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Executive Summary 
 
This thesis evaluates the insights a developed Discrete Event Simulation model provides, in addition to 
currently used System Dynamics model, in the youth care decision-making process.  

 

The publicly funded Dutch youth care sector is an example of a complex heavily resource bounded 
health care system with a high intolerance to failure. The Youth Care Act defines the legal entitlement 

of youth care to children within an acceptable waiting time of maximum nine weeks. Last decades the 
youth care sector faced long waiting lists and over utilized resources. Additional government funding 

did not result in a structural solution.  

 
Effective decision making in the youth care sector is complex and in-transparent due to horizontal and 

vertical aggregations layers (Leewen, Naborn et al. 2008). The national performance indicators 
measure the number of children on the waiting lists and the waiting time for each child. The care 

provision process of a care provider is subdivided in independent parallel sub-process aggregated to 

four care types, which require different resources. The distinct care types are; Ambulatory care, Day 
care, Residential care and Foster care. Effective youth care management requires creating insight into 

the interrelations between the anticipated child demands, possible capacity policies for the care types 
and the resulting waiting times for individual children. Due to this complexity and the high intolerance 

to failure for every child, youth care authorities and care providers require decision support models to 
oversee the consequence of their mutual capacity decisions.  

 

Simulation modelling is one of the most commonly used Operational Research approach and many 
regard simulation as the technique of choice in the health care sector (Lowry 1992; Brailsford 2007). 

INITI8 is a consultancy company that supports the authorities and care providers in this complex and 
dynamic environments by providing simulation models. Two approaches to simulation modelling 

widely used in this demanding environment are System Dynamics (SD) and Discrete Event Simulation 

(DES). INITI8 currently uses simulation models based on the System Dynamics Paradigm. This 
research practically evaluates the additional insights a developed DES model provides, above currently 

used SD model, with historical data of a real world care provider over 2008 and 2009. 
 

The delineated system in current research describes the logistic children flows through a care 
provider. Only actors, objects and documents that directly influence this logistic are considered in both 

currently used SD and in the developed DES model. Financial considerations serve as an important 

criterion for possible policy options. Taking into account to objective of current research, to compare 
two dynamics modelling approaches, the decision is made to focus on the dynamic children flows in 

the system, the financial functions are outside the scope of current research.  
 

The essential difference between the SD and DES methodology is their difference in system 

aggregation. A SD model abstracts the system as a continuous quantity rather like a fluid no individual 
entities are distinct. A DES model disaggregates the system to individual entities, each of those 

entities can posses characteristics that determine their individual flow through the system. Literature 
argues that a DES model has benefits in comparison to a SD model for the modelling of real world 

systems that face heterogeneous entities, a large impact of individual variability and a high intolerance 
to failure for those entities, such as youth care. A precondition for those benefits in such a system is 

the availability or collectability of data to quantify the individual characteristics. Furthermore, the 

higher level of detail should be worth the required additional investments of time and costs.  
 

Any Logic simulation software is used to build the DES model, because it enables an object oriented 
model structure and the mixing of processes oriented flowchart with individual state charts in one 

model. This is required to capture the complexity of the different layers, the independent process sub-

models for the four care types and the complex coupling between children and trajectories  
 

The transformation from a aggregated to a disaggregated model requires disaggregation of model 
inputs. In the SD model, perfect mixing of children is assumed, every child receives the same set of 

care services. A disaggregated DES model requires determining the individual path, of children and 

the care services they receive through, the care providers system. This involves determining the 
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conditionality relation between a child‟s possible parallel, overlapping and sequential care services. 
Unlike the SD model, the DES model distinguishes individual entities on the waiting list a queue 

mechanism needs to be defined to determine the ordering of those entities on the waiting list.  

 
The complex process of deriving heterogeneity and conditionality relations between the care services 

is data dependent and time consuming. A large part of the data is required to create a system history, 
in order to distinguish the care services assigned to new children from additional care services 

assigned to previously registered children. The analysis shows that a large part of the demand 

variability observed at the independent care systems is created by the additional care services 
assigned to previously registered children. Furthermore, a large variability in individual treatment 

times and significant conditionality relations between a child‟s care services were found.  
 

A general difficulty of simulation in the youth care sector with regard to the validation data is found. 
Due to the infinite nature of the youth care process, the treatment times of multiple months until 

multiple years, the large variability in those treatment times and the auto-correlation of monthly 

waiting list data, a large time span of validation data is required to determine accurate statistic 
estimators. The available data set of 29 months is too small for a quantitative validation of the models 

based on these statistics. 
 

The SD model, configured with a stochastic children inflow function, is not ably to abstract the 

variability in monthly waiting list behaviour observed in the real world system. The DES model 
abstracts a comparable variability and stability in monthly trajectory waiting list behaviour as observed 

in the output of the real world system, which increases the credibility of the DES model. Furthermore, 
the observed real world trajectory waiting list outputs lie in the boundaries of the stationary DES 

model output space. This provides a proof that the observed waiting list dynamics in the real system 
can be produced by process variability in a stationary system. In comparison to the SD model, the 

DES model is more sensitive to changes in scenario‟s and capacity policies. Arguable, this conflicting 

insight is a result of the better abstraction of the process variability in the DES model. The large 
spread and variability in the DES waiting lists outputs provide insight in the complexity of decision-

making in the youth care sector. It is difficult to distinct transient behaviour from stationary variability 
in the care provider system. A DES model can provide additional insight in the stationary system 

behaviour.  

 
Further research into the applied queue mechanisms in the real world system is indispensable to 

provide accurate quantitative insight into the waiting lists and waiting time behaviour. From 
experimentation with the DES model, it is concluded that because of the interaction between the 

queue mechanisms and the withdrawal mechanism, not only the waiting time distribution but also the 

average waiting times are sensitive to the applied queue mechanisms. Furthermore, the sensitivity of 
the system to changing scenarios and policy options is dependent on the queue mechanism applied in 

the system. The DES model cannot provide accurate quantitative predications without a better insight  
into the real world queue mechanisms and priority. The DES model can be used to create qualitative 

insight into the system, controlled for the stability of the conclusions for different queue mechanisms.  
 

A proof of concept of DES modelling in the youth care sector is provided, further research is necessary 

for a successful implementation.  
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Chapter 1 

Ch1 Introduction 
 

In recent decades, health care demand and costs have dramatically increased, while health care 
organizations have been under severe pressure to provide improved health care for their patients. As 

a result, nowadays health care systems face unprecedented levels of challenge, scale and complexity. 

The increasing societal and political pressure on the heavily resource constrained health care systems 
is daunting. Due to this overwhelming complexity and the high intolerance to failure in these systems, 

the health care authorities and care providers require tools to foresee the consequence of their 
decisions (Kuljis, Paul et al. 2007). 

 

Simulation modelling is one way to explore the consequences of alternative decision scenarios. It is 
one of the most commonly used Operational Research approach and many regard simulation as the 

technique of choice in the health care sector (Lowry 1992; Brailsford 2007). It has advantages over 
other techniques in its flexibility, ability to deal with complexity, variability and uncertainty, and its use 

of graphical interfaces to facilitate communication with and comprehension by health care 
professionals (Brailsford and Hilton 2001). 

 

Surprisingly, while the academic publications in health care simulation abound, the relatively small 
number of successful implementations would suggest that (outside academia) simulation modelling 

has been underused in the health sector compared with manufacturing and defence industry (Chanal 
and Eldabi 2010). Recent studies suggest that health care is either inexperienced in such methods or 

prone to failure. The amounts of unsuccessful experiences abound in health care literature. It might 

well be that the way in which modelling and simulation methods are often used in industry requires 
adaptation for health care (Carter and Blake 2005). Patients are not typical customers, mainly because 

they are more responsive and increasingly keen to exercise meaningful and informed choice. 
Furthermore, the health care sector is overly responsive and sensitive to political influence and 

control. Political intervention in health care is, usually closely linked to the so-called societal view. It is 
argued that the different health care stakeholders with their diverse interests and views impose a 

number of unique pressures that are not encountered in other industries. The systematic evaluation of 

complex health care policies often faces tough challenges which includes connecting different layers of 
influence (governmental, organizational, procedural) (Kuljis, Paul et al. 2007). Two approaches to 

simulation modelling widely used in this demanding environment are System Dynamics (SD) and 
Discrete Event Simulation (DES).  

 

The Dutch youth care sector is an example of a complex heavily resource bounded health care system 
with a high intolerance to failure. The publicly funded youth care sector is sub divided in multiple 

autonomic regional systems, which either cover provinces or urbanized regions. The authorities of the 
provinces and urbanized regions are responsible for the management of their regional system. They 

face a multi-actor setting in which multiple public and private organizations cooperate. The complexity 

of operational and strategic management on regional level is steered by the distributed responsibilities 
(Leewen, Naborn et al. 2008). Last decades, the youth care sector has been suffering from long 

waiting lists, over-utilized resources and a growing budget demand.  
 

INITI8 is a consultancy company that supports the authorities and care providers in this complex and 
dynamic environments by providing simulation models.  INITI8 currently uses simulation models 

based on the System Dynamics Paradigm (SD).  New request for detailed operational decision support 

arising from the youth care sector exceed the functionalities of currently used models. A 
disaggregated Discrete Event Simulation (DES) model is perceived a possible solution to close the 

current information gap in the youth care decision-making process. The intention of this thesis is to 
explore the insights that a Discrete Event Simulation (DES) model can provide in the complex youth 

care sector, in addition to the currently used System Dynamic model (SD).  
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1.1 Research background 

This section introduces the background knowledge of the two main fields of the thesis; youth care and 
simulation. This knowledge forms a foundation for the research objectives provided in the following 

section.  

1.1.1 Youth care 

Youth care covers all forms of care available to parents and children to help with serious development 
and parenting problems. Youth care clients are young people up to the age of eighteen who are going 

through serious development and parenting problems and who do not receive sufficient support by 
the general systems that provide education, health care and social support. Care can be provided until 

the age of twenty-three if it is necessary to continue supporting a young person. Support is available 

not only to young people but also to the parents or guardians of youth who go through development 
and parenting problems.  

 
The Dutch youth care system consists of 15 autonomic regional systems that cover the 12 provinces 

and the urbanized regions of Amsterdam, The Hague and Rotterdam. The organizational structure of 

the youth care sector, representing the annual financial flows in the system, is depicted in  
Figure 1-1. A series of relevant actors is recognized: the responsible Ministry, the provincial authorities, 

Bureau Jeugdzorg (BJZ) and the organizations that provide the actual care, the care providers.  
Figure 1-1 distinguished the 15 regional systems and the Ministry that controls the regional systems 

with their money flow.  
 

 
 

FIGURE 1-1 THE YOUTH CARE SYSTEM ORGANIZATIONAL AND FINANCIAL STRUCTURE 

 

The youth care is funded by the provincial authorities in the context of the Youth Care Act (Commissie 

Financiering Jeugdzorg 2009). The Youth Care Act has two aims: to ensure that better care is made 
available to young people and their parents (the clients of the youth care process) and to strengthen 

their position in the process. The objective of the act is to give the client a central position in a more 

transparent youth care system. This principle is reflected by the following policy objectives (Ministry of 
Health Welfare and Sport 2005): 

 
1. The needs of the client come first 

In the past, youth care was organised around the availability of care capacities at the institutes and 
organizations. The youth care act takes the need of the client as its starting points instead of the 

available care capacity. 

2. Entitlement to youth care 
The youth care act has introduced an important new principle: a client is entitled to the care services 

indicated by the institutions of youth care. Furthermore, this care should satisfy certain conditions. An 
important condition, central to the current research, is a limited waiting time for the entitled care 

products. Performance agreements made between the actors in the youth care chain stated this 

condition at a maximum waiting time of nine weeks. 
3. A single access point to the youth care system  

Each province or regional system has an independent youth care agency [Bureau Jeugdzorg (BJZ)], 
which acts as the single access point in its area of for all youth care. The youth care agency has the 

sole responsibility to independently asses the needs of youth who present themselves with problems. 
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To avoid capacity driven care need assessments and to create transparency to parents and children in 

need of support.  

1.1.2 Simulation 

Computer simulation is used not only in engineering applications, but also in economics, business, 

management science, public administration, social science and health care. It is a relatively cheap and 
convenient investigative tool for imitating the real world. The expanding use of simulation in such 

diverse fields marks it out as an important tool for research and decision-making. Robinson (2003) 
defines simulation as: 
 

 “Experimentation with a simplified imitation (on a computer) of a real world system as it progresses 
through time, for the purpose of better understanding and/or improving that system” 
 
Simon (1998) proposes that simulation is not only an aid for studying poorly understood systems but 

can itself be a source of new knowledge. This is because, in practice, knowledge is constructed from 
the roof down, not from the foundation up, and that makes it possible to discover incrementally finer 

details at lower and more fundamental levels.  
 

Two simulation methodologies frequently used in health care are System Dynamics (SD) and Discrete 

Event Simulation (DES). While each approach represents certain facets of the world, both approaches 
also simplify specific facets of the real world (Meadows 1980; Pidd 2004). Both methodologies are 

build upon fundamental assumptions, which are rarely questioned within a respective modelling 
community (Lorenz and Andreas 2006; Morecroft and Robinson 2006; Chanal and Eldabi 2008). When 

applying a methodology without being aware of these assumptions there is a risk of accepting a 

wrong conclusion (the abduction risk). Interpreting the important facets of the real world is dependent 
on the specific problems at hand. 

 
The fundamental difference between the SD and DES methodology lie in the different assumptions 

regarding the roots of complex behaviour (Brailsford and Hilton 2001; Lorenz and Andreas 2006). 

Behaviour in the SD methodology is assumed to arise from endogenous, deterministic and structural 
properties of the system. Behaviour in the DES methodology is assumed to arise from the interaction 

of stochastic processes. Both deterministic and stochastic models have important roles to play in the 
analysis of a particular system to ensure we do not become trapped in either deterministic fantasy or 

unnecessary mathematical detail (Morecroft and Robinson 2006). Where the facets of the real world 
and their implications are not clearly understood (which is likely to be the motivation for modelling) 

both type of models can provide important and possibly differing insight.   

1.2 Research framework 

The research framework makes the research setting, problem and objectives transparent. After which 
the research objective is broken down in practical research questions to provide a direction to the 

research.  

1.2.1 Problem owner and research setting 

The consultancy company INITI8 is considered the problem owner of the current research. It is a 
progressive, innovative company focused on solving inter-organizational bottlenecks in logistical 

processes and networks. The company supports organizations in the youth care system to keep their 

processes manageable by providing insight in their planning and control cycle. Two main products are 
distinguished: business intelligence to evaluate implemented policies and simulation modelling to 

evaluate possible policy options. Their currently used simulation models are based on the SD 
methodology. 

 

A system diagram can be used as a starting point for a discussion of the youth care system. Such a 
diagram provides an overview of the problem owner, other actors and stakeholders, the system to be 

analyzed, policy measures, external influences and outcomes at a quick glance. A system diagram 
helps to structure the problem and to define the system. Bots (2002) provides an extensive discussion 

of system diagrams. Figure 1-2 presents a highly aggregated system diagram of the research setting.  
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Noticeably, the problem owner does not directly influence the system. The problem owner can provide 

knowledge and advice solutions to the actors that can influence the system. Furthermore, the 

provincial or regional youth care system is visualized as part of a bigger system, the national youth 
care chain.  
 

1.2.2 Problem formulation 

R.L Ackoff indicates the importance of a clear problem formulation in societal problem solving: 
 

"Successful problem solving requires finding the right solution to the right problem. We fail more 

often because we solve the wrong problem than because we get the wrong solution to the right 

problem.” (Ackoff 1974) 

 

The simulation analyst must take extreme care to ensure that the problem owners agree and 
understand the problem formulation. Therefore, the statements in the problem formulation have to be 

precise and easy to understand. The problem owner as introduced in previous sections is a 
consultancy company of which the consultants are educated, skilled and experienced in the field of 

simulation and statistical analysis. 

 
As introduced in previous section, children in the Netherlands are legally entitled to youth care within 

an appropriate delivery time. Performance agreements between the actors in the youth care sector 
determined a delivery time for each child of nine weeks. Furthermore, the needs of the client comes 

first, care assessments are made independently from capacity availability. This organizational context 

creates a necessity in the youth care sector to align the resource capacity with the anticipated future 
demand. The twelve provinces and three regional systems have the formal responsibility for aligning 

the capacity of the autonomic care providers in their region with the anticipated demand to assure 
fulfilment of the performance agreement. INITI8 supports the care providers and province by 

providing decision support models. The objective of these models is to provide understanding of the 
child waiting list behaviour and to evaluate the impact of various capacity strategies, a care provider 

can implemented, on this behaviour. The models serve as negotiation tools in the process of aligning 

the anticipated demand, the capacity strategy and the anticipated care provider performance.  
 

The definition of a problem is the difference between what is considered desirable and the present 
reality, in other words the gap between the facts and the norms (Hoogenwerf 1987). The problem 

gap can best by described by the experienced limitations of currently used SD care provider model:  

 
The currently used SD model provides insight in the expected aggregated system performance and 
the impact of various scenarios and strategies on the average system performance. The aggregated 
model cannot provide insight into the observed behavioural patterns of the system and the spread of 

 
 

FIGURE 1-2 YOUTH CARE SYSTEM DIAGRAM  ADAPTED FROM BOTS(2002) 
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individual child performance measures created by the system variance and uncertainty. The youth 
care sector, in which every child counts, faces a high intolerance to failure for every child. Insight into 
the robustness of performance indicators in the current situation, for possible strategies of operation 
and for anticipated future scenario‟s is required. 

1.2.3 Research Objectives 

The starting point of this thesis is the previously introduced problem regarding the availability of 

decision support information to evaluate care provider capacity strategies. More specific, the problem 
owner has the perception that a stochastic DES simulation model provides additional functionalities 

over the currently used SD model, which bridges the previously described problem gap. This section 
defines the research objectives subdivided for the youth care sector and the problem owner.  

 
1. Youth care sector perspective 

The research should contribute to operational and policy decision processes in the youth sector by 

helping to bridge the perceived information gap concerning current waiting list dynamics. 
 

2. Problem owner perspective 
The research should form contribution to the available knowledge within INITI8 by providing a proof 
of concept of additional insight of DES modelling in the youth care sector for current and potential 

partners of INITI81. 
 

The synthesis of these objectives determines the main goal of the research: 

The main objective of this research is to evaluate the additional insights a DES model can 

provide, in addition to the currently used SD model, in the youth care decision making process.  

1.2.4 Research questions 

This section frames the main research objective as a question that defines the issue under 
consideration. A question provides more direction to the research as it requires an answer. The efforts 

of this research are made in order to answer the following main question: 
 

“What additional insights can a DES decision support model provide, in addition to currently used SD 

model, in the youth care capacity decision making process?” 

 

This main question cannot be answered with a single statement and has many aspects to it. The main 
research question is tackled by answering several chronological sub-questions. The synthesis of these 

sub-questions answers the main research questions. 
 

1. What are the model objectives for a decision support model in the youth care sector? 
2. What are the expected benefits of a DES model in addition to currently used SD model? 

3. What are the differences between the abstraction of the care provider system in an 

aggregated SD and disaggregated DES model? 
4. What are the important heterogeneity and conditionality relations in the care provider system? 

5. Can we abstract and quantify the care provider system in a DES simulation model? 

6. Do the DES and SD model represent and correctly reproduce the behaviour of the real world 

system? 

                                                 

 
1 Proof of concept is a short and/or incomplete realization of a certain method or idea(s) to demonstrate its feasibility, or a 
demonstration in principle, whose purpose is to verify that some concept or theory is probably capable of exploitation in a 
useful manner. 
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1.3 Research Strategy 

This section presents the techniques, methods and strategies used in order to answer the research 
questions and satisfy the research objectives.  

1.3.1 Methodology 

First, the main research strategy, which structures the sequencing activities through the research is first 

explained, followed by a description of the research methodologies used in the different phases of this 
research.  

 
Research strategy 
The main research focus lies on the design of a DES decision support tool to provide insight in the 
observed youth care dynamics, a design-oriented research approach is followed. It has been argued 

that designing involves more “perspiration 

than inspiration”, the utility and satisfaction 
of future users stakeholders is critical in 

the design process (Verschuren and Hartog 
2005). Therefore, empirical and evaluation 

research have a central role in the design 

process. 
 
To be more specificthe steps of the 
Regulative Design Cycle (Strien 1986) 

serve as a guideline for this research.  
 

1. Signalize. The problem is 

signalized and defined.  
2. Analysis. The problem is analyzed 

the problem causes are identified 
and diagnosed.  

3. Design. A plan is designed.  

4. Try out. An intervention based on 
the plan is made.  

5. Evaluation. The intervention is 
evaluated.  

 

The research can be subdivided according to the nature of explanation, the first and second step are 

considered descriptive, the further steps prescriptive. In order to answer the different research 

questions a variety of research methods are used. The main research method in the descriptive part is 

desk research. In the prescriptive part of this thesis two main methods are used; a case study and a 

simulation.  

Desk Research 

Desk research is also known as secondary research because of the exclusive use of secondary data. 
This is data gathered from literature, databases, the internet etc. This research will use the gathered 

data and reflect on the data to arrive to conclusions (Verschuren and Doorewaard 1999). The 

diagnosis and analysis part of this research are done by desk research.  
 

Simulation 
Simulation is the process of designing a model of a real system and conducting experiments with this 

model for the purpose of either understanding the behaviour of the system or evaluating various 
strategies for the operation of the system (Shannon 1975). In addition to the case study, simulation 

allows to control the experimental setting and the variation of system variables. The following 

activities are part of a simulation project: 
 

Descriptive

Prescriptive

 
FIGURE 1-3 THE REGULATIVE DESIGN CYCLE 

(STRIEN 1986) 
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 Model conceptualisation. The abstraction of a real system by a conceptual model (Banks 

1998). Conceptual models are a clear and unambiguous representation of the objects and 

relations under investigation.  
 Model specification. The collection of empirical data and the specification of attribute values of 

the objects specified in the conceptual model in computer-recognizable simulation model 
(Banks 1998). The creation of an experimental design forms part of this activity.  

 Verification: the process of determining that a model implementation accurately represents 

the developers conceptual description of the model and the solution to the model (Roache 
1998). The initialization conditions, the run control conditions and the number of replications 

of the different treatments are determined in this activity.  
 Validation: The process of determining the degree to which a model is an accurate 

representation of the real system from the perspective of the intended use of the model 
(Roache 1998). Structural validation is the checking of hypotheses on the behaviour of the 

simulation model. Replicative validation is the comparison of endogenous attributes values 

with the ones found in the real system. Predictive validation or expert validation whenever the 
plausibility of simulation model is tested by experts (Sol 1982).  

 
These research methods use the following supporting research methods: 

 

1. Literature research. Literature research will be used to create a theoretical background in the 
youth care field and the methodological simulation literature. Another important literature 

source are the interviews performed by Giesen (2008) and previous INITI8 projects.  
2. Data analysis. Quantitative research is researching for knowledge that measures, describes 

and explains phenomena, or searches for knowledge to investigate, interpret, and understand 
phenomena. A dataset of the chosen case study of children flows through the care provider 

system over the year 2008 and 2009 is analyzed.  

3. Expert validation. INITI8 experts will validate the used methods and made assumptions in this 
research.   

1.3.2 Thesis structure 

This section provides insight into the system structure, by making the link between the five steps of 

the regulative design cycle (Strien 1986), the thesis chapters and the research questions transparent. 
This first introductory serves as the first step of the regulative design cycle, the research problem is 

signalized and defined. 
 
Part 2: Problem analysis and delineation 
The second part of the thesis analyses the signalized problem. Chapter 2 introduces the multi actor 
setting of the youth care sector and formulates the model requirements in order to answer the first 
research question. Chapter 3 presents a literature study in the field of modelling and simulation serves 
as the input to a theoretical framework, of the strengths and weakness of the SD and DES simulation 

methodologies, in the youth care sector. Chapter 4 evaluates the currently used system dynamics 

model, the value of this chapter is two folded, it provides a practical evaluation of the found strengths 
and weaknesses of the SD methodology in the third chapter and it introduces a first conceptual 

overview of the processes in the delineated care provider system. The insight of Chapter 3 and 4 
together answer the second research questions. Furthermore, Chapter 4 forms a practical foundation 

for the Design part of the research and it forms the comparison framework to answer the fourth 
research question.  

 

Part 3: Design discrete simulation model 
Following the regulative design cycle, the third part presents the design of a possible solution. The 

DES model serves as the to be designed solution in the scope of current research. Chapter 5 presents 
a conceptual model of the process, entities and relations in a care provider system. The presented 

conceptual model forms the foundation for the data study in Chapter 6 and the DES model 

specification presented in Chapter 7.  The third research question is answered by a synthesis of 
Chapter 4, 5, 6 and 7. Chapter 6 answers the fourth research question by making the to be abstracted 

heterogeneity and conditionality relations transparent. 
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Part 4: Model try out 
The fourth part of this thesis evaluates the outputs of the designed DES model. Chapter 8 validates 

the model and model assumptions. Chapter 9 cross-validates the sensitivity of the DES and SD model 
to changing scenarios and experiments. Chapter 8, 9 together provide the answer for the sixth 

research questions.  
 

Part 5: Model evaluation this part presents a structured overview of the found answers to the research 

questions, a general remark towards the experiences of modelling and simulation in health and youth 
care, a set of recommendations for the problem owner and a reflection on the research process.  
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Chapter 2  

Ch2 Problem Exploration and Delineation 
The previous chapter signalized and defined the perceived problem in the decision making process of 

the youth care sector. This chapter first explores the process, care services, actors and coordination in 
the youth care sector, after which the relevant part of the system and the simulation requirements 

with regard to the defined problem are delineated.  

2.1 Problem context youth care sector 

2.1.1 Youth care process 

The youth care system can be broadly described by a description of the flow of children through the 

system and the successive processes these children go through. A high-level overview of the 
procedures and children flows is depicted in  

Figure 2-1. The Dutch youth care sector aims to provide care to children on demand. Children enter 
the system at the youth care agency (BJZ) at their own initiative. The BJZ entitles the child an 

indication for professional help if necessary. Such a formal indication includes a diagnosis and entitles 

the child to receive care at a care provider of its own preferences in the provincial or regional system. 
If the child does not receive an indication, the child flows back to the youth population. The child is 

treated at the care provider until the treatment objectives are reached or until the child decides to 
withdraw from the care services.   
 

 
 

FIGURE 2-1 FLOWS AND PROCEDURES IN THE YOUTH CARE SYSTEM 

2.1.2 Care services 

Care provided in the context of the Youth Care Act is always voluntary care. As introduced in the 

previous section, the care needs of the clients come first. Every child‟s situation is unique. Therefore 

also the care services provided to these children should be flexible enough to adapt to these different 
situations. To achieve this flexibility in care services different care types can be combined and the 

composition of care services can be different for every child.  
 

A first high level decomposition of the youth care services divides the youth care services according to 

the nature of their service. Two categories are distinguished: 
1. Youth assistance. Supervision, guidance and pedagogic support delivered by therapists and 

social workers at either the home situation or at a residential youth care facility.  
2. Residential services. The residential services include the whole of services which create a 

substitute for a structured and stable family situation. The child‟s family situation can for 

various reasons not be able to provide a stable development basis for the child. In this 
situation residential services provide the necessary extra structure and support to the child.  
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These two care categories can be further subdivided into four care types. These care types separate 

the provided care services according to their resource usage and is used by the care providers in the 

youth care sector in their capacity forecast (Giesen 2008; Westerflier 2008). The following four care 
types are distinguished (Entrea 2010; Stichting Jeugd formaat 2010): 
 

1. Youth assistance 

The subset of youth assistance services demarcates one care type:   ambulatory care.  
 

Ambulatory care (AH) 
Care provided in the family situation is called ambulatory care. The care is provided in the client‟s 
home situation to provide raising and development assistance. The assistance is both provided to the 

child and to its parents. Ambulatory care provides solutions for problems related to the family‟s mutual 
communication, child development and parental raising skills, for example in case of light depression, 

behavioural problems or non functioning family circumstances. The care is focused on education of 

parents and child. 
 

2. Accommodation services 
Residential services demarcate three different care types: day care, residential care and foster care.  

 

Day care (DH) 
Day care is for children and youth with normal abilities in the age from two till eighteen with serious 

behavioural or developmental problems. The care is provided during day time and usually involves 
children to have school at the centre where the care is provided. The treatment takes place in groups 

of eight to nine children of approximately the same age and with similar problems. Combinations with 
ambulatory care in the family situation are possible. 

 

Foster care (PZ) 
In some situations it is better for children to (temporally) leave their family situation. A child can then 

reside in a foster family. A foster family provides shelter and supervision in their own family situation. 
Foster care can be combined with ambulatory care to support the child, the foster family and the 

child‟s parents.  

 
Residential care (RH) 
In some cases it is not possible to stay in a foster family, because intensive care to treat severe 
behavioural disorders is necessary. In such cases, children have more possibilities to charter additional 

aid and guidance in a residential care facility than in a foster family. Residential care is regularly 
combined with ambulatory care to coordinate the process between the child, the accommodation and 

the child‟s parents. 

 
The difference between day care and residential care lies in the intensity of care services. Day care is 

a substitute of a family situation during day time, residential care is a twenty four hour substitute of 
the family situation. The difference between these care types and foster care lies in the location of 

care delivery. 

 
The four introduced care types can be further subdivided into 8 claim types used in the indication 

documents of the BJZ which provide the entitlement for care. These claim types can be further 
subdivided into twenty care products which can be seen as the smallest micro stones of youth care 

services. The complex taxonomy of youth care services is presented in appendix A. The taxonomy 

uses Dutch names to avoid inconsistency in naming. . The upper half of the taxonomy presents the 
residential services, the lower half youth assistance. The four different care types are separated by 

coloured blocks. The pink block visualizes the subset of AH services, the blue block RH, the yellow 
block DH and the green block PZ. The eight distinguished claim types are presented by the left vertical 

block with blue lines. The twenty different care products are presented by the right box with blue 
lines. 
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2.1.3 Actors and responsibilities 

The primary goal of this sub-section is to provide insights in the system and its behaviour by mapping 
the actor‟s functions and influences in the youth care process. 

 
The national government 
The national government (in the form of the Ministry of Volksgezondheid, Welzijn&Sport2) is ultimately 

responsible for the youth care system in the context of the youth care act. The government passes 
laws and regulations, defines the basic policy principles and makes funds available. The state also 

controls the performance of the different provinces.  
 
