

Delft University of Technology

Machine learning assisted Differential Evolution for the Dynamic Resource Constrained
Multi-project Scheduling Problem with Static project Schedules

van der Beek, T.; van Essen, J. T.; Pruyn, J.; Aardal, K.

DOI
10.1016/j.ejor.2025.05.059
Publication date
2025
Document Version
Final published version
Published in
European Journal of Operational Research

Citation (APA)
van der Beek, T., van Essen, J. T., Pruyn, J., & Aardal, K. (2025). Machine learning assisted Differential
Evolution for the Dynamic Resource Constrained Multi-project Scheduling Problem with Static project
Schedules. European Journal of Operational Research, 327(3), 808-819.
https://doi.org/10.1016/j.ejor.2025.05.059
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ejor.2025.05.059
https://doi.org/10.1016/j.ejor.2025.05.059

European Journal of Operational Research 327 (2025) 808–819

A
0

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Discrete optimization

Machine learning assisted Differential Evolution for the Dynamic Resource

Constrained Multi-project Scheduling Problem with Static project Schedules
T. van der Beek a ,∗, J.T. van Essen b , J. Pruyn a , K. Aardal b
aMaritime and Transport Technology, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
b Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

A R T I C L E I N F O

Keywords:
Resource constrained project scheduling
problem
Stochastic optimization
Modular production
Machine learning

 A B S T R A C T

In large modular construction projects, such as shipbuilding, multiple similar projects arrive stochastically. At
project arrival, a schedule has to be created, in which future modifications are difficult and/or undesirable.
Since all projects use the same set of shared resources, current scheduling decisions influence future scheduling
possibilities. To model this problem, we introduce the Dynamic Resource Constrained Multi-project Scheduling
Problem with Static project Schedules. To find schedules, both a greedy approach and simulation-based
approach with varying scenarios are introduced. Although the simulation-based approach schedules projects
proactively, the computing times are long, even for small instances. Therefore, a method is introduced
that learns from schedules obtained in the simulation-based method and uses a neural network to estimate
the objective function value. It is shown that this method achieves a significant improvement in objective
function value over the greedy algorithm, while only requiring a fraction of the computation time of the
simulation-based method.
1. Introduction

Modular production is used in various industries to combine the
benefits of product standardization with the ability to meet customer
specific demands. This is usually done by defining a base product and
optional modules, which can be selected to configure the product. In
modular production for large construction products, such as shipbuild-
ing (Agarwala, 2015), aircraft manufacturing (Buergin et al., 2018),
or housing construction (Neelamkavil, 2009), this results in similar
projects arriving sequentially. These projects have to be scheduled
while satisfying resource and time constraints. A well studied problem
in scheduling is the Resource Constrained Project Scheduling Problem
(RCPSP). This problem consists of a set of activities that have to be
scheduled, subject to resource and precedence constraints. The goal is
to minimize the makespan: the total project duration.

At the moment of scheduling a project, there might be some indica-
tion about the arrival time of the next project. Furthermore, since large
construction projects require communication and resource reservation
across multiple stakeholders, modification of earlier made schedules
can be undesired or even impossible. Therefore, it is desired to com-
pletely schedule a project, without postponed decisions or later modi-
fications. Since all projects use the same set of shared resources, each
schedule influences future scheduling capabilities.

∗ Corresponding author.
E-mail addresses: T.vanderBeek@tudelft.nl (T.v.d. Beek), J.T.vanEssen@tudelft.nl (J.T.v. Essen), J.F.J.Pruyn@tudelft.nl (J. Pruyn), K.I.Aardal@tudelft.nl

(K. Aardal).

To model these properties of project scheduling for modular pro-
duction, the Dynamic Resource Constrained Multi-Project Scheduling
Problem with Static project Schedules (DRCMPSP/SS) is introduced in
this paper. This problem consists of a set of stages in which projects
arrive sequentially. At each project arrival, we assume to have an
estimate of the arrival time of the next project. As soon as a new project
arrives, it has to be scheduled completely, without the possibility to
reschedule. In reality, rescheduling is possible. However, by assuming
the opposite, we find solutions that are robust against the uncertain
arrival of future projects. Furthermore, the goal of the DRCMPSP/SS is
to minimize the weighted average makespan of all projects.

As is discussed in Section 2, there are various studies on the dy-
namic arrival of new projects for the RCPSP. However, to the best
of our knowledge, research on proactive resource constraint project
scheduling where the uncertainty is in the complete structure of the
arriving project and projects need to be completely scheduled immedi-
ately without later modifications, is limited. One possible reason for
this might be that proactive scheduling of complete projects results
in a computationally very expensive problem, for which finding good
solutions takes very long.

The contribution of this paper is threefold. First, we formally
introduce the DRCMPSP/SS. Secondly, we introduce a new solution
https://doi.org/10.1016/j.ejor.2025.05.059
Received 22 June 2024; Accepted 30 May 2025
vailable online 14 June 2025
377-2217/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/eor
https://www.elsevier.com/locate/eor
https://orcid.org/0000-0002-0731-1165
https://orcid.org/0000-0002-9631-3612
https://orcid.org/0000-0002-4496-4544
https://orcid.org/0000-0001-5974-6219
mailto:T.vanderBeek@tudelft.nl
mailto:J.T.vanEssen@tudelft.nl
mailto:J.F.J.Pruyn@tudelft.nl
mailto:K.I.Aardal@tudelft.nl
https://doi.org/10.1016/j.ejor.2025.05.059
https://doi.org/10.1016/j.ejor.2025.05.059
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2025.05.059&domain=pdf
http://creativecommons.org/licenses/by/4.0/

T.v.d. Beek et al. European Journal of Operational Research 327 (2025) 808–819
representation that supports time gaps and present a simulation-based
heuristic optimization algorithm. Finally, we propose a heuristic
method based on objective function estimation by a neural network that
is trained with data from the simulation-based method. These methods
are compared against a greedy alternative: scheduling each project as
well as possible without looking ahead.

In Section 2, we first give an overview of research related to the
DRCMPSP/SS. Subsequently, we give a description of the problem in
Section 3. Then, in Section 4, the solution methods are given. Finally,
we present the results of the computational study in Section 5 and
conclude the paper in Section 6.

2. Literature review

The RCPSP was introduced by Pritsker et al. (1969) and proven to be
NP-hard by Blazewicz et al. (1983). It has been one of the most studied
scheduling problems, which has resulted in many solution methods
and variations. In this section, we first give a general introduction of
the RCPSP under uncertainty, before presenting related research on
the RCPSP with new project arrivals. Furthermore, since the meth-
ods in these papers do not seem suitable for the DRCMPSP/SS, we
present research on estimating the objective function within heuristic
algorithms.

Numerous researchers have studied versions of the RCPSP under
uncertainty. Herroelen and Leus (2005) give an overview of different
variants of the RCPSP without the assumption of complete information.
They differentiate methods on how they react to disruptions or uncer-
tainty. The first type is called predictive-reactive scheduling. Here, a
baseline (or predictive) schedule is created before execution, and as
soon as changes in the input are revealed this schedule is repaired
or modified. The second type is dynamic scheduling, which does not
change or repair a baseline schedule, but where a scheduling policy is
decided upon that can deal with uncertainty.

As there are many different types of uncertainties for the RCPSP, we
focus especially on the Resource Constrained Multi-Project Scheduling
Problem (RCMPSP) with arriving projects. In this setting, baseline
scheduling is usually done with the assumption that there is a penalty
for modifying earlier defined schedules. This is done by Pamay et al.
(2014), who present an RCMPSP problem with new project arrivals and
weighted earliness and tardiness costs. At each project arrival time,
a local search heuristic is used that minimizes the makespan of the
new project plus the earliness and tardiness penalties for deviations
of previously scheduled projects. A similar problem is investigated
by Capa and Ulusoy (2015). They consider a problem that includes
preemption, stochastic durations and new project arrivals, and use a
genetic algorithm to minimize the makespan and the total sum of
absolute deviations.

For the DRCMPSP/SS, modifications of earlier schedules are not
allowed. Therefore, research on dynamic scheduling is presented here.
Problems of this kind are usually modeled with Markov Decision
Processes (MDP).

Choi et al. (2007) study an RCMPSP with uncertainty in duration,
costs and task outcome and with new project arrivals, with the goal
of cost minimization. They model this as an MDP where the possible
actions at each timestep are whether to perform, not perform or cancel
each task. They heuristically create state–action pairs by simulation and
use Q-learning to find solutions to this problem. They present solutions
for instances with up to 5 different project types. Another variant is
given by Salemi Parizi et al. (2017). They consider an RCPSP with new
project arrivals, where new projects are rejected if there are too many
incomplete projects in the queue. At each time, the policy determines
which tasks to start in order to minimize the infinite-horizon discounted
expected profit. This is solved with a simulation-based approximate
policy iteration method and computational results are given for in-
stances with up to 15 different project types. Satic et al. (2020) solve
a stochastic RCMPSP with new project arrivals with cost minimization
809
based on early/late finish penalties. They provide exact solutions based
on an MDP and dynamic programming, and compare this to a priority
rule based reactive algorithm and a genetic algorithm. This is done for
fairly small instances, with the largest containing 4 project types with
all 2 tasks per project.

All these MDP-based approaches have certain characteristics in
common. First of all, they handle instances with relatively few types
of projects and relatively small projects in terms of number of tasks.
Secondly, they provide policies to decide between projects at various
given time steps, instead of making all decisions at the start of a project.
Therefore, we broaden our view.

