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 A B S T R A C T

In large modular construction projects, such as shipbuilding, multiple similar projects arrive stochastically. At 
project arrival, a schedule has to be created, in which future modifications are difficult and/or undesirable. 
Since all projects use the same set of shared resources, current scheduling decisions influence future scheduling 
possibilities. To model this problem, we introduce the Dynamic Resource Constrained Multi-project Scheduling 
Problem with Static project Schedules. To find schedules, both a greedy approach and simulation-based 
approach with varying scenarios are introduced. Although the simulation-based approach schedules projects 
proactively, the computing times are long, even for small instances. Therefore, a method is introduced 
that learns from schedules obtained in the simulation-based method and uses a neural network to estimate 
the objective function value. It is shown that this method achieves a significant improvement in objective 
function value over the greedy algorithm, while only requiring a fraction of the computation time of the 
simulation-based method.
1. Introduction

Modular production is used in various industries to combine the 
benefits of product standardization with the ability to meet customer 
specific demands. This is usually done by defining a base product and 
optional modules, which can be selected to configure the product. In 
modular production for large construction products, such as shipbuild-
ing (Agarwala, 2015), aircraft manufacturing (Buergin et al., 2018), 
or housing construction (Neelamkavil, 2009), this results in similar 
projects arriving sequentially. These projects have to be scheduled 
while satisfying resource and time constraints. A well studied problem 
in scheduling is the Resource Constrained Project Scheduling Problem 
(RCPSP). This problem consists of a set of activities that have to be 
scheduled, subject to resource and precedence constraints. The goal is 
to minimize the makespan: the total project duration.

At the moment of scheduling a project, there might be some indica-
tion about the arrival time of the next project. Furthermore, since large 
construction projects require communication and resource reservation 
across multiple stakeholders, modification of earlier made schedules 
can be undesired or even impossible. Therefore, it is desired to com-
pletely schedule a project, without postponed decisions or later modi-
fications. Since all projects use the same set of shared resources, each 
schedule influences future scheduling capabilities.
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To model these properties of project scheduling for modular pro-
duction, the Dynamic Resource Constrained Multi-Project Scheduling 
Problem with Static project Schedules (DRCMPSP/SS) is introduced in 
this paper. This problem consists of a set of stages in which projects 
arrive sequentially. At each project arrival, we assume to have an 
estimate of the arrival time of the next project. As soon as a new project 
arrives, it has to be scheduled completely, without the possibility to 
reschedule. In reality, rescheduling is possible. However, by assuming 
the opposite, we find solutions that are robust against the uncertain 
arrival of future projects. Furthermore, the goal of the DRCMPSP/SS is 
to minimize the weighted average makespan of all projects. 

As is discussed in Section 2, there are various studies on the dy-
namic arrival of new projects for the RCPSP. However, to the best 
of our knowledge, research on proactive resource constraint project 
scheduling where the uncertainty is in the complete structure of the 
arriving project and projects need to be completely scheduled immedi-
ately without later modifications, is limited. One possible reason for 
this might be that proactive scheduling of complete projects results 
in a computationally very expensive problem, for which finding good 
solutions takes very long. 

The contribution of this paper is threefold. First, we formally 
introduce the DRCMPSP/SS. Secondly, we introduce a new solution 
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representation that supports time gaps and present a simulation-based 
heuristic optimization algorithm. Finally, we propose a heuristic
method based on objective function estimation by a neural network that 
is trained with data from the simulation-based method. These methods 
are compared against a greedy alternative: scheduling each project as 
well as possible without looking ahead.

In Section 2, we first give an overview of research related to the 
DRCMPSP/SS. Subsequently, we give a description of the problem in 
Section 3. Then, in Section 4, the solution methods are given. Finally, 
we present the results of the computational study in Section 5 and 
conclude the paper in Section 6.

2. Literature review

The RCPSP was introduced by Pritsker et al. (1969) and proven to be 
NP-hard by Blazewicz et al. (1983). It has been one of the most studied 
scheduling problems, which has resulted in many solution methods 
and variations. In this section, we first give a general introduction of 
the RCPSP under uncertainty, before presenting related research on 
the RCPSP with new project arrivals. Furthermore, since the meth-
ods in these papers do not seem suitable for the DRCMPSP/SS, we 
present research on estimating the objective function within heuristic 
algorithms.

Numerous researchers have studied versions of the RCPSP under 
uncertainty. Herroelen and Leus (2005) give an overview of different 
variants of the RCPSP without the assumption of complete information. 
They differentiate methods on how they react to disruptions or uncer-
tainty. The first type is called predictive-reactive scheduling. Here, a 
baseline (or predictive) schedule is created before execution, and as 
soon as changes in the input are revealed this schedule is repaired 
or modified. The second type is dynamic scheduling, which does not 
change or repair a baseline schedule, but where a scheduling policy is 
decided upon that can deal with uncertainty.

As there are many different types of uncertainties for the RCPSP, we 
focus especially on the Resource Constrained Multi-Project Scheduling 
Problem (RCMPSP) with arriving projects. In this setting, baseline 
scheduling is usually done with the assumption that there is a penalty 
for modifying earlier defined schedules. This is done by Pamay et al. 
(2014), who present an RCMPSP problem with new project arrivals and 
weighted earliness and tardiness costs. At each project arrival time, 
a local search heuristic is used that minimizes the makespan of the 
new project plus the earliness and tardiness penalties for deviations 
of previously scheduled projects. A similar problem is investigated 
by Capa and Ulusoy (2015). They consider a problem that includes 
preemption, stochastic durations and new project arrivals, and use a 
genetic algorithm to minimize the makespan and the total sum of 
absolute deviations.

For the DRCMPSP/SS, modifications of earlier schedules are not 
allowed. Therefore, research on dynamic scheduling is presented here. 
Problems of this kind are usually modeled with Markov Decision 
Processes (MDP).

Choi et al. (2007) study an RCMPSP with uncertainty in duration, 
costs and task outcome and with new project arrivals, with the goal 
of cost minimization. They model this as an MDP where the possible 
actions at each timestep are whether to perform, not perform or cancel 
each task. They heuristically create state–action pairs by simulation and 
use Q-learning to find solutions to this problem. They present solutions 
for instances with up to 5 different project types. Another variant is 
given by Salemi Parizi et al. (2017). They consider an RCPSP with new 
project arrivals, where new projects are rejected if there are too many 
incomplete projects in the queue. At each time, the policy determines 
which tasks to start in order to minimize the infinite-horizon discounted 
expected profit. This is solved with a simulation-based approximate 
policy iteration method and computational results are given for in-
stances with up to 15 different project types. Satic et al. (2020) solve 
a stochastic RCMPSP with new project arrivals with cost minimization 
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based on early/late finish penalties. They provide exact solutions based 
on an MDP and dynamic programming, and compare this to a priority 
rule based reactive algorithm and a genetic algorithm. This is done for 
fairly small instances, with the largest containing 4 project types with 
all 2 tasks per project.

All these MDP-based approaches have certain characteristics in 
common. First of all, they handle instances with relatively few types 
of projects and relatively small projects in terms of number of tasks. 
Secondly, they provide policies to decide between projects at various 
given time steps, instead of making all decisions at the start of a project. 
Therefore, we broaden our view.

The field of simulation optimization has both the characteristics of 
handling very expensive to compute objective functions by simulat-
ing stochastic processes and making multiple decisions at one deci-
sion stage. More precisely, it deals with optimization problems where 
the objective function and/or constraints can be evaluated through a 
stochastic simulation. Since the DRCMPSP/SS has these characteris-
tics as well, we further explore this method, instead of MDP based 
approaches. For more details on simulation optimization, we refer to 
various surveys (Amaran et al., 2016; Juan et al., 2015; Homem-de 
Mello & Bayraksan, 2014).