Provinces and urban regions 
The twelve provinces and three major urban regions (Amsterdam, Rotterdam and The Hague) are 
responsible for the youth care agencies and for ensuring the availability of care that people are 

entitled to under the Youth Care Act. To enable them to perform this role, the national government 
provides them funds in the form of two special purpose grants: one for the provision of care and one 

for the maintenance of the youth care agency.  

 
The youth care agency (BJZ) 
The Youth Care Act provides a legal status to the youth care agencies. Each of the Netherlands 
provinces and three major urban regions have a youth care agency. Young people and their parents 

can approach the youth care agency of their province or regions if the general organizations, such as 
schools and social support, are not able to help them sufficiently with their problem. The BJZ decides 

whether assistance is indicated. The most important function of the youth care agencies is assessing 

these requests for care and deciding what kind of care or support (if any) is required. The client‟s 
needs are considered in their own right, rather than in the context of available capacity. In other 

words, the agency makes an independent decision about what is needed. If the BJZ concludes that 
the client is in need of care, an indication document is created. This is a formal statement which 

contains the particular care types required on a care claim level. The youth care agency has the power 

to decide which various forms of care are indicated.  
 

The care providers 
The indication decision made by the BJZ expresses the care needs in terms of care claims. In order to 

ensure that the care type provided by the care providers are consistent with these care claims, care 

providers presently have to define their care provision on a similar basis. The provided care products 
subdivided the care claims in a set of provided care services. This approach offers flexibility to the 

care provider to select the most suitable care products and it offers a basis to a demand-led care 
attuned to the client‟s needs. Furthermore, the product types create a possibility to compare care 

providers and form the basis of a transition to output financing of the care provider services. 

2.1.4 Coordination in the youth care chain  

One of the main aims of the youth care act is to ensure coordination between the above introduced 
actors in the care chain. The provincial and regional3 authorities are responsible for coordination. As 

such, every four years they are required to produce a provincial or regional policy framework; of 

course in close consultation with the other actors in the chain, using the national policy framework as 
a starting point. The provincial policy framework has to be approved by the central government before 

the provincial authorities can adopt it. 
 

The provincial policy framework outlines the indication policy of the province‟s BJZ and it describes in 
broad lines the anticipated pattern of demand. The document is compiled on the basis of data from 

the BJZ and the care providers in the province. In addition, the province has to produce an annual 

operational implementation programme, which aligns the BJZ processes and the available care 
capacity at the care provider with the provincial policy framework and with the performance criteria 

                                                 

 
2 Currently Ministriy of Volksgezondheid  en Sport, former Ministry of Jeugd en Familie  
3 When referred to the provincial authorities in the following sections the same accounts for the authorities of the three regional systems 
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determined at national level. The implementation programme is drawn up in close cooperation with 

the BJZ and care providers in the province. 

The BJZ and care providers have the responsibility to provide every quarter the information to the 
province necessary to evaluate the effectiveness of the current policy framework. The province 

provides information flows to the national government that has the ultimate responsibility of the youth 
care sector. The exact information responsibilities in the youth care sector are captured in the youth 

care policy information format document (Stuurgroep BAM 2009). An object oriented overview of the 

actor relations, budget, process and information flows in presented in Figure 2-2.   
 

 
FIGURE 2-2 ACTOR RELATIONS, BUDGET, PROCESS AND INFORMATION FLOWS IN THE YOUTH CARE SYSTEM4 

 
The following section further demarcates the information and performance control responsibilities in the 

youth care sector.  

2.1.5 Information hierarchy, budget allocation and performance control 

It is argued by Leeuwen, Naborn et al. (2008) that the information provision and performance control 
in the youth care sector is complex and non transparent as a result of the multiple aggregation layers 

of management information. This section makes the different aggregation layers of management 

information transparent and couples the information layer to the information responsibilities and 
control functions of the different actors in the youth care system. 

 
Trajectory information:  The trajectory information measures the amount of trajectories in the 

different states of the youth care sector. The trajectory layer information is the operational 

information used by the care providers to evaluate their capacity investments in order to align the 
demand for care services with the available capacity. Trajectory information is analyzed further, 

aggregated to the four main care types presented in subsection 2.1.2. The different nature of the 
three care types makes the trajectory information between different care types incomparable. The 

budget allocating methods used by the provinces to the different care providers is becoming 
increasingly based on trajectory output financing aggregated to the different care types. 

 

Child information. The trajectory layer does not provide a clear inside in the exact amount of children 
in treatment or on the waiting list. Furthermore, the trajectory layer does not provide insight into the 

time a child needs to wait before receiving the first treatment. The child information layer is 
introduced to allow unambiguous steering from a national level. The national government objectively 

allocates macro budget to the provinces and care providers based on the anticipated child demand.  

                                                 

 
4 The youth care sector distinguishes 12 provincial systems and 3 urbanized regions. The urbanized regions follow the same structure as 
the provincial systems; expect the role of the province, which is covered by the urban authorities in the urbanized regions. 
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An important performance criterion in the youth care system is the performance agreement between 

the former ministry of Youth and Family, in the person of former Minister Rouvoet and the actors in 

different provincial and regional systems, which states: 
“Every child should receive youth care in less than nine weeks after the assessment of care needs at 
the care provider” (Rouvoet 2009). 
 

 A summary of the introduced information layers in relations to the informative and control 

responsibilities of the different actors is presented Figure 2-3.  
 

FIGURE 2-3 INFORMATION LAYERS 

 

Aggregation layer Information level Reported by Controlled by 

Child Management Province 
BJZ 

Ministry 

Trajectory Operational Care provider Province 

 

2.2 Waiting lists in health and youth care 

Over the last few years, the Dutch youth care sector has faced long waiting lists and long waiting 
times, a problem that received a lot of media attention. Youth care waiting times became an 

important issue on Dutch political agenda. A policy that combined a individual maximum waiting time 
of nine weeks with additional government funding to reach these targets was implemented. Although 

the policy resulted in an initial decrease of overall waiting lists, shortly after the policy implementation 
unexpected increases in waiting list occurred. The provincial and regional systems did not manage to 

guarantee the maximum individual waiting time target of nine weeks. In individual cases the youth 

care sector is not able to provide the entitled care within the nine weeks target. In the context of the 
youth care sector, which has a high intolerance to failure, this is perceived unacceptable. 

 
Hospital and general health care face similar problems with regard to waiting lists and the high 

intolerance to failure. Waiting lines in the health care sector have received little attention in scientific 

literature. A common approach taken by governments to tackle these problems is the injection of 
capital which is used to increase capacity. It is argued that this provides a short term solution, as 

available capacity and queue lengths reach a new equilibrium after a short period of time (Hurst and 
Siciliani 2003; Postl 2006). Saulnier, Shortt & Gruenwoldt (2004) identify the main approaches to 

decrease waiting times: monitoring of procedures, using priority scoring and setting waiting time 

targets. Rachlis (2005) argues that such methods do not work by themselves in the complex health 
care setting with an inherent dynamic character caused by political influence, patient withdrawals and 

uncertainty. Waiting lines in health care face withdrawals when clients have to wait for an extended 
period of time. Several studies have shown that the amount of time that a client is willing to wait for 

care is related to the urgency of the problem (Goodacre and Webster 2003). Problems that are more 
urgent genuinely require attention, and are difficult to treat elsewhere. These cases will therefore 

accept longer waiting times before withdrawing from the waiting lists. Rising (1977) states that many 

health care systems can be viewed as some form of a stochastic random network. Furthermore, he 
addresses the importance of accounting existing process variability when analyzing health care 

queues, whereas management by averages can yield radically inaccurate results if significant variation 
exists.  

2.3 Decision support model requirements 

This section introduces the generic factors that determine the success of decision support models, 

after which these factors are taken into account in the formulation of requirements for a successful 
decision model in the context of decision support in the care provider capacity negotiations.  

2.3.1 Sound and successful models 

It has been identified in literature that the development of a sound model, for the purpose of solving a 

particular problem needs a fit between three dimensions: system dimension, problem dimension and 
methodology dimension (Pidd 2004; Lorenz and Andreas 2006; Chanal and Eldabi 2008). The fit 

between these dimensions is presented in Figure 2-4.  
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System dimension (what?) 5.  
Refers to the nature and the 
structure of the real world 

system under investigation. A 
model refers to the selected 

aspects of the real world, 
examining the characteristics of 

these real world objects provides 

important indications for the 
selection of an appropriate 

modelling approach. 
 

Problem dimension (why?). 
Refers to the simulation 
objective, which can include 

solving a given problem or 
optimizing  a given behaviour or 

to gain insight into a broader not 

yet understood problem context. 
This is also important for the 

identification of adequate 
modelling boundaries.  

  
Methodology dimension(how?). 
The aspects and capabilities of the modelling or simulation6 method. Through this set of concepts and 

methods a methodology defines how the object is approached in order to achieve the intended 
purpose. Since all methods have strengths and weaknesses the application of a certain method 

already presents a tendency to which aspects are associated with the real world problem.  
  

It is generally recognized in the information system community that successful solutions to complex 

problems do not only require technically sound deliverables. A modelling project is not considered 
successful before it is implemented successfully, which requires much more than technically sound 

models. Chanal and Eldabi (2008) recognize that modelling time and cost, stakeholder trust and data 
availability are the main barriers for uptake of simulation in industries such as health care where quick 

and affordable decisions are required (Lowry 1992; Carter and Blake 2005). Based on these findings 
additional to the soundness of the model stakeholder trust, resource and data dependency and 

modelling time are introduced as parameters that influence that success of a model study, as visually 

presented in the corner of  Figure 2-4.  
 

2.3.2 Model requirements 

Requirement analysis involves defining customer needs and objectives in the context of planned 

model use, environment and identified system characteristics to determine requirements for system 
function (Defence Acquisition University Press 2001). The complexity of requirements necessitates to 

analyze the world from different points of views and to make connections between these different 

points of views (Robertson 2001). Keen and Sol (2005) argue that the effectiveness of a decision 
support system can be expressed in a combination of three factors: Usefulness, Usability and Usage:  
Usefulness. The usefulness of a decision support tool expresses the value a simulation model adds to 
decision making or problem solving process and is closely related to the afore mentioned soundness of 

the model (Chanal and Eldabi 2008). It relates to the analytical model, the embedded knowledge and 
the information resources available in a model or tool. It serves as the synthesis between the 

soundness of the model and the data dependency. 

                                                 

 
5 The definition of a system : A system is a part of the world we choose to regard as a whole, which contains a collection of objects and 
underlying relations (Holbaek-Hansen 1975). 
6 A clear distinction between modelling and simulation is provided in following chapter.  

 

Problem

Why?
    Real System

What?

Methodology

How?

Fit

Resources and Data 

Time and Cost Stakeholders  
 

FIGURE 2-4 FIT BETWEEN MODELING METHODOLOGY AND A PARTICULAR 
PROBLEM SOVLING PROCESS (CHANAL AND ELDABI 2008) 
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Usability. Usability expresses the stakeholder trust and understanding of the simulation model. 

Usability mainly depends on the interface between users and the decision support technology. It 
expresses, the responsiveness, flexibility and ease of interaction with the tool in de decision making 

process. In other words, it expresses the communicative quality of the model in the decision making 
process. The usability serves as a synthesis between the conceptual view and technical aspects of the 

methodology at one side and the stakeholder or sector worldview on the other.  

 
Usage. Usage expresses the flexibility, modularity and suitability of the decision support model for the 

organizational, technical or social context. It refers to the time and costs of adapting the model to 
changing environments and objectives. Characteristics of influence or modularity, flexibility and the 

ease of initialization. 

 

2.4 Problem and system delineation 

The preceding parts of this research formulated the objectives and requirements for a decision 

support model in the context of the youth care sector. To satisfy these requirements and reach stated 

Requirement 7: Generalizability 
From a problem owner perspective, the model is required to be generic for different care 

providers. From a care provider perspective the model should not provide the province with 

insight in the exact organisation and procedures of the autonomic care provider. 
 
Requirement 8: Flexiblity.  
The decision support model is required to be adaptable to the introduction of new care services, 

procedures and performance indicators. The flexibility of a decision port model is strongly related 

to the concept of modularity.  
 

Requirement 9:Low time and costs of model initialization 
The time and cost to re-initialize the model for a different care provider are new data set. It is 

related to the data dependency and the ability to automate the pre-processing of data sets to 
model inputs 
 

 
 

 
 

 
 
 
 
 

Requirement 2: Data dependency.  
The necessary data to initialize the model is required to be accurately collectable from the care provider 

Requirement 3: Low distance between stakeholders and model worldview 
The problem owners and stakeholders should be able to relate the real world to the abstraction of 

the system model in order to provide trust and understanding of the decision support model.  
 
Requirement 4: Clear and intuitive interface.  
The model interface is required to provide a clear and unambiguous overview of the important 

performance indicators and interval variables. Furthermore, the decision support model should be 

intuitive.  
 

Requirement 5: Easy experimental set-up. 
The SD model is currently used during negotiation and scenario analysis workshops between the 

province and the care provider. The model is required to be quickly adaptable to experiments, 
which can include different policy options or scenarios.  

 
Requirement 6: Low experiment run-time 
Furthermore, the experiment outputs are required to be analyzed during the workshops a short 

experimental time is required to ensure efficiency of those workshops.  

Requirement 1: Accurate insight into performance indicators 
The model is required to provide insight in the behaviour of the important performance indicators 

and internal variables in the youth care, necessary to evaluate the state of the youth care system 
and the impact of possible policy options.  

 
Requirement 2: Data availability or collectability 
The necessary data to initialize the model is required to be accurately collectable from the care 

provider system or accurately determinable by assumptions or analytic methods. 
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objectives a decision support model should sufficiently represent the real system. It should allow the 

adaption of possible policy instruments of the relevant actors and incorporate the possibility to 

experiment with the possible future scenarios to evaluate the effect and robustness of care provider 
capacity strategies on the value of the relevant performance indicators. This section takes a system 

perspective to demarcate the relevant variables to sufficiently abstract the real system in a simulation 
and forms the foundation of the conceptualisation of the SD and DES simulation model. The structure 

of this section is visualized in  

Figure 2-5.  
 

 

 

2.4.1 System borders and demarcation 

A first step in determining the system borders is the demarcation of the part of the youth care sector 

under study. Taking into account the objective of the decision support model, which is to align the 
care providers capacity with the anticipated care demand in order to reach the performance 

agreements made between the actors in the youth care sector, the system is bordered by the process 
of one care provider. To be more specific the processes with determine the logistic children flow and 

waiting time in the care provider system. The system borders are presented by the red dotted box in 

Figure 2-6.  
 

The demarcation of a simulation model determines the complexity and validity of a model. Model 
demarcation decisions are always a payoff between validity and complexity. The model should 

abstract enough of the real system to reach the model objective, without becoming too complex to be 

used or understood. The system is further delineated taking into the account the necessary scalability 
between care providers. Different care providers broadly have similar structures and processes, the 

system should capture these common processes, but distance itself from detailed differences in the 
process of different care providers. The system delineation is based on the following considerations: 

 Simplicity. Keep the model as simple as possible, given the objective, without detracting from 

its completeness and its value as a reflection of reality.  
 Influence. Keep the part of the system which cannot be influenced as much outside the 

system boundary as possible.  
 

(S) Care provider system 
 

2.4.1 System borders and 
demarcation 
 

2.4.2 System decomposition: 
horizontal layers and vertical 
partitioned subsystems 

(X)  External forces 
 

(O) Outcomes 
 

2.4.4 Performance 
indicators 

(P) Policy instruments 

 
FIGURE 2-5 SYSTEM PERSEPCTIVE STRUCTURE 2.4 

 External 

variables 
 

2.4.3 Exogenous variables 
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FIGURE 2-6 PROCESS AND SYSTEM DEMARCATION 

 

The following system boundaries form the foundation for both the currently used system dynamics as 
for the to be developed discrete simulation model. 

 

1. Care demand. The demand faced by a care provider can be measured by the amount of 
children requesting care and by the amount of care trajectories these children request. While 

the care provider has influence on the amount of care trajectories delivered to a child for a 
certain care claim, the choice is made to treat both the child as trajectory care demand as 

exogenous variables. First, because the care demand is dependent on the allocation policy of 

the BJZ. Second, because the Youth Care Act takes the clients care needs and the quality of 
treatment as a starting point. A child deserves the care trajectories it needs, the amount of 

care trajectories is not seen as a policy instruments to control the waiting lists.  
 

2. Care services. Previous section introduced the taxonomy of care services.  All care services 

can be subdivided in four care types, which can be further subdivided into seven claim types 
by the BJZ and 20 detailed product types used by the care providers. The four claim types 

separate the care services according to their resource usage and are therefore currently used 
by the care providers for their capacity forecasts (Giesen 2008; Westerflier 2008). The system 

under study will be aggregated to these four care types because of the importance of capacity 
forecasting in the youth care policy.  

 

3. Care provider. The system under study is demarcated to the logistic flow of children through 
the care provision process of the care provider. Only the actors, documents and variables that 

directly influence the logistic flow of children are considered.  
 

4. Care provider capacity. Care provider resources are bordered to the trajectory capacity of 

each care type. Employees, treatment rooms, beds etc. are not explicitly modelled. This 
demarcation is made because the model serves as a communication tool between the 

province and the care provider. The care providers compete in a free market, information with 
regard to their work processes, personal management and budget allocation is perceived 

confidential. 
 

5. Costs and benefits. An important decision criteria for the care providers, in addition to the 

performance indicators related the dynamic children flows, are the expected financial benefits 
of possible capacity strategies. The author argues that these benefits dependent on a static 

cost function, which uses both the care capacity and the care production as a function. Taking 
into account the purpose of the current research, two compare the application of two dynamic 

simulation methods; this static cost function is perceived to lie outside the scope of current 

research. However, the importance of costs and benefits is translated by the emphasis on the 
care production as an important performance indicator. In addition to the performance 
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indicators related to the dynamic children flows, care provider capacity costs and care 

provider incomes, which are based on the outflow of treated trajectories  

2.4.2  System decomposition: horizontal layers and vertical partitioned subsystems 

Jacobs (2005) argues that separation of concerns is at the core of system engineering, it refers to the 

ability to identify, encapsulate and manipulate those parts of a system that are relevant to a particular 
concept, goal, task or purpose. The next step in further analyzing the care provider system is a further 

decomposition of the system into horizontal layers and vertical partitioned sub-systems. A graphical 
overview of this decomposition is provided in Figure 2-7 

 
Horizontal layers: information separation 
The information hierarchy introduced in the first chapter, distinguished two layers of management 

information. Namely the measurements related to unique children and the measurements related to 
the different care services a child receives  in the care trajectory layer. These vertical layers are clearly 

distinguished in the decomposed system diagram presented in Figure 2-6.  
 
Vertical partitioning: process separation 
The vertical partitions of the trajectory layer are clearly visualized in the system model. The four 
parallel subsystems, aggregated by the four care types, are independent parallel care systems. The 

performance of these subsystems does not influence the performance of other subsystems and is not 
inter comparable because of the differences between the provided care types. The care provider 

performance measures, at trajectory level, are also vertically partitioned and aggregated by the care 
types.  
 

2.4.3 Exogenous variables 

The exogenous variables, which influence the system under consideration, can be subdivided into two 
subcategories, external variables and instrumental variables: 

 
 
Figure 2-7 System diagram: decomposition of the youth care sector in horizontal layers and 

vertical partitioned sub-system.  
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External variables. Variables that cannot be influenced from within the system. Also referred to as the 

scenario variables.  
Instrumental variables. Variables that can be influenced by the decision makers. Also referred to as 

the policy variables.  
 
Policy variables: The decision makers in the context of the care provider model are the province or 

regional system and the care providers. While there are many variables the care providers can 
influence, for most of the variables their influence is bounded by a payoff between care quality and 

system productivity. An example of such a variable is the patient treatment time. A decrease of 
treatment times would increase the system output and potentially decrease the waiting time. 

However, such a policy is likely to decrease the care quality provided to children. For this research the 
instrument variables are those variables completely controlled by the scope of management control of 

the care provider, without negatively influencing the care quality. This decision has been made on the 

basis of the following considerations. First, taking into the account the simulation objective to provide 
a negotiation tool in the future capacity negotiations between the care provider and the province 

based the anticipated future demand. Second taking into account the main objective of the youth care 
sector introduced in subsection 1.1.1 which states: “the need of the client comes first”, a pay off 

which jeopardizes care quality is considered in contradiction with this main objective of the youth care 

sector. Based on these considerations the following policy variables are considered: 
 

 
 

Scenario variables: 
The other variables which are perceived uncontrollable and beyond the scope of the care provider 
management, may still be subject of analysis of what if scenario‟s. Selection criteria for these variables 

are observed dynamics in these variables and the sensitivity of the system to variable change. The 

arrival of children in the system is perceived the main scenario variable. Other possible scenario 
variables are the variables, which determine the link between children arrivals and trajectory demand 

and the trajectory treatment time. Data analysis of historical case study is necessary to determine 
which variables are relevant to study possible future scenarios. 
 

 

2.4.4 Performance indicators 

Law and Kelton (2000) define the state of a system to be that collection of variables necessary to 
describe a system at a particular time, relative to the objectives of the study. This sub-section beholds 

an analysis of the collection of variables that describes the logistic children flow through the care 
provider system at a particular time. The objective of the simulation model is to provide insight into 

the development of the system performance indicators as a communication tool between the province 
and the care providers. The performance indicators are selected with regard to the current political 

focus and the sector performance agreements. A distinction is be made between the operational 

performance measures used by the care provider measured at the trajectory layer and the 
performance indicators used by the ministry to control the youth care performance measured at the 

child layer. The performance indicators are determined by analyzing the managements products 
provided by INITI8 to the youth care sector and the format of the policy steering rapports used in the 

control of the youth care sector (Stuurgroep BAM 2009). 

 
Trajectory layer 
Literature tells us that the typical measures for queuing systems include server utilization, length of 
waiting lines and delays of customers (Banks, Carson, Nelson, & Nicol, 1999). The negotiations 

Children Arrival. The inflow of new children into the care provider system. 

Treatment time. The duration of trajectory treatments for the different care types.  
Care profile variables. The set of variables which together determine the link between children 

and trajectories.  
 

Care capacity.  The available care resources at the four independent care systems.  
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between the province and the care provider result in a common youth care policy, which should be a 

robust pay off between waiting times, costs and efficiency. Figure 2-8 presents the performance 

indicators measured for each independent care system.  
 

FIGURE 2-8 PERFORMANCE INDICATORS TRAJECTORY LAYER 

 

Performance 
indicator 

Unit Description 

Waiting list 
Trajectory 

 (trj) 

The number of trajectories on the waiting list 

Waiting time 
week  
(wk) 

The time children have to wait before the 
treatment of a trajectory starts. 

Production 
Trajectory a month 

 (trj/month) 

The outflow, of the number treated trajectories 
each month. It serves as an important input for 

the care provider income, which is based on 
output financing. 

 

 
Child layer 
As introduced previously in 2.1.5, the child layer provides unambiguous insight in the child and is used 

by the national government to objectively allocate the macro budget to provinces and urbanized 
regions. Furthermore, the child layer allows to objectively control the care provider and provincial 

performance, without aggregating to specific care types. The child layer performance indicators, 
currently  applied by the ministry,  are presented in Figure 2-9. The applied child layer performance 

indicators have been frequently changed in recent years. In addition to the currently used 

performance indicators new plans include monitoring the waiting time for the heaviest care type 
assigned to each child.  
 

2.5 Conclusion 

The youth care sectors aims to provide care to children on demand. Care provided in the context of 

the youth care act is voluntary care, children receive youth care at their own initiative. The care needs 

of the clients come first, because every child is unique, the care services provided to the children need 
to be flexible. To achieve this flexibility in care services different care types are distinct and each child 

can receive a suitable combination of those care types. A high level composition of youth care services 

Performance 
indicator 

Unit Description 

Children in the 
system 

child 
 

The number of children, which have trajectories in the 
care provider system (in care or on the waiting list) 

Children Waiting 
list 

child 

The number of children in the care provider system 
waiting for one or multiple trajectories without having 

care trajectories in care.  

Children In care child 
The number of children in the care provider system of 

which on or multiple care trajectories is in care. 

Waiting time  
Week 
(wk) 

The time children spend on the waiting list without 
receiving treatment.   

FIGURE 2-9 PERFORMANCE INDICATORS CHILD LAYER 
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divides the youth care services according to nature service distinct are: Youth assistance and 
residential care. These two main categories can be further subdivided to four care types. Youth 

assistance has the care type ambulatory care (AH), residential distinct three care types day care (DH), 
foster care (PZ) and residential care (RH). These four care types can again be further subdivided into 

a multitude of care services. For this research the care provider is analyzed aggregated to the four 
care types.  

 

The national youth care system is subdivided into 15 autonomic regional systems that cover the 12 
provinces and the urbanized regions of Amsterdam, the Hague and Rotterdam. The national 

government has the formal responsibility of the regional systems and provide the means to the 
authorities of the provincial and regional systems. Each regional system consists of a BJZ and a set of 

care providers. The authorities of the regional system have to formal responsibility to align the 
resource availability at the care providers with the care demand. 

 

Effectiveness of decision support model are not only dependent on the usefulness of the model 
outputs. In addition to the usefulness of the model, time and cost of modelling, data availability and 

stakeholders are introduced as important parameters that influence the success of decision support 
model in the health and youth care sector.  

 

The system delineated in current research describes the logistic children flows through a care 
provider. Only actors, objects and documents that directly influence this logistic are considered in both 

currently used SD and in the to be developed DES model .The care services are aggregated to four 
care types; ambulatory, residential, foster and day care. The model serves as a communication tool 

between the regional authorities and the separate care providers to create a commonly supported 
capacity strategy. The care provider capacity resembles the number of trajectories that can receive 

care at the same moment of time. Accommodations, employees, treatment rooms and beds are not 

explicitly modelled. In addition to the children flow related indicators, financial considerations serve as 
an important criterion for possible policy options. Taking into account to objective of current research, 

two compare two dynamics simulation approaches, the cost function is lies outside the scope of 
current research. 

 

Figure 2-10 presents a system diagram of delineated system. Distinct are two information layers; the 
child and trajectory layer. The trajectory layer distinguishes four parallel care systems, each with their 

own in and outputs.  

Care provider

New children

arrival distribution 

Care set relations

Child layer

Exogenous  

variables

Care 

system
Trajectory 

layer

Trajectory

 inflow
Trajectory
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FIGURE 2-10 SYSTEM DIAGRAM DELIATED SYSTEM 
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Chapter 3  

Ch3 Theoretical and methodological foundation: 
Modelling and simulation 

Modelling and simulation are becoming increasingly important enablers in the analysis and design of 

complex systems. Vangheluwe and de Lara (2002) mention that simulation modelling as a paradigm 
increasingly integrates system theory, control theory, numerical analysis, computer science, artificial 

intelligence and operational research. This chapter serves as the theoretical and methodological 

foundation of the research. First, the role of modelling and simulation in the system engineering 
toolbox is demarcated. After which, the SD and DES methodology are introduced and their application 

in health care is analyzed.  

3.1 Conceptual and simulation modelling 

This section serves as an introduction of system engineering and a demarcation of the role and 

function of modelling and simulation in the context of system engineering for complex system and 

systems of systems. There are several definitions of a system in the field of system engineering. In 
the current research the following definition is employed: 

 
A system is a part of the world we choose to regard as a whole, separated from the rest during a 
period of consideration, which contains a collection of objects, each characterized by a selected set of 
attributes, operations and relations (Holbaek-Hansen 1975).  
 

The real or actual system is defined as those parts or aspects of reality we want to investigate as a 
whole with the intent to know or eventually to control (Holbaek-Hansen 1975). Law and Kelton (2000) 

discuss when varying modelling techniques may be employed when studying a system as presented in  

Figure 3-1.  

 
 

FIGURE 3-1: WAYS TO MODEL A SYSTEM (LAW AND KELTON 2000) 

 

If the system can be altered, if it is cost-effective to do so, and it is safe (for the system and its 
environment) to use the system, it‟s desirable to use the real system. Because a model is always a 

purposeful abstraction of reality, which means that every model has constraints and assumptions 
which in practice set limits to its validity and applicability. When it is not possible to conduct 

experiments with the real system a model which captures an abstraction of the real system and its 
environment can be used. Such a model can be a physical model or a quantitative mathematical 

model. Two mathematical modelling approaches are distinguished, analytical solutions and 
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simulations. A non-trivial real world system can easily become too complex for a analytical solution to 

be attempted if randomness and temporal elements are of interest (Banks 1998; Law and Kelton 

2000). Simulation modelling is the preferred method of inquiry when the system is too complex to be 
evaluated analytically. The computer becomes the laboratory for the system engineer (Shannon 1975; 

Sol 1982). 
 

Sargent (2001) presented a framework to demarcate the role of the real system, the conceptual 

model,  the simulation system and the system objectives in a decision making process, presented in 
Figure 3-2. A distinction has been made between the real world and the simulation world. The 

simulation world presents the processes of creating a meaningful abstraction of the real system by 
using system theories. 
 

 
FIGURE 3-2 REAL SYSTEM, MODELLING AND SIMULATION (HESTER AND TOLK 2010) 

 

The figure presents a clear distinction between the conceptual model and the simulation model. The 
following distinction between the activities of conceptual modelling and simulation modelling is made 

by Hester and Tolk (2010).  
 Conceptual Modelling is seen as the process of abstracting, theorizing, and capturing the 

resulting concepts and relations in a conceptual model. 
 Simulation modelling is seen as the process of specifying, implementing and executing this 

model. 

Conceptual modelling resides on the abstraction level, whereas simulation modelling resides on the 
implementation level of the system. The available conceptual and simulation modelling methods and 

techniques are introduced in section 3.2 and section 3.3 

3.2 Conceptual modelling strategies 

Modelling concerns the abstraction of a real system by a conceptual model (Banks 1998). The system 

boundaries, objects and attributes are all subjectively chosen and selected. Modelling is thus 

considered to be a subjective procedural rational activity (Jacobs 2005). Shannon (1975) refers to 
modelling as an art instead of a science. This section will first introduce the main principles, methods 

and viewpoints of system analysis, followed by an introduction of the available methods to make the 
body of knowledge communicable.  
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3.2.1 System decomposition 

The Systems Engineering method recognizes each system as an integrated whole even though 
composed of diverse, specialized structures and sub functions. Jacobs (2005) argues that separation 

of concerns is at the core of system modelling, it refers to the ability to identify, encapsulate and 

manipulate those parts of a system that are relevant to a particular concept, goal, task or purpose 
(Tarr and Ossher 2001). Guided by this principle of decomposition, modelling paradigms and 

languages exist to make the body of knowledge of these decomposed systems communicable. 
 