The field of simulation optimization has both the characteristics of
handling very expensive to compute objective functions by simulat-
ing stochastic processes and making multiple decisions at one deci-
sion stage. More precisely, it deals with optimization problems where
the objective function and/or constraints can be evaluated through a
stochastic simulation. Since the DRCMPSP/SS has these characteris-
tics as well, we further explore this method, instead of MDP based
approaches. For more details on simulation optimization, we refer to
various surveys (Amaran et al., 2016; Juan et al., 2015; Homem-de
Mello & Bayraksan, 2014).

When considering simulation optimization, the main difficulty for
the DRCMPSP/SS is that each simulation contains the scheduling pro-
cess of newly arriving projects, and therefore, will be computationally
very expensive. A method for dealing with computationally expensive
objective functions is estimation with machine learning, which has
been studied for various problems. One of these is a machine scheduling
problem studied by Hao et al. (2016). They solve a problem consisting
of machine assignment and sequencing decisions, where they use a
so called extreme learning machine to estimate the value of a specific
machine assignment. This is subsequently used by a differential evo-
lution algorithm. Park and Kim (2017) present a general optimization
algorithm where a particle swarm optimization algorithm uses a neural
network to estimate the fitness function for each particle, based on
the fitness of the parent. This is used to select promising solutions for
full fitness function computation. This algorithm is used to optimize
10 benchmark functions. Another approach using objective function
estimation can be seen in Zheng et al. (2020). Here, an assembly
job shop problem is studied with optimization on makespan and its
expected deviation. The expected deviation is estimated by a radial
basis function network that uses data from previously ran Monte Carlo
simulations. This estimator is then used within a tabu search heuristic
to find good solutions to the problem.

In conclusion, there has been quite some research on the RCMPSP
with new project arrivals, but these approaches seem unsuitable for
the DRCMPSP/SS. Therefore, we have expanded our search to simu-
lation optimization and objective function estimation to find different
building blocks in order to handle the DRCMPSP/SS.

3. Problem description

In this section, we give a problem description of the DRCMPSP/SS.
We start by describing the environment of the arriving projects and the
scheduler. Subsequently, we present the structure of a single project,
and finally, we explain the full optimization problem, consisting of
multiple projects.

The DRCMPSP/SS environment consists of a project generator and a
project scheduler, which operate sequentially for |𝐾| iterations, where
𝐾 is the set of stages, i.e., 𝐾 = {1,… , |𝐾|}. In the first iteration, i.e. for
𝑘 = 1, the project generator outputs the first project 1, its arrival time
𝜏1 = 0 and the earliest arrival time for the next project 𝜏2𝑚𝑖𝑛. After this,
the project scheduler schedules the first project 1. In each subsequent
iteration 𝑘 > 1, the project generator outputs a project 𝑘, earliest
next arrival time 𝜏𝑘+1𝑚𝑖𝑛 , and current arrival time 𝜏𝑘 = 𝜏′𝑘 + 𝜏𝑘𝑚𝑖𝑛, where
𝜏′𝑘 ≥ 0 is the deviation from the estimate 𝜏𝑘 . Therefore, the time is
𝑚𝑖𝑛

T.v.d. Beek et al. European Journal of Operational Research 327 (2025) 808–819
Fig. 1. Scheduling environment with the project scheduler and the project generator.

incremented until 𝜏𝑘, the arrival time of project 𝑘, and project 𝑘 is
scheduled by the project scheduler. The process is illustrated in Fig. 1.

At each stage 𝑘 ∈ 𝐾, we let 𝛯𝑘 be the random variable repre-
senting the generated project. Thus, each realization 𝜉𝑘 of 𝛯𝑘 is a
3-tuple (𝑘, 𝜏𝑘, 𝜏𝑘+1𝑚𝑖𝑛). The shared project environment consists of a set
of resources 𝑅 that have to be shared across all projects. The resource
availability 𝜆𝑟 defines the total capacity of resource 𝑟 ∈ 𝑅. Furthermore,
we define 𝑇 as the set of time periods in which the projects can be
scheduled.

At decision step 𝑘, we obtain a single project 𝑘 = (𝑁𝑘, 𝑃 𝑘,𝐝𝑘,𝐛𝑘).
For brevity, we omit the superscript 𝑘 as long as it is clear from context
or irrelevant. The project  consists of a set of activities 𝑁 where each
activity 𝑖 ∈ 𝑁 has a deterministic duration 𝑑𝑖. Furthermore, a set of
precedence relationships is given: precedence relationship (𝑖, 𝑗) ∈ 𝑃
imposes that activity 𝑖 ∈ 𝑁 has to finish before activity 𝑗 ∈ 𝑁
can start. All activities have to be scheduled after the project arrival
time 𝜏𝑘, while satisfying all precedence relationships. Furthermore,
each activity 𝑖 ∈ 𝑁 requires a constant quantity of 𝑏𝑟𝑖 of resource
𝑟 ∈ 𝑅 between the start and end time, and the total requirement of
all activities, plus any resource requirements from previous projects,
cannot exceed the resource limit 𝜆𝑟 at any time. A mixed integer linear
program formulation of this problem is given in Pritsker et al. (1969).

In the standard RCPSP, the objective is to minimize the makespan
of the project. However, in the DRCMPSP/SS, we are interested in
minimizing the combined makespan of all projects instead. Simply
taking the average of the makespan would unfairly focus more on larger
projects. Therefore, based on the research of Chen et al. (2019), we
minimize the average makespan divided by the critical path length per
project. The critical path length is the duration of the project, while
relaxing the resource constraints (Artigues et al., 2008). This can be
calculated quickly and can be used as a measure for the size of the
project. Thus, the goal is to minimize the expected sum of the makespan
over the critical path for each project.

We denote 𝑋 to be a solution to project  . The objective function
of this single project is called the current objective and is defined as
the makespan divided by the critical path length:

𝑜𝑏𝑗(𝑋) =
makespan(𝑋)

critical path length(𝑋)
(1)

Furthermore, we introduce the notation 𝑥[𝑖] = {𝑥1,… , 𝑥𝑖} for any in-
dexed variable 𝑥. Thus, 𝑋[𝑘] contains the solution vectors {𝑋1,… , 𝑋𝑘}
for projects 1 to 𝑘. Additionally, let 𝑘(𝑋[𝑘−1]) be the solution space of
project 𝑘, given solutions to earlier projects 𝑋[𝑘−1]. With this notation,
we define the cost-to-go function 𝑐𝑡𝑔𝑘 for all 𝑘 ∈ 𝐾:
𝑐𝑡𝑔𝑘

(

𝑋[𝑘 − 1], 𝛯𝑘) = min
𝑋𝑘∈𝑘(𝑋[𝑘−1])

𝑜𝑏𝑗(𝑋𝑘) +E
[

𝑐𝑡𝑔𝑘+1(𝑋[𝑘], 𝛯𝑘+1)
]

. (2)

The first part of this function is the current objective of the con-
sidered project 𝑘 ∈ 𝐾 and the second part is the expectation of all
future projects. By defining this as iterative minimization functions, the
minimization at each decision stage finds the minimal value, given that
the future decisions also minimize the cost-to-go. Therefore, optimizing
Eq. (2) for 𝑘 = 1 captures all decision stages due to the iterative
formulation. If we define 𝑐𝑡𝑔 = 𝑐𝑡𝑔1, the optimization problem can be
expressed as:
𝑐𝑡𝑔 = 𝑐𝑡𝑔1

(

∅, 𝛯1) = min
𝑋1∈1

𝑜𝑏𝑗(𝑋1) +E
[

𝑐𝑡𝑔2(𝑋[1], 𝛯2)
]

. (3)

Furthermore, all notation used throughout this paper is presented
in Appendix.
810
4. Solution methods

In the previous section, the DRCMPSP/SS is described. An instance
of the DRCMPSP/SS consists of a set of shared resources and an
uncertain number of projects with unknown activity properties and
project arrival time. This results in a multi-stage stochastic problem,
where for each stage an 𝑁𝑃 -hard problem needs to be solved and the
expected objective value of multiple future 𝑁𝑃 -hard problems needs
to be determined. However, computing the expectation over multiple
stages would be computationally too challenging. Therefore, we present
three solution methods, which at each decision step, only consider
the current project, and possibly an estimation of the project directly
arriving after that.

The first method is the Greedy Method (GM). This method sched-
ules each project by scheduling it as well as possible, without looking
ahead. This is a fast and simple method that serves as a baseline
to compare against the other algorithms. The second method is the
Full Method (FM). Here, each objective function evaluation contains a
simulation of projects arriving in the future. Thus, this method looks
ahead and finds schedules that account for future arriving projects.
The final method is the Trained Method (TM). This method uses
data from earlier or simulated runs from the FM and trains a neural
network based estimator. This estimator replaces the simulations in the
objective function evaluation of the FM. Therefore, the TM takes much
less computing time than the FM.

In the remainder of this section, the three methods are described.

4.1. Greedy method

An easy way to schedule multiple arriving projects in practice,
is simply by not looking ahead and scheduling each project as well
as possible at the time of arrival. We call this method the Greedy
Method (GM) and use it as a benchmark algorithm. This allows us to
answer the question: Can we improve scheduling for the DRCMPSP/SS
by learning from data? Based on successful implementations for the
RCPSP (Van der Beek et al., 2023; Quoc et al., 2020; Sallam et al., 2020;
Zaman et al., 2021), we use a Differential Evolution (DE) algorithm to
optimize each schedule. Since the focus of this paper is on the learning-
from-data aspect, we only give a brief description of the algorithm
and refer to Storn and Price (1995) for a more elaborate description.
Furthermore, since the DE algorithm is used throughout this paper with
varying details, we use a general notation.