When considering simulation optimization, the main difficulty for 
the DRCMPSP/SS is that each simulation contains the scheduling pro-
cess of newly arriving projects, and therefore, will be computationally 
very expensive. A method for dealing with computationally expensive 
objective functions is estimation with machine learning, which has 
been studied for various problems. One of these is a machine scheduling 
problem studied by Hao et al. (2016). They solve a problem consisting 
of machine assignment and sequencing decisions, where they use a 
so called extreme learning machine to estimate the value of a specific 
machine assignment. This is subsequently used by a differential evo-
lution algorithm. Park and Kim (2017) present a general optimization 
algorithm where a particle swarm optimization algorithm uses a neural 
network to estimate the fitness function for each particle, based on 
the fitness of the parent. This is used to select promising solutions for 
full fitness function computation. This algorithm is used to optimize 
10 benchmark functions. Another approach using objective function 
estimation can be seen in Zheng et al. (2020). Here, an assembly 
job shop problem is studied with optimization on makespan and its 
expected deviation. The expected deviation is estimated by a radial 
basis function network that uses data from previously ran Monte Carlo 
simulations. This estimator is then used within a tabu search heuristic 
to find good solutions to the problem.

In conclusion, there has been quite some research on the RCMPSP 
with new project arrivals, but these approaches seem unsuitable for 
the DRCMPSP/SS. Therefore, we have expanded our search to simu-
lation optimization and objective function estimation to find different 
building blocks in order to handle the DRCMPSP/SS.

3. Problem description

In this section, we give a problem description of the DRCMPSP/SS. 
We start by describing the environment of the arriving projects and the 
scheduler. Subsequently, we present the structure of a single project, 
and finally, we explain the full optimization problem, consisting of 
multiple projects.

The DRCMPSP/SS environment consists of a project generator and a
project scheduler, which operate sequentially for |𝐾| iterations, where 
𝐾 is the set of stages, i.e., 𝐾 = {1,… , |𝐾|}. In the first iteration, i.e. for 
𝑘 = 1, the project generator outputs the first project 1, its arrival time 
𝜏1 = 0 and the earliest arrival time for the next project 𝜏2𝑚𝑖𝑛. After this, 
the project scheduler schedules the first project 1. In each subsequent 
iteration 𝑘 > 1, the project generator outputs a project 𝑘, earliest 
next arrival time 𝜏𝑘+1𝑚𝑖𝑛 , and current arrival time 𝜏𝑘 = 𝜏′𝑘 + 𝜏𝑘𝑚𝑖𝑛, where 
𝜏′𝑘 ≥ 0 is the deviation from the estimate 𝜏𝑘 . Therefore, the time is 
𝑚𝑖𝑛
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Fig. 1. Scheduling environment with the project scheduler and the project generator.

incremented until 𝜏𝑘, the arrival time of project 𝑘, and project 𝑘 is 
scheduled by the project scheduler. The process is illustrated in Fig.  1.

At each stage 𝑘 ∈ 𝐾, we let 𝛯𝑘 be the random variable repre-
senting the generated project. Thus, each realization 𝜉𝑘 of 𝛯𝑘 is a 
3-tuple (𝑘, 𝜏𝑘, 𝜏𝑘+1𝑚𝑖𝑛 ). The shared project environment consists of a set 
of resources 𝑅 that have to be shared across all projects. The resource 
availability 𝜆𝑟 defines the total capacity of resource 𝑟 ∈ 𝑅. Furthermore, 
we define 𝑇  as the set of time periods in which the projects can be 
scheduled.

At decision step 𝑘, we obtain a single project 𝑘 = (𝑁𝑘, 𝑃 𝑘,𝐝𝑘,𝐛𝑘). 
For brevity, we omit the superscript 𝑘 as long as it is clear from context 
or irrelevant. The project  consists of a set of activities 𝑁 where each 
activity 𝑖 ∈ 𝑁 has a deterministic duration 𝑑𝑖. Furthermore, a set of 
precedence relationships is given: precedence relationship (𝑖, 𝑗) ∈ 𝑃
imposes that activity 𝑖 ∈ 𝑁 has to finish before activity 𝑗 ∈ 𝑁
can start. All activities have to be scheduled after the project arrival 
time 𝜏𝑘, while satisfying all precedence relationships. Furthermore, 
each activity 𝑖 ∈ 𝑁 requires a constant quantity of 𝑏𝑟𝑖 of resource 
𝑟 ∈ 𝑅 between the start and end time, and the total requirement of 
all activities, plus any resource requirements from previous projects, 
cannot exceed the resource limit 𝜆𝑟 at any time. A mixed integer linear 
program formulation of this problem is given in Pritsker et al. (1969).

In the standard RCPSP, the objective is to minimize the makespan 
of the project. However, in the DRCMPSP/SS, we are interested in 
minimizing the combined makespan of all projects instead. Simply 
taking the average of the makespan would unfairly focus more on larger 
projects. Therefore, based on the research of Chen et al. (2019), we 
minimize the average makespan divided by the critical path length per 
project. The critical path length is the duration of the project, while 
relaxing the resource constraints (Artigues et al., 2008). This can be 
calculated quickly and can be used as a measure for the size of the 
project. Thus, the goal is to minimize the expected sum of the makespan 
over the critical path for each project.

We denote 𝑋 to be a solution to project  . The objective function 
of this single project is called the current objective and is defined as 
the makespan divided by the critical path length: 

𝑜𝑏𝑗(𝑋) =
makespan(𝑋)

critical path length(𝑋)
(1)

Furthermore, we introduce the notation 𝑥[𝑖] = {𝑥1,… , 𝑥𝑖} for any in-
dexed variable 𝑥. Thus, 𝑋[𝑘] contains the solution vectors {𝑋1,… , 𝑋𝑘}
for projects 1 to 𝑘. Additionally, let 𝑘(𝑋[𝑘−1]) be the solution space of 
project 𝑘, given solutions to earlier projects 𝑋[𝑘−1]. With this notation, 
we define the cost-to-go function 𝑐𝑡𝑔𝑘 for all 𝑘 ∈ 𝐾: 
𝑐𝑡𝑔𝑘

(

𝑋[𝑘 − 1], 𝛯𝑘) = min
𝑋𝑘∈𝑘(𝑋[𝑘−1])

𝑜𝑏𝑗(𝑋𝑘) +E
[

𝑐𝑡𝑔𝑘+1(𝑋[𝑘], 𝛯𝑘+1)
]

. (2)

The first part of this function is the current objective of the con-
sidered project 𝑘 ∈ 𝐾 and the second part is the expectation of all 
future projects. By defining this as iterative minimization functions, the 
minimization at each decision stage finds the minimal value, given that 
the future decisions also minimize the cost-to-go. Therefore, optimizing 
Eq. (2) for 𝑘 = 1 captures all decision stages due to the iterative 
formulation. If we define 𝑐𝑡𝑔 = 𝑐𝑡𝑔1, the optimization problem can be 
expressed as: 
𝑐𝑡𝑔 = 𝑐𝑡𝑔1

(

∅, 𝛯1) = min
𝑋1∈1

𝑜𝑏𝑗(𝑋1) +E
[

𝑐𝑡𝑔2(𝑋[1], 𝛯2)
]

. (3)

Furthermore, all notation used throughout this paper is presented 
in Appendix.
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4. Solution methods

In the previous section, the DRCMPSP/SS is described. An instance 
of the DRCMPSP/SS consists of a set of shared resources and an 
uncertain number of projects with unknown activity properties and 
project arrival time. This results in a multi-stage stochastic problem, 
where for each stage an 𝑁𝑃 -hard problem needs to be solved and the 
expected objective value of multiple future 𝑁𝑃 -hard problems needs 
to be determined. However, computing the expectation over multiple 
stages would be computationally too challenging. Therefore, we present 
three solution methods, which at each decision step, only consider 
the current project, and possibly an estimation of the project directly 
arriving after that.

The first method is the Greedy Method (GM). This method sched-
ules each project by scheduling it as well as possible, without looking 
ahead. This is a fast and simple method that serves as a baseline 
to compare against the other algorithms. The second method is the
Full Method (FM). Here, each objective function evaluation contains a 
simulation of projects arriving in the future. Thus, this method looks 
ahead and finds schedules that account for future arriving projects. 
The final method is the Trained Method (TM). This method uses 
data from earlier or simulated runs from the FM and trains a neural 
network based estimator. This estimator replaces the simulations in the 
objective function evaluation of the FM. Therefore, the TM takes much 
less computing time than the FM.

In the remainder of this section, the three methods are described.