Jacobs (2005) discusses strategies to divide systems into modular sub-systems. The concept of sub-
systems is defined as:. 

 A subsystem is a system that is a part of a larger system. The usefulness of this concept is 

entwined with the concept of modularity. 
System decomposition results into subsystems. Among separation of sequencing activities there are 

other strategies for dividing systems into subsystems which are applied in this thesis. An important 
distinction between strategies is: 

 System decomposition into vertically partitions and into horizontally layered subsystems.  
 

Both introduced decomposition strategies are illustrated in Figure 3-3. A horizontally layered system is 

an ordered set of subsystems in which each of the subsystems is built in terms of the one below it. A 
vertically partitioned system divides a system into multiple autonomous and therefore loosely coupled 

subsystems, each providing a particular service. Noticeable, the orthogonal decomposition of systems 
into either vertical partitions or horizontal layers is non-exclusive. Partitions can be layered and layers 

can be partitioned.  

 
 

FIGURE 3-3 DECOMPOSITION OF SYSTEMS INTO SUBSYSTEMS(JACOBS 2005) 

 

Different decomposition strategies are applied when decomposing a system from different system 

viewpoints. For each of these system viewpoints a distinct set of modelling methods has emerged to 
analyze the system. The three distinct viewpoints are.  

 

1. Functional view. The functional view presents the data flows through the system. It defines 
the processes in the system and the dataflow between the processes. Changes in system 

functionality result in changes of the function system structure. 
 

 
2. The dynamic view. Made up of state transition diagrams, the dynamic view defines when 

things happens and under which conditions the happen. 

 
3. Object view. An object orientation is made up of entity relationship diagrams; it is a record of 

what is in the system, or what is outside the system being monitored. It represents the static 
structure of a system.  

 

Object orientation has emerged as the de-facto modelling paradigm in system engineering (Booch, 
Rumbaugh et al. 1999). Because information system development has been influenced so heavily by 
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this paradigm, the next subsection introduces the concepts and consequences of the object 

orientation paradigm in modelling and simulation.  

3.2.2 Object Orientation 

Object orientation decomposes the system by describing the separate objects and underlying 

relations. The concept of object orientation can be used both in the conceptual model as well as in the 
programming of the simulation model. The fact that the first concepts of object orientation appeared 

in Simula (Dahl 2002), a simulation language, is probably the best argument for the suitability of 
object orientated in both conceptual as simulation modelling (Panagiotis, Vlahos et al. 1995).  

In object orientated system description and programming, the system is divided into objects and 
relations. Each object is characterized by a selected set of attributes (Booch, Rumbaugh et al. 1999). 

Three primitive object characteristics are distinguished; identity, state and behavior.  

 Identity. The ability to identify and distinguishes objects from other objects.  
 State.  The state of an object is defined by its attributes (i.e. age, speed, weight, size, etc.) 

 Behavior.  Objects invoke methods on themselves and on other objects.  
A class is a template for a set of objects that share the same attributes (defining their state), 

operations, relations and semantics (Booch, Rumbaugh et al. 1999). Characterizing object behaviour 

requires thinking about objects of particular class in relation to objects of another class. In general 
system relations can be grouped into three categories:  

 
Generalization ↔ Specialization. 
Class A is a generalization of class B if and only if every instance of class B is an instance of class A, 
and there are instances of class A which are not instance of class B. Equivalently, class A is a 

generalization of B if B is a specialization of A.  
 

Association 
Where generalization specifies a relationship between classes, association refers to the structural 
relationship between objects (or instances of objects). 

 
Aggregation ↔ Containment. 
A special form of association specifies a whole-part relationship. An object is an aggregation of 
another object when it contains attributes that are objects from other classes. 

 

Object orientation distinguishes the following key principles to incorporate this relationships in a model 
as described in (Booch, Rumbaugh et al. 1999; Eckel 2000):  

 
Classification. Classes capture commonalities of a number of objects. A class can be viewed from 

different perspectives: modeling, design, implementation and compilation. From a modelling 
perspective, a class is a template for a category of objects. It defines the attributes, operations and 

relations of category and thus of all objects belonging to the category. From an implementation 

perspective a class is a global object with globally accessible attributes, relations and operation. 
The object instances of each class form a hierarchy in which the highest level is the root of the 

system. A visual example of such a model is presented in Figure 3-4.  
 

Inheritance. Classes can be organized in a hierarchical structure. In such a structure the child inherits 

the protected and public attributes and methods from its parent. The child is referred to as subclass, 
the parents as super class. Inheritance allows the construction of new objects from existing ones by 

extending their functionality. On implementation level inheritance provides a high level of software 
reuse (Panagiotis, Vlahos et al. 1995). 

Figure 3-5 provides an illustration of the concept of inheritance.  

 
Encapsulation. Attributes and methods uniquely belong to an object; object can encapsulate other 

objects and keep their services internal, useful to form abstractions. Objects are encapsulated in 
components and components are encapsulated into systems. In the implementation phase 

encapsulation is a technique for minimizing interdependency among modules by defining strict 
external interfaces. The external interface serves as a contract between the module and its client 

modules. The implication of data abstraction is achieved. In conclusion a client does not need to 
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understand how operations are implemented, so a module can be re-implemented without affecting 

its clients (Blaba, Premerlani et al. 1988). It also enables the concept of information hiding. 

 
 

 
 

Message passing is the way in which objects communicate. In order for one object to affect the state 
of another object, the object sends a message that initiates the second object to execute one of its 

methods. This is what is called a client-server relationship. 

 
Polymorphism is the ability to take several forms. In the implementation of system by object 

orientated programming, different objects can understand the same message, but react in different 
ways.  

 
In general, system relations can be grouped into three categories (Blaba, Premerlani et al. 1988, p. 

416): generalisations, associations and aggregations. All three relation categories are identified in the 

object oriented paradigm. Pracht (1990) points out that the functional and dynamics system view are 
essentially concerned with association relations, through their emphasis on influence modelling. 

Object oriented generalization relations (A is a kind of B) and aggregation relations (A is a part of B), 
serve the purpose of forming hierarchies. Consequential hierarchic relations are difficult to capture 

and communicate from a functional or dynamic viewpoint. The behaviour of a model over time, which 

 
FIGURE 3-4 OBJECT ORIENTATION, CLASS, INSTANT, ENCAPSULATION AND HIERARCHY 

 

 
 

FIGURE 3-5 ILLUSTRATION OF SUPERCLASS ANDSUBCLASS ADAPTED FROM BURNS AND MORGESON (1988) 
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involves the representation of the sequencing activities and states, is on the other side difficult to 

interpret from an object oriented system representation. 

3.3 Classification of simulation 

Simulation modelling is the preferred method of inquiry in the context of ill structured problems, when 
the system is too complex to be evaluated analytically, the computer becomes the laboratory for the 

system engineer (Shannon 1975; Sol 1982). As aforementioned, Shannon (1975) defines simulation as 
the process of designing a model of real system and conducting experiments with this model for the 
purpose of either understanding the behaviour of the system or evaluating various strategies for its 
operation. A simulation model is a system description, either object oriented or mathematical, of a real 
system. This chapter will categorize simulations methods in order to provide a clear understanding of 

the formal differences between continuous and discrete modelling.  

3.3.1   Dynamic simulation vs. static simulation 

This is of interest when the temporal element is not relevant to the analysis. Typical examples of 
static models are deterministic spreadsheet models and stochastic Markov and Monte-Carlo models 

(Hester and Tolk 2010). All static simulation models represent a system at a given point in time. Static 

simulations are often simplifications of dynamic real world systems; if the evolution of a system state 
over time is required a dynamic simulation is more suitable.  

 
Current research is focused on the dynamic simulation methods, these specify both the relations and 

the behaviour of the system as a function of the system time (Jacobs 2005). Having discussed a 
framework for modelling the structure of a system in the previous sections, a concise way to 

represent time and the system behaviour as a function of the system is provided in the following 

subsection.  

3.3.2 Definition of time and state in simulation 

A dynamic simulation model may be considered as a set of rules that define how a system being 
modelled will change in the future given it present state. In other words, dynamic simulation is the 

execution that takes the model through state changes over time (Borschchev and Filippov 2004). A 
set of basic definitions in which time and state relationships are carefully distinguished, is introduced 

by Nance (1981). Starting point is considered to be that a simulation model exists of objects described 
in terms of their attributes and values. The assignment of a value to an attribute of an object in a 

system description is based on observations. These observations may change over time the state of 

an object.  
 

In time based simulation, simulation time  is used to distinguish different observations of the same 

attribute. Nance (1981) presents the following concepts concerning simulation time: instant, interval 

and a span, the definitions of these concepts are illustrated Figure 3-6.  

 
FIGURE 3-6 CONCEPTS RELATED TO TIME(JACOBS 2005) 

 

 

 Instant. A value of a simulation time at which the value of an attribute can be altered.  

 Interval. Duration between two successive instants.  
 Span. The contiguous succession of one or more intervals. 

 

The state of an object is the collection of attribute values of an object at an instant. Nance (1981) 
introduced the following time and state relations: event, activity and process. As illustrated in  

Figure 3-7.  
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 Event. A change in the state of an object at an instant. 

 Activity. The actions performed over time in order to create the state change.  
 Process. The succession of activities of an object over a span. 

 

 

The independent variable time and the state variables together describe the static structure of a 

simulation model; the dynamics of the state variable as a function of the time is described by 
transition functions that capture the behaviour of a systems. The simulation approaches used to 

describe this behaviour of a system over time are introduced in the next section.  

3.3.3 Taxonomy of simulation 

The approaches used to describe the behaviour of a simulation model are referred to as formalisms. 
The evolution of a formal description for these formalisms started with the categorization introduced 

by Zeigler (1976). The formalisms were categorized based on the continuous or discrete nature of 
their time advancing and state transition functions. The following fundamental formalisms are 

distinguished and visualized in  

FIGURE 3-8.  
 

Differential equation system 
specification (DESS). This 

formalism represents systems 
with a continuous state time 

advancing function and a 

continuous state transition 
function.  

 
Discrete time system 
specification (DTSS). This 

formalism represents systems 
with a continuous state 

transition function and a 
discrete time advancing 

function.  

 
Discrete event system 
specification (DEVS). This 
formalism represents systems 

which operate on a continuous 
time function with a discrete 

state transition function.  
 
The remaining part of this subsection, further sub categorises the DESS and DEVS specification. The 

introduced formalism classification shows how different time and state transitions functions lead to 
different simulation formalisms. Commonly used simulation taxonomies in literature categorize 

simulation to either the discrete or continuous of state or time transitions. The remaining of this 

subsection presents the taxonomy made by Vangheluwe and the Lara (2002) which categorises  
formalisms by the nature of their state formalism and the categorizations according to the nature of 

time advancing set out by Borshchov and Filippov (2004) 

 
 
 

FIGURE 3-7 STATE RELATED CONCEPTS (JACOBS 2005) 

 
 

FIGURE 3-8 CONTINOUS VERSUS DISCRETE 
FORMALISMS(ZEIGLER, PRAEHOFER ET AL. 2002) 
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Categorization according to state formalism 
Vangheluwe and the Lara (2002) present the formalism space in what is known as a formalism graph, 
presented in Figure 3-9. The different sub-formalisms or methodologies are presented as the nodes of 

the graph. The vertical dashed line delineates the categorization between continuous state and 
discrete state formalisms.  
 

Complex systems often have components and aspects for which the state transitions function cannot 
be described in a single comprehensive formalism (Vangheluwe and de Lara 2002; Zeigler, Praehofer 

et al. 2002). For the design and analysis of a simulation model of such a system it would be desirable 

to express the state tradition functions as a function of multiple formalisms. In the formalism 
transformation graph, presented in Figure 3-9, the arrows show the possible transformation relations 

between the formalisms. These relations are also referred as embedded relations in which one 
formalism is mapped into another (Zeigler, Praehofer et al. 2002).  

 
In the subset of continuous formalisms, these formalisms are related to a specific domain. For 

example, system dynamics a sub-formalism of the continuous DESS formalisms is targeted at social, 

socio-economic or ecological topics, while bond graphs are commonly used in engineering systems 
with a variety of thermal, mechanical or electrical components. The subset of discrete formalisms is 

not categorized by their specific domain of application. Instead the subset of formalisms is specified 
by the unique approach or world view followed to specify, or group the behaviour of a simulation 

model. Overstreet and Nance (1986) refer to the concept of locality when they speak of grouping 

behaviour in a simulation model. 
 

Categorization according to time advancing 
The common classification of modelling formalisms is recently adapted to „time driven‟ and „event-

driven‟ modelling formalisms, as can be found frequently in the more recent conference and journal 
papers from the Winter Simulation Conference and the ACM Transactions on Modelling and Computer 

Simulation. The difference between both branches lies in the incrementing technique of the simulation 

clock.  
 

Time driven systems (periodic scan): The value of the simulation clock is incremented by a fixed 
amount, which is a predetermined uniform unit. After the simulation clock is adjusted by this fixed 

time increment, the system is examined to determine whether any events occurred during that 

interval. If any events occurred, they are simulated. The simulation clock is then advanced another 
time unit, and the cycle is repeated. 

 
FIGURE 3-9 FORMALISM TRANSFORMATION GRAPH (VANGHELUWE AND DE LARA 2002) 
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Event driven systems (event scan). The simulation clock is incremented at the occurrence of the next 

event. Thus, the simulation clock is incremented from one event time to the next event time without 
regarding the interval that separates these events occurrences. After updating the simulation clock, 

the simulation system simulates the event (implements the resulting changes), and the whole cycle is 
repeated. 

 

 The two distinct time-driven paradigms are the previously categorized continuous state formalisms 
System Dynamics and dynamical systems distinct by their domain of application. The Event-driven 

paradigms are distinct by the worldview with which the paradigms specify the behaviour of the 
system. Discrete Event modelling is a top down approach centred on processes, which may be as 

logical sequences of activities (Borschchev and Filippov 2004). The emphasis of this research lies on a 
comparison of the insights produced by SD and DES in the decision making process of the youth care 

sector. The concepts of these simulation approaches are further explained in the following sections.  
 

3.4 System Dynamics (SD) 

System dynamics (SD) is a methodology and computer simulation modelling technique for framing, 

understanding, and discussing complex issues and problems. SD is develop by Jay Forester at the 
Massachusetts Institute of Technology in the early 1960s (Forrester 1961) to help corporate managers 

improve their understanding of industrial processes by applying feedback control theories. Forrester 

frames the SD paradigm as: 
 

“The study of information-feedback characteristics of industrial 

activity to show how organizational structure, amplification (in 

policies), and time delays (in decisions and actions) interact to 

influence the success of the enterprise(Forrester 1961)(Forrester 1961)”  

 
The goal of the SD paradigm is to develop an endogenous explanation for problematic dynamics 

(Sterman 2000). SD modelling concerns influence modelling, it identifies the elements considered 
fundamental to the systems and those that are likely to generate an influence on the problem 

situation. A SD model presents all elements relevant for generating a real world‟s system‟s pattern of 

behaviour endogenously. The model is composed of interacting feedback loops. The concept of 
feedback, where output is again used as an input, makes a system capable of generating behaviour 

endogenously. Such feedback can be either positive (indicated by the „R‟ reinforcing feedback loop in 
Figure 3-10) or negative (indicated by the „B‟ or balancing feedback loop). It can also sometimes 

result in non-linear behaviour which is often found in complex systems. Such complexity possibly 

produces counterintuitive behaviour which can confuse problem owners and stakeholders (Lane 
2000). 

 
Mathematically, SD simulations concern the representation of the system relations according to 

differential equations (Forrester 1961). Because of the nature of these mathematical functions, SD is 
well suited for the modelling of continuous process (Chanal and Eldabi 2008), at the specific domains 

of urban, social, socio-economic and ecological topics. SD models are mostly used at strategic level 

due to their problem structuring ability, when the problem owner is more interested in overall 
performance than in the finite behaviour of particular processes within the system (Sweester 1999; 

Brailsford and Hilton 2001). 
 

SD is characterised by its modelling of a system in terms of levels (for example stocks of material or 

knowledge), flows between these level and information (rates, delays) that determine the value of 
these flows. An example of the SD problem structure, in which the system behaviour is described by 

interacting feedback loops, is presented in Figure 3-10. The dynamic complexity embedded in SD 
models arises because variables influence each other in ways that involve non-linearity, delays and 

accumulative or draining relations. SD is a top-down modelling approach and as such it uses 

aggregated values to represent stocks and abstracts from single events and entities. It is difficult, but 
not impossible, for it to model heterogeneous populations where the effect of clustering and individual 
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behaviour may be important. It can achieve this by segregating a large population into smaller and 

related groups, with homogeneous properties, which are more tightly defined. 

 
 
 

 

Literature argues that the SD methodology needs to engage with mental models (Lane 2000). The 

most important information to include in these systems is not documented; it is embedded in the 
problem owners and stakeholders mental models. The modelling work should be done in close 

proximity with the problem owner‟s mental model. Due to this engagement with the mental models 
SD generates confidence in the simulation model. Additional to the strict predictive value of SD models 

is the qualitative aspect, with the aim of enhancing the understanding of an identified problem and 
improving comprehension of the structure of the problem and the relations present between relevant 

variables (Brailsford and Hilton 2001). Validation of SD models is done to increase the plausibility of 

the model as a theory for the causal mechanism generating the behaviour. SD models could be 
characterized as a collective best guess based on a particular groups understanding of the system at a 

point of time (Sweester 1999).  
 

Although SD is been used with reasonable success in the understanding of supply chains and logistic 

networks, it is nevertheless limited by its requirements, that the input variables have inherently 
uniform properties (Brailsford and Hilton 2001). The models are basically deterministic and they treat 

simulation objects as a continuous mass. SD does not attempt optimisation or point prediction, but it 
is capable of modelling very large complex systems and can deliver a wealth of qualitative and 

quantitative output measures. The paradigm is used to model problems where abstraction is high and 

details are low. Parameters estimation and validation are less of an issue with SD than with DES. SD is 
typically used to model problems such as global population dynamics, the macroeconomics of a 

country, ecological systems, and national health systems.  

 

 
Bass Diffusion Model In the classic textbook model of product diffusion (Sterman 2000),  Potential Adopters  become Adopters at 
Adoption Rate  that depends on advertising and word of mouth promotion. The impact of advertising is modelled as a constant percent of 
Potential Adopters (namely, Advertising Effectiveness = 0.011 in this paper) becoming Adopters each time unit. Therefore, the 
corresponding summand of Adoption Rate equals Potential Adopters * Advertising Effectiveness. For word of mouth adoption it is 
assumed that everybody contacts everybody else in this population group. The number of contacts per person per time unit is Contact 
Rate (100). In case one of the two people in contact is adopter and another one – not yet, the latter one will adopt with the probability 
Adoption Fraction (0.015). Then, during a time unit, each adopter will convert Adopters * Contact Rate * Adoption Fraction * [Potential 
Adopters / (Potential Adopters + Adopters)] people into Adopters. The expression in the square brackets is the probability of another 
person being not already adopter.  
 

FIGURE 3-10 SYSTEM DYNAMICS MODEL STRUCTURE(BORSCHCHEV AND FILIPPOV 2004) 
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3.5 Discrete Event simulation (DES) 

A discrete event simulation model is a system that changes its states at discrete points in time, at 
specific instants as recalled from section 3.3. The purpose of discrete simulation is the modeling of 

systems that are dynamic and stochastic, implementation of these models, and running these models 
(Garrido 2001). As a modeling approach DES can describe complex system structures, which cannot 

be described easily by analytical models (Law and Kelton 2000, p.115). The main objectives of these 
models are prediction, optimisation and analysis of “what if” scenarios. To achieve statistical validity to 

the performance of a real world system, a DES model requires accurate data on how the system 

operated in the past or accurate estimations on the operating characteristics of a proposed system 
(Lane 2000). Statistically significant results taking into account randomness, variability and uncertainty 

can be obtained as long as enough simulations are made (Brailsford and Hilton 2001). The 
components of a DES model are presented in  

Figure 3-11, the following subsection provides an overview of the concepts and methods embedded 

in these components.  
 

 
 

Figure 3-11 Structure of  discrete models (Kreutzer 1986) 

3.5.1 Passive vs. Active entities 

All major components of a system are identified as entities or objects, which have attributes and 
behaviour. Some of these entities are active entities, which have a life of their own. An example of an 

active entity is a process. Process instances are represented as objects of a thread class. The 
attributes of such processes are represented as attributes of the class. The behaviour of a process is 

modelled by the operations that can be performed by the processes; these are implemented as 

methods in the thread class (Garrido 2001). In addition to processes, a simulation model often 
includes other entities that do not behave as processes. These entities are modelled as classes that do 

not define a behaviour (Garrido 2001). A simulation can consist of several active and passive objects 
of different classes. During a simulation run, all the active objects of the simulation model interact 

with each other in some way or another. The introduced classification of active and passive objects is 

presented Figure 3-12.  
 

 

 
 

FIGURE 3-12 ACTIVE AND PASSIVE OBJECTS (GARRIDO 2001) 
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3.5.2 Simulation clock and modeling perspective  

The simulation time at which an event occurs is called its event time. The simulation executive, the 
program that implements and controls the simulation, must carry out time changes in the systems and 

keep track of the passage of simulation time. The simulation executive of most DES systems use a 

event scheduling world view.  
 

Event scheduling provides locality of time. Each event routine in a model routine in a model 
specification describes related actions that should always all occur in one instant (Overstreet and 

Nance 1986). The simulator first identifies all events at which discontinuous state transitions occur. An 
event can cause state changes, trigger other events, or schedule events at future simulation time 

(Carson 1993). The strategy for the event scheduling world view is to repeatedly select the earliest 

scheduled event, to advance the simulation time to the execution time of that event and to invoke the 
operation specified by that event. The behaviour and thus the processes of the simulation model are 

grouped in a time sorted event list. The simulation model is described as a time sorted set of 
scheduled events (Jacobs 2005). Several events may be scheduled to occur at the same moment of 

time. Simultaneous events may depend on each other or be truly concurrent. As a result of the event 

executions, the discrete state of the model may change, timers may be activated, events may be 
deleted from the event and other events may be added. 

 

 

When analyzing a system, the system can be decomposed from different perspectives as introduced in 

subsection 3.2.1. For each of these system perspectives a distinct set of modelling methods has 
emerged to specify the system and system behaviour in a DES simulation model. The following 

modelling concepts are distinguished: 
 

Object orientation: To specify the relations between objects and entities and to control complexity. 

Object oriented generalisation relations (A is a kind of B) and aggregation relations (A is a part of B) 
forms the purpose of creating hierarchies, as introduced in subsection 3.2.2.  

 
State chart (dynamic perspective): State charts define the behaviour of a system from an individual 

entity perspective by a collection of states and discrete state transitions. Transitions can be triggered 
by a set of events or conditions and cause a set of actions (Borschchev and Filippov 2004). Hierarchy 

in state charts permits one state to contain other states. Parallelisms permit multiple states to be 

active concurrently. Important extensions of this formalism are state hierarchies, parallelism and event 
broadcasting. Broadcasting of events allows one state to detect changes in other another states and 

provides the means to trigger a series of actions in one activity depending on transitions that occur in 
another (Soblev, Harel et al. 2008).  

 

 
FIGURE 3-13 EVENT SCHEDULING 
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Process orientation (functional perspective). Each process routine in a model specification describes 

the action sequence of a particular model object (Overstreet and Nance 1986). Process interaction 

provides a way to represent a system‟s behaviour from the point of view of the dynamic entities 
moving through the system. A process is a time ordered sequence of events: activities and delays that 

describe the flow of dynamic entities through a system (Carson 1993). Each process in a simulation 
model specification describes its own action sequence (Overstreet and Nance 1986). This worldview 

reflects the autonomy of an individual process, the life cycle and the concurrency in the execution of 

distinct process (Jacobs 2005). 
 

Implicit focus in most discrete event literature is on process orientation. This could be a consequence 
of the many commercial tools that support the process modelling style. Therefore, the dominant 

process orientation worldview is further described in the following subsection.  

3.5.3 Process orientation 

Process modelling is well known for problems with queuing characteristics. Process model building 
involves identification and representation of entities, resources, logic and flow of entities (Borschchev 

and Filippov 2004). An entity is a passive object of interest in the discrete system. An attribute is a 

property of an entity. An activity represents a time period of specified length (Banks 1998). The 
process interaction worldview describes systems by a flowchart through which the entities travel. 

Flowcharts blocks describe among other activities queues, resource seizing and releasing and activities 
(Owen, Love et al. 2008). The classic view of such a flowchart for a bank kiosk is presented in Figure 

3-14.  

In process orientated models entities have characteristics which determine their pathway through the 
network. Unlike Markov models, which take no account of history, “service time” can be dependent on 

individual characteristics and previous history, any parametric or empirical distribution can be chosen 
to model activity durations. Complex logical rules can be used to determine entities routing through 

the system. 

3.6 Comparisons SD and DES 

There is a growing concern in research in understanding which method is better or more suited for a 
particular problem It has been argued that the choice of modelling methodology is dictated by the 

modeller‟s expertise (Brailsford and Hilton 2001; Lorenz and Andreas 2006; Morecroft and Robinson 
2006; Chanal and Eldabi 2008). Rather than adapting a tool to the problem, analysts try to adapt the 

problem to available tools. As introduced in preceding sections, all modelling methods are based on 
certain concepts, philosophies and assumptions (Lorenz and Andreas 2006). Successful choice 

between methods depends on understanding the contrasting and overlapping features of the 

modelling methodology. This section provides a structured overview of the contrasting and 
overlapping features of the DES and SD model found in previous sections. A distinction will be made 

between the technical differences and the conceptual differences of the two methodologies.  

 
FIGURE 3-14 PROCESS ORIENTATION DISCRETE EVENT VIEW (BORSCHCHEV AND FILIPPOV 2004). 
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Discrete Event Simulation  System Dynamics  

Systems (such as health care) can be viewed 

as networks of queues and activities  

Systems (such as health care) can be viewed 

as a series of stocks and flows  

Objects in a system are distinct individuals 

(such as patients in a hospital), each 

possessing characteristics that determine what 

happens to that individual  

Entities (such as patients) are treated as a 

continuous quantity, rather like a fluid, 

flowing through reservoirs or tanks connected 

by pipes  

Activity durations are sampled for each 

individual from probability distributions and 

the modeller has almost unlimited flexibility 

in the choice of these functions and can easily 

specify non-exponential dwelling times  

The time spent in each reservoir is modelled 

as a delay with limited flexibility to specify a 

dwelling time other than exponential  

State changes occur at discrete points of time  State changes are continuous  

Models are by definition stochastic in nature  Models are deterministic  

Models are simulated in unequal time steps, 

when “something happens”  

Models are simulated in finely-sliced time 

steps of equal duration  

 
FIGURE 3-15 TECHINICAL DIFFERENCES BETWEEN DES AND SD (BRAILSFORD AND HILTON 2001) 

 

Discrete Event Simulation  System Dynamics  

Perspective  Analytic; emphasis on detail 

complexity  

Holistic; emphasis on dynamic 

complexity  

Resolution of models  Individual entities, attributes, 

decision and events  

Homogenised entities, 

continuous policy pressures 

and emergent behaviour  

Data sources  Primarily numerical with some 

judgemental elements  

Broadly drawn  

Problems studied  Operational  Strategic  

Model elements  Physical, tangible and some 

informational  

Physical, tangible, 

judgemental and information 

links  

Human agents represented 

in models as  

Decision makers  Bounded rational policy 

implementers  

Clients find the model  Opaque/dark grey box, 

nevertheless convincing  

Transparent/fuzzy glass box, 

nevertheless compelling  

Model outputs  Point predictions and detailed 

performance measures across 

a range of parameters, 

decision rules and scenarios  

Understanding of structural 

source of behaviour modes, 

location of key performance 

indicators and effective 

policy levers  

 

Figure 3-16 Conceptual differences between DES and SD (Lane 2000) 
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3.7 Simulation experiences in health care 

Over the past decades, health care costs have dramatically increased, while health care organisations 
have been under severe pressure to provide improved quality care for their patients. This situation has 

compelled researchers and health care professionals to examine new ways to improve efficiency and 
reduce costs. The synthesis made in this section is made based on the concept of analogy.  

 
Analogy is a cognitive process of transferring information or meaning from a particular subject (the analogue of 

source) to another particular subject (the target). The concept is based on making useful generalizations. The 

purpose is to understand and articulate the rules that apply to a specific domain of knowledge and to discover 

rules that are shared between domains (Robertson 2001).   

 

Based on the concept of analogy, the general knowledge and techniques from the field of modelling 

and simulation and the experience of their application in the context of the health care sector is 
transferred to the specific youth care simulation problem under study. In order to provide a 

justification of using dynamic simulation and to provide insight into the expected strength and 
weaknesses of the SD and DES modelling methodology in the youth care context.  

 
Static models 
Most literature on waiting line management in health care is based on the static mathematical 

approach described by the Markov queuing theory (Torgenson and McIntosh 2006). These studies 
focus mainly on utilization of resources and the calculation of the minimum required amount of 

treatment positions while maintaining a high service rate. Experiences with these studies identify that 
static queuing theory struggles with the abstraction of phenomena like seasonal effects and the 

incorporation of human behaviour. These issues are also identified by Brown et al. (2003), who argue 

that traditional queuing theory in application of health care has a series of shortcomings; the absence 
of customer withdrawals, time dependent behaviour or customer heterogeneity. Three characteristics, 

which are all frequently present in healthcare systems. Mandelbaum and Shimkin (2000) made 
attempts to construct a Markov model which incorporates withdrawal behaviour. They acknowledge 

that a lot of work needs to be done to achieve practical usability of withdrawals in queuing theory.  

 
Dynamic simulation: SD and DES 
Dynamic Simulation is regarded by many as the operational research approach of choice in healthcare 
modelling. In many respect it is the ideal approach for addressing health care issues, yet the relatively 

small number of successful implementations would suggest that (outside) academia it has been under 

used in the health care domain, compared with manufacturing industry or defence (Lowry 1992; 
Benneyan 1994; Carter and Blake 2005; Brailsford 2007; Kuljis, Paul et al. 2007).  

