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ABSTRACT

We have developed a method to analytically evaluate the
relationship between the source-receiver configuration and the
retrievedwavefield in seismic interferometry performedbymulti-
dimensional deconvolution (MDD). The MDDmethod retrieves
thewavefieldwith the desired source-receiver configuration from
the observed wavefield without source information. We used a
singular-value decomposition (SVD) approach to solve the in-
verse problem of MDD. By introducing SVD into MDD, we ob-
tained quantities that revealed the characteristics of the MDD
inverse problem and interpreted the effect of the initial source-
receiver configuration for a survey design.We numerically simu-
lated the wavefield with a 2D model and investigated the rank of
the incident field matrix of the MDD inverse problem. With a
source array of identical length, a sparse and a dense source dis-
tribution resulted in an incident field matrix of the same rank and

retrieved the samewavefield. Therefore, the optimum source dis-
tribution can be determined by analyzing the rank of the incident
field matrix of the inverse problem. In addition, the introduction
of scatterers into themodel improved the source illumination and
effectively increased the rank, enabling MDD to retrieve a better
wavefield. We found that the ambiguity of the wavefield inferred
from the model resolution matrix was a good measure of the
amount of illumination of each receiver by the sources. We used
the field data recorded at the two boreholes from the surface
sources to support our results of the numericalmodeling.Weeval-
uated the rank of incident field matrix with the dense and sparse
source distribution. We discovered that these two distributions
resulted in an incident field matrix of almost the same rank
and retrieved almost the samewavefield as the numerical model-
ing.This is crucial information for designing seismic experiments
using the MDD-based approach.

INTRODUCTION

Seismic interferometry (SI) is a powerful tool, especially in glo-
bal and regional seismology, for obtaining new information from
noise records, for example, for the retrieval of surface waves to es-
timate their group velocity (e.g., Shapiro et al., 2005) and of scat-
tered waves to detect small changes in their propagation velocity
caused by earthquakes (e.g., Wegler et al., 2009; Minato et al.,
2012b). The theory can be applied to natural earthquake records
(Ruigrok et al., 2010) as well as exploration seismology, for exam-
ple, in conjunction with the virtual source (VS) method (Bakulin
and Calvert, 2006).
Multidimensional deconvolution (MDD) (e.g., Wapenaar et al.,

2011b) is an alternative SI method to SI by crosscorrelation

(CC) (e.g., Curtis et al., 2006; Larose et al., 2006; Schuster,
2009). In the CC method, new seismic wavefields are retrieved
by crosscorrelating the wavefields observed by receivers at many
positions. The MDD method was developed to overcome limita-
tions of the CC method. Contrary to the CC method, the MDD
method is valid for a dissipative medium and compensates for dif-
ferences in source spectra, and it is also valid for irregular source
distributions. Due to these advantages, the MDD method has shown
to be superior in some cases, such as in the retrieval of surface
waves (Wapenaar et al., 2011a), in electromagnetic surveys (Wape-
naar et al., 2008), in use with VSs (van der Neut et al., 2011), and in
crosswell seismic data (Minato et al., 2011). On the other hand,
MDD has several disadvantages compared to the CC method;
MDD requires receiver arrays and cannot be applied to a single
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receiver configuration. MDD further requires an appropriate regu-
larization method to stabilize the solution.
Because the assumptions required for SI are seldom met in field

experiments, evaluation of source illumination during survey design
is mandatory so that the reliability of the retrieved wavefield can be
estimated. For example, when SI is performed by the CC method, it
is assumed that sources are homogeneously distributed along a
closed surface surrounding the receivers (Wapenaar, 2004). There-
fore, the initial source distribution is the most important considera-
tion in the application of SI; the source distribution is the main
determinant of the amount of useful information in the observed
data for retrieval of the new wavefield by SI. The assumption of
homogeneously distributed sources for the CC method can be ex-
plained by using a stationary-phase approximation (e.g., Schuster
et al., 2004; Snieder, 2004). It states that only initial source posi-
tions that satisfy the stationary-phase points of the integral equation
of SI contribute to the produced Green’s function. Furthermore, it
allows us to determine how the objective wavefield can be retrieved
from the source distribution in a particular application of SI. For
example, Mehta et al. (2008) determine the initial source distribu-
tion required to retrieve borehole responses from surface sources by
considering the stationary-phase contribution, and Chaput and
Bostock (2007) also use the stationary-phase approximation to eval-
uate the illumination from subsurface noise sources. Minato et al.
(2012a) use the stationary-phase approximation to effectively image
the plate boundary at the Nankai Trough, Japan, by crosscorrelating
locally distributed natural earthquakes.
Whereas the CC method involves CC and summation, the MDD

