$


$f_t$


$G_f^I$


$\boldsymbol {\mathbf {\tau }}(\boldsymbol {\mathbf {u^s}})$


\begin {equation}\label {eq:cohesive_softening} c\!\left (\boldsymbol {\mathbf {u^{\,s}}}\right ) = \bigl [1 - d_s\!\left (\boldsymbol {\mathbf {u^{\,s}}}\right )\bigr ]\,c_0, \qquad d_s\!\left (\boldsymbol {\mathbf {u^{\,s}}}\right ) = 1 - \exp \!\left [ -\frac {c_0}{G_f^{II}}\, \Big \langle \,\|\boldsymbol {\mathbf {u^{\,s}}}\| - u^{\,s}_{el} \,\Big \rangle _{+} \right ]\end {equation}


$d_s(\boldsymbol {\mathbf {u^s}})$


$G_f^{II}$


$u^s_{el}$


\begin {align}\label {eq:elastic_shear_disp} u^s_{el} = \frac {\tau _{max}}{k_s} = \frac {c_0-\sigma ^n{\textrm {tan}}\left (\phi _{cv}+\psi _0\right )}{k^s}\end {align}


$c_0$


$\psi _0$


$d_{ts}$


\begin {equation}\label {eq:combined_dts} d_{ts}(u^n,) = d_t(u^n)+d_s(\boldsymbol {\mathbf {u^s}})-d_t(u^n)d_s(\boldsymbol {\mathbf {u^s}})\end {equation}
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$c\!\left (\boldsymbol {\mathbf {u^{\,s}}}\right )$


$1 \times 10^{-12}$


\begin {equation}\label {eq:hardening_compression} \sigma ^n(u^n_c) = \sigma ^n_{el} + (f_{c}-\sigma ^n_{el})\sqrt {\frac {2(u^n_c-u^n_{el})}{u_{cp}}-\frac {{(u^n_c-u^n_{el})}^2}{u_{cp}}}\end {equation}
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$k^n$


$n$


$d_c(u^n_c)$


\begin {equation}\label {eq:comp_dc} \displaystyle \sigma ^n(u^n_c) = \left [1-d_c(u^n_c)\right ]f_c\end {equation}


$u^n_c$


\begin {equation}\label {eq:comp_softening} d_c = \begin {cases} \displaystyle 0, & u^n_c < u_{cp}\\ \displaystyle \left (1-\frac {f_{cm}}{f_{c}}\right ){\left (\frac {u^n_c - u_{cp}}{u_{cm} - u_{cp}}\right )}^2 & u_{cp} \leq u^n_c < u_{cm} \\ \displaystyle \left (1 - \frac {f_{cr}}{f_{c}}\right ) - \frac {f_{cm}-f_{cr}}{f_{c}}\exp \left (2\frac {f_{cm}-f_{cp}}{u_{cm}-u_{cp}}\frac {u^n_c-u_{cm}}{f_{cm}-f_{cr}}\right ) & u^n_c \geq u_{cm} \end {cases}\end {equation}


$f_{cm}$


$u_{cm}$


$f_{cm}$


$f_{cr}$


$G_c$


$u_{cm}$


\begin {equation}\label {eq:ucm} u_{cm} = \frac {\displaystyle G_c - 0.5 \frac {\displaystyle f_{c}^2}{\displaystyle 9k^n} - 0.65 (u_{cp} - u^n_{el}) f_{c} + 0.75 u_{cp}f_{c} + 0.25 u_{cp}f_{cr}}{\displaystyle u_{cp}f_{c} + u_{cp}f_{cr}} u_{cp}\end {equation}


$G_c$


$u^n_{el}$


$\sigma ^n_{el}$


$\sigma ^n_{el} \ / \ k^n$


$F_2$


$\phi _{cv}$


$\psi $


$\phi _{cv}$


$\psi $


$\phi _{cv}$


$\psi $


$d_{ts}$


\begin {equation}\label {eq:dilatancy_softening} \psi (\boldsymbol {\mathbf {u^s}}) = \begin {cases} \displaystyle \psi _0\left (1-\frac {\| \boldsymbol {\mathbf {u^{s,p}}} \|}{u^{s,\max }}\right )\exp \left [-\delta \left (\| \boldsymbol {\mathbf {u^{s,p}}} \|\right )\right ] & \| \boldsymbol {\mathbf {u^{s,p}}} \| \leq u^{s,\max } \\ \displaystyle 0 & \| \boldsymbol {\mathbf {u^{s,p}}} \| > u^{s,\max } \end {cases}\end {equation}


$\delta $


$\boldsymbol {\mathbf {u^{s,p}}}$


$u^{s,\max }$


$c \rightarrow 0$


$\psi \approx 0$


$\Delta u^n$


$\lvert \Delta \boldsymbol {\mathbf {u^s}}\rvert $


\begin {equation}\label {eq:normal_dilatant} \Delta u^n := \begin {cases} \displaystyle \Delta u^n+\|\Delta \boldsymbol {\mathbf {u^s}}\| {\textrm {tan}}(\psi (\boldsymbol {\mathbf {u^s}})) & \| \boldsymbol {\mathbf {u^s}} \| <= \| u^{s,\max }\| \\ \Delta u^n & \| \boldsymbol {\mathbf {u^s}} \| > u^{s,\max } \end {cases}\end {equation}


\begin {equation}\label {eq:normal_force_dilatant} F^n := F^n +k^nA^c\lvert \Delta \boldsymbol {\mathbf {u^s}}\rvert {\textrm {tan}}(\psi (\boldsymbol {\mathbf {u^s}}))\end {equation}


\begin {align}\label {eq:secant_unloading} k^n(d_{ts}) = (1-d_{ts})k^n\end {align}


$k^s_i$


$u_{n_{pl}}$


\begin {equation}\label {eq:normalized_plastic_disp_cases} u'_{n_{pl}} = \begin {cases} \displaystyle 0.47\,{(u'_{n_{un}})}^2 + 0.5\,\lvert u'_{n_{un}}\rvert , & dc = 0,\\[6pt] \displaystyle 1.175\,{(u'_{n_{un}})}^2 + 1.25\,\lvert u'_{n_{un}}\rvert , & dc > 0~. \end {cases}\end {equation}


$u'_{n_{pl}}$


$u'_{n_{un}}$


$u_{cp}$


$u_{n_{un}}$


$u_{n_{pl}}$


\begin {equation}\label {eq:cyclic_loading} \sigma ^n_c = f_{c_{re}} + \left (f_{c_{un}}-f_{c_{re}}\right )\frac {B_1\chi +\chi ^2}{1+B_2\chi +B_3\chi ^2}\end {equation}


\begin {equation}\label {eq:current_unloading_displacement} \chi = \frac {\displaystyle u^n_c - u_{n_{un}}}{\displaystyle u_{n_{pl}}-u_{n_{un}}}\end {equation}


$\sigma ^n_c$
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$B_1$
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\begin {equation}\label {eq:B_coefficients} B_1 = \frac {k_{n_{un}}}{E_s}; \quad B_2 = B_1 - B_3; \quad B_3 = 2 - \frac {k_{n_{pl}}}{E_s}(1+B_1);\end {equation}


$E_s = f_{c_{un}}/(u_{n_{un}}-u_{n_{pl}})$


$k_{n_{un}}$


$k_{n_{pl}}$


\begin {equation}\label {eq:cyclic_stiffness} k_{n_{un}} = \gamma _{un}k_n; \quad k_{n_{pl}} = \frac {\gamma _{pl}k_n}{{\left (1+\frac {u_{n_{un}}}{u_{cp}}\right )}^e}\end {equation}


$\gamma _{un} = 1.5$


$\gamma _{pl} = 0.15$


$e = 2$


$e$


$k_{n_{un}}$


$k_{n_{pl}}$


\begin {equation}\label {eq:linear_comp_reloading} \sigma ^n_c = f_{c_{ro}} + k^n_{re} (u^n_c - u_{n_{ro}})\end {equation}


$f_{c_{ro}}$


$u_{n_{ro}}$


$k^n_{re}$


\begin {equation}\label {eq:reloading_stiffness} k^n_{re} = \frac {\beta _df_{c_{un}}-f_{c_{ro}}}{u_{n_{un}}-u_{n_{ro}}}\end {equation}


\begin {equation}\label {eq:softening_gradient_beta} \beta _d = \begin {cases} \displaystyle \frac {1}{1+0.2{(u'_{n_{rec}})}^{0.5}} & {\textrm {for}} \quad u_{n_{un}} < u_{cp} \\ \displaystyle \frac {1}{1+0.45{(u'_{n_{rec}})}^{0.2}} & {\textrm {for}} \quad u_{n_{un}} \geq u_{cp} \\ \end {cases}\end {equation}


$u_{n_{rec}} = u_{n_{un}}-u_{n_{ro}}$
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$\sigma _n$


$\mathbf {\sigma }$


$t+1$


$F_2$


\begin {equation}\label {eq:shear_correction} \boldsymbol {\mathbf {\tau ^s}} = \boldsymbol {\mathbf {\tau ^s}} \frac {\boldsymbol {\mathbf {\tau ^s}}(d_{ts})}{\lVert \boldsymbol {\mathbf {\tau ^s}}\rVert }\end {equation}


$F_3$


$\mathbf {\sigma }$


$\mathbf {R}$


$\mathbf {\sigma }$


$F_3$


\begin {equation}\label {eq:comp_correction} {\left (\mathbf {\sigma }^{t+1}\right )}_1 := {\left (\mathbf {\sigma }^{t+1}\right )}_1-{\left (\mathbf {R}\right )}_1, \qquad {\left (\mathbf {\sigma }^{t+1}\right )}_{2:4} := {\left (\mathbf {\sigma }^{t+1}\right )}_{2:4}\frac {{\left (\mathbf {R}\right )}_{2:4}}{\lvert {\left (\mathbf {\sigma }^{t+1}\right )}_{2:4}\rvert }\end {equation}
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$\delta $


$G_I$
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$C_n,C_{nn},C_{ss}$


$k^n$


$k^s_i$


\begin {equation}\label {eq:homogenised_kn_ks} k_n = \displaystyle \frac {E_bE_m}{t_m\left (E_b - E_m\right )}, \qquad k_s = \displaystyle \frac {G_bG_m}{t_m\left (G_b-G_m\right )}\end {equation}


$E_b$
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$G_b$
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$\tau = c + \sigma _n \tan {\phi }$


$c_{res}$


$\psi $


$u^{s,\max },\delta $


$f_t$


$G_I$


$G_{II}$


$f_t$


$G_c$


$n$


$212 \times 102 \times 72\,\text {mm}$


$1070\,\text {N}\,\text {mm}^{-1}$


$N$


\begin {equation}\label {eq:servo_force} F(t) = K_{act}\left [u_{cmd}(t)-u_{spec}(t)\right ]\end {equation}


$K_{act}$


$1070\,\text {N}\,\text {mm}^{-1}$


$u_{cmd}(t)$


$u_{spec}(t)$


$u_{s,rel}$


$u_{n,rel}$


\begin {align}&\label {eq:dilatant_shear} u_{s,rel} = \frac {y_1-y_2}{y_3-y_4}\\ &\label {eq:dilatant_normal} u_{n,rel} = x_2-x_1\end {align}


\begin {align}&\label {eq:dilatant_shear} u_{s,rel} = \frac {y_1-y_2}{y_3-y_4}\\ &\label {eq:dilatant_normal} u_{n,rel} = x_2-x_1\end {align}


$l_w\times h_w\times t_w$
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$\times $
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$k^s$
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$G_I$
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$f_c$


$G_c$


$n$


$C_n,C_{nn},C_{ss}$


$n$


$1 \times 10^{-5}$


$\alpha $


\begin {equation}\label {eq:impulse_velo} V(t) = \begin {cases} \dfrac {v_{max}}{2}\left [1-\cos \!\left (\dfrac {\pi t}{t_a} \right )\right ], & 0 \le t < t_a,\\[6pt] v_{max}, & t_a \le t < t_a+t_b,\\[6pt] \dfrac {v_{max}}{2}\Bigl [1+\cos \!\bigl (\pi (t-t_a-t_b)/t_a\bigr )\Bigr ], & t_a+t_b \le t < t_{tot},\\[6pt] 0, & t \ge t_{tot} \end {cases}\end {equation}


$u_{apv}$


$t_{tot} = 2t_a +t_b$


$t_a = 0.5d_d$


$t_b=d_d * \kappa $


$\kappa $


$d_d$


$u_{apv}$


$v_{max}$


$\kappa $


\begin {equation}\label {eq:dd} d_d = \frac {u_{apv}}{v_{max}(1+\kappa )}\end {equation}


$5.0\,\text {mm}\,\text {s}^{-1}$


$5\,\text {mm}\,\text {s}^{-1}$


$1 \times 10^{-6}\,\text {s}$


$v(t)$


$5\,\text {mm}\,\text {s}^{-1}$


$t_a$


$t_b$


$v(t)$


$v_{max}$


$5\,\text {mm}\,\text {s}^{-1}$


\begin {equation}\label {eq:prescribed_displacement} u_{tar} = \int _0^{2t_a+t_b}v(t)\,{\textrm {d}}t = v_{max}(t_a+t_b),\end {equation}


$u_{tar}$


$u_{tar}$


$\pm 0.5\%$


$d_{ts}$


$d_{ts}$


$d_{ts}$


$d_{ts}$


$S(t)$


$\cdot $


$s$


\begin {equation}\label {ieq1} E^{(s)}_{{\textrm {tens}}}(t) = \int _{0}^{u^{n,(s)}_{t}(t)} \langle T_n^{(s)} \rangle ^{+}\, {\textrm {d}}u^{n,(s)}_{t}, \qquad E^{(s)}_{{\textrm {comp}}}(t) = \int _{0}^{u^{n,(s)}_{c}(t)} \langle -T_n^{(s)} \rangle ^{+}\, {\textrm {d}}u^{n,(s)}_{c},\end {equation}


$T_n^{(s)}$


${\textrm {d}}u^{n,(s)}_{t}$


${\textrm {d}}u^{n,(s)}_{c}$


\begin {equation}\label {ieq2} E^{(s)}_{{\textrm {shear}}}(t) = \int _{0}^{\boldsymbol {u}_s^{(s)}(t)} \boldsymbol {T}_s^{(s)} \cdot {\textrm {d}}\boldsymbol {u}_s^{(s)},\end {equation}