4.1. Greedy method

An easy way to schedule multiple arriving projects in practice, 
is simply by not looking ahead and scheduling each project as well 
as possible at the time of arrival. We call this method the Greedy 
Method (GM) and use it as a benchmark algorithm. This allows us to 
answer the question: Can we improve scheduling for the DRCMPSP/SS 
by learning from data? Based on successful implementations for the 
RCPSP (Van der Beek et al., 2023; Quoc et al., 2020; Sallam et al., 2020; 
Zaman et al., 2021), we use a Differential Evolution (DE) algorithm to 
optimize each schedule. Since the focus of this paper is on the learning-
from-data aspect, we only give a brief description of the algorithm 
and refer to Storn and Price (1995) for a more elaborate description. 
Furthermore, since the DE algorithm is used throughout this paper with 
varying details, we use a general notation.

The solutions in the algorithm are stored in solution matrix X that 
consists of 𝛾 solution vectors of length sol_len. In the GM, sol_len is 
equal to the number of activities. Each solution vector 𝐱 ∈ X is a 
priority vector: a vector with an entry for each activity that defines the 
priority to schedule this activity. This vector is converted to a schedule 
by a serial Schedule Generation Scheme (SGS).  The serial SGS selects 
activities based on their priorities, and then sequentially schedules 
each one at its earliest resource and constraint feasible time. This is 
described in more detail in Artigues et al. (2008). This gives a schedule: 
an assignment of start times to the project activities.  Furthermore, 𝐱∗
keeps track of the best solution found so far. During each iteration, an 
improvement step is performed for each 𝐱 ∈ X. In this improvement 
step, three solution vectors 𝐚1, 𝐚2 and 𝐚3 are randomly selected from 
X and used to create a trial solution 𝝆 = [𝜌1,… , 𝜌sol_len].  This is 
done by creating 𝐚 (line 6) and selecting entries from that vector with 
probability 𝑐. To ensure there is always at least one entry replaced, 𝑓
is used. If the objective value of this trial solution 𝝆 is better than or 
equal to the objective value of the currently considered solution 𝐱, it 
replaces 𝐱 in X. Similarly, if it is better than the best solution 𝐱∗ found 
so far, it replaces this one too. This gives the full solution algorithm, as 
given in Algorithm 1.

Solution matrix X is initialized by generating a matrix with uni-
formly distributed random values between 0 and 1. The algorithm is 
terminated when no new improved solution has been found in the 
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last 25 iterations. This value is set manually, as it was found to give 
reasonable computing times.

Algorithm 1 Differential evolution
1: X← Initialization matrix of size 𝛾 × sol_len
2: 𝐱∗ ← argmin𝐱∈X(objective 𝐱)
3: while not terminated do
4:  for 𝐱 ∈ X do
5:  𝐚1, 𝐚2, 𝐚3 ← Pick randomly without replacement from X⧵{𝐱}
6:  𝐚 ← 𝐚1 +𝑤(𝐚2 − 𝐚3)
7:  𝑓 = random from {1,⋯ , 𝑁}

8:  𝜌𝑖 ←

{

𝑎𝑖 with probability 𝑐 or if 𝑖 = 𝑓
𝑥𝑖  otherwise

9:  if objective 𝜌 ≤ objective 𝐱 then
10:  Replace 𝐱 ∈ X by 𝜌
11:  if objective 𝜌 < objective 𝐱∗ then
12:  𝐱∗ ← 𝜌
13:  end if
14:  end if
15:  end for
16: end while
17: return 𝐱∗

The term 𝐚1 + 𝑤(𝐚2 − 𝐚3) in line 6 ensures that activities for which 
the prioritization is similar in good solutions, these priorities will stay 
similar in the resulting 𝐚. For activities for which the prioritization 
varies in good solutions, the term 𝐚2 − 𝐚3 keeps the same variety 
in prioritization in the resulting 𝐚. Therefore, the algorithm creates 
solutions that vary the priority of the activities for which the correct 
prioritization is still unclear, and spends less time varying the priority 
of activities for which the correct prioritization is already clear. 

4.2. Full method

This subsection presents the Full Method (FM), which is the most 
computationally expensive method presented in this paper. The FM 
also uses a DE algorithm (Algorithm 1) to search the solution space. 
However, instead of only looking at the current project, it includes a 
simulation to estimate the objective value for the subsequent project. 
This is done by modifying three parts of the algorithm: the solution rep-
resentation, the objective function, and an optional part to store data 
for the TM. These are explained in the remainder of this subsection, 
after which the full description of the FM is given.

4.2.1. Solution representation
In the GM, a priority vector is used to represent solutions which can 

be converted to a schedule by a serial SGS. The serial SGS sequentially 
schedules each activity at the earliest possible starting time. However, 
when future arrivals are considered, it is possible that the best schedule 
contains activities that are scheduled later than their earliest possible 
starting time. This can be done to allow availability of resources for 
later arrivals. For this reason, we introduce a new solution representa-
tion by defining each solution vector 𝐱 as a vector of length 2|𝑁|, where 
|𝑁| is the number of activities to be scheduled. Then, the first |𝑁|

entries form a priority vector, as described in Quoc et al. (2020). The 
remaining entries form the gap vector. This vector defines the gap for 
each activity. When scheduling an activity according to the serial SGS, 
this gap value is rounded and added to the starting time. This allows the 
schedules to have spread out activities in order to decrease the resource 
usage at certain times. A similar concept is used in Hartmann (2015), 
where it is called delay value.
811 
4.2.2. Objective function
The main difference between the FM and the GM, is that in the FM 

a solution is evaluated on both the current project and simulated future 
projects. This is based on the Sample Average Approximation (Kleywegt 
et al., 2002). This method finds solutions to stochastic problems by gen-
erating multiple scenarios and creating a deterministic equivalent of the 
stochastic problem using these scenarios. However, using a fixed set of 
scenarios risks finding solutions that perform well only on these specific 
scenarios (Homem-De-Mello, 2003). Secondly, the FM is designed with 
compatibility for the TM in mind: besides running the FM to obtain 
solutions, it should also be possible to use the FM to generate data for 
the TM. Using a fixed set of scenarios limits the variety in the training 
data. Therefore, the FM does not create a deterministic equivalent. 
Instead, it uses an iterative optimization approach where each objective 
estimation consists of optimizing multiple future candidate projects, 
with different scenarios per iteration. This allows us to consider a large 
set of scenarios and create varied training data, without having to 
optimize for all of these scenarios simultaneously.

In each iteration of the FM, 𝜁 scenarios are generated, each con-
taining a different second project. This set of projects is denoted by 
P = {1,… ,𝜁}. Let (𝑋,) be the set of feasible solutions for project 
 ∈ P, given solution 𝑋 to the current project 1. Then, to evaluate a 
solution 𝑋 in the algorithm, we take the current objective of the current 
project 𝑜𝑏𝑗(𝑋) plus the average of the best solutions for the scenario 
projects. The objective values for these scenario projects are called the
scenario objectives. Thus, the objective function for the FM becomes: 

𝑜𝑏𝑗𝐹𝑀 (𝑋) = 𝑜𝑏𝑗(𝑋) + 1
𝜁

∑

∈P
min

𝑋′∈(𝑋,)
𝑜𝑏𝑗(𝑋′) (4)

This is called the combined objective, where min𝑋′∈(𝑋,) 𝑜𝑏𝑗(𝑋′)
represents an optimization problem. This means that for each objective 
function computation, 𝜁 minimization problems have to be solved. In 
the FM, we estimate this by using the GM. This allows the FM to 
contain information on different simulated future scenarios. However, 
it also increases the computational time immensely: for every objective 
function computation, multiple other optimization algorithms are run. 

4.2.3. Storing data
Each solution 𝑋, evaluated in the algorithm, results in a resource 

profile 𝑌 : a matrix, where each entry 𝑌𝑟𝑡 represents the total usage of 
resource 𝑟 ∈ 𝑅 at time 𝑡 ∈ 𝑇 . This resource profile is used to generate 
training data for the TM. This is done as follows: given a solution 𝑋 and 
corresponding resource profile 𝑌  with shape |𝑅| × |𝑇 |, one datapoint 
is stored for each incoming scenario project  ∈ P. If project  has 
earliest arrival time 𝜏𝑚𝑖𝑛 and has scenario objective 𝑣, the datapoint is 
(𝑌[∶,𝜏𝑚𝑖𝑛∶|𝑇 |], 𝑣). Thus, it stores the resource profile, starting from the 
earliest arrival time of the incoming scenario project, and the scenario 
objective. 