 
The SD and DES approach, introduced in previous sections, are frequently used in health care 

modelling. Brailsford (2007) address the application of both modelling approaches in health care. He 
argues that the SD approach is usually used to address strategic system wide models to answer long-

term, broad-brush questions, which are not concerned with individual patient flows through the 

system. In contradiction, the DES approach is commonly used to address operational or tactical 
models at the healthcare unit level, which are concerned with modelling the flow of patients through a 

system in models. These models are used for capacity planning, resource allocation and process 
redesign. The DES approach seems more appropriate for the youth care problem under investigation, 

which investigates the children flow through the youth care sector in order to find an optimal pay off 

between capacity investments and child waiting times. The following subsections evaluate available 
literature about the application of both methods in health care modelling and abstracts these 

experiences to their application in the youth care sector taking into consideration the requirements 
formulated in sub-section 2.3.2. The subsections are categorized according to usefulness, usability 

and usage factor.  

3.7.1 Requirements Usefulness 

Requirement 1: Accurate insight into performance indicators (PI‟s) 
Sub-section 2.3.1 introduced the fit between the system, problem and methodology perspective as the 
basis for sound models. This subsection discusses the fit between the SD and DES methodology and 
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the youth care problem and system perspective, based on past experiences with both simulation 

approaches in health care modelling.  

 
Problem perspective. The aggregated SD approach, which provides an understanding of the structural 

source of behavioural modes and the impact of policy levers, provides an aggregated indication of the 
average of the important performance indicator robustness to variability in the processes of the 

system. It has been argued in the context of health care systems that basing analysis solely on 

averages (“management by averages”) can yield radically inaccurate results if significant variation 
exists (Benneyan 1994). Unlike SD models, stochastic DES models are able to provide point 

predictions and detailed performance indicators. A DES model provides insight into the possible spread 
of the important performance indicators given the uncertainty in the system (Morecroft and Robinson 

2005). Which allows the evaluation of possible policy strategies on other criteria‟s than expect 
averages for instance on overall robustness or minimum worst-case scenarios. These criteria are 

relevant in health care and youth care systems, which both have a high intolerance to failure.  
 
System perspective. Modelling the youth care sector requires the coupling of different political 

information levels. SD models, in which entities are treated as a continuous quantity rather like a fluid, 
do not provide the possibility to distinct entities by attributing characteristics (Brailsford and Hilton 

2001; Lorenz and Andreas 2006; Morecroft and Robinson 2006; Chanal and Eldabi 2008) . Therefore, 

it is not possible in the SD modelling approach to abstract realistic child care profiles and their 
influence on the system behaviour. Unlike, the SD approach, entities in DES models are distinct 

individuals, each of them can posses characteristics that determine their flow through the system 
(Brailsford and Hilton 2001; Lorenz and Andreas 2006; Morecroft and Robinson 2006; Chanal and 

Eldabi 2008). Complex logical rules can be used to determine patient routing through the simulation, 
or the outcome of a treatment. Randomness, variance, uncertainty and conditionality can be 

accounted, as long enough simulation runs are performed to obtain significant results. In the context 

of the youth care sector a DES model allows the abstraction of realistic care profiles and therefore the 
coupling between the child and trajectory layer. As a general remark the authors argues that the small 

number of successful simulation implementations in healthcare, in comparison to industry, is likely to 
be the result of the interaction of complex human withdrawal behaviour and patient priorities present 

in many health care systems. The youth care system is an example of a health care system, which 

faces both patient withdrawals and priorities.  
 
Requirement 2: Data availability or collectability 
The data dependency of a model is related to its aggregation level. Aggregated SD models are not 

dependent on large quantities of high quality data, they have the capability of using descriptive or 

judgmental as well as numerical data (Brailsford and Hilton 2001; Lorenz and Andreas 2006; 
Morecroft and Robinson 2006; Chanal and Eldabi 2008). Disaggregation of a model requires 

disaggregation of model inputs, a DES model with the objective to provide insight into the distribution 
of individual child waiting times requires to abstract the exact distribution of child arrivals and 

treatment times in parametric or empirical distributions which can be dependent on individual 
characteristics. Such a model is data dependent ad requires large amount of high quality numerical 

data sources at which possibly complicated data studies need to be performed.  

3.7.2 Requirements usability 

Requirement 3:low distance between stakeholder and model worldview 
In a SD world view, individual entities are lost and patients become indistinguishable mass which flow 
around the model like water. Psychologically this creates problems to health and youth care 

professionals who by training are people-focused and do not like the idea of reducing human being to 
computer bytes (Brailsford 2007). Brailsford argues that, psychologically DES is appealing in health 

care systems. It enables the modellers to give the entities all the necessary characteristics for instance 

age, gender, diagnosis, blood group, disease status, sexual preference, hair colour or whatever ever 
you please.  

 
Requirement 4: Clear and intuitive interface 
The model interface is required to provide a clear and unambiguous overview of the system 

behaviour. Unlike the SD methodology, the DES methodology allows to animate the entity flows 
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through the system. The author however argues that the movements in the youth care sector are not 

easy to visualize and an animation would not add much value the DES model.  

 
Requirement 5: Ease of Experimental set-up.  
A key difference between the SD and DES approach in terms of their input interface and experiment is 
the difference in input variables. The variables in a SD model are constants, which represent the 

average observed values in the real world context. New experiments in a SD models requires deciding 

about the assumed average value in a possible future scenario. New experiments in a DES model 
require to decide about the spread of the variable in a possible future scenario and to translate this 

spread into a distribution. Stakeholders, which are not skilled in quantitative data analysis, usually 
have a perception of an observed average of important variables in their sector. Determining a valid 

distribution implicates considerably more difficulties.   
 

Requirement 6: Low Experiment run time 
A key advantage of the SD approach is that models runs fast and do not require multiple replications, 
so it  can run interactively with decision makers (Brailsford and Hilton 2001). Unlike SD, a DES model 

run requires more processing time and CPU memory, furthermore multiple replications are necessary 
to obtain statistically significant results (Morecroft and Robinson 2005). 

3.7.3 Requirements usage  

Requirement 7: Generalise ability. 
SD models, which do not allow to model individual entities and their characteristics, result in 

homogenous, holistic models in, which a general system view is presented without concentrating on 
unnecessary details. These general models are likely to be the equivalent for related systems with the 

same structure. The ability of the DES modelling methodology to model individuality and conditionality 
is likely to result in detailed model. The system details of systems with comparable structures are 

likely to differ, which makes DES model in practice less general than SD models.  
 
Requirement 8: Flexibility.  
Flexibility refers to the ability of the decision support models to adapt to changes in the system or 
performance indicators. It is strongly related to the concept of modularity: 

 
Modularity is a general systems concept, typically defined as a continuum describing the degree to which a 

system’s components may be separated and recombined. It refers to both the tightness of coupling between 

components, and the degree to which the “rules” of the system architecture enable (or prohibit) the mixing and 

matching of components (Baldwin and Clark 2000). 

 
SD models, which are based on influence modelling between variables, are frequently decomposed 

into sub-models. The author argues that the coupling between these sub-models frequently exists of 

multiple shared variables. A change in system operations results in a change of model structure. 
Unlike SD and process orientated models, object oriented DES models can achieve the implication of 

data. In the implementation phase encapsulation is a technique for minimizing interdependency 
among modules by defining strict external interfaces. The external interface serves as a contract 

between the module and its client modules. In conclusion a client does not need to understand how 
operations are implemented, so a module can be re-implemented without affecting its clients (Blaba, 

Premerlani et al. 1988). 

 
Requirement 9. Low time and cost of model Initialization.  

The time and cost of model initialization is closely relation to the aggregation and data dependency of 

the model. The general average view of a SD models requires less data studies than the detailed DES 

view. The ability to automate the pre-processing of large data sets to input into the DES models can 

minimize the extra time and costs of initializing a DES model (Lowry 1992; Brailsford 2007; Kuljis, Paul 

et al. 2007). 
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3.8 Conclusion methodological justification 

Overall, the objective of this chapter is to answer the second research question: What are the 
strengths and weaknesses of the SD and DES approach when abstracting the care provider system in 

a purpose full simulation model? In order to answer this question, first an overview of the current 
state of the art in modelling and simulation is provided, followed by an analysis of the fit between the 

methodologies and the in the first chapter formulated requirements and delineated system under 

study. The analysis is based on the concept of analogies. The experiences with simulation in the 
health care sector found in literature are abstracted to the specific requirements in the youth care 

context of current research. Figure 3-17 provides an overview of the relative expected strengths of 
both methods in comparison to each other.  
 

Figure 3-17 strengths and weaknesses of SD and DES for decision support in youth care 

 

Category Requirement Description SD DES 

Usefulness 
1 Relevant PI’s - + 

2 Data dependency + - 

Usability 

3 Worldview - + 

4 Interface 
experiment setup 

+ + 

5 - + 

6 Run length + - 

Usage 

7 Generalizability + - 

8 Flexibility - + 

9 Initialization + - 

     Usefulness. The ability to provide insight in the behaviour and value of relevant PI‟s is arguably the 

most important requirement. A model, which does not provide valuable insight in the PI‟s, cannot 
serve as a purposeful decision support model. While the DES methodology has advantage over the SD 

methodology, the validity of the model approach is strongly dependent on the availability of data 
sources. The disaggregated output of DES model initialized on to small or low quality dataset embeds 

a high risk of misinterpreting the real world behaviour. Furthermore, human decision making such as 

the youth care queue mechanism and patient withdrawals behaviour, experienced both in health and 
youth care are difficult to abstract and quantify in a disaggregated model.  

Usability. It has been argued that unlike SD, the worldview of DES models is physiologically appealing 
for modelling health youth care systems, because it enables to give entities characteristics. The 

worldview is an important factor in the process of gaining stakeholder trust and understanding. 
Because of the detailed level of modelling, the experiment set-up takes more time for a DES modelling 

approach. The increased level of detail of DES models, also results in larger simulation run times and 

CPU memory usage in comparison to a SD model. Furthermore, stochastic DES models require 
multiple replications to obtain statically significant results. Which could makes large DES models less 

appropriate to set up and  run experiments real time during workshops with stakeholders.  
Usage. The detailed characteristics, which determine the entity flows through a DES system result in 

less generic models than the homogenous relations do, abstracted in SD models. Object Oriented DES 

models are perceived more flexible in structure than SD models and process oriented DES models 
because they can be designed taking into account the principles of modularity. Unlike SD models, 

initialization of DES models requires an large investment of time and costs in data gathering, data 
analysis and distribution fitting to the data.  

 
In conclusion, a DES approach can provide valuable insight in addition to a SD model for the 

modelling of systems, which incorporate a high intolerance to failure for each entity, heterogonous 

entities and a large influence of process variability. A precondition for this additional insight is the 
availability or collectability of data to quantify the disaggregated DES mechanisms. Furthermore, the 

higher level of detail should be worth the additional investments in time and costs of a DES modelling 
approach. The remaining part of this thesis provides a practical evaluation of SD and DES modelling in 

the youth care sector.  
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Chapter 4 

Ch4 System Dynamics: Currently used Model 
This chapter describes the abstraction of a care provider system in the system dynamics model 

currently used by INITI8. The second chapter of this research introduced the problem description, the 
simulation objective and a demarcation of the system under study. Followed by a description of the 

delineated system in a continuous differential equation system and the implicit assumptions and 

reductions made to abstracted the real world system in this model.  
 

The conceptual model and equations of the currently used SD model are presented in Appendix B. 
The following sections describe the specification and the abstraction of the real world variability in the 

currently used SD model.  

4.1 Specification 

Previous section introduced the structure of the system dynamics model and identified the causal 
relations between the variables. This section first makes the assumptions made to abstract the real 

world system in a system dynamics model transparent, followed by a description of the model 
structure and equations. 

4.1.1 Model assumption  

A model is a purposeful simplified abstraction of reality, which means that every model has constraints 

and assumptions, which in practice set limits to its validity and applicability. The simplifications are 

made by the demarcation of what is in the system and on how aspects the demarcated real system 
are simplified in the care provider SD model 

 
1. Perfect mixing. The aggregation level of the SD methodology abstract from single events and 

entities and takes an aggregated view concentrating on policies (Schieritz and Milling 2003). 
SD models assume homogeneity and perfect mixing within the model compartment 

(Rahmandad and Sterman 2004). The implication for the care provider model can be 

separated to the children and trajectory layer. 
 

The child layer assumes that the set of care trajectories every child receives is homogenous. A 
disaggregation is made between two categories of returning children, return after treatment 

and return after withdrawn. The probability of return and the time between returns are 

modelled differently for these distinct children categories.  
 

The trajectory layer assumes that all trajectories, of each care type, are homogeneous. The 
waiting and treatment times for all trajectories are assumed to be exponential distributed. 

 
2.  Withdrawals. Withdrawals in the real system are among other factors caused by wrong 

indications at the BJZ, changes in the care needs of a child and allocation difficulties. Previous 

statistical researches performed by INITI8, found a significant relation between the probability 
of children withdrawals and the time children have to wait for care. The SD model assumes 

that withdrawals are dependent on the average child waiting time.  

4.1.2 Model initialization 

As determined in the model requirements, formulated in Model requirements 2.3.2, generalise ability 
and flexibility are important requirements. In order to achieve maximum flexibility and reusability the 

model is initialized from an excel sheet, which creates a separation between the model and its input 

data. This creates the possibility to quickly adjust the model to different data sets.  
 

INITI8 made the decision to initialise the model in a steady state situation. They argue that this 
creates an optimal insight into effects of possible policy measures. In a deterministic SD simulation, a 

steady state implicate that the model stocks and flows do not change over time. INITI8 conceives that 
the steady state situation does not show insight in the whole system complexity. However, they argue 

that the communicate value of the steady situation is worth the loss of insight (Sterman 2000). The 
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model objective is to provide insight in the result of policy options, not to provide exact value 

predications. The steady state calculations can take either the stocks or flows values as input. This 

results in a situation where the stock values are directly recognizable for the stakeholders. They 
steady state calculations make all models inflow equal to the model outflows. This decision is made 

because the outflows experience less variance than the trajectory inflows. 

4.2 System variability 

While previous chapter introduced SD models as purely deterministic models, previous section 

described the possibility to initialize the SD model with stochastic input parameters, which results in a 

stochastic simulation. This section attempts to distinct the real world variance in the care provider 
system that can be abstracted in the SD model from the variance, which can‟t be abstracted. First, the 

abstraction of variability in the SD model is analyzed, followed by an analysis of the variability 
observed in a real world care provider system that cannot be abstracted in the SD model. 

4.2.1 Variability in SD models 

The SD methodology allows using stochastic probability functions to parameterize variables. The 

variability observed in exogenous inflows can be abstracted into the model. Endogenous model flows 

are often calculated with the help of an aggregation variable, which describe an average attribute of 
the entity flow. For instance, the number of trajectories assigned a child, the aggregation of this 

variable translates the heterogeneous children to homogenous entities. Even though these variables 
can be abstracted by a probabilistic function, this function describes the variability of mean over time, 

not the individual variability. Furthermore, the variability of the mean over time is more a result of the 
system behaviour than a system input.  

 

The next limitation can be observed in the stocks. As before introduced SD models do not explicitly 
model heterogeneity among different elements accounted for in a stock; within each stock it is 

typically assumed that all entities are perfectly mixed. The flow affecting these stocks are usually 
formulated using the “mean field” approximations familiar in physics, that is, as the expected or 

average value of the underlying probabilistic transitions from one state to another (Rahmandad and 

Sterman 2004). The perfect mixing assumption within compartments makes the probability of exit 
from a stock Poisson distributed, in other words independent of an individual item‟s residence time in 

the stock. This leads to the main approximation in the SD field, which states that the outflow is given 
by the total stock size divided by the mean residence time. In a perfectly mixed system, the assumed 

stock delays of individual entities are exponential distributed. While abstracting outflow variables by 
stochastic function can change the average delay of the stock over time, the assumed delay 

distribution for individual entity in the stock can only be abstracted by an exponential function. In 

other words, the impact of individual variability cannot be abstracted in the SD model. The following 
section analyses the observed process variability in the care provider system.  
 

4.2.2 Variability in treatment time 

An primary advantage of stochastic over deterministic methods is that they account for the existence 
of process variability, whereas basis analysis solely on averages (“management by average”) can yield 

radically inaccurate results if significant variation exists (Benneyan 1994). Based on this statement the 
process variability of the trajectory delays observed in the care provider stocks, provides an indication 

of the need for a stochastic (DES) modelling approach. In order to analyse the process variability in 

the youth care sector the treatment times observed at a case study care provider are analyzed. The 
treatment times are categorized to the four distinct care types, in order to analyze the process 

variability in the independent care systems. 
 

Figure 4-1 presents a histogram and a boxplot. The histogram visualizes the foster care treatment 
time distribution. The presented histogram, which includes a plot of the best fitting exponential 

distribution, indicates that the foster care treatment time is not exponential distributed. The boxplot 

visualizes the observed treatment time spread for the four care types. The descriptive statistics of the 
datasets are presented in appendix C.1. The box plot clearly presents a wide spread and a extremely 



 

Part 2: Problem exploration, delineation and Analysis 

44 
 

long tail for residential and foster care, the standard deviation of residential care 11 months and for 

foster care over 27 months.  

 
It can be concluded that significant variability is observed in the independent care system of 

residential and foster care of the chosen care provider case study, deterministic analysis on averages, 
as in the SD model, can yield radically inaccurate results in such a system.  
 

 

 
 

FIGURE 4-1 OBSERVED TREATMENT TIME IN MONTHS (2008-2009) 

4.3 SD model outputs and limitations 

This section makes the output of the SD model and the insight the model creates in the real system 

behaviour transparent. A comparison with the required outputs and insights as demarcated in the 
second chapter provides insight in the limitations of the currently used SD model. First, the 

measurable performance indicators and the required performance indicators are compared. After 

which, the level of measurement of the SD output is defined and analyzed.  
 

Measurable performance indicators 
The currently used SD model provides insight into the trajectory stocks and flows through the 

independent care systems. The output of the SD model exists of a set of graphs, which describe the 
dynamics of the stocks, flows and the expected waiting time. An example set of output graphs for the 

steady state, base case situation is presented in appendix Fout! Verwijzingsbron niet gevonden.. 

The SD model does not provide insight into the child layer performance indicators. This is a direct 
result of the homogenous worldview of the SD methodology in which no unique entities are distinct, 

this makes it impossible to link children directly to trajectories.  
 

Level of measurement 
The SD model provides insight in the location of the average values of the key performance indicators 
in order to find effective policy levers. In the youth care sector, in which every child counts, not only 

the average is important, but also the exact distribution of child waiting times. A robust policy, which 
results in a situation in which the spread of waiting times is small, can in many cases, be favourable 

above a policy with a lower average waiting time but with a larger spread in waiting times. 

Robustness of the system is especially important for systems which include significant variability. The 
SD methodology does not provide the required insight into the distribution of the observed waiting 

time for each child.A practical example of this measurement is the maximum nine weeks waiting time, 
which cannot be evaluated with the SD model.  

 
Queue mechanism. 
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The shape of the waiting time distribution of queuing system is a result of its queue mechanism. The 

queue mechanism in most health systems is based on the First in-First out principle, in many cases in 

combination with different priority levels. Because of the perfect mixing assumption and the 
consequential random stock outflow, the SD methodology cannot be use to provide insight into the 

result of various queue and priority mechanisms. The author argues that in a system in which a child‟s 
withdrawal behaviour is influenced by its waiting time, the queue and priority mechanism can have a 

significant impact on the average waiting time. The queue and priority mechanism influences the 

waiting time distribution, the waiting time distribution influences the withdrawal behaviour, the 
withdrawal behaviour the queue length and the queue length the average waiting time. A discrete 

model can provide additional insight into the result of different queue and priority mechanism.  
 

4.4 Conclusions and implications 

This chapter makes the assumptions, structure and limitations of the SD model transparent in order to 

provide an answer to the third research question.  
 

The core assumption of the SD model is perfect mixing of children and trajectories. Each child, in the 
SD model, is homogenous and receives the same average set of care trajectories. The care 

trajectories and care systems are disaggregated to the four care types. The trajectories of each care 
type are assumed homogenous. The observed trajectory treatment and waiting time distributions are 

assumed exponentially distributed. The SD worldview, in which no entities are distinct, makes it 

impossible to attribute trajectories to the children. Therefore, the SD worldview does not allow 
determining a child‟s state, based on the current state of its trajectories. Consequently, performance 

indicators that measure the children states are not measurable in the SD model. The SD model 
presents an average aggregated view on the measured performance indicators.  

 

While the SD model is able to abstract stochastic variation in parameters, variability observed in 
endogenous flows and process cannot be abstracted. Consequentially, the robustness of the system to 

the observed system variability cannot be evaluated with the SD model. Furthermore, the aggregated 
worldview does not provide inside into the spread of individual trajectory waiting times for different 

system configurations. An analysis of the observed treatment time variances, for chosen care provider 

case study, indicates that the treatment times are not exponentially distributed. The treatment time 
distributions for both residential care and foster care are left skewed with an extreme long tail, which 

is likely to have a significant impact on the system behaviour.  
 

In conclusion, the SD model cannot abstract the whole impact of heterogeneity and process variance 
in the care provider system. The following third part of this thesis designs an abstraction of the care 

provider system in a DES model to analyze the impact of heterogeneity and endogenous system 

variability on the care provider system behaviour.  
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Chapter 5 

Ch5 Discrete Conceptualization 
The previous chapter abstracts the care provider system in terms of the association and influence 

relations captured in the SD model. This section presents the concepts and variables of the delineated 
system from a discrete modelling perspective. The discrete problem view demarcates the most 

important objects and makes their attributes and state changes transparent. The decomposition of the 

care provider system into horizontal layers and vertical partitions, as presented in section 2.4.2, serves 
as the starting point of this conceptual chapter. This section will further decompose the objects, 

attributes, interrelations and dynamics, which accurately describe the youth care processes with a 
discrete worldview.  

5.1 System structure 

DES modelling involves the identification and representation of entities, resources, logic and processes 

(Borschchev and Filippov 2004). The static view of a system separates entities into their structural 
components and serves the purpose of presenting hierarchies by presenting the generalization and 

aggregation relations (Booch, Rumbaugh et al. 1999). Figure 5-1 presents a high level UML class 
diagram, which identifies the care provider processes, resources and entities of the care provider 

system categorized to the previously distinguished information layers. 

Trajectory layer Child layer
Process

CareSystem CareProvider

-contains

11..4

Entity

Trajectory Child

CareProfile

1

-receives

*

-Processes1

*

CareType

*

1 -Processes

Resource

Care Resource

-contains

1*

 

FIGURE 5-1 HIGH LEVEL OBJECT DECOMPOSITION CARE PROVIDER SYSTEM 

A first distinction between the embedded objects can be made by separating the active objects from 

the passive objects. As introduced in subsection 3.5.1, the DES modelling community refers to active 

objects as processes, while passive objects are referred as entities. 

Entities. An entity is a passive object of interest in the DES system, aligned with the distinct 

information layers in the youth care sector. Two entities are identified, children and trajectories. The 
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definition of a trajectory as provided previously in the SD conceptualization: the execution of a, at the 

institution of youth care indicated, care service to the child by the care provider.  

Processes. The care provider system identifies two process object classes: the care provider object 

and the care systems. A composition association relation relates the care provider to the care systems. 
In other words, the care system is a part of the care provider object. The care provider object 

presents the arrival and state dynamics of the children entities. The care systems describe the flow of 
trajectories through the care provider system.   

 
Resources. The identified resources class are the care resources of a care system. No resources are 
distinguished at the child layer. The child layer performance depends on the trajectory layer resource 

allocation. 
 
Association attributes. Figure 5-1 introduces two classes which serve as a structuring association 

attribute. The care provider contains a care system for every care type the care provider delivers. The 
trajectories are matched to the care systems with the appropriate resources by the care type 

attribute. As such the care type attribute disaggregates the trajectory layer in four independent 
operating care systems. The second association attribute is the care profile. This document creates a 

coupling between the distinct children and the care trajectories provided to the children. The care 
profile document is introduced in the following section.  

5.2 Care profile: Coupling of child and trajectory arrivals 

The children arrivals and trajectory arrivals are coupled by a care profile. A care profile can be seen as 

an overview of the trajectories provided to a child over time. A care profile holds one or multiple 
trajectories possibly of different care types. An overview of the important events and event relations is 

provided in Figure 5-2.  
 

Overlapping

Parrallel 

Arrival set 1

Time advancing

Arrival set 2

Sequential

Arrival set 3

Registration

Start care

End Care

Events

 
FIGURE 5-2 CARE PROFILE EVENTS AND RELATIONS 

 

Figure 5-2 presents the care profile of a fictive child. The care profile holds four care trajectories and 
three distinct trajectory arrival sets. 

 
Arrival sets are the events at which one or multiple trajectories start. Trajectories belong to the same 

arrival set if they register at approximately the same moment in time. In this research the assumption 

is made that trajectories, which are registered in the same calendar month, belong to the same care 
set.  

 
Each trajectory distinguishes three different events. These are the registration event, the start care 

event and the end care event. These events and subsequent trajectory state changes are described in 

the following subsection, which conceptualizes the trajectory layer care system process. 
 

The following relations between the lifelines of trajectories are distinguished: parallel trajectories, 
overlapping trajectories and sequential trajectories.  

 
Parallel trajectories. Trajectories that share a common arrival set and a common registration time. 
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Overlapping trajectories. Trajectories, which have a different registration time and arrival care set, but 

an overlap in their lifetime.  

 
Sequential trajectories. Trajectories with no overlap in lifeline. The lifeline of the first trajectory is 

finished before the arrival event of the sequencing trajectory.  
 

Figure 5-2 introduced the coupling between children and trajectories from a dynamic perspective. 

Figure 5-3 presents the static relations which form the foundation for this dynamics by using UML 
class diagram (Booch, Rumbaugh et al. 1999). It becomes clear that each child can have one care 

profile, which contains one or multiple arrival sets. These arrival sets contain one or multiple 
trajectories.  
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FIGURE 5-3 OBJECT DIAGRAM CONNECTION BETWEEN CHILD AND TRAJECTORY 

 

The coupling between the children and their trajectories is made transparent. The concepts of the first 

are outlined in section 5.3, the concepts of the latter in section 5.4 

5.3 Trajectory layer 

A trajectory can be seen as the execution of a care service indicated to the child at the institution of 

youth care. As an object a care trajectory can be seen as an administrative document made by the 
care provider. It holds information about the delivery of a certain care service to a child. 

 
This section first presents the static structure of the care trajectory layer in subsection 5.3.1. A 

process view is taken in subsection 5.3.2, to analyse the system with a functional view, followed by a 
description of the dynamic view of the system structure by analysing the state transition diagrams in 

subsection 5.3.3. 

5.3.1 Static structure trajectory layer 

The static structure of the objects and relations, which influence the trajectory state, is presented in 

Figure 5-4. As introduced before, the care systems process the care trajectories in the care provider 
system. A common care type links the care trajectories to the right care system. The care system can 

treat the trajectory if a free resource can be seized by the care trajectory. The resource capacity is 
presented by the resource pool.  
 

Passive vs. Active entities. The static structure presented in Figure 5-1 can be used to distinguish 

active object classes from passive object classes. Active object classes contain events, which initialize 

operations. The objects classes, which can actively start operations of influence on the trajectory 
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layer, are the care system process objects and the children objects. The care system class steers the 

process flow of the trajectories. Youth care is voluntary received care, a child can decide to withdraw 

from a trajectory at any moment it desires to do so.   
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FIGURE 5-4 OBJECT DIAGRAM CARE SYSTEM 

5.3.2 Process view: care system 

This section presents the structure of the parallel care systems from a functional process viewpoint. 

As introduced before, the trajectory layer exists of four independent parallel care system differentiated 
by the four care types. In other words, there are four separate independent care systems sub-models, 

namely ambulatory care, day care, residential care and foster care. From an organizational 
perspective, these sub-models are independent systems. Formally, there are big differences between 

the care processes of the different care types. The basic structure of the processes is however the 
same. Figure 5-5 provides the graphical representation of the process delivered at the care systems. 

The simplified process is presented as a basic queuing system. 

 

 
FIGURE 5-5 PROCESS VIEW CARE SYSTEM  

 

Care trajectories arrive from time to time in the care system. After the care trajectory is registered it 

joins the waiting lists. If there are free resources and the trajectories turn has arrived, the trajectory 
seizes the desired care resources and treatment starts. After being served, the trajectory is removed 
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from the care system. A child withdraws the care trajectory if the waiting time exceeds the time the 

child is prepared to wait for the care services.  

 
A discrete queuing system needs a queue mechanism, which determines the logical order of 

customers in a queue. In the real world system this queue decisions are based on specific attributes of 
the child and its relative urgency in comparison to other children on the waiting list. Based on this 

urgencies children receive a priority category. In the youth care commonly two categories are distinct; 

crisis and regular. Furthermore, the queuing mechanism is considered objective, children with 
comparable urgencies are selected based on a first-first out principle. Other real world considerations 

are the fit between children and treatment groups. This fit depends on the group attributes of the 
other children in the facility and the nature of their problems. The level of details of these attributes is 

considered to be too detailed for the scope of current research. The queue orders for current research 
are simplified to either first in first out (FIFO), FIFO with a crisis and regular priority category or 

service in random order (SIRO).  

5.3.3 Trajectory: matching attributes with dynamics 

The previous subsection introduced the static structure of the trajectory layer. This section forms a 

bridge between the trajectory attributes and the trajectory dynamics. Figure 5-6 presents a state 
chart, which holds the states and state transition mechanisms of a trajectory in a care system. A 

trajectory is inactive until the arrival time of its care set is arrived. At this point, the trajectories are 
entered to the waiting list of the care system of its care type. As soon as a resource is available and 

the queue manager decides it is the trajectory‟s turn to receive care. The trajectory is taken into care 
and the child states changes into treatment. When the trajectories treatment objective is reached, the 

care is ended and the child state turns into the final state treated. A child can decide to withdraw its 

trajectories at any time. The child state is than changed to the final state withdrawn.  
 