$\boldsymbol {T}_s^{(s)}$


\begin {align}&E_{{\textrm {tens}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {tens}}}(t),\label {autoeq:1}\\ &E_{{\textrm {comp}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {comp}}}(t),\label {autoeq:2}\\ &E_{{\textrm {shear}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {shear}}}(t),\label {autoeq:3}\end {align}


\begin {align}&E_{{\textrm {tens}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {tens}}}(t),\label {autoeq:1}\\ &E_{{\textrm {comp}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {comp}}}(t),\label {autoeq:2}\\ &E_{{\textrm {shear}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {shear}}}(t),\label {autoeq:3}\end {align}


\begin {align}&E_{{\textrm {tens}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {tens}}}(t),\label {autoeq:1}\\ &E_{{\textrm {comp}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {comp}}}(t),\label {autoeq:2}\\ &E_{{\textrm {shear}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {shear}}}(t),\label {autoeq:3}\end {align}


$t_n$


\begin {align}&E_{{\textrm {tens}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {tens}}}(t_n) - E_{{\textrm {tens}}}(t_{n-1}) \right |,\label {autoeq:4}\\ &E_{{\textrm {comp}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {comp}}}(t_n) - E_{{\textrm {comp}}}(t_{n-1}) \right |,\label {autoeq:5}\\ &E_{{\textrm {shear}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {shear}}}(t_n) - E_{{\textrm {shear}}}(t_{n-1}) \right |.\label {autoeq:6}\end {align}


\begin {align}&E_{{\textrm {tens}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {tens}}}(t_n) - E_{{\textrm {tens}}}(t_{n-1}) \right |,\label {autoeq:4}\\ &E_{{\textrm {comp}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {comp}}}(t_n) - E_{{\textrm {comp}}}(t_{n-1}) \right |,\label {autoeq:5}\\ &E_{{\textrm {shear}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {shear}}}(t_n) - E_{{\textrm {shear}}}(t_{n-1}) \right |.\label {autoeq:6}\end {align}


\begin {align}&E_{{\textrm {tens}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {tens}}}(t_n) - E_{{\textrm {tens}}}(t_{n-1}) \right |,\label {autoeq:4}\\ &E_{{\textrm {comp}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {comp}}}(t_n) - E_{{\textrm {comp}}}(t_{n-1}) \right |,\label {autoeq:5}\\ &E_{{\textrm {shear}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {shear}}}(t_n) - E_{{\textrm {shear}}}(t_{n-1}) \right |.\label {autoeq:6}\end {align}


$E_{{\textrm {phys}}}(t_N)$


\begin {equation}\label {ieq3} E_{{\textrm {phys}}}(t_N)= E_{{\textrm {tens}}}^{{\textrm {diss}}}(t_N)+ E_{{\textrm {comp}}}^{{\textrm {diss}}}(t_N)+ E_{{\textrm {shear}}}^{{\textrm {diss}}}(t_N)\end {equation}


$W_k$


$t_n$


\begin {equation}\label {ieq4} \Delta W_k(t_n) = \alpha \, \Delta t \sum _{b\, \in \,\mathcal {B}} \left ( |F_{u,x}^{(b)}|\,|v_x^{(b)}| + |F_{u,y}^{(b)}|\,|v_y^{(b)}| + |F_{u,z}^{(b)}|\,|v_z^{(b)}| \right ),\end {equation}


$\alpha $


$\Delta t$


$\boldsymbol {F}_u^{(b)}=(F_{u,x}^{(b)},F_{u,y}^{(b)},F_{u,z}^{(b)})$


$b$


$\boldsymbol {v}^{(b)}=(v_x^{(b)},v_y^{(b)},v_z^{(b)})$


$\mathcal {B}$


\begin {equation}\label {ieq5} W_k(t_N) = \sum _{n=1}^{N} \Delta W_k(t_n).\end {equation}


$E_{{\textrm {phys}}}$


$W_k$


$\alpha $


$E_{{\textrm {phys}}}$


$W_k$


$\eta $


$\eta $


$F_2$


$F_1$


$\delta $


$\delta $


$v = 0.5,\ 1.0,\ 2.5,\ 5.0$


$10.0$


$v_{\text {max}}$


$t_a,\ t_b$


$t_{tot}$


$0.5\,\text {mm}\,\text {s}^{-1}$


$10\,\text {mm}\,\text {s}^{-1}$


$0.5\,\text {mm}\,\text {s}^{-1}$


${2.5}\,\text {mm}\,\text {s}^{-1}\ \ \text {to} \ \ {5.0}\,\text {mm}\,\text {s}^{-1}$


$10.0\,\text {mm}\,\text {s}^{-1}$


${2.5}\,\text {mm}\,\text {s}^{-1}\ \ \text {to} \ \ {5.0}\,\text {mm}\,\text {s}^{-1}$


${2.5}\,\text {mm}\,\text {s}^{-1}\ \ \text {to} \ \ {5.0}\,\text {mm}\,\text {s}^{-1}$


$v$


$F_{\text {pos}}$


$F_{\text {neg}}$


$_{\text {pos}}$


$_{\text {neg}}$


$F_{\text {pos,EXP}} = 27.69$


$F_{\text {neg,EXP}} = -30.58$


$\delta _{\text {pos,EXP}} = 0.736$


$\delta _{\text {neg,EXP}} = -0.520$


${2.5}\,\text {mm}\,\text {s}^{-1}\ \ \text {to} \ \ {5.0}\,\text {mm}\,\text {s}^{-1}$


$k^n$


$k^s$


$f_t$


$c$


$\mu $


$G_I$


$G_{II}$


$f_c$


$G_c$


$u_k$


$\delta _k$


$\zeta $


$\xi $


$C_s$


$E_b$


$v$


$f_{c_b}$


$f_{t_b}$


$n$


$k_n$


$k_s$


$u_n$


$\Delta u_n$


$F_n$


$\Delta F_n$


$F_n$


$\Delta F_n$


$u_n < 0$


$u_n + \Delta u_n \geq u_{n,\text {hist,ten}}$


$u_{n,\text {hist,ten}} \gets u_n$


$F_n$


$u_n + \Delta u_n \leq u_{n,\text {hist,comp}}$


$= 0$


$u_{n,\text {hist,comp}} \gets -u_n$


$\sigma _n + \Delta \sigma _n \geq \sigma _{\text {hist,comp}}$


$u_n + \Delta u_n \leq u_{\text {el,limit}}$


$F_n$


$\sigma _n + \Delta \sigma _n \leq f_c$


$\sigma _n$


$F_n \gets \sigma _n A_c$


$= 1.0$


$u_{n_{pl}}$


$\Delta u_n \geq 0 \quad \text {and}\quad \text {PlasticFlag}= 1.0$


$u_n+\Delta u_n \geq u_{\text {hist,comp}}\, \cdot \, 0.985$


$\triangleright $


$F_n$


$\sigma _n$


$F_n \gets \sigma _nA_c$


$f_{m_{ro}}$


$u_{n_{ro}}$


$= 1.0$


$= 1.0$


$\Delta u_n \leq 0$


$\beta \gets $


$k_r \gets \frac {\beta f_{\text {peak}} - f_{m,\text {ro}}}{u_{n,\text {hist,comp}} - u_{n,\text {ro}}}$


$\sigma _n$


$\sigma _{\text {env}} \gets $


$\sigma _n < \sigma _{\text {env}}$


$F_n \gets \sigma _nA_c$


$\gets 0$


$F_n$


$\gets \sigma _{\text {env}}A_c$


\begin {equation}\label {ieq6} \eta = \frac {W_k}{W_k+E_{{\textrm {phys}}}}\end {equation}
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brick units as rigid or deformable blocks, while the mortar joints
are captured using zero-thickness interfaces [8-12]. Finally, detailed
micro-modelling strategies discretise both the units and mortar joints
explicitly as separate deformable components [13-15]. Each of these
strategies offers a trade-off between computational cost and modelling
fidelity, influencing their applicability depending on the scale and ob-
jectives of the analysis. Among them, the simplified micro-modelling
approach offers a particularly effective compromise, striking a balance
between computational efficiency and numerical accuracy. By concen-
trating the nonlinear response within the interface elements, the overall
model remains tractable while still capturing key mechanical behaviors.
However, this also means that the fidelity of the simulation strongly de-
pends on the accurate characterization of cohesive-frictional interface
behavior.

To this end, numerous researchers have developed damage-plasticity
interface models to simulate the nonlinear behavior of masonry struc-
tures [10,11,16-19]. These models are capable of capturing the degra-
dation of tensile and shear strength through damage mechanics, along
with irreversible deformations and frictional sliding that occur after
yielding. In the early development of the interface model for masonry
structures, Lotfi and Shing [17] proposed a single hyperbolic surface for
tension and shear without a compression cap. Lourenco and Rots [19]
introduced a compression cap and separate yield criteria for shear and
tension, although this led to numerical issues at yield surface intersec-
tions (“corner” regions). Macorini and Izzuddin [11] addressed this by
proposing a unified model with a compression cap and a single hyper-
bolic yield surface, enhancing stability and smoothness. Nie et al. [16]
explored this unified yield surface under the effective stress spaces with
a non-shrinking compression cap upon crushing.

The models described above have typically been implemented within
finite element frameworks using incremental-iterative solution proce-
dures. While effective in many cases, these methods often encounter
convergence difficulties under highly nonlinear conditions, particularly
during cyclic loading and simulations that approach structural collapse.
To mitigate this, methods such as closest point projection [20,21] and ra-
dial return [22] have been proposed, often combined with a line search
method [23] or a substepping scheme [24]. Other solutions that do not
involve implicit-based solvers have also been explored, such as the use
of the Forward Euler method [25], or event-based sequentially linear
analysis [26,27].

With the continuing growth in computational resources, the distinct
element method (DEM) has emerged as a powerful alternative for mod-
elling masonry structures. DEM employs a conditionally stable explicit
time integration scheme, which facilitates simulations up to collapse
without the convergence issues typically encountered in traditional im-
plicit solvers. This makes DEM particularly attractive for the analysis
of large-scale or historic masonry structures, where complex failure
modes must be captured [28-31]. However, the predictive accuracy of
DEM hinges on robust contact constitutive models that offer appropri-
ate nonlinear behavior of the analyzed discontinuous medium. Without
such formulations, key phenomena, such as hysteretic loops, residual
drift, and transitions between different failure modes, cannot be reliably
captured in DEM.

Several DEM contact models have been proposed to better rep-
resent the mechanical behavior of masonry constituents. Pulatsu [8]
and Oktiovan et al. [12] formulated damage—plasticity contacts with
a compression cap to capture shear—compression coupling. The former
adopted linear softening in tension, shear, and compression, whereas
the latter employed piecewise-linear softening in tension and shear,
along with a hardening-softening law in compression. Both of these cap-
based formulations, however, were calibrated and validated only under
monotonic loading, limiting their demonstrated capability under cyclic
demand (e.g., load reversals, degradation, and pinching).

In parallel, DEM strategies for URM structures under quasi-static and
cyclic loading have emphasized block-interface formulations. Malomo
et al. [32] used elasto-plastic deformable blocks (i.e., blocks with limited
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tensile and compressive strengths) with Mohr-Coulomb interfaces and
a tension cut-off, while Damiani et al. [33] advanced this approach by
combining elasto-plastic blocks with a refined interface model [8]. More
recently, Pulatsu et al. [34] examined cyclic in-plane response within
a DEM framework but represented shear-compression coupling with a
compression cut-off (i.e., without a compression cap).

This study presents a contact constitutive model within the DEM
framework tailored for the cyclic loading of masonry assemblies. The
formulation is also applicable to other block-based systems in which lo-
cal cohesive or frictional interactions govern the macroscopic response
of the discontinuum. The main contribution is a unified definition of
the masonry joint behavior under cyclic demand. The joint constitu-
tive law integrates multi-surface plasticity with exponential softening
in tension and shear, a hardening-softening evolution in compression, a
dilatancy-induced uplift mechanism, and a nonlinear, energy-dissipative
unloading/reloading algorithm. The modelling strategy is implemented
in 3DEC, a commercial software for DEM, which uses an explicit time-
marching integration scheme, avoiding substepping and iterative return
mapping while maintaining numerical stability under large displace-
ments. The model is validated against cyclic uniaxial compression,
direct-shear, and shear—compression triplet tests, as well as full-scale
in-plane wall experiments. This demonstrates the model’s capability to
match both global force—drift loops and detailed crack patterns, and
to reproduce the intricate transition from rocking to sliding mecha-
nisms, including hinge formation, progressive sliding, and toe crushing,
offering a robust tool for seismic assessment of masonry structures.

The present work focuses only on in-plane loading; the out-of-plane
(OOP) behavior is not addressed. This scope was chosen to isolate the
shear-compression-tension mechanisms at bed and head joints that
dominate in-plane seismic response and for which standardized cyclic
datasets enable rigorous calibration. While the formulation is general
and compatible with 3D analyses, extending and calibrating the model
for OOP loading cases and coupled in-plane-OOP demands is left for
future work.

2. Formulation of the cyclic joint constitutive model

The proposed formulation is developed within the distinct element
method (DEM) framework [35], which falls under the simplified micro-
modelling approach as categorized by Lourenco [1].

This approach represents masonry units as rigid or deformable blocks
with extended dimensions to cover mortar joints, thereby replicating
masonry structures as a group of discrete blocks. The deformable blocks
may be considered as an elastic or elasto-plastic continuum. The mortar
joints are represented as a set of cohesive-frictional contact points, as
shown in Fig. 1. In this study, the masonry units are treated as rigid
bodies with a potential crack plane at the unit’s mid-length (dashed red
line in Fig. 1). Consequently, their elastic deformability is accounted for,
and the block’s Young’s modulus is not used in the stiffness update. The
overall elastic compliance of the assemblage is lumped at the interfaces
via normal and shear springs (k, and k,, respectively), which govern
the initial stiffness and are first estimated via homogenization and then
calibrated to tests.

As the blocks in contact are detected through the ’‘common-plane’
concept [35], the contact points between adjacent blocks are automat-
ically generated when the gaps measured from the direction normal to
this fictitious plane are less than the given tolerance. The number of the
generated contact points depends on the adopted face triangulation al-
gorithm (readily available in the software). Fig. 1, shows a mesh termed
as “radial-8” where each face of the block has a center vertex and an
extra vertex at the mid-edge, creating 9 contact points at each face of
the block.

Under DEM, the proposed formulation is solved using the explicit
time-marching integration scheme, where the equation of motion, pre-
sented in Eq. (1) for a single block i, is solved at each timestep to obtain
the new block positions and displacement increment.