The solutions in the algorithm are stored in solution matrix X that
consists of 𝛾 solution vectors of length sol_len. In the GM, sol_len is
equal to the number of activities. Each solution vector 𝐱 ∈ X is a
priority vector: a vector with an entry for each activity that defines the
priority to schedule this activity. This vector is converted to a schedule
by a serial Schedule Generation Scheme (SGS). The serial SGS selects
activities based on their priorities, and then sequentially schedules
each one at its earliest resource and constraint feasible time. This is
described in more detail in Artigues et al. (2008). This gives a schedule:
an assignment of start times to the project activities. Furthermore, 𝐱∗
keeps track of the best solution found so far. During each iteration, an
improvement step is performed for each 𝐱 ∈ X. In this improvement
step, three solution vectors 𝐚1, 𝐚2 and 𝐚3 are randomly selected from
X and used to create a trial solution 𝝆 = [𝜌1,… , 𝜌sol_len]. This is
done by creating 𝐚 (line 6) and selecting entries from that vector with
probability 𝑐. To ensure there is always at least one entry replaced, 𝑓
is used. If the objective value of this trial solution 𝝆 is better than or
equal to the objective value of the currently considered solution 𝐱, it
replaces 𝐱 in X. Similarly, if it is better than the best solution 𝐱∗ found
so far, it replaces this one too. This gives the full solution algorithm, as
given in Algorithm 1.

Solution matrix X is initialized by generating a matrix with uni-
formly distributed random values between 0 and 1. The algorithm is
terminated when no new improved solution has been found in the

T.v.d. Beek et al. European Journal of Operational Research 327 (2025) 808–819
last 25 iterations. This value is set manually, as it was found to give
reasonable computing times.

Algorithm 1 Differential evolution
1: X← Initialization matrix of size 𝛾 × sol_len
2: 𝐱∗ ← argmin𝐱∈X(objective 𝐱)
3: while not terminated do
4: for 𝐱 ∈ X do
5: 𝐚1, 𝐚2, 𝐚3 ← Pick randomly without replacement from X⧵{𝐱}
6: 𝐚 ← 𝐚1 +𝑤(𝐚2 − 𝐚3)
7: 𝑓 = random from {1,⋯ , 𝑁}

8: 𝜌𝑖 ←

{

𝑎𝑖 with probability 𝑐 or if 𝑖 = 𝑓
𝑥𝑖 otherwise

9: if objective 𝜌 ≤ objective 𝐱 then
10: Replace 𝐱 ∈ X by 𝜌
11: if objective 𝜌 < objective 𝐱∗ then
12: 𝐱∗ ← 𝜌
13: end if
14: end if
15: end for
16: end while
17: return 𝐱∗

The term 𝐚1 + 𝑤(𝐚2 − 𝐚3) in line 6 ensures that activities for which
the prioritization is similar in good solutions, these priorities will stay
similar in the resulting 𝐚. For activities for which the prioritization
varies in good solutions, the term 𝐚2 − 𝐚3 keeps the same variety
in prioritization in the resulting 𝐚. Therefore, the algorithm creates
solutions that vary the priority of the activities for which the correct
prioritization is still unclear, and spends less time varying the priority
of activities for which the correct prioritization is already clear.

4.2. Full method

This subsection presents the Full Method (FM), which is the most
computationally expensive method presented in this paper. The FM
also uses a DE algorithm (Algorithm 1) to search the solution space.
However, instead of only looking at the current project, it includes a
simulation to estimate the objective value for the subsequent project.
This is done by modifying three parts of the algorithm: the solution rep-
resentation, the objective function, and an optional part to store data
for the TM. These are explained in the remainder of this subsection,
after which the full description of the FM is given.

4.2.1. Solution representation
In the GM, a priority vector is used to represent solutions which can

be converted to a schedule by a serial SGS. The serial SGS sequentially
schedules each activity at the earliest possible starting time. However,
when future arrivals are considered, it is possible that the best schedule
contains activities that are scheduled later than their earliest possible
starting time. This can be done to allow availability of resources for
later arrivals. For this reason, we introduce a new solution representa-
tion by defining each solution vector 𝐱 as a vector of length 2|𝑁|, where
|𝑁| is the number of activities to be scheduled. Then, the first |𝑁|

entries form a priority vector, as described in Quoc et al. (2020). The
remaining entries form the gap vector. This vector defines the gap for
each activity. When scheduling an activity according to the serial SGS,
this gap value is rounded and added to the starting time. This allows the
schedules to have spread out activities in order to decrease the resource
usage at certain times. A similar concept is used in Hartmann (2015),
where it is called delay value.
811
4.2.2. Objective function
The main difference between the FM and the GM, is that in the FM

a solution is evaluated on both the current project and simulated future
projects. This is based on the Sample Average Approximation (Kleywegt
et al., 2002). This method finds solutions to stochastic problems by gen-
erating multiple scenarios and creating a deterministic equivalent of the
stochastic problem using these scenarios. However, using a fixed set of
scenarios risks finding solutions that perform well only on these specific
scenarios (Homem-De-Mello, 2003). Secondly, the FM is designed with
compatibility for the TM in mind: besides running the FM to obtain
solutions, it should also be possible to use the FM to generate data for
the TM. Using a fixed set of scenarios limits the variety in the training
data. Therefore, the FM does not create a deterministic equivalent.
Instead, it uses an iterative optimization approach where each objective
estimation consists of optimizing multiple future candidate projects,
with different scenarios per iteration. This allows us to consider a large
set of scenarios and create varied training data, without having to
optimize for all of these scenarios simultaneously.

In each iteration of the FM, 𝜁 scenarios are generated, each con-
taining a different second project. This set of projects is denoted by
P = {1,… ,𝜁}. Let (𝑋,) be the set of feasible solutions for project
 ∈ P, given solution 𝑋 to the current project 1. Then, to evaluate a
solution 𝑋 in the algorithm, we take the current objective of the current
project 𝑜𝑏𝑗(𝑋) plus the average of the best solutions for the scenario
projects. The objective values for these scenario projects are called the
scenario objectives. Thus, the objective function for the FM becomes:

𝑜𝑏𝑗𝐹𝑀 (𝑋) = 𝑜𝑏𝑗(𝑋) + 1
𝜁

∑

∈P
min

𝑋′∈(𝑋,)
𝑜𝑏𝑗(𝑋′) (4)

This is called the combined objective, where min𝑋′∈(𝑋,) 𝑜𝑏𝑗(𝑋′)
represents an optimization problem. This means that for each objective
function computation, 𝜁 minimization problems have to be solved. In
the FM, we estimate this by using the GM. This allows the FM to
contain information on different simulated future scenarios. However,
it also increases the computational time immensely: for every objective
function computation, multiple other optimization algorithms are run.

4.2.3. Storing data
Each solution 𝑋, evaluated in the algorithm, results in a resource

profile 𝑌 : a matrix, where each entry 𝑌𝑟𝑡 represents the total usage of
resource 𝑟 ∈ 𝑅 at time 𝑡 ∈ 𝑇 . This resource profile is used to generate
training data for the TM. This is done as follows: given a solution 𝑋 and
corresponding resource profile 𝑌 with shape |𝑅| × |𝑇 |, one datapoint
is stored for each incoming scenario project  ∈ P. If project  has
earliest arrival time 𝜏𝑚𝑖𝑛 and has scenario objective 𝑣, the datapoint is
(𝑌[∶,𝜏𝑚𝑖𝑛∶|𝑇 |], 𝑣). Thus, it stores the resource profile, starting from the
earliest arrival time of the incoming scenario project, and the scenario
objective.

4.3. Full method algorithm

In this subsection, the FM algorithm is shown. In the current re-
search, this is implemented as a DE algorithm, created by adapting
the GM (Algorithm 1). However, it can be any population-based search
algorithm. The algorithm starts by initializing the population of solu-
tion vectors and by setting the scenario count 𝜁 to 2, meaning that in
the first iteration, we evaluate 2 incoming scenario projects. Then, the
algorithm starts the iterative process.

At each iteration, 𝜁 scenario projects are generated, together with a
new population of solutions. These solutions are generated as described
in Section 4.1. The new solutions are compared against the previous
solutions, and replace the old solutions if they are better. If the algo-
rithm is used to generate data, it stores the datapoints of all solutions
for both populations. Subsequently, it performs a paired t-test between
the combined objectives of both populations. This idea was adopted
from Homem-De-Mello (2003). If the 𝑝-value of the test is smaller than

T.v.d. Beek et al. European Journal of Operational Research 327 (2025) 808–819
Fig. 2. Workflow of optimization approach.
the 𝑝-value threshold parameter 𝜇, it cannot be concluded that 𝑉𝑞11 and
𝑉𝑞22 are statistically different and 𝜁 is increased by 1.

The iterative process is repeated until the stopping criterion is met:
when the average value of all combined objectives has not reached
a new minimum in a certain number of iterations. In that case, the
algorithm is terminated and the best solution in the final population is
returned.

4.4. Trained method

The FM can be used to find schedules for arriving projects. However,
this requires a lot of time, usually multiple days per project. Therefore,
we use the stored data  to create an objective estimator. This objective
estimator replaces the simulation step in the FM and thus reduces
computing time significantly.

The workflow of the TM is visualized in Fig. 2. This consists of
three stages. First, the data generation process generates all data
required for training the estimator. This is done by using the project
generator 𝛯 to create multiple simulations, where each simulation con-
sists of 𝐾 projects. Then, the FM method is executed on each of these
projects, while taking the resource usage of the solutions of all previous
projects into account. During this process, the resource profiles and
corresponding scenario objectives are saved to . Next, the training
process starts. This process uses stored data  to train an objective
estimator. Finally, the real project arrives and the scheduling process
starts. This process uses the objective estimator within the DE algorithm
to schedule any incoming projects.

