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Abstract

Germanium heterostructures are frontrunners for semiconducting quantum information processing. State-
of-the-art double quantum dots are confined in monolayers of Germanium, however recent technological
advances enable double quantum dots to be confined vertically in germanium bilayers, offering the oppor-
tunity add the vertical degree of freedom to the qubit architecture. This project consists in theoretically mod-
elling the double quantum dot in a Germanium bilayer by finding an effective Hamiltonian of two interacting
spins in the presence of spin-orbit interactions. By analyzing the anisotropy of the Landé g -factors in the dou-
ble quantum dot, the project aims to identify opportunities and challenges for two-qubit gates implemented
in these structures.
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- Chapter 1 -

Introduction

Several requirements for quantum computation have been listed since the birth of the quantum computer
concept in the late 20th century, such as the need for storage in a scalable quantum register (quantum bits),
the requirement for possible preparation in a fiducial state, as well as need of sufficient coherence, attainabil-
ity of a set of high-fidelity gates and finally the ability of reading out the register at the end of a computation
[1]. Using the spin degree of freedom of an electron confined in a potential has proven to be an appropriate
choice for a computational unit, as the particle’s spin-up and spin-down state naturally define the qubit. Fur-
thermore, using electron spins allows electric initialization and high-fidelity read-out employing tunneling
or the Pauli exclusion principle [2].
Semiconductor spin qubits share the characteristics of the spin being confined to isolated sites. By engineer-
ing the density of conducting electrons, the electron motion can be restricted to two dimensions and allows
for the localization of the particles in quantum dots (QDs) providing an appropriate setting for spin-based
quantum information processing [3].
Across distinguishable locations, the wavefunctions of two electrons can overlap and decrease the energy of
the spin-singlet state relative to the symmetric spin-triplet states. This energy decrease is commonly referred
to as the exchange coupling J and is especially relevant, from a quantum control point of view, due to its
tunability over large energy intervals through adjustment of the gate voltage [4].
The final goal of these QD arrangements is to work as quantum gates, where notable 2-qubit gates that arise
from this specific setup are the so-called SW AP-gate and

p
SW AP-gate [4].

In recent years, Germanium has proven itself to be a good candidate as a heterostructure material for quan-
tum computation purposes [5]. It is a group IV semiconductor with several interesting and useful properties,
such as its ability to form high-quality quantum wells and QDs and its strong spin-orbit coupling which al-
lows for precise electrical control of spin states in the QDs.
Until now, the most studied form of QDs in Germanium has consisted of observing double quantum dots
(DQDs) confined in monolayer structures. Recent technological advances in the field, however, have enabled
vertical confinement of DQDs in Germanium bilayers, allowing the addition of the vertical degree of freedom
to the qubit architecture.

This thesis project aims to theoretically model the DQD in a Germanium bilayer by finding an effective Hamil-
tonian of two interacting spins in the presence of spin-orbit interactions.
In Chap. 2 the theoretical model used for the project is discussed, starting from the general descriptions of
single and double quantum dots and their respective Hamiltonians. This chapter also treats the Schrieffer-
Wolff transformation, a crucial tool that allows us to project large Hamiltonians onto a smaller subspace,
providing a basis where the effective exchange coupling can be identified and expressed using the parame-
ters of the QD. Finally, the chapter introduces the Luttinger-Kohn Hamiltonian, which describes the behavior
of charge carriers and provides the framework for band structure and spin-orbit interaction analysis in group
IV semiconductors such as Germanium. Additionally, the dimensional reduction of the 3D Luttinger-Kohn
Hamiltonian to a simpler 2D version is explained and justified. In section 3 the Germanium bilayer model
is analyzed. We observe how the energy levels of the Luttinger-Kohn Hamiltonian are discretized and how
we use the Schrieffer-Wolff transformation to obtain an effective low-energy Hamiltonian without neglecting
higher-energy contributions.
Finally, section 4 gives a conclusion and outlook for further theoretical research that can be done within the
field.
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- Chapter 2 -

Theoretical Model

2.1. Single Quantum Dot (SQD)
2.1.1. Designing the quantum dot
An electron can be confined to two dimensions due to the layer structure of the semiconductor in which it
resides, specifically in a narrow quantum well in the case of a Germanium semiconductor. This type of two-
dimensional conducting layer is known as a 2D electron gas, or 2DEG. Through the use of gate electrodes on
the surface of the material, the 2DEG is locally depleted around the desired quantum dot to create a potential
well in which the electron spin can be confined. The gates are also used to increase the resistance between
the dot and the adjacent electron gas, allowing for localization of the spin in the dot [6]. Completely removing
all electrons from a quantum dot is difficult, because it requires large voltages on the gate electrodes which
leads to challenges making electrons enter and leave the dot. For this reason, careful design of gate electrodes
is needed in a way that differentiates ’plunger’ gates, which control the number of electrons in the dot, from
’lead’ gates, which control the coupling to the adjacent 2DEG.
To prevent any thermal excitation of the electron and ensure that the spin qubit can be operated in its lowest
available energy states, the system needs to be brought down to very low temperatures, typically in the order
of 10mK to 4K [7][8].