method involves solving an inverse problem. Because the MDD
method contains the CC operator (e.g., van der Neut and Thorbecke,
2009; Wapenaar et al., 2011b), it would be possible to apply the
stationary-phase argument. To the authors’ best knowledge, how-
ever, research concerning this issue has not been well studied. In-
stead of the stationary-phase argument, another method, one that
includes a solution to the inverse problem, can be used to evaluate
the relationship between the source-receiver distribution and the re-
trieved wavefield. van der Neut et al. (2011) implement MDD by
introducing the interferometric point-spread function. They find that
the interferometric point-spread function causes crosscorrelated
wavefields to be represented by a blurred wavefield and that inverse
filtering makes it possible to obtain an unblurred wavefield.
Because the shape of the interferometric point-spread function de-
pends on the initial source distribution (Wapenaar et al., 2011b), it
can be used to evaluate the source distribution (van der Neut and
Thorbecke, 2009). Curtis and Halliday (2010) show a method to
correct the amplitude and phase bias introduced in the Green’s func-
tion of the CC method due to the amplitude variation of the sources.
The operator that they use will also show the source illumination.
However, these methods do not reveal quantitative information
about the source illumination such as the data redundancy.
The MDD method solves an equation categorized as the discre-

tized Fredholm integral equation of the first kind, and it appears as
an ill-conditioned linear inverse problem (e.g., Hansen, 2010).
There are a variety of well-known direct and iterative regularization
methods for such problems (e.g., Elden, 1977; Graves and Prenter,
1978; O’Leary and Simmons, 1981; Hansen, 1990; van der Sluis
and van der Vorst, 1990). The use of the regularization method also
gives the information of the ill-conditioned inverse problems
(e.g., Hansen, 1992). Singular-value decomposition (SVD), which

is our method in this paper, is known to be useful to estimate and
remove the redundancy due to use of the basis conversion (e.g.,
Kuybeda et al., 2007).
In this paper, we discuss source illumination and the reliability of

the retrieved wavefield by introducing the truncated SVD as the
regularization for MDD. Recently, we used this method to success-
fully retrieve a crosswell wavefield from vertical seismic profiling
data observed in two vertical wells (Minato et al., 2011). The in-
troduction of SVD into MDD enables us to obtain quantities that
represent characteristics, such as data redundancy, of the MDD
inverse problem.
First, we briefly review the MDD method, focusing on the

inverse problem, and we summarize the relationship between the
interferometric point-spread function and our proposed SVD inver-
sion. Then, by numerical modeling, we show the relationships be-
tween the initial source distribution, the quality of the retrieved
wavefield, and the rank of the kernel matrix of inverse problems
solved by SVD. We show that the rank can be improved by intro-
ducing point scatterers and that the resolution matrix can help us to
evaluate the quality of the retrieved wavefield. Finally, by using
field data, we show that the data redundancy and source illumina-
tion can be investigated by SVD, which supports our results derived
from the numerically modeled data. This is crucial information that
can be used in the design of field experiments using SI.

SEISMIC INTERFEROMETRY BY MDD

Inverse problem

MDD solves the inverse problem arising from the convolution
relationship between the observed and objective wavefield being
estimated:

ĜðxR; xS;ωÞ ¼
Z
S0

^̄GdðxR; x;ωÞĜinðx; xS;ωÞd2x: (1)

This equation is an approximated representation of the Green’s
function derived from convolution-type reciprocity (Wapenaar
and van der Neut, 2010), where Ĝ is the scalar Green’s function
in the space-frequency domain. The function on the left side of
equation 1 represents the response at xR from an initial source at
xS (Figure 1a). The integrand on the right side is the product of

the objective wavefield ^̄GdðxR; x;ωÞ (Figure 1b) and the actual

wavefield Ĝinðx; xS;ωÞ (Figure 1a) in the frequency domain, which
results in time convolution. The source positions of the objective

wavefield ^̄GdðxR; x;ωÞ are distributed along the integration domain
S0. Note that the derivation of equation 1 rests on several assump-
tions: namely, the Sommerfeld condition (that domain S0 has infi-
nite length), the far-field assumption, and the assumption that the
superscript “in” of the actual wavefield Ĝin represents only inward-
propagating waves from physical sources (Wapenaar and van
der Neut, 2010). The subscript d of the objective wavefield
^̄GdðxR; x;ωÞ denotes that the source at x has a dipole charac-

ter, ^̄Gd ≈ n · ∇ ^̄G.
Equation 1 forms a Fredholm integral equation of the first kind,

and we discretized the equation. The objective wavefield ^̄Gd of
equation 1 holds for different source positions xS. We consider mul-
tiple source positions and replace the integral by a summation over
the regularly distributed receivers along an integration domain S0 of
finite length. Then, we obtain the following matrix relation:

