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H I G H L I G H T S

• A cyclic joint constitutive model is proposed for the Distinct Element Method framework.

• The model integrates a yield surface, softening laws, and energy dissipation.

• A novel exponential dilatancy-decay law is embedded in a standard uplift-correction contact update.

• The model is validated against material and full-scale structural tests.

• Simulations accurately capture rocking, shear, and hybrid failure modes.
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A B S T R A C T

This paper presents a cyclic joint constitutive model within a Distinct Element Method framework to simulate the 

in-plane response of unreinforced masonry structures. The model combines multi-surface failure criteria, includ­

ing tensile cut-off, Coulomb friction, and an elliptical compression cap. It incorporates exponential softening, a 

unified damage scalar for stiffness degradation, and a hardening–softening law for compression. Shear-induced 

dilatancy is captured via an uplift-correction mechanism with an exponential dilatancy-decay law, while stiff­

ness degradation governs energy dissipation. The model is validated at both material and structural scales. 

Material-level simulations of cyclic compression and shear tests show close agreement with experimental data. 

Structural-scale validation on full-height calcium-silicate walls under combined compression and cyclic lateral 

loading demonstrates the ability to reproduce rocking-dominated, shear-dominated, and hybrid failure mecha­

nisms . The model successfully replicated global hysteretic force–drift loops, capturing stiffness decay and energy 

dissipation, as well as local failures like cracking, sliding, and toe crushing. The model also reproduced the drift-

dependent transition from rocking to friction-controlled sliding, a key mechanism for earthquake assessment. By 

integrating these features into a single, efficient framework, the proposed constitutive model provides a robust 

tool for evaluating seismic performance and conserving heritage.

1 . Introduction

Until now, masonry has remained one of the most widespread and 

historically important construction materials worldwide. However, its 

inherently heterogeneous and quasi-brittle nature poses ongoing chal­

lenges for accurate numerical modelling, both at the material and 

structural scales. Over the past few decades, significant progress in 

computational mechanics has led to the development of increasingly 

sophisticated constitutive models for simulating the mechanical behav­

ior of masonry structures under various loading scenarios. According to 

the classification by Lourenço [1], modelling strategies can be broadly 

divided into three categories. Macro-modelling approaches either repre­

sent masonry as an equivalent frame [2–4] or treat it as a homogenized 

continuum [5–7]. Simplified micro-modelling strategies represent the 
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$k_n$


$k_s$


\begin {equation}\label {eq:Equation_of_motion} m_i\,d\mathbf {v}_i = \left [\left (\sum _{j\in \mathcal {C}_i}\mathbf {F}_{i,j}^{{\mathrm {{\textrm {c}}}},t}\right )+\mathbf {F}_i^{{\textrm {ext}},t}+\mathbf {F}_i^{{\textrm {w}},t}-\mathbf {F}_i^{{\textrm {d}},t}\right ]\,dt\end {equation}
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$\mathbf {v}$
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$i$


$\mathbf {F}_{i,j}^{{\textrm {c}},t}$


$j$


$\mathbf {F}_{i}^{{\textrm {ext}},t}$


$\mathbf {F}_{i}^{{\textrm {w}},t}$


$\mathbf {F}_{i}^{{\textrm {d}},t}$


\begin {equation}\label {eq:Rotational_velocities} \mathbf {I}_id\boldsymbol {\omega }_i = \left (\mathbf {M}^t_{i}-\mathbf {M}_{i}^{{\textrm {d}},t}\right )\,dt\end {equation}


$\mathbf {I}$


$\boldsymbol {\omega }$


$\mathbf {M}^t$


$\mathbf {M}^{{\textrm {d}},t}$


$t$


$\Delta t$


$\left [t^- = t-\Delta t /2,t^+ = t+\Delta t /2\right ]$


$t$


$\left [t^-,t^+\right ]$


\begin {equation}\label {eq:velocity_increment_form} m_i\int _{t^-}^{t^+}{d\mathbf {v}_i}=\int _{t^-}^{t^+}{\left [\left (\sum _{j\in \mathcal {C}_i}\mathbf {F}_{i,j}^{{\mathrm {{\textrm {c}}}},t}\right )+\mathbf {F}_i^{{\textrm {ext}},t}+\mathbf {F}_i^{{\textrm {w}},t}-\mathbf {F}_i^{{\textrm {d}},t}\right ]\,{d} t}\end {equation}


\begin {equation}\label {eq:vel_increment} \Delta \mathbf {v}_\mathbf {i}^{t} := \mathbf {v}_i^{t^+} - \mathbf {v}_i^{t^-}\end {equation}


$t$


\begin {equation}\label {eq:discrete_form} m_i\Delta \mathbf {v}_i^{t} \approx \left [\left (\sum _{j\in \mathcal {C}_i}\mathbf {F}_{i,j}^{{\mathrm {{\textrm {c}}}},t}\right )+\mathbf {F}_i^{{\textrm {ext}},t}+\mathbf {F}_i^{{\textrm {w}},t}-\mathbf {F}_i^{{\textrm {d}},t}\right ]\,\Delta t\end {equation}


$\left [t^-,t^+\right ]$


\begin {equation}\label {eq:omega_increment_form} \mathbf {I}_\mathbf {i}\ \int _{t^-}^{t^+}{d\boldsymbol {\omega }_{i}}=\int _{t^-}^{t^+}{\left (\mathbf {M}^t_i-\mathbf {M}_i^{{\textrm {d}},t}\right )\,{\textrm {d}}t},\end {equation}


\begin {equation}\label {eq:omega_increment} \Delta \boldsymbol {\omega }_\mathbf {i}^{t}:= \boldsymbol {\omega _i}^{t+} - \boldsymbol {\omega _i}^{t-},\end {equation}


\begin {equation}\label {eq:angular_discrete_form} \mathbf {I}_\mathbf {i}\ \Delta \boldsymbol {\omega }_\mathbf {i}^{t} \approx \left (\mathbf {M}^t_i-\mathbf {M}_i^{{\textrm {d}},t}\right )\,\Delta t.\end {equation}


$\mathbf {F}_\mathbf {i}^{{\textrm {d}},t}$


$\mathbf {M}_\mathbf {i}^{{\textrm {d}},t}$


$t^-$


\begin {equation}\label {eq:damping_force_and_moment} \mathbf {F}_i^{d,t} = \alpha \left \| \sum \mathbf F_i^{\,t} \right \| \,{\textrm {sgn}}\left ({\mathbf {v}_i}^{\,t^-}\right ) \quad {\textrm {and}} \quad \mathbf {M}_\mathbf {i}^{{\textrm {d}},t} = \alpha \left \| \sum \mathbf {M}_i^{\,t} \right \| \,{\textrm {sgn}}\left ({\boldsymbol {\omega }}_i^{\,t^-}\right )\end {equation}


$\sum \mathbf F_i^{\,t}$
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${\textrm {sgn}}\left ({\boldsymbol {\omega }}^{\,t^-}\right )$


$\mathbf {v}^{\,t^-}$


$\boldsymbol {\omega }^{\,t^-}$
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$\alpha $


$\Delta t$


$\lVert \mathbf {R}_i\rVert $


\begin {equation}\label {eq:residual_norm} \frac {\lVert \mathbf {R}_i\rVert }{\lVert \mathbf {F}_i^{ext}\rVert }\quad {\textrm {where}} \quad \mathbf {R}_i = \sum {\mathbf {F}_i^c+\mathbf {F}_i^{ext}+\mathbf {F}_i^{w}-\mathbf {F}_i^d} \approx 0\end {equation}


$\mathbf {v}^{t^+}$


$\boldsymbol {\omega }^{t^+}$


\begin {equation}\label {eq:updated_position} \mathbf {x}_i(t+\Delta t)=\mathbf {x}_i(t) + \mathbf {v}_i^{t^+}\Delta t\end {equation}


$\mathbf {x}$


$\Delta t$


\begin {equation}\label {eq:linear_elastic_forces} \Delta F^n = k^nA^c\Delta u^n \quad {\textrm {and}} \quad \Delta \boldsymbol {\mathbf {F^s}} = k^sA^c\Delta \boldsymbol {\mathbf {u^s}}\end {equation}


$F^n$
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$\boldsymbol {\mathbf {F^s}}$


$k^s$


$\boldsymbol {\mathbf {u^s}}$


$A^c$


$A_c$


$A_c$


$A_c$


\begin {equation}\label {eq:stable_timestep} \Delta t_{block} = \frac {2}{\omega _{max}}\end {equation}


$t_{block}$


$\omega _{max}$


$\alpha $


$F_1$


\begin {align}&\label {eq:yield_tens} F_1 = \sigma ^n - f_t(u^n_t)\\ &\label {eq:yield_shear} F_2 = \big \| \boldsymbol {\mathbf {\tau }} \big \| + \sigma _n {\textrm {tan}}\!\big ( \phi _{cv} + \psi (\boldsymbol {\mathbf {u}}^{s}) \big ) - c(\boldsymbol {\mathbf {u^s}})\\ &\label {eq:yield_comp} F_3 = C_{nn}\,\sigma _n^{\,2} + C_{ss}\,\big \|\boldsymbol {\mathbf {\tau }}\big \|^{2} + C_{n}\,\sigma _n - {[\sigma ^n(u^n_c)]}^{\,2}\end {align}


$F_2$


\begin {align}&\label {eq:yield_tens} F_1 = \sigma ^n - f_t(u^n_t)\\ &\label {eq:yield_shear} F_2 = \big \| \boldsymbol {\mathbf {\tau }} \big \| + \sigma _n {\textrm {tan}}\!\big ( \phi _{cv} + \psi (\boldsymbol {\mathbf {u}}^{s}) \big ) - c(\boldsymbol {\mathbf {u^s}})\\ &\label {eq:yield_comp} F_3 = C_{nn}\,\sigma _n^{\,2} + C_{ss}\,\big \|\boldsymbol {\mathbf {\tau }}\big \|^{2} + C_{n}\,\sigma _n - {[\sigma ^n(u^n_c)]}^{\,2}\end {align}


$F_3$


\begin {align}&\label {eq:yield_tens} F_1 = \sigma ^n - f_t(u^n_t)\\ &\label {eq:yield_shear} F_2 = \big \| \boldsymbol {\mathbf {\tau }} \big \| + \sigma _n {\textrm {tan}}\!\big ( \phi _{cv} + \psi (\boldsymbol {\mathbf {u}}^{s}) \big ) - c(\boldsymbol {\mathbf {u^s}})\\ &\label {eq:yield_comp} F_3 = C_{nn}\,\sigma _n^{\,2} + C_{ss}\,\big \|\boldsymbol {\mathbf {\tau }}\big \|^{2} + C_{n}\,\sigma _n - {[\sigma ^n(u^n_c)]}^{\,2}\end {align}


$u^n_c$


$u^n_t$


$\sigma ^n$


$\boldsymbol {\mathbf {\tau }}$


$\phi _{cv}$


$f_t(u^n_t)$


$u^n_t$


$c(\boldsymbol {\mathbf {u^s}})$


$\boldsymbol {\mathbf {u^s}}$


$\psi (\boldsymbol {\mathbf {u}}^{s})$


$\sigma ^n(u^n_c)$


$u^n_c$


$C_{nn}$


$C_{ss}$


$C_n$


\begin {align}&\label {eq:dt_tension} f_t(u^n_t) = \left [1-d_t(u^n_t)\right ]\ f_t, \qquad d_t(u^n_t) = 1-exp\left [-\frac {f_t}{G_f^I}\left (u^n_t-\frac {f_t}{k^n}\right )\right ]\\ &\label {eq:ds_shear} \boldsymbol {\mathbf {\tau }}(\boldsymbol {\mathbf {u^s}}) = c(\boldsymbol {\mathbf {u^s}}) - \sigma ^n{\textrm {tan}}\left (\phi _{cv}+\psi _0\right )\end {align}


\begin {align}&\label {eq:dt_tension} f_t(u^n_t) = \left [1-d_t(u^n_t)\right ]\ f_t, \qquad d_t(u^n_t) = 1-exp\left [-\frac {f_t}{G_f^I}\left (u^n_t-\frac {f_t}{k^n}\right )\right ]\\ &\label {eq:ds_shear} \boldsymbol {\mathbf {\tau }}(\boldsymbol {\mathbf {u^s}}) = c(\boldsymbol {\mathbf {u^s}}) - \sigma ^n{\textrm {tan}}\left (\phi _{cv}+\psi _0\right )\end {align}


$d_t(u^n_t)$


$f_t$


$G_f^I$


$\boldsymbol {\mathbf {\tau }}(\boldsymbol {\mathbf {u^s}})$


\begin {equation}\label {eq:cohesive_softening} c\!\left (\boldsymbol {\mathbf {u^{\,s}}}\right ) = \bigl [1 - d_s\!\left (\boldsymbol {\mathbf {u^{\,s}}}\right )\bigr ]\,c_0, \qquad d_s\!\left (\boldsymbol {\mathbf {u^{\,s}}}\right ) = 1 - \exp \!\left [ -\frac {c_0}{G_f^{II}}\, \Big \langle \,\|\boldsymbol {\mathbf {u^{\,s}}}\| - u^{\,s}_{el} \,\Big \rangle _{+} \right ]\end {equation}


$d_s(\boldsymbol {\mathbf {u^s}})$


$G_f^{II}$


$u^s_{el}$


\begin {align}\label {eq:elastic_shear_disp} u^s_{el} = \frac {\tau _{max}}{k_s} = \frac {c_0-\sigma ^n{\textrm {tan}}\left (\phi _{cv}+\psi _0\right )}{k^s}\end {align}


$c_0$


$\psi _0$


$d_{ts}$


\begin {equation}\label {eq:combined_dts} d_{ts}(u^n,) = d_t(u^n)+d_s(\boldsymbol {\mathbf {u^s}})-d_t(u^n)d_s(\boldsymbol {\mathbf {u^s}})\end {equation}


$d_t$


$d_s$


$f_t(u^n_t)$


$c\!\left (\boldsymbol {\mathbf {u^{\,s}}}\right )$


$1 \times 10^{-12}$


\begin {equation}\label {eq:hardening_compression} \sigma ^n(u^n_c) = \sigma ^n_{el} + (f_{c}-\sigma ^n_{el})\sqrt {\frac {2(u^n_c-u^n_{el})}{u_{cp}}-\frac {{(u^n_c-u^n_{el})}^2}{u_{cp}}}\end {equation}


$\sigma ^n(u^n_c)$


$\sigma ^n_{el}$


$f_{c}$


$u^n_{el}$


$0.2f_c/k^n$


$u_{cp}$


$n$


$f_c/k^n$


$k^n$


$n$


$d_c(u^n_c)$


\begin {equation}\label {eq:comp_dc} \displaystyle \sigma ^n(u^n_c) = \left [1-d_c(u^n_c)\right ]f_c\end {equation}


$u^n_c$


\begin {equation}\label {eq:comp_softening} d_c = \begin {cases} \displaystyle 0, & u^n_c < u_{cp}\\ \displaystyle \left (1-\frac {f_{cm}}{f_{c}}\right ){\left (\frac {u^n_c - u_{cp}}{u_{cm} - u_{cp}}\right )}^2 & u_{cp} \leq u^n_c < u_{cm} \\ \displaystyle \left (1 - \frac {f_{cr}}{f_{c}}\right ) - \frac {f_{cm}-f_{cr}}{f_{c}}\exp \left (2\frac {f_{cm}-f_{cp}}{u_{cm}-u_{cp}}\frac {u^n_c-u_{cm}}{f_{cm}-f_{cr}}\right ) & u^n_c \geq u_{cm} \end {cases}\end {equation}


$f_{cm}$


$u_{cm}$


$f_{cm}$


$f_{cr}$


$G_c$


$u_{cm}$


\begin {equation}\label {eq:ucm} u_{cm} = \frac {\displaystyle G_c - 0.5 \frac {\displaystyle f_{c}^2}{\displaystyle 9k^n} - 0.65 (u_{cp} - u^n_{el}) f_{c} + 0.75 u_{cp}f_{c} + 0.25 u_{cp}f_{cr}}{\displaystyle u_{cp}f_{c} + u_{cp}f_{cr}} u_{cp}\end {equation}


$G_c$


$u^n_{el}$


$\sigma ^n_{el}$


$\sigma ^n_{el} \ / \ k^n$


$F_2$


$\phi _{cv}$


$\psi $


$\phi _{cv}$


$\psi $


$\phi _{cv}$


$\psi $


$d_{ts}$


\begin {equation}\label {eq:dilatancy_softening} \psi (\boldsymbol {\mathbf {u^s}}) = \begin {cases} \displaystyle \psi _0\left (1-\frac {\| \boldsymbol {\mathbf {u^{s,p}}} \|}{u^{s,\max }}\right )\exp \left [-\delta \left (\| \boldsymbol {\mathbf {u^{s,p}}} \|\right )\right ] & \| \boldsymbol {\mathbf {u^{s,p}}} \| \leq u^{s,\max } \\ \displaystyle 0 & \| \boldsymbol {\mathbf {u^{s,p}}} \| > u^{s,\max } \end {cases}\end {equation}


$\delta $


$\boldsymbol {\mathbf {u^{s,p}}}$


$u^{s,\max }$


$c \rightarrow 0$


$\psi \approx 0$


$\Delta u^n$


$\lvert \Delta \boldsymbol {\mathbf {u^s}}\rvert $


\begin {equation}\label {eq:normal_dilatant} \Delta u^n := \begin {cases} \displaystyle \Delta u^n+\|\Delta \boldsymbol {\mathbf {u^s}}\| {\textrm {tan}}(\psi (\boldsymbol {\mathbf {u^s}})) & \| \boldsymbol {\mathbf {u^s}} \| <= \| u^{s,\max }\| \\ \Delta u^n & \| \boldsymbol {\mathbf {u^s}} \| > u^{s,\max } \end {cases}\end {equation}


\begin {equation}\label {eq:normal_force_dilatant} F^n := F^n +k^nA^c\lvert \Delta \boldsymbol {\mathbf {u^s}}\rvert {\textrm {tan}}(\psi (\boldsymbol {\mathbf {u^s}}))\end {equation}


\begin {align}\label {eq:secant_unloading} k^n(d_{ts}) = (1-d_{ts})k^n\end {align}


$k^s_i$


$u_{n_{pl}}$


\begin {equation}\label {eq:normalized_plastic_disp_cases} u'_{n_{pl}} = \begin {cases} \displaystyle 0.47\,{(u'_{n_{un}})}^2 + 0.5\,\lvert u'_{n_{un}}\rvert , & dc = 0,\\[6pt] \displaystyle 1.175\,{(u'_{n_{un}})}^2 + 1.25\,\lvert u'_{n_{un}}\rvert , & dc > 0~. \end {cases}\end {equation}