Y.P. Oktiovan, F. Messali, B. Pulatsu et al.

Computers and Structures 321 (2026) 108094

[y R a
| |
: Unit :
| |
/7‘ n !
| k |
| f f |
g | ty CT |
- | |
L
g | Unit |
bt nr
2 : | :
. O d
Real dimension Extended dimension - Potential crack-plane

Fig. 1. Discretization of the masonry constituents according to the distinct element method (DEM).

m; dv; = [( D Ff"}) +FX P - F?"] dt (€]

JEC;

where m is the block mass, v is the velocity vector, C; is the set of con-
tact points governing block i, Ffj’ is the contact force vector at point j

along the block’s boundary,

Ff"t"’ is the external force vector, F}"" is the

body force vector, and Ff‘" is the damping force vector. Similarly, the
rotational motion is defined in Eq. (2)

Ldo, = (M, - M) ar @

where I is the moment of inertia, w is the rotational velocity vector, M’
is the moment applied to the block, and M% is the damping moment.

These equations are discretized using a staggered scheme. Let ¢ de-
note a generic time level and Ar denote the constant time step. We
introduce the half-step times [r~ =1 — Ar/2,1* = t + At/2|. Translational
and rotational velocities are stored and updated at half-time steps, while
forces and moments are evaluated at integer time levels . Integrating the
equations of motion over the interval [t‘, t*] yields:

+ s
m; / dv; = / [( > E > 0 DS Fd’] dt 3)
~ r JEC;

The left-hand side of Eq. (3) can be evaluated exactly and defines the
finite velocity increment:

AV = - )

Using a midpoint approximation of the time integral, the forces are
evaluated at ¢, and the discrete translational update becomes:

mAV [( > E > +F P - Ff”] At 5)
JEC;

An analogous procedure is applied to the rotational equation.
Integration over the interval [t~,1*] yields:

I I
I / do, = / (M?—Mf“")dr, 6)
1~ 1~

which gives the angular velocity increment:

Ao} = ot - 0} (@)

;
which leads, after the midpoint approximation of the contribution, to:
1 A0) ~ (M) - M) Ar. ®

For completeness, it is important to note that orientations are ad-
vanced with a small-rotation update, and that the scheme is employed
in a quasi-static, dynamic-relaxation sense with small local damping

and energy/residual checks. These additions make the time-integration
procedure self-contained without altering any results.

The damping force F?” and moment M?" are included in Egs.
(1) and (2), respectively, as local numerical damping [36] used in
a dynamic-relaxation sense to obtain quasi-static equilibria with the
explicit scheme. Contact opening/closure and softening often intro-
duce high-frequency oscillations that would require impractically small
timesteps to settle without this local damping. These terms attenuate
spurious kinetic energy and align the unbalanced force/moment with
the current velocity directions. They are not physical dissipation models
and do not alter the conditional stability. These are defined based on the
proportion of the unbalanced or net force/moment and the direction of
the velocity (or rotational velocity) vectors at r~. These are expressed as
follows:

F'=q ”z F;“ sgn(v;" ) and M?" =a HZM:” sgn (@; ) ©)

where } F/ and Y}’ M/ are the unbalanced force and moment, respec-
tively, and sgn (v'") and sgn (@’ ) denote the signum function that
defines the opposite direction of the translational v/~ and rotational @’
velocities at 77, respectively. Throughout the simulations in this paper,
the local damping constant « is set to 0.8 by default.

Although the equations of motion in Egs. (1) and (2) are integrated
explicitly with the inertial term, the analysis is carried out in a quasi-
static (dynamic-relaxation) fashion. Inertia and local damping serve only
to relax each load increment into equilibrium. For each step, the pseudo-
time is advanced under slow loading due to the significantly small Ar
while keeping the residual force norm ||R;|| small, i.e.:

IR I
IF|

where R, = Z F; + F{™ + F — Fid ~0 (10)

The converged configuration under these criteria is then taken as
the static response. Once the updated velocities are obtained, i.e. v/
and @', the positions of the blocks centroid are updated as:

X;(t + A1) = x;(t) + V! At an

where x is the block centroid’s positional vector. The new locations
of block vertices are updated accordingly, considering the incremental
rotation calculated from the angular velocities multiplied by Az.

Each contact point comprises three orthogonal springs, one in the

normal direction and the other two in the shear directions. Under the
linear elastic range, the normal and shear force increments at the contact
points are defined according to the respective displacement increments,
as presented in Eq. (12).
AF"=Kk"A°Au" and AF® = k°A°Au® (12)
where F", k", and u" are the normal force, normal stiffness, and normal
displacement, respectively, while F*, k%, and u® are the shear force vec-
tor, shear stiffness, and shear displacement vector, respectively, and A¢
is the tributary area [12].
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Fig. 2. Construction of the sub-contact area A, for force mapping.

Here, A, denotes the sub-contact area used to map interface reac-
tions to nodal forces. As illustrated in Fig. 2, the contact region on the
interface plane is first decomposed into triangular planes. For one sub-
contact point, the associated area is constructed by assigning one-third
of each triangular face that contains the sub-contact and lies on the
contact plane. This equal partition ensures a consistent and objective
distribution of the contact area among neighbouring sub-contacts.

The resulting region is then intersected with the opposing block’s
face lying on the same plane, yielding the effective sub-contact area A,
used in the force and energy mapping. For face-to-face contacts, the con-
struction is applied independently to each block. Since sub-contacts are
defined at the nodes of both blocks, two parallel interface contributions
arise, and the effective area associated with each sub-contact is therefore
halved.

It is important to emphasize that the explicit time marching integra-
tion scheme employed in the discrete element method (DEM) is only
conditionally stable, with stability governed by the critical time step
defined in Eq. (13) [37]:

2
Alpoer = P 13)

max

where ;.. is the maximum stable timestep and w,,,, is the highest
system frequency . Eq. (13) provides a conservative estimate for the sta-
ble time increment by considering the upper bound associated with the
highest eigenfrequency of the system. This criterion has been shown to
offer sufficient stability for complex, nonlinear systems [38,39]. The sta-
ble timestep in Eq. (13) is essentially independent of the local numerical
damping used for dynamic relaxation in Eq. (1). The damping parame-
ter a serves only to attenuate spurious oscillations and does not alter the
conditional-stability nature of the method.

In this paper, the constitutive model that defines the nonlinear
behavior of masonry structures under monotonic loading, previously
proposed by the authors [12], is extended to include the dilatancy soften-
ing of the mortar layer when subjected to shear and compression loading
as well as the extension to include stiffness degradation in tension, shear,
and compression regimes.

2.1. Overview of the monotonic joint constitutive model

The mechanical response of the joint model representing the unit-
mortar interface under monotonic loading conditions is characterized
by the traction-separation laws in tension, shear, and compression, cou-
pled with a multi-surface plasticity model. Fig. 3 shows the adopted joint
constitutive model, which encompasses the softening behavior in ten-
sion (Fig. 3(A)), shear (Fig. 3(B)), and a nonlinear compressive behavior
(Fig. 3(C)). The multi-surface plasticity model in Fig. 3(D)) comprises
a tensile cut-off F; (Eq. 14), a Coulomb friction yield line F, (Eq. 15),
and a compression cap F; (Eq. 16) to limit the behavior of the interface
under shear—compression.

Fy=o"— f,ul) 14)

Fy = e + o,tan(¢, + yu) - ) 15)

2
Fy=Cpol+Cy, T” +C, 0, — 6" (16)

where #! and u] are the relative normal subcontact displacements in
compression and tension, respectively, ¢” is the normal stress, 7 is the
shear stress vector, ¢,, is the friction angle at constant volume, f,(u})
is the tensile strength that reduces according to the tensile normal dis-
placement u!, c(u®) is the cohesive strength that decays depending on the
shear displacement vector u®, y(u®) is the dilatancy angle corresponding
to the shear displacement vector, " («}) is the compressive strength that
evolves under the compressive normal displacement u”, C,, and C;; are
the parameters that control the radius of the elliptical curve in Fig. 3(D),
and C, is the ellipsis center.

In contrast to the previous study by the authors [40], where a piece-
wise linear softening law is used on the tensile and shear regimes to
provide flexibility for the users to fit the strength degradation given the
material characterization tests, an exponential softening law is used in
this joint constitutive model to reduce the number of parameters needed
by the users, and to achieve a smoother strength degradation on each
regime. The exponential softening laws for tension and shear are given
in Egs. (17) and (18), respectively.

Sfiw)) = [1 - d,(u;')] i d,')=1-exp [—% <u;' - —>] 17)
f

7(u’) = c(u®) — o"tan (P, + vy) (18)

where d,(u}) is the tensile damage scalar, f, is the tensile strength, G;.
is the mode-I fracture energy, and r(u®) is the post-peak shear stress.
The exponential softening law for shear strength is implemented to the
cohesive strength, defined in Eq. (19).

c(us) = [1 —ds(us)] Co» ds(us) =1-exp [—% < [Jus]| —uesl >+]
S
(19)

where d (u®) is the shear damage scalar, G!! is the mode-II fracture
energy, and ), is the elastic shear displacement, defined by Eq. (20).

¢y — o"tan +
o = max _ 0 k£¢cv V/O) (20)

where ¢, is the peak cohesive strength, and v is the initial dilatancy
angle. It is important to note that the default implementation assumes
a fixed value of dilatancy. The dilatancy softening effect is discussed
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(A) Tension* (B) Shear

*Scaled for visualization

(C) Compression
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Fig. 3. Illustration of the proposed joint constitutive model.

in the following sub-section. To couple the post-peak softening isotropi-
cally [1,8,16], a combined damage scalar d,, that couples both the tensile
and shear behaviors is introduced in Eq. (21), replacing the tensile d,
and shear d, damage scalars in Eqs. (17) and (19), respectively. To pre-
vent round-off accumulation error, both f,(u}") and c(u®) are capped at
1 x 107'2 according to the precision limit of the user-defined model in
3DEC [41], the commercial software for DEM.

d, ") = d, (") + d,(0®) — d,(u")d(u®) (21)

The uniaxial compressive behavior of the joint constitutive model is
governed by the hardening/softening law introduced by Lourenco and
Rots [19]. After the linear elastic phase reaches 20 % of the compres-
sive strength, the interface enters the hardening phase defined by the
parabolic function in Eq. (22).

2
2ug —uy) (g — ) (22)

Uep Uep

o"(ug) = oy +(fe = ”Zz)\J

where ¢"(u!) is the normal compressive stress, ol is the elastic com-
pressive stress set at 20 % of the compressive strength f,, u, is the
normal displacement at elastic compressive stress, i.e., 0.2f,/k", and u,,,
is the displacement at compressive strength, set as a user supplied multi-
plier n times f,/k", the supposed displacement at compressive strength
according to the initial normal stiffness k".

The user-supplied » factor creates flexibility for the user to set the
hardening behavior, as some masonry exhibits a relatively ductile be-
havior up to two or three times the supposed elastic displacement at
peak compressive strength. [42] The softening phase is defined through
a compressive damage scalar d,(«/) in Eq. (23). This damage scalar is
correlated to the normal compressive displacement !, as defined in
Eq. (24).

") = [1-d. )] f. (23)

0, uy < Uep

u'—u 2

d = (l_fcm)< ¢ 6p> U, <u' <u,,
e Je Upp = Uy p =Y

< fo) fcm_fcr < f(‘m_fcp “?—Mc,,,>

=7 )~ xp 2 M: 2 Uem
fc fc Uey — Uep fcm - fcr

(24)

where f,, is the intermediate post-peak compressive stress, the in-
flection point from quadratic softening to exponential, u,,, is the cor-
responding displacement at f,,, and f,, is the residual compressive
strength.

The compressive damage scalar is correlated to the compressive frac-
ture energy, G,, by setting the intermediate displacement u,,, such that
the area under the curve in Fig. 3(C) corresponds to that of the multi-
linear softening law. The correlation is performed mathematically using
Eq. (25) [12].

£2
G.—-0.5 9/2,, = 0.65(u, — ) fo +0.75u,, f +0.25u., fo\
u,, = u (25)
o ut’pfc + uCprV r

where G, is the compressive fracture energy, and u?, is the displacement
at elastic compressive stress o, le ol [ k"

2.2. Inclusion of the dilatancy softening

Based on the experimental tests on masonry couplets conducted by
several researchers [13,43-46], it has been observed that the normal
displacement of the joints induced by dilation gradually decreased with
continued shear loading, eventually reaching a small constant value or
zero in some cases. Multiple researchers have proposed numerical mod-
elling strategies to address the dilatancy effect observed in mortar joints
through the interface constitutive model. Lourenco and Rots [19] and
Giambanco et al. [47] started including the dilatancy effect through the
non-associative flow rule, with a dilatancy angle that was separated from
the friction angle. This dilatancy angle also decreased with increasing
normal pressure for Lourenco and Rots [19], while Giambanco et al. [47]
associated the decrease with the loss of cohesive strength. Van Zijl [46]
extended the approach from Lourengo and Rots [19], to consider the
volumetric increase that caused the uplift of masonry units when sub-
jected to shear load. Andreotti et al. [13] proposed a data-driven strategy
to calibrate the dilatancy angle based on the experimental data. The
dilatancy angle was coupled to the friction angle, and the decrease
was related to the plastic shear and normal displacements from the
experiments.

As shown in Eq. (15), the Coulomb friction line F, departs from
the formulation of Oktiovan et al. [12] by adopting the shear-strength
definition of Andreotti et al. [13], in which the friction coeffi-
cient is expressed as the sum of a constant-volume friction angle,
¢.,,» and a dilatancy angle, y, that decays with accumulated plastic
slip.

It has been described by several authors [1,13,43,44] that ¢,,, reflects
the surface roughness governing sliding resistance, while y controls the
joint opening or inclination of the sliding surface as shear slip develops.
Furthermore, as the shear displacement increases, the uplift/dilatant
displacement reaches a relatively constant value, which is interpreted
as the smoothened bed-joint due to the fully decayed dilatancy angle
(Fig. 4(D)) [46].

The above behavior is illustrated in Fig. 4. At the initial state
(Fig. 4(A)), the shear stress is defined as given in Eq. (18), where the fric-
tion angle at constant volume ¢,,, is added to the initial dilatancy angle
y. As the crack through the joint develops (Fig. 4(B)), the cohesion and
the dilatancy angle soften. This differs from the previous formulation
defined by the authors [12] and the typical interface-based constitu-
tive model for masonry that considers dilatant behavior [9,16,19,25,46].
While the cohesive strength softens according to the combined damage
scalar d,; (Eq. 19), the dilatancy angle decays according to the ratio of
normal confining stress and the stress at zero dilation, expressed in Eq.
(26) [48].
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Fig. 4. Phases of the mortar joints when subjected to shear load [13].