Q26 Minato et al.
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pA ¼ PBg; (2)

where pA is a column vector containing the observed wavefield Ĝ at
xR from the initial multiple sources xS. The matrix PB contains the
observed wavefield Ĝin at receivers on the integral surface S0 from
the initial multiple sources, and the column vector g contains the
objective wavefield ^̄Gd. We call the matrix PB, which is created
by the observed wavefield on the surface S0, the incident field ma-
trix (Minato et al., 2011). We estimate the objective wavefield g
from the pseudoinverse of the incident field matrix, represented
by P−1

B as

gest ¼ P−1
B pA: (3)

Equations 2 and 3 imply that the stable and unique estimation of g
requires observations from initial sources that are sufficiently
widely distributed. However, in practical applications, the number
of these sources and their spatial distribution are finite. Therefore
equation 2 becomes an ill-posed problem.

Interferometric point-spread function

Here, van der Neut et al. (2011) modify equation 1 to the cross-
correlated wavefield relationship:

ĈðxR; x 0;ωÞ ¼
Z
S0

^̄GdðxR; x;ωÞΓ̂ðx; x 0;ωÞd2x; (4)

where x 0 ∈ S0 and where ĈðxR; x 0;ωÞ and Γ̂ðx; x 0;ωÞ are the cor-
relation function and the interferometric point-spread function, re-
spectively, which obey the following relations:

ĈðxR; x 0;ωÞ ¼
X
i

ĜðxR; xðiÞS ;ωÞfĜinðx 0; xðiÞS ;ωÞg�; (5)

Γ̂ðx; x 0;ωÞ ¼
X
i

Ĝinðx; xðiÞS ;ωÞfĜinðx 0; xðiÞS ;ωÞg�; (6)

where the summation of i sources is performed. Note that we have
modified the elastic relation of van der Neut et al. (2011) into an
acoustic relation. In equation 4, the crosscorrelated wavefield (left
side) is a blurred (by the interferometric point-spread function) ver-
sion of the objective wavefield. Inverse filtering of the crosscorre-
lated wavefield is equivalent to conducting MDD. Equation 4 can
be rewritten in matrix notation as follows:

P†
BpA ¼ P†

BPBg; (7)

where the symbol † indicates the Hermitian conjugation. The cross-
correlated incident field matrix (P†

BPB) is a point-spread function
matrix whose components are defined by equation 6. The CC func-
tion is filtered by the inverse point-spread function, thus making it
into a delta function (van der Neut and Thorbecke, 2009; van der
Neut et al., 2011):

gest ¼ ðP†
BPB þ ε2IÞ−1P†

BpA; (8)

where I indicates an identity matrix and the symbol ε indicates a
damping factor (Tikhonov’s regularization parameter) to stabilize
the inverse matrix in equation 8. This is equivalent to adopting

the damped least-squares solution for our pseudoinverse of the in-
cident field matrix as

P−1
B ¼ ðP†

BPB þ ε2IÞ−1P†
B: (9)

As mentioned, the interferometric point-spread function blurs the
objective wavefield. It is apparent that the interferometric point-
spread function (in equation 6) and its matrix form (in equation 7)
are dependent on the initial source distribution: If the initial source
distribution creates sufficient illumination for unique estimation of
the objective wavefield, then it is close to the delta function and its
matrix form is close to the identity matrix. Therefore, the shape of
the interferometric point-spread function reveals the quality of the
initial source distribution (van der Neut and Thorbecke, 2009).