$u'_{n_{pl}}$


$u'_{n_{un}}$


$u_{cp}$


$u_{n_{un}}$


$u_{n_{pl}}$


\begin {equation}\label {eq:cyclic_loading} \sigma ^n_c = f_{c_{re}} + \left (f_{c_{un}}-f_{c_{re}}\right )\frac {B_1\chi +\chi ^2}{1+B_2\chi +B_3\chi ^2}\end {equation}


\begin {equation}\label {eq:current_unloading_displacement} \chi = \frac {\displaystyle u^n_c - u_{n_{un}}}{\displaystyle u_{n_{pl}}-u_{n_{un}}}\end {equation}


$\sigma ^n_c$


$f_{c_{re}}$


$f_{c_{un}}$


$B_1$


$B_2$


$B_3$


\begin {equation}\label {eq:B_coefficients} B_1 = \frac {k_{n_{un}}}{E_s}; \quad B_2 = B_1 - B_3; \quad B_3 = 2 - \frac {k_{n_{pl}}}{E_s}(1+B_1);\end {equation}


$E_s = f_{c_{un}}/(u_{n_{un}}-u_{n_{pl}})$


$k_{n_{un}}$


$k_{n_{pl}}$


\begin {equation}\label {eq:cyclic_stiffness} k_{n_{un}} = \gamma _{un}k_n; \quad k_{n_{pl}} = \frac {\gamma _{pl}k_n}{{\left (1+\frac {u_{n_{un}}}{u_{cp}}\right )}^e}\end {equation}


$\gamma _{un} = 1.5$


$\gamma _{pl} = 0.15$


$e = 2$


$e$


$k_{n_{un}}$


$k_{n_{pl}}$


\begin {equation}\label {eq:linear_comp_reloading} \sigma ^n_c = f_{c_{ro}} + k^n_{re} (u^n_c - u_{n_{ro}})\end {equation}


$f_{c_{ro}}$


$u_{n_{ro}}$


$k^n_{re}$


\begin {equation}\label {eq:reloading_stiffness} k^n_{re} = \frac {\beta _df_{c_{un}}-f_{c_{ro}}}{u_{n_{un}}-u_{n_{ro}}}\end {equation}


\begin {equation}\label {eq:softening_gradient_beta} \beta _d = \begin {cases} \displaystyle \frac {1}{1+0.2{(u'_{n_{rec}})}^{0.5}} & {\textrm {for}} \quad u_{n_{un}} < u_{cp} \\ \displaystyle \frac {1}{1+0.45{(u'_{n_{rec}})}^{0.2}} & {\textrm {for}} \quad u_{n_{un}} \geq u_{cp} \\ \end {cases}\end {equation}


$u_{n_{rec}} = u_{n_{un}}-u_{n_{ro}}$


$t$


$t+1$


$F_1$


$t+1$


$\sigma _n$


$\mathbf {\sigma }$


$t+1$


$F_2$


\begin {equation}\label {eq:shear_correction} \boldsymbol {\mathbf {\tau ^s}} = \boldsymbol {\mathbf {\tau ^s}} \frac {\boldsymbol {\mathbf {\tau ^s}}(d_{ts})}{\lVert \boldsymbol {\mathbf {\tau ^s}}\rVert }\end {equation}


$F_3$


$\mathbf {\sigma }$


$\mathbf {R}$


$\mathbf {\sigma }$


$F_3$


\begin {equation}\label {eq:comp_correction} {\left (\mathbf {\sigma }^{t+1}\right )}_1 := {\left (\mathbf {\sigma }^{t+1}\right )}_1-{\left (\mathbf {R}\right )}_1, \qquad {\left (\mathbf {\sigma }^{t+1}\right )}_{2:4} := {\left (\mathbf {\sigma }^{t+1}\right )}_{2:4}\frac {{\left (\mathbf {R}\right )}_{2:4}}{\lvert {\left (\mathbf {\sigma }^{t+1}\right )}_{2:4}\rvert }\end {equation}


$F_1$


$F_2$


$F_2$


$F_3$


$F_1$


$F_2$


$F_1 \cap F_2$


$F_2$


$F_2$


$F_1$


$d_t$


$d_s$


$d_c$
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$c_0$
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$\psi _0$


$\circ $


$f_c$


$G_c$


$k^n$


$k^s_i$


$f_t$


$n$


$u^{s,\max }$


$\delta $


$G_I$


$G_{II}$


$C_n,C_{nn},C_{ss}$


$k^n$


$k^s_i$


\begin {equation}\label {eq:homogenised_kn_ks} k_n = \displaystyle \frac {E_bE_m}{t_m\left (E_b - E_m\right )}, \qquad k_s = \displaystyle \frac {G_bG_m}{t_m\left (G_b-G_m\right )}\end {equation}


$E_b$


$E_m$


$G_b$


$G_m$


$t_m$


$c$


$\phi $


$\tau = c + \sigma _n \tan {\phi }$


$c_{res}$


$\psi $


$u^{s,\max },\delta $


$f_t$


$G_I$


$G_{II}$


$f_t$


$G_c$


$n$


$212 \times 102 \times 72\,\text {mm}$


$1070\,\text {N}\,\text {mm}^{-1}$


$N$


\begin {equation}\label {eq:servo_force} F(t) = K_{act}\left [u_{cmd}(t)-u_{spec}(t)\right ]\end {equation}


$K_{act}$


$1070\,\text {N}\,\text {mm}^{-1}$


$u_{cmd}(t)$


$u_{spec}(t)$


$u_{s,rel}$


$u_{n,rel}$


\begin {align}&\label {eq:dilatant_shear} u_{s,rel} = \frac {y_1-y_2}{y_3-y_4}\\ &\label {eq:dilatant_normal} u_{n,rel} = x_2-x_1\end {align}


\begin {align}&\label {eq:dilatant_shear} u_{s,rel} = \frac {y_1-y_2}{y_3-y_4}\\ &\label {eq:dilatant_normal} u_{n,rel} = x_2-x_1\end {align}


$l_w\times h_w\times t_w$


$\times $


$\times $


$\times $


$\times $


$\times $


$\times $


$\times $


$\times $


$\rho $


$E$


$E_m$


$k^n$


$k^s$


$f_t$


$f_s$


$\mu $


$G_I$


$G_{II}$


$f_c$


$G_c$


$n$


$C_n,C_{nn},C_{ss}$


$n$


$1 \times 10^{-5}$


$\alpha $


\begin {equation}\label {eq:impulse_velo} V(t) = \begin {cases} \dfrac {v_{max}}{2}\left [1-\cos \!\left (\dfrac {\pi t}{t_a} \right )\right ], & 0 \le t < t_a,\\[6pt] v_{max}, & t_a \le t < t_a+t_b,\\[6pt] \dfrac {v_{max}}{2}\Bigl [1+\cos \!\bigl (\pi (t-t_a-t_b)/t_a\bigr )\Bigr ], & t_a+t_b \le t < t_{tot},\\[6pt] 0, & t \ge t_{tot} \end {cases}\end {equation}


$u_{apv}$


$t_{tot} = 2t_a +t_b$


$t_a = 0.5d_d$


$t_b=d_d * \kappa $


$\kappa $


$d_d$


$u_{apv}$


$v_{max}$


$\kappa $


\begin {equation}\label {eq:dd} d_d = \frac {u_{apv}}{v_{max}(1+\kappa )}\end {equation}


$5.0\,\text {mm}\,\text {s}^{-1}$


$5\,\text {mm}\,\text {s}^{-1}$


$1 \times 10^{-6}\,\text {s}$


$v(t)$


$5\,\text {mm}\,\text {s}^{-1}$


$t_a$


$t_b$


$v(t)$


$v_{max}$


$5\,\text {mm}\,\text {s}^{-1}$


\begin {equation}\label {eq:prescribed_displacement} u_{tar} = \int _0^{2t_a+t_b}v(t)\,{\textrm {d}}t = v_{max}(t_a+t_b),\end {equation}


$u_{tar}$


$u_{tar}$


$\pm 0.5\%$


$d_{ts}$


$d_{ts}$


$d_{ts}$


$d_{ts}$


$S(t)$


$\cdot $


$s$


\begin {equation}\label {ieq1} E^{(s)}_{{\textrm {tens}}}(t) = \int _{0}^{u^{n,(s)}_{t}(t)} \langle T_n^{(s)} \rangle ^{+}\, {\textrm {d}}u^{n,(s)}_{t}, \qquad E^{(s)}_{{\textrm {comp}}}(t) = \int _{0}^{u^{n,(s)}_{c}(t)} \langle -T_n^{(s)} \rangle ^{+}\, {\textrm {d}}u^{n,(s)}_{c},\end {equation}


$T_n^{(s)}$


${\textrm {d}}u^{n,(s)}_{t}$


${\textrm {d}}u^{n,(s)}_{c}$


\begin {equation}\label {ieq2} E^{(s)}_{{\textrm {shear}}}(t) = \int _{0}^{\boldsymbol {u}_s^{(s)}(t)} \boldsymbol {T}_s^{(s)} \cdot {\textrm {d}}\boldsymbol {u}_s^{(s)},\end {equation}


$\boldsymbol {T}_s^{(s)}$


\begin {align}&E_{{\textrm {tens}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {tens}}}(t),\label {autoeq:1}\\ &E_{{\textrm {comp}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {comp}}}(t),\label {autoeq:2}\\ &E_{{\textrm {shear}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {shear}}}(t),\label {autoeq:3}\end {align}


\begin {align}&E_{{\textrm {tens}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {tens}}}(t),\label {autoeq:1}\\ &E_{{\textrm {comp}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {comp}}}(t),\label {autoeq:2}\\ &E_{{\textrm {shear}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {shear}}}(t),\label {autoeq:3}\end {align}


\begin {align}&E_{{\textrm {tens}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {tens}}}(t),\label {autoeq:1}\\ &E_{{\textrm {comp}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {comp}}}(t),\label {autoeq:2}\\ &E_{{\textrm {shear}}}(t) = \sum _{s\in \mathcal {S}(t)} E^{(s)}_{{\textrm {shear}}}(t),\label {autoeq:3}\end {align}


$t_n$


\begin {align}&E_{{\textrm {tens}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {tens}}}(t_n) - E_{{\textrm {tens}}}(t_{n-1}) \right |,\label {autoeq:4}\\ &E_{{\textrm {comp}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {comp}}}(t_n) - E_{{\textrm {comp}}}(t_{n-1}) \right |,\label {autoeq:5}\\ &E_{{\textrm {shear}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {shear}}}(t_n) - E_{{\textrm {shear}}}(t_{n-1}) \right |.\label {autoeq:6}\end {align}


\begin {align}&E_{{\textrm {tens}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {tens}}}(t_n) - E_{{\textrm {tens}}}(t_{n-1}) \right |,\label {autoeq:4}\\ &E_{{\textrm {comp}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {comp}}}(t_n) - E_{{\textrm {comp}}}(t_{n-1}) \right |,\label {autoeq:5}\\ &E_{{\textrm {shear}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {shear}}}(t_n) - E_{{\textrm {shear}}}(t_{n-1}) \right |.\label {autoeq:6}\end {align}


\begin {align}&E_{{\textrm {tens}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {tens}}}(t_n) - E_{{\textrm {tens}}}(t_{n-1}) \right |,\label {autoeq:4}\\ &E_{{\textrm {comp}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {comp}}}(t_n) - E_{{\textrm {comp}}}(t_{n-1}) \right |,\label {autoeq:5}\\ &E_{{\textrm {shear}}}^{{\textrm {diss}}}(t_N) = \sum _{n=1}^{N} \left | E_{{\textrm {shear}}}(t_n) - E_{{\textrm {shear}}}(t_{n-1}) \right |.\label {autoeq:6}\end {align}


$E_{{\textrm {phys}}}(t_N)$


\begin {equation}\label {ieq3} E_{{\textrm {phys}}}(t_N)= E_{{\textrm {tens}}}^{{\textrm {diss}}}(t_N)+ E_{{\textrm {comp}}}^{{\textrm {diss}}}(t_N)+ E_{{\textrm {shear}}}^{{\textrm {diss}}}(t_N)\end {equation}


$W_k$


$t_n$


\begin {equation}\label {ieq4} \Delta W_k(t_n) = \alpha \, \Delta t \sum _{b\, \in \,\mathcal {B}} \left ( |F_{u,x}^{(b)}|\,|v_x^{(b)}| + |F_{u,y}^{(b)}|\,|v_y^{(b)}| + |F_{u,z}^{(b)}|\,|v_z^{(b)}| \right ),\end {equation}


$\alpha $


$\Delta t$


$\boldsymbol {F}_u^{(b)}=(F_{u,x}^{(b)},F_{u,y}^{(b)},F_{u,z}^{(b)})$


$b$


$\boldsymbol {v}^{(b)}=(v_x^{(b)},v_y^{(b)},v_z^{(b)})$


$\mathcal {B}$


\begin {equation}\label {ieq5} W_k(t_N) = \sum _{n=1}^{N} \Delta W_k(t_n).\end {equation}


$E_{{\textrm {phys}}}$


$W_k$


$\alpha $


$E_{{\textrm {phys}}}$


$W_k$


$\eta $


$\eta $


$F_2$


$F_1$


$\delta $


$\delta $


$v = 0.5,\ 1.0,\ 2.5,\ 5.0$


$10.0$


$v_{\text {max}}$


$t_a,\ t_b$


$t_{tot}$


$0.5\,\text {mm}\,\text {s}^{-1}$


$10\,\text {mm}\,\text {s}^{-1}$


$0.5\,\text {mm}\,\text {s}^{-1}$


${2.5}\,\text {mm}\,\text {s}^{-1}\ \ \text {to} \ \ {5.0}\,\text {mm}\,\text {s}^{-1}$


$10.0\,\text {mm}\,\text {s}^{-1}$


${2.5}\,\text {mm}\,\text {s}^{-1}\ \ \text {to} \ \ {5.0}\,\text {mm}\,\text {s}^{-1}$


${2.5}\,\text {mm}\,\text {s}^{-1}\ \ \text {to} \ \ {5.0}\,\text {mm}\,\text {s}^{-1}$


$v$


$F_{\text {pos}}$


$F_{\text {neg}}$


$_{\text {pos}}$


$_{\text {neg}}$


$F_{\text {pos,EXP}} = 27.69$


$F_{\text {neg,EXP}} = -30.58$


$\delta _{\text {pos,EXP}} = 0.736$


$\delta _{\text {neg,EXP}} = -0.520$


${2.5}\,\text {mm}\,\text {s}^{-1}\ \ \text {to} \ \ {5.0}\,\text {mm}\,\text {s}^{-1}$


$k^n$


$k^s$


$f_t$


$c$


$\mu $


$G_I$


$G_{II}$


$f_c$


$G_c$


$u_k$


$\delta _k$


$\zeta $


$\xi $


$C_s$


$E_b$


$v$


$f_{c_b}$


$f_{t_b}$


$n$


$k_n$


$k_s$


$u_n$


$\Delta u_n$


$F_n$


$\Delta F_n$


$F_n$


$\Delta F_n$


$u_n < 0$


$u_n + \Delta u_n \geq u_{n,\text {hist,ten}}$


$u_{n,\text {hist,ten}} \gets u_n$


$F_n$


$u_n + \Delta u_n \leq u_{n,\text {hist,comp}}$


$= 0$


$u_{n,\text {hist,comp}} \gets -u_n$


$\sigma _n + \Delta \sigma _n \geq \sigma _{\text {hist,comp}}$


$u_n + \Delta u_n \leq u_{\text {el,limit}}$


$F_n$


$\sigma _n + \Delta \sigma _n \leq f_c$


$\sigma _n$


$F_n \gets \sigma _n A_c$


$= 1.0$


$u_{n_{pl}}$


$\Delta u_n \geq 0 \quad \text {and}\quad \text {PlasticFlag}= 1.0$


$u_n+\Delta u_n \geq u_{\text {hist,comp}}\, \cdot \, 0.985$


$\triangleright $


$F_n$


$\sigma _n$


$F_n \gets \sigma _nA_c$


$f_{m_{ro}}$


$u_{n_{ro}}$


$= 1.0$


$= 1.0$


$\Delta u_n \leq 0$


$\beta \gets $


$k_r \gets \frac {\beta f_{\text {peak}} - f_{m,\text {ro}}}{u_{n,\text {hist,comp}} - u_{n,\text {ro}}}$


$\sigma _n$


$\sigma _{\text {env}} \gets $


$\sigma _n < \sigma _{\text {env}}$


$F_n \gets \sigma _nA_c$


$\gets 0$


$F_n$


$\gets \sigma _{\text {env}}A_c$


\begin {equation}\label {ieq6} \eta = \frac {W_k}{W_k+E_{{\textrm {phys}}}}\end {equation}
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brick units as rigid or deformable blocks, while the mortar joints 

are captured using zero-thickness interfaces [8–12]. Finally, detailed 

micro-modelling strategies discretise both the units and mortar joints 

explicitly as separate deformable components [13–15]. Each of these 

strategies offers a trade-off between computational cost and modelling 

fidelity, influencing their applicability depending on the scale and ob­

jectives of the analysis. Among them, the simplified micro-modelling 

approach offers a particularly effective compromise, striking a balance 

between computational efficiency and numerical accuracy. By concen­

trating the nonlinear response within the interface elements, the overall 

model remains tractable while still capturing key mechanical behaviors. 

However, this also means that the fidelity of the simulation strongly de­

pends on the accurate characterization of cohesive-frictional interface 

behavior.

To this end, numerous researchers have developed damage-plasticity 

interface models to simulate the nonlinear behavior of masonry struc­

tures [10,11,16–19]. These models are capable of capturing the degra­

dation of tensile and shear strength through damage mechanics, along 

with irreversible deformations and frictional sliding that occur after 

yielding. In the early development of the interface model for masonry 

structures, Lotfi and Shing [17] proposed a single hyperbolic surface for 

tension and shear without a compression cap. Lourenço and Rots [19] 

introduced a compression cap and separate yield criteria for shear and 

tension, although this led to numerical issues at yield surface intersec­

tions (“corner” regions). Macorini and Izzuddin [11] addressed this by 

proposing a unified model with a compression cap and a single hyper­

bolic yield surface, enhancing stability and smoothness. Nie et al. [16] 

explored this unified yield surface under the effective stress spaces with 

a non-shrinking compression cap upon crushing.

The models described above have typically been implemented within 

finite element frameworks using incremental-iterative solution proce­

dures. While effective in many cases, these methods often encounter 

convergence difficulties under highly nonlinear conditions, particularly 

during cyclic loading and simulations that approach structural collapse. 

To mitigate this, methods such as closest point projection [20,21] and ra­

dial return [22] have been proposed, often combined with a line search 

method [23] or a substepping scheme [24]. Other solutions that do not 

involve implicit-based solvers have also been explored, such as the use 

of the Forward Euler method [25], or event-based sequentially linear 

analysis [26,27].