 
FIGURE 5-6 TRAJECTORY STATES AND STATE TRANSITIONS 

 

Figure 5-7 visualizes the dynamics of two care trajectories, an ambulatory trajectory and residential 
trajectory. The trajectory flows or state transitions are visualized by symbols explained in the legend 

on the right of the figure. The trajectory attributes are linked to the events or activities they represent 
by arrows. The event and activity state relations are previously introduced in subsection 3.3.2.  

 
FIGURE 5-7 EXAMPLE TRAJECTORY STATE TRANSITIONS AND ATTRIBUTES 
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5.3.4 Resources 

The separation of independent care systems on the trajectory layer based on care type attribute, as 

distinguished in both the discrete as the continuous conceptualization, is driven by the difference in 

resource needed to provide care services of the distinct care types. No exchange of capacity between 
the different care types is possible. The waiting list of each care system is therefore independent of 

the waiting list of the other care systems. The care provider capacity for each care type can be further 
aggregated into different resource types. The main resource types which can be distinguished are 

material, personal and buildings. For this research the choice is made to border the resource allocation 
process to the capacity level. No differentiation into the different resource types will be made. This 

choice has been made taking into account the objective of the model to provide insight in to demand 

and queue behaviour in order to serve as a communication tool between the province and the 
different care providers in their negotiations to come to a suitable commonly supported policy. From a 

care provider perspective, operating in a competitive market, it is unappealing to provide the province 
too much insight into their internal resource and staff policy. Consequently, resource and costs 

information are expressed at an aggregated level, which helps to keep the model as general, flexible 

and simple as possible. 

5.4 Child layer 

The care provider objects steer the arrivals of both children and trajectories. The care provider 

determines the child‟s care profile as soon as the child arrives in the system. This care profile links the 
child arrival to the trajectory arrivals. Furthermore, the care provider administrates the aggregates of 

the child states of the system over time.  

 

It is important to notice that the care provider provides an aggregated overview of the children 

process states, but the care provider does not steer the state transitions of the embedded children. 
The state of child in the care provider system, at every moment in time, depends on the active 

trajectories of the child at that moment steered by the care systems.  
 

The complex interaction between the trajectory states and children state dynamics are explained by a 

fictive example care profile in Figure 5-9. If the child has no trajectories in the care systems than the 
child‟s state is considered inactive. When a child‟s trajectory is registered at one of the care systems,   

it state changes to active. A child is waiting as none of its active trajectories are in care. If one of the 
child‟s trajectories is token into care the child‟s states turns to in care. Two sub-states of being in care 

are identified. The child is in treatment when all of its active trajectories are in care. If the child has 
both waiting and treated trajectories the child‟s state turns to in care.  
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FIGURE 5-8 CLASS DIAGRAM CHILD LAYER 
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FIGURE 5-9 CHILDREN STATES AND STATE TRANSITIONS 

 

5.5 Conclusion 

This chapter answers the fourth research question; a discrete conceptual model of the care provider 

system is presented. The conceptual model indicates the objects, variables and relations, which 
accurately and unambiguously describe the problem situation. UML class diagrams, functional 

diagrams, time oriented dynamic diagrams and state charts where applied to make body of knowledge 
transparent and communicable. 

 

In order to translate the care provider model in discrete concepts an important assumption is made 
with regard to the definition of a care set. Trajectories administrated in the same calendar month are 

assumed to belong to a common care set arrival. This assumption forms an important basis for the 
data study in the following section. Furthermore, it became apparent that the a DES simulation model 

requires a queue mechanism. For this research the queue mechanisms are simplified to a FIFO, FIFO 
with two priority levels or a SIRO queue mechanism.  

 

The following chapter analyses the data of chosen care provider case study, to evaluate the 
heterogeneity and conditionality relations between the objects demarcated in the presented 

conceptual model. Furthermore the root of observed system variability will be analyzed. 
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Chapter 6 

Ch6 Data analysis: variability, heterogeneity and 
conditionality 

The conceptual model presented in previous demarcated the processes, entities and objects in the 

care provider system. This chapter presents an empirical investigation of the quantitative 
management information over 2008 and 2009 of a case study care provider. The objective is to rise 

the insight into the observed system by analyzing the system variability heterogeneity and 

conditionality. In order to determine which aspect of the real world need to be abstracted in the DES 
and how these aspect need to be abstracted. For each input parameter, the behaviour over time is 

analyzed, to determine if it can be abstracted by a stationary input distribution in the following 
specification chapter.  
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FIGURE 6-1 SYSTEM DIAGRAM CARE PROVIDER 

 

The system diagram presented in Figure 6-1 demarcates the system input variables and the coupling 
between the child and trajectory layer. The care set relations determine the number and composition 

of care sets for each child, and thereby the trajectory inflow into the care system after a child‟s first 

arrival. An overview of the in the chapter analyzed variables is presented in Table 6-1.  
 

Category Section Variable or Relation 

Inflow 
Analysis 

6.1 
Children inflow 

Trajectory inflow 

Care set  
relations 

6.2 Relation arrival type and care set composition 

6.3 Conditionality and dependency in and between care sets 

6.4 Time between a child's sequencing care set arrivals 

6.5 Number of care sets a child 

Care  
system 
inputs 

6.6 Withdrawal mechanism 

6.7 Capacity places 

6.7 Treatment time 
TABLE 6-1  OVERVIEW ANALYZED RELATIONS 
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6.1 Inflow analysis 

This section provides insight into the dynamics of care demand faced by the case study care provider. 
The care provider demand can be analysed from different aggregation layers as presented in 2.4.2. 

The children layers measure the number of children demanding care services, the trajectory layers 
present the amount of care services demanded by those children. These care services can be further 

disaggregated into the demand behaviour at the independent care systems of each care type.  
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FIGURE 6-2 AGGREGATION OF DEMAND 

 

The demand on each of this aggregation layers is subdivided into exogenous demand and 
endogenously arriving demand. Exogenous demand is the demand on which the system has no 

influence; it is the care demand of new children, who never have been registered in the care provider 

system. The endogenous demand is the care demand of returning children, which have been 
previously registered in the system. They request additional care after previous treatment at the care 

provider. Section  Fout! Verwijzingsbron niet gevonden. introduced the distinction between 
exogenous and endogenous care demand made in the SD model (Westerflier 2008). Figure 6-3 

presents the care profile of a fictive child. This care profile will be used to explain the link between the 

different aggregation layers of demand. The present boxes present the care set arrivals a child level. 
The red box, presents the child first exogenous arrival. The black dotted boxes visualize the child‟s 

endogenous care demand. It presents the care demand after being served in the care provider system 
previously. 

 

A care set consist of one or a set of care trajectories with a common registration moment. As 
introduced before, the trajectories in a common care set are referred too as parallel trajectories. They 

arrive on the same point of time on the waiting list. A care profile can consist of parallel trajectories, 
overlapping trajectories and sequential trajectories.   

Next sub section will analyse the influence of both the exogenous and endogenous arrivals on the 

total care demand, both measured on the child layer as on the trajectory layer. 

6.1.1 Complications, limitations and validation of the demand analysis 

The case study data set over 2008 and 2009 contains aggregated children flow data, which distinct 
the size of the endogenous and exogenous care demands at child level. The data set provides 

disaggregated data of every trajectory arrival at this trajectory level.  No distinction between the two 

demand types is made. In order to distinguish endogenous arrival from exogenous trajectory arrivals 
the trajectory flows of the year 2008 and the children in care at 1 January 2009 serve as a system 

 
FIGURE 6-3 EXAMPLE CARE PROFILE DEFINITION ARRIVAL EVENTS 
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memory. The children ID‟s of this flow and level distinguish the trajectory flows from new and 

registered children over the year 2009. The memory could be too small, which results in a wrong 

assignment of new and returning children. To validate the assigned memory the new children flow, 
extracted from the trajectory layer, can be compared to the available child data. Figure 6-4 presents 

the new children arrival graph, the blue line depicts the extracted child arrivals from the trajectory 
layer, the red line the new children arrivals from the data.  

 
FIGURE 6-4 VALIDATION OF NEW CHILD ARRIVALS A MONTH 

 

The measurement bias, between the calculated and observed, new children arrivals is on average 
18%. In other words, 18% of endogenous demand is wrongly interpreted as exogenous demand. The 

size of this measurement on the trajectory is considered smaller, because endogenous care sets 
contains less trajectories than endogenous care sets. 

6.1.2 Children Inflow 

This section contains an analysis of the care demand behaviour faced by the care provider. The 

behaviour of the external demand of new children, the endogenous demand of returning children 
already registered at the care provider and the influence of both on the total demand behaviour is 

analysed. Figure 6-5 presents an overview of the trajectory care set arrivals per month over the year 

20097. The blue line presents all child arrivals. The black and red line present a further aggregation of 
these arrivals to their arrival type. The red line presents the number of first child arrivals, the black 

line the return of previously registered children.  
 

Trend line and behaviour 
The presented graph shows that the peaks and drops of all children arrivals are steered mostly by the 
variances of children returns in the system. When analysing the trend lines, it becomes clear that the 

overall number of child arrivals are slightly increasing over the year. The increase is caused by a 
strong increase of returning children. The new children line is slightly decreasing. The observed 

increasing trend line increase seems to be steered by one peak of registered child returns in 

November. time frame captured by the dataset is too small to determine whether or not the increase 
is caused by a behavioural change or by uncertainty and randomness.  

 
Proportion of exogenous and endogenous arrivals 

Figure 6-5 presents a clear inside of the influence of new and return children. Both form a significant 
proportion of the total number of arrivals. It becomes clear that when forecasting future care 

                                                 

 
7 The data set of children arrivals during 2008 and the active children in the care provider system at the first of January 2009 serve as 
the system memory to distinguish new children arrivals from returning children arrivals.  
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demands there is a necessity to incorporate both the exogenous demand behaviour as the internal 

feedback behaviour of returning children in the care provider system.  

The presented graph shows that the peaks and drops of all children arrivals are steered mostly by the 
variances of children returns in the system. When analysing the trend lines, it becomes clear that the 

overall number of child arrivals are slightly increasing over the year. The increase is caused by a 

strong increase of returning children. The new children line is slightly decreasing. The observed 
increasing trend line increase seems to be steered by one peak of registered child returns in 

November. time frame captured by the dataset is too small to determine whether or not the increase 
is caused by a behavioural change or by uncertainty and randomness.  

 
Proportion of exogenous and endogenous arrivals 

Figure 6-5 presents a clear inside of the influence of new and return children. Both form a significant 

proportion of the total number of arrivals. It becomes clear that when forecasting future care 
demands there is a necessity to incorporate both the exogenous demand behaviour as the internal 

feedback behaviour of returning children in the care provider system.  
 
Variance and uncertainty 
The system dynamics model analyses the youth care queues as a deterministic system in which the 
structure determines the behaviour. An important addition to this deterministic behaviour of the SD 

model in the DES model is the incorporation of uncertainty by modelling probabilistic distributions to 
copy the variances in the system. The variance of care demand over the months is analysed with the 

presented care set arrival graph as the starting point. The graph clearly shows that there are big 
variances in the number of children arrivals per month. Over the year two peaks are distinguished, 

one in March and one in October. The peak in March is caused by a peak in both the first children 

arrivals and in the arrival of registered children. The peak in October is caused by a peak of registered 
children arrivals. In order to provide more insight into the spread of the arrivals and the influence of 

new and registered arrivals, a visual representation in the form of a box plot is presented in Figure 
6-6.  

 

The box plot provides an indication of the median, the range and the inter quartile range of the arrival 
distributions. It clearly shows the wide spread of the registered child arrivals in comparison to the 

spread of first children arrivals. It becomes clear that the previously registered child arrivals cause the 
wide spread and uncertainty of the total arrivals a month. The variance and uncertainty is not 

produced by external factors, it arises from the inner dynamics of the care provider. The total spread 

of all arrivals is 146 children, the spread of new child arrivals is 65 children, the spread of registered 
children is 142 children. Noticeable is the inter quartile spread, the spread of all arrivals is 36 children, 

which is smaller than the inter quartile spread of registered arrivals which measures 41 children. The 
inter quartile spread of all arrivals is toned down in comparison to the inter quartile spread of the 

 
FIGURE 6-5 GRAPH CHILD ARRIVALS DYNAMICS 
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registered arrivals by the first variance of first child arrivals. If this is a matter of coincidence, then 

scenarios with even bigger demand spread seem realistic.  
 

 
Conclusion and implications 
A first conclusion is that based on this dataset, in combination with the variance found in the arrival 

patterns, no conclusion can be drawn about the behavioural changes over the year. The distinguished 
trends are likely to be the result of peak values caused by the high variance in monthly arrivals. It 

becomes clear that both the arrivals of new and the return of registered children form a significant 
proportion of all demands. It is a necessity for a meaning full abstraction of the care provider system 

to incorporate both arrivals mechanisms. Remarkable is the conclusion that most of the uncertainty in 

demand is not caused by exogenous children arrivals; it is caused by endogenous return behaviour of 
children already in the care provider system. In other words, in order to provide a feasible and 

adequate forecast of future care demands it is important to take into account the present system 
state and the internal return mechanisms. Randomness and uncertainty have a big influence on the 

demand behaviour of the system. The presented analysis provides insight into the demand behaviour 

measured at the children layer of the system. The next subsection encompasses a similar analysis of 
the care demand measured on the trajectory of the care provider system. 

6.1.3 Trajectory inflow 

As before introduced in the conceptual chapter, the children arrivals are coupled to trajectory arrivals 

through the arrival care sets. The influence of both arrival types, first child arrivals and the return of 
registered children, at the trajectory layer is dependent on the number of care set arrivals and the 

number of trajectories per care set. A graph of the trajectory arrivals a month over the year 2009 is 
presented in Figure 6-7.  

 
FIGURE 6-6 BOXPLOT CHILDREN ARRIVALS A MONTH 

 
FIGURE 6-7 GRAPH TRAJECTORY ARRIVALS DYNAMICS 

0

50

100

150

200

250

300

350

all arrivals new child arrivals Registered child 
arrivals

ch
ild

ar
ri

va
ls

 a
 m

o
n

th

min
q1
mediaan
q3
max

0

50

100

150

200

250

300

350

400

450

ja
n
-0

9

m
rt

-0
9

m
e
i-
0
9

ju
l-
0
9

se
p
-0

9

n
o
v
-0

9

t

r

a

j

e

c

t

o

r

y

Time in months

Trajectory arrival (trajectory/month)

all arrivals

first child arrival

registered child



 

Youth care waiting list dynamics: A Discrete Event Simulation Approach 

 59 
 

Trends and behaviour 
When analysing the trend it becomes clear the trend of all arrivals is fairly constant. A slight decrease 

appeared in the number of trajectory arrivals per month assigned to new arriving children. The 
amount of trajectories assigned to registered children has an increasing trend. The time frame of this 

analysis is again too short to conclude if these trends are caused by random peak values or influenced 
by or the result of behaviour changes over time. Taking into account the fairly constant trend of all 

trajectory arrivals and the peaks and drops in arrivals, the assumption cannot be rejected that the 

observed trends are caused by randomness.  
 
Proportion of arrival types 
The conclusion can be made that first child arrivals hold a bigger proportion of all arrivals on the 

trajectory layer than on the child layer. As declared in the conceptual chapter, the amount of 
trajectory arrivals depends on the amount of arrival sets and the amount of care trajectories 

embedded in these arrival sets. Combining these definitions it becomes clear that in order to hold a 

bigger proportion of arrivals on the trajectory layer than on the child layer, the child layer care sets on 
average embed more care trajectories than the care sets of returning registered children. This forms 

an indication that in terms of contents there is a significant difference between the care sets assigned 
to first children arrivals and registered children arrivals. Testing this hypothesis is the subject of the 

next subsection.  

 
Variance and uncertainty 
When analysing the graph, which represents all trajectory arrivals, high peaks in the behaviour are 
noticed, while the trend line is fairly constant. In order to analyse the variance and spread of the 

trajectory arrivals, a box plot of the trajectory arrivals is presented in Figure 6-8. The spread of first 
child arrivals is larger measured on a child level than on trajectory level, the spread of first child 

arrivals is 120 trajectories. The spread of new arrivals is larger at the trajectory level than measured 

from a child level; the registered child trajectory arrivals also show a large spread. The spread of all 
arrivals measured at the trajectory layer is large: the total range is 171 trajectories. The inter quartile 

range of all arrivals is 42 trajectories, which is smaller than the quartile range of the arrival of 
registered children which is 47 trajectories. The relation between the variance of the new and 

registered children weaken the inter quartile spread of arrivals done in this example. If this behaviour 

is caused by randomness, then scenarios in which both arrivals types strengthen each other are 
realistic. When testing policy options in this system, robustness to randomness and variance in 

demand behaviour is considered to be an important simulation objective.  

  
  

 
FIGURE 6-8 BOXPLOT TRAJCTORY ARRIVALS 

 

0

50

100

150

200

250

300

350

400

450

all arrivals new child 
arrivals

Registered 
child arrivals

tr
aj

e
ct

o
ry

 a
rr

iv
al

s 
a 

m
o

n
th

q1

min

mediaan

max

q3



 

Part 3: Design discrete model 

60 
 

Conclusion and implications 
The one year time frame of the examined dataset is too short to determine if the observed trends are 

caused by randomness or by change in behaviour patterns. The fairly constant trend of the overall 
trajectory arrivals strengthens the assumption that the observed trends are mostly a result of 

randomness. The proportion of new arriving children is higher measured at the trajectory than 
measured at the child layer. This is a clear indication that the care sets assigned to new arriving 

children on average hold more care trajectories than the care sets assigned to returning8 children. 

Next section analyses the difference between care sets assigned to new and returning children, based 
on this finding. It should be noticed, that the impact of the analysed variance in trajectory arrivals on 

the system behaviour is hard to predict. The next subsection analyses the trajectory demand 
behaviour further disaggregated to the trajectories care types. This separation provides the 

opportunity to analyse the demand faced by the different independent care system sub models. 

6.1.4 Trajectory arrivals aggregated to care type 

This subsection disaggregates the trajectory arrival demand analysed in previous section to the 
trajectories care type. This separation of concerns provides insight into the demand behaviour 

experienced at the independent care provider care systems. The behaviour graphs and the box plot of 

the demand over 2009, for the four care types, are presented in Figure 6-10 until Figure 6-13. The 
statistic summary of these graphs is presented in Figure 6-9. The grey line shows the total demand 

statistics for each care type. The mean total arrivals of the care types provide an overview of the 
influence of each care type on previously introduced trajectory demand. Ambulatory care demand 

makes up for 77% of all arriving care trajectories, residential care 10%, foster care 7% and day care 
4%.The peaks in the graphs of the behaviour of each care type provide a first indication of the 

uncertainty of demand behaviour. The behavioural trends are steered by the peaks in demand. For 

none of the care types a clear behavioural shift can be determined.  
 

The box plots provide a visual indication of the uncertainty of demands resembled by the variance 
statistics. Furthermore, they provide an overview of the proportion of exogenous and endogenous 

demand of each care type and the influence of exogenous and endogenous demand on the total 

demand variance. The endogenous demand provides a significant influence on the total care demand 
for each care type. The influence of endogenous demand is around 40% for ambulatory care and for 

the other care types even more than 50%. It should be noted, that the calculated influence of 
endogenous demand is the minimal influence as explained in subsection 6.1.1.  
 

FIGURE 6-9 STATISTICS CARE DEMAND AGGREGATED TO CARE TYPE 

 
Arrival Type mean Median 

Standard 
deviation q3-q1 spread 

AH 

all 223,4 216 35 (16%) 34,8 166 

new 126,8 121,5 22,6 (19%) 32,8 109 

return 96,7 91 25,4 (28%) 37,5 136 

DH 

All 12,6 13,5 4,7 (35%) 4,5 19 

new 6,9 6,5 1,25 (19%) 1,3 9 

Return 5,7 6 5 (83%) 5 10 

PZ 

All 22,2 21 7 (33%) 8,3 13,7 

new 8,5 7,5 3,6 (48%) 4,5 12 

return 13,7 13 6 (46) 4,3 24 

RH 

All 29,2 30 7,8 (26%) 13 22 

new 11,1 11,5 4,1 (36%) 6,5 13 

return 18 15,5 7,37 (48%) 10,3 22 

                                                 

 
8
 Registered children arrivals exist of children who return at the care provider after being registered before. The term registered and 

returning children are perceived equivalent and are both used to refer to this type of children.  
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FIGURE 6-10 2008 AMBULATORY CARE DEMAND 

 

 
FIGURE 6-11 2009 DAY CARE DEMAND 

 

  
FIGURE 6-12  2009 FOSTER CARE DEMAND  

 

 
FIGURE 6-13 2009 RESIDENTIAL CARE DEMAND 

 

The standard deviation statistics provide insight into the absolute spread of monthly demand. The 

influence of this spread on the system behaviour can be analysed by the relative standard deviation, 
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which measures the size of the standard deviation as a percentage of the mean demand. The relative 

standard deviation of the total monthly demands for the different care types range between 16% and 

35%. The box plots provide clear insight into the influence of endogenous and exogenous variance on 
the total demand uncertainty of the different care types. For each care type, the absolute and the 

relative variance of endogenous monthly demands are higher than the variance of exogenous 
demand. Understanding the endogenous demand behaviour is considered essential when forecasting 

future anticipated demand and when analysing the robustness of policy measures.  

6.1.5 Conclusion analysis of demand behaviour 

This section analysed the care demand dynamics of the chosen care provider. The total number of 
new care set arrivals is sub-categorized to the nature of its child‟s arrival exogenous new children and 

endogenous demand from children who return after being registered at the care provider for previous 

care. The arrivals are analysed from the different information levels: the child layer, the trajectory and 
the trajectory layer aggregated to the four main care types.  

 
The influence of endogenous care demand on the total demand is significant for all information layers. 

The aggregation to care types showed that most of the variances in the demand of the independent 

care systems are caused by the variance produced by the endogenous care demand dynamics. The 
variance in demand is considered to be of large influence on the behaviour of the different 

subsystems. A simulation model able to incorporate the stochastic behaviour exogenous and 
endogenous demand behaviour in order to find the most robust policy options would be valuable. 

6.2 Relation arrival type and care set composition 

The analysis presented in the previous section concluded that both new and registered children 

arrivals have a significant influence on the system demand. A first indication of differences in the 
average number of trajectories embedded in new and returning care sets was made. The current 

chapter will analyse the necessity to model both arrival types differently in a discrete system model. 
As a whole the analysis will determine the differences between the care sets of both arrival types.  

6.2.1 Number of care trajectories a care set 

Based on the first indication of the difference between the number of trajectories per care set for new 

arriving children and returning children, this subsection will analyse the number of care trajectories a 
care set.  First, the behaviour of the number of trajectories per care set will be analysed.  Figure 6-14 

provides a graph which represents the behaviour of the average amount of trajectories a care set. The 

presented graph is calculated by dividing the number of care trajectories arriving each month, by the 
number of children arrivals each month. The children and trajectory arrivals graphs are previously 

presented in Figure 6-5 and Figure 6-7.  
 

 

A first observation shows that new children on average have around 1,8 trajectories a care set, while 
returning children receive on average 1,2 trajectories a care set. Figure 6-14 presents a fairly constant 

 
FIGURE 6-14 GRAPH BEHAVIOUR OF TRAJECTORIES A CARE SET 
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trend for the new arriving children and the returning children. The overall amount of care sets an 

arrival is slightly decreasing, which is explained by an increase in the proportion of returning child 

arrivals over time, as determined in previous section. Based on this graph the assumption is made 
that for both new and returning children arrivals the assignment of the amount of trajectories is 

constant over time.  
 

The remaining part of the subsection will analyse if the observed difference, in the number of 

trajectories of exogenous and endogenous arrival care sets, is a significant difference. The research 
question is the following: 

 
Is there a difference between the number of trajectories a care set of new and returning children 
arrivals? 
 

This research question will be answered by testing the following bivariate alternative and zero 

hypotheses: 
 

H1 : There is a difference between the number of care trajectories in arrival sets of new and 
registered children arrivals.  
 
H0 : The amount of care trajectories in arrival sets of new and registered children is the same.  
 

The significance level of this statistical test is determined at α=5%. The care provider care set arrivals 
over the year 2009 are analysed. A total of 996 new children arrival sets and 1330 registered children 

arrivals are distinguished. Figure 6-15 presents a graphical overview of the distribution of care sets for 
both new children arrivals and the return of already registered children. The x-axis categorises the 

data to the number of trajectories in the care sets. The y-axis presents the proportion of that number 

of care trajectories of all trajectories with that arrival type.  
 

It becomes instantly visual that the mode of registered children arrivals is one care trajectory. The 
mode of new children arrivals is two care types. The mean is 1,85 care trajectories for new arriving 

children, the mean for registered children arrivals is 1,21 trajectories. In order to determine if this 

found difference is significant a Student T-test will be performed. First, an F-test is performed to 
determine the equality of variance of the two samples in order to choose between the Student T-test 

for equal variances or the student T-test for different variances. The descriptive summary and the 
results of the F-test are presented in Appendix C.3.  

 

The measured P(F<=f)=1,187*10-38 is smaller than the α = 0,05, the preliminary test for the equality 

of variance indicates that the variance of the two groups are significantly different. Therefore, a two 

 
FIGURE 6-15 COMPARISON OF NEW AND REGISTERED CHILDREN CARE SET SIZE 

0

20

40

60

80

100

1 2 3 4

31

55

12

1

82

16

2 0

%

number of trajectories

Trajectories a care set

new child arrival registered child arrival



 

Part 3: Design discrete model 

64 
 

sample T-test is performed that does not assume equal variances. The test results are presented in 

Appendix C.3. The highlighted p-value is less than the chosen significance level of α = 0,05, this 

provides evidence to reject the null hypothesis, the number of care trajectories per care set is 
significantly different for new children than for registered child arrivals.  

Conclusion 
The average amount of trajectories per care set assigned to new and returning children is evaluated. 

A plot of the average amount of care trajectories over 2008 and 2009 made the assumption feasible 

that the average of both categories amount of care trajectories was constant over this period of time. 
A T-test for unequal variances determined that there is a significant difference between the number of 

care trajectories of new and returning children. The specification in the next chapter should make a 
distinction between the distribution of care types to new and registered children arrivals.  

6.2.2 Comparison trajectories assigned to new and return care set 

Based on the analysis in previous subsection and the interviews with care providers and case 

managers of the institution of youth care by Giesen(2008), a first assumption of differences in the 
care type distribution to new and returning children can be made. The assumption can broadly be 

explained by classifying the care types to their objectives. The care types are subdivided into two 

main categories according to their main objective. The following two objectives are distinguished: 
treatment & support and the provision of a stable home situation. 

 
Ambulatory and day care are focused at providing the treatment and education to cure the problems 

experienced by the child. Residential care and foster care provide a stable home situation if a child‟s 
family is for different reasons not capable to provide one. Ambulatory and day care treat the children 

and improve the faced situation. Residential care and foster care provide an alternative for a home 

situation. The cause of the problem, the dysfunctional family situation is not improved.  
 

Based on the introduced distinction a hypothesis can be made that the proportion of treating care 
types for returning children is lower than for new children because their situation is likely to be 

improved after the initial treatment. Returning children are expected to have a bigger proportion of 

day and foster care in their care set in comparison to first arrival care sets. Based on the introduced 
assumption the following hypothesis will be analysed: 

 
H1 : There is a difference between the trajectories assigned to the care sets of new and returning 
children. 
 
H0 : There is no difference between the trajectories assigned to the care sets of n new and returning. 
 
The first step in analysing the relationship between these categorical variables is a contingency table. 

A contingency table displays the multivariate frequency distribution of the different variables. The 
theory of probability can be used to calculate the expected percentages under the assumption that the 

zero hypotheses is true. The theory of probability states, if there is no relation between two random 
variables X and Y, the following relationship holds:                             .  
 

Figure 6-16 presents the contingency table of care set arrivals. The contingency table provides the 

multivariate frequency of each care type categorized to the arrival type of the care set. If the zero 
hypothesis is true and there exists no relation between the arrival type and the distribution of care 

types, than the counted numbers should be equal to the expected numbers. 
 

Cells with a higher observed count than the expected count are yellow highlighted, the cells with a 

lower observed count than expect are blue highlighted. The table shows that new children arrivals 
have a higher than expected number of care sets which contain ambulatory or day care. Returning 

children have a higher number of foster care and residential care than expected, which is  in line with 
the made assumptions. The question remains whether these expected counts differ significantly from 

the observed counts from the samples or that they are just caused by the sample error. To test this 
statistically, an overall measure for the difference between all expected and observed counts is 

defined: 
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EQUATION 1 OVERALL MEASURE FOR THE DIFFERENCE OF SAMPLES 

 

    
       

 

  

 
    =17,1 

FIGURE 6-16 ARRIVAL SET  CARE TYPE CONTINGENCY TABLE 

  

new registered total 

AH 
observed 910 1005 

1915 
expected 879 1036 

DH 
observed 81 68 

149 
expected 68 81 

PZ 
observed 100 156 

256 
expected 117 139 

RH 
observed 117 195 

312 
expected 143 169 

  total 1208 1424 2632 

  
   

 

 

 

The chi-square density function can be used to find the upper critical value for χ2. Inputs are the α = 

0,05 and the degrees of freedom df =(rows-1)(colums-1)=(4-1)(2-1)=3. The upper critical value is 
7,82. The value of the sample statistics is bigger than the upper critical value 17,1>7,82. The zero 

hypothesis can rejected.  There is a relation between the arrival type of a care set and the trajectories 

in that care set.  

6.2.3 Conclusion  relation between arrival type and trajectories 

Based on youth care domain knowledge collected from the interviews by Giesen (2008) the hypothesis 
has been made that there is a significant difference in the care type distribution in the care sets of 

new and registered children arrivals. A contingency table has been made and the significant difference 
between the care type distributions of both arrival types has been proven with a chi-square test. The 

contingency table provided inside in the distribution of care types over the care sets of the two arrival 
types. It becomes clear that new children arrival care sets receive more care types focused on 

treatment of the child, while children returns receive a higher proportion of care types which provide a 

substitution of a safe living situation. This can be explained by the difference in objectives between 
the two care types, the first category is focused on curing the child and thereby improves the situation 

which causes the problem, the second categories does not improve the problem cause of the care, 
which is considered the dysfunctional family situation. The analysis in the current and previous 

sections provide a clear indication that the care set of new registered children arrivals should be 

distinguished and modelled differently in the DES simulation model to be developed. The next section 
will analyse the conditionality in  and between sequencing care sets of a child. 