Singular-value decomposition

Although the interferometric point-spread function is a good re-
presentation for estimation of the spatial qualities of the source
illumination, it is difficult to determine the characteristics of the in-
verse problem such as the data redundancy. In many applications,
the damping factor in equation 8 is generally not equal to zero (van
der Neut et al., 2011), indicating that the point-spread function ma-
trix (P†

BPB) is not close to the identity matrix. Because the point-
spread function matrix is represented as the CC of the incident field
matrix (equation 6), a point-spread function matrix that is not close
to the identity matrix shows that the incident field matrix inherently
contains redundancy corresponding to the resemblance of data.
Therefore, we introduce SVD into MDD to obtain new information
for evaluating qualities of the wavefield, such as the data redun-
dancy due to the initial source distribution.
We directly solve the inverse problem in equation 2 by adopting

the Moore-Penrose pseudoinverse (Golub and van Loan, 1983) of
the incident field matrix as follows:

Figure 1. The source-receiver configuration for MDD, where
Ĝinðx; xS;ωÞ, ĜðxR; xS;ωÞ, and ^̄GdðxR; x;ωÞ are the acoustic
Green’s functions. (a) Actual wavefield with physical sources at
xS where Ĝinðx; xS;ωÞ represents only inward-propagating waves
recorded at x from the physical sources xS, ĜðxR; xS;ωÞ represents
the wavefield recorded at xR from the physical sources xS, and S0
represents the domain of integration in equation 1. (b) The objective
wavefield ^̄GdðxR; x;ωÞ with VSs at x.

SVD analysis for MDD Q27
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gest ¼ Pþ
BpA ¼ V

�
Δ−1

r 0
0 0

�
UpA: (10)

The matrix Pþ
B is the Moore-Penrose pseudoinverse of the incident

field matrix, and the matrices V, U, and Δr can be obtained by ap-
plying SVD to the incident field matrix PB:

PB ¼ U
�
Δr 0
0 0

�
V†; (11)

where r indicates the rank of the incident field matrix. We define the
rank as the number of nonzero singular values i corresponding to
the specific threshold value Si (cumulative contribution):

Si ¼
P

i
j λjP

j
λj

× 100; (12)

where λi indicates the jth singular value. Here, we define the thresh-
old value (Si) as 99%. This definition indicates that 99% of the en-
ergy of the incident field matrix can be reconstructed by using the
estimated number of singular values. We chose 99% as the thresh-
old value under the assumption that the remaining 1% of energy
consists mostly of noise due to the limitations of computational pre-
cision. When real data that includes field noise (e.g., ambient noise)
are used, the threshold value can be varied according to the energy
of the noise to avoid the amplification effects of noise originated
from the inverse of the singular values in the pseudoinverse (see
equation 10). Note that there are wide arguments to choose the ap-
propriate rank indicating an appropriate model parameter by means
of, e.g., investigating the Picard condition (Hansen, 1990), the

goodness-of-fit of model parameter with Akaike’s information
criterion (Akaike, 1974; Matsuoka and Ulrych, 1986), and the
extended information criterion (Nishizawa and Lei, 1995). Minato
et al. (2009) apply Akaike’s information criterion to estimate the
rank of the incident field matrix.
As we show later, the rank, defined by equation 12, depends on

the initial source distribution. By investigating the rank, the value of
i in equation 12, we can evaluate the effect of the source illumina-
tion and data redundancy quantitatively.

SOURCE DISTRIBUTION AND RANK OF THE
INCIDENT FIELD MATRIX

To demonstrate our approach, we numerically simulated wave-
fields and investigated the relationship between the initial source
distribution and the rank of the incident field matrix, determined
with equation 12 from the singular values. For clarity and simpli-
city, we considered the 2D case with a homogeneous medium. For a
monochromatic response, the asymptotic Green’s function is as
follows:

GðdÞ ¼ ð8πkdÞ−0.5eiðkdþπ∕4Þ; (13)

where d indicates the distance from the source and k is the
wavenumber. Hereafter, we calculate the response at 50 Hz with
a propagation velocity of 1500 m∕s.

Dense source distribution

We established 101 initial sources xS evenly spaced along a hor-
izontal line with a length of 400 m at depth ¼ 0 m (Figure 2a). We
assumed that the integration domain S0 was a line parallel to the
horizontal axis with a length of 400 m at depth ¼ 300 m, and
we established 41 evenly spaced receivers along S0. These receiver
positions become the VS positions after SI is performed. Further-
more, we established another 21 receivers xR along a vertical line
with a length of 100 m at position ¼ 0 m. Note that by establishing
multiple receivers xR, the vectors in the matrix relation, equation 2,
are replaced by matrices whose columns represent the different po-
sitions of the receivers xR. However, this use of multiple receivers
does not change the incident field matrix. In this case, the incident
field matrix (PB) is a 101 × 41 matrix. This source-receiver config-
uration can be interpreted as several actual observations; for
example, a surface receiver array that observes natural earthquakes
to retrieve the surface waves, or two boreholes (one horizontal and
one vertical) that observe the wavefield from surface sources to
retrieve the interborehole response.
We show the point-spread function matrix (P†