4.3. Full method algorithm

In this subsection, the FM algorithm is shown. In the current re-
search, this is implemented as a DE algorithm, created by adapting 
the GM (Algorithm 1). However, it can be any population-based search 
algorithm. The algorithm starts by initializing the population of solu-
tion vectors and by setting the scenario count 𝜁 to 2, meaning that in 
the first iteration, we evaluate 2 incoming scenario projects. Then, the 
algorithm starts the iterative process.

At each iteration, 𝜁 scenario projects are generated, together with a 
new population of solutions. These solutions are generated as described 
in Section 4.1. The new solutions are compared against the previous 
solutions, and replace the old solutions if they are better. If the algo-
rithm is used to generate data, it stores the datapoints of all solutions 
for both populations. Subsequently, it performs a paired t-test between 
the combined objectives of both populations. This idea was adopted 
from Homem-De-Mello (2003). If the 𝑝-value of the test is smaller than 
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Fig. 2. Workflow of optimization approach.
the 𝑝-value threshold parameter 𝜇, it cannot be concluded that 𝑉𝑞11 and 
𝑉𝑞22 are statistically different and 𝜁 is increased by 1.

The iterative process is repeated until the stopping criterion is met: 
when the average value of all combined objectives has not reached 
a new minimum in a certain number of iterations. In that case, the 
algorithm is terminated and the best solution in the final population is 
returned. 

4.4. Trained method

The FM can be used to find schedules for arriving projects. However, 
this requires a lot of time, usually multiple days per project. Therefore, 
we use the stored data  to create an objective estimator. This objective 
estimator replaces the simulation step in the FM and thus reduces 
computing time significantly.

The workflow of the TM is visualized in Fig.  2. This consists of 
three stages. First, the data generation process generates all data 
required for training the estimator. This is done by using the project 
generator 𝛯 to create multiple simulations, where each simulation con-
sists of 𝐾 projects. Then, the FM method is executed on each of these 
projects, while taking the resource usage of the solutions of all previous 
projects into account. During this process, the resource profiles and 
corresponding scenario objectives are saved to . Next, the training 
process starts. This process uses stored data  to train an objective 
estimator. Finally, the real project arrives and the scheduling process
starts. This process uses the objective estimator within the DE algorithm 
to schedule any incoming projects.

Since the data generation process consists of using the FM on 
simulated data, the description can be found in Section 4.2. Therefore, 
the remainder of this subsection explains the training and scheduling 
processes. The training process is split up into data processing and 
estimator training.

4.4.1. Data processing
The goal of the objective estimator is to evaluate a schedule on the 

estimated scheduling performance for future projects. This is done by 
taking the resource profile of a solution as input and returning a scalar 
value, called the profile score. This is a measure for the quality of 
a resource profile, with a higher value indicating a resource profile 
of higher quality. However, dataset  obtained by the FM consists of 
a set of resource profiles, each with a corresponding set of scenario 
objectives. In this subsection, it is explained how to convert these 
scenario objectives to a single scalar value per resource profile, on 
which the estimator can be trained.

Before presenting the data processing method, three observations 
are made. The first one is that, since the goal of the estimator is 
to compare solutions, it is not required that the value given by the 
objective estimator resembles the combined objective. Instead, for an 
ideal objective estimator 𝑓 (𝑥), it only is required that 𝑓 (𝑋) < 𝑓 (𝑋′)
when E (combined objective of 𝑋) < E

(

combined objective of 𝑋′) for 
any two solutions 𝑋 and 𝑋′. Secondly, a possible method to create 
the estimator is to train it directly on the tuples of a resource profile 
and scenario objectives in . However, this does not give a reliable 
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estimate, since the objective values in  are obtained for different 
scenarios. Finally, since the number of scenarios varies in the FM, we 
note that the number of objective values in  also varies per iteration. 
It follows that solutions evaluated on more scenarios provide more 
certainty about the expected combined objective value.

To obtain the scalar values for each resource profile, called the
profile scores, the profile network is introduced. This is a network that 
contains a node for each resource profile and an edge based on compar-
isons between these profiles. Each directed edge from resource profile 
𝑌𝑖 to resource profile 𝑌𝑗 has a weight, representing the probability that 
resource profile 𝑌𝑗 has better scenario objective values than resource 
profile 𝑌𝑖. Then, resource profiles with good scenario objectives can 
be found by performing random walks in this network, as is explained 
later.

To create the profile network, we let  = {𝑌1,… , 𝑌
||

} contain all 
unique resource profiles in . The objective values are stored in 𝑈 , 
where 𝑈𝑛𝑖 is the vector of scenario objectives for resource profile 𝑌𝑖 in 
iteration 𝑛 the FM. Furthermore, we let 𝐶𝑖𝑗 be the set of all iterations 
in  that contain both resource profile 𝑌𝑖 ∈  and 𝑌𝑗 ∈  . With this, 
we define matrix 𝛥𝑖𝑗 containing the difference of all scenario objectives 
for iterations with both resource profile 𝑌𝑖 and 𝑌𝑗 : 

𝛥𝑖𝑗 =
⋃

𝑛∈𝐶𝑖𝑗

(

𝑈𝑛𝑖 − 𝑈𝑛𝑗
)

, (5)

where we use the ∪-operator to concatenate vectors. With this, we 
require a measure for the confidence that profile 𝑌𝑖 should be chosen 
over profile 𝑌𝑗 and define this measure as 𝑄𝑖𝑗 , where a low value 
of 𝑄𝑖𝑗 indicates that profile 𝑌𝑖 should be chosen over 𝑌𝑗 . For this 
measure, we use the t-distribution. Usually, this distribution is used 
for normally distributed data. However, even though 𝛥𝑖𝑗 might not be 
normally distributed, we only require a confidence measure and not 
an exact probability. Using a t-distribution has the following beneficial 
properties:

1. More samples result in a higher confidence.
2. No samples or no difference between samples result in 𝑄𝑖𝑗 = 𝑄𝑗𝑖.
3. The values are symmetrical; 𝑄𝑖𝑗 = 1 −𝑄𝑗𝑖.

Therefore, we define the confidence value 𝑄𝑖𝑗 as follows: 

𝑄𝑖𝑗 = 𝐹

(

𝛥𝑖𝑗
√

|𝛥𝑖𝑗 |

𝑠𝑡𝑑
(

𝛥𝑖𝑗
) , |𝛥𝑖𝑗 | − 1

)

, (6)

with 𝑠𝑡𝑑() being the sample standard deviation with Bessels correction 
and 𝐹 (𝑥, 𝑛) the cumulative distribution function of the t-distribution with 
𝑛 degrees of freedom. Next, we apply a method similar to Negahban 
et al. (2012) to convert these values to a network usable for random 
walks. First, let 𝐶𝐼

𝑖𝑗 be the indicator value, equal to 1 if there is at 
least one iteration where both resource profile 𝑌𝑖 ∈  and 𝑌𝑗 ∈  are 
found (|𝐶𝑖𝑗 | > 0) and zero otherwise. We only create an edge between 
profile 𝑌𝑖 and 𝑌𝑗 , if there is at least one comparison in the same iteration 
(𝐶𝐼

𝑖𝑗 = 1). We define 𝛿𝑖 as the number of outgoing arcs from profile 𝑌𝑖: 

𝛿𝑖 =
||

∑

𝐶𝐼
𝑖𝑗 . (7)
𝑗=1,𝑖≠𝑗
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Now, we define for each pair of profiles 𝑌𝑖, 𝑌𝑗 ∈  the value 𝐴𝑖𝑗 that 
represents the probability of moving to profile 𝑌𝑗 ∈  , while located in 
profile 𝑌𝑖 ∈  , in the random walk: 

𝐴𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1
𝛿𝑖
𝑄𝑖𝑗 if 𝑖 ≠ 𝑗 and 𝐶𝐼

𝑖𝑗 = 1

1 − 1
𝛿𝑖

∑

𝑘≠𝑖 𝑄𝑖𝑘𝐶𝐼
𝑖𝑘 if 𝑖 = 𝑗,

0  otherwise.
(8)

Thus, we obtain a profile network  = ( , 𝐸), where each unique 
resource profile 𝑌𝑖 ∈  is a node, and with an edge (𝑖, 𝑗) ∈ 𝐸 if 
resource profiles 𝑌𝑖 and 𝑌𝑗 have been compared at least once in the 
same iteration of the FM. Each edge (𝑖, 𝑗) ∈ 𝐸 has a value of 𝐴𝑖𝑗 . This 
network is used to calculate the profile score vector 𝐬 = {𝐬1,… , 𝐬

||

}: A 
vector where each entry 𝐬𝑖 is the profile score of resource profile 𝑌𝑖 ∈  . 
The resource profile vector is calculated as the stationary distribution 
of a random walk, which is done by initializing the profile score vector 
to 𝟏 and repeatedly matrix-multiplying 𝐬 by 𝐴 until the change in 𝐬
is below a certain threshold 𝜂. This is shown in Algorithm 2. After 
convergence, a large entry 𝑠𝑖 in score vector 𝐬 indicates a high quality 
resource profile 𝑌𝑖 ∈  .