S;p
W <1 _ ||ll “ > exp [—5 (”us,p”)] ”us,p” < yS-max

yu') = s (26)

0 [[uSP]| > ysmax

where § is the softening gradient [46], usP is the plastic shear displace-
ment vector and u*™* is the shear displacement at zero dilation. If the
plastic displacement exceeds the limiting displacement at zero dilation,
the decay is capped at zero to ensure thermodynamic consistency.

As the shear damage accumulates (Fig. 4(C)), plastic slip initiates as
soon as the shear traction reaches the Coulomb friction line in Fig. 3(D).
After the onset, the slip evolves while the cohesive strength softens
and the dilatant part of Eq. (15) decays according to Eq. (26). When
cohesion has fully degraded (¢ — 0) and w ~ 0, the residual shear
strength is purely frictional. The mathematical definition in Eq. (18)
shows that at large slips, the tangential response tends to the frictional
branch. The physical representation of the dilatancy softening is shown
in Fig. 4(D), which shows that the surface of asperities softens as shear
slip progresses [13,48].

To represent the uplift in the normal direction, the normal displace-
ment increment (Au" in Eq. (12)) is adjusted according to the magnitude
of the shear displacement increment |Au®| and the dilation coefficient.
This is mathematically expressed in Eq. (27).

Au ”usn > ySmax (27)

AL {Au" +[lAv’|[tan(y (u®))  [lud]| <= [lu®m|
u" =

As an explicit integration scheme is used as the solution procedure,
the normal force increment calculated in Eq. (12) is corrected to account
for the dilatancy effect, shown in Eq. (28).

F" := F" + k" A°| Av®|tan(y (u®)) @9

Upon unloading in shear, the yield condition is inactive, so only
elastic closure can occur. The accumulated plastic offset and current di-
lation angle are retained (i.e., no healing), matching the partial recovery
observed in experimental tests.

It is important to note that, even though the shear stress in Eq. (18)
considers the contribution of friction and dilation even in the linear elas-
tic state, the correction due to uplift in the normal direction (Eq. 27) only
considers the dilatancy effect. As shown in Fig. 4(C) and Fig. 4(D), the
roughness of the surface of asperities that mobilize the uplift movement
is caused only by the dilatant behavior of the mortar layer. Furthermore,
it is essential to highlight that this uplift-correction framework is well-
established as proposed by Van Zijl [46] and Andreotti et al. [13] . The
contribution of this paper lies in the exponential dilatancy decay law
and its consistent integration into the DEM framework.

2.3. Extension to include energy dissipation mechanisms

The main improvement over the previous joint constitutive
model [12] is the energy dissipation framework, which captures damage
accumulation under cyclic loading. Dissipation is activated in a frac-
ture mode-dependent way through controlled stiffness degradation. In
tension, unloading follows a secant rule (see Fig. 3(A)): the unloading
stiffness is the secant from the origin to the current point on the de-
graded tensile envelope, so the apparent joint stiffness decreases as the

normal opening grows. The stiffness degradation rate corresponds to the
combined tensile-shear damage scalar Eq. (21), as presented in Eq. (29).

K'(d,s) = (1 —d k" (29)

Elastic unloading is used in the shear regime (Fig. 3), where the initial
shear stiffness k; is maintained as the shear displacement progresses.
This is consistent with the hypotheses adopted by other authors [6,25,
49] as well as the experimental results obtained from the cyclic direct
shear test [50].

The unloading mechanism used in the compression regime fol-
lows the nonlinear unloading/reloading formulation defined by Facconi
etal. [51], as illustrated in Fig. 5. Experimental results on uniaxial com-
pression tests of masonry wallets [51-55] showed that the masonry
composite unloads in a nonlinear manner with irreversible strain (or
deformation) and stiffness degradation to account for energy dissipation.

Leveraging the robustness of the explicit time marching integra-
tion scheme, a nonlinear unloading branch is proposed, as shown in
Fig. 5(A). The unloading branch reaches a normal plastic displacement
u, ~atzero compressive stress, which defines the irrecoverable damage
of the masonry assemblage due to loading and unloading sequences.
The normalized plastic compressive displacement in Eq. (30), adapted
from [51], separates the plastic component after the onset of compres-
sive failure and is derived under a small-displacement assumption to
ensure compatibility when expressed in terms of displacement.

047, Y +050u, |, de=0,
_ 30)
1175 ) +1250d, |, de>0.

np;

where u/ : is the normalized plastic compressive displacement, and u/,
un

is the normalized unloading displacement. Both values are normalized
against the peak compressive displacement u,, (Fig. 3(C)). The unload-
ing branch is defined nonlinearly and is correlated to the unloading
displacement u, ~and the plastic strain y The general formulation
is defined in Eq. (31).

Bix+ 1
- Lo\ Bur
O _fcre+<fclm f"re) 1+BZ/1/+ 33)(2 CO)
where
u:" B u”un
P (32)
u”pl - u”un

where o7 is the current normal compressive stress during unloading, f,
and f, ~are the reloading and unloading compressive stresses, respec-
tively, and B,, B,, and B; are the variables determining the shape of the
unloading branch (Eq. 33).

k ky
B =—". B,=B, —B;; By=2——2(1+B)); 33
1 Es 2 1 3 3 Es( l) ( )

where E; = f, [, - Uy ) the secant stiffness between the onset of
unloading and the plastic displacement (from Eq. (30)), kmm and kn,,, are
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Fig. 5. Nonlinear unloading mechanism for the compressive behavior of masonry assemblage [51].

the unloading and plastic tangent stiffnesses (Fig. 5(A)), respectively.
Both values are defined according to Eq. (34).

vk
=YMnkn; k = L (34)

Ny e
14
Uep

where y,, = 1.5, y,; = 0.15, and e = 2, empirically defined according
to the suggestions provided by Facconi et al. [51], where e defines the
nonlinear curve close to the plastic displacement and the point of inflec-
tion between k, ~and k, . Those variables were determined from the
best fitting of the unloading curves of a uniaxial compression test on
masonry wallets gathered from the literature.

The reloading branch (Fig. 5(B)) starts when compressive displace-
ment increases after either complete (when the compressive stress
reaches zero) or partial unloading [51]. Due to damage accumulated
during the cyclic loading sequence, the reloading curve typically inter-
sects the envelope curve at a displacement larger than the displacement
level during the unloading onset [56]. With that in mind, the linear
reloading mechanism is adopted in this model, deviating from the non-
linear representation defined by Facconi et al. [51], to simplify the
formulation. Furthermore, several authors [56-58] have shown that the
linear representation of the reloading sequence is adequate to simulate
a masonry assemblage’s energy dissipation mechanism under uniaxial
cyclic compression. The linear reloading compressive stress is defined
in Eq. (35).

nMH

ol = Se,, T kel — U, ) (35)

where f, and u, are the compressive stress and displacement at the
onset of reloadlng, and k!, is the reloading stiffness, defined in Eq. (36).

ﬁd f Cun f Cro
= T (36)
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is the damage factor correlated to the normalized recovery displace-
ment u, = u, —Uu, ,as illustrated in Fig. 5(B). The coefficients
followmg the normalized recovery displacement are calibrated with ac-
ceptable accuracy based on the experimental data gathered from the
literature [51-53,59,60].

2.4. Stress update in explicit integration scheme

Oktiovan et al. [12] highlighted that proper handling of the force (or
stress) update routine when the stress state violates the yield surface is
essential to ensure the stability of the explicit time-marching integration
system. In contrast to the typical stress update routine in an implicit-
based solver, e.g., return mapping [16,61] or substepping [18,24], the
stress update in the explicit integration scheme is relatively straightfor-
ward. This stress update routine is illustrated in Fig. 6(A) when each
failure surface in the proposed constitutive model is violated.

From time 7 to 7+ 1, the stress state progresses either linearly through
the increments in Eq. (12), or through hardening for the normal com-
pressive stress in Eq. (22). When F, is violated at time 7+ 1 (circle marker
in Fig. 6(A)), only the normal stress component ¢, of the stress state ¢
is corrected to the current tensile strength that is weakened through Eq.
(17). This is because damage in Mode-I fracture reduces the normal ca-
pacity, while shear components remain unaffected at the instant of pure
tensile failure. This is done to avoid introducing artificial shear when
the joint opens and to respect the unilateral contact (i.e., no traction in
tension once the cut-off line is reached). Note that this force correction
occurs at the same time step ¢ + 1, where the failure surface is violated.

When F, is violated (triangle marker in Fig. 6(A)), the shear stress
components in all directions are corrected to the weakened shear stress
defined in Eq. (18). However, the force correction is scaled proportion-
ally through Eq. (38). This choice is frame-invariant in the tangential
plane and acts as a closest-point projection in the shear subspace. The
normal component is unchanged because shear strength is the active
limiter.
=1 T ) (38)

=8l

When the compression or shear—compression mode in Fj is violated,
as illustrated by the square marker in Fig. 6(A), both the normal and
shear stresses are corrected through a radial return from the origin to
the weakened cap. This is done by taking the radius from the point of
origin (zero normal and shear stress), and correcting the stress state ¢
proportionally to the weakened normal compression and shear stresses
through Egs. (23) and (18), respectively. The correction amount is the
radius difference between the violated stress state and the stress state at
the weakened yield surface, termed R in Fig. 6(A), which has the same
structure as ¢. The correction for F; is formally defined as follows.

1 1 . (R) :
(6’“)1 = (" +l)1 (‘7 +l)2:4 = (O'I+l)2:4 2

[Cas )2:4|

This choice yields a unique, path-independent correction that drives
the yield function to zero in a single step and captures the coupled nature

- Ry, (39)
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Fig. 6. Stress update on the interface once the failure surface is violated.

of shear-compression failure. As pointed out by Nie et al. [16], prob-
lems with multi-surface plasticity models arise when the updated stress
is located close to a corner, i.e., the intersection between F; and F, and
between F, and F; in the case of Fig. 6(A). This approach implements a
general solution [20], as illustrated in Fig. 6(B) when both tensile cutoff
F, and Coulomb friction line F, are violated. Two sequential stress cor-
rection paths are computed and compared at the intersection of F; N F,.
Path 1 first corrects the tension condition, then corrects the shear stress
to satisfy the F, line. Path 2 first reduces the shear stress on F,, then ap-
plies the secondary correction to meet F;. Each path yields a candidate
at the intersection corner. The active path is determined by the trig-
ger order; the surface violated first in the current increment is selected
as the candidate. This tie-break rule yields a unique update, preserves
non-negative dissipation, and prevents oscillation between surfaces in
subsequent steps.

2.5. Numerical implementation of the joint constitutive model

The joint constitutive model for analysing masonry structures using
the Distinct Element Method (DEM) is implemented in 3DEC [41]. The
numerical treatment of cyclic loading, unloading, and reloading in the
normal direction is detailed in the Appendix. Due to the dynamic nature
of the explicit time-marching scheme, unbalanced forces may fluctu-
ate throughout the simulation, particularly in response to changes in
contact, local perturbations, or insufficient damping. If not adequately
controlled, these fluctuations may be misinterpreted by the cyclic consti-
tutive law, formulated in terms of displacement increments, as spurious
loading and unloading events, which can result in artificial damage accu-
mulation or instability in the material response. To mitigate this issue, a
fail-safe perturbation flag is introduced for compression-side unloading,
as described in A and implemented in the presented algorithm. The flag
gates the transition to the unloading branch: the model enters unloading
only when a genuine reversal out of compression is detected, rather than
a transient oscillation. While the response is flagged as fluctuating, the
normal contact is held at its initial elastic stiffness, preventing premature
stiffness degradation and preserving the stability of the response.

In contrast, the shear response follows a simpler scheme, governed by
a linear elastic unloading mechanism. Furthermore, historical parame-
ters are incorporated into the damage scalars in tension d,, shear d;, and
compression d, to ensure consistent damage tracking under load rever-
sals. This allows the model to retain and apply the maximum recorded
value of relevant quantities, such as displacements or stresses, regardless
of the current loading direction.

3. Material-level validation

A series of material characterization tests was conducted to validate
the proposed joint constitutive model, utilizing cyclic loading protocols.
The material-level validations serve to highlight the capability of the
modelling strategy to simulate the failure of masonry constituents in
shear, compression, as well as the dilatancy weakening effect on the

overall response of the masonry assemblage. To that end, the cyclic uni-
axial compression test conducted as part of the experimental campaign
by Esposito et al. [62], the cyclic direct shear test on masonry assem-
blage by Atkinson et al. [50], and the masonry triplet test by Andreotti
et al. [13] were selected as the validation cases. The tests by Esposito
et al. [62] and Andreotti et al. [13] were conducted on calcium silicate
masonry samples, while Atkinson et al. [50] conducted the test on clay
brick samples. Table 1 summarizes the material properties used as input
parameters in the selected material characterization tests.

The parameters include normal and shear stiffnesses, strength char-
acteristics in tension, shear, and compression regimes, the corresponding
fracture energies, and the dilatancy-related values governing the me-
chanical response of the masonry components. Due to the rigid block
formulation, where the deformability of the units is neglected, and their
Young’s modulus is not explicitly defined, the initial normal k" and shear
k? stiffnesses must be calibrated to the initial stiffness of the experiments.
Therefore, the initial stiffnesses are first defined through the homoge-
nized equation by Lourenco [1] (Eq. 40), which are then calibrated to
match the experimental initial stiffnesses.

o EEn GGy “0)

tm (Eb_Em) tm (Gh_Gm)
where E, and E,, are the brick’s and mortar’s Young’s moduli, respec-
tively, G, and G,, are the brick’s and mortar’s shear moduli, respectively,
and ¢, is the mortar joint thickness.

The cohesion ¢ and friction angle ¢ were obtained from direct-
shear/couplet tests based on the relation of r = ¢ + ¢, tan ¢ for all test
cases. The residual cohesion c,,, was read from the large-slip plateau.
The initial dilation angle y is taken from the peak dilation observed in
the direct shear test by Andreotti et al. [13]. The other parameters re-
lated to the dilatancy softening (i.e., u*™#* § are refined according to the
experimental findings). The tensile/bond strength f, was taken from the
companion splitting/bond tests, which are recalibrated to align the sim-
ulated peak load with the average measured response of the test cases.
This recalibration is done using the empirically-derived equations sum-
marized by Jafari et al. [63] . The mode-I G; and mode-II G;; fracture
energies are taken from the empirical equation set by CEB-FIP Model
Code 90 [64]. The compressive strength f, and the fracture energy G,
for the cyclic compression tests were taken from the experimentally
reported values in Esposito et al. [62] . The hardening factor » for
compressive strength was defined according to the recommendations of
Jafari et al. [63] . This tailored parameter set provides a robust founda-
tion for accurately simulating and validating the mechanical behavior
of masonry under cyclic loading.