2.1.2. Loss-DiVincenzo qubit
The simplest quantum bit is the so-called Loss-DiVincenzo qubit [6]. It consists of a single electron confined
in a quantum dot where information is encoded using the electron’s intrinsic spin- 1

2 state. The logical sub-
space considered for this system consists of the states |↑〉 and |↓〉, for which the energy degeneracy can be
lifted using a static magnetic field resulting in Zeeman splitting. Applying an oscillating field in the direction
perpendicular to the static field allows to drive oscillations of the spin around the Bloch sphere, and thus
enables control of the qubit. The Hamiltonian of the single spin in a SQD can be expressed as

H = gµB B · Ŝ = gµB (Bzσz +Bxσx cos(ωt +φ)) (2.1)

where g is the material-dependent Landé g -factor, µB is the Bohr magneton and ω and φ are the frequency
and the phase of the oscillating field, and where we have assumed that the static and oscillating magnetic
fields are applied in the z- and x-direction respectively. For the resonant case, ω= gµB Bz /ħ.

2.1.3. Spin-orbit interaction
An electron moving in proximity of a charged particle with velocity v, such as the case of an electron passing
through a crystal lattice, will feel the local electric field E caused by the nucleus, and will therefore experience
a magnetic field Beff. This induces an interaction with the spin of the electron through the Zeeman energy
resulting in so-called spin-orbit interaction (SOI). It can be described by a Hamiltonian of the following form:

HSOI = aE · (p×σ) (2.2)

where a is a constant depending on the type of SOI, and where one can clearly see that the spin σ and the
momentum p are related [9]. In some materials, with Germanium being a prime example, the SOI is so strong
that spin and momentum can no longer be separated [10]. This interaction allows for another type of qubit
driving mechanism called Electric-Dipole Spin Resonance (EDSR). The technique is based on shifting the
position of the quantum dot by applying an AC electric field in the direction of the nanowire or in the plane
of the semiconducting layer. This enables fully electrical qubit control without any need for magnetic fields,
which presents advantages in integration into semiconductor technology as well as facilitated control and
localization [10]. Finally, spin-orbit interaction gives rise to anisotropy in the particle exchange energy, which
will become important later when we consider the exchange in double quantum dots in Germanium bilayers.

3



4 2. Theoretical Model

2.2. Double Quantum Dot (DQD)
Double quantum dots are often used instead of single quantum dots because they offer more sophisticated
control and additional functionalities that are valuable for more advanced applications in quantum comput-
ing and quantum information processing.
Introducing a second electron into the dot system allows for coupling between the spins in the two dots,
which can precisely be tuned and implemented for two-qubit gate operations. Furthermore, DQDs have an
edge over SQDs when it comes to both the creation of entangled states between electrons of different dots
and mitigation of decoherence.

Figure 2.1: A double quantum dot. Similarly to the SQD, electrons are confined to a 2DEG in the circular regions shown. By applying a
negative voltage to the back gate, the dots are depleted of electrons such that only one spin remains in each dot. The left (right) electron
is represented by an arrow with a corresponding spin-1/2 operator ŜL(R). The up and down eigenstates of the electrons encode the qubit
[11].

The addition of the second electron, however, adds a number of different interactions and phenomena which
need to be accounted for in the Hamiltonian of the DQD. In the following subsections we will address these
interactions and formulate an effective Hamiltonian for the system.

2.2.1. Singlet-triplet basis
The two electrons in a double quantum dot are fermions, meaning they obey the Pauli exclusion principle.
This principle states that two or more electrons in a quantum system cannot simultaneously occupy the same
quantum state, and results in the requirement of the total wavefunction of the two electrons in the system to
be odd under the exchange of all degrees of freedom.
We expect the electrons to be localized in each dot, which leaves us with a convenient spin basis to work with
for our description of the system. We are left with an anti-symmetric spin-singlet state:

|S〉 = |↑↓〉− |↓↑〉p
2

and three symmetric spin-triplet states:
|T+〉 = |↑↑〉

|T0〉 = |↑↓〉+ |↓↑〉p
2

|T−〉 = |↓↓〉
Note that there are two additional spin-singlet states |SL〉 and |SR〉 that are associated with symmetric orbital
wavefunctions corresponding to when the electrons are confined in the same dot, either left or right. These
states will become important later when finding the effective Hamiltonian.

2.2.2. Orbital Hamiltonian
Before considering the interactions between the two electrons in the double quantum dot, it is important
to establish the energies related to the single electrons, more specifically their orbital localization, in the
DQD system. We define |L〉 and |R〉 to be the ground states of the left and the right dot, with corresponding
eigenenergies ϵL and ϵR . When the dots are far apart, the electron can be either in the left or in the right
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dot, which helps us formulate an associated Hamiltonian based on the difference ϵ = ϵL − ϵR between the
eigenenergies of the left and right dot as shown in figure 2.2.

Figure 2.2: The detuning Hamiltonian is determined by the difference in energy level between the left and the right dot, ϵ. The tunneling
Hamiltonian is determined by the likelihood of the electron hopping from one dot to another, t .