Since the data generation process consists of using the FM on
simulated data, the description can be found in Section 4.2. Therefore,
the remainder of this subsection explains the training and scheduling
processes. The training process is split up into data processing and
estimator training.

4.4.1. Data processing
The goal of the objective estimator is to evaluate a schedule on the

estimated scheduling performance for future projects. This is done by
taking the resource profile of a solution as input and returning a scalar
value, called the profile score. This is a measure for the quality of
a resource profile, with a higher value indicating a resource profile
of higher quality. However, dataset  obtained by the FM consists of
a set of resource profiles, each with a corresponding set of scenario
objectives. In this subsection, it is explained how to convert these
scenario objectives to a single scalar value per resource profile, on
which the estimator can be trained.

Before presenting the data processing method, three observations
are made. The first one is that, since the goal of the estimator is
to compare solutions, it is not required that the value given by the
objective estimator resembles the combined objective. Instead, for an
ideal objective estimator 𝑓 (𝑥), it only is required that 𝑓 (𝑋) < 𝑓 (𝑋′)
when E (combined objective of 𝑋) < E

(

combined objective of 𝑋′) for
any two solutions 𝑋 and 𝑋′. Secondly, a possible method to create
the estimator is to train it directly on the tuples of a resource profile
and scenario objectives in . However, this does not give a reliable
812
estimate, since the objective values in  are obtained for different
scenarios. Finally, since the number of scenarios varies in the FM, we
note that the number of objective values in  also varies per iteration.
It follows that solutions evaluated on more scenarios provide more
certainty about the expected combined objective value.

To obtain the scalar values for each resource profile, called the
profile scores, the profile network is introduced. This is a network that
contains a node for each resource profile and an edge based on compar-
isons between these profiles. Each directed edge from resource profile
𝑌𝑖 to resource profile 𝑌𝑗 has a weight, representing the probability that
resource profile 𝑌𝑗 has better scenario objective values than resource
profile 𝑌𝑖. Then, resource profiles with good scenario objectives can
be found by performing random walks in this network, as is explained
later.

To create the profile network, we let  = {𝑌1,… , 𝑌
||

} contain all
unique resource profiles in . The objective values are stored in 𝑈 ,
where 𝑈𝑛𝑖 is the vector of scenario objectives for resource profile 𝑌𝑖 in
iteration 𝑛 the FM. Furthermore, we let 𝐶𝑖𝑗 be the set of all iterations
in  that contain both resource profile 𝑌𝑖 ∈  and 𝑌𝑗 ∈  . With this,
we define matrix 𝛥𝑖𝑗 containing the difference of all scenario objectives
for iterations with both resource profile 𝑌𝑖 and 𝑌𝑗 :

𝛥𝑖𝑗 =
⋃

𝑛∈𝐶𝑖𝑗

(

𝑈𝑛𝑖 − 𝑈𝑛𝑗
)

, (5)

where we use the ∪-operator to concatenate vectors. With this, we
require a measure for the confidence that profile 𝑌𝑖 should be chosen
over profile 𝑌𝑗 and define this measure as 𝑄𝑖𝑗 , where a low value
of 𝑄𝑖𝑗 indicates that profile 𝑌𝑖 should be chosen over 𝑌𝑗 . For this
measure, we use the t-distribution. Usually, this distribution is used
for normally distributed data. However, even though 𝛥𝑖𝑗 might not be
normally distributed, we only require a confidence measure and not
an exact probability. Using a t-distribution has the following beneficial
properties:

1. More samples result in a higher confidence.
2. No samples or no difference between samples result in 𝑄𝑖𝑗 = 𝑄𝑗𝑖.
3. The values are symmetrical; 𝑄𝑖𝑗 = 1 −𝑄𝑗𝑖.

Therefore, we define the confidence value 𝑄𝑖𝑗 as follows:

𝑄𝑖𝑗 = 𝐹

(

𝛥𝑖𝑗
√

|𝛥𝑖𝑗 |

𝑠𝑡𝑑
(

𝛥𝑖𝑗
) , |𝛥𝑖𝑗 | − 1

)

, (6)

with 𝑠𝑡𝑑() being the sample standard deviation with Bessels correction
and 𝐹 (𝑥, 𝑛) the cumulative distribution function of the t-distribution with
𝑛 degrees of freedom. Next, we apply a method similar to Negahban
et al. (2012) to convert these values to a network usable for random
walks. First, let 𝐶𝐼

𝑖𝑗 be the indicator value, equal to 1 if there is at
least one iteration where both resource profile 𝑌𝑖 ∈  and 𝑌𝑗 ∈  are
found (|𝐶𝑖𝑗 | > 0) and zero otherwise. We only create an edge between
profile 𝑌𝑖 and 𝑌𝑗 , if there is at least one comparison in the same iteration
(𝐶𝐼

𝑖𝑗 = 1). We define 𝛿𝑖 as the number of outgoing arcs from profile 𝑌𝑖:

𝛿𝑖 =
||

∑

𝐶𝐼
𝑖𝑗 . (7)
𝑗=1,𝑖≠𝑗

T.v.d. Beek et al. European Journal of Operational Research 327 (2025) 808–819
Now, we define for each pair of profiles 𝑌𝑖, 𝑌𝑗 ∈  the value 𝐴𝑖𝑗 that
represents the probability of moving to profile 𝑌𝑗 ∈  , while located in
profile 𝑌𝑖 ∈  , in the random walk:

𝐴𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1
𝛿𝑖
𝑄𝑖𝑗 if 𝑖 ≠ 𝑗 and 𝐶𝐼

𝑖𝑗 = 1

1 − 1
𝛿𝑖

∑

𝑘≠𝑖 𝑄𝑖𝑘𝐶𝐼
𝑖𝑘 if 𝑖 = 𝑗,

0 otherwise.
(8)

Thus, we obtain a profile network  = ( , 𝐸), where each unique
resource profile 𝑌𝑖 ∈  is a node, and with an edge (𝑖, 𝑗) ∈ 𝐸 if
resource profiles 𝑌𝑖 and 𝑌𝑗 have been compared at least once in the
same iteration of the FM. Each edge (𝑖, 𝑗) ∈ 𝐸 has a value of 𝐴𝑖𝑗 . This
network is used to calculate the profile score vector 𝐬 = {𝐬1,… , 𝐬

||

}: A
vector where each entry 𝐬𝑖 is the profile score of resource profile 𝑌𝑖 ∈  .
The resource profile vector is calculated as the stationary distribution
of a random walk, which is done by initializing the profile score vector
to 𝟏 and repeatedly matrix-multiplying 𝐬 by 𝐴 until the change in 𝐬
is below a certain threshold 𝜂. This is shown in Algorithm 2. After
convergence, a large entry 𝑠𝑖 in score vector 𝐬 indicates a high quality
resource profile 𝑌𝑖 ∈  .

Algorithm 2 Random walk to obtain profile score vector 𝐬 from matrix
A.
1: 𝐬 ← 𝟏
2: diff← ∞
3: while diff > 𝜂 do
4: 𝐬′ ← 𝐬 ⋅ 𝐴
5: diff← |𝐬 − 𝐬′|
6: 𝐬 ← 𝐬′
7: end while

A requirement for obtaining useful scores, is that  is connected.
This is always the case if  only contains data from a single run of the
FM, since for each generation a comparison is added containing both
the old and new population. However, since  can contain data from
multiple runs, it is possible that  is not connected. In this case, each
score 𝐬𝑖 for 𝑌𝑖 ∈  only represents a score relative to nodes within the
connected component of 𝑌𝑖. To tackle this problem of  being possibly
disconnected, we apply the following procedure: after generating the
data, we use Algorithm 2 to obtain profile score vector 𝐬. If  is
connected, we terminate the algorithm. Otherwise, for each separate
connected component in , we select the resource profile with the
highest score within that respective component. This gives us a set of re-
source profiles 𝑚𝑎𝑥, one for each connected component. Then, a set of
new scenarios is created and the scenario objectives are calculated for
each resource profile 𝑌 ∈ 𝑚𝑎𝑥. The number of scenarios is equal to the
maximum number of scenarios evaluated in one generation, of all runs
of the FM in the data generation process (i.e.: largest 𝜁 encountered in
all runs of the FM). These new evaluations are added to  and then
used to generate new edges in , between all resource profiles in 𝑚𝑎𝑥.
Since each connected component has one resource profile in 𝑚𝑎𝑥,  is
now connected. Therefore, we subsequently compute the profile scores
𝐬 on this updated graph  by executing Algorithm 2. This is summarized
below:

1. Generate data  using the FM.
2. Create profile network  and compute profile scores 𝐬.
3. If  is connected, terminate. Otherwise, go to the next step.
4. Get connected components and create set 𝑚𝑎𝑥 consisting of
the resource profiles with the highest score in each connected
component.

5. Create objective evaluation for profiles 𝑚𝑎𝑥 and add this data
to .

6. Repeat step 2 and terminate.

This generates a profile score for each unique resource profile. These
scores are used to train the objective estimator, as discussed in the next
section.
813
4.4.2. Estimator training
The profile score vector 𝐬 from the previous section forms a measure

to compare the resource profiles  , encountered in the data generation
process. However, in the scheduling process, we require a method to
compare any resource profile to other resource profiles. Therefore,
we use the resource profiles  and profile score vector 𝐬 to train an
objective estimator, which in turn can create an estimate of the score
of any resource profile. This objective estimator is a function that
takes a resource profile 𝑌 as input and outputs a scalar estimation
of the quality, i.e., a profile score. This estimator is trained during
the training process and, subsequently, used within the optimization
algorithm during the scheduling process. The core of this estimator
consists of a neural network that is trained several times.