BPB) derived from
the constructed incident field matrix in Figure 3. It is apparent that
this matrix is not an identity matrix and that the off-diagonal ele-
ments have nonzero values. This result indicates that the original
data contain similar wavefields, as pointed out by Minato et al.
(2011). After constructing the incident field matrix, we applied
SVD (complex-value SVD in this case) and determined the rank
of the incident field matrix as the number of singular values ob-
tained with equation 12. The estimated rank was 16 (Figure 4), in-
dicating that the incident field matrix with this initial source
distribution is a nonfull rank matrix. We applied the Moore-Penrose
pseudoinverse solution, equation 10, to retrieve the objective
wavefield (Figure 5a) and compared it with the directly modeled

Figure 2. Source-receiver configurations for numerical modeling:
(a) dense source distribution, (b) sparse source distribution, (c) lo-
calized source distribution, and (d) localized source distribution
with scatterers.
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wavefield (Figure 5b; only the phases are shown). The matrix in
Figure 5b shows the true phase values at the multiple receivers
xðiÞR from the multiple VSs xðiÞ, and Figure 5a shows the inverted
phase values. For example, the true phase values from the VS at
xð21Þ (white dotted line in Figure 5b) are shown in Figure 5c. These
are equivalent to the time domain data at xðiÞR from the VS at xð21Þ

(Figure 5d) after extraction of their phases at 50 Hz.
The phases from the VSs near the center of S0 (the part of the

domain within the dashed white lines in Figure 5a) were better
retrieved than those at the edge of S0 because, given our source
distribution, the centrally located receivers likely receive many ray-
paths corresponding to the desired wavefield (gray hatched area in
Figure 2a).
The fact that the incident field matrix was estimated to be a non-

full rank matrix implies that it would be possible to use the basis
conversion to construct the incident field matrix from fewer
observed data. In other words, the observed data at S0 contain re-
dundant data. We assumed that the density of the source distribution
was one reason for this data redundancy and performed another
numerical simulation with fewer sources.

Sparse source distribution

We established initial sources xS along a line at depth ¼ 0 mwith
the same length (400 m) as that used for the dense source distribu-
tion, but we reduced the number of sources to 18 (Figure 2b). The
absolute values of the singular values obtained from the incident
field matrix constructed by using this sparse source distribution
(Figure 6a) decreased relative to those obtained with the dense
source distribution because the total energy in the observation sys-
tem decreased. Furthermore, the maximum possible rank is 18 be-
cause the rank r ≤ minðm; nÞ, where m and n indicate the number
of sources and the number of receivers, respectively. However, the
rank estimated from the number of singular values, equation 12, is
identical to that of the dense source distribution, 16. Furthermore,
the retrieved wavefield (Figure 6b) is almost identical to that re-
trieved with the dense source distribution (Figure 5a). Therefore,
the dense source distribution (101 sources along 400 m) can be re-
placed by a sparse distribution (18 sources along 400 m). The rank
of the incident field matrix obtained by using SVD can thus be used

to determine a more efficient source distribution when planning a
field survey by SI.
Here, we decided to reduce the number of sources to 18 by per-

forming calculations for various numbers of sources while keeping
the length of the source array and changing only the distance be-
tween sources. When we reduced the number of sources to less than

Figure 3. The point-spread function matrix (absolute values). The
receiver number corresponds to the receiver’s position in the inte-
gration domain shown in Figure 2a.

Figure 4. Singular values of the incident field matrix, their cumu-
lative contribution, and the determined rank for the dense source
distribution (see Figure 2a).

Figure 5. The phase from (a) the wavefield retrieved by MDD and
(b) the true wavefield. The vertical and horizontal axes show the
(virtual) source number and the receiver number, respectively.
The dashed white lines in (a) enclose the area within which the
MDD better retrieved the true phase. (c) The phase from the VS
at xð21Þ in the true wavefield (white dotted line in [b]). (d) The true
wavefield in the time domain for the VS at xð21Þ convolved with the
Ricker wavelet (central frequency of 50 Hz).
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15, the incident field matrix was a full rank matrix, but it retrieved
an inferior wavefield. This result indicates that even though we
could uniquely estimate the wavefield with a full rank matrix,
we failed to estimate the true wavefield because the number of in-
dependent data useful for the inversion was less than 16.
The spacing between sources resulting in the maximum rank for