The energy difference is commonly known as detuning, and results in the Hamiltonian Hdetuning:

Hdetuning = ϵL |L〉〈L|+ϵR |R〉〈R| = ϵ

2
[|L〉〈L|− |R〉〈R|]

(
+ϵl +ϵR

2
[|L〉〈L|+ |R〉〈R|]

)
= ϵ

2
τz (2.3)

where the part in brackets is omitted since it causes a global shift in energy without influencing the dynamics
of the system.
There is also energy associated with tunneling t of the particle between the dots as they are pushed closer
together, which is contained in the Hamiltonian Htunneling:

Htunneling =−t [|L〉〈R|+ |R〉〈L|] =−tτx (2.4)

Finally, we add these two contributions to get the single-electron orbital Hamiltonian, which is applied to
both electrons in a two-electron DQD system:

Horbital = (
ϵ

2
τ(1)

z − tτ(1)
x )+ (

ϵ

2
τ(2)

z − tτ(2)
x ) (2.5)

where τz and τx denote two Pauli-like matrices acting on the dot positions and where the superscripts 1 and
2 denote the first and the second electron respectively. Using the basis of the spin-singlet and triplet states
mentioned in the previous subsection, a Hamiltonian matrix can be constructed. It turns out however, that
the absence of spin dependence in this Hamiltonian causes a decoupling of the singlet and triplet sectors,
and in fact produces only zero terms in the triplet sector due to the anti-symmetry of the triplet orbital states.

2.2.3. Zeeman field, Coulomb interaction and exchange J
Similar to the SQD, we want to apply a magnetic field to the double dot system which will couple to the spins
through the Zeeman Hamiltonian. Because the field couples to both electrons, we need to apply equation 2.1
to the individual spins as such:

HZeeman = H (1)
Zeeman +H (2)

Zeeman = gµB

2
B · (σ(1) +σ(2)) (2.6)

Unlike Horbital, HZeeman is only dependent on spin. This also results in decoupling of the singlet and the triplet
sector, and the anti-symmetry of the singlet spin states gives an all-zero singlet sector.
Two electrons in proximity will try to repel each other due to Coulomb interaction. Also this interaction
needs to be taken into account in the full Hamiltonian. Because Coulomb repulsion is spin-independent,
no coupling of the singlet and triplet sector will take place, and will only affect the singlet sector (the triplet
sector only undergoes a global energy shift which can be omitted). The Coulomb potential is formulated as
follows:

VCoulomb(r1,r2) = e2

4πε|r1 − r2|
(2.7)

where e is the electron charge and ε is the permittivity of the material.
Using the Hamiltonian terms expressed so far, a full Hamiltonian can be constructed in the singlet-triplet
basis using 〈ψi |HDQD |ψ j 〉, where HDQD = Horbital +HZeeman +VCoulomb, resulting in the following matrix:

HDQD =



U +ϵ 0 −p2t 0 0 0
0 U −ϵ −p2t 0 0 0

−p2t −p2t 0 0 0 0
0 0 0 gµB Bz 0 0
0 0 0 0 −gµB Bz 0
0 0 0 0 0 0

 (2.8)
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where U represents the Coulomb repulsion between electrons confined in the same dot and where we for
simplicity have rotated the system such that the magnetic field is applied in the z-direction. It should be
noted that all other terms in the singlet sector related to Coulomb interaction have been dropped due to
their small contribution in comparison to U , an approximation associated with the Hubbard model which is
justified by the weak tunnel coupling [12].
Ultimately, we are most interested in the case where the electron spins are confined in different dots. In other
words, we only want to consider the low-energy subspace of the Hamiltonian corresponding to the |S0〉 state
and the three triplet states. By assuming the absence of a magnetic field treating the tunneling terms in HDQD

as a perturbation, we use standard perturbation theory to find that the energy of |S0〉 is lowered by a certain
amount, the exchange energy J , making the singlet state the ground state at zero magnetic:

J = 2t 2

U +ϵ +
2t 2

U −ϵ (2.9)

The exchange coupling arises from the overlap of the wavefunction of the two spins and the Pauli exclusion
principle, and is often included in simple models in the form of the Heisenberg (isotropic) exchange Hamil-
tonian:

Hex = J

4
σ(1) ·σ(2) (2.10)

J is especially important for quantum computation because it is a parameter that is easily tunable and con-
trolled. This makes it the foundation of the basic two-qubit quantum gate, allowing for operations such as
controlled-NOT and SWAP.