With the continuing growth in computational resources, the distinct 

element method (DEM) has emerged as a powerful alternative for mod­

elling masonry structures. DEM employs a conditionally stable explicit 

time integration scheme, which facilitates simulations up to collapse 

without the convergence issues typically encountered in traditional im­

plicit solvers. This makes DEM particularly attractive for the analysis 

of large-scale or historic masonry structures, where complex failure 

modes must be captured [28–31]. However, the predictive accuracy of 

DEM hinges on robust contact constitutive models that offer appropri­

ate nonlinear behavior of the analyzed discontinuous medium. Without 

such formulations, key phenomena, such as hysteretic loops, residual 

drift, and transitions between different failure modes, cannot be reliably 

captured in DEM.

Several DEM contact models have been proposed to better rep­

resent the mechanical behavior of masonry constituents. Pulatsu [8] 

and Oktiovan et al. [12] formulated damage–plasticity contacts with 

a compression cap to capture shear–compression coupling. The former 

adopted linear softening in tension, shear, and compression, whereas 

the latter employed piecewise-linear softening in tension and shear, 

along with a hardening–softening law in compression. Both of these cap-

based formulations, however, were calibrated and validated only under 

monotonic loading, limiting their demonstrated capability under cyclic 

demand (e.g., load reversals, degradation, and pinching).

In parallel, DEM strategies for URM structures under quasi-static and 

cyclic loading have emphasized block–interface formulations. Malomo 

et al. [32] used elasto-plastic deformable blocks (i.e., blocks with limited 

tensile and compressive strengths) with Mohr–Coulomb interfaces and 

a tension cut-off, while Damiani et al. [33] advanced this approach by 

combining elasto-plastic blocks with a refined interface model [8]. More 

recently, Pulatsu et al. [34] examined cyclic in-plane response within 

a DEM framework but represented shear–compression coupling with a 

compression cut-off (i.e., without a compression cap).

This study presents a contact constitutive model within the DEM 

framework tailored for the cyclic loading of masonry assemblies. The 

formulation is also applicable to other block-based systems in which lo­

cal cohesive or frictional interactions govern the macroscopic response 

of the discontinuum. The main contribution is a unified definition of 

the masonry joint behavior under cyclic demand. The joint constitu­

tive law integrates multi-surface plasticity with exponential softening 

in tension and shear, a hardening-softening evolution in compression, a 

dilatancy-induced uplift mechanism, and a nonlinear, energy-dissipative 

unloading/reloading algorithm. The modelling strategy is implemented 

in 3DEC, a commercial software for DEM, which uses an explicit time-

marching integration scheme, avoiding substepping and iterative return 

mapping while maintaining numerical stability under large displace­

ments. The model is validated against cyclic uniaxial compression, 

direct-shear, and shear–compression triplet tests, as well as full-scale 

in-plane wall experiments. This demonstrates the model’s capability to 

match both global force–drift loops and detailed crack patterns, and 

to reproduce the intricate transition from rocking to sliding mecha­

nisms, including hinge formation, progressive sliding, and toe crushing, 

offering a robust tool for seismic assessment of masonry structures.

The present work focuses only on in-plane loading; the out-of-plane 

(OOP) behavior is not addressed. This scope was chosen to isolate the 

shear–compression–tension mechanisms at bed and head joints that 

dominate in-plane seismic response and for which standardized cyclic 

datasets enable rigorous calibration. While the formulation is general 

and compatible with 3D analyses, extending and calibrating the model 

for OOP loading cases and coupled in-plane–OOP demands is left for 

future work.

2 . Formulation of the cyclic joint constitutive model

The proposed formulation is developed within the distinct element 

method (DEM) framework [35], which falls under the simplified micro-

modelling approach as categorized by Lourenço [1].

This approach represents masonry units as rigid or deformable blocks 

with extended dimensions to cover mortar joints, thereby replicating 

masonry structures as a group of discrete blocks. The deformable blocks 

may be considered as an elastic or elasto-plastic continuum. The mortar 

joints are represented as a set of cohesive-frictional contact points, as 

shown in Fig. 1. In this study, the masonry units are treated as rigid 

bodies with a potential crack plane at the unit’s mid-length (dashed red 

line in Fig. 1). Consequently, their elastic deformability is accounted for, 

and the block’s Young’s modulus is not used in the stiffness update. The 

overall elastic compliance of the assemblage is lumped at the interfaces 

via normal and shear springs (𝑘𝑛 and 𝑘𝑠, respectively), which govern 

the initial stiffness and are first estimated via homogenization and then 

calibrated to tests.

As the blocks in contact are detected through the ’common-plane’ 

concept [35], the contact points between adjacent blocks are automat­

ically generated when the gaps measured from the direction normal to 

this fictitious plane are less than the given tolerance. The number of the 

generated contact points depends on the adopted face triangulation al­

gorithm (readily available in the software). Fig. 1, shows a mesh termed 

as “radial-8” where each face of the block has a center vertex and an 

extra vertex at the mid-edge, creating 9 contact points at each face of 

the block.

Under DEM, the proposed formulation is solved using the explicit 

time-marching integration scheme, where the equation of motion, pre­

sented in Eq. (1) for a single block 𝑖, is solved at each timestep to obtain 

the new block positions and displacement increment.
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Fig. 1. Discretization of the masonry constituents according to the distinct element method (DEM).

𝑚𝑖 𝑑𝐯𝑖 =
[(

∑

𝑗∈𝑖

𝐅c,𝑡
𝑖,𝑗

)

+ 𝐅ext,𝑡
𝑖 + 𝐅w,𝑡

𝑖 − 𝐅d,𝑡
𝑖

]

𝑑𝑡 (1)

where 𝑚 is the block mass, 𝐯 is the velocity vector, 𝑖 is the set of con­

tact points governing block 𝑖, 𝐅c,𝑡
𝑖,𝑗  is the contact force vector at point 𝑗

along the block’s boundary, 𝐅ext,𝑡
𝑖  is the external force vector, 𝐅w,𝑡

𝑖  is the 

body force vector, and 𝐅d,𝑡
𝑖  is the damping force vector. Similarly, the 

rotational motion is defined in Eq. (2)

𝐈𝑖𝑑𝝎𝑖 =
(

𝐌𝑡
𝑖 −𝐌d,𝑡

𝑖

)

𝑑𝑡 (2)

where 𝐈 is the moment of inertia, 𝝎 is the rotational velocity vector, 𝐌𝑡

is the moment applied to the block, and 𝐌d,𝑡 is the damping moment.

These equations are discretized using a staggered scheme. Let 𝑡 de­

note a generic time level and Δ𝑡 denote the constant time step. We 

introduce the half-step times 
[

𝑡− = 𝑡 − Δ𝑡∕2, 𝑡+ = 𝑡 + Δ𝑡∕2
]

. Translational 

and rotational velocities are stored and updated at half-time steps, while 

forces and moments are evaluated at integer time levels 𝑡. Integrating the 

equations of motion over the interval 
[

𝑡−, 𝑡+
]

 yields:

𝑚𝑖 ∫

𝑡+

𝑡−
𝑑𝐯𝑖 = ∫

𝑡+

𝑡−

[(

∑

𝑗∈𝑖

𝐅c,𝑡
𝑖,𝑗

)

+ 𝐅ext,𝑡
𝑖 + 𝐅w,𝑡

𝑖 − 𝐅d,𝑡
𝑖

]

𝑑𝑡 (3)

The left-hand side of Eq. (3) can be evaluated exactly and defines the 

finite velocity increment:

Δ𝐯𝑡𝐢 ∶= 𝐯𝑡+𝑖 − 𝐯𝑡−𝑖 (4)

Using a midpoint approximation of the time integral, the forces are 

evaluated at 𝑡, and the discrete translational update becomes:

𝑚𝑖Δ𝐯𝑡𝑖 ≈
[(

∑

𝑗∈𝑖

𝐅c,𝑡
𝑖,𝑗

)

+ 𝐅ext,𝑡
𝑖 + 𝐅w,𝑡

𝑖 − 𝐅d,𝑡
𝑖

]

Δ𝑡 (5)

An analogous procedure is applied to the rotational equation. 

Integration over the interval 
[

𝑡−, 𝑡+
]

 yields:

𝐈𝐢 ∫

𝑡+

𝑡−
𝑑𝝎𝑖 = ∫

𝑡+

𝑡−

(

𝐌𝑡
𝑖 −𝐌d,𝑡

𝑖

)

d𝑡, (6)

which gives the angular velocity increment:

Δ𝝎𝑡𝐢 ∶= 𝝎𝑡+𝒊 − 𝝎𝑡−𝒊 , (7)

which leads, after the midpoint approximation of the contribution, to:

𝐈𝐢 Δ𝝎𝑡𝐢 ≈
(

𝐌𝑡
𝑖 −𝐌d,𝑡

𝑖

)

Δ𝑡. (8)

For completeness, it is important to note that orientations are ad­

vanced with a small-rotation update, and that the scheme is employed 

in a quasi-static, dynamic-relaxation sense with small local damping 

and energy/residual checks. These additions make the time-integration 

procedure self-contained without altering any results.

The damping force 𝐅d,𝑡
𝐢  and moment 𝐌d,𝑡

𝐢  are included in Eqs. 

(1) and (2), respectively, as local numerical damping [36] used in 

a dynamic-relaxation sense to obtain quasi-static equilibria with the 

explicit scheme. Contact opening/closure and softening often intro­

duce high-frequency oscillations that would require impractically small 

timesteps to settle without this local damping. These terms attenuate 

spurious kinetic energy and align the unbalanced force/moment with 

the current velocity directions. They are not physical dissipation models 

and do not alter the conditional stability. These are defined based on the 

proportion of the unbalanced or net force/moment and the direction of 

the velocity (or rotational velocity) vectors at 𝑡−. These are expressed as 

follows:

𝐅𝑑,𝑡𝑖 = 𝛼 ‖‖
‖

∑

𝐅 𝑡𝑖
‖

‖

‖

sgn
(

𝐯𝑖 𝑡
−)

and 𝐌d,𝑡
𝐢 = 𝛼 ‖‖

‖

∑

𝐌 𝑡
𝑖
‖

‖

‖

sgn
(

𝝎 𝑡−
𝑖
)

(9)

where 
∑

𝐅 𝑡𝑖  and 
∑

𝐌 𝑡
𝑖  are the unbalanced force and moment, respec­

tively, and sgn
(

𝐯 𝑡−
)

 and sgn
(

𝝎 𝑡−) denote the signum function that 

defines the opposite direction of the translational 𝐯 𝑡−  and rotational 𝝎 𝑡−

velocities at 𝑡−, respectively. Throughout the simulations in this paper, 

the local damping constant 𝛼 is set to 0.8 by default.

Although the equations of motion in Eqs. (1) and (2) are integrated 

explicitly with the inertial term, the analysis is carried out in a quasi-

static (dynamic-relaxation) fashion. Inertia and local damping serve only 

to relax each load increment into equilibrium. For each step, the pseudo-

time is advanced under slow loading due to the significantly small Δ𝑡
while keeping the residual force norm ‖𝐑𝑖‖ small, i.e.:

‖𝐑𝑖‖
‖𝐅𝑒𝑥𝑡𝑖 ‖

where 𝐑𝑖 =
∑

𝐅𝑐𝑖 + 𝐅𝑒𝑥𝑡𝑖 + 𝐅𝑤𝑖 − 𝐅𝑑𝑖 ≈ 0 (10)

The converged configuration under these criteria is then taken as 

the static response. Once the updated velocities are obtained, i.e. 𝐯𝑡+

and 𝝎𝑡+ , the positions of the blocks centroid are updated as:

𝐱𝑖(𝑡 + Δ𝑡) = 𝐱𝑖(𝑡) + 𝐯𝑡+𝑖 Δ𝑡 (11)

where 𝐱 is the block centroid’s positional vector. The new locations 

of block vertices are updated accordingly, considering the incremental 

rotation calculated from the angular velocities multiplied by Δ𝑡.
Each contact point comprises three orthogonal springs, one in the 

normal direction and the other two in the shear directions. Under the 

linear elastic range, the normal and shear force increments at the contact 

points are defined according to the respective displacement increments, 

as presented in Eq. (12). 

Δ𝐹 𝑛 = 𝑘𝑛𝐴𝑐Δ𝑢𝑛 and Δ𝐅𝐬 = 𝑘𝑠𝐴𝑐Δ𝐮𝐬 (12)

where 𝐹 𝑛, 𝑘𝑛, and 𝑢𝑛 are the normal force, normal stiffness, and normal 

displacement, respectively, while 𝐅𝐬, 𝑘𝑠, and 𝐮𝐬 are the shear force vec­

tor, shear stiffness, and shear displacement vector, respectively, and 𝐴𝑐

is the tributary area [12].
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Fig. 2. Construction of the sub-contact area 𝐴𝑐  for force mapping.

Here, 𝐴𝑐  denotes the sub-contact area used to map interface reac­

tions to nodal forces. As illustrated in Fig. 2, the contact region on the 

interface plane is first decomposed into triangular planes. For one sub-

contact point, the associated area is constructed by assigning one-third 

of each triangular face that contains the sub-contact and lies on the 

contact plane. This equal partition ensures a consistent and objective 

distribution of the contact area among neighbouring sub-contacts.

The resulting region is then intersected with the opposing block’s 

face lying on the same plane, yielding the effective sub-contact area 𝐴𝑐
used in the force and energy mapping. For face-to-face contacts, the con­

struction is applied independently to each block. Since sub-contacts are 

defined at the nodes of both blocks, two parallel interface contributions 

arise, and the effective area associated with each sub-contact is therefore 

halved.

It is important to emphasize that the explicit time marching integra­

tion scheme employed in the discrete element method (DEM) is only 

conditionally stable, with stability governed by the critical time step 

defined in Eq. (13) [37]:

Δ𝑡𝑏𝑙𝑜𝑐𝑘 =
2

𝜔𝑚𝑎𝑥
(13)

where 𝑡𝑏𝑙𝑜𝑐𝑘 is the maximum stable timestep and 𝜔𝑚𝑎𝑥 is the highest 

system frequency . Eq. (13) provides a conservative estimate for the sta­

ble time increment by considering the upper bound associated with the 

highest eigenfrequency of the system. This criterion has been shown to 

offer sufficient stability for complex, nonlinear systems [38,39]. The sta­

ble timestep in Eq. (13) is essentially independent of the local numerical 

damping used for dynamic relaxation in Eq. (1). The damping parame­

ter 𝛼 serves only to attenuate spurious oscillations and does not alter the 

conditional-stability nature of the method.

In this paper, the constitutive model that defines the nonlinear 

behavior of masonry structures under monotonic loading, previously 

proposed by the authors [12], is extended to include the dilatancy soften­

ing of the mortar layer when subjected to shear and compression loading 

as well as the extension to include stiffness degradation in tension, shear, 

and compression regimes.

2.1 . Overview of the monotonic joint constitutive model

The mechanical response of the joint model representing the unit-

mortar interface under monotonic loading conditions is characterized 

by the traction-separation laws in tension, shear, and compression, cou­

pled with a multi-surface plasticity model. Fig. 3 shows the adopted joint 

constitutive model, which encompasses the softening behavior in ten­

sion (Fig. 3(A)), shear (Fig. 3(B)), and a nonlinear compressive behavior 

(Fig. 3(C)). The multi-surface plasticity model in Fig. 3(D)) comprises 

a tensile cut-off 𝐹1 (Eq. 14), a Coulomb friction yield line 𝐹2 (Eq. 15), 

and a compression cap 𝐹3 (Eq. 16) to limit the behavior of the interface 

under shear–compression.

𝐹1 = 𝜎𝑛 − 𝑓𝑡(𝑢𝑛𝑡 ) (14)

𝐹2 =
‖

‖

‖

𝝉‖‖
‖

+ 𝜎𝑛tan
(

𝜙𝑐𝑣 + 𝜓(𝐮𝑠)
)

− 𝑐(𝐮𝐬) (15)

𝐹3 = 𝐶𝑛𝑛 𝜎
2
𝑛 + 𝐶𝑠𝑠

‖

‖

‖

𝝉‖‖
‖

2
+ 𝐶𝑛 𝜎𝑛 − [𝜎𝑛(𝑢𝑛𝑐 )]

2 (16)

where 𝑢𝑛𝑐  and 𝑢𝑛𝑡  are the relative normal subcontact displacements in 

compression and tension, respectively, 𝜎𝑛 is the normal stress, 𝝉 is the 

shear stress vector, 𝜙𝑐𝑣 is the friction angle at constant volume, 𝑓𝑡(𝑢𝑛𝑡 )
is the tensile strength that reduces according to the tensile normal dis­

placement 𝑢𝑛𝑡 , 𝑐(𝐮
𝐬) is the cohesive strength that decays depending on the 

shear displacement vector 𝐮𝐬, 𝜓(𝐮𝑠) is the dilatancy angle corresponding 

to the shear displacement vector, 𝜎𝑛(𝑢𝑛𝑐 ) is the compressive strength that 

evolves under the compressive normal displacement 𝑢𝑛𝑐 , 𝐶𝑛𝑛 and 𝐶𝑠𝑠 are 

the parameters that control the radius of the elliptical curve in Fig. 3(D), 

and 𝐶𝑛 is the ellipsis center.

In contrast to the previous study by the authors [40], where a piece­

wise linear softening law is used on the tensile and shear regimes to 

provide flexibility for the users to fit the strength degradation given the 

material characterization tests, an exponential softening law is used in 

this joint constitutive model to reduce the number of parameters needed 

by the users, and to achieve a smoother strength degradation on each 

regime. The exponential softening laws for tension and shear are given 

in Eqs. (17) and (18), respectively.

𝑓𝑡(𝑢𝑛𝑡 ) =
[

1 − 𝑑𝑡(𝑢𝑛𝑡 )
]

𝑓𝑡, 𝑑𝑡(𝑢𝑛𝑡 ) = 1 − 𝑒𝑥𝑝

[

−
𝑓𝑡
𝐺𝐼𝑓

(

𝑢𝑛𝑡 −
𝑓𝑡
𝑘𝑛

)

]

(17)

𝝉(𝐮𝐬) = 𝑐(𝐮𝐬) − 𝜎𝑛tan
(

𝜙𝑐𝑣 + 𝜓0
)

(18)

where 𝑑𝑡(𝑢𝑛𝑡 ) is the tensile damage scalar, 𝑓𝑡 is the tensile strength, 𝐺𝐼𝑓
is the mode-I fracture energy, and 𝝉(𝐮𝐬) is the post-peak shear stress. 

The exponential softening law for shear strength is implemented to the 

cohesive strength, defined in Eq. (19). 

𝑐
(

𝐮 𝐬) =
[

1 − 𝑑𝑠
(

𝐮 𝐬)] 𝑐0, 𝑑𝑠
(

𝐮 𝐬) = 1 − exp

[

−
𝑐0
𝐺𝐼𝐼𝑓

⟨

‖𝐮 𝐬
‖ − 𝑢 𝑠𝑒𝑙

⟩

+

]

(19)

where 𝑑𝑠(𝐮𝐬) is the shear damage scalar, 𝐺𝐼𝐼𝑓  is the mode-II fracture 

energy, and 𝑢𝑠𝑒𝑙 is the elastic shear displacement, defined by Eq. (20).