 

 

6.3 Care set relations: conditionality and dependency 

The previous section proved that a significant difference exists between the first care set assigned to 

new arrival children and the care sets assigned to children returning for additional care. The objective 
of this section is to make the important relations between trajectories of different care types in these 

care sets transparent. Two types of relations between care trajectories can be distinguished: parallel 
trajectories and sequential trajectories. A visual representation of these relations is presented in 

Figure 6-17.  

There is a significant difference between the care sets of new and returning children.  
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FIGURE 6-17 TRAJECOTRY RELATIONS: PARALLEL AND SEQUENTIAL 

 

Figure 6-17 represents parallel trajectories in an arrival care set with a blue oval, the sequential 
trajectories are visualized with a red oval. Parallel trajectory relations are the relations between the 

care trajectories in the same arrival care set. Sequential relations are the relations between 

trajectories of sequencing care sets. First subsection analyses the parallel trajectory relations, the 
second subsection presents an analysis of the sequential association relations.  

6.3.1 Parallel conditionality 

Discrete event simulation provides the opportunity to model unique entities and relations between 

those entities. This subsection will analyse the relations between care trajectories in arrival care sets 
in order to make abstraction and reduction decisions about these relations in the following 

specification chapter. The analysis of this subsection answers the following research question: 

 
Is there a relation between the occurrence of care trajectories of different care types in a common 
arrival care set? 
 

The system dynamics models, introduced in Chapter 4, assumes that all children received the same 
average care profile which contains an average of all four care types. Domain knowledge of the youth 

care sector, gathered from the care products and programs of different care providers, provides an 

indication of the parallel relations between different care types (Entrea 2010; Stichting Jeugd formaat 
2010). These care programmes indicate that ambulatory care is used frequently parallel to one of the 

other care types, to monitor the care process and to provide additional support. The three other care 
types are considered mutual exclusive in the same care set. The following analysis tests the found 

relations for the chosen case study care provider.  

 
The previous section proves that there is a significant difference between new and registered children 

arrivals. Based on this difference a separate analysis for the relation in the care sets both arrival types 
will be performed. The separate analysis, for both arrival types, exists of six relation tests for which 

the following generic hypothesis can be formulated for the occurrence of parallel trajectories of a two 
care types in a care set. : 

H1 : There is a relation between the occurrence of care type 1 and care type 2 in a common care set.  
H0 : There is no relation between the occurrence of care type 1 and care type 2 in a common care set 
 

Figure 6-18 provides an overview of the possible conditionality relations to be tested between the 
different care types.   

FIGURE 6-18 PARRALEL RELATION TABLE 

relation Care type 1  Care type 2 

1 PZ RH 

2 PZ DH 

3 RH DH 

4 AH PZ 

5 AH RH 

6 AH DH 
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An example analysis, in which the relation between PZ and RH in the care sets of already registered 

children arrivals is tested, is  explained in the next part of this section. The analysis for the other 

relations is presented in appendix C.4 at p. 137.  

Example analysis: Parallel relation between PZ and RH registered arrival set9 

Residential and foster care both provide a home situation for children who for different reasons do not 
have a save and sustainable home situation living with their parents. The choice between foster care 

and residential care depends on the age of the children, the availability of foster care parents and the 
assumed care needs of the child. Because both care types provide the same product, a save home 

situation, the expectation is that PZ and RH are mutually exclusive care types in the same care set. 
The relation to be tested is again an association relation between two categorical variables, a 

contingency is analysed. The contingency table of the parallel relation between PZ and RH is 

presented in Figure 6-19. The contingency table provides a frequency analysis of the different care 
sets categorized to occurrence of the two care types under study. Each cell in the table represents a 

mutually exclusive combination of RH and PH. The left table presents the frequency of the observed 
care sets. The right table provides the expected frequency under the assumption that the zero 

hypothesis is true, calculated with the theory of probability. If there is no relation between the two 

care types, then the observed counts are equal to the expected counts.  
 

When analysing the observed and expected tables it becomes clear the frequency of care sets with 
parallel RH and PZ trajectories is observed 5 while the expected frequency is 22,87. A chi-square test 

is performed to test whether these expected counts differ significantly from the observed counts. The 
overall measure for the differences between the two samples x2 is calculated. The chi square 

distribution is used to determine the change P that X2 coincidentally is at least as great as the 

calculated x2 value, assuming in dependability between the two care types. If this change is smaller 
than the chosen α = 0,05, than the zero hypothesis is rejected and a significant relation is proven. 
 

FIGURE 6-19 CONTINGENCY TABLE PARALLEL TRAJECTORY PZ-RH10 

 

 
 
The calculated chance (highlighted in yellow) is smaller than the α=0,05, the zero hypothesis can be 

rejected. There is a significant relation between residential and foster care products in the arrival set 
of first arriving children. This relation decreases the amount of parallel residential and foster care. The 

care types are however not mutually exclusive, 5 parallel care sets are distinguished. In order to 

decide between modelling the parallel relations or simplifying the system by assuming mutual 
exclusiveness, the influence of parallel care sets on the system behaviour should be analysed. A first 

indication of this influence on the care system of both care types can be extracted from Figure 6-19. 
From all arrival sets, which contain residential care, 3.2% also holds a parallel foster care trajectory. 

From all arrival sets,  which contain foster care,  2.6% hold a parallel residential care trajectory.  
 

Conclusion and implications 
Based on the contingency table and the performed chi-square test it is proven that a significant 
relation exists between the occurrence of residential care and foster care in common returning child 

arrival care set. The frequencies in the contingency table can be used to analyse the influence of 

                                                 

 
9 The relations between the occurrence of care types in the same care set are tested. The influence of the amount of care trajectories of 
the those care types are not analysed. This decision has been made in order not to harm the statistical power of the test by over 
disaggregation the data in categories with low frequencies.  
10

The chi square values are determined with the Microsoft excel 2007 chi-square distribution. 

yes no total 0 yes no total

yes 5 190 195 yes 22,87218 172,1278 195

No 151 984 1135 No 133,1278 1001,872 1135

total 156 1174 1330 total 156 1174 1330

Chi square P( X2>=x2 )

expected PZ

RH

1,66461E-05 < α=0,05

counted Pz

RH
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parallel trajectories arrivals on all arrivals of this care type. This serves as an indication of the impact 

of simplifying the system by assuming mutual exclusiveness of both care types in a common care set. 

For this example, which tests parallelism between foster care and residential care, it becomes clear 
that around 3% of the residential care sets hold foster care and vice versa.   

 
Overview results all relations 
The presented methodology to test if there is a relation between parallel care trajectories of foster 

care and residential care is applied to all six possible relations, for both arrival types. The results of 
these tests are presented in Figure 6-20. The left column presents the results of the first child arrivals 

sets, the right column presents the results for the registered child arrival sets. For every tested 
relation the percentage of influence of parallel arrivals on the total of arrival sets for both care types is 

calculated. As discussed in previous section, these percentages provide a first glance of the impact of 

assuming mutually exclusiveness of both care types in one arrival set in a discrete simulation model.  
 

FIGURE 6-20 RESULTS PARALLEL RELATIONS TEST11 

  
First child arrival registered child arrival 

Relation 
P( X2>=x2) % parallel of all care type 

arrival sets 
P( X2>=x2) % parallel of all care type 

arrival sets 

care 
type 1 

care 
type 2 care type 1 care type 2 care type 1 care type 2 

PZ RH 0,0111 4 3,42 1,67E-05 3,21 2,56 
RH DH 0,0471 3,42 4,94 0,0016 0,51 1,47 
DH PZ 0,0017 0 0 0,0161 2,94 1,28 
AH DH 0,0132 7,47 83,95 9,70E-20 1,99 29,41 
AH PZ 1,41E-59 5,27 48 2,90E-82 2,09 13,46 
AH RH 0,0001 10,55 82,05 1,10E-20 4,68 40,17 

 
Results parallel relations between care types 
The results of the chi-square tests prove that every possible parallel relation between care types is 
significant. The relation between residential care and day care for first child arrivals is the only relation 

close to the significance level of the test. The differences in chi square values for new and registered 
children arrival sets are the consequence of the in previous section proven difference in a number of 

trajectories a care set and the distribution of care types over the care set. In general the calculated 

P(X
2
>=x

2
) is smaller for registered child returns. This is a result of the lower number of parallel 

trajectories in returning care sets, the probability of a parallel care trajectory between care type 

decreases if the number of care trajectories in care set decreases. 

 
Now conditionality between the occurrences of different care types in the same arrival set is proven, 

the question arises how to incorporate the proven relations into a purposeful simulation model. The 
percentages in Figure 6-20 presented the proportion of the care sets arrivals of the two care types 

under study that hold the tested parallel relation. The percentages highlighted in red demarcate the 

parallel relations which hold a proportion of less than 5% of the total care sets of both care types. The 
demarcated relations are the parallel relations between foster care, residential care and day care, 

which are considered mutually exclusive in the youth care sector. The green highlighted relations 
demarcate the relations of these three cares type with ambulatory care. The proportion, of all arrival 

sets of residential, foster and day care that hold a supporting parallel ambulatory trajectory, is high. 
Based on these proportion the assumption can be made that the influence of the red highlighted 

relations are neglect able, while the green highlighted relations are essential to capture the system 

behaviour. The validity of this assumption will be explored in the next part of this subsection.  
 

Influence of parallel relations between PZ, RH and DH on the system behaviour 

                                                 

 
11 The expected counts for all cells in the different cross tables of this analysis are above 5 and all expected counts are larger than zero.  
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The performance indicators, determined in subsection 2.4.4, indicate that both the performance of the 

child layer and the care system sub-models of the different care types are of interest. In order to 

confidentially neglect and simplify system relations, the influence of such a relation on the different 
parts of the system should be determined. The assumption that the red highlighted relations in Figure 

6-20 are neglect able is analysed by determining the proportion of care sets witch hold these relations 
on both the trajectory as the child sub-models. Figure 6-21 presents the proportion of care sets of the 

assumed neglect able parallel relations between PZ, RH or DH. The proportion are measured both at 

the trajectory level aggregated to the different care types and on the child layer which exists of all 
care sets not aggregated to the specific care types.  

 

 

The table shows that neglecting parallel care sets between PZ, RH and DH, has the most influence on 
the residential care submodel. The total influence of the relations on the demand behaviour of the 

different sub models is presented in the right column and is for each sub-model less than 5%. 
Interesting is the influence on the child level which contains all arrivals sets and is presented in the 

last row of the table. While the influence of the relations on the different sub-models is higher for first 
child arrivals, the influence on all arrival sets is higher for registered child returns. This results seem 

contradictory at first glance, but can be explained by the higher proportion of ambulatory care in the 

subset of all first children arrival sets in comparison to the proportion of ambulatory care in the subset 
of all registered child arrivals. As proven in the analysis of care type distribution over the two arrival 

types presented in previous section, 0,69 percent of all care sets contains a parallel relation between 
two of the three accommodation care types.  

 
Implication of assuming mutual exclusiveness between PZ, RH and DH 
Based on the observed influence of the parallel relations under study of less than 1 percent on the 

overall system behaviour, the assumption is made that PZ , RH and DH can be considered mutual 
exclusive when abstracting the system behaviour in a discrete simulation model. An important 

notification can be made toward the influence of this decision on care types sub models. While the 
tables show the percentage of arrival sets which will not be modelled as in real life, the implication on 

the demand behaviour of the sub models are smaller than these percentages. The observed parallel 

trajectories in the dataset are taking into account when determining the frequency of the different 
care types in the following specification chapter. The influence of assuming mutual exclusiveness of 

these care types on the demand behaviour of the care type sub models is therefore considerably 
smaller than the percentages in Figure 6-21.  

 

Conclusions and implications 
First, six possible parallel system relations between care types in a arrival care set were distinguished, 

presented in Figure 6-18. These relations have been tested separately for new and returning children 
arrival sets. A cross table has been made for every relation and the significance of the relationships 

has been proven by a chi-square test. All six possible parallel system relations between care types 

were proven to be significant. 
 

The cross tables provide evidence that, although RH, PZ and DH are not mutual exclusive, the 
probability of occurrence of both in one care set is low. The influence of neglecting this probability and 

assuming mutual exclusiveness between this care types has been analysed for the different sub-
models and information layers of the system. The analysis showed that the proportion of influence of 

the assumed neglect able relations is less than 5% on the different care type sub models. An 

important conclusion is that the influence assuming mutual exclusiveness on the abstracting of these 
sub models will be smaller than this 5%.  The influence of assuming mutual exclusiveness between 

RH, PZ and DH on all arriving care sets measured on the child layer is determined less than 1%. The 

FIGURE 6-21 PROPORTION ARRIVAL SETS WITH PARALLEL RELATIONS BETWEEN PZ, RH OR DH 

Care type First child arrival Registered child arrival All arrivals 

PZ 4,00% 4,49% 4,30% 
RH 6,84% 3,08% 4,70% 
DH 4,94% 4,41% 3,59% 
All arrival sets  0,60% 0,80% 0,69% 
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first simplification for the discrete model to be developed is the assumption of mutual exclusiveness 

between RH, DH and PZ. This assumption is to simplify the analysis of relations between a child‟s 

sequential care sets in the next subsection and to simplify the specification of the model in the 
following chapter.  

 
 

 

 

6.3.2 Sequential conditionality 

An important difference between parallel relations and sequential relations is considered the influence 

of time. The parallel care set relations, analysed in previous section, determine the care services 
assigned to children at a specific moment of time. Sequential relations capture relations between care 

sets assigned to children at different points in time. Sequential relations are dependent on the 
different states of both the child and child‟s environment between these points in time. A child‟s future 

state is among other factors influenced by the care services delivered to the child during the time 

span between the two arrivals. There are other dynamics, which could influence these relations, for 
instance a child‟s family situation. These dynamics are unknown when abstracting the behaviour of 

the care provider model into a simulation model. This subsection will analyse the dataset of child 
arrivals over 2008 and 2009 in order to derive an empirical distribution, which captures the resulting 

behaviour of these unknown dynamics. Starting points of this analysis is the information derived from 
the youth care sector, previous modelling attempts by INITI8 (Giesen 2008; Westerflier 2008) and 

conclusions made in the preceding subsection of this chapter. 

 
In the previous sub section, it is concluded that a valid simplification is to assume mutual 

exclusiveness between the care types RH, DH and PZ in a care set arrival. Based on this simplification 
and the care services domain knowledge introduced in the second chapter, the following conceptual 

representation of the sequential influence relations between sequential care types can be made.  

The conceptual representation makes a clear distinction between accommodation services and youth 
assistance. The same distinction has been introduced previously in section 2.1.2, which introduced the 

domain knowledge of the youth care sector. The solid black boxes represent the accommodation and 
youth assistance care sets, which contain one or multiple care trajectory. 
 

Accommodation services. The set of accommodation services can contain one or more 
accommodations providing care trajectories. Based on the conclusion presented in the previous 

chapter, mutual exclusiveness between the different accommodation providing care types is assumed. 
A care set can contain either trajectories of the care types PZ, DH or RH.  

 

Youth assistance services. The set of youth assistance services can contain or multiple care services of 
the ambulatory care type. 

 

Care set N+1Care set N

Accomodation care 

type Accomodation care 

type

Youth assistance
Youth Assistance

\

Time 

1

3

2

 
FIGURE 6-22 CONCEPTUAL VIEW SEQUENTIAL CARE SET RELATIONS 

 
 There is a significant relationship between the parallel occurrence of care types in a arrival set. 
Mutual exclusiveness can assumed between RH, PZ and DH in a common arrival care set.  
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The analysis in previous section proofed the existence of significance parallel relations between the 

different accommodation services and youth assistance services, presented by the faded black arrows 

in Figure 6-22. The sequential relations analysed can be decomposed in three sub relations, each 
presented as a black arrow in Figure 6-22.  

  

6.3.2.1 Sequential relation1: sequentiality between accommodation services 

The hypothesis of this analysis is that there exists a relation between previously provided 
accommodation services and the assignment of new accommodation trajectories in a sequential care 

set. The following hypotheses are formulated: 
 

H1 : There is a relation between the accommodation care type of sequencing care sets.  
H0 : There is no relation between the accommodation care type of sequencing care sets.   
 
Figure 6-23 provides a cross tabulation (contingency table) which displays the sequential relationship 
between the occurrence of care services categorized to accommodation care type of the care services. 

The rows present the category of the previously assigned care set, the column the category of the 

new care types. The category “None” presents the care sets which hold no accommodation care 
services. The only care type in such care sets is ambulatory care. The number of distinct categories 

for each variable determines the size of the table, each cell in the table represents a unique 
combination of the two variables. If the expected counts are equal to the actual counts, then there 

exists no relation between the variables.  
 

 
FIGURE 6-23 CROSSTABULATION SEQUENTIAL RELATION ACCODAMTION SERVICES12 

   N+1_Accommodation 

Total    None DH PZ RH 

N_Accomm

odation 

None Count 841 62 56 126 1085 

Expected Count 726,3 56,1 127,4 175,3 1085,0 

% within N0_Main 77,5% 5,7% 5,2% 11,6% 100,0% 

DH Count 149 11 6 12 178 

Expected Count 119,1 9,2 20,9 28,8 178,0 

% within N0_Main 83,7% 6,2% 3,4% 6,7% 100,0% 

PZ Count 62 8 127 46 243 

Expected Count 162,7 12,6 28,5 39,3 243,0 

% within N0_Main 25,5% 3,3% 52,3% 18,9% 100,0% 

RH Count 191 15 29 116 351 

Expected Count 234,9 18,1 41,2 56,7 351,0 

% within N0_Main 54,4% 4,3% 8,3% 33,0% 100,0% 

Total Count 1243 96 218 300 1857 

Expected Count 1243,0 96,0 218,0 300,0 1857,0 

% within N0_Main 66,9% 5,2% 11,7% 16,2% 100,0% 

                                                 

 
12 From this point on the presented statistical  tests are performed with the help of the statistical software package SPSS statistics 17.0.  
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The cells with a higher than expected count are highlighted in yellow, the cells with an lower than 

expected count are highlighted in blue. The distinction between treatment and support and the 

provision of a save home situation is again obvious. It becomes clear that children who return after 
main care types focused on treatment (AH, DH) have an higher than expected chance to receive a 

care set focussed on treatment again. Children who return after receiving day care as the main 
treatment type have a chance of more than 83,7% to return for a main care type of the lighter 

ambulatory type. Children who return after receiving a main care type of foster care have a higher 

than expected likelihood to receive again foster care or residential care. Returns after receiving 
residential care have a smaller than expected likelihood to receive foster care. This could be due to 

the age categorization between foster and residential care. Young children are usually assigned to 
foster care families, while older children are able to adapt to a residential care situation. A chi-square 

test is applied to analyse if the observed differences between the expected and actual counts are 
significant different.  

 

The Pearson chi-square, presented in Figure 6-24, tests the zero hypotheses that row and column 
variables are independent. The lower the significance of yellow highlighted significant values, the less 

likely it is that two variables are independent (unrelated). In this case the significance value is 0.00, 
which means that the zero hypothesis can be rejected. There is a significant relation between the 

main care types of sequencing care sets assigned to a child. 

 

 

 

 

 

 

 

Conclusion 

A significant relation between the accommodation services in sequential care set has been found. 

When abstracting the dynamics of a care provider system into a discrete simulation model this 

dependency between sequencing care sets needs to be abstracted in the DES model.  

6.3.2.2 Sequential relation 2 :  influence of previous youth assistance trajectories on new 
accommodation care services.  

Previous part of this subsection proved that there exists a significant relation between the 
accommodation providing care services in children sequencing care sets. This part analyses the 

additional influence of youth care services provided in the preceding care set on the provided 
accommodation service.  

 

A three-way cross tabulation has been made, to analyse the relation taking into the account the 
previously proven relation between accommodation care services. The care type accommodation 

categories of the preceding care sets, in this three way cross tabulation, are further subdivided by the 
occurrence of youth assistance. The occurrence of supporting care type is divided into two categories 

“yes” or “no”.  

 
This categorical subdivision has been chosen because an ordinal subdivision according to the number 

of supporting care trajectories of each care type would result in a cross table with more than 50% off 
the cells counts smaller than 20, which would make the chi-square test unreliable. This three way 

cross table reveals the relationship between the occurrence of youth assistance in a care set and the 
accommodation providing care type in the sequential care set of a child. This relation is tested 

controlled for the effect of the accommodation care type in the previous care set. The three way table 

FIGURE 6-24 CHI-SQUARE TESTS SEQUENTIAL RELATIONS ACCOMDATION SERVICES 

 

Value df 

Asymp. Sig. (2-

sided) 

Pearson Chi-Square 580,231a 9 ,000 

Likelihood Ratio 446,478 9 ,000 

N of Valid Cases 1857   

a. The minimum expected count is 9,20. 



 

Youth care waiting list dynamics: A Discrete Event Simulation Approach 

 73 
 

is presented in Appendix C.5. Noticeable is the group, which received no accommodation services in 

their previous care set. These care sets do not hold accommodation services and therefore necessarily 

exist of ambulatory youth assistance trajectories.  
 

A chi square test is performed to test if the counted frequencies differ significantly from the expected 
frequencies. The results of this chi square test controlled for the previously proven relation between 

the main care type in the preceding care set, are presented in  

Figure 6-25. Noticeable is the first layer, all care sets, which do not receive accommodation care, 
contain only ambulatory care trajectories.  

 
FIGURE 6-25 CHI SQUARE TEST DEPENDENCY ON YOUTH ASSISTENCE 

 

N_  accommodation Value df 

Asymp. Sig. (2-

sided) 

None Pearson Chi-Square .a   

N of Valid Cases 1085   

DH Pearson Chi-Square 5,460b 3 ,141 

Likelihood Ratio 5,187 3 ,159 

N of Valid Cases 178   

PZ Pearson Chi-Square 6,382c 3 ,094 

Likelihood Ratio 6,422 3 ,093 

N of Valid Cases 243   

RH Pearson Chi-Square 14,907d 3 ,002 

Likelihood Ratio 15,071 3 ,002 

N of Valid Cases 351   

a. No statistics are computed because N_youth assistance is a constant. 

b. 4 cells (50,0%) have expected count less than 5. The minimum expected count 

is 1,99. 

c. 1 cells (12,5%) have expected count less than 5. The minimum expected count 

is 2,63. 

 

First, the limitations of the derived cross table and the performed chi square test are discussed. 

Noticeable is the fact that care sets in which no accommodation service always exist of youth 

assistance, for this category only the “yes” group exist and no statistics between groups can be 
calculated. The chi square test analyses the relations between the different youth assistance groups of 

every accommodation category. The residential care category has 4 cells with an expected count of 
less than, which is 50% of all cells. For this care type not all chi square conditions are satisfied and 

the results are considered less reliable.  

 
The significance level of this test is 0.05 %. For care sets, which deliver the accommodation services 

of the type DH and PZ, there is no significant relation between the occurrence of youth assistance in 
the first care set and the type of accommodation services in the child‟s next care set. For children who 

receive a care set with the accommodation services of the type RH there is a significant relation 
between the occurrence of youth assistance and the care type of the accommodation services of their 

next arrival set.  
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Conclusion 
No significant relation between the type of accommodation service in returning care sets and the 

occurrence of youth assistance trajectories in previous care sets has been found when controlling for 
the accommodation services of the care types day care and foster care. The accommodation care type 

when returning after a care set which holds Residential care trajectories has a significant relation with 
the occurrence of youth assistance in the previous care type.  

6.3.2.3 Sequential relation 3: Sequential relations between the occurrence of youth 
assistance 

The possible relations, which influence the occurrence of youth assistance in returning care sets, 
where previously presented in Figure 6-22. Two relations are distinguished, the parallel relation with 

the accommodation type of the care set and the sequential relation with the occurrence of youth 
assistance in the previous care set. The significance of the parallel relation between the 

accommodation care types RH, DH and PZ and the occurrence of the youth assistance, with care type 

AH, is proven in subsection 6.3.1. This subsection analyses the relation between the occurrence of 
youth assistance in sequential care types controlled for the before proven parallel relation between 

accommodation and youth assistance care services in a care set. The relation is analysed by a three 
way cross tabulation. The cross tabulation is presented in Appendix C.7.4. A person chi square test 

proofs that the relation is significant, the test statics are presented in appendix C.7.4 
 
Conclusion 
The chi-square test proves that the sequential relation between youth assistance in sequential care 
sets, when controlled for the care sets parallel relations is significant for care sets with 

accommodation type PZ. The relation is not significant for care sets of which the accommodation care 
type is RH or DH.  

6.4 Time between care set arrivals 

Previous sections of this chapter analysed the necessity to model the endogenous demand behaviour 

of returning children and determined the care type relations in and between different care set arrivals. 
This section contains an analysis of the variables, which influence the time between care set arrivals. 

Figure 6-26 presents a conceptual view of the influence relations analysed in this section. A first 

hypothesis is that the time between two care sets arrivals is influenced by the care types of both the 
first care set (N) as the sequencing care set (N+1). Seven categories can be distinguished at care 

type level for both care set N as care set N+1. Care sets which only receive youth assistance (AH), 

three categories of care sets which only receive one of the three accommodation care types (PZ, RH, 
DH) and three categories for the care sets which receive a combination of accommodation care and 

youth assistance (PzAh, PzRh, DhAH). 

Care set N+1
Care set N

Acommodation care 

type
Accomodation care 

type

Youth assistance

Youth Assistance

Return Time 

 

FIGURE 6-26 RELATIONS TIME BETWEEN CARE SET ARRIVALS 
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The time between care type‟s arrivals is a variable of ratio level of measurement. A first step in 

determining the influence of different categories on a variable of ratio level of measurement visually is 

the creation of a clustered box plot. The box plot is clustered by the seven categories of care set N, 
the clusters are subdivided by the seven categories of care set N+1. The resulting box plot is 

presented in appendix C.7. Instantly it becomes clear that the box plot with forty-nine categories is 
difficult to interpret. The box plot summary table indicates that half of the categories exist of 5 

records or less. This indicates that no reliable statistic conclusions can be made drawn from these 
categories. 

 

After the analysis of box plots of the return time plotted in categories of the accommodation care type 
for both N and N+1 a clear pattern or relation cannot be found. Based on the separate box plots for 

each category and the results of previous section the decision is made to first analyze the influence of 
the accommodation care type of the first care set. The four distinct possible relations are visualized in 

Figure 6-27. The first relation is tested in the first sub-section, the second subsection provides an 

overview of the results for the other four relations, controlled for the first relations.  

Care set N+1Care set N

Accomodation care 

type
Accomodation care 

type

Youth assistance

Youth Assistance

Time Between

Care set Arrivals

Controlled for

1

2

3 4

 

FIGURE 6-27 RESEARCH FRAMEWORK  TIME BETWEEN CARE SET ARRIVALS 

 

6.4.1 Relation 1: The influence of accommodation care type  in care set N on the time 
between arrivals 

This subsection presents an analysis of the relation between previous accommodation care type and 
the time before the next care set arrives. The following alternative and zero hypotheses are 

formulated: 
 

H1 : There is a relation between the accommodation care type of a care set and the time to next care 
set arrivals.  
H0 : There is no relation between accommodation care type of a care set and the time to next care set 
arrivals. 
 

A box plot representation of the to be tested relations is presented in Figure 6-28. It becomes clear 
that there exist a difference in the median and variances of the time between care set arrivals after a 

first care set of the different accommodation care types.  
 

A One-Way ANOVA procedure can be used to test the hypothesis that the mean of these groups are 

significantly different. The ANOVA test assumes that the variances of the groups are equivalent. A 
Levene test is performed to test these assumptions for the different categories. The Levene statistics 

rejects the null hypothesis that the group variances are equal. The homogeneity of variances test is 
presented in appendix C.7. Because the groups of the different categories are not near equal size, a 

non parametric Kruskal-Wallis test is applied to check if groups are significantly different or not. The 
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Kruskall-Wallis statistic is 0,015, which is smaller than the significance level of 0,05%. The zero 

hypothesis can be rejected if there is a significance difference between the inter arrival times of the 

different categories. The visual representation of these differences is provided by the means graph of 
the different categories, presented in Figure 6-29. It becomes clear that the mean of foster care 

differs most from the other categories The mean of ambulatory care and residential care are almost 
equal and the mean of day care is slightly larger. 
 

 
FIGURE 6-28 BOXPLOT RELATION BETWEEN PREVIOUS ACCOMMODATION TYPE AND THE TIME TO NEXT CARE SET 
ARRIVAL 

 

 

FIGURE 6-29 MEAN GRAPH OF THE TIME BETWEEN ARRIVAL SETS 

The Kruskall-Wallis test, presented in Appendix C.7-5, establishes that there is a significant difference 

between the group means. The mean plot suggests that the return time of PZ differs from the other 

categories. A Post-Hoc test, which assumes unequal variances, is applied to test which of the found 
differences between the categories are significant. The Tamhane Post-hoc test proves a significant 

difference between the return time of care sets which contain trajectories of the accommodation care 
of the type PZ and care sets which contain accommodation care of the type RH, DH or none 

accommodation care. Furthermore, no significant differences exist between the return time after care 

set which contain either RH, DH or no accommodation care. The test statistics are presented in 
Appendix C.7-6.  
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Conclusion 
A significant relation can be found between the return time in-between care set arrivals and the 

accommodation care type of the previous care set. A Levene test rejected the homogeneity of the 
group variance. A Kruskall-Wallis test established a significant difference between the group means. 

The Tamhane Post-hoc test showed that the return time between care set arrivals is significantly 
different for PZ than for the other categories. No significance difference between the other categories 

is found.  

 

 

  

6.4.2 Overview time between care set return relations tests 

This section contains an overview of the analysis of relation 2, 3 and 4 visualized in Figure 6-27. 

Based on the analysis in previous section, the analyses of these relations are performed separately for 
the two distinct groups. The first group contains all records of the time between care set arrivals of 

which the first care set exists of all care types except PZ. The second group contains all time between 

care set records of which the accommodation type of the first care exist of PZ. The second relation is 
tested with a Kruskall Wallis test for each group, because the assumed equal variances for an ANOVA 

test are not satisfied for the four distinct care type categories. Relation 3 and 4 are tested with a 
student T-test for each group. The results of these tests presented in  

Figure 6-30, the category column presents which group is tested, the test column the performed test 
and the results column the calculated found test statistic. The appendix column refers to the appendix 

where the full test statistics are presented.  