Algorithm 2 Random walk to obtain profile score vector 𝐬 from matrix 
A.
1: 𝐬 ← 𝟏
2: diff← ∞
3: while diff > 𝜂 do
4:  𝐬′ ← 𝐬 ⋅ 𝐴
5:  diff← |𝐬 − 𝐬′|
6:  𝐬 ← 𝐬′
7: end while

A requirement for obtaining useful scores, is that  is connected. 
This is always the case if  only contains data from a single run of the 
FM, since for each generation a comparison is added containing both 
the old and new population. However, since  can contain data from 
multiple runs, it is possible that  is not connected. In this case, each 
score 𝐬𝑖 for 𝑌𝑖 ∈  only represents a score relative to nodes within the 
connected component of 𝑌𝑖.  To tackle this problem of  being possibly 
disconnected, we apply the following procedure: after generating the 
data, we use Algorithm 2 to obtain profile score vector 𝐬. If  is 
connected, we terminate the algorithm. Otherwise, for each separate 
connected component in , we select the resource profile with the 
highest score within that respective component. This gives us a set of re-
source profiles 𝑚𝑎𝑥, one for each connected component. Then, a set of 
new scenarios is created and the scenario objectives are calculated for 
each resource profile 𝑌 ∈ 𝑚𝑎𝑥. The number of scenarios is equal to the 
maximum number of scenarios evaluated in one generation, of all runs 
of the FM in the data generation process (i.e.: largest 𝜁 encountered in 
all runs of the FM). These new evaluations are added to  and then 
used to generate new edges in , between all resource profiles in 𝑚𝑎𝑥. 
Since each connected component has one resource profile in 𝑚𝑎𝑥,  is 
now connected. Therefore, we subsequently compute the profile scores 
𝐬 on this updated graph  by executing Algorithm 2. This is summarized 
below:

1. Generate data  using the FM.
2. Create profile network  and compute profile scores 𝐬.
3. If  is connected, terminate. Otherwise, go to the next step.
4. Get connected components and create set 𝑚𝑎𝑥 consisting of 
the resource profiles with the highest score in each connected 
component.

5. Create objective evaluation for profiles 𝑚𝑎𝑥 and add this data 
to .

6. Repeat step 2 and terminate.

This generates a profile score for each unique resource profile. These 
scores are used to train the objective estimator, as discussed in the next 
section.
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4.4.2. Estimator training
The profile score vector 𝐬 from the previous section forms a measure 

to compare the resource profiles  , encountered in the data generation 
process. However, in the scheduling process, we require a method to 
compare any resource profile to other resource profiles. Therefore, 
we use the resource profiles  and profile score vector 𝐬 to train an 
objective estimator, which in turn can create an estimate of the score 
of any resource profile. This objective estimator is a function that 
takes a resource profile 𝑌  as input and outputs a scalar estimation 
of the quality, i.e., a profile score. This estimator is trained during 
the training process and, subsequently, used within the optimization 
algorithm during the scheduling process. The core of this estimator 
consists of a neural network that is trained several times.

The used neural network is a dense feed-forward network, which 
has as input a resource profile, consisting of a set of sequences, where a 
sequence denotes the resource usage for a single resource. The length of 
each sequence is the makespan of the project, minus the earliest arrival 
time of the next project. Then, the output of the neural network is a 
scalar: the estimation of the profile score. In order to make estimations 
for sequences, one might think of different neural network structures, 
such as recurrent neural networks or transformers (Lim & Zohren, 
2021). However, even though the input sequence in theory can be 
of infinite length, very long sequences correlate to schedules with a 
very high makespan, and thus of low-quality. This permits us to cut 
off sequences after a certain length, presuming that this length is 
sufficiently large. Furthermore, the absolute location in the sequence 
is important, a property that suits a feed-forward network instead of 
a recurrent network. Nevertheless, preliminary tests were performed 
with recurrent neural networks, long short-term memory networks and 
transformer based networks, but the best performance was found with 
the simple feed-forward network.

We now describe the neural network architecture. The input layer 
has a size of 𝑙|𝑅|, where 𝑙 is the maximal considered sequence length 
and |𝑅| the number of resources. 𝑙 is set to be the length of the 
longest profile, encountered in the data generation process. After the 
input layer, we have 𝑠ℎ fully connected hidden layers, each with 𝑠𝑤
nodes. After the final hidden layer, there is one output node, which is 
fully connected to the last hidden layer. The rectangular shape of the 
hidden layers was chosen for tuning efficiency, since it can be described 
by only 2 variables. When the input, encountered in the scheduling 
process, is longer than 𝑙, the final part is truncated.

Furthermore, we use an ADAM optimization process (Kingma & 
Ba, 2015) with a weight decay of 𝑝𝑤 and a learning rate of 𝑝𝑙. The 
parameter values were tuned with the hyperparameter optimization 
method from Bergstra et al. (2013).

4.4.3. Trained method algorithm
In the previous section, it is explained how to process the data 

to obtain profile scores and how to train a neural network on these 
profile scores. In the remainder of this section, it is described how to 
create the objective estimator and how it is used within an optimization 
algorithm.

Using a neural network as an objective estimator has the following 
major problem: In a neural network, there are some areas of the 
input space bound to have lower accuracy, and thus, some profiles 
are estimated to be high quality while they are not. When an opti-
mization algorithm uses the neural network as an objective function,
it actively searches for these low-accuracy areas, since they often hold 
good objective values due to the variation. To remedy this, a technique 
encountered in reinforcement learning research is used (Levine et al., 
2020). Here, we train a neural network several times with different 
seeds. Then, instead of using one estimated value, the objective consists 
of the mean value of all predictions plus a penalty term based on the 
variance of the estimations. The idea behind this is that if the variance 
is high, the area can be seen as low-accuracy. By adding a penalty based 
on this, the search is guided away from these low-accuracy areas.
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Let  = {1,… ,
||

} be the set of trained neural network 
estimators, where each 𝑖 ∈  is a function taking a resource profile 
𝑌 ∈  as input and outputting a scalar value. Then, calling (𝑌 )
returns the set of values for each neural network function 𝑖 ∈ . 
Furthermore, let 𝑜𝑏𝑗𝑒𝑠𝑡(𝑋, 𝜏𝑘+1𝑚𝑖𝑛 ) be the estimated objective value of 
solution 𝑋 with next earliest arrival time 𝜏𝑘+1𝑚𝑖𝑛  and let 𝑝𝑚 > 0 and 𝑝𝑠 > 0
be scaling parameters. Then, we define the estimated objective 𝑜𝑏𝑗𝑒𝑠𝑡 as:

𝑜𝑏𝑗𝑒𝑠𝑡(𝑋, 𝜏𝑘+1𝑚𝑖𝑛 ) = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑋) − 𝑝𝑚
(

𝑅𝑃
(

𝑋, 𝜏𝑘+1𝑚𝑖𝑛
))

+ 𝑝𝑠𝑠𝑡𝑑
(


(

𝑅𝑃
(

𝑋, 𝜏𝑘+1𝑚𝑖𝑛
)))

.
(9)

This objective function thus evaluates a potential schedule 𝑋 based on 
three parts. The first part consists of its current objective. The second 
part consists of an average over all quality predictions multiplied by 
scaling parameter 𝑝𝑚. Since we are minimizing the objective, this term 
is subtracted. Finally, a penalty term consisting of scaling parameter 
𝑝𝑠 and the standard deviation of all quality predictions is added, in 
order to penalize low-accuracy estimations. Thus, 𝑜𝑏𝑗𝑒𝑠𝑡(𝑋) gives an 
estimate of the combined objective. The calculation exists of using an 
SGS to calculate the resource profile given solution 𝑋, and then using 
the trained neural networks on this profile. This objective function is 
then used within Algorithm 1 to create the TM.