2.2.4. Spin-orbit interaction in DQDs
So far, the different components of the DQD Hamiltonian have not resulted in any mixing of the singlet and
triplet states. Furthermore, the system doesn’t exhibit any anisotropy concerning the exchange coupling.
The spins in a double dot, analogously to the single dot, experience spin-orbit interaction which, unlike the
aforementioned interactions, couple the singlet and triplet sectors. In the DQD, spin-orbit interaction causes
differing Landé g -factors in the two dots due to e.g. different dot sizes, as well as spin non-conserving tunnel
coupling between the dots. For a single electron, the Hamiltonian can now be written as:

H = ϵ

2
τz − t0τx + gµB Bz

2
σz + δz gµB Bz

2
τzσz + δgxµB Bz

2
τzσx +

δg yµB Bz

2
τzσy − tSOτyσy (2.11)

where t0 is the spin-conserving tunnel coupling, tSO is the spin-flip (non-conserving) tunnel coupling and δg
is the difference in g -factor. Using the same method as in the previous subsection, we obtain a Hamiltonian
matrix for the DQD:

HDQD =



U +ϵ 0 −p2t0 −tSO −tSO 0
0 U −ϵ −p2t0 −tSO −tSO 0

−p2t0 −p2t0 0 −δbx+iδbyp
2

δbx−iδbyp
2

δgµB Bz

−tSO −tSO −δbx−iδbyp
2

gµB Bz 0
bx−i byp

2

−tSO −tSO
δbx+iδbyp

2
0 −gµB Bz

bx+i byp
2

0 0 δgµB Bz
bx+i byp

2

bx−i byp
2

0


(2.12)

where δb =µB·(ĝ1− ĝ2)/2 is the gradient Zeeman field due to differing g -factors between the dots. Due to the
coupling of orbital and spin degrees of freedom in the newly added terms, the singlet and triplet sectors are
mixed. What this ultimately results in is the introduction of anisotropy in the exchange coupling. To find the
exchange, one can utilize the spin rest frame to eliminate the spin-flip tunneling and regard the SOI as only
affecting the g -factors of the dots, causing the spin to experience a gradient Zeeman field. The frame change
is performed through a unitary transformation where the spin and orbital degrees of freedom are mixed by
the local spin-flip rotation. Putting it in the singlet-triplet basis of single occupied dots yields the following
4×4 Hamiltonian: 

−J −δbx+iδbyp
2

δbx−iδbyp
2

δbz

−δbx−iδbyp
2

bz 0
bx−i byp

2
δbx+iδbyp

2
0 −bz

bx+i byp
2

δbz
bx+i byp

2

bx−i byp
2

0

 (2.13)
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where b = µB · (ĝ1 + ĝ2)/2 is the average Zeeman field from differing g -factors. In this frame, the exchange is
isotropic, but to represent the exchange in our original lab frame, a rotation must be incorporated into the
exchange. This results in a form different from Eq.2.10; we now have to consider the exchange as a matrix J
acting on the spins[13]:

Hanisotropic = 1

4
σ1 ·Jσ2 (2.14)

The exchange matrix J is given by:

J = J0RSO

(
− 2d

λSO

)
= J0RSO(ϕ) (2.15)

where d is the inter-dot distance, λSO = ħ/mαE is the characteristic spin-orbit length and RSO(ϕ) is a coun-
terclockwise rotation matrix around the direction of the spin-orbit field [13].
The anisotropy of the exchange can however also arise solely from differing g -factors, i.e. even without any
SOI present. The angle is then found by diagonalizing the Zeeman fields of the two qubits individually and
combining them into the exchange matrix J . This results in a final angle rotation of the form:

ϑ= arctan
( δgx

g0 −δgz

)
−arctan

( δgx

g0 +δgz

)
(2.16)

for a system with no g -factor anisotropy in the y-direction, as is the case in the system we will consider in
Chap.3.

2.3. Schrieffer-Wolff Transformation
In several instances in the derivations so far, the aim has been to obtain an effective Hamiltonian from a more
complicated Hamiltonian that fully describes the quantum system, with the goal of determining characteris-
tics that allow for control of a qubit gate. The Schrieffer-Wolff transformation is a mathematical degenerate
perturbative technique used in quantum mechanics to perform this simplification and is particularly useful
in dealing with systems where clear separation between energy scales is present, such as when certain cou-
pling terms or interactions in the full Hamiltonian are much weaker than others (as is the case in germanium
double dots). In many quantum systems, the full Hamiltonian H can be split into a dominating part H0 and
a small perturbation ηV :

H = H0 +ηV (2.17)

where H0 is the unperturbed Hamiltonian. The Schrieffer-Wolff transformation is then constructed such that
interactions between weakly interacting subspaces are decoupled and vanish, resulting in an effective Hamil-
tonian that only acts within a desired low-energy subspace. This section is largely based on the work of Sergey
Bravyi, David P. DiVincenzo and Daniel Loss [14], where more details and proofs can be found.

We let P0 and P be a pair of linear subspaces of the same dimension of a finite-dimensional Hilbert space
H , with corresponding projectors P0 and P . P0 is spanned by all eigenvectors of the unperturbed Hamil-
tonian H0 with eigenvalues lying within a certain interval J0 ⊆ R. Similarly, P is spanned by eigenvectors
of a perturbed Hamiltonian H = H0 +ηV with eigenvalues within an interval J ⊆ R obtained by extending
J0. We want to find a unitary transformation U = eS , where S is an anti-Hermitian matrix (S =−S†), which
gives a direct rotation from the subspace P to the low-energy subspace P0. This is the Schrieffer-Wolff
transformation [14]. We then find the effective low-energy Hamiltonian Heff:

Heff = P0U (H0 +ηV )U †P0 (2.18)