𝑢𝑠𝑒𝑙 =
𝜏𝑚𝑎𝑥
𝑘𝑠

=
𝑐0 − 𝜎𝑛tan

(

𝜙𝑐𝑣 + 𝜓0
)

𝑘𝑠
(20)

where 𝑐0 is the peak cohesive strength, and 𝜓0 is the initial dilatancy 

angle. It is important to note that the default implementation assumes 

a fixed value of dilatancy. The dilatancy softening effect is discussed 
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Fig. 3. Illustration of the proposed joint constitutive model.

in the following sub-section. To couple the post-peak softening isotropi­

cally [1,8,16], a combined damage scalar 𝑑𝑡𝑠 that couples both the tensile 

and shear behaviors is introduced in Eq. (21), replacing the tensile 𝑑𝑡
and shear 𝑑𝑠 damage scalars in Eqs. (17) and (19), respectively. To pre­

vent round-off accumulation error, both 𝑓𝑡(𝑢𝑛𝑡 ) and 𝑐(𝐮 𝐬) are capped at 

1 × 10−12 according to the precision limit of the user-defined model in 

3DEC [41], the commercial software for DEM. 

𝑑𝑡𝑠(𝑢𝑛, ) = 𝑑𝑡(𝑢𝑛) + 𝑑𝑠(𝐮𝐬) − 𝑑𝑡(𝑢𝑛)𝑑𝑠(𝐮𝐬) (21)

The uniaxial compressive behavior of the joint constitutive model is 

governed by the hardening/softening law introduced by Lourenço and 

Rots [19]. After the linear elastic phase reaches 20 % of the compres­

sive strength, the interface enters the hardening phase defined by the 

parabolic function in Eq. (22). 

𝜎𝑛(𝑢𝑛𝑐 ) = 𝜎𝑛𝑒𝑙 + (𝑓𝑐 − 𝜎𝑛𝑒𝑙)

√

√

√

√

2(𝑢𝑛𝑐 − 𝑢
𝑛
𝑒𝑙)

𝑢𝑐𝑝
−

(𝑢𝑛𝑐 − 𝑢
𝑛
𝑒𝑙)

2

𝑢𝑐𝑝
(22)

where 𝜎𝑛(𝑢𝑛𝑐 ) is the normal compressive stress, 𝜎𝑛𝑒𝑙 is the elastic com­

pressive stress set at 20 % of the compressive strength 𝑓𝑐 , 𝑢𝑛𝑒𝑙 is the 

normal displacement at elastic compressive stress, i.e., 0.2𝑓𝑐∕𝑘𝑛, and 𝑢𝑐𝑝
is the displacement at compressive strength, set as a user supplied multi­

plier 𝑛 times 𝑓𝑐∕𝑘𝑛, the supposed displacement at compressive strength 

according to the initial normal stiffness 𝑘𝑛.
The user-supplied 𝑛 factor creates flexibility for the user to set the 

hardening behavior, as some masonry exhibits a relatively ductile be­

havior up to two or three times the supposed elastic displacement at 

peak compressive strength. [42] The softening phase is defined through 

a compressive damage scalar 𝑑𝑐(𝑢𝑛𝑐 ) in Eq. (23). This damage scalar is 

correlated to the normal compressive displacement 𝑢𝑛𝑐 , as defined in 

Eq. (24). 

𝜎𝑛(𝑢𝑛𝑐 ) =
[

1 − 𝑑𝑐(𝑢𝑛𝑐 )
]

𝑓𝑐 (23)

𝑑𝑐 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑢𝑛𝑐 < 𝑢𝑐𝑝
(

1 −
𝑓𝑐𝑚
𝑓𝑐

)( 𝑢𝑛𝑐 − 𝑢𝑐𝑝
𝑢𝑐𝑚 − 𝑢𝑐𝑝

)2

𝑢𝑐𝑝 ≤ 𝑢𝑛𝑐 < 𝑢𝑐𝑚
(

1 −
𝑓𝑐𝑟
𝑓𝑐

)

−
𝑓𝑐𝑚 − 𝑓𝑐𝑟

𝑓𝑐
exp

(

2
𝑓𝑐𝑚 − 𝑓𝑐𝑝
𝑢𝑐𝑚 − 𝑢𝑐𝑝

𝑢𝑛𝑐 − 𝑢𝑐𝑚
𝑓𝑐𝑚 − 𝑓𝑐𝑟

)

𝑢𝑛𝑐 ≥ 𝑢𝑐𝑚

(24)

where 𝑓𝑐𝑚 is the intermediate post-peak compressive stress, the in­

flection point from quadratic softening to exponential, 𝑢𝑐𝑚 is the cor­

responding displacement at 𝑓𝑐𝑚, and 𝑓𝑐𝑟 is the residual compressive 

strength.

The compressive damage scalar is correlated to the compressive frac­

ture energy, 𝐺𝑐 , by setting the intermediate displacement 𝑢𝑐𝑚 such that 

the area under the curve in Fig. 3(C) corresponds to that of the multi-

linear softening law. The correlation is performed mathematically using 

Eq. (25) [12].

𝑢𝑐𝑚 =
𝐺𝑐 − 0.5

𝑓 2
𝑐

9𝑘𝑛
− 0.65(𝑢𝑐𝑝 − 𝑢𝑛𝑒𝑙)𝑓𝑐 + 0.75𝑢𝑐𝑝𝑓𝑐 + 0.25𝑢𝑐𝑝𝑓𝑐𝑟

𝑢𝑐𝑝𝑓𝑐 + 𝑢𝑐𝑝𝑓𝑐𝑟
𝑢𝑐𝑝 (25)

where 𝐺𝑐  is the compressive fracture energy, and 𝑢𝑛𝑒𝑙 is the displacement 

at elastic compressive stress 𝜎𝑛𝑒𝑙, i.e. 𝜎𝑛𝑒𝑙 ∕ 𝑘
𝑛.

2.2 . Inclusion of the dilatancy softening

Based on the experimental tests on masonry couplets conducted by 

several researchers [13,43–46], it has been observed that the normal 

displacement of the joints induced by dilation gradually decreased with 

continued shear loading, eventually reaching a small constant value or 

zero in some cases. Multiple researchers have proposed numerical mod­

elling strategies to address the dilatancy effect observed in mortar joints 

through the interface constitutive model. Lourenço and Rots [19] and 

Giambanco et al. [47] started including the dilatancy effect through the 

non-associative flow rule, with a dilatancy angle that was separated from 

the friction angle. This dilatancy angle also decreased with increasing 

normal pressure for Lourenço and Rots [19], while Giambanco et al. [47] 

associated the decrease with the loss of cohesive strength. Van Zijl [46] 

extended the approach from Lourenço and Rots [19], to consider the 

volumetric increase that caused the uplift of masonry units when sub­

jected to shear load. Andreotti et al. [13] proposed a data-driven strategy 

to calibrate the dilatancy angle based on the experimental data. The 

dilatancy angle was coupled to the friction angle, and the decrease 

was related to the plastic shear and normal displacements from the

experiments.

As shown in Eq. (15), the Coulomb friction line 𝐹2 departs from 

the formulation of Oktiovan et al. [12] by adopting the shear-strength 

definition of Andreotti et al. [13], in which the friction coeffi­

cient is expressed as the sum of a constant-volume friction angle, 

𝜙𝑐𝑣, and a dilatancy angle, 𝜓 , that decays with accumulated plastic

slip.

It has been described by several authors [1,13,43,44] that 𝜙𝑐𝑣 reflects 

the surface roughness governing sliding resistance, while 𝜓  controls the 

joint opening or inclination of the sliding surface as shear slip develops. 

Furthermore, as the shear displacement increases, the uplift/dilatant 

displacement reaches a relatively constant value, which is interpreted 

as the smoothened bed-joint due to the fully decayed dilatancy angle 

(Fig. 4(D)) [46].

The above behavior is illustrated in Fig. 4. At the initial state 

(Fig. 4(A)), the shear stress is defined as given in Eq. (18), where the fric­

tion angle at constant volume 𝜙𝑐𝑣 is added to the initial dilatancy angle 

𝜓 . As the crack through the joint develops (Fig. 4(B)), the cohesion and 

the dilatancy angle soften. This differs from the previous formulation 

defined by the authors [12] and the typical interface-based constitu­

tive model for masonry that considers dilatant behavior [9,16,19,25,46]. 

While the cohesive strength softens according to the combined damage 

scalar 𝑑𝑡𝑠 (Eq. 19), the dilatancy angle decays according to the ratio of 

normal confining stress and the stress at zero dilation, expressed in Eq. 

(26) [48].
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Fig. 4. Phases of the mortar joints when subjected to shear load [13].

𝜓(𝐮𝐬) =
⎧

⎪

⎨

⎪

⎩

𝜓0

(

1 −
‖𝐮𝐬,𝐩‖
𝑢𝑠,max

)

exp
[

−𝛿
(

‖𝐮𝐬,𝐩‖
)]

‖𝐮𝐬,𝐩‖ ≤ 𝑢𝑠,max

0 ‖𝐮𝐬,𝐩‖ > 𝑢𝑠,max
(26)

where 𝛿 is the softening gradient [46], 𝐮𝐬,𝐩 is the plastic shear displace­

ment vector and 𝑢𝑠,max is the shear displacement at zero dilation. If the 

plastic displacement exceeds the limiting displacement at zero dilation, 

the decay is capped at zero to ensure thermodynamic consistency.

As the shear damage accumulates (Fig. 4(C)), plastic slip initiates as 

soon as the shear traction reaches the Coulomb friction line in Fig. 3(D). 

After the onset, the slip evolves while the cohesive strength softens 

and the dilatant part of Eq. (15) decays according to Eq. (26). When 

cohesion has fully degraded (𝑐 → 0) and 𝜓 ≈ 0, the residual shear 

strength is purely frictional. The mathematical definition in Eq. (18) 

shows that at large slips, the tangential response tends to the frictional 

branch. The physical representation of the dilatancy softening is shown 

in Fig. 4(D), which shows that the surface of asperities softens as shear 

slip progresses [13,48].

To represent the uplift in the normal direction, the normal displace­

ment increment (Δ𝑢𝑛 in Eq. (12)) is adjusted according to the magnitude 

of the shear displacement increment |Δ𝐮𝐬| and the dilation coefficient. 

This is mathematically expressed in Eq. (27). 

Δ𝑢𝑛 ∶=

{

Δ𝑢𝑛 + ‖Δ𝐮𝐬‖tan(𝜓(𝐮𝐬)) ‖𝐮𝐬‖ <= ‖𝑢𝑠,max
‖

Δ𝑢𝑛 ‖𝐮𝐬‖ > 𝑢𝑠,max
(27)

As an explicit integration scheme is used as the solution procedure, 

the normal force increment calculated in Eq. (12) is corrected to account 

for the dilatancy effect, shown in Eq. (28). 

𝐹 𝑛 ∶= 𝐹 𝑛 + 𝑘𝑛𝐴𝑐 |Δ𝐮𝐬|tan(𝜓(𝐮𝐬)) (28)

Upon unloading in shear, the yield condition is inactive, so only 

elastic closure can occur. The accumulated plastic offset and current di­

lation angle are retained (i.e., no healing), matching the partial recovery 

observed in experimental tests.

It is important to note that, even though the shear stress in Eq. (18) 

considers the contribution of friction and dilation even in the linear elas­

tic state, the correction due to uplift in the normal direction (Eq. 27) only 

considers the dilatancy effect. As shown in Fig. 4(C) and Fig. 4(D), the 

roughness of the surface of asperities that mobilize the uplift movement 

is caused only by the dilatant behavior of the mortar layer. Furthermore, 

it is essential to highlight that this uplift-correction framework is well-

established as proposed by Van Zijl [46] and Andreotti et al. [13] . The 

contribution of this paper lies in the exponential dilatancy decay law 

and its consistent integration into the DEM framework.

2.3 . Extension to include energy dissipation mechanisms

The main improvement over the previous joint constitutive 

model [12] is the energy dissipation framework, which captures damage 

accumulation under cyclic loading. Dissipation is activated in a frac­

ture mode-dependent way through controlled stiffness degradation. In 

tension, unloading follows a secant rule (see Fig. 3(A)): the unloading 

stiffness is the secant from the origin to the current point on the de­

graded tensile envelope, so the apparent joint stiffness decreases as the 

normal opening grows. The stiffness degradation rate corresponds to the 

combined tensile-shear damage scalar Eq. (21), as presented in Eq. (29).

𝑘𝑛(𝑑𝑡𝑠) = (1 − 𝑑𝑡𝑠)𝑘𝑛 (29)

Elastic unloading is used in the shear regime (Fig. 3), where the initial 

shear stiffness 𝑘𝑠𝑖  is maintained as the shear displacement progresses. 

This is consistent with the hypotheses adopted by other authors [6,25,

49] as well as the experimental results obtained from the cyclic direct 

shear test [50].

The unloading mechanism used in the compression regime fol­

lows the nonlinear unloading/reloading formulation defined by Facconi 

et al. [51], as illustrated in Fig. 5. Experimental results on uniaxial com­

pression tests of masonry wallets [51–55] showed that the masonry 

composite unloads in a nonlinear manner with irreversible strain (or 

deformation) and stiffness degradation to account for energy dissipation.

Leveraging the robustness of the explicit time marching integra­

tion scheme, a nonlinear unloading branch is proposed, as shown in 

Fig. 5(A). The unloading branch reaches a normal plastic displacement 

𝑢𝑛𝑝𝑙  at zero compressive stress, which defines the irrecoverable damage 

of the masonry assemblage due to loading and unloading sequences. 

The normalized plastic compressive displacement in Eq. (30), adapted 

from [51], separates the plastic component after the onset of compres­

sive failure and is derived under a small-displacement assumption to 

ensure compatibility when expressed in terms of displacement. 

𝑢′𝑛𝑝𝑙 =

⎧

⎪

⎨

⎪

⎩

0.47 (𝑢′𝑛𝑢𝑛 )
2 + 0.5 |𝑢′𝑛𝑢𝑛 |, 𝑑𝑐 = 0,

1.175 (𝑢′𝑛𝑢𝑛 )
2 + 1.25 |𝑢′𝑛𝑢𝑛 |, 𝑑𝑐 > 0 .

(30)

where 𝑢′𝑛𝑝𝑙  is the normalized plastic compressive displacement, and 𝑢′𝑛𝑢𝑛
is the normalized unloading displacement. Both values are normalized 

against the peak compressive displacement 𝑢𝑐𝑝 (Fig. 3(C)). The unload­

ing branch is defined nonlinearly and is correlated to the unloading 

displacement 𝑢𝑛𝑢𝑛  and the plastic strain 𝑢𝑛𝑝𝑙 . The general formulation 

is defined in Eq. (31). 

𝜎𝑛𝑐 = 𝑓𝑐𝑟𝑒 +
(

𝑓𝑐𝑢𝑛 − 𝑓𝑐𝑟𝑒
) 𝐵1𝜒 + 𝜒2

1 + 𝐵2𝜒 + 𝐵3𝜒2
(31)

where

𝜒 =
𝑢𝑛𝑐 − 𝑢𝑛𝑢𝑛
𝑢𝑛𝑝𝑙 − 𝑢𝑛𝑢𝑛

(32)

where 𝜎𝑛𝑐  is the current normal compressive stress during unloading, 𝑓𝑐𝑟𝑒
and 𝑓𝑐𝑢𝑛  are the reloading and unloading compressive stresses, respec­

tively, and 𝐵1, 𝐵2, and 𝐵3 are the variables determining the shape of the 

unloading branch (Eq. 33). 

𝐵1 =
𝑘𝑛𝑢𝑛
𝐸𝑠

; 𝐵2 = 𝐵1 − 𝐵3; 𝐵3 = 2 −
𝑘𝑛𝑝𝑙
𝐸𝑠

(1 + 𝐵1); (33)

where 𝐸𝑠 = 𝑓𝑐𝑢𝑛∕(𝑢𝑛𝑢𝑛 − 𝑢𝑛𝑝𝑙 ), the secant stiffness between the onset of 

unloading and the plastic displacement (from Eq. (30)), 𝑘𝑛𝑢𝑛  and 𝑘𝑛𝑝𝑙  are 
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Fig. 5. Nonlinear unloading mechanism for the compressive behavior of masonry assemblage [51].

the unloading and plastic tangent stiffnesses (Fig. 5(A)), respectively. 

Both values are defined according to Eq. (34). 

𝑘𝑛𝑢𝑛 = 𝛾𝑢𝑛𝑘𝑛; 𝑘𝑛𝑝𝑙 =
𝛾𝑝𝑙𝑘𝑛

(

1 +
𝑢𝑛𝑢𝑛
𝑢𝑐𝑝

)𝑒 (34)

where 𝛾𝑢𝑛 = 1.5, 𝛾𝑝𝑙 = 0.15, and 𝑒 = 2, empirically defined according 

to the suggestions provided by Facconi et al. [51], where 𝑒 defines the 

nonlinear curve close to the plastic displacement and the point of inflec­

tion between 𝑘𝑛𝑢𝑛  and 𝑘𝑛𝑝𝑙 . Those variables were determined from the 

best fitting of the unloading curves of a uniaxial compression test on 

masonry wallets gathered from the literature.

The reloading branch (Fig. 5(B)) starts when compressive displace­

ment increases after either complete (when the compressive stress 

reaches zero) or partial unloading [51]. Due to damage accumulated 

during the cyclic loading sequence, the reloading curve typically inter­

sects the envelope curve at a displacement larger than the displacement 

level during the unloading onset [56]. With that in mind, the linear 

reloading mechanism is adopted in this model, deviating from the non­

linear representation defined by Facconi et al. [51], to simplify the 

formulation. Furthermore, several authors [56–58] have shown that the 

linear representation of the reloading sequence is adequate to simulate 

a masonry assemblage’s energy dissipation mechanism under uniaxial 

cyclic compression. The linear reloading compressive stress is defined 

in Eq. (35). 

𝜎𝑛𝑐 = 𝑓𝑐𝑟𝑜 + 𝑘
𝑛
𝑟𝑒(𝑢

𝑛
𝑐 − 𝑢𝑛𝑟𝑜 ) (35)

where 𝑓𝑐𝑟𝑜  and 𝑢𝑛𝑟𝑜  are the compressive stress and displacement at the 

onset of reloading, and 𝑘𝑛𝑟𝑒 is the reloading stiffness, defined in Eq. (36). 