the same retrieved wavefield may depend on the wavelength. In the
sparse distribution, the sources were 23.5 m apart, a distance that is
close to the wavelength of this simulation (λ ¼ v∕f ¼ 30 m). This
result suggests that to retrieve a better wavefield, we should deter-
mine the source distribution that results in the maximum rank. This
source distribution will well illuminate the receivers. Note that this
procedure is possible by introducing SVD into MDD; evaluation
using the point-spread function matrix gives no information about
the number of independent data.
Figure 6c compares the retrieved wavefield with different source

distribution in the time domain for the VS at xð21Þ after convolving
the Ricker wavelet (central frequency of 50 Hz). One can see that
the wavefield is almost identical for the dense source distribution
(red line) and the sparse source distribution (black line). However,
the sparse source distribution contains a lower amount of high-fre-
quency noise compared to the dense source distribution (inset of
Figure 6c). Because we determined the source distribution at

50 Hz, the retrieved wavefield at a higher frequency with the shorter
wavelength includes noise arising from the subsampling of the
sources. In Figure 8c, however, convolving the Ricker wavelet
(central frequency of 50 Hz) effectively suppresses these noises.
Note that the use of this Ricker wavelet also suppresses the higher
frequency signals. This observation suggests that one can estimate
the optimal source distribution with the central frequency or the
highest frequency at the certain bandwidth that one would like
to consider for the survey design.

Localized source distribution

To investigate inhomogeneous illumination by sources, we also
modeled a localized source distribution (Figure 2c). We established
101 sources evenly spaced along a horizontal line of length 200 m at
depth ¼ 0 m. The singular values obtained from the incident field
matrix (Figure 7a) show that the rank determined from the singular
values by the criteria of equation 12 (r ¼ 11) is less than that
obtained with the sources distributed along a longer line
(r ¼ 16; Figure 4). Furthermore, the wavefields retrieved by
MDD (Figure 7b) show that the true response is retrieved from only
a part of the domain (between the dashed white lines in Figure 7b).
These results reflect the narrower area illuminated by the initial
sources (shaded area in Figure 2c) and the greater data redundancy,
compared with the dense source distribution described above.

Effect of introducing scatterers

We consider the slightly complex medium rather than the homo-
geneous medium by introducing scatterers in the model. The intro-
duction of scatterers into the model increases illumination by the
sources, and it is expected to retrieve a better wavefield. In this sec-
tion, we show that these observations are confirmed by the improve-
ment of the rank of the incident field matrix.
We used the same source distribution as in the previous section

but distributed 301 point scatterers randomly in a 200- × 300-m

area on the right of the source position (Figure 2d). Here, we
simulated the wavefield as the summation of the direct wave with

Figure 7. (a) Singular values of the incident field matrix, their
cumulative contribution, and the determined rank for a localized
source distribution without scatterers (see Figure 2c). (b) Wavefield
(phase) estimated by MDD. The dashed white lines in panel (b)
enclose the area within which the MDD better retrieved the true
phase.

Figure 6. (a) Singular values of the incident field matrix, their cu-
mulative contribution, and the determined rank for the sparse source
distribution. (b) Wavefield (phase) estimated byMDD. (c) Retrieved
wavefield in the time domain for the VS at xð21Þ convolved with
Ricker wavelet (central frequency of 50 Hz) for the dense source
distribution (red line) and the sparse source distribution (black line).
(c) Inset, enlarged view of the record at xð7ÞR .
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background velocity and the primary scattering wave without con-
sidering the interaction between scatterers. The MDD result showed
that the rank of the incident field matrix was increased slightly to 12
(Figure 8a), and the wavefield was better retrieved around the center
of the VSs (Figure 8b) compared with that retrieved without scat-
terers (Figure 7b). Furthermore, the retrieved wavefield in the time
domain for the VS at xð25Þ and the receivers between xð1ÞR to xð6ÞR is
shown in Figure 8c. Figure 8c contains the true wavefield (black
line) and the retrieved wavefield from the localized source distribu-
tion without scatterers (blue line) and those with scatterers (red
line). One can see that the results of the interferometry are noisy
due to the insufficient illumination of the sources. However, the ar-
rival time of the peak amplitude for the result of the scatterers (red
line) is closer to the true wavefield (black line) compared to the
result without scatterers (blue line). This result indicates that the
presence of scatterers improved the illumination of the receivers
and reduced the data redundancy, which improved the rank of
the incident field matrix.