However, due to a lack of knowledge about P in most applications of the theory, equation 2.18 cannot be
used explicitly. Instead, a perturbation method must be used to determine Heff in the form of a perturbative
series up to a certain order. To do so, we start by defining another operator Q0 = I −P0 in order to decompose
the perturbation into a block-diagonal part Vd =D(V ) and a block-off-diagonal part Vod =O(V ) where D and
O are superoperators:

D(X ) = P0X P0 +Q0XQ0

O(X ) = P0XQ0 +Q0X P0
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We also, for an arbitrary operator Y , define the superoperator Ŷ (X ) as

Ŷ (X ) = [Y , X ]

Lastly, we introduce the superoperator L , which applies the perturbation theory to the approach for finding
Heff:

L (X ) =∑
i , j

〈i |O(X ) | j 〉
Ei −E j

|i 〉〈 j | (2.19)

where {|i 〉} is an orthonormal eigenbasis of H0. To derive the series, we begin by rewriting the transformed
Hamiltonian U HU † as

exp(Ŝ)(H0 +ηV ) = cosh(Ŝ)(H0 +ηVd)+ sinh(Ŝ)(H0 +ηVod)+cosh(Ŝ)(H0 +ηVod)+ sinh(Ŝ)(H0 +ηVd) (2.20)

which, through posing the condition of the transformed Hamiltonian being block-diagonal and through
some algebraic simplification [14], results in the expressions

tanh(Ŝ)(H0 +ηVd)+ηVod = 0 (2.21)

exp(Ŝ)(H0 +ηV ) = H0 +ηVd + tanh(Ŝ/2)(ηVod) (2.22)

which will be used to determine S and Heff respectively. Treating S as an infinitesimally small block-off-
diagonal operator allows us to obtain

S =L Ŝ(ηVd)+L Ŝcoth(Ŝ)(ηVod) (2.23)

from Eq. 2.21. The infinitesimal condition also allows us to write S in a Taylor series form,

S =
∞∑

n=1
Snη

n (2.24)

The Sn are finally given by

S1 =L (Vod)

S2 =−L V̂d(S1)

Sn =−L V̂d(Sn−1)+ ∑
j≥1

a2 j L Ŝ2 j (Vod)n−1

(2.25)

where the coefficient a arises from the Taylor series of xcoth(x) (see Appendix A). In other words, Eq. 2.25
gives us an inductive formula that provides us with the Taylor coefficients Sn , which allows us to give an
expression for the effective Hamiltonian. Similarly to the S operator, Heff also partially consists of a Taylor
series with coefficients Heff,n :

Heff,n = ∑
j≥1

b2 j−1P0Ŝ2 j−1(Vod)n−1P0 (2.26)

where cooefficients b arise from the Taylor expansion of the function tanh(x/2) (see Appendix A). Using P0 to
project Eq. 2.22 onto the low-energy subspace helps us obtain the final full form of the low-energy Hamilto-
nian:

Heff = H0P0 +ηP0V P0 +
∞∑

n=2
ηn Heff,n (2.27)

Worth noting is that an nth order correction to Heff only requires n −1 coefficients of S.

To summarize, we have established a method to simplify the Hamiltonian of a system by reducing it to an
effective Hamiltonian acting only withing a desired low-energy subspace. By identifying the low-energy sub-
space in the form of projectors, a unitary transformation is applied consisting of series coefficients Sn which
finally let us express the effective Hamiltonian Heff.



2.4. Spin-Orbit Interaction In Germanium 9

2.4. Spin-Orbit Interaction In Germanium
Germanium (Ge) has emerged as a promising material for spin qubits and applications in the field of quan-
tum computation and spintronics due to several advantageous properties. It has a low nuclear spin density
thanks to the high abundance of isotopes with zero nuclear spin, which minimizes hyperfine interactions that
typically cause decoherence. The relatively high atomic number of Germanium (32) causes the inner elec-
trons to move at relativistic speeds, leading to stronger spin-orbit coupling than in other traditional semicon-
ductor materials such as silicon. This allows for EDSR, meaning faster and more energy-efficient qubit op-
erations through electrically controlled spins. Furthermore, high hole mobility and low effective mass speed
up charge and spin transport, which is favorable for scaling up quantum dot arrays and improving qubit per-
formance [15].

So far, we have handled simple SQD and DQD models to get an idea of the type of interactions that take place
in the quantum dot system, and what calculations need to be made in order to find out the necessary pa-
rameters for controlling the spin qubit. In this section, we will explore the type of interactions expected in
germanium structures by introducing the Luttinger-Kohn Hamiltonian, and we will show the steps that need
to be taken to arrive at the Hamiltonian describing a DQD in a Ge bilayer.

2.4.1. The Luttinger-Kohn (LK) Hamiltonian
The Luttinger-Kohn Hamiltonian is a key theoretical model in the study of the electronic band in germanium
and other semiconductor materials, especially for understanding hole behavior in the valence band. It was
first introduced in the 1950s by J.M. Luttinger and W. Kohn [16], and provides a comprehensive description
of interaction effects and effective mass in the valence band, typically comprising light holes, heavy holes
and split-off bands. The Hamiltonian is founded on the framework of k ·p perturbation theory, where the
localized wave functions are expressed as superpositions of Bloch states at the Γ-point, i.e. at center of the
Brillouin zone (k = 0), and which encapsulates the symmetries of the crystal structure of the semiconductor
material[17].