𝑘𝑛𝑟𝑒 =
𝛽𝑑𝑓𝑐𝑢𝑛 − 𝑓𝑐𝑟𝑜
𝑢𝑛𝑢𝑛 − 𝑢𝑛𝑟𝑜

(36)

where

𝛽𝑑 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
1 + 0.2(𝑢′𝑛𝑟𝑒𝑐 )

0.5
for 𝑢𝑛𝑢𝑛 < 𝑢𝑐𝑝

1
1 + 0.45(𝑢′𝑛𝑟𝑒𝑐 )

0.2
for 𝑢𝑛𝑢𝑛 ≥ 𝑢𝑐𝑝

(37)

is the damage factor correlated to the normalized recovery displace­

ment 𝑢𝑛𝑟𝑒𝑐 = 𝑢𝑛𝑢𝑛 − 𝑢𝑛𝑟𝑜 , as illustrated in Fig. 5(B). The coefficients 

following the normalized recovery displacement are calibrated with ac­

ceptable accuracy based on the experimental data gathered from the 

literature [51–53,59,60].

2.4 . Stress update in explicit integration scheme

Oktiovan et al. [12] highlighted that proper handling of the force (or 

stress) update routine when the stress state violates the yield surface is 

essential to ensure the stability of the explicit time-marching integration 

system. In contrast to the typical stress update routine in an implicit-

based solver, e.g., return mapping [16,61] or substepping [18,24], the 

stress update in the explicit integration scheme is relatively straightfor­

ward. This stress update routine is illustrated in Fig. 6(A) when each 

failure surface in the proposed constitutive model is violated.

From time 𝑡 to 𝑡+1, the stress state progresses either linearly through 

the increments in Eq. (12), or through hardening for the normal com­

pressive stress in Eq. (22). When 𝐹1 is violated at time 𝑡+1 (circle marker 

in Fig. 6(A)), only the normal stress component 𝜎𝑛 of the stress state 𝜎
is corrected to the current tensile strength that is weakened through Eq. 

(17). This is because damage in Mode-I fracture reduces the normal ca­

pacity, while shear components remain unaffected at the instant of pure 

tensile failure. This is done to avoid introducing artificial shear when 

the joint opens and to respect the unilateral contact (i.e., no traction in 

tension once the cut-off line is reached). Note that this force correction 

occurs at the same time step 𝑡 + 1, where the failure surface is violated.

When 𝐹2 is violated (triangle marker in Fig. 6(A)), the shear stress 

components in all directions are corrected to the weakened shear stress 

defined in Eq. (18). However, the force correction is scaled proportion­

ally through Eq. (38). This choice is frame-invariant in the tangential 

plane and acts as a closest-point projection in the shear subspace. The 

normal component is unchanged because shear strength is the active 

limiter. 

𝝉𝐬 = 𝝉𝐬
𝝉𝐬(𝑑𝑡𝑠)
‖𝝉𝐬‖

(38)

When the compression or shear–compression mode in 𝐹3 is violated, 

as illustrated by the square marker in Fig. 6(A), both the normal and 

shear stresses are corrected through a radial return from the origin to 

the weakened cap. This is done by taking the radius from the point of 

origin (zero normal and shear stress), and correcting the stress state 𝜎
proportionally to the weakened normal compression and shear stresses 

through Eqs. (23) and (18), respectively. The correction amount is the 

radius difference between the violated stress state and the stress state at 

the weakened yield surface, termed 𝐑 in Fig. 6(A), which has the same 

structure as 𝜎. The correction for 𝐹3 is formally defined as follows. 

(

𝜎𝑡+1
)

1 ∶=
(

𝜎𝑡+1
)

1 − (𝐑)1,
(

𝜎𝑡+1
)

2∶4 ∶=
(

𝜎𝑡+1
)

2∶4
(𝐑)2∶4

|

(

𝜎𝑡+1
)

2∶4|
(39)

This choice yields a unique, path-independent correction that drives 

the yield function to zero in a single step and captures the coupled nature 
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Fig. 6. Stress update on the interface once the failure surface is violated.

of shear–compression failure. As pointed out by Nie et al. [16], prob­

lems with multi-surface plasticity models arise when the updated stress 

is located close to a corner, i.e., the intersection between 𝐹1 and 𝐹2 and 

between 𝐹2 and 𝐹3 in the case of Fig. 6(A). This approach implements a 

general solution [20], as illustrated in Fig. 6(B) when both tensile cutoff 

𝐹1 and Coulomb friction line 𝐹2 are violated. Two sequential stress cor­

rection paths are computed and compared at the intersection of 𝐹1 ∩𝐹2. 
Path 1 first corrects the tension condition, then corrects the shear stress 

to satisfy the 𝐹2 line. Path 2 first reduces the shear stress on 𝐹2, then ap­

plies the secondary correction to meet 𝐹1. Each path yields a candidate 

at the intersection corner. The active path is determined by the trig­

ger order; the surface violated first in the current increment is selected 

as the candidate. This tie–break rule yields a unique update, preserves 

non-negative dissipation, and prevents oscillation between surfaces in 

subsequent steps.

2.5 . Numerical implementation of the joint constitutive model

The joint constitutive model for analysing masonry structures using 

the Distinct Element Method (DEM) is implemented in 3DEC [41]. The 

numerical treatment of cyclic loading, unloading, and reloading in the 

normal direction is detailed in the Appendix. Due to the dynamic nature 

of the explicit time-marching scheme, unbalanced forces may fluctu­

ate throughout the simulation, particularly in response to changes in 

contact, local perturbations, or insufficient damping. If not adequately 

controlled, these fluctuations may be misinterpreted by the cyclic consti­

tutive law, formulated in terms of displacement increments, as spurious 

loading and unloading events, which can result in artificial damage accu­

mulation or instability in the material response. To mitigate this issue, a 

fail-safe perturbation flag is introduced for compression-side unloading, 

as described in A and implemented in the presented algorithm. The flag 

gates the transition to the unloading branch: the model enters unloading 

only when a genuine reversal out of compression is detected, rather than 

a transient oscillation. While the response is flagged as fluctuating, the 

normal contact is held at its initial elastic stiffness, preventing premature 

stiffness degradation and preserving the stability of the response.

In contrast, the shear response follows a simpler scheme, governed by 

a linear elastic unloading mechanism. Furthermore, historical parame­

ters are incorporated into the damage scalars in tension 𝑑𝑡, shear 𝑑𝑠, and 

compression 𝑑𝑐  to ensure consistent damage tracking under load rever­

sals. This allows the model to retain and apply the maximum recorded 

value of relevant quantities, such as displacements or stresses, regardless 

of the current loading direction.

3 . Material-level validation

A series of material characterization tests was conducted to validate 

the proposed joint constitutive model, utilizing cyclic loading protocols. 

The material-level validations serve to highlight the capability of the 

modelling strategy to simulate the failure of masonry constituents in 

shear, compression, as well as the dilatancy weakening effect on the 

overall response of the masonry assemblage. To that end, the cyclic uni­

axial compression test conducted as part of the experimental campaign 

by Esposito et al. [62], the cyclic direct shear test on masonry assem­

blage by Atkinson et al. [50], and the masonry triplet test by Andreotti 

et al. [13] were selected as the validation cases. The tests by Esposito 

et al. [62] and Andreotti et al. [13] were conducted on calcium silicate 

masonry samples, while Atkinson et al. [50] conducted the test on clay 

brick samples. Table 1 summarizes the material properties used as input 

parameters in the selected material characterization tests.

The parameters include normal and shear stiffnesses, strength char­

acteristics in tension, shear, and compression regimes, the corresponding 

fracture energies, and the dilatancy-related values governing the me­

chanical response of the masonry components. Due to the rigid block 

formulation, where the deformability of the units is neglected, and their 

Young’s modulus is not explicitly defined, the initial normal 𝑘𝑛 and shear 

𝑘𝑠𝑖  stiffnesses must be calibrated to the initial stiffness of the experiments. 

Therefore, the initial stiffnesses are first defined through the homoge­

nized equation by Lourenço [1] (Eq. 40), which are then calibrated to 

match the experimental initial stiffnesses. 

𝑘𝑛 =
𝐸𝑏𝐸𝑚

𝑡𝑚
(

𝐸𝑏 − 𝐸𝑚
) , 𝑘𝑠 =

𝐺𝑏𝐺𝑚
𝑡𝑚

(

𝐺𝑏 − 𝐺𝑚
) (40)

where 𝐸𝑏 and 𝐸𝑚 are the brick’s and mortar’s Young’s moduli, respec­

tively, 𝐺𝑏 and 𝐺𝑚 are the brick’s and mortar’s shear moduli, respectively, 

and 𝑡𝑚 is the mortar joint thickness.

The cohesion 𝑐 and friction angle 𝜙 were obtained from direct-

shear/couplet tests based on the relation of 𝜏 = 𝑐 + 𝜎𝑛 tan𝜙 for all test 

cases. The residual cohesion 𝑐𝑟𝑒𝑠 was read from the large-slip plateau. 

The initial dilation angle 𝜓  is taken from the peak dilation observed in 

the direct shear test by Andreotti et al. [13]. The other parameters re­

lated to the dilatancy softening (i.e., 𝑢𝑠,max, 𝛿 are refined according to the 

experimental findings). The tensile/bond strength 𝑓𝑡 was taken from the 

companion splitting/bond tests, which are recalibrated to align the sim­

ulated peak load with the average measured response of the test cases. 

This recalibration is done using the empirically-derived equations sum­

marized by Jafari et al. [63] . The mode-I 𝐺𝐼  and mode-II 𝐺𝐼𝐼  fracture 

energies are taken from the empirical equation set by CEB-FIP Model 

Code 90 [64]. The compressive strength 𝑓𝑡 and the fracture energy 𝐺𝑐
for the cyclic compression tests were taken from the experimentally 

reported values in Esposito et al. [62] . The hardening factor 𝑛 for 

compressive strength was defined according to the recommendations of 

Jafari et al. [63] . This tailored parameter set provides a robust founda­

tion for accurately simulating and validating the mechanical behavior 

of masonry under cyclic loading.

Fig. 7 presents the geometries and the loading configurations of the 

selected material characterization tests, with the extended dimensions 

of the brick units. The extended dimensions account for the thickness of 

the mortar layers while maintaining the actual height and width of the 

experimental specimens. The vertical and horizontal compression tests 

(Fig. 7(A) and Fig. 7(B), respectively) also include the locations of the 
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Table 1 

Material properties used as the input parameters of the material characterization tests.

Material parameters Symbol Unit Cyclic compression1 Cyclic shear-I2 Cyclic shear-II3

Vertical Horizontal

Experimental parameters

Density 𝜌 kg m−3 1800 1800 2300 1800

Peak cohesion 𝑐0 MPa 0.22 0.22 0.16 0.11

Residual cohesion 𝑐𝑟 MPa 0.022 0.022 0.016 0.011

Friction at constant volume 𝜙𝑐𝑣 ◦ 25.0 25.0 34.79 30.0

Initial dilatancy angle 𝜓0 ◦ – – – 20.0

Compressive strength 𝑓𝑐 MPa 6.5 7.45 – –

Compressive fracture energy 𝐺𝑐 N mm−1 15 31.5 – –

Numerical model parameters

Normal stiffness 𝑘𝑛 N mm−3 52.1 52.1 9.17 32

Shear stiffness 𝑘𝑠𝑖 N mm−3 22.7 22.7 3.95 32

Tensile strength4 𝑓𝑡 MPa 0.11 0.11 0.1 0.11

Hardening factor4 𝑛 [-] 7.5 5.0 – –

Zero dilation displacement 𝑢𝑠,max mm – – – 3.0

Dilatancy softening gradient 𝛿 [-] – – – 2.0

Mode-I fracture energy5 𝐺𝐼 N mm−1 0.0086 0.0086 0.0081 0.00866

Mode-II fracture energy5 𝐺𝐼𝐼 N mm−1 0.0866 0.0866 0.081 0.0866

Cap parameters 𝐶𝑛 , 𝐶𝑛𝑛 , 𝐶𝑠𝑠 [-] 0.0,1.0,12.0

1
 Cyclic uniaxial compression test by Esposito et al. [62].

2
 Cyclic direct shear by Atkinson et al. [50].

3
 Cyclic triplet test by Andreotti et al. [13].

4
 Based on the recommendations by Jafari et al. [63].

5
 Values obtained from CEB-FIP Model Code 90 [64].

Fig. 7. Illustration of the validated material characterization tests with extended brick dimensions.

LVDTs used to record the axial strain. The axial strain in the numeri­

cal model is calculated from the relative displacement between the two 

vertical LVDTs on the front and back sides of the specimen.

3.1 . Uniaxial cyclic compression tests

There are two configurations considered in the uniaxial compression 

test: a vertical configuration, where the compression load is orthogonal 

to the bed joints, and a horizontal configuration, where the compres­

sion load is orthogonal to the head joints. Similar to the experiment, the 

displacement-controlled load is applied at the bottom of the model using 

a rigid plate, with the stresses recorded at the top of the prisms [62]. 

Due to the brittle post-peak response, the experimental cyclic unload­

ing/reloading scheme was only performed during the pre-peak phase. 

The unloading/reloading scheme was conducted three times at the 25 %, 

50 %, and 75 % of the peak compressive stress.

The comparison of the uniaxial cyclic compression test on the verti­

cal and horizontal prisms is presented in Fig. 8. Two results were shown 

as the cyclic loading experiment was conducted twice, to highlight the 

variability in mechanical response. Despite being cast from the same 

batch, the specimens responded differently, indicating non-negligible 

experimental variability or inherent material heterogeneity. However, 

the model was tuned to one specific specimen, TUD-MAT-11G for the 

vertical case, and TUD-MAT-11K for the horizontal case.

By employing the nonlinear unloading scheme in Eq. (31), the 

model effectively captured the energy dissipation observed during un­

loading and reloading in both vertical and horizontal prism tests. It 

reproduced key hysteretic behaviors such as stiffness degradation and 

residual strains, demonstrating its ability to simulate the cyclic com­

pressive response of masonry-like materials with directional consistency. 

Furthermore, the behavior where the reloading strain exceeded the un­

loading onset was also evident in both vertical and horizontal cases, 

which were consistently simulated by the proposed joint constitutive 

model.

3.2 . Cyclic direct shear test on masonry bed joints

Atkinson et al. [50] conducted cyclic shear tests on masonry as­

semblages with old and new clay masonry units with mortar joint 

thicknesses of 7 and 13 mm. The old clay assemblage was tested under 

a pre-compression level of 13 kN while the new clay assemblage was 

tested under 49 kN of pre-compression force. In this experiment, the 

top-side loading plate was sheared up to 12 mm before the specimen 

was unloaded and then loaded in the other direction.
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Fig. 8. Uniaxial compression test results comparison.

Fig. 9. The DEM model with the boundary conditions and the comparison to experimental results.

For both pre-compression levels reported by Atkinson et al. [50], 

a single set of interface parameters in Table 1 was used, and only the 

applied normal force was varied, so that differences in the simulated 

response reflect confinement effects rather than parameter changes. The 

DEM model and the boundary conditions are shown in Fig. 9(A), where 

the bottom units are fixed, and precompression is applied directly to the 

top units, along with the cyclic shear load. The shear force–displacement 

comparison is presented in Fig. 9(B).

The numerically predicted responses closely reproduce the overall 

experimental behavior, accurately capturing key response features such 

as the initial stiffness, peak shear strength, post-peak mode-II softening, 

and the elastic unloading/reloading branch typical of shear, as well as 

the residual strength plateau for both normal stress conditions.

3.3 . Cyclic shear test on masonry triplet

The dilatant behavior of masonry joints subjected to combined shear 

and compressive loads was experimentally investigated by Andreotti 

et al. [13]. The test setup adopted in their study is illustrated in 

Fig. 10(A). The test was conducted on calcium-silicate brick specimens 

with the dimensions of 212 × 102 × 72mm and mortar layers with the 

thickness of 10 mm. The pre-compression force actuator was controlled 

through a spring with a stiffness of 1070N mm−1 to regulate and main­

tain the desired pre-compression level (𝑁). The shear force is applied 

through a vertical jack, and the rotation of the whole triplet is not re­

stricted. The triplet was subjected to three time windows, defined by 

the sequential application of the shear load, but with an increasing 

precompression level at each time window. In each window, the shear 

force is characterized by loading and complete unloading to a zero shear 

force condition. Time window zero refers to the shear test of a pris­

tine triplet, while the subsequent time windows are conducted to find 

the residual shear strength corresponding to the constant volume phase. 

Readers are referred to Andreotti et al. [13] for further details pertaining 

to the experimental procedure.

The numerical model follows the configuration and procedure of the 

experimental tests as closely as possible, illustrated in Fig. 10(B). In the 

experiments, the axial load was held within three time windows by a 

spring-regulated actuator (force-controlled target with finite actuator 

stiffness), not by an unconstrained constant-force device. This maintains 

the prescribed pre-compression while allowing the normal force to re­

act to specimen dilation. In the model, this is reproduced by a simple 

servo/spring control, where, given a target displacement set at each time 

window, the model calculates the relative displacement between the 

triplet’s volumetric expansion and the target displacement and transfers 

that as an applied force to the steel plate, allowing the normal precom­

pression force to be adjusted according to the volumetric expansion. This 

is formally expressed as:

𝐹 (𝑡) = 𝐾𝑎𝑐𝑡
[

𝑢𝑐𝑚𝑑 (𝑡) − 𝑢𝑠𝑝𝑒𝑐 (𝑡)
]

(41)

where 𝐾𝑎𝑐𝑡 is the actuator stiffness, set at 1070N mm−1, 𝑢𝑐𝑚𝑑 (𝑡) is the com­

manded actuator displacement (target) and the 𝑢𝑠𝑝𝑒𝑐 (𝑡) is the measured 

specimen-side displacement at the actuator interface.

Leveraging the conditional stability of the explicit solver, the simula­

tion of the triplet test is performed sequentially from one time window 
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Fig. 10. Experimental setup [13] and the boundary conditions of the DEM model.

to another using the same material properties and boundary conditions 

from the previous window, consistent with the experimental procedure. 

The shear displacement (𝑢𝑠,𝑟𝑒𝑙) and the volumetric expansion (𝑢𝑛,𝑟𝑒𝑙) are 

calculated according to Eqs. (42) and (43), respectively, averaged on the 

front and back sides of the specimen [13].

𝑢𝑠,𝑟𝑒𝑙 =
𝑦1 − 𝑦2
𝑦3 − 𝑦4

(42)

𝑢𝑛,𝑟𝑒𝑙 = 𝑥2 − 𝑥1 (43)

The responses from the proposed modelling strategy (shown in solid 

lines) are compared to the experimental data (dashed lines) of the triplet 

test in Fig. 11. In time window 0 (displayed in blue), the numerical 

model exhibited the exponential softening response where the shear 

stress decayed to a residual value of 0.2 MPa (Fig. 11(A)), while the nor­

mal stress initially increased due to volumetric expansion but remained 

constant at the same level as the experimental test (Fig. 11(B)). The grad­

ual decline of the experimental shear stress is explained by the sequential 

failure of the mortar joints: cracking initiated in the left-hand joint of 

Fig. 10(B) and subsequently propagated to the right-hand joint, progres­

sively diminishing the overall shear-carrying capacity. The volumetric 

expansion (Fig. 11(C)) was also in good agreement with the experimen­

tal observation, where the exponential volumetric expansion due to the 

normal displacement correction in Eq. (27) is evident in the numerical 

response. From the comparison of the dilatancy coefficient in Fig. 11(D), 

the experimental results showed that the coefficient dropped to zero be­

yond the shear displacement of 2.0 mm, which was consistently modeled 

by the exponential decay function in Eq. (26).