5. Computational study

In this section, the methods are evaluated and the computational 
results are presented. First, the instances are described. After this, 
the tests setup is described, including data processing and parameter 
tuning. With this, we present the actual tests results.

5.1. Problem instances

The presented methods are evaluated on multiple instances. An 
instance consists of a project generator 𝛯 and a set of resources 𝑅. The 
project generator generates multiple simulations that consist of 𝐾 real-
izations, where each realization is an arriving project. The instances are 
created to replicate characteristics from modular production. The first 
characteristic is that projects are similar. When considering projects 
from a single product family, each project has some base activities 
that occur in each project, and some activities that result from the 
modularization choices of the customer. Secondly, there is an estimate 
of when the next project will arrive. In practice, for large construction 
projects, there is usually some contact with the customer before a 
project arrives. Although this does not give any exact information, it 
can give a rough estimate. Finally, production facilities aim to have 
some overlap in project execution times. Therefore, it is imposed that 
the next arriving project arrives before the current project is finished.

With these conditions, the instance generation method is now given. 
The instances are created by using a base network, generated by the 
method described in Vanhoucke et al. (2008). This method uses as 
input the Serial/Parallel (SP) parameter, the Resource Factor (RF) 
and the Resource Constrainedness (RC). For a description of these 
parameters, we refer to Vanhoucke et al. (2008). The base network has 
𝑛𝑏𝑎𝑠𝑒 activities. From these activities, we randomly select 𝑛𝑜𝑝𝑡 activities 
to be optional. Then, for each realization of an arriving project, we 
randomly pick 𝑛𝑠𝑒𝑙 from these optional activities and exclude the rest of 
the optional activities. This means that there are (𝑛𝑜𝑝𝑡𝑛𝑠𝑒𝑙

) different projects 
in the distribution 𝛯, with each configuration sampled uniformly. 
Furthermore, the minimum arrival times of a realization of 𝛯 are set 
by scheduling each previous project by the GM. This gives a finishing 
time, and the arrival time of the next project is set halfway the previous 
arrival and finishing time. Finally, we set the varying additional arrival 
time, 𝜏′, to be taken uniformly between 0 and input parameter 𝜏′𝑚𝑎𝑥.

Before applying stochastic optimization methods, it is recommended 
to test the potential of stochastic optimization by evaluating lower and 
upper bounds. A commonly used upper bound on the objective function 
value can be found by creating a naive approach and calculating the 
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Table 1
Characteristics of the considered instances.
 # 𝑛𝑏𝑎𝑠𝑒 𝑛𝑜𝑝𝑡 𝑛𝑠𝑒𝑙 SP RF RC |𝑅| 𝜏′𝑚𝑎𝑥 
 1 30 8 3 20 30 40 2 10  
 2 30 8 3 80 40 60 2 10  
 3 40 12 4 20 30 40 2 10  
 4 40 12 4 80 50 80 2 10  
 5 50 15 5 40 50 40 2 10  
 6 50 15 5 80 50 90 2 10  

expected result of using this model (Birge & Louveaux, 1997). For 
two stage continuous problems, this naive model is the expected value
solution, which can be created by taking the mean value of each 
stochastic variable. For our multi-stage integer problem, we define 
this naive model to be the greedy method: at each stage, the optimal 
solution that does not look ahead is chosen. The expected result is then 
defined as the Expected result of the Greedy Solution (EGS). As a 
lower bound for the objective function value, the expected value of the
Wait-and-See (WS) solution (Birge & Louveaux, 1997) can be used. The 
WS solution is the optimal solution of the problem that assumes that 
it is possible to wait for all stochastic variables to be realized before 
making any decision. The difference between the WS value and the EGS 
then forms an upper bound on the Value of Stochastic Solution (VSS); 
the price one pays for using the naive model rather than the stochastic 
model.

Due to the very long computing time of generating data, parameter 
tuning for the training process, and training the neural networks, it 
is not feasible to evaluate many different instances. Therefore, we 
generate 6 instances and give detailed results for these. The selection 
of these instances is done based on an estimate of the VSS to focus 
on instances with a high potential for improvement by any stochastic 
method. To estimate the VSS, instead of creating and optimizing many 
scenarios per instance, only one scenario is generated. This estimate 
consists of taking the base project and creating a sequence of projects by 
copying this project. Subsequently, both the EGS and the WS solution 
values are approximated by the DE algorithm. Then, six instances were 
selected based on the number of activities and on the estimated VSS 
value. The characteristics of these instances are shown in Table  1.

5.2. Tests setup

In this subsection, the data creation, data processing and parameter 
tuning are discussed. The parameter tuning for all parameters, except 
the neural network related parameters, is carried out by a local search 
algorithm that iteratively varies a single parameter. Initially, this is 
done to determine the parameters 𝑤 and 𝑐 in Algorithm 1, by creating 
a set of projects from realizations of each instance and running the 
parameter tuning algorithm. This results in 𝑤 = 0.8 and 𝑐 = 0.1, 
meaning that 10% of variables are replaced in every iteration.

Since each instance represents a production scenario with a corre-
sponding project generator, both the data generation process and the 
training process in Fig.  2 are executed for each instance. Additionally, 
the parameter tuning process for the trained method is also executed 
per instance, since this is also recommended in practice. For each of 
the six instances, 10 simulations are created, with each simulation 
consisting of |𝐾| = 5 sequentially arriving projects. Then, the FM is 
sequentially executed on each arriving project, given the solutions of 
the previous projects in the same simulation. After this, the data is 
processed to create resource profiles and corresponding profile scores. 
Next, parameter tuning for the neural networks is started for each 
instance, as described in Section 4.4.2, to determine the parameters 
𝑠ℎ, 𝑠𝑤, 𝑝𝑤 and 𝑝𝑙. Subsequently, the neural network is trained multiple 
times for each instance. Then, the local search parameter tuning is 
started on each instance to determine the number of trained neural 
networks (|| ≤ 15, where 15 is chosen due to computational resource 
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Table 2
Parameters per instance.
 # 𝑙 𝑠𝑤 𝑠ℎ 𝑝𝑙 𝑝𝑤 𝑝𝑚 𝑝𝑠 || 
 1 2542 400 4 1 × 10−4 1 × 10−5 1.0 0.7 10  
 2 1792 500 7 1 × 10−4 1 × 10−5 7.0 0.7 14  
 3 1149 500 6 1 × 10−4 1 × 10−2 1.0 0.2 5  
 4 1316 500 6 1 × 10−4 1 × 10−5 5.0 0.4 5  
 5 1124 500 7 1 × 10−4 1 × 10−2 1.0 0.1 10  
 6 1296 400 6 1 × 10−4 1 × 10−5 4.0 0.7 12  

Table 3
Average computing times of processes.
 Data creation 20.3 days 
 Parameter tuning 6.8 days  
 Neural network training (per network) 3.1 h  

limitations) and the estimator parameters 𝑝𝑚 and 𝑝𝑠. All parameters 
per instance are given in Table  2 and the complete instances are given 
in Van der Beek (2022). With these parameters and instances, the tests 
are performed, as explained in the next subsection.

The average durations of these steps are shown in Table  3. Here, 
it can be seen that the data creation part takes very long: 20.3 days. 
However, this process is additive, meaning that data from new runs can 
be added to the previous data. Therefore, in practice, it is possible to 
start with less generated data, and generate more data at a later time. 
Furthermore, this process can be easily parallelized. The parameter 
tuning also takes several days, because it involves training the neural 
network multiple times. After all this is done, training a neural network 
takes relatively short: around 3 h.

5.3. Computation results

The presented instances are used to evaluate the solution meth-
ods. As presented earlier, we consider three solution methods: Greedy 
Method (GM), Trained Method (TM) and Full Method (FM). This subsec-
tion describes the processing and tests done to evaluate these methods. 
These tests are divided into two categories: comparison between GM 
and TM and comparison between all methods. For the comparison 
between GM and TM, many simulations can be evaluated, since both of 
these methods are relatively fast. The goal of these tests is to evaluate 
whether the TM performs better than the GM, and thus, if the algorithm 
can learn from earlier optimization runs. The purpose of comparing all 
methods, so including FM, is evaluating the decrease in computing time 
due to learning from data and the cost, in terms of solution quality, of 
this. Since the FM is considerably slower, less tests are performed in 
this category.