A common depiction of the Luttinger-Kohn Hamiltonian is in the form of a matrix in the basis of total hole
angular momentum eigenstates | j ,m j 〉 ∈ {| 3

2 , 3
2 〉 , | 3

2 , 1
2 〉 , | 3

2 ,− 1
2 〉 , | 3

2 ,− 3
2 〉 , | 1

2 , 1
2 〉 , | 1

2 ,− 1
2 〉}:

HLK =



P +Q −S R 0 −S/
p

2
p

2R
−S∗ P −Q 0 R −p2Q

p
3/2S

R∗ 0 P −Q S
p

3/2S∗ p
2Q

0 R∗ S∗ P +Q −p2R∗ −S∗/
p

2
−S∗/

p
2 −p2Q∗ p

3/2 −p2R P +∆ 0p
2R∗ p

3/2S∗ p
2Q∗ −S/

p
2 0 P +∆

 (2.28)

All essential physics of the quantum dot is contained in the elements of this matrix:

P = ħ2

2m0
γ1(k2

x +k2
y +k2

z )

R =p
3

ħ2

2m0
[−γ2(k2

x −k2
y )+2iγ3kx ky ]

Q =− ħ2

2m0
γ2(k2

z −k2
x −k2

y )

S =p
3
ħ2

m0
(kx − i ky )kz

where m0 denotes the free electron mass, γ1,γ2 and γ3 are the so called Luttinger parameters which reflect
symmetry properties of the bulk structure, and kx , ky and kz are wave vectors capturing quantum confine-
ment and band offsets. Finally, ∆ represents the energy splitting between the highest valence bands and the
split-off band at the Γ-point [15]. Another typical notation for the Hamiltonian is in the form of a spherical
approximation:

HLK =− ħ2

2m0

[(
γ1 + 5

2
γs

)
k2 −2γs (k · J)

]
(2.29)



10 2. Theoretical Model

where ħJ is the operator for effective spin 3/2. This form allows us to see that crystal momentum and effective
spin are closely linked through the term k · J, and that the Luttinger parameters relate to the mass leading to
a grouping of the eigenstates of the Hamiltonian into states for heavy holes (HH) and states for light holes
(LH)[18]. Due to strain that arises from the lattice mismatch due to differing lattice constants in quantum
dots at the interfaces between materials, a correcting term should be added [19][20]:

Hstrain =−Es J 2
z (2.30)

where Es > 0 is an additional strain energy. It turns out, though, that for low-energy states in germanium
bilayers, the dimensionality of the Hamiltonian can be reduced, revealing spin-orbit interaction that is cubic
in momentum.

2.4.2. Luttinger-Kohn for the germanium bilayer
In the case of 2D nanostructures such as the double quantum dot in a Ge bilayer that we are considering, it
is advantageous to realize that the particle’s movement is confined to the plane. In other words, one of the
degrees of freedom is frozen meaning that the dimension of the Hamiltonian can be reduced. Furthermore,
the LK Hamiltonians in Eq. 2.28 and Eq. 2.29 are specified in the basis of eigenstates of heavy holes and light
holes, meaning that the required angular momentum (spin) operators are depicted as 4× 4 matrices. The
grouping of the eigenstates also results in dependence on the energy gap between the energetically lowest
HH and LH states, commonly referred to as "HH-LH splitting ∆HH−LH". The 2D nature of the bilayer double
dot structure leads to ∆HH−LH becoming very large. As a consequence, we can approximate the system by
ignoring the LH states when studying only the behavior of low-energy holes, and write the Hamiltonian via
2×2 Pauli matrices instead of 4×4 spin matrices[21].
In practice, the LK Hamiltonian undergoes a Schrieffer-Wolff transformation resulting in an expression that
includes the effects of heavy holes and light holes on the ground state, and most importantly introduces spin-
orbit interaction that is cubic in the in-plane momentum [22].

The Luttinger-Kohn Hamiltonian that the dimensional reduction gives, and that will be used for modeling
the DQD in a germanium bilayer in Chap. 3 is finally given as (S.Bosco, private communication, May 2024):

HLK =− ϵ
2
τz + t

2
τx + p+p−

2
m ·τ− i p+[p2

+α+ ·τ−p2
−α− ·τ]σ++h.c.− (p+p−)2

2
M+ ·τ+

(p4−+p4+)

4
M− ·τ (2.31)

We recognize the first two terms from the orbital Hamiltonian in Sec. 2.2.2, namely the detuning and tun-
neling contributions. Furthermore, 4-dimensional vectors are introduced that act on the layer degrees of
freedom denoted τ = (τx ,τy ,τz ,τ0), where τ0 is the 2×2 identity. The vectors encapsulate material proper-
ties: m contains the effective masses in different directions and the components ofα± are proportional to the
Luttinger parameters γ2 ±γ3. Similarly, the components of M± ∝ γ2

2 ±γ2
3, hence taking into account higher-

order terms. Finally, p± = px ± i py gives the in-plane momentum operators and σ± =σx ± iσy the Pauli spin
operators. H.c. is short for Hermitian conjugate.