Fig. 7 presents the geometries and the loading configurations of the
selected material characterization tests, with the extended dimensions
of the brick units. The extended dimensions account for the thickness of
the mortar layers while maintaining the actual height and width of the
experimental specimens. The vertical and horizontal compression tests
(Fig. 7(A) and Fig. 7(B), respectively) also include the locations of the
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Material properties used as the input parameters of the material characterization tests.
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Material parameters Symbol Unit Cyclic compression' Cyclic shear-I? Cyclic shear-II*
Vertical Horizontal
Experimental parameters
Density p kg m~3 1800 1800 2300 1800
Peak cohesion ¢ MPa 0.22 0.22 0.16 0.11
Residual cohesion c, MPa 0.022 0.022 0.016 0.011
Friction at constant volume beo ° 25.0 25.0 34.79 30.0
Initial dilatancy angle vy ° - - - 20.0
Compressive strength fe MPa 6.5 7.45 - -
Compressive fracture energy G, Nmm~™! 15 31.5 - -
Numerical model parameters
Normal stiffness k" Nmm~3 521 52.1 9.17 32
Shear stiffness ks N mm 3 22.7 22.7 3.95 32
Tensile strength* f MPa 0.11 0.11 0.1 0.11
Hardening factor* n [-1 7.5 5.0 - -
Zero dilation displacement S max mm - - - 3.0
Dilatancy softening gradient 5 [-1 - - - 2.0
Mode-I fracture energy® G, Nmm™! 0.0086 0.0086 0.0081 0.00866
Mode-II fracture energy® Gy, Nmm~!  0.0866 0.0866 0.081 0.0866
Cap parameters C,.C,,.Cy [-1 0.0,1.0,12.0
1 Cyclic uniaxial compression test by Esposito et al. [62].
2 Cyclic direct shear by Atkinson et al. [50].
3 Cyclic triplet test by Andreotti et al. [13].
4 Based on the recommendations by Jafari et al. [63].
5 Values obtained from CEB-FIP Model Code 90 [64].
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Fig. 7. Illustration of the validated material characterization tests with extended brick dimensions.

LVDTs used to record the axial strain. The axial strain in the numeri-
cal model is calculated from the relative displacement between the two
vertical LVDTs on the front and back sides of the specimen.

3.1. Uniaxial cyclic compression tests

There are two configurations considered in the uniaxial compression
test: a vertical configuration, where the compression load is orthogonal
to the bed joints, and a horizontal configuration, where the compres-
sion load is orthogonal to the head joints. Similar to the experiment, the
displacement-controlled load is applied at the bottom of the model using
a rigid plate, with the stresses recorded at the top of the prisms [62].
Due to the brittle post-peak response, the experimental cyclic unload-
ing/reloading scheme was only performed during the pre-peak phase.
The unloading/reloading scheme was conducted three times at the 25 %,
50 %, and 75 % of the peak compressive stress.

The comparison of the uniaxial cyclic compression test on the verti-
cal and horizontal prisms is presented in Fig. 8. Two results were shown
as the cyclic loading experiment was conducted twice, to highlight the
variability in mechanical response. Despite being cast from the same
batch, the specimens responded differently, indicating non-negligible
experimental variability or inherent material heterogeneity. However,

the model was tuned to one specific specimen, TUD-MAT-11G for the
vertical case, and TUD-MAT-11K for the horizontal case.

By employing the nonlinear unloading scheme in Eq. (31), the
model effectively captured the energy dissipation observed during un-
loading and reloading in both vertical and horizontal prism tests. It
reproduced key hysteretic behaviors such as stiffness degradation and
residual strains, demonstrating its ability to simulate the cyclic com-
pressive response of masonry-like materials with directional consistency.
Furthermore, the behavior where the reloading strain exceeded the un-
loading onset was also evident in both vertical and horizontal cases,
which were consistently simulated by the proposed joint constitutive
model.

3.2. Cyclic direct shear test on masonry bed joints

Atkinson et al. [50] conducted cyclic shear tests on masonry as-
semblages with old and new clay masonry units with mortar joint
thicknesses of 7 and 13 mm. The old clay assemblage was tested under
a pre-compression level of 13 kN while the new clay assemblage was
tested under 49 kN of pre-compression force. In this experiment, the
top-side loading plate was sheared up to 12 mm before the specimen
was unloaded and then loaded in the other direction.
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Fig. 8. Uniaxial compression test results comparison.
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Fig. 9. The DEM model with the boundary conditions and the comparison to experimental results.

For both pre-compression levels reported by Atkinson et al. [50],
a single set of interface parameters in Table 1 was used, and only the
applied normal force was varied, so that differences in the simulated
response reflect confinement effects rather than parameter changes. The
DEM model and the boundary conditions are shown in Fig. 9(A), where
the bottom units are fixed, and precompression is applied directly to the
top units, along with the cyclic shear load. The shear force-displacement
comparison is presented in Fig. 9(B).

The numerically predicted responses closely reproduce the overall
experimental behavior, accurately capturing key response features such
as the initial stiffness, peak shear strength, post-peak mode-II softening,
and the elastic unloading/reloading branch typical of shear, as well as
the residual strength plateau for both normal stress conditions.

3.3. Cyclic shear test on masonry triplet

The dilatant behavior of masonry joints subjected to combined shear
and compressive loads was experimentally investigated by Andreotti
et al. [13]. The test setup adopted in their study is illustrated in
Fig. 10(A). The test was conducted on calcium-silicate brick specimens
with the dimensions of 212 x 102 x 72 mm and mortar layers with the
thickness of 10 mm. The pre-compression force actuator was controlled
through a spring with a stiffness of 1070Nmm~! to regulate and main-
tain the desired pre-compression level (N). The shear force is applied
through a vertical jack, and the rotation of the whole triplet is not re-
stricted. The triplet was subjected to three time windows, defined by
the sequential application of the shear load, but with an increasing
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precompression level at each time window. In each window, the shear
force is characterized by loading and complete unloading to a zero shear
force condition. Time window zero refers to the shear test of a pris-
tine triplet, while the subsequent time windows are conducted to find
the residual shear strength corresponding to the constant volume phase.
Readers are referred to Andreotti et al. [13] for further details pertaining
to the experimental procedure.

The numerical model follows the configuration and procedure of the
experimental tests as closely as possible, illustrated in Fig. 10(B). In the
experiments, the axial load was held within three time windows by a
spring-regulated actuator (force-controlled target with finite actuator
stiffness), not by an unconstrained constant-force device. This maintains
the prescribed pre-compression while allowing the normal force to re-
act to specimen dilation. In the model, this is reproduced by a simple
servo/spring control, where, given a target displacement set at each time
window, the model calculates the relative displacement between the
triplet’s volumetric expansion and the target displacement and transfers
that as an applied force to the steel plate, allowing the normal precom-
pression force to be adjusted according to the volumetric expansion. This
is formally expressed as:

F@) = Kacr [ucmd(t) - MSPW(I)] (41)

where K, is the actuator stiffness, set at 1070 N mm™!, u,.,,,(¢) is the com-
manded actuator displacement (target) and the u,,,.(t) is the measured
specimen-side displacement at the actuator interface.

Leveraging the conditional stability of the explicit solver, the simula-
tion of the triplet test is performed sequentially from one time window
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steel plate

layer

(B) Modelling sketch

Fig. 10. Experimental setup [13] and the boundary conditions of the DEM model.

to another using the same material properties and boundary conditions
from the previous window, consistent with the experimental procedure.
The shear displacement (, ;) and the volumetric expansion (u, ) are
calculated according to Egs. (42) and (43), respectively, averaged on the
front and back sides of the specimen [13].

1= 0"
u = 42)
S s =y,
Uprel = X3 — X (43)

The responses from the proposed modelling strategy (shown in solid
lines) are compared to the experimental data (dashed lines) of the triplet
test in Fig. 11. In time window O (displayed in blue), the numerical
model exhibited the exponential softening response where the shear
stress decayed to a residual value of 0.2 MPa (Fig. 11(A)), while the nor-
mal stress initially increased due to volumetric expansion but remained
constant at the same level as the experimental test (Fig. 11(B)). The grad-
ual decline of the experimental shear stress is explained by the sequential
failure of the mortar joints: cracking initiated in the left-hand joint of
Fig. 10(B) and subsequently propagated to the right-hand joint, progres-
sively diminishing the overall shear-carrying capacity. The volumetric
expansion (Fig. 11(C)) was also in good agreement with the experimen-
tal observation, where the exponential volumetric expansion due to the
normal displacement correction in Eq. (27) is evident in the numerical
response. From the comparison of the dilatancy coefficient in Fig. 11(D),
the experimental results showed that the coefficient dropped to zero be-
yond the shear displacement of 2.0 mm, which was consistently modeled
by the exponential decay function in Eq. (26).

At time window 1 (displayed in red), the shear stress, normal stress,
and the dilatancy coefficient were in good agreement with the experi-
mental data. However, the numerical responses were higher and more
fluctuating compared to the experimental data. The uncontrolled vol-
umetric expansion arose from the specimen’s ability to rotate freely.
When the pre-compression is increased abruptly, this unconstrained ro-
tation interacts with the sudden confinement, triggering a rapid dilative
response. At time window 2 (displayed in orange), the normal stress
was elevated to 0.9 MPa, resulting in the shear stress of approximately
0.55 MPa. Thereafter, the joint again evolves toward a stable, slightly
dilatant state, with the dilatancy coefficient fluctuating about zero as
asperities are fully smoothened at this state.

Overall, the proposed modelling strategy reproduced the dilatancy
behavior observed in the triplet test with good fidelity. Across all win-
dows, the numerical solution tracks well the measured trends, capturing
the stress jumps, the progressive reduction of dilatancy, and the ulti-
mate approach to steady-state shear and volumetric response, lending
confidence to the implemented constitutive formulation. The specimen
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was chosen to span the representative failure modes (cracking, shearing,
and crushing) as well as mixed-mode combinations and transitions be-
tween them, ensuring that the assessment probed the model across the
full spectrum of observed responses.

4, Structural-level validation

In this section, the proposed modelling strategy is validated us-
ing four single-wythe calcium silicate (CS) masonry walls subjected to
constant compression and cyclic in-plane loading, as reported in the
experimental campaign conducted by Messali et al. [65]. The test ma-
trix was designed to isolate the effects of boundary restraint and aspect
ratio. Two wall geometries, squat and slender, were evaluated under
both cantilever and double-clamped end conditions, yielding four rep-
resentative specimens. The assessment draws on both global responses,
force—-displacement hysteresis and energy dissipated per cycle, and local
responses, specifically the evolution of crack patterns.

4.1. Geometrical and material properties

The experimental setup of the reference case is presented in
Fig. 12. The vertical compression load is applied as a uniform pressure
through the four actuators placed on top of the steel beam, while the
displacement-controlled load is applied through one actuator at the top
of the walls. The upper and bottom courses of the wall were glued to
the steel beams to prevent sliding or tensile cracks at the steel beam-
to-masonry interface. The out-of-plane movement and rotation of the
top beam were restricted through a steel frame, as presented in the A-A’
section in Fig. 12(B). The colors inside the bricks are for visualization
only (no material heterogeneity is implied). The top and bottom beams
were clamped for the double-clamped configuration (grey elements),
while only the bottom side was clamped on the cantilever configura-
tion. The walls were allowed to move vertically, thereby maintaining a
constant applied pre-compression load. The geometrical properties and
the reported failure mechanism are presented in Table 2.

A single set of material properties is used for all validated speci-
mens, as summarized in Table 3. The material properties, such as the
unit’s Young’s modulus, Poisson’s ratio, and density, as well as mortar
compressive strength and masonry compressive strength, are obtained
through the material characterization tests conducted before the quasi-
static wall experiment (see the full report by Esposito et al. [62]).
Meanwhile, properties such as the mortar modulus of elasticity and the
peak ratio n are obtained from empirical equations reported in Jafari
et al. [42] . The unit-mortar interface properties, such as tensile and
cohesive strengths, as well as the normal and shear stiffnesses, are
calibrated to match the numerical force-displacement curves with the
experimental envelope curves.
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Fig. 11. Validation of the modelling strategy to a triplet test on multiple time windows [13].

T[T
-

A-A'

Fig. 12. Experimental setup of the in-plane test on CS masonry wall [65].

4.2. Modelling setup

The brick discretization of the representative models (slender,
double-clamped on TUD-COMP-0a (Fig. 13(A))) and squat, cantilever
on TUD-COMP-6 (Fig. 13(B)) is presented in Fig. 13. The loads and sup-
ports in the numerical model are applied through blocks with a high
Young’s modulus (grey-colored blocks in Fig. 13, which are perfectly
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connected to the masonry blocks. The blocks are defined in a rigid block
configuration, with potential crack surfaces placed at the mid-length of
the brick units.

For the walls with cantilever configuration (TUD-COMP-1 and TUD-
COMP-6), the in-plane rotation of the top block is free, and the block
height is extended up to the point where zero moment is observed ac-
cording to the wall shear ratio reported in Table 2. This ensures the



Y.P. Oktiovan, F. Messali, B. Pulatsu et al.

Table 2

Computers and Structures 321 (2026) 108094

Geometrical properties of validated wall specimens (Messali et al. [65]).