EVALUATION OF THE RETRIEVED WAVEFIELD
BY SVD MATRICES

Let us consider matrices V, U, and Δr obtained by SVD of the
incident field matrix (equation 11). The model resolution matrix
(Menke, 1989), which is a weighted matrix applied to the true mod-
el, is related to the SVD matrices as follows:

R ¼ VV†: (14)

If we have a sufficient number of observations to uniquely retrieve
the true wavefield gtrue from the data, then the estimated wavefield
gest conforms to gtrue. Therefore, the model resolution matrix R is
close to an identity matrix when the estimated wavefield is close to
the true wavefield, as can be inferred from the fact that the repre-
sentation of the model resolution matrix is identical to the projection
matrix between the data (pA) space and the model (g) space
(Lawson and Hanson, 1974).
We used the observation system with a localized source distribu-

tion (Figure 2c) without scatterers and calculated the absolute
values of R with equation 14 (Figure 9a). The diagonal component
became less sharply defined as the number of receivers increased
(Figure 9a), indicating that the wavefields whose VSs are on the
right side in Figure 2c were blurred. This result is also consistent
with the result for the localized source distribution, where the es-
timated wavefield did not reflect the VSs located on the right side
(did not well illuminate the receivers with higher numbers;
Figure 7b). Furthermore, the diagonal component values of R
(Figure 9b), which show the portion of the true model reflected
in the estimated model, also indicate that the receivers with higher
numbers contributed less. Although the R value of the receivers at
each end of the array is large (Figure 9b), we cannot evaluate the
adequacy of the model at the ends because we assumed the length of
S0 to be finite.
We also calculated R (Figure 9c) for a wider source distribution

(over 400 m; Figure 2a). Because this source distribution results in
a larger rank than the localized source distribution, R is close to
the identity matrix. Furthermore, the diagonal component values
(Figure 9d) of the central receivers were larger, reflecting the fact
that the central receivers were well illuminated by the sources
(Figure 2a).

REAL DATA EXAMPLE

We showed that the data redundancy and the source illumination
can be analyzed by introducing SVD into MDD. However, the re-
sults are derived only from the numerically modeled data using a
homogeneous velocity model. In this section, therefore, we show
several observations that support the results of our numerical mod-
eling using real data that contain a more complicated velocity
structure.
The real data are from vertical seismic profiling (VSP) consisting

of seismic records observed at two vertical boreholes due to the sur-
face sources (Figure 10a). The borehole offset is 50 m. For demon-
stration purposes, we use 51 receivers (hydrophones) at well-2
locating from 28- to 128-m depth, corresponding to the xðiÞ for
the integration domain S0, and one receiver at well-1 locating
140-m depth for xR in equation 1. The 13 explosive surface sources
are installed to the right of well-2 at approximately 5-m intervals,
and the total source array length is 65 m (Figure 10a). The upper
200 m of the survey area are composed mainly of horizontal alter-
nating layers of sandstone and tuff. Figure 10b shows the P-wave
velocity log from well-2.
To demonstrate the same analysis as in the numerical modeling

section, we retrieve the direct waves from the VSs at well-2 to the

Figure 8. (a) Singular values of the incident field matrix, their
cumulative contribution, and the determined rank for a localized
source distribution with scatterers (see Figure 2d). (b) Wavefield
(phase) estimated by MDD. (c) Retrieved wavefield in the time
domain for the VS at xð25Þ without scatterers (blue line) and with
scatterers (red line). Only the waveform around the direct arrivals is
shown in this figure. The black line indicates the true wavefield.
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receiver at well-1 using MDD. Note that one can refer to Minato
et al. (2011) for the retrieval of the reflection responses between
boreholes using the same data. The temporal recording length is
0.4 s at a sampling rate of 0.25 ms. Figure 11 shows an example
of the data recorded at well-2 from the surface sources. Here we use
only direct arrivals for the input data and mute the rest of the wave-

forms to check the source illumination corresponding to the numer-
ical modeling section.
Figure 12a shows the calculated singular values and the rank at

each frequency from 0 to 300 Hz for all sources (13 sources). The
frequency interval is 2.5 Hz. The rank was determined using 95% of
the singular value of the global maximum (Minato et al., 2011). For