At time window 1 (displayed in red), the shear stress, normal stress, 

and the dilatancy coefficient were in good agreement with the experi­

mental data. However, the numerical responses were higher and more 

fluctuating compared to the experimental data. The uncontrolled vol­

umetric expansion arose from the specimen’s ability to rotate freely. 

When the pre-compression is increased abruptly, this unconstrained ro­

tation interacts with the sudden confinement, triggering a rapid dilative 

response. At time window 2 (displayed in orange), the normal stress 

was elevated to 0.9 MPa, resulting in the shear stress of approximately 

0.55 MPa. Thereafter, the joint again evolves toward a stable, slightly 

dilatant state, with the dilatancy coefficient fluctuating about zero as 

asperities are fully smoothened at this state.

Overall, the proposed modelling strategy reproduced the dilatancy 

behavior observed in the triplet test with good fidelity. Across all win­

dows, the numerical solution tracks well the measured trends, capturing 

the stress jumps, the progressive reduction of dilatancy, and the ulti­

mate approach to steady-state shear and volumetric response, lending 

confidence to the implemented constitutive formulation. The specimen 

was chosen to span the representative failure modes (cracking, shearing, 

and crushing) as well as mixed-mode combinations and transitions be­

tween them, ensuring that the assessment probed the model across the 

full spectrum of observed responses.

4 . Structural-level validation

In this section, the proposed modelling strategy is validated us­

ing four single-wythe calcium silicate (CS) masonry walls subjected to 

constant compression and cyclic in-plane loading, as reported in the 

experimental campaign conducted by Messali et al. [65]. The test ma­

trix was designed to isolate the effects of boundary restraint and aspect 

ratio. Two wall geometries, squat and slender, were evaluated under 

both cantilever and double-clamped end conditions, yielding four rep­

resentative specimens. The assessment draws on both global responses, 

force–displacement hysteresis and energy dissipated per cycle, and local 

responses, specifically the evolution of crack patterns.

4.1 . Geometrical and material properties

The experimental setup of the reference case is presented in 

Fig. 12. The vertical compression load is applied as a uniform pressure 

through the four actuators placed on top of the steel beam, while the 

displacement-controlled load is applied through one actuator at the top 

of the walls. The upper and bottom courses of the wall were glued to 

the steel beams to prevent sliding or tensile cracks at the steel beam-

to-masonry interface. The out-of-plane movement and rotation of the 

top beam were restricted through a steel frame, as presented in the A-A’ 

section in Fig. 12(B). The colors inside the bricks are for visualization 

only (no material heterogeneity is implied). The top and bottom beams 

were clamped for the double-clamped configuration (grey elements), 

while only the bottom side was clamped on the cantilever configura­

tion. The walls were allowed to move vertically, thereby maintaining a 

constant applied pre-compression load. The geometrical properties and 

the reported failure mechanism are presented in Table 2.

A single set of material properties is used for all validated speci­

mens, as summarized in Table 3. The material properties, such as the 

unit’s Young’s modulus, Poisson’s ratio, and density, as well as mortar 

compressive strength and masonry compressive strength, are obtained 

through the material characterization tests conducted before the quasi-

static wall experiment (see the full report by Esposito et al. [62]). 

Meanwhile, properties such as the mortar modulus of elasticity and the 

peak ratio 𝑛 are obtained from empirical equations reported in Jafari 

et al. [42] . The unit-mortar interface properties, such as tensile and 

cohesive strengths, as well as the normal and shear stiffnesses, are 

calibrated to match the numerical force–displacement curves with the 

experimental envelope curves.
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Fig. 11. Validation of the modelling strategy to a triplet test on multiple time windows [13].

Fig. 12. Experimental setup of the in-plane test on CS masonry wall [65].

4.2 . Modelling setup

The brick discretization of the representative models (slender, 

double-clamped on TUD-COMP-0a (Fig. 13(A))) and squat, cantilever 

on TUD-COMP-6 (Fig. 13(B)) is presented in Fig. 13. The loads and sup­

ports in the numerical model are applied through blocks with a high 

Young’s modulus (grey-colored blocks in Fig. 13, which are perfectly 

connected to the masonry blocks. The blocks are defined in a rigid block 

configuration, with potential crack surfaces placed at the mid-length of 

the brick units.

For the walls with cantilever configuration (TUD-COMP-1 and TUD-

COMP-6), the in-plane rotation of the top block is free, and the block 

height is extended up to the point where zero moment is observed ac­

cording to the wall shear ratio reported in Table 2. This ensures the 
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Table 2 

Geometrical properties of validated wall specimens (Messali et al. [65]).

Specimen name Dimensions [m] Shear ratio Boundary conditions Vertical pre-compression Failure mode

𝑙𝑤 × ℎ𝑤 × 𝑡𝑤 [MPa]

TUD-COMP-0a 1.1 × 2.76 × 0.102 1.25 Double clamped 0.70 Rocking-sliding

TUD-COMP-1 1.1 × 2.76 × 0.102 2.90 Cantilever 0.70 Rocking

TUD-COMP-4 4.0 × 2.76 × 0.102 0.35 Double clamped 0.50 Diagonal shear

TUD-COMP-6 4.0 × 2.76 × 0.102 0.80 Cantilever 0.50 Diagonal shear+crushing

Table 3 

Material properties of the calcium silicate masonry walls.

Properties Symbol Unit Value

Unit properties

Density 𝜌 kg m−3 1800

Interface properties Bed joint Head joint

Masonry modulus of elasticitya 𝐸 MPa 3174.6 3174.6

Mortar modulus of elasticityb 𝐸𝑚 MPa 1973.72

Normal stiffnessc 𝑘𝑛 GPa m−1 52.17 52.17

Shear stiffnessc 𝑘𝑠 GPa m−1 22.49 22.49

Tensile strengthc 𝑓𝑡 MPa 0.105 0.035

Cohesive strengthc 𝑓𝑠 MPa 0.14 0.014

Friction coefficienta 𝜇 [-] 0.466

Mode-I fracture energya 𝐺𝐼 N m−1 8.38 3.88

Mode-II fracture energya 𝐺𝐼𝐼 N m−1 83.8 38.8

Compressive strengtha 𝑓𝑐 MPa 5.93 7.0

Compressive fracture energya 𝐺𝑐 N m−1 15,000 31,500

Peak ratioc 𝑛 [-] 7.5

Cap parameters 𝐶𝑛 , 𝐶𝑛𝑛 , 𝐶𝑠𝑠 [-] 0.0,1.0,12.0

a
 Values obtained from material characterization tests in Esposito, et al. [62].

b
 Values derived from equations reported in Jafari et al. [42].

c
 Evidence-backed input parameters.

Fig. 13. Representative model of the CS wall in 3DEC.

applied in-plane load imposes the correct moment at the wall base. 

For the walls with a double-clamped configuration (TUD-COMP-0a and 

TUD-COMP-4), the in-plane rotation of the top block is fixed, and its 

height is set equal to that of the bottom block, as the location of the 

applied load is irrelevant in this configuration.

The model is first brought to equilibrium under gravity load, which 

is then followed by the application of the pre-compression load. The 

equilibrium under an explicit integration scheme is quantified through 

the ratio of the remaining out-of-balance force components to the total 

forces applied to every node [12]. In this paper, the equilibrium is as­

sumed to be reached when the ratio is less than 1×10−5. Local numerical 

damping is used throughout the simulations, with the damping factor 𝛼
(Eq. 9) set to 0.8 by default.

To minimize the inertial overshoot during load reversal, the cyclic 

load is applied as a sequence of impulse pulses. The cosine-plateau-

cosine velocity history is mathematically defined in Eq. (44), which 

concentrates the entire prescribed displacement 𝑢𝑎𝑝𝑣, within the finite 

time span of 𝑡𝑡𝑜𝑡 = 2𝑡𝑎 + 𝑡𝑏. 

𝑉 (𝑡) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑣𝑚𝑎𝑥
2

[

1 − cos
(

𝜋𝑡
𝑡𝑎

)]

, 0 ≤ 𝑡 < 𝑡𝑎,

𝑣𝑚𝑎𝑥, 𝑡𝑎 ≤ 𝑡 < 𝑡𝑎 + 𝑡𝑏,

𝑣𝑚𝑎𝑥
2

[

1 + cos
(

𝜋(𝑡 − 𝑡𝑎 − 𝑡𝑏)∕𝑡𝑎
)

]

, 𝑡𝑎 + 𝑡𝑏 ≤ 𝑡 < 𝑡𝑡𝑜𝑡,

0, 𝑡 ≥ 𝑡𝑡𝑜𝑡

(44)

where 𝑡𝑎 = 0.5𝑑𝑑 , 𝑡𝑏 = 𝑑𝑑 ∗ 𝜅, 𝜅 is the dimensionless parameter that 

defines how long the constant-velocity plateau should last compared to 

the cosine ramp up and down, and 𝑑𝑑  is the ramp duration correlated to 

the prescribed displacement 𝑢𝑎𝑝𝑣, maximum velocity 𝑣𝑚𝑎𝑥, and plateau 

factor 𝜅, as defined in Eq. (45). In all simulations described in Section 4, 

the applied loading velocity is set to 5.0mm s−1 and the plateau factor is 

set to 20 %. 

𝑑𝑑 =
𝑢𝑎𝑝𝑣

𝑣𝑚𝑎𝑥(1 + 𝜅)
(45)

The impulse velocity in Eq. (44) is illustrated in Fig. 14 for a target 

displacement of 10 mm, an applied maximum velocity of 5mm s−1, and a 

mechanical timestep of 1×10−6 s. Fig. 14(A) shows the imposed velocity 

𝑣(𝑡): a half-cosine ramp-up, a constant velocity plateau set at 5mm s−1, 
and a half-cosine ramp-down to zero (dashed lines mark the transitions). 

The smooth ramps avoid numerical spikes at mode switches. Let 𝑡𝑎 be 

the duration of each ramp and 𝑡𝑏 be the plateau duration. The resulting 

displacement in Fig. 14(B) is then calculated as:

𝑢𝑡𝑎𝑟 = ∫

2𝑡𝑎+𝑡𝑏

0
𝑣(𝑡)d𝑡 = 𝑣𝑚𝑎𝑥(𝑡𝑎 + 𝑡𝑏), (46)

where 𝑢𝑡𝑎𝑟 is the target prescribed displacement. It can be seen that the 

resulting displacement in 𝑢𝑡𝑎𝑟 matches the target prescribed displace­

ment of 10 mm.

This velocity profile is advantageous for cyclic loading in the explicit 

scheme, as the smoothness of the profile limits the artificial stress waves 

and dynamic amplification that can arise when a constant velocity load 

is applied to the system. The constant velocity plateau occurs when the 

system moves at a constant velocity, reaching the prescribed displace­

ment faster while maintaining a kinetic energy level below the internal 

energy stored in the block system. This isolates the hysteretic response to 

reflect only the masonry non-linearities, rather than the system’s inertia.

4.3 . Validation results

This section evaluates the capability of the proposed modelling strat­

egy against the experimental campaign at the component scale. The 

comparison is performed at both global and local levels, focusing on 

the reproduction of force-deformation characteristics, hysteretic behav­

ior, and key damage mechanisms observed during the cyclic loading. 

Emphasis is placed on assessing the model’s ability to capture stiffness 

degradation, strength evolution, and energy dissipation across different 

wall typologies.
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Fig. 14. Imposed actuator velocity profile 𝑣(𝑡) with 𝑣𝑚𝑎𝑥 of 5mm s−1 and the resulting displacement.

Fig. 15. Force-displacement results of all validated cases.

4.3.1 . Global response - force-displacement curve and hysteresis 

performance

The lateral force-wall drift responses of the four walls predicted by 

the proposed modelling strategy are compared to the experimental re­

sponses in Fig. 15. For the slender cases, the TUD-COMP-0a (Fig. 15(A)) 

model predicted a symmetric response between the positive and neg­

ative loading cycles, matching the peak resistance of 28 kN and the 

softened post-peak branch, even though the hysteresis response was 

more pinched compared to the experimental curve at wall drifts beyond 

±0.5%.

Compared to the experiment, TUD-COMP-1 (Fig. 15(B)) shows a 

higher simulated peak (12.5 kN compared to 10 kN in EXP, i.e., 25 % 

overestimation). The model also exhibited a more pinched hysteresis 

loop than the experimental observation. This discrepancy arises be­

cause the simulation remains rocking-controlled over a longer interval, 

and the sliding and shear–compression failure activates later than in 

the tests, reducing re-closure forces and increasing the apparent pinch­

ing. Furthermore, it is essential to emphasize that the simulation is 

done with a single interface parameter set for all four walls, which 

avoids specimen-by-specimen tuning but leaves some spread in peak 

and loop shape for the slender cantilever. Notably, the experimental 

report in Messali et al. [65] also reported that preliminary numerical 

analyses struggled with TUD-COMP-1, underscoring the difficulty of this 

configuration.

Nevertheless, in both slender cases, it is clear that rocking occurred 

during earlier loading cycles. In particular, the first few cycles in both 

TUD-COMP-0a and TUD-COMP-1 returned almost to the origin, indicat­

ing negligible permanent drift. As the imposed displacement increased, 

horizontal sliding along the bed-joint interface became mobilised, lead­

ing to progressively larger residual deformations that are faithfully 

reproduced by the numerical model.

For the squat specimens, TUD-COMP-4 (Fig. 15(C)) and TUD-COMP-

6 (Fig. 15(D)), the numerical model reproduced the characteristic larger 

hysteresis loops that arose from shear-dominated behavior. In TUD-

COMP-4 with the double-clamped configuration, the simulated envelope 

closely followed the experimental backbone, matching the experimen­

tal initial stiffness and the peak strength of approximately 125 kN. 

The model, however, exhibited a slightly faster drop in shear capac­

ity compared to the experimental behavior after peak capacity was 

observed. For the cantilever model in TUD-COMP-6, where multiple 
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Fig. 16. Dissipated energy comparison of all validated cases.

diagonal cracks were observed during testing, the model captured the 

peak capacity relatively well at approximately 110 kN, but the hysteresis 

loops exhibited a more plastic response compared to the experiment, a 

typical behavior of a shear-dominated failure. Despite these differences, 

the simulation accurately reproduced the progressive strength degrada­

tion at large drifts and the symmetric response under cyclic loading, 

demonstrating that the proposed interface-shear formulation is robust 

for both squat walls and the more slender configurations discussed 

above.

Fig. 16 compares the dissipated energy in each relevant loading cy­

cle as measured in the tests (shown in orange) with that computed by 

the numerical models (shown in blue) for the four benchmark walls. The 

relevant cycles are defined as the cycles in which the experimental curve 

exhibits hysteretic behavior. For the two slender walls, TUD-COMP-0a 

and TUD-COMP-1 (Fig. 16(A) and Fig. 16(B), respectively), the dissi­

pated energy remains modest, never exceeding 1 kN m, as the response 

is primarily governed by rocking with sliding only in the later cycles. 

The model faithfully tracks the growth in energy with increasing drift, 

slightly over-predicting the dissipated energy in the last two cycles, 

which is consistent with the relatively more pinched hysteresis loops 

observed in the force–drift curves (Fig. 15(A) and Fig. 15(B)).

A considerably different behavior emerges for the squat specimens. 

In TUD-COMP-4 (Fig. 16(C)), once the diagonal cracking is activated, the 

dissipated energy significantly increases, ultimately reaching approxi­

mately 1.8 kN m in the final cycle. The model matches this increase, 

and the individual cycle-to-cycle values are comparable to the experi­

mental response, with only slight over-estimation at the last cycle. The 

trend intensifies in TUD-COMP-6 (Fig. 16(D)), where shear-dominated 

behavior, coupled with toe crushing, yields a peak of 7 kN m at cy­

cle 9, followed by a slight decline as strength degradation occurs. The 

model also reproduces the rapid build-up and the subsequent drop of 

dissipated energy, but it underestimates the single cycle carrying the 

maximum dissipation, consistent with the abrupt unloading observed in 

the force–drift curve in Fig. 15(D).

Overall, the comparison confirms that the proposed modelling strat­

egy reproduces the global hysteretic behavior observed in the tests 

across the full spectrum of wall aspect ratios. It predicts the correct 

strength staircase and mirrors the progressive accumulation of en­

ergy dissipation as damage localizes. Although discrepancies remain in 

individual cycles, the numerical envelopes, stiffness degradation, pinch­

ing intensity, and cumulative energy trends all align closely with the 

experimental evidence, demonstrating the model’s ability to provide re­

liable, system-level forecasts of masonry wall performance under cyclic 

loading.

4.3.2 . Local response - crack patterns

Fig. 17 shows the experimentally mapped cracks at the end of 

the loading sequence, compared against the predicted joint damage 

scalar 𝑑𝑡𝑠 Eq. (21) for the two slender specimens. For TUD-COMP-0a 

(Fig. 17(A), the experiment developed symmetric rocking hinges at the 

upper and lower corners, manifested as stepped bed- and head-joint 

cracking. The simulation captures the same mechanism: 𝑑𝑡𝑠 localizes in 

stepwise bands at each corner, consistent with uplift-driven tensile fail­

ure as the compression toe migrates under cyclic loading. The model 

also reproduces the complete degradation of the top and bottom bed 

joints associated with hinge formation. The compressive damage field 

(Eq. (B.25)(A)) corroborates localized toe crushing at each corner.

For the cantilever model in TUD-COMP-1 (Fig. 17(B)), the exper­

imental crack pattern exhibited a fan-shaped crack network starting 

from the base toward the mid-height, indicating a transition from pure 

rocking to combined rocking-sliding as the axial load was progressively 
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Fig. 17. The comparison of the experimental crack pattern to the combined 𝑑𝑡𝑠 damage scalar for the slender wall cases.

transferred to the compression side. The numerical model reproduced 

the horizontal slip line along the first bed joint from the base and the 

subsequent stepped propagation to the next course, albeit with fewer 

head-joint fractures, a difference attributed to the homogenized mechan­

ical properties applied to the model. Nevertheless, the predicted failure 

mechanism is in good agreement with the experimental observation: a 

dominant sliding interface at the base, followed by splitting at the brick 

units, and diagonal cracks along the corners of the wall.

The crack pattern comparison for the squat wall specimens is pre­

sented in Fig. 18. The experimental crack pattern of TUD-COMP-4 

(Fig. 18(A)) exhibits a typical X-shaped shear mechanism, with two di­

agonal cracks linking opposite corners and intersecting at mid-height. 