The used neural network is a dense feed-forward network, which
has as input a resource profile, consisting of a set of sequences, where a
sequence denotes the resource usage for a single resource. The length of
each sequence is the makespan of the project, minus the earliest arrival
time of the next project. Then, the output of the neural network is a
scalar: the estimation of the profile score. In order to make estimations
for sequences, one might think of different neural network structures,
such as recurrent neural networks or transformers (Lim & Zohren,
2021). However, even though the input sequence in theory can be
of infinite length, very long sequences correlate to schedules with a
very high makespan, and thus of low-quality. This permits us to cut
off sequences after a certain length, presuming that this length is
sufficiently large. Furthermore, the absolute location in the sequence
is important, a property that suits a feed-forward network instead of
a recurrent network. Nevertheless, preliminary tests were performed
with recurrent neural networks, long short-term memory networks and
transformer based networks, but the best performance was found with
the simple feed-forward network.

We now describe the neural network architecture. The input layer
has a size of 𝑙|𝑅|, where 𝑙 is the maximal considered sequence length
and |𝑅| the number of resources. 𝑙 is set to be the length of the
longest profile, encountered in the data generation process. After the
input layer, we have 𝑠ℎ fully connected hidden layers, each with 𝑠𝑤
nodes. After the final hidden layer, there is one output node, which is
fully connected to the last hidden layer. The rectangular shape of the
hidden layers was chosen for tuning efficiency, since it can be described
by only 2 variables. When the input, encountered in the scheduling
process, is longer than 𝑙, the final part is truncated.

Furthermore, we use an ADAM optimization process (Kingma &
Ba, 2015) with a weight decay of 𝑝𝑤 and a learning rate of 𝑝𝑙. The
parameter values were tuned with the hyperparameter optimization
method from Bergstra et al. (2013).

4.4.3. Trained method algorithm
In the previous section, it is explained how to process the data 

to obtain profile scores and how to train a neural network on these
profile scores. In the remainder of this section, it is described how to
create the objective estimator and how it is used within an optimization
algorithm.

Using a neural network as an objective estimator has the following
major problem: In a neural network, there are some areas of the
input space bound to have lower accuracy, and thus, some profiles
are estimated to be high quality while they are not. When an opti-
mization algorithm uses the neural network as an objective function,
it actively searches for these low-accuracy areas, since they often hold
good objective values due to the variation. To remedy this, a technique
encountered in reinforcement learning research is used (Levine et al.,
2020). Here, we train a neural network several times with different
seeds. Then, instead of using one estimated value, the objective consists
of the mean value of all predictions plus a penalty term based on the
variance of the estimations. The idea behind this is that if the variance
is high, the area can be seen as low-accuracy. By adding a penalty based
on this, the search is guided away from these low-accuracy areas.

T.v.d. Beek et al. European Journal of Operational Research 327 (2025) 808–819
Let  = {1,… ,
||

} be the set of trained neural network
estimators, where each 𝑖 ∈  is a function taking a resource profile
𝑌 ∈  as input and outputting a scalar value. Then, calling (𝑌)
returns the set of values for each neural network function 𝑖 ∈ .
Furthermore, let 𝑜𝑏𝑗𝑒𝑠𝑡(𝑋, 𝜏𝑘+1𝑚𝑖𝑛) be the estimated objective value of
solution 𝑋 with next earliest arrival time 𝜏𝑘+1𝑚𝑖𝑛 and let 𝑝𝑚 > 0 and 𝑝𝑠 > 0
be scaling parameters. Then, we define the estimated objective 𝑜𝑏𝑗𝑒𝑠𝑡 as:

𝑜𝑏𝑗𝑒𝑠𝑡(𝑋, 𝜏𝑘+1𝑚𝑖𝑛) = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑋) − 𝑝𝑚
(

𝑅𝑃
(

𝑋, 𝜏𝑘+1𝑚𝑖𝑛
))

+ 𝑝𝑠𝑠𝑡𝑑
(


(

𝑅𝑃
(

𝑋, 𝜏𝑘+1𝑚𝑖𝑛
)))

.
(9)

This objective function thus evaluates a potential schedule 𝑋 based on
three parts. The first part consists of its current objective. The second
part consists of an average over all quality predictions multiplied by
scaling parameter 𝑝𝑚. Since we are minimizing the objective, this term
is subtracted. Finally, a penalty term consisting of scaling parameter
𝑝𝑠 and the standard deviation of all quality predictions is added, in
order to penalize low-accuracy estimations. Thus, 𝑜𝑏𝑗𝑒𝑠𝑡(𝑋) gives an
estimate of the combined objective. The calculation exists of using an
SGS to calculate the resource profile given solution 𝑋, and then using
the trained neural networks on this profile. This objective function is
then used within Algorithm 1 to create the TM.

5. Computational study

In this section, the methods are evaluated and the computational
results are presented. First, the instances are described. After this,
the tests setup is described, including data processing and parameter
tuning. With this, we present the actual tests results.

5.1. Problem instances

The presented methods are evaluated on multiple instances. An
instance consists of a project generator 𝛯 and a set of resources 𝑅. The
project generator generates multiple simulations that consist of 𝐾 real-
izations, where each realization is an arriving project. The instances are
created to replicate characteristics from modular production. The first
characteristic is that projects are similar. When considering projects
from a single product family, each project has some base activities
that occur in each project, and some activities that result from the
modularization choices of the customer. Secondly, there is an estimate
of when the next project will arrive. In practice, for large construction
projects, there is usually some contact with the customer before a
project arrives. Although this does not give any exact information, it
can give a rough estimate. Finally, production facilities aim to have
some overlap in project execution times. Therefore, it is imposed that
the next arriving project arrives before the current project is finished.

With these conditions, the instance generation method is now given.
The instances are created by using a base network, generated by the
method described in Vanhoucke et al. (2008). This method uses as
input the Serial/Parallel (SP) parameter, the Resource Factor (RF)
and the Resource Constrainedness (RC). For a description of these
parameters, we refer to Vanhoucke et al. (2008). The base network has
𝑛𝑏𝑎𝑠𝑒 activities. From these activities, we randomly select 𝑛𝑜𝑝𝑡 activities
to be optional. Then, for each realization of an arriving project, we
randomly pick 𝑛𝑠𝑒𝑙 from these optional activities and exclude the rest of
the optional activities. This means that there are (𝑛𝑜𝑝𝑡𝑛𝑠𝑒𝑙

) different projects
in the distribution 𝛯, with each configuration sampled uniformly.
Furthermore, the minimum arrival times of a realization of 𝛯 are set
by scheduling each previous project by the GM. This gives a finishing
time, and the arrival time of the next project is set halfway the previous
arrival and finishing time. Finally, we set the varying additional arrival
time, 𝜏′, to be taken uniformly between 0 and input parameter 𝜏′𝑚𝑎𝑥.

Before applying stochastic optimization methods, it is recommended
to test the potential of stochastic optimization by evaluating lower and
upper bounds. A commonly used upper bound on the objective function
value can be found by creating a naive approach and calculating the
814
Table 1
Characteristics of the considered instances.
 # 𝑛𝑏𝑎𝑠𝑒 𝑛𝑜𝑝𝑡 𝑛𝑠𝑒𝑙 SP RF RC |𝑅| 𝜏′𝑚𝑎𝑥
 1 30 8 3 20 30 40 2 10
 2 30 8 3 80 40 60 2 10
 3 40 12 4 20 30 40 2 10
 4 40 12 4 80 50 80 2 10
 5 50 15 5 40 50 40 2 10
 6 50 15 5 80 50 90 2 10

expected result of using this model (Birge & Louveaux, 1997). For
two stage continuous problems, this naive model is the expected value
solution, which can be created by taking the mean value of each
stochastic variable. For our multi-stage integer problem, we define
this naive model to be the greedy method: at each stage, the optimal
solution that does not look ahead is chosen. The expected result is then
defined as the Expected result of the Greedy Solution (EGS). As a
lower bound for the objective function value, the expected value of the
Wait-and-See (WS) solution (Birge & Louveaux, 1997) can be used. The
WS solution is the optimal solution of the problem that assumes that
it is possible to wait for all stochastic variables to be realized before
making any decision. The difference between the WS value and the EGS
then forms an upper bound on the Value of Stochastic Solution (VSS);
the price one pays for using the naive model rather than the stochastic
model.

Due to the very long computing time of generating data, parameter
tuning for the training process, and training the neural networks, it
is not feasible to evaluate many different instances. Therefore, we
generate 6 instances and give detailed results for these. The selection
of these instances is done based on an estimate of the VSS to focus
on instances with a high potential for improvement by any stochastic
method. To estimate the VSS, instead of creating and optimizing many
scenarios per instance, only one scenario is generated. This estimate
consists of taking the base project and creating a sequence of projects by
copying this project. Subsequently, both the EGS and the WS solution
values are approximated by the DE algorithm. Then, six instances were
selected based on the number of activities and on the estimated VSS
value. The characteristics of these instances are shown in Table 1.

5.2. Tests setup

In this subsection, the data creation, data processing and parameter
tuning are discussed. The parameter tuning for all parameters, except
the neural network related parameters, is carried out by a local search
algorithm that iteratively varies a single parameter. Initially, this is
done to determine the parameters 𝑤 and 𝑐 in Algorithm 1, by creating
a set of projects from realizations of each instance and running the
parameter tuning algorithm. This results in 𝑤 = 0.8 and 𝑐 = 0.1,
meaning that 10% of variables are replaced in every iteration.