Figure 2.3: An example of a possible bilayer heterostructure. Two (asymmetric) quantum wells constructed in germanium and separated
by SiGe. Figure taken from [23]
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Results

3.1. Discretizing The Hamiltonian
The starting point of the calculation is to formulate a full Hamiltonian describing the system. We of course
make use of the Hamiltonian in Eq. 2.31, but we must keep in mind that the spin-orbit interaction in the
LK model can merely be considered as a perturbation of the energy levels determined by some potential.
Since we are working with a quantum dot where the particles are confined in a well yet not restricted from
tunneling, an appropriate choice is to model the confinement as a harmonic potential in the x y-plane:

V (x, y) = 1

2
m0ω

2(x2 + y2) (3.1)

where we assume the confinement to be isotropic such that ωx = ωy = ω. Furthermore, we want to add a
term corresponding to a magnetic field B in the plane of the DQD. This takes the following form:

Hm = g0(B+σ−+B−σ+)+ (B+σ−+B−σ+)(p+p−)g1 ·τ
+ (B+σ++B−σ−)(p2

++p2
−)g2,+ ·τ+ (B+σ++B−σ−)(p2

+−p2
−)g2,− ·τ (3.2)

where g0 and the g -vectors represent the different in-plane Landé g -factors and B± = Bx ± i By . Worth noting
is that momentum p and crystal momentum (wave vector) k are being used interchangeably because we for
convenience have chosen ħ= 1.

Since we have chosen a harmonic confinement potential, we will use the eigenfunctions of the harmonic
potential to discretize the full Hamiltonian. They are given by:

ψnx (x) = e
− x2

2l2
x√

lx 2nn!
p
π

Hn

( x

lx

)
(3.3)

in the x-direction and

φny (y) = e
− y2

2l2
y√

ly 2nn!
p
π

Hn

( y

ly

)
(3.4)

in the y-direction, with the product of the two being the total eigenfunction of the potential. The functions
Hn denote the Hermite polynomials, and lx = ly = l = √ħ/m0ω are the confinement lengths. We use these
eigenfunctions to construct all the matrix components related to position and momentum, i.e. the potential
term, the spin-orbit term, and the kinetic energy term, by simply calculating 〈ψi |H |ψ j 〉 and 〈φi |H |φ j 〉 for
i , j = 0, ...,n. For simplicity, the quartic momentum term in HLK is omitted, as the quartic contribution, sim-
ilarly to higher order terms in a series expansion, is small. To incorporate sufficiently significant interaction
orders, the 6 lowest energy wavefunctions were used, i.e. the position and momentum contributions were
computed up until n = 6 resulting in 6×6 matrices.
Before we can write down the whole Hamiltonian in matrix form, we have to pick an ordered basis so that
we can systematically include different components using a tensor product. For this calculation, the ordered
basis |spin, layer, x, y〉 was chosen. This means that first spin-related σ terms are added up, layer-related τ

terms are added up, x-position and x-momentum terms are added up etc., and that they are all combined
through the tensor (Kronecker) product:

|spin〉⊗ |layer〉⊗ |nx〉⊗ |ny 〉
The spin and layer both correspond to a 2× 2 Hilbert space, whereas |nx〉 and |ny 〉 reside in a 6× 6 Hilbert
space. As a result, the tensor product finally gives a full discretized Hamiltonian in the form of a 144× 144
matrix.

11
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3.2. g -factor And Exchange Anisotropy In Germanium Bilayer DQD
Getting any insight from such a big matrix is difficult. An appropriate next step to take is to make use of
the Schrieffer-Wolff transform, in order to give the discretized Hamiltonian a more familiar form. First, the
projector P0 is found by identifying the positions of the ground state on the diagonal of the matrix. Second,
an order of perturbation is chosen up to which the effective Hamiltonian is calculated. For our purposes, a
second-order Schrieffer-Wolff is sufficient to portray the interactions that we are interested in.
The transformation helps us land in a 4 × 4 matrix in an equivalent singlet-triplet basis as introduced in
Sec.2.2.4, which can be split up into the first-order correction H1 (see Appendix A) and the second-order
correction H2. To view the results, we use provided numerical data for a symmetric (unlike the asymmetric
structure shown in Fig. 2.3) double quantum dot of well width 15nm and interdot distance 3nm in a germa-
nium bilayer (S. Bosco, private comm. June 2024). The spin-orbit effects are finally demonstrated through
the calculation of g -factor anisotropy in x- and z-direction. The difference in g -factors between the dots,
δgx and δgz , is plotted against the dot size l for three different cases: zero detuning (ϵ = 0), small detuning
(ϵ= 0.18meV) and large detuning (ϵ= 1.8meV).

(a) First-order δgz correction (b) First-order δgx correction

Figure 3.1: The first order correction on the quantum system. The g -factor difference scales with ±l−2 when detuning is present, whereas
δg remains constant at zero when ϵ= 0. The magnetic field is applied in the x y-plane.