The numerical model reproduced this pattern significantly well, where 

both diagonals initiate from the same corners, converging at the wall’s 

mid-height. Splitting of the brick units is also observed at the lower left 

corner of the wall.

The cantilever specimen of TUD-COMP-6 (Fig. 18(B)) showed a more 

intricate failure mode: the diagonal cracks formed first, followed by ad­

ditional diagonal branches and partial horizontal slips at the top of the 

wall, which was then followed by the splitting of the brick units along 

the diagonal cracks. The numerical model captured these mechanisms 

relatively well, where diagonal cracks formed after partial horizontal 

slips occurred at the top of the wall. From the joint compression dam­

age scalar plot in Fig. B.25(B), a small toe crushing zone was visible 

at each corner of the wall, coupled with the splitting of the brick units 

in Fig. 18(B). Although the numerical pattern showed somewhat fewer 

off-axis cracks compared to the experiment, the predicted locations and 

relative severities align relatively well with the experimental mapping. 

While the computational model captured fundamental local and global 

mechanisms observed during the testing, the performed deterministic 

analysis and adopted simplified micro-modelling strategy may yield less 

cracking within the brick domain; hence, inherently influencing the en­

ergy dissipation and macro-unloading stiffness of the analyzed URM 

wall.

Across both aspect ratios considered in this paper, the proposed mod­

elling strategy consistently demonstrated the ability to capture the local 

damage mechanisms observed experimentally. Minor mismatches, such 

as slightly smoother crack trajectories or a lack of a stepwise crack 

pattern, were attributed to the homogenized mechanical properties im­

plemented in the wall model. These findings confirm that the modelling 

strategy provides a robust, accurate, and detailed representation of dam­

age in unreinforced masonry walls subjected to cyclic in-plane loading, 

regardless of whether the loading is dominated by rocking or shear.

5 . Discussion

This section discusses the structural-level results by interpreting both 

the mechanical and numerical factors governing the observed cyclic re­

sponse. First, the influence of local numerical damping on the predicted 

energy dissipation is examined to verify that the hysteretic behavior 

is dominated by physical mechanisms rather than numerical artefacts. 

Then, the discussion addresses the drift-dependent transition between 

in-plane failure mechanisms, followed by an assessment of the sensi­

tivity to the imposed loading rate, and a comparison with alternative 

numerical approaches reported in the literature.

5.1 . Influence of local numerical damping on energy dissipation

This section investigates the influence of local numerical damping 

on the energy dissipation mechanism for the benchmark case of TUD-

COMP-0a, to verify that the simulated response is governed by physical 

dissipation mechanisms rather than by algorithmic stabilization effects. 

Given the known problem-dependence of numerical damping in explicit 

DEM analyses, such a verification step is essential before interpreting 

the mechanical response.

Let 𝑆(𝑡) be the set of active subcontacts included in the energy 

accounting (excluding subcontacts between the boundary blocks and 

masonry). All energy terms are expressed in Joules (N⋅m). For each sub­

contact 𝑠, the joint constitutive model evaluates energy contributions 

associated with normal and shear relative motion at the interface. These 

quantities represent the mechanical work performed by the correspond­

ing tractions and are computed incrementally during the explicit time 

integration.
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Fig. 18. The comparison of the experimental crack pattern to the combined 𝑑𝑡𝑠 damage scalar for the squat wall cases.

The normal tensile and compressive components are defined as:

𝐸(𝑠)
tens(𝑡) = ∫

𝑢𝑛,(𝑠)𝑡 (𝑡)

0
⟨𝑇 (𝑠)
𝑛 ⟩

+ d𝑢𝑛,(𝑠)𝑡 , 𝐸(𝑠)
comp(𝑡) = ∫

𝑢𝑛,(𝑠)𝑐 (𝑡)

0
⟨−𝑇 (𝑠)

𝑛 ⟩

+ d𝑢𝑛,(𝑠)𝑐 ,

(47)

where 𝑇 (𝑠)
𝑛  denotes the normal traction, d𝑢𝑛,(𝑠)𝑡 ,d𝑢𝑛,(𝑠)𝑐  are the incremental 

displacement in tension and compression, respectively. The shear energy 

is defined as: 

𝐸(𝑠)
shear

(𝑡) = ∫

𝒖(𝑠)𝑠 (𝑡)

0
𝑻 (𝑠)
𝑠 ⋅ d𝒖(𝑠)𝑠 , (48)

where 𝑻 (𝑠)
𝑠  is the shear traction vector. This contribution captures en­

ergy dissipation due to frictional sliding and shear-related inelastic 

mechanisms under cyclic loading.

The joint model then returns the instantaneous energy components as:

𝐸tens(𝑡) =
∑

𝑠∈(𝑡)
𝐸(𝑠)

tens(𝑡), (49)

𝐸comp(𝑡) =
∑

𝑠∈(𝑡)
𝐸(𝑠)

comp(𝑡), (50)

𝐸shear(𝑡) =
∑

𝑠∈(𝑡)
𝐸(𝑠)

shear
(𝑡), (51)

At discrete times 𝑡𝑛, the dissipated energy for each component is 

calculated as:

𝐸diss
tens(𝑡𝑁 ) =

𝑁
∑

𝑛=1

|

|

𝐸tens(𝑡𝑛) − 𝐸tens(𝑡𝑛−1)|| , (52)

𝐸diss
comp(𝑡𝑁 ) =

𝑁
∑

𝑛=1

|

|

|

𝐸comp(𝑡𝑛) − 𝐸comp(𝑡𝑛−1)
|

|

|

, (53)

𝐸diss
shear

(𝑡𝑁 ) =
𝑁
∑

𝑛=1

|

|

𝐸shear(𝑡𝑛) − 𝐸shear(𝑡𝑛−1)|| . (54)

which are then combined to return the cumulative energy from physical 

dissipation 𝐸phys(𝑡𝑁 ) as:

𝐸phys(𝑡𝑁 ) = 𝐸diss
tens(𝑡𝑁 ) + 𝐸diss

comp(𝑡𝑁 ) + 𝐸diss
shear

(𝑡𝑁 ) (55)

Meanwhile, the cumulative work removed by local numerical damp­

ing, denoted by 𝑊𝑘, is evaluated at the block level from the unbalanced 

forces and translational velocities. At each timestep 𝑡𝑛, the incremental 

numerical damping work is computed as: 

Δ𝑊𝑘(𝑡𝑛) = 𝛼Δ𝑡
∑

𝑏∈

(

|𝐹 (𝑏)
𝑢,𝑥 | |𝑣

(𝑏)
𝑥 | + |𝐹 (𝑏)

𝑢,𝑦 | |𝑣
(𝑏)
𝑦 | + |𝐹 (𝑏)

𝑢,𝑧 | |𝑣
(𝑏)
𝑧 |

)

, (56)

where 𝛼 is the local damping coefficient (Eq. 9), Δ𝑡 is the mechanical 

timestep, 𝑭 (𝑏)
𝑢 = (𝐹 (𝑏)

𝑢,𝑥 , 𝐹
(𝑏)
𝑢,𝑦 , 𝐹

(𝑏)
𝑢,𝑧 ) is the unbalanced force of block 𝑏, 𝒗(𝑏) =

(𝑣(𝑏)𝑥 , 𝑣
(𝑏)
𝑦 , 𝑣

(𝑏)
𝑧 ) is the block translational velocity, and  denotes the set 

of blocks excluding boundary blocks.

The cumulative numerical damping work is then obtained as: 

𝑊𝑘(𝑡𝑁 ) =
𝑁
∑

𝑛=1
Δ𝑊𝑘(𝑡𝑛). (57)

Fig. 19 compares the cumulative physical dissipation 𝐸phys and the 

cumulative work removed by local numerical damping 𝑊𝑘, evaluated 

at cycle-peak drift levels in negative and positive loading directions for 
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Fig. 19. Energy-based assessment of numerical damping for the benchmark case of TUD-COMP-0a.

the benchmark case TUD-COMP-0a. It is important to note that the local 

damping coefficient 𝛼 is set to 0.8 by default. Fig. 19(A) shows the corre­

sponding energy envelopes for both loading directions, while Fig. 19(B) 

reports the numerical damping share:

𝜂 =
𝑊𝑘

𝑊𝑘 + 𝐸phys

(58)

The energy envelopes reveal a clear separation in magnitude be­

tween physical and numerical contributions over the entire drift range. 

Physical dissipation increases rapidly with imposed deformation, reflect­

ing progressive cracking, sliding, and compressive damage at the joint 

level. In contrast, the numerical damping grows gradually and remains 

substantially smaller. At the largest drift levels of 1.0 %, 𝐸phys reaches 

more than 2000 J, whereas 𝑊𝑘 remains on the order of 250 J for both 

loading directions.

The evolution of the damping share 𝜂 further confirms this observa­

tion. After an initial increase at small drift levels, where both physical 

dissipation and damping are limited, the ratio stabilizes with increasing 

deformation and remains below approximately 10 % to 12 % throughout 

the analysis. Importantly, no late-stage increase of 𝜂 is observed, even 

at large drift levels approaching mechanism formation. This indicates 

that numerical damping does not progressively dominate the response 

as damage accumulates.

The close agreement between positive and negative loading cycles 

also demonstrates that the numerical damping contribution is symmetric 

and does not introduce spurious directional bias into the cyclic response. 

Overall, the results show that local numerical damping remains a sec­

ondary, non-governing component of the total energy dissipation in the 

benchmark case considered. The global response is therefore controlled 

by constitutive dissipation mechanisms embedded in the joint model 

rather than by algorithmic energy removal. It is acknowledged, however, 

that the relative contribution of numerical damping may be problem-

dependent and influenced by factors such as geometry, loading protocol, 

and choices of constitutive parameters. A systematic investigation of the 

sensitivity of numerical dissipation to these aspects will be conducted in 

future work.

5.2 . Failure mechanism transition in in-plane loading cases

This section analyses the evolution of the failure mechanism in speci­

men TUD-COMP-0a, tested under double-clamped boundary conditions, 

as it transitions from flexure-dominated rocking to friction-controlled 

sliding [65], with an emphasis on the attendant stress redistribution and 

damage localization. Although specimen TUD-COMP-1 also displayed 

a hybrid rocking–sliding response, the discussion below is confined to 

TUD-COMP-0a to isolate the effects of double clamping and enable a 

focused examination of the governing mechanics.

Fig. 20(A) captures the evolving failure mechanism of specimen 

TUD-COMP-0a by plotting the normal and shear stress paths at the com­

pressed toes at the bottom-right corner of the wall. Stress paths shown 

are taken at the compressed toe. Along these histories, the shear surface 

𝐹2 is not violated. The only surface reached during cyclic loading is the 

tensile cut-off 𝐹1, which is not visible here due to the much smaller ten­

sile scale compared with the compressive stresses at the toe. During the 

4th and 7th loading cycles (represented by cycle number 6 in Fig. 20(B), 

the normal-shear stress trajectories for both toes stay well inside the 

yield surface, forming small closed loops produced by repeated loading–

unloading while one toe is compressed and the opposite toe lifts off. 

Since the stress state never reaches the envelope at this stage, the shear 

transfer is negligible, and the response is governed by pure rocking, 

where the wall returns to the original hinge point at both toes.

Between the 8th and 10th loading cycles (represented by cycle num­

ber 8 in Fig. 20(B), stepwise cracks formed in the pier, raising the shear 

demand at the compressed toes. The stress paths shift upward toward 

the compression cap while the normal compressive stress approaches 

3.5 MPa to 4 MPa. However, at this state, the sliding mechanism is 

still inactive, as evident by the unloading trajectories that return to 

the origin. This behavior is also consistent with the global response 

in Fig. 15(A) and 16(A), where a slight dissipated energy is observed 

between cycles 8 and 10.

In the final loading cycles (cycle 11 in Fig. 20(B), the averaged 

normal-shear stress state at the joint plane approaches the compression 

cap and, during unloading, intersects the Coulomb friction line. Notably, 

the plotted stress states are averaged over the contact points forming 

the joint at the bottom-right corner. As a result, yielding in Fig. 20(A) 

and Fig. 20(B) occurs before the average stress state visibly reaches the 

compression cap line. At this stage, the entire length of the bed-joint 

segment along the compressed toe yields in shear, enabling slip to prop­

agate continuously along the interface. Simultaneously, local crushing 

initiates at the compressed toe. Consequently, the rocking mechanism 

becomes secondary to friction-controlled sliding, shifting the hinge lo­

cation and resulting in the residual drift observed in Fig. 15(A). Fig. 21 

shows the sequential deformed shape (magnified 30 times) of specimen 

TUD-COMP-0a as wall drift, 𝛿, increases from 0 % to 1 % at the last 

loading cycle. For drifts up to about 0.5 %, the pier behaves almost as 

a rigid body, rocking about one toe while the opposite toe lifts off, and 

relative slip along the bed-joint remains negligible.

Once 𝛿 exceeds this threshold, the pier begins to translate with re­

spect to the loading toes, and by 0.8 % to 1.0 % drift, the response 

is sliding-dominated: the entire bed-joint has yielded in shear, local 

Computers and Structures 321 (2026) 108094 

18 



Y.P. Oktiovan, F. Messali, B. Pulatsu et al.

Fig. 20. The shear vs normal stresses evolution of TUD-COMP-0a model at the compressed toe (bottom-right corner).

Fig. 21. Deformed shapes of TUD-COMP-0a at the last positive loading cycle from 0 % to 1 % drift (Magnified 30x).

crushing appears at the compressed toe, and rocking plays only a 

secondary role. This demonstrates that the multi-surface failure sur­

face used in the proposed modelling strategy can reproduce the drift-

dependent transition from the rocking mechanism at lower drift to the 

sliding mechanism at higher drift.

5.3 . Sensitivity analysis of the imposed displacement rate on the loading 

scheme

To assess the influence of the imposed displacement rate on the 

global response and to verify the quasi-static validity of the consti­

tutive model, a velocity sensitivity study was conducted on specimen 

TUD-COMP-0a. Five peak loading velocities were considered: 𝑣 =
0.5, 1.0, 2.5, 5.0, and 10.0 mm/s, while boundary conditions, mate­

rial properties, and the cyclic protocol were kept unchanged. Because 

the imposed motion follows the cosine–plateau–cosine history defined 

in Eqs. (44) and (45), variations in 𝑣max directly modify the ramp du­

rations (𝑡𝑎, 𝑡𝑏) and, consequently, the total actuation time (𝑡𝑡𝑜𝑡). Thus, 

higher loading velocities result in proportionally shorter actuation times 

to reach the same prescribed displacement.

The imposed velocities are numerical drivers for dynamic relaxation, 

not experimental actuation rates. The quasi-static solutions are sought 

by using sufficiently small kinetic energy ratios and residual force tol­

erances during the analyses. Within these checks, lowering the velocity 

down to 0.5mm s−1 affects peak and envelope stiffness only marginally 

but increases the runtime markedly, whereas higher velocities risk spu­

rious inertial effects. The value 10mm s−1 is used only as an upper-bound 

driver to limit runtime, not as a physical rate.

Fig. 22 compares the force–drift hysteresis at different velocities 

against the experimental benchmark, while Fig. 23 shows the corre­

sponding dissipated energy per cycle. In general, the sensitivity study 

confirms that the global response is only weakly dependent on the im­

posed velocity in the quasi-static range: peak strengths remain nearly 

unchanged, drift levels at maximum force are consistent, and the main 

differences arise in the shape of the hysteresis loops and the mag­

nitude of dissipated energy. These observations suggest the residual 

discrepancies arise from velocity-dependent artifacts of the explicit 

solver.

At the lowest velocities (0.5 [mm/s] to 1.0 [mm/s]), the loops are 

somewhat more pinched, but the dissipated energy at 0.5mm s−1 agrees 

closely with the experimental trend, particularly in the largest cycles. At 

intermediate velocities (2.5mm s−1 to 5.0mm s−1), the global hysteresis 

is reproduced well, though the energy per cycle is slightly underesti­

mated at peak drift levels. At the highest velocity (10.0mm s−1), the 

loops widen and energy dissipation is artificially amplified due to dy­

namic effects, which are not captured by the quasi-static constitutive 

laws. The cycle-by-cycle energy results in Fig. 23 confirm that the 

2.5mm s−1 to 5.0mm s−1 case provides the closest match to the ex­

perimental dissipation, while higher velocities either underestimate or 

prematurely amplify the energy. Nevertheless, the intermediate range 

(2.5mm s−1 to 5.0mm s−1) still offers a good compromise, reproduc­

ing the overall growth pattern of dissipated energy while maintaining 

feasible computational times.

The quantitative results are summarized in Table 4. Across all ve­

locities, simulated peak loads deviate only by about 3 % to 4 % in the 

positive direction and 6 % to 7 % in the negative direction from the 

experimental reference, confirming the robustness of the model predic­

tions. Using the same computational resource (3.5 GHz Intel Xeon CPU 

with four cores and 32 GB of memory), computational time varies by 

more than an order of magnitude, ranging from about 185 h at 0.5 mm/s 

to 10 h at 10 mm/s, underscoring the trade-off between accuracy and 

efficiency.

Based on these observations, velocities in the intermediate range 

of 2.5mm s−1 to 5.0mm s−1 are recommended as a practical compro­

mise: they reproduce the global hysteresis with reasonable fidelity, 

capture the cycle-by-cycle energy evolution reasonably well, and keep 
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Fig. 22. Force–drift hysteresis of specimen TUD-COMP-0a under different loading velocities compared with experimental results.

Fig. 23. Cycle-by-cycle dissipated energy of specimen TUD-COMP-0a under different loading velocities compared with experimental results.

Table 4 

Velocity sensitivity results for specimen TUD-COMP-0a.

𝑣 [mm/s] 𝐹pos [kN] 𝐹neg [kN] Driftpos [%] Driftneg [%] Time [h]

0.5 28.74 (3.8 %) −28.70 (6.1 %) 0.590 (–19.7 %) −0.591 (–13.5 %) 185

1.0 28.76 (3.9 %) −28.64 (6.3 %) 0.591 (–19.7 %) −0.590 (–13.5 %) 86

2.5 28.71 (3.7 %) −28.69 (6.2 %) 0.591 (–19.7 %) −0.590 (–13.5 %) 32

5.0 28.60 (3.3 %) −28.57 (6.6 %) 0.590 (–19.7 %) −0.591 (–13.5 %) 26

10.0 28.60 (3.3 %) −28.57 (6.6 %) 0.591 (–19.7 %) −0.590 (–13.5 %) 10

EXP values: 𝐹pos,EXP = 27.69 kN, 𝐹neg,EXP = −30.58 kN, 𝛿pos,EXP = 0.736%, 𝛿neg,EXP = −0.520%.

computational demands within manageable limits. Nevertheless, this 

recommendation should be regarded as case-specific. The optimal load­

ing rate may vary depending on specimen geometry, boundary condi­

tions, and material properties, and thus requires verification for each 

application.