Since each instance represents a production scenario with a corre-
sponding project generator, both the data generation process and the
training process in Fig. 2 are executed for each instance. Additionally,
the parameter tuning process for the trained method is also executed
per instance, since this is also recommended in practice. For each of
the six instances, 10 simulations are created, with each simulation
consisting of |𝐾| = 5 sequentially arriving projects. Then, the FM is
sequentially executed on each arriving project, given the solutions of
the previous projects in the same simulation. After this, the data is
processed to create resource profiles and corresponding profile scores.
Next, parameter tuning for the neural networks is started for each
instance, as described in Section 4.4.2, to determine the parameters
𝑠ℎ, 𝑠𝑤, 𝑝𝑤 and 𝑝𝑙. Subsequently, the neural network is trained multiple
times for each instance. Then, the local search parameter tuning is
started on each instance to determine the number of trained neural
networks (|| ≤ 15, where 15 is chosen due to computational resource

T.v.d. Beek et al. European Journal of Operational Research 327 (2025) 808–819
Table 2
Parameters per instance.
 # 𝑙 𝑠𝑤 𝑠ℎ 𝑝𝑙 𝑝𝑤 𝑝𝑚 𝑝𝑠 ||
 1 2542 400 4 1 × 10−4 1 × 10−5 1.0 0.7 10
 2 1792 500 7 1 × 10−4 1 × 10−5 7.0 0.7 14
 3 1149 500 6 1 × 10−4 1 × 10−2 1.0 0.2 5
 4 1316 500 6 1 × 10−4 1 × 10−5 5.0 0.4 5
 5 1124 500 7 1 × 10−4 1 × 10−2 1.0 0.1 10
 6 1296 400 6 1 × 10−4 1 × 10−5 4.0 0.7 12

Table 3
Average computing times of processes.
 Data creation 20.3 days
 Parameter tuning 6.8 days
 Neural network training (per network) 3.1 h

limitations) and the estimator parameters 𝑝𝑚 and 𝑝𝑠. All parameters
per instance are given in Table 2 and the complete instances are given
in Van der Beek (2022). With these parameters and instances, the tests
are performed, as explained in the next subsection.

The average durations of these steps are shown in Table 3. Here,
it can be seen that the data creation part takes very long: 20.3 days.
However, this process is additive, meaning that data from new runs can
be added to the previous data. Therefore, in practice, it is possible to
start with less generated data, and generate more data at a later time.
Furthermore, this process can be easily parallelized. The parameter
tuning also takes several days, because it involves training the neural
network multiple times. After all this is done, training a neural network
takes relatively short: around 3 h.

5.3. Computation results

The presented instances are used to evaluate the solution meth-
ods. As presented earlier, we consider three solution methods: Greedy
Method (GM), Trained Method (TM) and Full Method (FM). This subsec-
tion describes the processing and tests done to evaluate these methods.
These tests are divided into two categories: comparison between GM
and TM and comparison between all methods. For the comparison
between GM and TM, many simulations can be evaluated, since both of
these methods are relatively fast. The goal of these tests is to evaluate
whether the TM performs better than the GM, and thus, if the algorithm
can learn from earlier optimization runs. The purpose of comparing all
methods, so including FM, is evaluating the decrease in computing time
due to learning from data and the cost, in terms of solution quality, of
this. Since the FM is considerably slower, less tests are performed in
this category.

To compare the results, we introduce the notion of average relative
makespan (𝑎𝑟𝑚):

𝑎𝑟𝑚 = 1
|𝐾|

∑

𝑘∈𝐾
𝑜𝑏𝑗(𝑋𝑘) (10)

which can be seen as the realized value of the 𝑐𝑡𝑔 (Eq. (3)), averaged
over all projects.

The neural network training and corresponding parameter tuning is
performed on single cores of a 2.80 GHz GPU with 32 GB RAM. All
other computations are performed on a single core of a 3.0 GHz Intel
XEON CPU with 4 GB RAM.

5.3.1. Comparison between greedy method and trained method
The first category of tests are comparisons between the GM and

the TM. The goal of these tests is to evaluate the improvement that
can be obtained by training an objective estimator. For each of the six
instances, 100 simulations are created, thus having 600 simulations in
total. Then, each simulation is optimized with both the TM and the GM.

In Table 4, the results are summarized for these tests. Note that the
minimal value for the 𝑎𝑟𝑚 is 5, since sequences of |𝐾| = 5 arriving
815
Table 4
Results of comparison between GM and TM.
 GM TM
 Mean 𝑎𝑟𝑚 1.536 1.436
 Median 𝑎𝑟𝑚 1.527 1.365
 Standard deviation 𝑎𝑟𝑚 0.226 0.244
 # lowest 𝑎𝑟𝑚 173 403

projects are generated in each of the 600 simulations. It can be seen
that both the mean and the median 𝑎𝑟𝑚 are lower for the TM. However,
the GM is slightly more stable, since the standard deviation of the 𝑎𝑟𝑚 is
around 7% lower. Finally, we evaluate the number of times that either
method exclusively has the lowest 𝑎𝑟𝑚. Here, it can be seen that the
majority of simulations has the best 𝑎𝑟𝑚 found by the TM. Deducting
these values from the total number of simulations gives 600−403−173 =
24, which shows that there are few simulations for which both methods
reach the same value.

Furthermore, the tests are evaluated in more detail in Fig. 3. Here,
the instances are separated by the number of activities in the base net-
work. The 𝑎𝑟𝑚 values are shown in Fig. 3(a). For comparison between
the two methods, Fig. 3(b) shows the ratio of the 𝑎𝑟𝑚 values for the TM
𝑎𝑟𝑚𝑇 and the GM 𝑎𝑟𝑚𝐺. This reveals a number of trends. Firstly, in Fig.
3(a), it can be seen that the deviation of the 𝑎𝑟𝑚 values increases for the
GM with the number of activities. Secondly, in Fig. 3(b), it can be seen
that with more activities, the increased performance of the TM becomes
smaller. However, as both the mean and the median are slightly below
one, the TM still performs better than the GM on the instances with 50
activities.

Additionally, the performance difference between the number of
stages |𝐾| is evaluated. For this, we define 𝑝𝑜𝑏𝑗𝑘 =

∑

𝑡∈𝑇 𝑘 (𝑡 − 𝜏𝑘)𝑋𝑘
|𝑁𝑘

|𝑡
as the partial objective: the makespan of the project at stage 𝐾. We
use superscript to denote the method, such that 𝑝𝑜𝑏𝑗𝐺𝑘 and 𝑝𝑜𝑏𝑗𝑇𝑘 refer
to the values for the GM and TM, respectively. Then, Fig. 4 shows the
ratio between both methods, for each stage. Here, it can be seen that
the first stage has all values greater than or equal to 1, meaning that the
GM performs better than the TM. This is logical, as the TM introduces
some delays in order to create better resource profiles for later stages.
In the remaining stages, it can be seen that the TM performs better than
the GM, with the difference in performance slightly increasing with the
stage number.

Finally, the effect of using multiple trained neural networks in the
estimator is evaluated. In Fig. 5, the average ratio between 𝑎𝑟𝑚 per
method is shown, while varying the number of trained neural networks
in the estimator. It can be seen that the performance rapidly increases
with the first 6 trained neural networks, after which the performance
increase flattens out somewhat. However, the average slope remains
slightly negative, indicating a benefit of adding more neural networks.

5.3.2. Comparison with full algorithm
The second category of tests compares the FM to the GM and TM.

The goal of these tests is to evaluate the cost, in terms of solution
quality, paid for the reduction in computing time. This is done by
creating 20 simulations for each of the six instances and executing all
methods on these simulations.

The summarized results of all three methods are shown in Table
5. Here, it can be seen that the quality of solutions found by the FM is
superior: The mean 𝑎𝑟𝑚, median 𝑎𝑟𝑚, standard deviation of the 𝑎𝑟𝑚 and
(non-exclusive) number of lowest 𝑎𝑟𝑚 found are better for the FM than
for the other methods. However, it can also be seen that the FM has
an average duration of more than three days, where the GM and TM
have average computing times of less than 1 and 11 min, respectively.
Thus, considering the GM as the base, the TM achieves 64% of the
improvement of the FM, while only requiring around 0.33% of the
computing time at the time of project arrival.

T.v.d. Beek et al. European Journal of Operational Research 327 (2025) 808–819
Fig. 3. Comparison between the TM and the GM on 𝑎𝑟𝑚.
Fig. 4. Partial objective ratios per stage.

Fig. 5. Value of 𝑎𝑟𝑚 ratio while varying the number of trained neural networks in the
estimator.

In Fig. 6, the 𝑎𝑟𝑚 values are shown. Here, it can be seen that the
improvement against the TM and FM have a stronger correlation with
the number of activities than the GM. For 50 activities, the GM and TM
perform similar, although the results for the FM indicate that there is
still some room for improvement in the TM. This holds especially for
the median 𝑎𝑟𝑚.
816
Table 5
Summarized results for comparison with FM.
 GM TM FM
 Mean 𝑎𝑟𝑚 1.572 1.457 1.392
 Median 𝑎𝑟𝑚 1.552 1.410 1.337
 Standard deviation 𝑎𝑟𝑚 0.220 0.249 0.233
 Mean computational time (h) 0.014 0.174 52.253
 # lowest 𝑎𝑟𝑚 11 29 80

When evaluating the ratio between the 𝑎𝑟𝑚 of the TM and FM,
as shown in Fig. 7(a), it can be seen that the TM is closest to the
FM for the instances with 30 and 50 activities in the base network.
A possible explanation is that the TM performs relatively well on the
small instances, and that the FM performs relatively poor on the largest
instances. This can be seen in Fig. 6, where there is a relatively small
improvement for the FM, compared to the TM, on the largest instances.
Furthermore, there is more variety in the distribution of larger projects.
This can increase the difficulty of creating schedules that perform well
on expected future arrivals.