each frequency, the rank is smaller than the max-
imum possible rank (13 in this case) indicating
that the data contain redundancy. Similar to
the numerical modeling section, we reduce the
number of the sources and perform SVD again.
Figure 12b is similar to Figure 12a, but we re-
duce the number of sources to seven (approxi-
mately 10-m intervals) in Figure 12b. One can
see that the rank of a small number of sources
(Figure 12b) is almost identical to that of a large
number of sources (Figure 12a). Figure 13 show
the retrieved receiver gathers in the time domain
using these two different source distributions.
The result is obtained after applying MDD (equa-
tion 10) followed by the convolution with Ricker
wavelet (central frequency of 100 Hz). One can
see that the result of the 13 sources (red line) has
the almost same waveforms of the result of the
seven sources (black line) in Figure 13. This re-
sult demonstrates that the 13 sources can be effec-
tively replaced by the seven sources similar to the
numerical modeling section.
The green line in Figure 13 shows the travel-

times of the first arrivals estimated using the
P-wave velocity log (Figure 10b) assuming a hor-
izontally layered structure. One can see that the
MDD results better retrieved the direct arrivals
for the shallower VS positions than the deeper
positions. Furthermore, the retrieved record
for the deeper VS contains noise that appeared

Figure 9. (a) The absolute values of the model resolution matrix VV† for a localized
source distribution (see Figure 2c). (b) Diagonal components of (a). (c) The absolute
values of the model resolution matrix for a wider source distribution (see Figure 2a).
(d) Diagonal components of (c). The receiver number corresponds to the receiver posi-
tion in the integration domain S0 shown in Figures 2a and 2c.

Figure 10. (a) Source-receiver configurations for the real data
example. (b) The logged P-wave velocity at well-2.

Figure 11. The example of the direct arrival data recorded in well-2
from the fifth surface source at 20 m apart from well-2.
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before the first arrivals. These observations can be due to the lack of
the desired wavepath in the observed records from the surface
sources as shown by the shaded area in Figure 10a.
We conclude this section by showing the model resolution matrix

R as the measure of the source illumination. Figure 14a shows the
model resolution matrix (absolute values) at 100 Hz, and Figure 14b

shows its diagonal component. Due to the complexity of the re-
corded waveforms, the diagonal components showed a complex
curvature compared to those from the numerically modeled data.
However, it shows that the smaller receiver number tends to have
a larger value, which is reflecting the shallow receivers were well
illuminated by the sources. Note that in the field data example, the
computation time to solve the MDD inverse problems including
SVD was short (∼1.4 s) using an Intel Core 2 (2.00 GHz) PC with
4 GB memory.

CONCLUSION

We showed that the introduction of SVD into MDD is an analytic
method to estimate the relationship between the source-receiver
configuration (data redundancy) and the retrieved wavefield due
to the initial source distribution using the quantity that represents
the characteristics of the inverse problem. We numerically simu-
lated a 2D scalar wavefield and investigated the relationship be-
tween the rank of the observation matrix (incident field matrix)
and the density of the initial source distribution. The result showed
that the use of a sparse source distribution did not reduce the rank of
the incident field matrix compared to a dense source distribution
along a source array of constant length in our example. Further-
more, it did not change the reliability of the wavefield retrieved
by MDD. This indicates that a denser source distribution does
not necessarily improve the retrieval of the wavefield. Therefore,
a more efficient source distribution can be determined by investi-
gating the rank of the incident field matrix. Also, we could evaluate
the projection matrix constructed using the SVD matrices (the

Figure 14. (a) The absolute values of the model resolution matrix
VV† for 13 sources at 100 Hz. (b) Diagonal components of (a). The
receiver number corresponds to the receiver position in well-2
(see Figure 10a).

Figure 13. Retrieved receiver gather using MDD for the dense
source distribution (13 sources, red line) and the sparse source
distribution (seven sources, black line). Note that these two results
have almost the same waveforms. The green line indicates the
traveltime of the first arrival estimated from the logged data
(Figure 10b).

Figure 12. Singular values of the incident field matrix and the de-
termined rank at each frequency for (a) the dense source distribution
(13 sources) and (b) the sparse source distribution (seven sources).
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model resolution matrix) by using the data from spatially localized
sources. The ambiguity of the model inferred from the model reso-
lution matrix showed the same trend as the discrepancy between the
estimated wavefield and true wavefield. Therefore, the reliability of
the estimated model can be evaluated by the matrices obtained by
SVD. Furthermore, we demonstrated that the same discussions of
the source-receiver configuration using SVD are successfully
derived with the real data (vertical seismic profiling data), which
supports our results of the numerical modeling. This is crucial in-
formation for designing seismic experiments with an MDD-based
approach.
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