Specimen name Dimensions [m] Shear ratio

Boundary conditions

Vertical pre-compression  Failure mode

l,Xh,Xt, [MPa]
TUD-COMP-0a 1.1x276x%x0.102 1.25 Double clamped 0.70 Rocking-sliding
TUD-COMP-1 1.1 x2.76 x 0.102  2.90 Cantilever 0.70 Rocking
TUD-COMP-4 4.0x276 x0.102  0.35 Double clamped 0.50 Diagonal shear
TUD-COMP-6 4.0x2.76 x0.102  0.80 Cantilever 0.50 Diagonal shear + crushing
Table 3 To minimize the inertial overshoot during load reversal, the cyclic
Material properties of the calcium silicate masonry walls. load is applied as a sequence of impulse pulses. The cosine-plateau-
Properties Symbol Unit Value cosine velocity history is mathematically defined in Eq. (44), which
- - concentrates the entire prescribed displacement u,,,, within the finite
Unit properties . apv
time span of t,,, = 21, +1,.
Density p kgm3 1800
Interf: rti Bed joint  Head joint % 1
nterface properties ed join ead join max [1 _ COS(”—)] , 0 S t< ta,
Masonry modulus of elasticity® E MPa 3174.6 3174.6 2 lq
Mortar modulus of elasticity® E, MPa 1973.72 Upaxs t, <t<t,+1,
Normal stiffness K" GPam~! 5217 52.17 V) =+ 44)
Shear stiffness® ks GPam~! 2249 22.49 Umax [ ]
—— |l +cos(z(t—t,—t)/t,)|, t,+1t,<1t<t,,
Tensile strength® I MPa 0.105 0.035 2 (7t =1, = 1)/1a) a b= tot
Cohesive strength® fs MPa 0.14 0.014 0 ‘>
Friction coefficient® u [-] 0.466 > = tot
Mode-I fracture energy® G, Nm™! 8.38 3.88 N
Mode-II fracture energy? G Nm™! 83.8 38.8 where 7, = 0.5d,, t, = d; * k, k is the dimensionless parameter that
Compressive strength® Je Mpa = 593 7.0 defines how long the constant-velocity plateau should last compared to
. N -
Egz(p::;?e fracture energy f‘ Ig]m 15,000 ; : 1,500 the cosine ramp up and down, and d,; is the ramp duration correlated to
Cap parameters €. C, [ 0.0,1.0,12.0 the prescribed displacement u,,,, maximum velocity v,,,,, and plateau

2 Values obtained from material characterization tests in Esposito, et al. [62].
b values derived from equations reported in Jafari et al. [42].
¢ Evidence-backed input parameters.

(A) TUD-COMP-0a

(B) TUD-COMP-6

Fig. 13. Representative model of the CS wall in 3DEC.

applied in-plane load imposes the correct moment at the wall base.
For the walls with a double-clamped configuration (TUD-COMP-0a and
TUD-COMP-4), the in-plane rotation of the top block is fixed, and its
height is set equal to that of the bottom block, as the location of the
applied load is irrelevant in this configuration.

The model is first brought to equilibrium under gravity load, which
is then followed by the application of the pre-compression load. The
equilibrium under an explicit integration scheme is quantified through
the ratio of the remaining out-of-balance force components to the total
forces applied to every node [12]. In this paper, the equilibrium is as-
sumed to be reached when the ratio is less than 1x 1073, Local numerical
damping is used throughout the simulations, with the damping factor «
(Eq. 9) set to 0.8 by default.
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factor «, as defined in Eq. (45). In all simulations described in Section 4,
the applied loading velocity is set to 5.0mms~! and the plateau factor is
set to 20 %.

Ugpy

PNIET) “s)

d; =

The impulse velocity in Eq. (44) is illustrated in Fig. 14 for a target
displacement of 10 mm, an applied maximum velocity of Smms~!, and a
mechanical timestep of 1x 10~¢s. Fig. 14(A) shows the imposed velocity
ov(t): a half-cosine ramp-up, a constant velocity plateau set at 5Smms~!,
and a half-cosine ramp-down to zero (dashed lines mark the transitions).
The smooth ramps avoid numerical spikes at mode switches. Let ¢, be
the duration of each ramp and ¢, be the plateau duration. The resulting
displacement in Fig. 14(B) is then calculated as:

24+t
Upgr = /0 () At = U0 (T, + 1), (46)
where u,,, is the target prescribed displacement. It can be seen that the
resulting displacement in u,,, matches the target prescribed displace-
ment of 10 mm.

This velocity profile is advantageous for cyclic loading in the explicit
scheme, as the smoothness of the profile limits the artificial stress waves
and dynamic amplification that can arise when a constant velocity load
is applied to the system. The constant velocity plateau occurs when the
system moves at a constant velocity, reaching the prescribed displace-
ment faster while maintaining a kinetic energy level below the internal
energy stored in the block system. This isolates the hysteretic response to
reflect only the masonry non-linearities, rather than the system’s inertia.

4.3. Validation results

This section evaluates the capability of the proposed modelling strat-
egy against the experimental campaign at the component scale. The
comparison is performed at both global and local levels, focusing on
the reproduction of force-deformation characteristics, hysteretic behav-
ior, and key damage mechanisms observed during the cyclic loading.
Emphasis is placed on assessing the model’s ability to capture stiffness
degradation, strength evolution, and energy dissipation across different
wall typologies.
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Fig. 15. Force-displacement results of all validated cases.

4.3.1. Global response - force-displacement curve and hysteresis
performance

The lateral force-wall drift responses of the four walls predicted by
the proposed modelling strategy are compared to the experimental re-
sponses in Fig. 15. For the slender cases, the TUD-COMP-0a (Fig. 15(A))
model predicted a symmetric response between the positive and neg-
ative loading cycles, matching the peak resistance of 28 kN and the
softened post-peak branch, even though the hysteresis response was
more pinched compared to the experimental curve at wall drifts beyond
+0.5%.

Compared to the experiment, TUD-COMP-1 (Fig. 15(B)) shows a
higher simulated peak (12.5 kN compared to 10 kN in EXP, i.e., 25 %
overestimation). The model also exhibited a more pinched hysteresis
loop than the experimental observation. This discrepancy arises be-
cause the simulation remains rocking-controlled over a longer interval,
and the sliding and shear-compression failure activates later than in
the tests, reducing re-closure forces and increasing the apparent pinch-
ing. Furthermore, it is essential to emphasize that the simulation is
done with a single interface parameter set for all four walls, which
avoids specimen-by-specimen tuning but leaves some spread in peak
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and loop shape for the slender cantilever. Notably, the experimental
report in Messali et al. [65] also reported that preliminary numerical
analyses struggled with TUD-COMP-1, underscoring the difficulty of this
configuration.

Nevertheless, in both slender cases, it is clear that rocking occurred
during earlier loading cycles. In particular, the first few cycles in both
TUD-COMP-0a and TUD-COMP-1 returned almost to the origin, indicat-
ing negligible permanent drift. As the imposed displacement increased,
horizontal sliding along the bed-joint interface became mobilised, lead-
ing to progressively larger residual deformations that are faithfully
reproduced by the numerical model.

For the squat specimens, TUD-COMP-4 (Fig. 15(C)) and TUD-COMP-
6 (Fig. 15(D)), the numerical model reproduced the characteristic larger
hysteresis loops that arose from shear-dominated behavior. In TUD-
COMP-4 with the double-clamped configuration, the simulated envelope
closely followed the experimental backbone, matching the experimen-
tal initial stiffness and the peak strength of approximately 125 kN.
The model, however, exhibited a slightly faster drop in shear capac-
ity compared to the experimental behavior after peak capacity was
observed. For the cantilever model in TUD-COMP-6, where multiple
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Fig. 16. Dissipated energy comparison of all validated cases.

diagonal cracks were observed during testing, the model captured the
peak capacity relatively well at approximately 110 kN, but the hysteresis
loops exhibited a more plastic response compared to the experiment, a
typical behavior of a shear-dominated failure. Despite these differences,
the simulation accurately reproduced the progressive strength degrada-
tion at large drifts and the symmetric response under cyclic loading,
demonstrating that the proposed interface-shear formulation is robust
for both squat walls and the more slender configurations discussed
above.

Fig. 16 compares the dissipated energy in each relevant loading cy-
cle as measured in the tests (shown in orange) with that computed by
the numerical models (shown in blue) for the four benchmark walls. The
relevant cycles are defined as the cycles in which the experimental curve
exhibits hysteretic behavior. For the two slender walls, TUD-COMP-0a
and TUD-COMP-1 (Fig. 16(A) and Fig. 16(B), respectively), the dissi-
pated energy remains modest, never exceeding 1 kN m, as the response
is primarily governed by rocking with sliding only in the later cycles.
The model faithfully tracks the growth in energy with increasing drift,
slightly over-predicting the dissipated energy in the last two cycles,
which is consistent with the relatively more pinched hysteresis loops
observed in the force-drift curves (Fig. 15(A) and Fig. 15(B)).

A considerably different behavior emerges for the squat specimens.
In TUD-COMP-4 (Fig. 16(C)), once the diagonal cracking is activated, the
dissipated energy significantly increases, ultimately reaching approxi-
mately 1.8 kN m in the final cycle. The model matches this increase,
and the individual cycle-to-cycle values are comparable to the experi-
mental response, with only slight over-estimation at the last cycle. The
trend intensifies in TUD-COMP-6 (Fig. 16(D)), where shear-dominated
behavior, coupled with toe crushing, yields a peak of 7 kN m at cy-
cle 9, followed by a slight decline as strength degradation occurs. The
model also reproduces the rapid build-up and the subsequent drop of
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dissipated energy, but it underestimates the single cycle carrying the
maximum dissipation, consistent with the abrupt unloading observed in
the force—drift curve in Fig. 15(D).

Overall, the comparison confirms that the proposed modelling strat-
egy reproduces the global hysteretic behavior observed in the tests
across the full spectrum of wall aspect ratios. It predicts the correct
strength staircase and mirrors the progressive accumulation of en-
ergy dissipation as damage localizes. Although discrepancies remain in
individual cycles, the numerical envelopes, stiffness degradation, pinch-
ing intensity, and cumulative energy trends all align closely with the
experimental evidence, demonstrating the model’s ability to provide re-
liable, system-level forecasts of masonry wall performance under cyclic
loading.

4.3.2. Local response - crack patterns

Fig. 17 shows the experimentally mapped cracks at the end of
the loading sequence, compared against the predicted joint damage
scalar d,; Eq. (21) for the two slender specimens. For TUD-COMP-0a
(Fig. 17(A), the experiment developed symmetric rocking hinges at the
upper and lower corners, manifested as stepped bed- and head-joint
cracking. The simulation captures the same mechanism: d,; localizes in
stepwise bands at each corner, consistent with uplift-driven tensile fail-
ure as the compression toe migrates under cyclic loading. The model
also reproduces the complete degradation of the top and bottom bed
joints associated with hinge formation. The compressive damage field
(Eq. (B.25)(A)) corroborates localized toe crushing at each corner.

For the cantilever model in TUD-COMP-1 (Fig. 17(B)), the exper-
imental crack pattern exhibited a fan-shaped crack network starting
from the base toward the mid-height, indicating a transition from pure
rocking to combined rocking-sliding as the axial load was progressively
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Fig. 17. The comparison of the experimental crack pattern to the combined d,; damage scalar for the slender wall cases.

transferred to the compression side. The numerical model reproduced
the horizontal slip line along the first bed joint from the base and the
subsequent stepped propagation to the next course, albeit with fewer
head-joint fractures, a difference attributed to the homogenized mechan-
ical properties applied to the model. Nevertheless, the predicted failure
mechanism is in good agreement with the experimental observation: a
dominant sliding interface at the base, followed by splitting at the brick
units, and diagonal cracks along the corners of the wall.

The crack pattern comparison for the squat wall specimens is pre-
sented in Fig. 18. The experimental crack pattern of TUD-COMP-4
(Fig. 18(A)) exhibits a typical X-shaped shear mechanism, with two di-
agonal cracks linking opposite corners and intersecting at mid-height.
The numerical model reproduced this pattern significantly well, where
both diagonals initiate from the same corners, converging at the wall’s
mid-height. Splitting of the brick units is also observed at the lower left
corner of the wall.

The cantilever specimen of TUD-COMP-6 (Fig. 18(B)) showed a more
intricate failure mode: the diagonal cracks formed first, followed by ad-
ditional diagonal branches and partial horizontal slips at the top of the
wall, which was then followed by the splitting of the brick units along
the diagonal cracks. The numerical model captured these mechanisms
relatively well, where diagonal cracks formed after partial horizontal
slips occurred at the top of the wall. From the joint compression dam-
age scalar plot in Fig. B.25(B), a small toe crushing zone was visible
at each corner of the wall, coupled with the splitting of the brick units
in Fig. 18(B). Although the numerical pattern showed somewhat fewer
off-axis cracks compared to the experiment, the predicted locations and
relative severities align relatively well with the experimental mapping.
While the computational model captured fundamental local and global
mechanisms observed during the testing, the performed deterministic
analysis and adopted simplified micro-modelling strategy may yield less
cracking within the brick domain; hence, inherently influencing the en-
ergy dissipation and macro-unloading stiffness of the analyzed URM
wall.

Across both aspect ratios considered in this paper, the proposed mod-
elling strategy consistently demonstrated the ability to capture the local
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damage mechanisms observed experimentally. Minor mismatches, such
as slightly smoother crack trajectories or a lack of a stepwise crack
pattern, were attributed to the homogenized mechanical properties im-
plemented in the wall model. These findings confirm that the modelling
strategy provides a robust, accurate, and detailed representation of dam-
age in unreinforced masonry walls subjected to cyclic in-plane loading,
regardless of whether the loading is dominated by rocking or shear.

5. Discussion

This section discusses the structural-level results by interpreting both
the mechanical and numerical factors governing the observed cyclic re-
sponse. First, the influence of local numerical damping on the predicted
energy dissipation is examined to verify that the hysteretic behavior
is dominated by physical mechanisms rather than numerical artefacts.
Then, the discussion addresses the drift-dependent transition between
in-plane failure mechanisms, followed by an assessment of the sensi-
tivity to the imposed loading rate, and a comparison with alternative
numerical approaches reported in the literature.

5.1. Influence of local numerical damping on energy dissipation

This section investigates the influence of local numerical damping
on the energy dissipation mechanism for the benchmark case of TUD-
COMP-0a, to verify that the simulated response is governed by physical
dissipation mechanisms rather than by algorithmic stabilization effects.
Given the known problem-dependence of numerical damping in explicit
DEM analyses, such a verification step is essential before interpreting
the mechanical response.

Let S(r) be the set of active subcontacts included in the energy
accounting (excluding subcontacts between the boundary blocks and
masonry). All energy terms are expressed in Joules (N-m). For each sub-
contact s, the joint constitutive model evaluates energy contributions
associated with normal and shear relative motion at the interface. These
quantities represent the mechanical work performed by the correspond-
ing tractions and are computed incrementally during the explicit time
integration.
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Fig. 18. The comparison of the experimental crack pattern to the combined d,; damage scalar for the squat wall cases.