Additionally, the ratio of partial objectives per stages are shown in
Fig. 7(b), where 𝑝𝑜𝑏𝑗𝐹𝑘 refers to the partial objective of the FM at stage
𝑘. It can be seen that the relative performance of the TM decreases with
the stage number. A possible explanation for this is the following: the
resource profiles in , used to train the TM, are created from different
simulations than the ones being evaluated in each test. In the first
stage, there are no resource profiles from the earlier projects. Therefore,
the resource profiles encountered in the training process are similar
to the resource profiles in the evaluation process. In each subsequent
stage, an extra project enters, and thus a potential deviation in resource
profiles. Therefore, it follows that for later stages, the resource profiles
encountered in the training phase are less similar to the profiles in the
evaluation stages.

Finally, the computing times are shown in Fig. 8. Here, no clear
trend can be seen for the GM and the TM, which might be a result
of the low number of instances. However, for the FM, which has
considerably longer computing times (notice the difference in y-axis),
a clear increasing trend can be seen between the number of activities
and the computing time.

6. Conclusions

In this paper, the stochastic optimization problem DRCMPSP/SS
that schedules arriving projects under uncertainty is introduced. Fur-
thermore, three solution methods are introduced: the greedy method,

T.v.d. Beek et al. European Journal of Operational Research 327 (2025) 808–819
Fig. 6. Value of 𝑎𝑟𝑚 per method.
Fig. 7. Ratios of partial objectives between FM and TM.
Fig. 8. Computing times per number of activities.
the full method, and the trained method. The greedy method does
not look ahead and is used as a baseline method. The full method
uses a sample average approximation approach with varying scenarios.
The trained method learns from the full method to look ahead, while
decreasing the computing time needed. When comparing the three
methods, it can be seen that the trained method achieves a signifi-
cant improvement in objective function value compared to the greedy
method, while only requiring a fraction of the computing time of the
full method. However, looking only at the solutions found, the full
817
method still performs better. Therefore, the recommended use of these
algorithms depends on the use case. Since the projects considered span
several months, it often is recommended to run the full method for
a few days to obtain the best schedule. However, if the size of the
instances and the variation in scenarios becomes larger, the computing
time of the full method might become too high and the trained method
is preferred. Furthermore, quick preliminary schedules might be needed
for discussion and estimates. For these use cases, the trained method is
recommended as well. However, these conclusions do assume that a

T.v.d. Beek et al. European Journal of Operational Research 327 (2025) 808–819
detailed enough simulation is possible. In many real-life cases, this will
not be true, and thus one will have to revert to the GM.

From a computational point of view, it is shown how to use data
from a heuristic optimization algorithm for the RCPSP. The process
of learning from data to estimate the stochastic objective function
value can be used in different algorithmic approaches. First of all, the
data collection process is the same for any population-based search
algorithm, and thus, other heuristics can be easily used. Therefore, it
could be investigated whether the use of other heuristics might improve
the overall performance. For example, the DE algorithm can be im-
proved by adding forward–backward improvement (Li & Willis, 1992).
Also other heuristics could be considered, such as genetic algorithms.
Secondly, the data processing converts any set of comparisons to an
objective estimator. Thus, this can be used with any simulation that
uses resource profiles as input. Even more so, it can be converted
easily to include other characteristics of the solution, as long as the
corresponding neural networks are adapted as well.

Due to the high computational demands, the number of evaluated
instances is limited. Although our results already reveal that the trained
method achieves better results than the greedy method, and thus,
demonstrates the value of learning from data, more computational
tests are recommended to further verify this. In order to increase the
computational testing efficiency, various options can be considered.
For example, reducing the number of neural networks will reduce the
neural network training time, but might reduce the performance. Sim-
ilarly, one might introduce early stopping in the scenario objectives
evaluation, sacrificing some accuracy for computational improvement.
Finally, the computational burden can also be handled by parallelizing
the data generation process and using more CPUs simultaneously.

For future research, one might focus on the computational evalu-
ation of the trained method. One possibility is to evaluate the use of
profile networks and study the correlation of neural network param-
eters to the performance of the trained method. Secondly, instead of
generating new scenarios in each iteration of the full method, one could
use a fixed set of scenarios. This allows, in every computation of the
scenario objective, to use the previous solution as a starting point. This
might achieve a significant reduction in computational time. However,
this will also reduce the variety in data for the trained method, which
will likely result in performance loss.

Furthermore, although the instances used resemble the character-
istics of modular production, they are also fairly simplified. Therefore,
creating more elaborate instances by using expert opinions or historical
data can show the potential benefit of the proposed methods in prac-
tice. This can also give insight in the required size of the instances and
the computational demands for this. Similarly, creating more general
instances from other applications can indicate whether the presented
methods are also applicable in other fields.

In conclusion, future research can focus on bringing the methods
closer to applicability and by evaluating them with more computational
resources. However, as shown by the difference between the trained
method and the greedy method, this paper demonstrates that training
from data is possible for the DRCMPSP/SS, and possibly for other
variants of the Resource Constrained Project Scheduling Problem.

CRediT authorship contribution statement

T. van der Beek: Writing – review & editing, Writing – original
draft, Methodology. J.T. van Essen: Writing – review & editing, Vali-
dation, Supervision. J. Pruyn: Writing – review & editing, Supervision,
Project administration, Funding acquisition. K. Aardal: Supervision.

Acknowledgments

The authors would like to thank all partners of the NAVAIS project
for assistance during this research. The project has received funding
from the European Union’s Horizon 2020 research and innovation
programme (Contract No.: 769419).
818
Appendix. Notation

A.1. Variables, parameters and vectors

 𝑎𝑟𝑚 Average relative makespan.
 𝑏𝑘𝑟𝑖 Resource requirement of resource 𝑟 ∈ 𝑅 for activity

𝑖 ∈ 𝑁 of project 𝑘.

 𝑐 Replacement parameter in Algorithm 1.
 𝐝𝑘 Duration vector of project 𝑘.
 𝑙 Maximum sequence length in each neural network.
 𝑛𝑏𝑎𝑠𝑒 Number of activities in base network.
 𝑛𝑜𝑝𝑡 Number of optional activities.
 𝑛𝑠𝑒𝑙 Number of optional activities to be selected.
 𝑠ℎ Number of hidden layers in neural network.
 𝑠𝑤 Width of hidden layers in neural network.
 𝑝𝑚, 𝑝𝑠 Scaling parameters.
 𝑝𝑙 Learning rate.
 𝑝𝑤 Weight decay.
 𝐬 Profile score vector.
 sol_len Length of solution in Algorithm 1.
 𝑤 Weight parameter in Algorithm 1.
 𝛾 Population size.
 𝛥𝑖𝑗 Vector of differences between objectives of resource

profiles 𝑌𝑖 and 𝑌𝑗 .

 𝛿𝑖 Outgoing arcs of resource profile 𝑌𝑖 ∈  in the profile
network.

 𝜁 Scenario counter.
 𝜂 Threshold parameter for profile score convergence.
 𝜆𝑟 Resource capacity for resource 𝑟 ∈ 𝑅.
 𝜇 Threshold parameter for p-value.
 𝛯𝑘 Distribution of (project, arrival time) at decision step

𝑘 ∈ 𝐾.

 𝜏𝑘 Arrival time of project 𝑘.
 𝜏𝑘𝑚𝑖𝑛 Earliest arrival time of project 𝑘.
 𝜏′ Deviation from earliest arrival time.
 𝜔 Iteration threshold parameter.
 𝑆𝑃 Serial/parallel parameter.
 𝑅𝐶 Resource constrainedness.
 𝑅𝐹 Resource factor.

A.2. Sets and matrices

 𝐴 Profile networks edge values.
 𝐵 Resource requirement matrix.
 𝐶𝑖𝑗 Set of iterations in  that contain both profile 𝑌𝑖 and 𝑌𝑗 .
 𝐶𝐼

𝑖𝑗 Indicator value for 𝐶𝑖𝑗 .
  Stored data.
 𝐸 Arcs in profile network.
  Profile network.
 𝐾 Decision steps.
  Set of trained neural networks.
 𝑁𝑘 Set of activities of project 𝑘.
 𝑃 𝑘 Precedence relationships of project 𝑘.
 𝑘 Project at decision step 𝑘 ∈ 𝐾.
 P𝑘 Scenario projects for decision step 𝑘 ∈ 𝐾.
 𝑄𝑖𝑗 Comparison measure between resource profiles 𝑌𝑖 and 𝑌𝑗 .
 𝑅 Set of resources.
 𝑇 Set of time periods of all projects.
 𝑇 𝑘 Set of time periods of project 𝑘.
 𝑋 Binary solution matrix.
  Feasible region for project 𝑘.
 𝑌𝑟𝑡 Resource usage of resource 𝑟 ∈ 𝑅 at time 𝑡 ∈ 𝑇 .

  Unique resource profiles.

T.v.d. Beek et al. European Journal of Operational Research 327 (2025) 808–819
A.3. Functions

 𝑐𝑡𝑔𝑘(𝑋[𝑘 − 1], 𝛯𝑘) Cost to go at decision step 𝑘 ∈ 𝐾, given
schedules 𝑋[𝑘 − 1] and distribution 𝛯𝑘,
for project 𝑘.