 
As presented in  

Figure 6-30, each test statistic exceeds the confidence interval of 0.05%. Neither of the test results 
allows to reject the zero hypothesis. In conclusion, no significant relation is found between the time 

between care set returns and the accommodation type of the sequencing care set or the occurrence 

of youth assistance in either one of the care sets. 
 

FIGURE 6-30 OVERVIEW TESTS TIME BETWEEN CARE SET RELATIONS.  

Relation Name Category Test result Significance Appendix

No-PZ 0,054 No

PZ 0,746 No

No-PZ 0,08 No

PZ 0,068 No

No-PZ 0,068 No

PZ 0,230 No

2

3

Influence of accommodation 

type return set

Influence youth assistance 

first care set

4
Influence youth assistance 

return care set

D2

D3

D4
Student 

T-test

Kuskall 

wallis

Student 

T-test

 

6.5 Limitations and complications care set returns a child  

The relations between the composition of a child‟s care set and the number of care sets a child 

receives are not addressed yet. This section will perform an initial analysis of these relations and the 

experienced data complications during these analyses.  
 

A first step of these analyses is to distinct between new and returning children. Counting the number 
of care set arrivals a child in the time span of the data set without making this distinction could 

strongly bias the results. It would be possible for the analyzed children to have received multiple care 
sets before the time span of the available dataset, more precise the perceived amount of child returns 

from this analysis will be lower than the actual amount.  

 
Sub-section 6.1.1, introduced the complications and limitations of making the distinction between new 

and returning children in the available data set. First, the data of 2008 was used as a memory to 

The time between care set arrivals does not differ between previous care sets which hold 
accommodation care of the type RH or DH or no accommodation care. A significant difference 
can be found between the time until next care set arrival after previous care sets of these 
categories and previous care sets which contain foster care.  
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distinct new and returning children in 2009. This reduced the effective time span of the data set to 

one year, namely 2009. Furthermore, 20% of initially returning children are erroneously interpreted as 

new arriving children as elaborately discussed in sub section 6.1.1. The reduced time span to one year 
of effective data is an important limitation for the analysis of the amount of care set arrivals a child.  

 
The spread of return times, visualized in the box plot of Figure 6-28, shows that the median of the 

return time of the different accommodation categories lies between 4 and 5 months, the third quartile 

of these categories span from 6 until nine months. Over the one year effective data span, it would at 
maximum be possible to capture one or in some cases two returns of the new children arriving in the 

first months of the data sets. The distribution of amount care sets can only be analyzed for the few 
new children, which arrive in first months of the data time span and for their first or second return 

care set. In other words, the distribution of total amount of return cannot be found and the sample 
size is too small to distinguish different categories of influence for further analysis. Taking into 

account that the bias comes from children arrivals out of the measurement time span, it is certain that 

the counted number of returns is equal or lower than the actual number of returns.  
 

Based on this knowledge, different care sets configuration that use less than one year as memory can 
be validated against the above described configuration. These configurations are less valid in terms of 

of the new and returning children distinction, but they would have a larger time span to count 

returning care sets. The indicated direction of the bias determines that the configuration that counts 
the highest amount of return is the most valid representation of the actual amount of returns. It is 

important to notice that this relative validity provides no indication of the real validity of this best 
configuration.  

 
The following configurations are cross-validated: 

A) Memory: none. Sample: all children arrivals in the first 3 months of 2008. Time span of 

returns: 2008 and 2009 
B) Memory: month 1 till 6of 2008. Sample size: month 6 till 9. Time span of returns. From month 

nine of 2008 till end of 2009 
C) Memory: 2008 and children in care at January first of 2009. Sample: children arriving in the 

first 3 months of 2009. Time span of returns: 2009. 

 
The found return distribution of the different categories is presented in Figure 6-31 as a bar chart. 

Configuration A has a lower percentage of zero and one returns after arrivals, and a higher 
percentage of more than one returns than the other configurations. When looking at the mean 

number of care sets a child, configuration A has a mean of 1.06 children returns, configuration B has 

a mean of 1.001 returns and configuration C has a mean of 1.004 returns. A best guess at this 
moment for the distribution of children returns is configuration A. This distribution, although the best 

option for now, is likely to result in significantly lower returns than experienced in the real world and 
with current data there is no possibility to validate the results. Furthermore, the size of current 

dataset provides no possibility to reliably distinct relations between the composition of a child‟s care 
sets and the amount of time a child will return.  

 

In conclusion 
The available data set does not provide accurate insight into the number of children care set returns 

distribution. Neither is it possible to find relations between the care set composition and the amount 
of care set returns. The following specification chapter presents a none data related strategy to derive 

the number of care sets return a child.  
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Youth care waiting list dynamics: A Discrete Event Simulation Approach 

 79 
 

6.6 Withdrawal mechanism 

As previously introduced waiting lines in health care feature withdrawals when clients have to wait for 
an extended period. Several studies have shown that the amount of time that a client is willing to wait 

for care is related to the urgency of the problem (Goodacre and Webster 2003). Problems that are 
more urgent are genuinely require attention, and are difficult to treat elsewhere. These cases will 

therefore accept longer waiting times. To take the urgency of the problem into account in the 
analysis, the withdrawal mechanism is analyzed in this section. A first problem arises, because the 

healthcare waiting lines are not physical waiting lines. The children do not physically stand in a line, 

from which they walk away on withdrawal. Regularly a child does not notify the care provider when he 
or she decides withdraws. The care providers do not know about the withdrawal, until it is the child‟s 

turn for care and the child is contacted. Consequently, the time a child is willing to wait for a care 
service of each care type is unknown. A different approach to abstract the withdrawal mechanism is 

necessary. 

 
Given the available information, an approach is chosen which evaluates the chance of child withdrawal 

based on the waiting time before a care position is available for each care type. In order to do so, the 
observed waiting time before a care position became for every child over 2009 are grouped into 

interval classes. The frequency of observed care starts and withdrawals of children with waiting times 
in the same interval, are used to determine the withdrawal probability as a function of the waiting 

time before care resources are available. The class intervals are 30 days wide, except for the 

maximum class, which also takes into account the extreme values.  
 

For all four care types, a clear relation between the proportion of withdrawals and the waiting time 
before care resources are available, seem feasible. This mechanism can be abstracted into a DES 

simulation model by implementing the trend line of these graphs in order to calculate the binomial 

withdrawal chance for each child, based on their waiting time.  

 

  
 

  
 

FIGURE 6-32 WAITING TIME WITHDRAWAL PROPORTION PLOTS 
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6.7 Observed dynamics in policy variables 

Dynamic system behaviour is a result of the input into a system, variability  and the system structure. 
While system behaviour changes over time, also policy variables can change over time. This section 

controls for structural changes and variability observed in the instrumental parameters, which form an 
important input to the model. Controlled are the number of capacity places and the average treatment 

time dynamics for each care type. 
 

The behaviour of the weighted average treatment time over six months and of the amount of capacity 

places is analyzed. The amount of capacity places is assumed to be equal to the amount of children in 
care, at each moment that there is a waiting lists.  The graphs of the average weighted treatment 

time, the waiting list dynamics and the amount of trajectories in care are presented in appendix C.1 
and C.2. Although Some variability is observed in the different graphs, no clear structural changes are 

found for the amount of capacity places and the average treatment time over 2008 and 2009.  

 

6.8 Conclusion data analysis 

The data analysis performed in this section answers the fourth research question, by making the 

important system relations transparent. Furthermore, the limitations in the available data to quantify 
these relations are determined. 

 

A distinction between exogenous and endogenous demand was made, by using the data of 2008 and 
the children in care at 1 January of 2009 as a system memory. In general, the conclusion from the 

demand analysis was that both measured on the children and trajectory level endogenous demand 
forms a significant proportion of the total demand. Furthermore, it is concluded that endogenous 

demand has an important impact on the total demand variability for each care type. Based on the 

distinction between exogenous and endogenous children arrivals, the care set composition of new and 
returning children is compared. A significant difference is found between those care sets, both in care 

type composition and size.  
 

Significant parallel conditionality relations between the occurrences of care types in a common care 
set where found. It became apparent that the three accommodation care types DH, RH and PZ are 

mutual exclusive in a care set. Significant conditionality relations between ambulatory care and the 

three-accommodation care types are found. An analysis of the relations between sequencing care sets 
indicates that a significant relations exist between the accommodation care type of the first care set 

and the accommodation care type of the sequencing care set. Furthermore, a significant relation is 
found for the time between children‟s sequencing care set arrivals and the accommodation type of the 

previous care set. 

 
The time span of the data sample is too small to provide accurate and reliable insight into the 

distribution of the amount of care sets assigned to children. This distribution is there for not 
quantifiable with the available data sources. A visual presentation of the withdrawal proportions as a 

function of different time interval indicates a significant relation between the waiting time and the 

withdrawal probability. 
 

For the children inflow, the number of capacity places and the treatment times the dynamics where 
analyzed in order to determine if these variables are likely to be stationary over the time span of the 

data set. It is concluded that the capacity places can be abstracted by a constant, the children inflow 
and treatment distribution can be abstracted by a stationary distribution.  
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Chapter 7 

Ch7Specification: Discrete event simulation model 
 

This chapter describes the specification of the DES simulation model in Any Logic simulation software.  

7.1 Model assumptions and reductions 
The real world is many times bigger and more complex than can ever be included in a simulation 

model. The simulation model is simplified, where necessary and possible, to prevent it from becoming 
needlessly complicated. The following set of simplifications is made:  

 
Resource usage. The demarcated abstraction of resources distracts from employees, treatment rooms 

and beds. Capacity is modelled as the amount of parallel trajectories, which can be treated at the 

same moment in time. In the real system, every trajectory has a different treatment intensity, 
according to the needs and circumstances of the child. For instance, a child can receive a six month 

trajectory which provides one hour of ambulatory care a week, while another receives for the same 
amount of time a ambulatory trajectory in which six hours a week ambulatory care is provided. The 

DES model abstracts from this differences in intensity and assumes homogeneity of trajectory care 

intensity and capacity usage for every care type. This abstraction has been made because the data 
sources do not distinct different treatment intensities.  

 
Queue mechanism. The introduced SD model assumes homogeneity and perfect mixing in children 

and trajectory flows. The DES model picks a distinct trajectory entity from the queue. The queue 

mechanism refers to the logical order at which trajectories are placed in the queue and determines 
which trajectory will be served next if a server becomes available. In the real system this selection is 

made based on the distinct attributes of the child in the queue in relation to the distinct attributes of 
available capacity. Does a child fit into the current treatment group in terms of age, treatment needs 

and problem causes? For instance a sexual offender cannot be treated in a group of sexual offended 
children. In the simulation model, this decision cannot be made based on these unknown details. For 

this research a first in, first out (FIFO) service mechanism, service in random order or a random 

priority based queue mechanism is applied.  
 

Care process. The care process of each care trajectory of a certain care type is simplified, our model 
objective is not interested in the contents of the procedures, the concerns lies on the time the care 

process takes. The care process is represented by a processing time which the “capacity” resource is 

kept busy. The process time is drawn from a distribution. 
 

Care profile. In the real world a child‟s care set is based on a diagnosis at that moment. The 
development of a child‟s care needs is among other influences steered by the effectiveness of 

provided care, developments in the child family situation etc. The employees of the care provider 
monitor the child and when a change in care needs is diagnosed, an additional care set can be added 

or one or multiple trajectories in the first care set can be terminated. The DES model makes 

assumptions of the child developments and their expected care profiles based on the empirical 
distributions found in the data and the relation between parallel and sequential trajectories, as found 

in previous chapter. Based on these relations, a child full care profile is determined at the moment the 
child arrives. Waiting times and withdrawals are assumed not to influence this care profile.  

7.2 Anylogic software 
The simulation language requirements are defined by the simulation model requirements; the model 

requirements included usefulness, development cost and time, stakeholder trust and the ability to use 
the model at other locations.  

 
The AnyLogic simulation software is based on a native Java environment, which provides reusability 

through a fully object oriented structure. Furthermore, the native Java environment supports limitless 

extensibility including custom java code, external libraries and external data sources. The included 
object libraries provide the ability to reuse pre-build simulation elements; including agent based state 

charts, discrete event process blocks and system dynamic elements. These discrete and continuous 
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simulation elements can be seamless integrated in one model. AnyLogic‟s extensive statistical 

distributions function set provides an excellent platform for simulating the uncertainty inherent in all 

systems. 
 

 AnyLogic‟s visual development environments speed‟s up the development process and increases the 
model transparency for stakeholders. The experimental framework includes built-in support for 

advanced optimization. AnyLogic modes are completely separable from the development environment 

and can be exported as standalone Java application. This allows users to run the model anywhere, even 
from websites.  

7.3 Model logic 

As introduced in previous section, Anylogic supports UML based modelling to utilise all advantages of 
Objected Oriented modelling. Furthermore, Anylogic enables to model the discrete processes of these 

objects from different modelling viewpoints. The model logic of each process can be structured by 

block based state or entity flow charts, while algorithms can be visually captured in action charts. This 
section will make the abstraction of the in previous chapters analyzed concepts and relations in the 

developed DES AnyLogic model transparent. The mechanisms and decision structures presented in 
this section are quantified in the following section.  

7.3.1 Static structure Anylogic model 

The principles of object orientation are used to create the static model structure. The model classes 

and the containment relations between those classes are presented in Figure 7-1. The blue boxes 
represent a class. Six classes are distinguished. The matching between care systems and trajectories 

is based on their care type attribute. The care type attribute, presented in a white box, is not 

implemented as a class but as a system dimension. The care sets assigned to a child forms the 
coupling between a child and its trajectories treated in the care systems. The care provider class 

serves as the root of the simulation model.  
 

CareProvider

<root>

CareSystem

Child

CareSet

Trajectory

careType

Resource

Child layer Coupling Trajectory layer

1

4

*

1..*

1..*

1

*

1 1

1..*

 
FIGURE 7-1 STATIC STRUCTURE DES SIMULATION MODEL 

 

 

 
Now the different classes of the simulation model are introduced following subsections make the 

important process, algorithms, state transitions, and their initializations requirements transparent.  

7.3.2 From child arrival to trajectory arrival 

The care provider system is driven by the child care demand. This is abstracted in the DES model by a 
daily children arrival event. The aggregation level of arrivals a day is chosen taking into account the 



 

Youth care waiting list dynamics: A Discrete Event Simulation Approach 

 83 
 

unit of measurement of the main performance indicator, the waiting time, which is measured in 

weeks. Abstracting between child arrivals in hours in perceived unnecessarily detailed. Every day the 

daily child arrival event initiates the action chart presented in Figure 7-2. First the amount of children 
arrivals for that day are drawn from the amount of  children arrival Distribution.  
 

 

For each child that arrives a care profile, which consists of a multitude of trajectories with varying 
arrival times, needs to be created. This done in the blue, create care profile action block, which 

initiates a sub-algorithm of the daily ChildArrival algorithm, visually presented as an action chart in 
Figure 7-3.  

 
FIGURE 7-2 ACTION CHART DAILY CHILD ARRIVALS 

 
The create care profile sub-algorithm is visually presented as a action chart in Figure 7-3. The child‟s 

trajectories, which arrive at the same moment in time are grouped in one arrival care set as previously 

introduced in chapter 5 and 6. The analysis presented in section 6.2, proved that there is significant 
difference between the composition a child‟s first arrival care set and the care sets assigned to 

previously registered children. This distinction clearly returns in the action chart presented Figure 7-3, 
which distincts separate sub-algorithms for the creation of first and returning care sets. The 

trajectories in the first arrival care set are scheduled directly at the time of child arrival in the relevant 

care system. The createFirstArrivalCareSet sub-algorithm is explained in following sub-section. 
Dependent on the composition of the first arrival care set a binominal distribution is selected to 

determine if the child returns for a second care set. Section 6.5 introduced the limitation and 
complications of determining these return distributions. The made assumptions are defended in sub 

section 7.4.3.  
 

  

 
 

 

If the return drawing determines that the child will return for an additional care set, than a while loop 

is entered. This while loop first initiates the sub-algorithm which draws the return care set  based on 
the sequential care set relations determined in previous chapter. After which, again a drawing of the 

return distributions determines whether the child returns for another additional care set. The selection 

of this distribution is dependent on the accommodation care type of previous care set. The while loop 

Input variable: Daily child arrival distribution. 

Input variable set : Return probabilities (4) 
. 
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continuous until the drawing of the return distributions determines that the child will not return for an 

additional care set.  
 

 

7.3.3 Care set class 

Both the new and return care sets are instants of the same care set class, the difference between 

them lies in the different assignment of trajectories to both. This subsection makes the attributes and 
sub-algorithms of the care set class transparent, followed by a description of the assignment 

algorithms of  both care sets. A representation of the Care set object Class is provided in Figure 7-4.  

 
The child attribute refers to the child who receives the care trajectories embedded in the careSet. 

Each careSet has a accommodation key, based on the mutual exclusiveness of parallel 
accommodation types in a common care set, as defined in sub-section 6.3.1. A care set can hold a set 

of multiple accommodation trajectories of one accommodation care type, referred to as the 
accommodationSet. The set of ambulatory trajectories is referred to as the youthAsstistanceSet. The 

arrival time refers to the simulation time at which the care set state becomes active and at which the 

startCareSetEvent is drawn.  
 

The startCareSetEvent has two functions, it inputs all trajectories on the waiting list of the care 
systems, and it schedules the startCareSetEvent of the sequencing care set with a delay of the 

daysTillNextCareSet variable. The startCareSetEvent of the child‟s first care set is scheduled directly 

after the child‟s arrival time at the care provider. 
 

The care set state transits to active when it has one or more active trajectories in a care system. If all 
the active trajectories of the care set are waiting the care set state is waiting. When there is one 

trajectory in care, the care set state transits to in care. The care set state transits to its final state 

when all of its trajectories finished their treatment.  
 

 
 

FIGURE 7-3  ACTION CHART  CREATE CARE PROFILE 
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7.3.4 First care set drawing 

The intention of this sub-section is to provide transparency in the procedures and dependency relations 

abstracted in the simulation model. The high-level structure of these algorithms is implemented in the 

simulation model by action charts. These action charts provide a clear overview of the sequence of 
procedures in the system, however action charts do not provide insight in exact procedures and data 

dependencies of these procedures. A slightly adapted conceptual diagram is introduced, partly 
inspired by the advantages of IDEF0 diagrams, to make both the sequence of the procedures, the 

data requirements and the conditionality relations transparent. 

 
First care set drawing.  
The procedure of drawing a child‟s first care set is presented in Figure 7-5. The horizontal line 
represent the flow through the algorithms, the vertical down oriented arrows presented the system 

controls or data requirements. The dotted arrows highlight the parallel conditionality relation, 
determined in previous chapter, namely the conditionality between the accommodation care type, the 

amount of accommodation trajectories and the amount of youth care trajectories. The accommodation 

key is used to select the right distribution from the distribution set. The process draws the selected 
distribution, creates the drawn trajectories and puts them in the care set trajectories lists. The 

schedule procedure directly initiates the start care set event introduced in previous section.  

To initialize the first arrival-drawing algorithm the following data source are required 
 
The arrival time of the care sets are scheduled by drawing the return time between this and previous care 

set. This arrival time is used to schedule the startArrivalSetEvent. This event puts the care trajectories 
embedded in the care set on the waiting of the care system with a matching care type.  
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FIGURE 7-5 FIRST ARRIVAL TRAJECTORIES PROCEDURES AND DEPENDENCIES 

Object class CareSet 
  [Attributes: 

  child   (Child) 
 accommodationKey (PZ, RH, DH, NONE) 

 AccommodationSet   (Set<Trajectory>) 

 youthAssistenceSet (Set<Trajectory>) 
 arrivalID  (int) 

arrivalTime  (double) 
 sequencingCareSet (CareSet) 

 daysTillNextCareSet (double) 
 state   (StateChartState) 

  Operations 
StartCareSetEvent event 

 stateChart  StateChart 

FIGURE 7-4 CARE SET OBJECT CLASS 

Input variable: First care set accommodation type  
Input variable set: First care set accommodation trajectory amount (4) 
Input variable set: First care set amount of youth assistance (4) 
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Return care set 
The main difference between a child‟s first care set and return care sets is the influence of sequential 

conditionality between the previous and the new care set. The accommodation key of a previous care 
set has influence on the probability of the new accomodation care type and on the time between the 

arrival of the sequencing and previous care set. The data analysis showed that the probability of more 
than one accomodational trajectories in a returning care set is less than one percent and neglected in 

the DES model. The parralel relation between the accommodation key of a care set and the 

distribution of youth assistance trajectories is also abstracted, in the simulation model. The schedule 
process draws the time between previous care set arrival and the arrival of this care set, further more 

this variable is assinged to the previous care set. The previous care set uses this variabe to schedule 
the arrival of its sequencing careset by a timeout triggered event.   

 

7.3.5 Care system process and trajectory states 

The previous section introduced the care set object class, which drives the trajectory demand 
experienced at the independent care systemss by scheduling the trajectory input. The care system 

class is presented in Figure 7-7.  
 

The trajectories serve as the entities, which flow through the care system flowcharts. Figure 7-8 
introduces the care trajectory class. The match, between the care systems and trajectories, is based 

on their care type attribute. A trajectory is inactive, before it enters the care system flowchart. The 

before introduced distinction between new and returning care demand is translated into two enter 
possibilities, the enterNewInflow and the enterReturnInflow. The distinction between both arrival 

flows is based on the arrivalID attribute of the trajectories arrivalCareSet. The trajectory state transits 
to active as soon as the trajectory enters the queue. The trajectory seizes a resource as soon as its 

turn arrives and there is a free resource available. After which the trajectory flows to the 

selectWithdrawn block.    
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FIGURE 7-6 RETURN CARE SET DRAWING PROCEDURE AND DEPENDENCIES 

 

Input variable set. Return care set accommodation type (4) 
Input variable set. Return care set Youth assistance amount (4) 
Input variable set . Days between sequential care set arrivals (2) 
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Object Class careSystem 
[attributes 
    care Type   (DH, PZ, RH, AH) 
    waiting list<Trajectory> 
    inTreament<Trajectory> 
    ResourcePool<resource> 
  

Operations 
 

 
 

 
 

 
 

] 
FIGURE 7-7 CARE SYSTEM OBJECT CLASS 

 

 

The selectWithdrawn block evaluates if the child has withdrawn the trajectory during the waiting time. 
The withdrawal probability is dependent on the care type and the experienced waiting time, as 

evaluated in section 6.6. The resource is immediately released if the trajectory is withdrawn which 

transits the trajectory state to withdrawn. If the trajectory is not withdrawn, the treatment time is 
drawn and the trajectory is delayed for the drawn treatment time. After which, the resource is 

released and the trajectory state transits to treated. The following data input is necessary to initialize 
each care system process: 

 

 
 

7.3.6 Children states 

The child‟s state is dependent on the state of child‟s care sets. A child turns active when it has an 

active care set. The child‟s state is waiting until it has a care set which receives care. The child turns 
inactive, when it has no currently active care sets and it does have future arriving care sets. The child 

goes to its final state and leaves the system, if all of its care sets are in their final state.  
  

 
Object Class Trajectory 
 
[attributes 
              
              careType                   (DH, PZ, RH, AH)  
              waitingTime               (Double) 
               treatmentTime           (Double) 
              state 

Operations 

] 
 

 
 

 

 
FIGURE 7-8 CARE SYSTEM OBJECT CLASS 

 

Input variable set . Withdrawal mechanisme set (4) 

Input variable set. Treatment Time (4) 
Input variable set. Resource capacity (4)    
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FIGURE 7-9 CHILD STATE CHART 

 

A child‟s state chart provides an individual view of the child‟s current state. The actors in the youth 
care sector are however interested in an aggregated system view. The care provider class therefore 

provides an aggregated view on the children stocks and flows in the system. This process view is 

presented in Figure 7-10. It is in important to keep in mind that this process view provides an 
overview of the children flows and does not steer those flows.  
 

 

FIGURE 7-10 PROCESS VIEW CHILDREN STOCKS AND FLOWS 
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7.4 Model Quantification 

The explanatory value of a simulation model is among other influences, dependent on the accuracy or 
reliability of the input data, also referred to as the “garbage in garbage out” principle. This section 

attempts to create insight into the process of transforming the available data and system knowledge 
into relevant, accurate and reliable input data. 

7.4.1 Methods and techniques to quantify input parameters 

The general techniques, methods and consideration used during the model initializing process are 

briefly described in this section to make the body of knowledge embedded in the actual quantification 
decisions, which are presented in Appendix D, explicit.  

 

Quantification sources and methods 
Different information sources and methods to provide the necessary input quantification for the 

simulation model are available. A main distinction is be made between historical data sources and 
other methods as visualized in Figure 7-11. 

 

In general, historical data is used when relevant, reliable and accurate data is available. The reliability 
and completeness of the historical data sources needs to be checked. Therefore, it is desirable to 

involve field experts in analyzing and collecting the historical data. In this research, field experts of 
INITI8 collected the historical data. Furthermore, if the data is as sensitive as in the youth care sector, 

it is important to use objective measurement methods during the data analysis as much as possible. If 
there is no relevant historical data available to quantify the input parameters accurately, other 

methods are required. These methods involve expert estimations, parameter calibration and drawing 

analogies from similar systems. 

Constants and distributions 
For each input variable, the decision needs to be made whether to abstract it into the model, by a 
constant or a distribution, based on the observed or expected variance in the variable as presented in 

Figure 7-12. Wild (2006) defines: 
 

Constant. An experimental factor or quantity that does not vary or that is regarded as invariant in the 

specified circumstances.  
Distribution. A pattern of variation in an experimental factor or variable.  
 
Empirical and Theoretical distributions.  
The distinction between empirical versus theoretical distributions is between the variation we see in 
available or collectable data sources and the imagined potential variation in the process in which this 

variability arises, as presented in Figure 7-13.  

 
Empirical distribution: refers to the empirical frequency of the variables, it contains the variation that 

is directly observed in the dataset (Wild 2006). Empirical data from the real world is transferred to a 

Historical data 

available

Historical data

Expert estimations

Parameter calibration

Analogies of similar systems

Yes no

 
FIGURE 7-11 INPUT QUANTIFICATION DATA SOURCES 
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FIGURE 7-12 OVERVIEW INPUT VARIABLE, CONSTANT 
AND DISTRIBUTION. 
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histogram. This histogram is used to form an empirical distribution; the input values are periodically 

drawn from that distribution. There is no inferential component just a description of what exist in the 

data .  
 
Theoretical distribution. A theoretical distribution, tries to learn wider lessons from the variation seen 
in the current data set. The unexplained variation is perceived to be generated by a theoretical 

distribution, which defines the probability in the model and replaces the experimental data.  

 

 
FIGURE 7-13 VARIATION IN EMPIRICAL AND THEORETICAL DISTRIBUTIONS (WILD 2006) 

 
The perceived difference between the explanation value of theoretical and empirical distributions is 
explained by the difference between the variation in the real world and the variation captured in a 

data set of this real world. The variation seen in data comes from, the real variation in the system 

under investigation and from the inevitable overlaid of additional variation induced by the 
observational process, as presented in Figure 7-14.  

Now the difference between the nature and explanation of empirical and theoretical distributions is 
explained, the question arises when either of the distribution should be used. The choice between 

both distribution types is dependent on the imagined real world variation, the available data sources, 
the size of the dataset and the model context. The following guide lines are used to chose between 

both distribution types: 

 
Empirical distribution. An empirical distribution can only be used, if there is a data set available. The 

advantage of the method is that it is straightforward and will strongly resemble the observed system 
data, as drawn values are directly based on the observed frequencies. A disadvantage is the 

incorporation of variation induced by data collection and the possible discrepancy between the 
possible real world variation and the variation captured in the dataset. The impact of these 

disadvantages is a result of the quality and size of the available data sources. An advantage of 

empirical distributions is the ability to automate the initializing process from the dataset to input 
sheets.  

 

 

 
FIGURE 7-14 DIFFERENCE IN REAL VARIATION AND DATA VARIATION(WILD 2006) 
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Theoretical distribution. This method can be used both, if there is no data available or if a theoretical 

probability distribution corresponds to the empirical probability distribution. If there is no data 

available a theoretical distribution can be used, based on the knowledge of experts estimations about. 
If there is data available and a theoretical distribution corresponds to the empirical probability 

distribution, then a theoretical distribution can replace the experimental data. An advantage of a 
theoretical distribution is the ability to change it for the analysis of different scenarios. Furthermore, a 

modeller can decide to use a theoretical distribution if he assumes that the inevitable overlaid of 

additional variation induced by the observational process of data collection has a large impact on the 
empirical distribution. The quantification of the care provider model input parameters are described in 

Appendix D. 
 

7.4.2 Parameter calibration 

Previous sub-section introduced the techniques to quantify input variables not quantifiable by the 

available historical data. This section describes the technique of parameter calibration: 
 

Parameter calibration is the task of adjusting an already existing model to a reference system. This is 
usually done by adjusting the (internal) parameters of the model according to the input-output sets of 
the reference system (Hofmann 2005). 
 
The adjustments done by parameter calibrations are necessary because truly reliable data is not 

available and models are based on abstractions, idealizations and many disputable assumptions. The 
practical importance of calibration is controversial, critical remarks on calibration with respect to 

validity where found in Hemez (2004). Despite of these qualifications, the importance of model 

calibration for practical work is highlighted in many publications. Hofmann (2005) provides an 
overview of these publications. The calibration process, which exists of the adjustment of model 

parameters according to the reference system, can be done by hand or automated by an optimization 
experiment. The following description of simulation optimization is proved by April and Glover et al. 

(2008): 

 
“The optimization of simulation models deals with the situation in which the analyst would like to find 
which of possibly many sets of model specification (i.e, input parameters and/structural assumptions) 
lead to optimal performance. In the area of design of experiments, the input parameters and 
structural assumptions associated with a simulation model, are called factors. The output performance 
measures are called responses. In the world of optimization, the factors become decision variables 
and the responses are used to model an objective function and constraint. Whereas the goal of 
experimental design is to find out which factors have the greatest effect on a response, optimization 
seeks the combination of factor levels that minimize or maximize a response (subject to constraints 
imposed on factors and/or responses)” (April, Glover et al. 2008). 
 