To compare the results, we introduce the notion of average relative 
makespan (𝑎𝑟𝑚): 

𝑎𝑟𝑚 = 1
|𝐾|

∑

𝑘∈𝐾
𝑜𝑏𝑗(𝑋𝑘) (10)

which can be seen as the realized value of the 𝑐𝑡𝑔 (Eq. (3)), averaged 
over all projects.

The neural network training and corresponding parameter tuning is 
performed on single cores of a 2.80 GHz GPU with 32 GB RAM. All 
other computations are performed on a single core of a 3.0 GHz Intel 
XEON CPU with 4 GB RAM.

5.3.1. Comparison between greedy method and trained method
The first category of tests are comparisons between the GM and 

the TM. The goal of these tests is to evaluate the improvement that 
can be obtained by training an objective estimator. For each of the six 
instances, 100 simulations are created, thus having 600 simulations in 
total. Then, each simulation is optimized with both the TM and the GM.

In Table  4, the results are summarized for these tests. Note that the 
minimal value for the 𝑎𝑟𝑚 is 5, since sequences of |𝐾| = 5 arriving 
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Table 4
Results of comparison between GM and TM.
 GM TM  
 Mean 𝑎𝑟𝑚 1.536 1.436 
 Median 𝑎𝑟𝑚 1.527 1.365 
 Standard deviation 𝑎𝑟𝑚 0.226 0.244 
 # lowest 𝑎𝑟𝑚 173 403  

projects are generated in each of the 600 simulations. It can be seen 
that both the mean and the median 𝑎𝑟𝑚 are lower for the TM. However, 
the GM is slightly more stable, since the standard deviation of the 𝑎𝑟𝑚 is 
around 7% lower. Finally, we evaluate the number of times that either 
method exclusively has the lowest 𝑎𝑟𝑚. Here, it can be seen that the 
majority of simulations has the best 𝑎𝑟𝑚 found by the TM. Deducting 
these values from the total number of simulations gives 600−403−173 =
24, which shows that there are few simulations for which both methods 
reach the same value.

Furthermore, the tests are evaluated in more detail in Fig.  3. Here, 
the instances are separated by the number of activities in the base net-
work. The 𝑎𝑟𝑚 values are shown in Fig.  3(a). For comparison between 
the two methods, Fig.  3(b) shows the ratio of the 𝑎𝑟𝑚 values for the TM 
𝑎𝑟𝑚𝑇  and the GM 𝑎𝑟𝑚𝐺. This reveals a number of trends. Firstly, in Fig. 
3(a), it can be seen that the deviation of the 𝑎𝑟𝑚 values increases for the 
GM with the number of activities. Secondly, in Fig.  3(b), it can be seen 
that with more activities, the increased performance of the TM becomes 
smaller. However, as both the mean and the median are slightly below 
one, the TM still performs better than the GM on the instances with 50 
activities.

Additionally, the performance difference between the number of 
stages |𝐾| is evaluated. For this, we define 𝑝𝑜𝑏𝑗𝑘 =

∑

𝑡∈𝑇 𝑘 (𝑡 − 𝜏𝑘)𝑋𝑘
|𝑁𝑘

|𝑡
as the partial objective: the makespan of the project at stage 𝐾. We 
use superscript to denote the method, such that 𝑝𝑜𝑏𝑗𝐺𝑘  and 𝑝𝑜𝑏𝑗𝑇𝑘  refer 
to the values for the GM and TM, respectively. Then, Fig.  4 shows the 
ratio between both methods, for each stage. Here, it can be seen that 
the first stage has all values greater than or equal to 1, meaning that the 
GM performs better than the TM. This is logical, as the TM introduces 
some delays in order to create better resource profiles for later stages. 
In the remaining stages, it can be seen that the TM performs better than 
the GM, with the difference in performance slightly increasing with the 
stage number.

Finally, the effect of using multiple trained neural networks in the 
estimator is evaluated. In Fig.  5, the average ratio between 𝑎𝑟𝑚 per 
method is shown, while varying the number of trained neural networks 
in the estimator. It can be seen that the performance rapidly increases 
with the first 6 trained neural networks, after which the performance 
increase flattens out somewhat. However, the average slope remains 
slightly negative, indicating a benefit of adding more neural networks.

5.3.2. Comparison with full algorithm
The second category of tests compares the FM to the GM and TM. 

The goal of these tests is to evaluate the cost, in terms of solution 
quality, paid for the reduction in computing time. This is done by 
creating 20 simulations for each of the six instances and executing all 
methods on these simulations.

The summarized results of all three methods are shown in Table 
5. Here, it can be seen that the quality of solutions found by the FM is 
superior: The mean 𝑎𝑟𝑚, median 𝑎𝑟𝑚, standard deviation of the 𝑎𝑟𝑚 and 
(non-exclusive) number of lowest 𝑎𝑟𝑚 found are better for the FM than 
for the other methods. However, it can also be seen that the FM has 
an average duration of more than three days, where the GM and TM 
have average computing times of less than 1 and 11 min, respectively. 
Thus, considering the GM as the base, the TM achieves 64% of the 
improvement of the FM, while only requiring around 0.33% of the 
computing time at the time of project arrival.
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Fig. 3. Comparison between the TM and the GM on 𝑎𝑟𝑚.
Fig. 4. Partial objective ratios per stage.

Fig. 5. Value of 𝑎𝑟𝑚 ratio while varying the number of trained neural networks in the 
estimator.

In Fig.  6, the 𝑎𝑟𝑚 values are shown. Here, it can be seen that the 
improvement against the TM and FM have a stronger correlation with 
the number of activities than the GM. For 50 activities, the GM and TM 
perform similar, although the results for the FM indicate that there is 
still some room for improvement in the TM. This holds especially for 
the median 𝑎𝑟𝑚.
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Table 5
Summarized results for comparison with FM.
 GM TM FM  
 Mean 𝑎𝑟𝑚 1.572 1.457 1.392  
 Median 𝑎𝑟𝑚 1.552 1.410 1.337  
 Standard deviation 𝑎𝑟𝑚 0.220 0.249 0.233  
 Mean computational time (h) 0.014 0.174 52.253 
 # lowest 𝑎𝑟𝑚 11 29 80  

When evaluating the ratio between the 𝑎𝑟𝑚 of the TM and FM, 
as shown in Fig.  7(a), it can be seen that the TM is closest to the 
FM for the instances with 30 and 50 activities in the base network. 
A possible explanation is that the TM performs relatively well on the 
small instances, and that the FM performs relatively poor on the largest 
instances. This can be seen in Fig.  6, where there is a relatively small 
improvement for the FM, compared to the TM, on the largest instances. 
Furthermore, there is more variety in the distribution of larger projects. 
This can increase the difficulty of creating schedules that perform well 
on expected future arrivals.

Additionally, the ratio of partial objectives per stages are shown in 
Fig.  7(b), where 𝑝𝑜𝑏𝑗𝐹𝑘  refers to the partial objective of the FM at stage 
𝑘. It can be seen that the relative performance of the TM decreases with 
the stage number. A possible explanation for this is the following: the 
resource profiles in , used to train the TM, are created from different 
simulations than the ones being evaluated in each test. In the first 
stage, there are no resource profiles from the earlier projects. Therefore, 
the resource profiles encountered in the training process are similar 
to the resource profiles in the evaluation process. In each subsequent 
stage, an extra project enters, and thus a potential deviation in resource 
profiles. Therefore, it follows that for later stages, the resource profiles 
encountered in the training phase are less similar to the profiles in the 
evaluation stages.

Finally, the computing times are shown in Fig.  8. Here, no clear 
trend can be seen for the GM and the TM, which might be a result 
of the low number of instances. However, for the FM, which has 
considerably longer computing times (notice the difference in y-axis), 
a clear increasing trend can be seen between the number of activities 
and the computing time.