 𝐹 (𝑥, 𝑛) Cumulative distribution function of
t-distribution for 𝑥 with 𝑛 degrees of
freedom.

 𝑜𝑏𝑗𝑒𝑠𝑡(𝑋, 𝜏) Estimated objective of solution 𝑋, with
earliest next arrival time 𝜏.

 𝑅𝑃 (𝑋[𝑘], 𝑡) Resource profile of solutions 𝑋[𝑘],
starting from time 𝑡 ∈ 𝑇 .

 𝑠𝑡𝑑(𝑥) Standard deviation of 𝑥.
 𝑘(𝑋[𝑘 − 1]) Feasible schedules for project 𝑘, given

solutions 𝑋[𝑘 − 1].

References

Agarwala, N. (2015). Modular construction and ihop for increased productivity in
shipbuilding. In International seminar on nation building through ship building.

Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2016). Simulation optimization:
a review of algorithms and applications. Annals of Operations Research, 240(1),
351–380.

Artigues, C., Demassey, S., Néon, E., & Sourd, F. (2008). Resource-constrained project
scheduling. London, UK: ISTE.

Van der Beek, T. (2022). Instances and file format for the dynamic resource constrained
project scheduling problem with static project schedules.

Van der Beek, T, Souravlias, D., Van Essen, J. T., Pruyn, J., & Aardal, K. (2023). Hybrid
differential evolution algorithm for the resource constrained project scheduling
problem with a flexible project structure and consumption and production of
resources. European Journal of Operational Research, 313(1), 92–111.

Bergstra, J., Yamins, D., & Cox, D. (2013). Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures. In
S. Dasgupta, & D. McAllester (Eds.), Proceedings of the 30th international conference
on machine learning, volume 28 of proceedings of machine learning research (pp.
115–123). Atlanta, Georgia, USA: PMLR.

Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York,
NY, USA: Springer-Verlag.

Blazewicz, J., Lenstra, J., & Rinnooy Kan, A. (1983). Scheduling subject to resource
constraints: classification and complexity. Discrete Applied Mathematics, 5(1), 11–24.

Buergin, J., Belkadi, F., Hupays, C., Gupta, R. K., Bitte, F., Lanza, G., & Bernard, A.
(2018). A modular-based approach for just-in-time specification of customer orders
in the aircraft manufacturing industry. CIRP Journal of Manufacturing Science and
Technology, 21, 61–74.

Capa, C., & Ulusoy, G. (2015). Proactive project scheduling in an r & d department a bi-
objective genetic algorithm. In IEOM 2015-5th international conference on industrial
engineering and operations management, proceeding (pp. 1–6).

Chen, H. J., Ding, G., Zhang, J., & Qin, S. (2019). Research on priority rules for the
stochastic resource constrained multi-project scheduling problem with new project
arrival. Computers & Industrial Engineering, 137(August), Article 106060.

Choi, J., Realff, M. J., & Lee, J. H. (2007). A Q-learning-based method applied
to stochastic resource constrained project scheduling with new project arrivals.
International Journal of Robust and Nonlinear Control, 17(13), 1214–1231.

Hao, J. H., Liu, M., Lin, J. H., & Wu, C. (2016). A hybrid differential evolution
approach based on surrogate modelling for scheduling bottleneck stages. Computers
and Operations Research, 66, 215–224.

Hartmann, S. (2015). Time-varying resource requirements and capacities (pp. 163–176).
Cham: Springer International Publishing.

Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and
research potentials. European Journal of Operational Research, 165(2), 289–306.
819
Homem-De-Mello, T. (2003). Variable-sample methods for stochastic optimization. ACM
Transactions on Modeling and Computer Simulation, 13(2), 108–133.

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review
of simheuristics: Extending metaheuristics to deal with stochastic combinatorial
optimization problems. Operations Research Perspectives, 2, 62–72.

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In
3rd international conference on learning representations, ICLR 2015 - conference track
proceedings (pp. 1–15).

Kleywegt, A. J., Shapiro, A., & Homem-de Mello, T. (2002). The sample average approx-
imation method for stochastic discrete optimization. SIAM Journal on Optimization,
12(2), 479–502.

Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. (pp. 1–43).

Li, K. Y., & Willis, R. J. (1992). An iterative scheduling technique for resource-
constrained project scheduling. European Journal of Operational Research, 56(3),
370–379.

Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: A survey. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, Article 3792194.

Homem-de Mello, T., & Bayraksan, G. (2014). Monte Carlo sampling-based methods
for stochastic optimization. Surveys in Operations Research and Management Science,
19(1), 56–85.

Neelamkavil, J. (2009). Automation in the prefab and modular construction industry.
In 2009 26th international symposium on automation and robotics in construction (pp.
299–306). ISARC 2009.

Negahban, S., Oh, S., & Shah, D. (2012). Iterative ranking from pair-wise comparisons.
Advances in Neural Information Processing Systems, 3, 2474–2482.

Pamay, M. B., Bülbül, K., & Ulusoy, G. (2014). Dynamic resource constrained multi-
project scheduling problem with weighted earliness/tardiness costs. International
Series in Operations Research and Management Science, 200, 219–247.

Park, J., & Kim, K. Y. (2017). Meta-modeling using generalized regression neural
network and particle swarm optimization. Applied Soft Computing Journal, 51,
354–369.

Pritsker, A. A. B., Watters, L. J., & Wolfe, P. M. (1969). Multiproject scheduling with
limited resources: A zero-one programming approach. Management Science, 16(1),
93–108.

Quoc, H. D., The, L. N., Doan, C. N., & Thanh, T. P. (2020). New effective differential
evolution algorithm for the project scheduling problem. In 2020 2nd international
conference on computer communication and the internet (pp. 150–157). IEEE.

Salemi Parizi, M., Gocgun, Y., & Ghate, A. (2017). Approximate policy iteration for
dynamic resource-constrained project scheduling. Operations Research Letters, 45(5),
442–447.

Sallam, K. M., Chakrabortty, R. K., & Ryan, M. J. (2020). A two-stage multi-operator
differential evolution algorithm for solving resource constrained project scheduling
problems. Future Generation Computer Systems, 108, 432–444.

Satic, U., Jacko, P., & Kirkbride, C. (2020). Performance evaluation of scheduling poli-
cies for the dynamic and stochastic resource-constrained multi-project scheduling
problem. International Journal of Production Research, 1–13.

Storn, R., & Price, K. (1995). Differential evolution - a simple and efficient adaptive scheme
for global optimization over continuous spaces: Technical Report, (TR-95-012), (pp.
1–12).

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., & Tavares, L. V. (2008). An
evaluation of the adequacy of project network generators with systematically
sampled networks. European Journal of Operational Research, 187(2), 511–524.

Zaman, F., Elsayed, S., Sarker, R., Essam, D., & Coello Coello, C. A. (2021). Ban
evolutionary approach for resource constrained project scheduling with uncertain
changes. Computers & Operations Research, 125.

Zheng, P., Zhang, P., Wang, J., Zhang, J., Yang, C., & Jin, Y. (2020). A data-driven
robust optimization method for the assembly job-shop scheduling problem under
uncertainty. International Journal of Computer Integrated Manufacturing, 00(00),
1–16.

http://refhub.elsevier.com/S0377-2217(25)00457-6/sb1
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb1
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb1
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb2
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb2
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb2
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb2
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb2
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb3
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb3
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb3
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb4
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb4
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb4
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb5
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb5
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb5
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb5
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb5
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb5
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb5
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb6
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb6
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb6
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb6
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb6
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb6
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb6
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb6
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb6
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb7
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb7
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb7
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb8
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb8
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb8
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb9
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb9
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb9
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb9
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb9
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb9
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb9
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb10
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb10
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb10
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb10
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb10
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb11
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb11
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb11
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb11
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb11
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb12
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb12
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb12
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb12
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb12
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb13
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb13
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb13
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb13
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb13
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb14
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb14
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb14
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb15
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb15
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb15
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb16
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb16
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb16
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb17
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb17
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb17
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb17
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb17
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb18
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb18
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb18
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb18
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb18
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb19
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb19
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb19
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb19
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb19
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb20
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb20
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb20
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb21
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb21
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb21
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb21
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb21
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb22
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb22
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb22
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb22
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb22
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb23
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb23
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb23
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb23
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb23
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb24
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb24
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb24
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb24
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb24
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb25
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb25
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb25
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb26
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb26
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb26
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb26
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb26
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb27
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb27
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb27
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb27
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb27
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb28
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb28
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb28
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb28
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb28
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb29
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb29
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb29
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb29
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb29
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb30
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb30
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb30
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb30
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb30
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb31
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb31
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb31
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb31
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb31
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb32
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb32
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb32
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb32
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb32
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb33
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb33
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb33
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb33
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb33
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb34
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb34
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb34
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb34
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb34
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb35
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb35
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb35
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb35
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb35
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb36
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb36
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb36
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb36
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb36
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb36
http://refhub.elsevier.com/S0377-2217(25)00457-6/sb36

	Machine learning assisted Differential Evolution for the Dynamic Resource Constrained Multi-project Scheduling Problem with Static project Schedules
	Introduction
	Literature review
	Problem description
	Solution methods
	Greedy method
	Full method
	Solution representation
	Objective function
	Storing data

	Full Method algorithm
	Trained method
	Data processing
	Estimator training
	Trained method algorithm

	Computational study
	Problem instances
	Tests setup
	Computation results
	Comparison between greedy method and trained method
	Comparison with full algorithm

	Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	Appendix. Notation
	Variables, parameters and vectors
	Sets and Matrices
	Functions

	References