The normal tensile and compressive components are defined as:

nV(&)(,
E®
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o= [Py a. e

WOy
0= [ TN A,
(47)

where T." denotes the normal traction, du’"”,du/""” are the incremental

displacement in tension and compression, respectively. The shear energy
is defined as:

uP(r)
_ ©) . du®
(0= /0 T - du,

where TE,S) is the shear traction vector. This contribution captures en-
ergy dissipation due to frictional sliding and shear-related inelastic
mechanisms under cyclic loading.

The joint model then returns the instantaneous energy components as:

E(S)

shear

(48)

Egens)= Y. ESL (D). (49)
SES®)

Ecomp® = Y, Elomp(®), (50)
SES(1)

Ehear(t) = Z E;)ear(l), (51)
SES()

At discrete times ¢,, the dissipated energy for each component is
calculated as:

N
di
Efens(tn) = 2 | Etens(tn) = Etens(ta-1)| -

n=1

(52)
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N
Edis v =) (53)

n=

Ecornp(ln) - Ecomp(tn—l)) ’

N
Egﬁizr(lN) = 2 |Eshear(tn) - Eshear(ln—l)| . (54)

n=1
which are then combined to return the cumulative energy from physical
dissipation Eppy(ty) as:

Edlss(tN)+ Ecdé;ip(tN) +EdISS

tens shear

Ephys(tN) = (tn) (55)

Meanwhile, the cumulative work removed by local numerical damp-
ing, denoted by W,, is evaluated at the block level from the unbalanced
forces and translational velocities. At each timestep ¢, the incremental

numerical damping work is computed as:

b b b b b b
AWt =a st Y, (IFOH0O T+ FD 1601+ EQ1 11,
benB

(56)

where « is the local damping coefficient (Eq. 9), At is the mechanical
timestep, F®) = (Flff’,(), Fu(by) F?) is the unbalanced force of block b, v® =
@?, u(yb) ,0?) is the block translational velocity, and B denotes the set
of blocks excluding boundary blocks.

The cumulative numerical damping work is then obtained as:

N
Wiltn) = Y AW,(t,).

n=1

(57)

Fig. 19 compares the cumulative physical dissipation E. and the
cumulative work removed by local numerical damping W,, evaluated
at cycle-peak drift levels in negative and positive loading directions for
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Fig. 19. Energy-based assessment of numerical damping for the benchmark case of TUD-COMP-0a.

the benchmark case TUD-COMP-0a. It is important to note that the local
damping coefficient a is set to 0.8 by default. Fig. 19(A) shows the corre-
sponding energy envelopes for both loading directions, while Fig. 19(B)
reports the numerical damping share:

Wi

W, + Ephys

n (58)

The energy envelopes reveal a clear separation in magnitude be-
tween physical and numerical contributions over the entire drift range.
Physical dissipation increases rapidly with imposed deformation, reflect-
ing progressive cracking, sliding, and compressive damage at the joint
level. In contrast, the numerical damping grows gradually and remains
substantially smaller. At the largest drift levels of 1.0 %, Ej,s reaches
more than 2000 J, whereas W), remains on the order of 250 J for both
loading directions.

The evolution of the damping share # further confirms this observa-
tion. After an initial increase at small drift levels, where both physical
dissipation and damping are limited, the ratio stabilizes with increasing
deformation and remains below approximately 10 % to 12 % throughout
the analysis. Importantly, no late-stage increase of 7 is observed, even
at large drift levels approaching mechanism formation. This indicates
that numerical damping does not progressively dominate the response
as damage accumulates.

The close agreement between positive and negative loading cycles
also demonstrates that the numerical damping contribution is symmetric
and does not introduce spurious directional bias into the cyclic response.
Overall, the results show that local numerical damping remains a sec-
ondary, non-governing component of the total energy dissipation in the
benchmark case considered. The global response is therefore controlled
by constitutive dissipation mechanisms embedded in the joint model
rather than by algorithmic energy removal. It is acknowledged, however,
that the relative contribution of numerical damping may be problem-
dependent and influenced by factors such as geometry, loading protocol,
and choices of constitutive parameters. A systematic investigation of the
sensitivity of numerical dissipation to these aspects will be conducted in
future work.

5.2. Failure mechanism transition in in-plane loading cases

This section analyses the evolution of the failure mechanism in speci-
men TUD-COMP-0a, tested under double-clamped boundary conditions,
as it transitions from flexure-dominated rocking to friction-controlled
sliding [65], with an emphasis on the attendant stress redistribution and
damage localization. Although specimen TUD-COMP-1 also displayed
a hybrid rocking—sliding response, the discussion below is confined to
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TUD-COMP-0a to isolate the effects of double clamping and enable a
focused examination of the governing mechanics.

Fig. 20(A) captures the evolving failure mechanism of specimen
TUD-COMP-0a by plotting the normal and shear stress paths at the com-
pressed toes at the bottom-right corner of the wall. Stress paths shown
are taken at the compressed toe. Along these histories, the shear surface
F, is not violated. The only surface reached during cyclic loading is the
tensile cut-off F;, which is not visible here due to the much smaller ten-
sile scale compared with the compressive stresses at the toe. During the
4th and 7th loading cycles (represented by cycle number 6 in Fig. 20(B),
the normal-shear stress trajectories for both toes stay well inside the
yield surface, forming small closed loops produced by repeated loading—
unloading while one toe is compressed and the opposite toe lifts off.
Since the stress state never reaches the envelope at this stage, the shear
transfer is negligible, and the response is governed by pure rocking,
where the wall returns to the original hinge point at both toes.

Between the 8th and 10th loading cycles (represented by cycle num-
ber 8 in Fig. 20(B), stepwise cracks formed in the pier, raising the shear
demand at the compressed toes. The stress paths shift upward toward
the compression cap while the normal compressive stress approaches
3.5 MPa to 4 MPa. However, at this state, the sliding mechanism is
still inactive, as evident by the unloading trajectories that return to
the origin. This behavior is also consistent with the global response
in Fig. 15(A) and 16(A), where a slight dissipated energy is observed
between cycles 8 and 10.

In the final loading cycles (cycle 11 in Fig. 20(B), the averaged
normal-shear stress state at the joint plane approaches the compression
cap and, during unloading, intersects the Coulomb friction line. Notably,
the plotted stress states are averaged over the contact points forming
the joint at the bottom-right corner. As a result, yielding in Fig. 20(A)
and Fig. 20(B) occurs before the average stress state visibly reaches the
compression cap line. At this stage, the entire length of the bed-joint
segment along the compressed toe yields in shear, enabling slip to prop-
agate continuously along the interface. Simultaneously, local crushing
initiates at the compressed toe. Consequently, the rocking mechanism
becomes secondary to friction-controlled sliding, shifting the hinge lo-
cation and resulting in the residual drift observed in Fig. 15(A). Fig. 21
shows the sequential deformed shape (magnified 30 times) of specimen
TUD-COMP-0a as wall drift, 6, increases from 0 % to 1 % at the last
loading cycle. For drifts up to about 0.5 %, the pier behaves almost as
a rigid body, rocking about one toe while the opposite toe lifts off, and
relative slip along the bed-joint remains negligible.

Once § exceeds this threshold, the pier begins to translate with re-
spect to the loading toes, and by 0.8 % to 1.0 % drift, the response
is sliding-dominated: the entire bed-joint has yielded in shear, local
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crushing appears at the compressed toe, and rocking plays only a
secondary role. This demonstrates that the multi-surface failure sur-
face used in the proposed modelling strategy can reproduce the drift-
dependent transition from the rocking mechanism at lower drift to the
sliding mechanism at higher drift.

5.3. Sensitivity analysis of the imposed displacement rate on the loading
scheme

To assess the influence of the imposed displacement rate on the
global response and to verify the quasi-static validity of the consti-
tutive model, a velocity sensitivity study was conducted on specimen
TUD-COMP-0a. Five peak loading velocities were considered: v
0.5, 1.0, 2.5, 5.0, and 10.0 mm/s, while boundary conditions, mate-
rial properties, and the cyclic protocol were kept unchanged. Because
the imposed motion follows the cosine-plateau—cosine history defined
in Egs. (44) and (45), variations in v, directly modify the ramp du-
rations (¢,. t,) and, consequently, the total actuation time (¢,,). Thus,
higher loading velocities result in proportionally shorter actuation times
to reach the same prescribed displacement.

The imposed velocities are numerical drivers for dynamic relaxation,
not experimental actuation rates. The quasi-static solutions are sought
by using sufficiently small kinetic energy ratios and residual force tol-
erances during the analyses. Within these checks, lowering the velocity
down to 0.5mms~! affects peak and envelope stiffness only marginally
but increases the runtime markedly, whereas higher velocities risk spu-
rious inertial effects. The value 10 mms~! is used only as an upper-bound
driver to limit runtime, not as a physical rate.

Fig. 22 compares the force-drift hysteresis at different velocities
against the experimental benchmark, while Fig. 23 shows the corre-
sponding dissipated energy per cycle. In general, the sensitivity study
confirms that the global response is only weakly dependent on the im-
posed velocity in the quasi-static range: peak strengths remain nearly
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unchanged, drift levels at maximum force are consistent, and the main
differences arise in the shape of the hysteresis loops and the mag-
nitude of dissipated energy. These observations suggest the residual
discrepancies arise from velocity-dependent artifacts of the explicit
solver.

At the lowest velocities (0.5 [mm/s] to 1.0 [mm/s]), the loops are
somewhat more pinched, but the dissipated energy at 0.5 mms~! agrees
closely with the experimental trend, particularly in the largest cycles. At
intermediate velocities (2.5mms™! to 5.0mms~!), the global hysteresis
is reproduced well, though the energy per cycle is slightly underesti-
mated at peak drift levels. At the highest velocity (10.0mms~!), the
loops widen and energy dissipation is artificially amplified due to dy-
namic effects, which are not captured by the quasi-static constitutive
laws. The cycle-by-cycle energy results in Fig. 23 confirm that the
25mms~! to 5.0mms~! case provides the closest match to the ex-
perimental dissipation, while higher velocities either underestimate or
prematurely amplify the energy. Nevertheless, the intermediate range
2.5mms! to 5.0mms™') still offers a good compromise, reproduc-
ing the overall growth pattern of dissipated energy while maintaining
feasible computational times.

The quantitative results are summarized in Table 4. Across all ve-
locities, simulated peak loads deviate only by about 3 % to 4 % in the
positive direction and 6 % to 7 % in the negative direction from the
experimental reference, confirming the robustness of the model predic-
tions. Using the same computational resource (3.5 GHz Intel Xeon CPU
with four cores and 32 GB of memory), computational time varies by
more than an order of magnitude, ranging from about 185 h at 0.5 mm/s
to 10 h at 10 mm/s, underscoring the trade-off between accuracy and
efficiency.

Based on these observations, velocities in the intermediate range
of 25mms™' to 5.0mms~! are recommended as a practical compro-
mise: they reproduce the global hysteresis with reasonable fidelity,
capture the cycle-by-cycle energy evolution reasonably well, and keep
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Table 4
Velocity sensitivity results for specimen TUD-COMP-0a.
v [mm/s] F,os [kN] F,ey [kN] Drift,,, [%] Drift,, [%] Time [h]
0.5 28.74 (3.8 %) —28.70 (6.1 %) 0.590 (-19.7 %) —0.591 (-13.5 %) 185
1.0 28.76 (3.9 %) —28.64 (6.3 %) 0.591 (-19.7 %) —0.590 (-13.5 %) 86
2.5 28.71 (3.7 %) —28.69 (6.2 %) 0.591 (-19.7 %) —0.590 (-13.5 %) 32
5.0 28.60 (3.3 %) —28.57 (6.6 %) 0.590 (-19.7 %) —0.591 (-13.5 %) 26
10.0 28.60 (3.3 %) —28.57 (6.6 %) 0.591 (-19.7 %) —0.590 (-13.5 %) 10

EXP values: Fjpxp = 27.69 kN, F, ., pxp = —30.58 KN, &, xp = 0.736%, o pxp = —0.520%.

computational demands within manageable limits. Nevertheless, this
recommendation should be regarded as case-specific. The optimal load-
ing rate may vary depending on specimen geometry, boundary condi-
tions, and material properties, and thus requires verification for each
application.

All simulations in this study are performed in a quasi-static (dynamic-
relaxation) setting: slow loading with local numerical damping. This
choice isolates the constitutive/interface behavior and leverages the
explicit scheme’s robustness in the presence of softening and contact
evolution. The extension to fully dynamic analyses is conceptually
straightforward within the same framework (use physical time histories,
minimize or remove numerical local damping, and include appropriate
rate effects), but lies beyond the scope of the present work and is
reserved for future work.
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5.4. Comparison to other numerical methods

In this section, the proposed modelling strategy is evaluated against
numerical approaches from the literature that validated the same experi-
mental tests. For the double-clamped and squat specimen TUD-COMP-4,
the comparison is made with the study of Sousamli [66], which used the
Plasticity-based Combined Cracking, Crushing, and Shearing (PCCCS)
interface model of Lourenco and Rots [19]. For the cantilever-squat spec-
imen TUD-COMP-6, the reference is the Damaging Block-based (D-BB)
model by D’Altri et al. [9], where blocks interact through damaging in-
terfaces. The PCCCS model was implemented in DIANA FEA (v10.4) and
the D-BB model as a user-defined law in Abaqus/Standard, both employ-
ing implicit solvers. The results of these models were taken directly from
the respective publications [9,66]; the present authors did not reproduce
them.
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Table 5
Material properties for the cross-validation of the proposed modelling strategy.
Properties Symbol  Unit TSC! PCCCS D-BB
Head joint  Bed joint  Head joint  Bed joint -
Normal stiffness k" GPam™! 52.17 52.17 10.44 121.2 75
Shear stiffness k* GPam™! 22.49 22.49 16.36 39.31 7.5
Tensile strength /i MPa 0.003 0.105 0.003 0.105 0.12
Cohesion c MPa 0.014 0.14 0.14 0.14 0.11
Friction coefficient u [-] 0.466 0.466 0.43 0.43 0.55
Mode-I fracture energy G, Nm™! 8.38 8.38 0.007 7.75 -
Mode-II fracture energy Gy Nm™?! 83.8 83.8 100 3000 -
Compressive strength fe MPa 5.93 7.0 7.55 5.93 -
Compressive fracture energy G, Nm™! 15,000 31,500 34,000 15,000 -
Additional parameters
Ultimate separation uy m - - - - 0.001
Ultimate slip Sy m - - - - 0.001
Tension brittleness ¢ [-] - - - - 8.0
Shear brittleness & [-1 - - - - 4.0
Cap shear parameter C, [-] 12 5 -
Brick unit properties
Young’s modulus E, MPa - - 8990 4800
Poisson’s ratio v [-1 - - 0.14 0.14
Compressive strength fe, MPa - - - - 6.8
Tensile strength fu, MPa 1.0 1.0 - - 1.5

1 Same material properties are applied to TUD-COMP-0a and TUD-COMP-1.

Since no validated experimental data currently exist for the slender
specimens of TUD-COMP-0a and TUD-COMP-1, the comparative assess-
ment is performed through numerical simulations conducted by the au-
thors in 3DEC using the joint constitutive model proposed by Pulatsu [8].
This joint model, referred to as the Tension-Shear-Compression (TSC)
joint model, is based on a multi-surface damaged plasticity formu-
lation, where failure in the compressive regime is governed by a
compression cut-off mechanism [34]. This approach contrasts with
the compression cap yield surface adopted in the present study,
which allows for more gradual confinement-dependent yielding under
compression.