6. Conclusions

In this paper, the stochastic optimization problem DRCMPSP/SS 
that schedules arriving projects under uncertainty is introduced. Fur-
thermore, three solution methods are introduced: the greedy method, 
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Fig. 6. Value of 𝑎𝑟𝑚 per method.
Fig. 7. Ratios of partial objectives between FM and TM.
Fig. 8. Computing times per number of activities.
the full method, and the trained method. The greedy method does 
not look ahead and is used as a baseline method. The full method 
uses a sample average approximation approach with varying scenarios. 
The trained method learns from the full method to look ahead, while 
decreasing the computing time needed. When comparing the three 
methods, it can be seen that the trained method achieves a signifi-
cant improvement in objective function value compared to the greedy 
method, while only requiring a fraction of the computing time of the 
full method. However, looking only at the solutions found, the full 
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method still performs better. Therefore, the recommended use of these 
algorithms depends on the use case. Since the projects considered span 
several months, it often is recommended to run the full method for 
a few days to obtain the best schedule. However, if the size of the 
instances and the variation in scenarios becomes larger, the computing 
time of the full method might become too high and the trained method 
is preferred. Furthermore, quick preliminary schedules might be needed 
for discussion and estimates. For these use cases, the trained method is 
recommended as well.  However, these conclusions do assume that a 
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detailed enough simulation is possible. In many real-life cases, this will 
not be true, and thus one will have to revert to the GM.

From a computational point of view, it is shown how to use data 
from a heuristic optimization algorithm for the RCPSP. The process 
of learning from data to estimate the stochastic objective function 
value can be used in different algorithmic approaches. First of all, the 
data collection process is the same for any population-based search 
algorithm,  and thus, other heuristics can be easily used. Therefore, it 
could be investigated whether the use of other heuristics might improve 
the overall performance. For example, the DE algorithm can be im-
proved by adding forward–backward improvement (Li & Willis, 1992). 
Also other heuristics could be considered, such as genetic algorithms. 
Secondly, the data processing converts any set of comparisons to an 
objective estimator. Thus, this can be used with any simulation that 
uses resource profiles as input. Even more so, it can be converted 
easily to include other characteristics of the solution, as long as the 
corresponding neural networks are adapted as well.

Due to the high computational demands, the number of evaluated 
instances is limited. Although our results already reveal that the trained 
method achieves better results than the greedy method, and thus, 
demonstrates the value of learning from data, more computational 
tests are recommended to further verify this. In order to increase the 
computational testing efficiency, various options can be considered. 
For example, reducing the number of neural networks will reduce the 
neural network training time, but might reduce the performance. Sim-
ilarly, one might introduce early stopping in the scenario objectives
evaluation, sacrificing some accuracy for computational improvement. 
Finally, the computational burden can also be handled by parallelizing 
the data generation process and using more CPUs simultaneously.

For future research, one might focus on the computational evalu-
ation of the trained method. One possibility is to evaluate the use of 
profile networks and study the correlation of neural network param-
eters to the performance of the trained method. Secondly, instead of 
generating new scenarios in each iteration of the full method, one could 
use a fixed set of scenarios. This allows, in every computation of the 
scenario objective, to use the previous solution as a starting point. This 
might achieve a significant reduction in computational time. However, 
this will also reduce the variety in data for the trained method, which 
will likely result in performance loss.

Furthermore, although the instances used resemble the character-
istics of modular production, they are also fairly simplified. Therefore, 
creating more elaborate instances by using expert opinions or historical 
data can show the potential benefit of the proposed methods in prac-
tice. This can also give insight in the required size of the instances and 
the computational demands for this. Similarly, creating more general 
instances from other applications can indicate whether the presented 
methods are also applicable in other fields.

In conclusion, future research can focus on bringing the methods 
closer to applicability and by evaluating them with more computational 
resources. However, as shown by the difference between the trained 
method and the greedy method, this paper demonstrates that training 
from data is possible for the DRCMPSP/SS, and possibly for other 
variants of the Resource Constrained Project Scheduling Problem.
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Appendix. Notation

A.1. Variables, parameters and vectors

 𝑎𝑟𝑚 Average relative makespan.  
 𝑏𝑘𝑟𝑖 Resource requirement of resource 𝑟 ∈ 𝑅 for activity 

𝑖 ∈ 𝑁 of project 𝑘.
 

 𝑐 Replacement parameter in Algorithm 1.  
 𝐝𝑘 Duration vector of project 𝑘.  
 𝑙 Maximum sequence length in each neural network.  
 𝑛𝑏𝑎𝑠𝑒 Number of activities in base network.  
 𝑛𝑜𝑝𝑡 Number of optional activities.  
 𝑛𝑠𝑒𝑙 Number of optional activities to be selected.  
 𝑠ℎ Number of hidden layers in neural network.  
 𝑠𝑤 Width of hidden layers in neural network.  
 𝑝𝑚, 𝑝𝑠 Scaling parameters.  
 𝑝𝑙 Learning rate.  
 𝑝𝑤 Weight decay.  
 𝐬 Profile score vector.  
 sol_len Length of solution in Algorithm 1.  
 𝑤 Weight parameter in Algorithm 1.  
 𝛾 Population size.  
 𝛥𝑖𝑗 Vector of differences between objectives of resource 

profiles 𝑌𝑖 and 𝑌𝑗 .
 

 𝛿𝑖 Outgoing arcs of resource profile 𝑌𝑖 ∈  in the profile 
network.

 

 𝜁 Scenario counter.  
 𝜂 Threshold parameter for profile score convergence.  
 𝜆𝑟 Resource capacity for resource 𝑟 ∈ 𝑅.  
 𝜇 Threshold parameter for p-value.  
 𝛯𝑘 Distribution of (project, arrival time) at decision step 

𝑘 ∈ 𝐾.
 

 𝜏𝑘 Arrival time of project 𝑘.  
 𝜏𝑘𝑚𝑖𝑛 Earliest arrival time of project 𝑘.  
 𝜏′ Deviation from earliest arrival time.  
 𝜔 Iteration threshold parameter.  
 𝑆𝑃 Serial/parallel parameter.  
 𝑅𝐶 Resource constrainedness.  
 𝑅𝐹 Resource factor.

A.2. Sets and matrices

 𝐴 Profile networks edge values.  
 𝐵 Resource requirement matrix.  
 𝐶𝑖𝑗 Set of iterations in  that contain both profile 𝑌𝑖 and 𝑌𝑗 .  
 𝐶𝐼

𝑖𝑗 Indicator value for 𝐶𝑖𝑗 .  
  Stored data.  
 𝐸 Arcs in profile network.  
  Profile network.  
 𝐾 Decision steps.  
  Set of trained neural networks.  
 𝑁𝑘 Set of activities of project 𝑘.  
 𝑃 𝑘 Precedence relationships of project 𝑘.  
 𝑘 Project at decision step 𝑘 ∈ 𝐾.  
 P𝑘 Scenario projects for decision step 𝑘 ∈ 𝐾.  
 𝑄𝑖𝑗 Comparison measure between resource profiles 𝑌𝑖 and 𝑌𝑗 . 
 𝑅 Set of resources.  
 𝑇 Set of time periods of all projects.  
 𝑇 𝑘 Set of time periods of project 𝑘.  
 𝑋 Binary solution matrix.  
  Feasible region for project 𝑘.  
 𝑌𝑟𝑡 Resource usage of resource 𝑟 ∈ 𝑅 at time 𝑡 ∈ 𝑇 .  

  Unique resource profiles.
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A.3. Functions

 𝑐𝑡𝑔𝑘(𝑋[𝑘 − 1], 𝛯𝑘) Cost to go at decision step 𝑘 ∈ 𝐾, given 
schedules 𝑋[𝑘 − 1] and distribution 𝛯𝑘, 
for project 𝑘.

 

 𝐹 (𝑥, 𝑛) Cumulative distribution function of 
t-distribution for 𝑥 with 𝑛 degrees of 
freedom.

 

 𝑜𝑏𝑗𝑒𝑠𝑡(𝑋, 𝜏) Estimated objective of solution 𝑋, with 
earliest next arrival time 𝜏.

 

 𝑅𝑃 (𝑋[𝑘], 𝑡) Resource profile of solutions 𝑋[𝑘], 
starting from time 𝑡 ∈ 𝑇 .

 

 𝑠𝑡𝑑(𝑥) Standard deviation of 𝑥.  
 𝑘(𝑋[𝑘 − 1]) Feasible schedules for project 𝑘, given 

solutions 𝑋[𝑘 − 1].
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