All simulations in this study are performed in a quasi-static (dynamic-

relaxation) setting: slow loading with local numerical damping. This 

choice isolates the constitutive/interface behavior and leverages the 

explicit scheme’s robustness in the presence of softening and contact 

evolution. The extension to fully dynamic analyses is conceptually 

straightforward within the same framework (use physical time histories, 

minimize or remove numerical local damping, and include appropriate 

rate effects), but lies beyond the scope of the present work and is 

reserved for future work.

5.4 . Comparison to other numerical methods

In this section, the proposed modelling strategy is evaluated against 

numerical approaches from the literature that validated the same experi­

mental tests. For the double-clamped and squat specimen TUD-COMP-4, 

the comparison is made with the study of Sousamli [66], which used the 

Plasticity-based Combined Cracking, Crushing, and Shearing (PCCCS) 

interface model of Lourenço and Rots [19]. For the cantilever-squat spec­

imen TUD-COMP-6, the reference is the Damaging Block-based (D-BB) 

model by D’Altri et al. [9], where blocks interact through damaging in­

terfaces. The PCCCS model was implemented in DIANA FEA (v10.4) and 

the D-BB model as a user-defined law in Abaqus/Standard, both employ­

ing implicit solvers. The results of these models were taken directly from 

the respective publications [9,66]; the present authors did not reproduce 

them.
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Table 5 

Material properties for the cross-validation of the proposed modelling strategy.

Properties Symbol Unit TSC1 PCCCS D-BB

Head joint Bed joint Head joint Bed joint –

Normal stiffness 𝑘𝑛 GPa m−1 52.17 52.17 10.44 121.2 75

Shear stiffness 𝑘𝑠 GPa m−1 22.49 22.49 16.36 39.31 7.5

Tensile strength 𝑓𝑡 MPa 0.003 0.105 0.003 0.105 0.12

Cohesion 𝑐 MPa 0.014 0.14 0.14 0.14 0.11

Friction coefficient 𝜇 [-] 0.466 0.466 0.43 0.43 0.55

Mode-I fracture energy 𝐺𝐼 N m−1 8.38 8.38 0.007 7.75 –

Mode-II fracture energy 𝐺𝐼𝐼 N m−1 83.8 83.8 100 3000 –

Compressive strength 𝑓𝑐 MPa 5.93 7.0 7.55 5.93 –

Compressive fracture energy 𝐺𝑐 N m−1 15,000 31,500 34,000 15,000 –

Additional parameters

Ultimate separation 𝑢𝑘 m – – – – 0.001

Ultimate slip 𝛿𝑘 m – – – – 0.001

Tension brittleness 𝜁 [-] – – – – 8.0

Shear brittleness 𝜉 [-] – – – – 4.0

Cap shear parameter 𝐶𝑠 [-] 12 5 –

Brick unit properties

Young’s modulus 𝐸𝑏 MPa – – 8990 4800

Poisson’s ratio 𝑣 [-] – – 0.14 0.14

Compressive strength 𝑓𝑐𝑏 MPa – – – – 6.8

Tensile strength 𝑓𝑡𝑏 MPa 1.0 1.0 – – 1.5

1
 Same material properties are applied to TUD-COMP-0a and TUD-COMP-1.

Since no validated experimental data currently exist for the slender 

specimens of TUD-COMP-0a and TUD-COMP-1, the comparative assess­

ment is performed through numerical simulations conducted by the au­

thors in 3DEC using the joint constitutive model proposed by Pulatsu [8]. 

This joint model, referred to as the Tension-Shear–Compression (TSC) 

joint model, is based on a multi-surface damaged plasticity formu­

lation, where failure in the compressive regime is governed by a 

compression cut-off mechanism [34]. This approach contrasts with 

the compression cap yield surface adopted in the present study, 

which allows for more gradual confinement-dependent yielding under

compression.

Moreover, the TSC model incorporates linear softening behavior 

across tensile, shear, and compressive failure regimes, in contrast to 

the damage progression laws employed in the current study. These dif­

ferences in constitutive modelling are expected to influence the stress 

redistribution and failure mechanisms observed in the numerical results, 

and must be considered when interpreting the comparative outcomes 

between the two approaches.

The parameters used in the corresponding models for cross-

comparison are summarized in Table 5. The properties are categorized 

according to different constitutive models used in the cross-comparison, 

with specific differentiation between head joints and bed joints when­

ever possible. The TSC model uses the identical material properties 

described in Table 3, except for the peak ratio 𝑛, as the TSC model em­

ploys a linear softening law for the compressive behavior. Meanwhile, 

the D-BB model [9] requires additional interface characteristics in ten­

sion and shear to describe the post-peak softening and damage evolution. 

In contrast, the PCCCS model [19,66] uses the fracture energy terms 

to address the post-peak softening in tension, shear, and compression 

regimes. The brick unit properties are given in Table 5, as the PCCCS and 

D-BB models use deformable block configurations, while the TSC model 

uses a potential crack plane at the brick’s mid-length to address the unit-

splitting failure. Furthermore, the units in the D-BB model follow the 

continuum plastic-damage constitutive law to address the compressive 

and tensile failure of the brick units.

Figs. 24(A) and 24B present the force–drift responses of specimens 

TUD-COMP-0a and TUD-COMP-1, respectively, simulated using the 

Tension-Shear–Compression (TSC) joint model proposed by Pulatsu [8]. 

Overall, the simulated responses exhibit reasonable agreement with the 

experimental observations, particularly in the initial linear range.

However, some deviations become evident in the nonlinear regime, 

particularly beyond a drift level of approximately 0.1 %. While the TSC 

model captures the initial stiffness and peak strength with reasonable 

accuracy, it tends to underpredict the energy dissipation observed during 

the later loading cycles. This behavior can be attributed to the model’s 

simplified representation of stiffness degradation and its use of linear 

softening laws.

In the case of TUD-COMP-0a (Fig. 24(A), the TSC model predicted a 

slightly higher peak load of approximately 30 kN, compared to 28 kN 

obtained using the proposed modelling strategy. Additionally, the TSC 

model exhibited limited energy dissipation, with minimal hysteretic be­

havior observed from one cycle to the next. The loops were only evident 

during the final loading cycle, where noticeable residual drift indicated 

some inelastic behavior.

A similar trend was observed for TUD-COMP-1 (Fig. 24(B). Both 

the TSC model and the proposed modelling strategy predicted a com­

parable peak load of approximately 12.5 kN, indicating consistent 

performance in capturing the specimen’s strength capacity. However, 

in terms of cyclic behavior, the TSC model again showed limited 

hysteretic response and underrepresented the extent of energy dissi­

pation throughout the loading cycles. Unlike in TUD-COMP-0a, where 

some inelastic behavior emerged in the final cycle, the TSC model 

did not exhibit noticeable hysteresis at any stage of the loading for

TUD-COMP-1.

The differences in hysteretic behavior between the two models can 

be primarily attributed to the formulation of the failure surface in the 

shear–compression domain. The proposed model utilizes a compression 

cap yield surface that evolves with increasing axial stress, enabling a 

more gradual and distributed shear failure. This effectively captures the 

inelastic deformation and energy dissipation observed in experiments. 

In contrast, the TSC model uses a compression cut-off, which imposes a 

more abrupt limit on compressive failure and reduces the interaction be­

tween axial and shear behavior. While this simplification may improve 

computational efficiency, it can delay the onset of shear failure and limit 

the model’s ability to reproduce progressive damage mechanisms. As a 

result, even with identical masonry compressive strengths, the model 
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Fig. 24. Cross-comparison of validated wall specimens.

with a compression cap tends to initiate shear failure earlier than the 

one with a compression cut-off. This difference is particularly relevant 

in the case of hybrid rocking-shear failure, when a transition from the 

former to the latter mechanism is expected, since the shear sliding occurs 

in the highly compressed toes.

Fig. 24(C) and Fig. 24(D) show the force–drift response of the TUD-

COMP-4 and TUD-COMP-6 specimens, respectively, comparing the nu­

merical prediction from the proposed model (NUM) and the respective 

reference simulations (PCCCS [19,66] for TUD-COMP-4 and D-BB [9] for 

TUD-COMP-6) to the experimental results (EXP). It can be observed that 

the proposed strategy aligns generally with other modelling strategies 

presented in the literature.

For TUD-COMP-4 (Fig. 24(C)), the proposed model shows close 

agreement with both the experimental results (EXP) and the reference 

PCCCS simulation. Taking advantage of the larger time step afforded 

by the implicit solution scheme and the stable pre-peak response, the 

loading sequence was repeated three times per cycle to ensure consis­

tent hysteretic behavior. Compared to the PCCCS model, the proposed 

approach yields slightly larger hysteresis loops in the final loading cycle; 

however, both responses remain well within the experimental envelope. 

The accurate reproduction of the peak load values and the characteris­

tic pinching across cycles underscores the model’s enhanced ability to 

capture joint opening, interface friction, and softening mechanisms. It 

is worth noting that while Sousamli [6] reported the PCCCS model to 

be effective in reproducing shear-dominated responses such as in TUD-

COMP-4, its accuracy was reduced for specimens governed by hybrid 

rocking–shear mechanisms.

In the case of TUD-COMP-6 (Fig. 24(D)), the proposed modelling 

approach shows relatively good agreement with both the experimen­

tal data and the D-BB reference model up to the same drift level of 

0.27 %. Beyond this point, the D-BB model exhibits divergence of the 

incremental-iterative procedure, primarily due to excessive localized 

damage at the compressed toe regions of the wall [9]. In contrast, 

while the proposed model displays slightly larger hysteresis loops and a 

more gradual reduction in shear capacity compared to the experiment, 

it remains stable and capable of completing the full loading sequence, 

consistent with the experimental procedure. This highlights the robust­

ness and reliability of the proposed modelling strategy in capturing both 

cyclic behavior and progressive damage across various masonry wall 

configurations.

Direct runtime comparisons with external FEM/DEM studies were 

not performed in this paper because publicly available results typi­

cally report only response curves and failure mechanisms. Even where 

runtimes are given, they are tied to different hardware, meshing/pre-

processing pipelines, solver tolerances, and contact regularizations, 

precluding an apples-to-apples assessment. The efficiency claims in this 

paper are therefore qualitative, grounded in the absence of nonlinear 

iterations and in the robustness of the explicit time-marching scheme 

through softening and contact evolution. Quantitative timings are mean­

ingful primarily within a controlled environment, which lies outside the 

scope of this paper.

6 . Conclusions

This study presented a comprehensive cyclic joint constitutive model 

for unreinforced masonry (URM) structures, developed within the 

Distinct Element Method (DEM) framework. The model addresses a 

key challenge in simulating the nonlinear and hysteretic behavior of 

masonry interfaces subjected to cyclic loading. It incorporates a uni­

fied yield surface, combining tensile cut-off, Coulomb friction, and a 
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compression cap, alongside exponential softening in tension and shear, 

a hardening–softening law in compression, and a nonlinear unloading–

reloading mechanism to simulate energy dissipation. To capture dilatant 

effects more realistically, a novel uplift correction mechanism was intro­

duced, coupled with an exponential decay law for dilatancy softening. 

The proposed model was implemented in 3DEC, a commercial DEM 

platform, leveraging an explicit time-marching integration scheme for 

robust and stable simulations under large displacements. The model 

was rigorously validated at both material and structural levels. The 

main findings of the validations and subsequent discussions can be 

summarized as follows:

• At the material-level, numerical simulations of cyclic uniaxial com­

pression and direct shear tests reproduced key experimental features 

with great accuracy, including energy dissipation and stiffness degra­

dation under cyclic loading. The results confirmed the model’s 

ability to reproduce fundamental constitutive behaviors of masonry 

interfaces under isolated conditions.

• Validation of the triplet test demonstrated that the novel dilatancy 

uplift correction, combined with an exponential decay law for the 

dilatancy angle, realistically captured the progressive reduction of 

joint opening under shear.

• At the structural level, validation on four full-scale calcium sili­

cate masonry walls under combined compression and cyclic in-plane 

loading (with varying boundary conditions and aspect ratios) showed 

that the model successfully reproduced the global hysteretic re­

sponse, including force–drift loops and cycle-by-cycle energy dissi­

pation, as well as local failure mechanisms such as joint cracking, 

sliding, diagonal shear cracking, and toe crushing.

• An energy-based assessment performed on the benchmark case TUD-

COMP-0a, with double-clamped and slender configuration, shows 

that the contribution of local numerical damping remains secondary 

and non-governing with respect to the physical dissipation captured 

by the joint constitutive model, with no evidence of directional bias 

under cyclic loading.

• The modelling strategy accurately simulated the drift-dependent 

transition in slender wall specimens from initial rocking-dominated 

behavior at low drift to friction-controlled sliding at higher drift 

levels, aligning with observed experimental trends.

• The velocity sensitivity study confirmed that, although the model op­

erates in a quasi-static regime, the imposed displacement rate exerts 

only a modest influence on hysteretic behavior and energy dissipa­

tion once nonlinear mechanisms become active. Very low velocities 

(e.g., 0.5 mm/s) provide the closest agreement with experimental 

energy dissipation, while intermediate velocities (2.5–5 mm/s) offer 

a balance between accuracy and computational efficiency. The opti­

mal choice of velocity remains case-dependent and should be verified 

for each application.

• Comparative analyses were conducted against three established ap­

proaches: the Plasticity-based Combined Cracking Crushing Shearing 

(PCCCS) model in DIANA for the squat double-clamped specimen, 

the Damaging Block-Based (D-BB) model in Abaqus/Standard for 

the squat cantilever specimen, and a DEM-based Tension, Shear, 

Crushing (TSC) interface model for the slender specimens. The pro­

posed model performed on par with these reference methods in terms 

of force–displacement response. Unlike implicit solvers, however, 

the proposed model exhibited no convergence issues, even under 

conditions of large displacement or nonlinear response.

Overall, the proposed cyclic constitutive model provides an efficient 

framework for simulating the seismic behavior of masonry structures 

within the DEM framework. Its ability to capture complex material and 

structural responses, validated against experiments and benchmarked 

with alternative modelling strategies, demonstrates its value as a prac­

tical tool for performance assessment, retrofit design, and the conser­

vation of historical URM systems under cyclic and seismic loading. 

A comprehensive sensitivity/identification study of the empirical/de­

fault parameters is valuable, but beyond the scope of this paper. Here, 

the initial slope in 𝑘𝑛 and 𝑘𝑠 is intentionally tuned to the experimen­

tal test, and a targeted adjustment is made to Eq. (30) to account for 

the small-displacement compliance of the rigid block formulation and 

the different behavior pre- and post-peak under uniaxial compression. 

All other parameters are set from tests or literature and kept fixed, so 

peak strength, post-peak softening, and failure mechanisms are predic­

tive outcomes rather than calibration targets. Future work on this paper 

will address the sensitivity of the empirical parameters included in the

formulation.

This rigid-block interface formulation is applicable to both in-plane 

and out-of-plane actions. In this study, the focus is on in-plane loading 

and validation; however, this does not limit its applicability to out-

of-plane scenarios. Future developments will focus on extending the 

model to address out-of-plane (OOP) response and on validating full-

scale URM buildings and retrofitted systems. The problem dependence 

of the energy-based assessment will also be investigated in various ma­

sonry typologies. In addition, the model will be applied to real-world 

case studies on vulnerability assessment and performance-based engi­

neering of historical masonry assets. Finally, although this study focuses 

on in-plane quasi-static response using dynamic relaxation, the formu­

lation extends to genuinely dynamic analyses by prescribing physical 

time histories, minimizing numerical damping, and including rate/im­

pact effects as needed. A dedicated dynamic validation will be pursued 

in future work.
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Appendix A . Normal force evaluation in a nonlinear interface

Require: 𝑢𝑛, Δ𝑢𝑛, 𝐹𝑛, Δ𝐹𝑛, material & history vars

Ensure: Updated 𝐹𝑛, Δ𝐹𝑛
1: if 𝑢𝑛 < 0 then

2:  if 𝑢𝑛 + Δ𝑢𝑛 ≥ 𝑢𝑛,hist,ten then

3:  𝑢𝑛,hist,ten ← 𝑢𝑛
4:  end if

5:  Compute 𝐹𝑛 from Eq. (12)

6:  return

7: else

8:  if 𝑢𝑛 + Δ𝑢𝑛 ≤ 𝑢𝑛,hist,comp and reloadFlag = 0 then

9:  𝑢𝑛,hist,comp ← −𝑢𝑛
10:  end if

11:  if 𝜎𝑛 + Δ𝜎𝑛 ≥ 𝜎hist,comp then

12:  if 𝑢𝑛 + Δ𝑢𝑛 ≤ 𝑢el,limit then

13:  Compute 𝐹𝑛 from Eq. (12)

14:  else if 𝜎𝑛 + Δ𝜎𝑛 ≤ 𝑓𝑐  then

15:  Compute 𝜎𝑛 from Eq. (22)

16:  𝐹𝑛 ← 𝜎𝑛𝐴𝑐
17:  PlasticFlag = 1.0
18:  end if

19:  return

20:  else

21:  Calculate 𝑢𝑛𝑝𝑙  from Eq. (30)

22:  if Δ𝑢𝑛 ≥ 0 and PlasticFlag = 1.0 then

23:  if 𝑢𝑛 + Δ𝑢𝑛 ≥ 𝑢hist,comp ⋅ 0.985 then ⊳ perturbation Check 

for instabilities

24:  Compute 𝐹𝑛 from Eq. (12)

25:  else

26:  Compute 𝜎𝑛 from Eq. (31)

27:  𝐹𝑛 ← 𝜎𝑛𝐴𝑐
28:  Record 𝑓𝑚𝑟𝑜  and 𝑢𝑛𝑟𝑜  for reloading purpose

29:  reloadFlag = 1.0
30:  end if

31:  return

32:  else if reloadFlag = 1.0 and Δ𝑢𝑛 ≤ 0 then

33:  𝛽 ← recovery factor (Eq. (37)

34:  𝑘𝑟 ←
𝛽𝑓peak−𝑓𝑚,ro

𝑢𝑛,hist,comp−𝑢𝑛,ro
35:  Calculate 𝜎𝑛 from Eq. (35)

36:  𝜎env ← Eq. (22) or Eq. (23)

37:  if 𝜎𝑛 < 𝜎env then

38:  𝐹𝑛 ← 𝜎𝑛𝐴𝑐
39:  else

40:  reloadFlag ← 0
41:  𝐹𝑛 ← 𝜎env𝐴𝑐
42:  end if

43:  end if

44:  end if

45: end if

Appendix B . Joint compression damage scalar for TUD-COMP-0a 

and TUD-COMP-6

Fig. B.25. Joint compression damage scalar plot at the end of analysis.

Data availability

The data that support the findings of this study are available from 

the corresponding author upon reasonable request.
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