In Fig. 3.1, we see that δg is inversely proportional to the dot size squared for the cases with detuning, and
constant at zero without detuning. The ϵ= 0 case makes sense since we are dealing with a perfectly symmet-
rical dot where the energies are the same. As the detuning is increased, the symmetry between the top and
the bottom layer is broken, and the sign tells us which dot has the larger g -factor.

(a) Second-order δgz correction (b) Second-order δgx correction

Figure 3.2: The second-order correction on the quantum system. The g -factor difference still scales with ±l−2 with detuning is present.
Note that signs are flipped and that the corrections are roughly an order of magnitude smaller than in the first order.

Fig. 3.2 shows the second-order correction, and we deduce that δg , as expected, is still constant at zero with
no detuning present. Furthermore, the change of sign indicates that the second-order correction favors the
opposite dot compared to the first order. Worth noting is also that the corrections shown in the second plot
are roughly one order of magnitude smaller than in the first one.
The relationship between δg and l seems to be inversely squared in the second-order correction too, but
something interesting happens when we start considering larger dot sizes, as demonstrated in Fig 3.3.
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(a) Total δgz correction (b) Total δgx correction

Figure 3.3: When we consider larger dot sizes, divergences show up in the plots at an l-value of 79nm for ϵ = 0.18meV and at l = 26nm
for ϵ= 1.8meV.

The divergences that show up can be explained by a critical dot size; as the dots become larger and larger, the
orbital gap reduces until a point where it is smaller than the energy splitting due to detuning and tunneling,p
ϵ2 + t 2. By recalling that the Schrieffer-Wolff transformation, which was used to obtain these results, relies

on a sufficiently large energy gap between the low-energy subsector and the rest of the states, we can conclude
that the transformation loses its validity for dot sizes larger than the critical l-value due to the appearance of
an additional energy state. The critical value is related to the detuning and the tunnel coupling by 1/l 2 ∝p
ϵ2 + t 2, explaining why the larger detuning case sees the divergence at a lower value of l .

Finally, we also compute and plot the rotation angle ϑ of the exchange due to g -factor anisotropy through the
use of the expression found in Sec.2.2.4, Eq. 2.16:

Figure 3.4: Angle of rotation of the exchange associated with an anisotropic Zeeman field.

In the figure, we see how the rotation angle depends on the size of the dot. Once again, the ϵ= 0 case yields
no rotation. The discontinuities that show up for the detuned cases have a gap of π, suggesting a flip of the
angle at certain values of l (l = 9.55nm for ϵ = 0.18meV and l = 8.88nm for ϵ = 1.8meV). However, the main
explanation for the jumps is most likely simply the range of the arctan(x) function. The value of the rotation
angle as l goes to zero converges to 0.38 radians for ϵ= 0.18meV and to -1.13 radians for ϵ= 1.8meV.





- Chapter 4 -

Conclusion and Outlook

In summary, this project aimed to theoretically model a double quantum dot in a germanium bilayer to iden-
tify and explore the effects caused by spin-orbit interactions. This was done by discretizing the Luttinger-
Kohn Hamiltonian in a harmonic potential and finding an effective energy description by projecting the
Hamiltonian onto a low-energy subspace using the Schrieffer-Wolff transformation. The spin-orbit inter-
action effects are analyzed by comparing anisotropy in the Landé g -factor with the size of the quantum dots
in the layers.
The results suggest that symmetrical dots in a germanium bilayer without any detuning experience no dif-
ference in g -factor. When detuning is present the dot size l is limited due to a reduction in the energy gap
between upper- and lower-layer orbitals causing the Schrieffer-Wolff transformation to break down and extra
energy levels to be added to the effective system.
Comparing this model with monolayer DQD structures would be a next step in this research to help get a bet-
ter understanding of the effects that two interacting spins have on each other. This would ultimately lead to
more accurate modelling and construction of two-qubit gates, setting a milestone in the field of germanium
use for quantum computing.
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- Appendix A -

Coefficients and Matrices

A.1. Taylor series coefficients
Taylor series of xcoth(x) :

xcoth(x) =
∞∑

n=0
a2n x2n , am = 2mBm

m!
(A.1)

Taylor series of tanh(x/2):

tanh(x/2) =
∞∑

n=0
b2n−1x2n−1, b2n−1 = 2(22n −1B2n

(2n)!
(A.2)

with Bm the Bernoulli numbers.

A.2. Effective Hamiltonian H1
2m0+mz−l 2ϵ

2l 2
1
2 ( mx

l 2 + t )
2B−(g1,0+g1,z+g0l 2)

l 2
2B−g1,x

l 2

1
2 ( mx

l 2 + t ) 2m0−mz+l 2ϵ
2l 2

2B−g1,x

l 2
2B−(g1,0−g1,z+g0l 2)

l 2

2B+(g1,0+g1,z+g0l 2)
l 2

2B+g1,x

l 2
2m0+mz−l 2ϵ

2l 2
1
2 ( mx

l 2 + t )
2B+g1,x

l 2
2B+(g1,0−g1,z+g0l 2)

l 2
1
2 ( mx

l 2 + t ) 2m0−mz+l 2ϵ
2l 2

 (A.3)
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