Moreover, the TSC model incorporates linear softening behavior
across tensile, shear, and compressive failure regimes, in contrast to
the damage progression laws employed in the current study. These dif-
ferences in constitutive modelling are expected to influence the stress
redistribution and failure mechanisms observed in the numerical results,
and must be considered when interpreting the comparative outcomes
between the two approaches.

The parameters used in the corresponding models for cross-
comparison are summarized in Table 5. The properties are categorized
according to different constitutive models used in the cross-comparison,
with specific differentiation between head joints and bed joints when-
ever possible. The TSC model uses the identical material properties
described in Table 3, except for the peak ratio n, as the TSC model em-
ploys a linear softening law for the compressive behavior. Meanwhile,
the D-BB model [9] requires additional interface characteristics in ten-
sion and shear to describe the post-peak softening and damage evolution.
In contrast, the PCCCS model [19,66] uses the fracture energy terms
to address the post-peak softening in tension, shear, and compression
regimes. The brick unit properties are given in Table 5, as the PCCCS and
D-BB models use deformable block configurations, while the TSC model
uses a potential crack plane at the brick’s mid-length to address the unit-
splitting failure. Furthermore, the units in the D-BB model follow the
continuum plastic-damage constitutive law to address the compressive
and tensile failure of the brick units.

Figs. 24(A) and 24B present the force—drift responses of specimens
TUD-COMP-0a and TUD-COMP-1, respectively, simulated using the
Tension-Shear—Compression (TSC) joint model proposed by Pulatsu [8].
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Overall, the simulated responses exhibit reasonable agreement with the
experimental observations, particularly in the initial linear range.

However, some deviations become evident in the nonlinear regime,
particularly beyond a drift level of approximately 0.1 %. While the TSC
model captures the initial stiffness and peak strength with reasonable
accuracy, it tends to underpredict the energy dissipation observed during
the later loading cycles. This behavior can be attributed to the model’s
simplified representation of stiffness degradation and its use of linear
softening laws.

In the case of TUD-COMP-0a (Fig. 24(A), the TSC model predicted a
slightly higher peak load of approximately 30 kN, compared to 28 kN
obtained using the proposed modelling strategy. Additionally, the TSC
model exhibited limited energy dissipation, with minimal hysteretic be-
havior observed from one cycle to the next. The loops were only evident
during the final loading cycle, where noticeable residual drift indicated
some inelastic behavior.

A similar trend was observed for TUD-COMP-1 (Fig. 24(B). Both
the TSC model and the proposed modelling strategy predicted a com-
parable peak load of approximately 12.5 kN, indicating consistent
performance in capturing the specimen’s strength capacity. However,
in terms of cyclic behavior, the TSC model again showed limited
hysteretic response and underrepresented the extent of energy dissi-
pation throughout the loading cycles. Unlike in TUD-COMP-0a, where
some inelastic behavior emerged in the final cycle, the TSC model
did not exhibit noticeable hysteresis at any stage of the loading for
TUD-COMP-1.

The differences in hysteretic behavior between the two models can
be primarily attributed to the formulation of the failure surface in the
shear-compression domain. The proposed model utilizes a compression
cap yield surface that evolves with increasing axial stress, enabling a
more gradual and distributed shear failure. This effectively captures the
inelastic deformation and energy dissipation observed in experiments.
In contrast, the TSC model uses a compression cut-off, which imposes a
more abrupt limit on compressive failure and reduces the interaction be-
tween axial and shear behavior. While this simplification may improve
computational efficiency, it can delay the onset of shear failure and limit
the model’s ability to reproduce progressive damage mechanisms. As a
result, even with identical masonry compressive strengths, the model
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Fig. 24. Cross-comparison of validated wall specimens.

with a compression cap tends to initiate shear failure earlier than the
one with a compression cut-off. This difference is particularly relevant
in the case of hybrid rocking-shear failure, when a transition from the
former to the latter mechanism is expected, since the shear sliding occurs
in the highly compressed toes.

Fig. 24(C) and Fig. 24(D) show the force—drift response of the TUD-
COMP-4 and TUD-COMP-6 specimens, respectively, comparing the nu-
merical prediction from the proposed model (NUM) and the respective
reference simulations (PCCCS [19,66] for TUD-COMP-4 and D-BB [9] for
TUD-COMP-6) to the experimental results (EXP). It can be observed that
the proposed strategy aligns generally with other modelling strategies
presented in the literature.

For TUD-COMP-4 (Fig. 24(C)), the proposed model shows close
agreement with both the experimental results (EXP) and the reference
PCCCS simulation. Taking advantage of the larger time step afforded
by the implicit solution scheme and the stable pre-peak response, the
loading sequence was repeated three times per cycle to ensure consis-
tent hysteretic behavior. Compared to the PCCCS model, the proposed
approach yields slightly larger hysteresis loops in the final loading cycle;
however, both responses remain well within the experimental envelope.
The accurate reproduction of the peak load values and the characteris-
tic pinching across cycles underscores the model’s enhanced ability to
capture joint opening, interface friction, and softening mechanisms. It
is worth noting that while Sousamli [6] reported the PCCCS model to
be effective in reproducing shear-dominated responses such as in TUD-
COMP-4, its accuracy was reduced for specimens governed by hybrid
rocking-shear mechanisms.

In the case of TUD-COMP-6 (Fig. 24(D)), the proposed modelling
approach shows relatively good agreement with both the experimen-
tal data and the D-BB reference model up to the same drift level of
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0.27 %. Beyond this point, the D-BB model exhibits divergence of the
incremental-iterative procedure, primarily due to excessive localized
damage at the compressed toe regions of the wall [9]. In contrast,
while the proposed model displays slightly larger hysteresis loops and a
more gradual reduction in shear capacity compared to the experiment,
it remains stable and capable of completing the full loading sequence,
consistent with the experimental procedure. This highlights the robust-
ness and reliability of the proposed modelling strategy in capturing both
cyclic behavior and progressive damage across various masonry wall
configurations.

Direct runtime comparisons with external FEM/DEM studies were
not performed in this paper because publicly available results typi-
cally report only response curves and failure mechanisms. Even where
runtimes are given, they are tied to different hardware, meshing/pre-
processing pipelines, solver tolerances, and contact regularizations,
precluding an apples-to-apples assessment. The efficiency claims in this
paper are therefore qualitative, grounded in the absence of nonlinear
iterations and in the robustness of the explicit time-marching scheme
through softening and contact evolution. Quantitative timings are mean-
ingful primarily within a controlled environment, which lies outside the
scope of this paper.

6. Conclusions

This study presented a comprehensive cyclic joint constitutive model
for unreinforced masonry (URM) structures, developed within the
Distinct Element Method (DEM) framework. The model addresses a
key challenge in simulating the nonlinear and hysteretic behavior of
masonry interfaces subjected to cyclic loading. It incorporates a uni-
fied yield surface, combining tensile cut-off, Coulomb friction, and a
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compression cap, alongside exponential softening in tension and shear,
a hardening-softening law in compression, and a nonlinear unloading—
reloading mechanism to simulate energy dissipation. To capture dilatant
effects more realistically, a novel uplift correction mechanism was intro-
duced, coupled with an exponential decay law for dilatancy softening.
The proposed model was implemented in 3DEC, a commercial DEM
platform, leveraging an explicit time-marching integration scheme for
robust and stable simulations under large displacements. The model
was rigorously validated at both material and structural levels. The
main findings of the validations and subsequent discussions can be
summarized as follows:

« At the material-level, numerical simulations of cyclic uniaxial com-
pression and direct shear tests reproduced key experimental features
with great accuracy, including energy dissipation and stiffness degra-
dation under cyclic loading. The results confirmed the model’s
ability to reproduce fundamental constitutive behaviors of masonry
interfaces under isolated conditions.

Validation of the triplet test demonstrated that the novel dilatancy
uplift correction, combined with an exponential decay law for the
dilatancy angle, realistically captured the progressive reduction of
joint opening under shear.

At the structural level, validation on four full-scale calcium sili-
cate masonry walls under combined compression and cyclic in-plane
loading (with varying boundary conditions and aspect ratios) showed
that the model successfully reproduced the global hysteretic re-
sponse, including force—drift loops and cycle-by-cycle energy dissi-
pation, as well as local failure mechanisms such as joint cracking,
sliding, diagonal shear cracking, and toe crushing.

An energy-based assessment performed on the benchmark case TUD-
COMP-0a, with double-clamped and slender configuration, shows
that the contribution of local numerical damping remains secondary
and non-governing with respect to the physical dissipation captured
by the joint constitutive model, with no evidence of directional bias
under cyclic loading.

The modelling strategy accurately simulated the drift-dependent
transition in slender wall specimens from initial rocking-dominated
behavior at low drift to friction-controlled sliding at higher drift
levels, aligning with observed experimental trends.

The velocity sensitivity study confirmed that, although the model op-
erates in a quasi-static regime, the imposed displacement rate exerts
only a modest influence on hysteretic behavior and energy dissipa-
tion once nonlinear mechanisms become active. Very low velocities
(e.g., 0.5 mm/s) provide the closest agreement with experimental
energy dissipation, while intermediate velocities (2.5-5 mm/s) offer
a balance between accuracy and computational efficiency. The opti-
mal choice of velocity remains case-dependent and should be verified
for each application.

Comparative analyses were conducted against three established ap-
proaches: the Plasticity-based Combined Cracking Crushing Shearing
(PCCCS) model in DIANA for the squat double-clamped specimen,
the Damaging Block-Based (D-BB) model in Abaqus/Standard for
the squat cantilever specimen, and a DEM-based Tension, Shear,
Crushing (TSC) interface model for the slender specimens. The pro-
posed model performed on par with these reference methods in terms
of force-displacement response. Unlike implicit solvers, however,
the proposed model exhibited no convergence issues, even under
conditions of large displacement or nonlinear response.

Overall, the proposed cyclic constitutive model provides an efficient
framework for simulating the seismic behavior of masonry structures
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within the DEM framework. Its ability to capture complex material and
structural responses, validated against experiments and benchmarked
with alternative modelling strategies, demonstrates its value as a prac-
tical tool for performance assessment, retrofit design, and the conser-
vation of historical URM systems under cyclic and seismic loading.
A comprehensive sensitivity/identification study of the empirical/de-
fault parameters is valuable, but beyond the scope of this paper. Here,
the initial slope in k, and k; is intentionally tuned to the experimen-
tal test, and a targeted adjustment is made to Eq. (30) to account for
the small-displacement compliance of the rigid block formulation and
the different behavior pre- and post-peak under uniaxial compression.
All other parameters are set from tests or literature and kept fixed, so
peak strength, post-peak softening, and failure mechanisms are predic-
tive outcomes rather than calibration targets. Future work on this paper
will address the sensitivity of the empirical parameters included in the
formulation.

This rigid-block interface formulation is applicable to both in-plane
and out-of-plane actions. In this study, the focus is on in-plane loading
and validation; however, this does not limit its applicability to out-
of-plane scenarios. Future developments will focus on extending the
model to address out-of-plane (OOP) response and on validating full-
scale URM buildings and retrofitted systems. The problem dependence
of the energy-based assessment will also be investigated in various ma-
sonry typologies. In addition, the model will be applied to real-world
case studies on vulnerability assessment and performance-based engi-
neering of historical masonry assets. Finally, although this study focuses
on in-plane quasi-static response using dynamic relaxation, the formu-
lation extends to genuinely dynamic analyses by prescribing physical
time histories, minimizing numerical damping, and including rate/im-
pact effects as needed. A dedicated dynamic validation will be pursued
in future work.
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Appendix A. Normal force evaluation in a nonlinear interface

Require: u,, Au,, F,, AF,, material & history vars
Ensure: Updated F,, AF,

1

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

34:

35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

2
3
4
5
6:
7
8
9

: if u, < 0 then

ifu, +Au, >u then

n.hist,ten
Up hist,ten < Up

end if

Compute F, from Eq. (12)

return

. else

ifu,+Au, <u and reloadFlag = 0 then

n,hist,comp
Up hist,comp < ~Hp
end if
if 6, + Ao, 2 Oy comp then
if u, + Au, < ug iy then
Compute F, from Eq. (12)
else if 5, + Ao, < f, then
Compute o, from Eq. (22)
F, < oc,A,
PlasticFlag = 1.0
end if
return
else
Calculate Uy from Eq. (30)
if Au, >0 and PlasticFlag = 1.0 then
if u, + Auy, 2 Ui comp * 0.985 then 1> perturbation Check
for instabilities
Compute F, from Eq. (12)
else
Compute o, from Eq. (31)
F, «<o0,A,
Record f,, andu, for reloading purpose
reloadFlag = 1.0
end if
return
else if reloadFlag = 1.0 and Au, <0 then
p « recovery factor (Eq. (37)

k. — ﬁfpeak _fm.ro

Up hist,comp ~Hn,ro
Calculate o, from Eq. (35)
ooy < Eq. (22) or Eq. (23)
if 6, < o, then
F, < o0,A,
else
reloadFlag « 0
Fn - O-CHVAE
end if
end if
end if
end if

r
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Appendix B. Joint compression damage scalar for TUD-COMP-0a
and TUD-COMP-6

(A) TUD-COMP-0a

Joint d,

1.00E+00
9.00E-01
8.00E-01
7.00E-01
6.00E-01
5.00E-01
~ 4.00E-01
3.00E-01
Sy 2.00E-01
1.00E-01

S 0.00E+00

(B) TUD-COMP-6

Fig. B.25. Joint compression damage scalar plot at the end of analysis.
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The data that support the findings of this study are available from
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