Optimization in the context of model calibration seeks to minimize the difference between the output 

of the simulation model and the empirical data of the reference system. Commercial implementations 
of simulation optimization procedures have only become practical, with the exponential increase of 

computational power and the advance in meta heuristic research (April, Glover et al. 2008). Figure 
7-15 shows the black-box approach to simulation optimization favoured by procedures based on the 

meta-heuristic methodology. In this approach, the meta-heuristic optimizer chooses a set of values for 

factors (or decision variables) and uses the responses generated by the simulation model to make 
decisions regarding the selection of the next trail solution. 

 
FIGURE 7-15: BLACK BOX APPROACH TO SIMULATION OPTIMIZATION 
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Following subsection describes among techniques the use of automated and manual parameter 

calibration in order to fill in the input parameters, which are left blank by the available data sources.  

7.4.3 Calibration number of care sets.  

The analysis of the number of care sets assigned to each child is hampered by the relatively small 

time span of the historical data in, relation to the trajectory treatment times and the time between 
care set returns. The available data set, with a time span of two years, is perceived too small to 

overlap the total life cycle of children in the care provider system. It is possible to count the number 
of care sets assigned a child over the year data set. However, the two year time span does not allow 

to accurately determine the total amount care sets assigned to the children. It is likely, that the 
counted receive care sets before or/and after the two year data span, which has a large impact on the 

reliability and accuracy of the analysis. An accurate analysis requires the distinction between new and 

returning children, which require the use of a significant part of the available time span as system 
memory. This would further decrease the time span of counted child returns. As described in detail in 

section 6.5.  
 

The previously presented Figure 7-11, provides an overview of alternative data sources if historical 

data is not available. The suitability of both optimization and expert estimations are considered. In 
general, a major problem related to expert estimation as a data collection method is the reliability and 

accuracy of measurements. Even for experts, it is usually difficult to estimate averages, minimum and 
maximums of observed variables. Estimating an accurate and reliable of the perceived distribution, for 

the amount care set a child variable, is impossible. Therefore, the decision is made to derive the 
amount care set returns by a calibration strategy, the outcomes of the calibration can be validated by 

experts.   

 
Optimization and assumptions 
The optimization experiment optimizes the difference between the average output of the process, 
which transforms the child arrivals into the system to the trajectory care demand at the different care 

providers, and the average of the empirical trajectory arrivals of each care type over 2008 and 2009. 

This approach, based on the average arrivals above the dynamic behaviour of the systems, is based 
on the assumption that the care provider system is in a steady state situation. An important 

assumption, which forms the basis for the optimization experiment, is the assumption that the 
empirical behaviour in child and trajectory demand is the result of system variance, not of structural 

demand changes. This assumption is based on the conclusion of section 6.1, which analyzes the child 

and trajectory inflow behaviour. The optimization process requires making founded assumptions about 
the model structure and the dependency relations in the system. These assumptions, the objective 

function, the experimental set-up and the results of the optimization are presented in appendix D.2.  
 

7.4.4 Interrelations queue and withdrawal mechanism 

The queue mechanism and the withdrawal are not quantified yet. This section provides insight into 
the difficulties to calibrate these two unknowns. The experienced difficulty is a result of the 

interrelations between both unknown mechanisms. 
 

 Figure 7-16 provides a visual overview of the interrelations between these mechanisms and their 
influence on the system behaviour. The yellow boxes present the two mechanisms, the grey boxes 

present an overview of the independent variables and the white boxes are the variables influenced by 

these relations. It should be noticed that independency of the outflow is a simplification; the outflow 
can be influenced by the waiting list if the sum of the inflow and the waiting list is smaller than the 

available capacity places. 
 

Based on the Figure 7-16, it becomes clear that the queue mechanism indirectly influences the 

number of withdrawals, the waiting lists and the average waiting time by directly influencing the 
individual waiting time distribution. 
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7.4.5 Withdrawal curves 

Figure 7-17 provides a graphical representation of the found withdrawal percentages, as a function of 
the waiting time intervals, for ambulatory trajectories. The blue dots visualize the calculated interval 

percentage for each interval. The plot visualizes a scattering of the data points. This scattering is 

arguably due to the low frequency of measurements. Especially the intervals with long waiting times 
(above 300 days) are hampered by low frequencies. These low frequencies hamper the reliability of 

those data points. the histogram of the frequencies of each waiting interval is presented at the right in 
Figure 7-17 

 

The question remains what the best abstraction is for the withdrawal mechanism in a purposeful DES 
model. The scattering of these data points suggest the best fitting distribution would be an inverted S-

curve, however the data points which suggest this S-curve are likely to be biased by the low 
frequencies over those interval and the expected reality is however a more asymptotic tailing, which is 

also abstracted in the SD model. The cumulative line in the histogram shows that 97% of all children 
waits less than 300 days, therefore the impact of tail shape after the inflection point is considered 

neglect able. Furthermore, a large impact of the first interval on the system behaviour is expected 

based frequencies. It could even be defended to subdivided the first interval daily intervals for an 
optimal withdrawal abstraction in further research. 

 
A first indication of the withdrawal curve is made by an analysis in excel. First, the best fitting 

logarithmic trend line to all observed data points and to the data points with an interval lower than 

300 are defined. These two trend lines bound the set of possible withdrawal curves and are presented 
by the black and blue line. A manual calibration experiment with the simulation model for a set of 

possible withdrawal curves, which fall in between the range of the two previously introduced trend 
lines, is performed to find a valid withdrawal function. The calibration objective of these experiments 

is to minimize the difference between the amount of withdrawals observed in the simulation model 
and the amount of withdrawals observed in the real system. First broad calibrations are validated on 

average values, later detailed calibrations are validated by chi-square test statistics. The red line in 

Figure 7-17 presents the initial withdrawal curve for ambulatory care used as basis for the initial 
experiments of each queue mechanisms. The initial withdrawal graphs for the other care types are 

presented in appendix D.6, the validation of these withdrawal functions is presented in the following 
chapter. To avoid negative withdrawals in the simulation model the amount withdrawals is 

implemented into the simulation model by a minimum between the minimum interval value and the 

withdrawal curve.  
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FIGURE 7-16 QUEUE AND WITHDRAWAL MECHANISM INTERRELATIONS 
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FIGURE 7-17 CALIBRATION WITHDRAWAL GRAPH FOR AMBULATORY CARE 

7.4.6 Queue mechanism assumptions and experiments 

While there is data available to provide an indication of the withdrawal mechanism, there is no insight 

in how the queue mechanism should be abstracted in the discrete simulation model. Previous section 
provides insight into the interrelations between the withdrawal mechanism and the queue 

mechanisms. Based on these difficulties and the lack of insight into the withdrawal distribution, a basic 

approach is chosen which tests three commonly used queue mechanisms. The withdrawal graphs of 
each of this basic queue mechanism will be calibrated, after which all three mechanism can be cross-

validated. The following queue mechanisms are considered: 
 

 First in, first out 
 First in, first out, with priority category: crisis and normal, 15% percent of the trajectories of 

every care type is considered a crisis trajectory with priority.  

 Service in random order 
 

While these basic queue mechanism are completely based on assumptions, the cross validation 
provides insight in the best abstraction of the queue mechanism based on the average waiting time 

and the distribution of waiting times. Furthermore, it allows comparing the best possible DES model in 

current situation with the currently used SD model and a research direction for future studies.  

7.4.7 Care provider input variables 

The Previous section, demarcated the model logic and input variables the care provider model. The 
conditionality relations, analyzed in previous chapter, result in a large amount of care set composition 

input variables. These variables are abstracted in the model by empirical distributions. Empirical 
distributions allow model initialization from an input spreadsheet. The input sheet provides the ability 

to oversee the care set dependency matrixes and to fill the input sheet directly from the data set, 
which increases the models flexibility and makes initialization less prone to input errors. The input 

sheet is presented in appendix D.3 The columns and rows of the distinct matrixes refer to the 

accommodation type and care type dimension in the simulation model. The matrix columns present 
the dependency categories, the rows the observed frequencies of each category. The simulation 

model creates a different empirical distribution for each dependency category of each matrix. In total 
sixteen empirical distributions are created from the data in the care set input sheet.   

 

In addition to the empirical distributions loaded from the input sheet, seven care provider input 
variables are abstracted by a theoretical input distribution. An overview of those input variables and 

the theoretical distributions is presented in Figure 7-18. The first column presents the input variable, 
for dependent layered variables the variable of influence is presented in the second column, the third 
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columns presents an overview of the different categories, the fourth column the chosen theoretical 

distribution and the fifth column indicates the appendix in which the distribution choice is justified.   
 

FIGURE 7-18 CARE PROVIDER THEORETICAL INPUT DISTRIBUTION 

Input Variable Dependent on Categories Distribution Unit Appendix 

Dailey 
children 
arrivals 

  
-0.5 + 13 * BETA(0.701, 

2.64) 
child D.1 

Return after 
care set 

probability 

Accommodation 
type 

none Bernoulli(0.637)   

D.2 
DH Bernoulli(0.436)   

PZ Bernoulli(0.772)   

RH Bernoulli(0.637)   

Time 
between care 

sets 

Accommodation 
type previous 

cares et 

PZ 0.5 + EXPO(4.27) months 

D.4 

No PZ 0.5 + EXPO(3.3) 
months 

 

As extensively discussed in both the SD and discrete conceptualization, a care provider exists of 

multiple care systems with the same structure. A different care system layer exists for each care type 
a care provider provides, the difference between those layers lies in the different quantification of 

constants and distributions. Figure 7-19 presents an overview of the inputs for these variables; each 
row presents a care system, each column an input variable. The last row present a reference to the 

appendix in which the quantification is justified.  

 
FIGURE 7-19 CARE SYSTEM INPUT VARIABLES 

7.5 Conclusions specification 

This specification describes the abstraction and quantification of the care provider and as such 
presents an answer to the fifth research question. The discrete conceptual model is simplified and 

translated into an AnyLogic simulation model. AnyLogic is chosen as simulation software because it is 
java based, which is an object-oriented language, and because it enables the modeller to mix process 

oriented flowchart and dynamic state chart elements. 
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The input variables are where possible quantified by an analysis of the gathered care provider data. In 

absence of reliable quantification data, an alternative quantification method based on model 

calibration is applied. A calibration difficulty appeared due to the interrelation of the unknown queue 
mechanism and the not clearly known withdrawal curves. It became apparent that the chosen queue 

mechanism, in a system with waiting time dependent withdrawals, is likely to influence not only the 
individual waiting time distribution but also the average waiting time. 

 

Based on this knowledge and the unknown queue mechanism, the DES simulation model is cross-
validated for three different queue mechanisms: FIFO, FIFO with priorities and SIRO. These 

experimental set-up provides a method to validate the model and provide additional insight into the 
impact of different queue mechanism on the youth care system behaviour.   
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Chapter 8 

Ch8 Treatment, Verification and Validation 
The conceptualisation and specification stages resulted in a simulation model that is ready to run. 

Now the model must be prepared to make certain statements about the outcome of the model and 
the corresponding of these outcomes to reality. The simulation model is build with respect to the 

study objectives presented in the second chapter and its creditability is judged with respect to the 

demarcated study objectives. First, the experiment specific treatment of the simulation model is 
determined, after which the correspondence of the simulation with both the conceptual model and the 

real world is tested by the verification and the validation. 

8.1 Treatment 

The care provider system is non-finite system. A non-finite system has a once only start situation and 
can continue indefinitely. It starts in some state but it is not known at forehand if the simulation will 

ever be in that state again. The run length of non-finite system in is not uniquely specified. Before we 
can experiment with the simulation model, first the experiment-specific treatment characteristics must 

be determined. The treatment constitutes of the system start-up time, the required run length of a 
simulation experiment and the amount of replications required to find statistically accurate outcomes.  

8.1.1 Start-up time 

The simulation starts with empty queues and idle resources in the care systems. These conditions 

differ from the real world condition, which has filled queues and occupied resources. It takes time 

before the simulation model reaches the steady state conditions to be analyzed. If this transient 
model condition lasts for a relatively long time, than the observations collected during this time may 

affect the accuracy of the estimated performance measures. This problem is referred to as the 
initialization bias or the start up problem. This problem can be overcome by running the simulation for 

a start-up time; the statistics of this period are not recorded or reset. After this time, the recording of 
observation starts for the run length of the experiment. The objective of this section is to determine 

the time at which the effects of the start-up conditions on the system behaviour have become 

negligible. 
 

A possible method for graphically determining a model start-up time is by plotting the progressive 
average of the values of the important output variables against the elapsed simulation time (Mahajan 

and Ingalls 2004). Once the fluctuations in the progressive average have decreased to an acceptable 

value, the start-up time has elapsed and the statistical observations of the model can start. 
 

Output variable selection 
The important output variables to plot are select with respect to the study objectives, the previously 

demarcated performance indicators are; waiting time (wk) and production.  As presented in the 

second chapter, the waiting time and the production can be analyzed on the child and trajectory 
information layer. It is important to recognize the structure, which can be decomposed to the care 

provider child layer and the four independent trajectory care systems.  
 

Intuitively, a start-up time analysis on the child layer combines the start-up time of the independent 
sub-systems, which steer the child layer. However, there is a risk to this approach, the child layer can 

stabilise before the behaviour of a care system stabilises if this care system does not have a large 

influence on the child layer behaviour. Because both the performance indicators on the child layer and 
from the independent sub-systems is of interest, a child layer focus could results in an invalid start-up 

time assessment. Based on these insights the decision is made to analyze the start-up time for both 
the child layer and for the care system with the longest average treatment, which is foster care (PZ). 

The maximum start-up time is considered the system start-up time. 

 
The average waiting times before starting care and the monthly outflow of treated children and 

trajectories are graphically analyzed. The results for a single simulation run is presented in appendix 
E.1 The black line in each graph presents the smoothed average over a period of two years. The 

outflow of both treated trajectories and children stabilises in less than eighty months. No clear 
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stabilisation moment is found for the average monthly waiting times of both children and trajectories. 

The author argues that this lack of stabilisation is due to system variance. In order to determine the 

start-up time of these performance indicators taking into account the observed variance, the dynamic 
sensitivity chart of 100 simulation runs, with a random seed, is graphically presented in appendix E.1. 

The weighted average over two years, for both children and foster care trajectories, stabilises in 100 
months. In order to keep the months in the simulation run congruent a start-up time of 108 months, 

which is 9 years, is considered.  
 

8.1.2 Run length 

The run length is the amount of simulated time used to conduct observations of the model. In 

contrast to the other two treatment characteristics, there are no general methods to determine a 

correct run length. A rule of thumb is to take three times the longest cycle time that occurs in the 
model as the run length. Analyzing the longest cycle time on the trajectory layer it is observed, that 

the maximum foster care cycle time observed over a run of 10.958 months is 4.918 days, which is 
13,7 years. The study objectives are to provide insight the currently observed waiting list dynamics 

and to evaluate the impact of short to middle long-term (2-5 years) policies on the waiting list 

dynamics. With respect to these objectives, a long run length (<10 years) is potentially confusing for 
the actors and stakeholders in the youth care sector. Furthermore, based on the extremely long 

children cycle time in the system, a set-up in which several sub-runs are made in a long simulation 
run is undesirable. The independency of sub-runs cannot be guaranteed. Taking into account that the 

confidence interval is determined by a combination of the run-length and the number of replications, 
and the long warm-up time a relatively long run length is chosen to minimize the number of 

replications (and warp-up time). Therefore, a then year run length is applied in the experiments. 

Furthermore, possible bias of a then years run-length on the waiting time and outflow distributions is 
considered low, based on the 9-year start-up time and the observed waiting time sensitivity graph 

over a run length of 20 year presented in appendix E.1. Furthermore, no rarely occurring events with 
a critical impact on the system behaviour are distinguished in the previous specification chapter. 

Based on these considerations a then year run-length is considered able to gather a representative 

sample of the output variables and large enough number of results in all categories to calculate 
statistics with the desired accuracy.  

8.1.3 Number of replications 

Because of the stochastic distributions used in the simulation model different outcomes can occur 

within every run, as a function of the random seed numbers. Therefore, multiple replications with 
different seed values have to be performed to get accurate results within a certain confidence level. 

The confidence interval for 100 replication runs, with a FIFO queue mechanism, is analyzed for the 
performance indicators at the independent care systems and at the child layer.  
 

FIGURE 8-1 REPLICATION CONFIDENCE INTERVAL 

 

Observed  waiting time (wk) 
statistics: 100 replications 

 
DH PZ RH AH Child 

t0.025 1.984 

    13,23 4,86 12,9 6,8 6,36 

S(x) 3,07 1,36 2,075 0,667 0,55 

S(  ) 0,31 0,14 0,20 0,066 0,055 

h 0,6084 0,268 0,41 0,132 0,108 

 

 

8.2 Verification and validation methodologies 

Now the model is specified and the model treatment is formulated, the model correctness can be 
checked. Model verification and validation is concerned with the questions whether a model and its 
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results are correct. The model verification ensures that the model has been correctly coded and 

transferred from the conceptual model to the computerized model (Sargent 2004). Model validation is 

the substantiation that a computerized model within its domain of applicability possesses a 
satisfactory range of accuracy consistent with the intended application of the model (Sargent 2004). If 

the purpose of a model is to answer a variety of questions, the validity of the model needs to be 
determined with respect to each question. 

 

Verification and validation is not a phase or step in the model development process but a continuous 
activity throughout  the whole process (Balci 1997). Different phases of model verification and 

validation and the relation of those phases to the modelling process are depicted in Figure 8-2.  
 

 
 

 
FIGURE 8-2 VERIFICATION, VALIDATION AND THE 

MODELLING PROCESS 

Conceptual model validation is defined as 
determining that the theories and assumptions 

underlying the conceptual model are correct and 

that the model representation of the problem 
entity is reasonable for intended purpose of the 

model.  
 

Data validity  is defined as ensuring that the data 

necessary for model building, model evolution and 
testing, and conducting the model experiments to 

solve the problem are adequate and correct.  
 
Computerized model verification is defined as 
assuring that the computer programming and 

implementation of the conceptual model is 

correct.  
 

Operation validation is defined as determining that 
the model‟s output behaviour has sufficient 

accuracy for the model‟s intended purpose over 

the domain of the model‟s intended applicability. 

8.3 Conceptual model validation 

This section validates the discrete conceptual model presented in chapter 5. The discrete conceptual 

model is based on the structure of the currently used SD model; however, major difference occurred 
when translating the aggregated influence relations and concepts to a model based on individual 

entities. While for both conceptual models the care system structure is comparable, differences occur 

in the coupling concept between the child and trajectories and in the transition of child‟s states. 
 

Because the coupling between children and trajectories in the SD model is based on influence 
relations, the inflow of children influences the inflow of trajectories and the outflow of trajectories 

influences the outflow of children. The individual coupling between children and trajectories in the 

discrete model requires the coupling between individual children and trajectories. This individual 
coupling between care sets and trajectories is made by the care set objects. The care sets are 

heterogeneous and composed by parallel and sequential relations. Another conceptual difference can 
be found in the abstraction of child returns. The SD model abstracts the probability and return time of 

children as conditional to the type of outflow; withdrawn or treated. The discrete model abstracts the 
return of children conditional to the trajectory composition of their previous care set. This abstraction 

is chosen because it enables the modelling of overlapping care sets. The SD conceptual model does 

not distinct different states of children in the system, the discrete conceptualization disaggregates the 
children in the care system according to the state of their trajectories. 

Domain experts, the consultants of INITI8 who designed the SD model, face validated the discrete 
conceptual model with a focus on the differences that occurred in comparison to the SD 

conceptualization. 
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8.4 Calibration and validation data 
Calibration and validation, although conceptually distinct, is conducted simultaneously in the modelling 

process. Together calibration and validation form an iterative process of comparing the model to the 

real system data, adjusting the model and comparing again, and so on. A criticism of the calibration 
process is that the model has been validated only for the one data set used. Just because the model 

can be made to fit past data does not guarantee that it will fit future data (i.e., data that has not been 
employed in the calibration process) (Zeigler, Praehofer et al. 2002). In other words, there is no 

guarantee that parameter assignments that results in best fits actually lead to credible predictions. 

One way to alleviate this criticism is to reserve a proportion of the original system data for the final 
stage of validation. The model is than calibrated by one part of the data and validated by the other 

part  (Banks 1998). 
 

The available data sources describe the monthly flow and levels in the system over 2008, 2009 and 
the first 5 months of 2010. In total, there are 29 observed data points for each stock and flow 

category. When deciding to subdivide the data in two samples, one for calibration and one for 

validation, it is important to take into account the expected confidence interval of the mean ofr the 
two data sources data. However the comparison is not as simple as it might appear, since the output 

of the care provider systems are non-stationary (the distributions of the successive observations 
change over time) and auto correlated ( the observations in the process are correlated with each 

other) (Law and Kelton 2000). The classical approaches to calculate confidence intervals require 

independency of data and are not applicable for auto-correlated data. The sample mean is still an 
unbiased estimator; however the sample variance will have a negative bias and is no longer an 

unbiased estimator. The determined confidence interval of an auto-correlated sample based on the 
sample standard deviation is likely to by significantly smaller than the distributions real world variance. 

The 95% confidence interval of the mean queue length based on the sample standard deviation is 
presented in  

Table 8-1. 
 
 

Care type mean Lower bound upper bound 

AH 79,93 71,54 88,3 

DH 37,90 34,49 41,30 

PZ 352,97 334,84 371,09 

RH 28,2 26 34,4 
 

TABLE 8-1  THE 95% CONFIDENCE INTERVAL FOR THE MEAN QUEUE LENGTH (TRJ) OF THE HISTORICAL DATA. 

 

The found 95% confidence interval of the mean queue length of the observed data value influences 

the reliability of the model validation and therefore model outputs. The confidence interval of the 
available data, assuming that there is no auto correlation is large, subdividing the data to two samples 

would make the confidence interval even larger and is therefore non-applicable in the context of 
current research. To increase the predictive validity of the model, the sensitivity to various 

perturbations of the calibrations parameters will be assessed. In general, it is recommended to INITI8 

to increase the amount of data points of validation set. In practice there are limitations to this 
recommendation, increasing the time span of the validation set with multiple years will probably bias 

the validation because the real world system is not stationary over such time spans. Lowering the 
measures unit to weeks is likely to results in an increased cross-validation of the data source. In 

conclusion, non-finite systems, with long operation and entity cycle times, such as the youth care 
sector, face large difficulties with respect to their validation data. Consequentially, the credibility of the 

system needs to be validated by subjective methods as described in preceding sections. 

 
Another data limitation is observed in the availability of trajectory waiting times. In the context of this 

research the disaggregated distribution of trajectory times is unknown, only the aggregated mean and 
median statistic are known. Furthermore, the children waiting list and waiting time are not measured 

in the considered management data.  
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8.5 Verification 

The verification is subdivided in two parts; specification verification and the implementation 
verification. The specification verification refers to the translation of the conceptual model the 

concepts of the simulation software. The implementation verification assures that the defined 
simulation specification is correctly translated into the simulation model. 

 
The flexibility of the Any Logic software, which includes the ability to combine various simulation 

worldviews, simplifies the specification verification of the conceptual the simulation model. In the 

conceptual model a combination of object oriented class diagrams, process flow charts and state chart 
is presented to make the body of knowledge, in every part of the system, transparent and 

communicable. These methods are all supported in the AnyLogic software. The conceptual concepts 
and diagrams where directly translated into the simulation model.  

 

The implementation verification checks whether the specification concepts are correctly coded into the 
simulation models. Through the modelling process the inputs, internal variable and outputs of each 

sub-model are visualized an analyzed to check the correctness of the simulation model and its 
implementation. The following validation techniques where applied during the model verification 

process (Sargent 2004): 
 
Extreme condition test. The model structure and outputs where tested for extreme and unlikely 

combination of input factors into the system 
 

Operational graphics. Values of all important performance indicators and internal variables are shown 
graphically as the model runs through time to ensure they are abstracted correct 

 

Traces. The behaviour of different types of specific entities in the model are traces (followed) through 
the model to determine if the model logic is correct and if the necessary accuracy is obtained. 

 
Degenerate tests. The degeneracy of the model behaviour is tested by appropriate selection of the 

values of the input and internal parameters. 

 
Input distribution. The main and variance of the input distributions where compared to the mean and 

variance of the historical data to test if the values are correctly generated from the distributions.  
 

8.6 Validation structure 

During the validation phase, we check if the model is correct as compared to reality. The validation 

determines whether the simulation model‟s output behaviour has the accuracy required for the 
model‟s intended purpose over the domain of the model intended applicability. The goal of the 

validation process is two-folded: (1) to produce a model that represents the system behaviour closely 
enough for the model to be used as a substitute for the real system (2) to increase the credibility of 

the model to an acceptable level. Validation is the process by which model users gain confidence that 
output analysis is making valid inferences about the real system (Banks 1998).  

 

The model credibility is increased by a combination of subjective and objective tests. Subjective tests 
use knowledge of the system to make judgements about the model and its outputs. Objective tests 

require data on the system behaviour and statistical procedures to compare aspects of the system 
with the model data. The validation is subdivided in three phases; the face validation, empirical 

assumption testing and quantitative comparison of the model to the historical data. 

8.7 Face validation 

The first goal of the validation is to assure that the constructed models appears reasonable on its face 
to the model users and other who are knowledgeable about the real system simulated. While the 

author recognizes the extreme importance for the modeller to interact with the problem owner and 
domain experts throughout every activity in the modelling cycle and especially during the face 

validation, no possibility was found to include the problem owner INITI8 or its clients in the face 
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validation phase. While the author gained some system knowledge through the modelling process and 

data study, an additional face validation with sector experts is recommended to the problem owner. 

The first sub section visually compares the waiting list behaviour of a single model run to the historical 
data. The second subsection visually the presents the spread of observed waiting list dynamics 

observed over 100 replication runs. 

8.7.1 Single replication run waiting list behaviour 

The waiting list outputs of the real system are compared to a single replication run of the DES model 
configured with a FIFO queue mechanism and to the stochastic configured SD model. Taking into 

account the stochastic nature of the real system and both models a direct quantitative comparison 
cannot be made based on these single replications. A behavioural comparison of a single can provide 

insight into the step size, variability and stability of the models in comparison the real world system.  
 

 
 

 
 

FIGURE 8-3 VALIDATION QUEUE BEHAVIOUR ONE REPLICATOIN 

 

The monthly queue steps created by the DES model look comparable to the real world steps for DH, 

RH and AH. A combination of high frequency peaks and dips and large low frequency steps can be 
distinct.  The behaviour of the PZ system in the DES models looks less stabile in the model run than in 

the real world system. The SD models abstracted the queue behaviour as a smooth line without the 
sharp peaks and sudden direction changes observed in the real world queues. The variability and 

behaviour observed in real world system is better abstracted in the DES model than in the SD model. 
The difference is models is likely to be created by the heterogeneity and individual variability better 

abstracted in the DES model. Its recommended to the problem owner, INITI8,  to validated the DES 

model by performing a Turing test with domain experts. 

8.7.2 Waiting list spread 100 replications 

The variability abstracted in the DES model is visually validated by comparing the spread of 100 

replications runs to the historical waiting list data. This experiment graphically validates if the real 

world observed queue behaviour is likely to be a possible single replication run of the simulation 
model. The experiment is performed with a FIFO queue mechanism and exists of 100 replications with 

a warm-up time of 10 years. 
 

For each care type, the conclusion can be drawn that the real observed records lie in the output space 

of the simulation model. It is important to notice that average waiting list output of the simulation 
model is partly a result of calibration of the withdrawal curves and there for does not increase the 
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validity of the system. However the variability of the system cannot be calibrated, there for the 

credibility of the simulation is increased by the fact that observed data falls insight the possible output 

space of the model. Furthermore, the simulation outputs proof that the observed behaviour in the real 
system is possibly created by variability in a stationary system. This is one of the made assumptions 

necessary to initialize the DES model. 
 

  

  

  
 

The simulation model abstract the average number of children larger than observed in the real world 

system. Most of the real system outputs fall in the output space of the DES model. The DES 
abstraction of one single run looks more stable than the real system. The waiting abstraction is in 

middle of the DES output interval and looks on the face like a realistic abstraction.  

8.8 Empirical assumption tests 
The goal of this step of the validation process is to test the assumptions made during the initial stages 

of the model development quantitatively. A sensitivity analysis is performed to determine if the 

simulation output changes significantly when the values of assumed mechanisms and parameters 
change. Analyzed are the queue mechanism, the withdrawal curves and the return probabilities after 

receiving care.  
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8.8.1 Sensitivity queue mechanism 

The mean steady state of the DES model is compared for three different queue mechanisms in order 
to analyze the sensitivity of the output parameters to the different queue mechanisms. The analyzed 

queue mechanisms are FIFO, Priority with 15% crisis arrivals at each care system and SIRO. For each 
queue mechanism, the outputs of an experiment set up of 100 replications are cross-compared. Each 

replication consists of a 10-year warm-up time and a 10-year simulation length. The relative difference 

between the output parameters of the different queue mechanisms are analyzed based on the mean 
value of these parameters over the experiments. The relative differences for the care systems are 

presented in Figure 8-4, the mean output values are presented in Appendix E.  

 
FIGURE 8-4 CARE SYSTEM SENSITIVY TO QUEUE MECHANISMS 

Figure 8-4  indicates the sensitivity of the flows though the different queue mechanisms are minimal. 
The waiting list and waiting time are sensitive to the queue mechanism. A FIFO queue mechanism 

result in general in the smallest mean waiting list, a Random queue mechanism in the largest. The 
shape of the waiting list distribution does not seem to change however the variability in waiting lists 

increases. The mean waiting time is strongly sensitive, especially for DH and PZ. The shape of the 

waiting time distribution changes, in comparison to FIFO both the priority and random mechanism 
increase the mean waiting time. The priority mechanism results in larger increase of the median and 

there for in a right skewed distribution, the random queue mechanisms results in a small median and 
a left skewed distribution. The resulting distributions for ambulatory care are presented Figure 8-5.  

 

 
The impact of different queue mechanisms on the different care systems is determined. Based on the 

large sensitivity of the trajectory waiting list and waiting time an significant impact on the child layer 

outputs are expected 

  

Base FIFO Priority FIFO FIFO Priority FIFO FIFO Priority FIFO FIFO Priority FIFO

Experiment Priority RANDOM RANDOM Priority RANDOM RANDOM Priority RANDOM RANDOM Priority RANDOM RANDOM

Mean 0% 0% 0% 1% -1% 1% -1% 1% 0% 3% 3% 6%

Median 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

st. deviation 13% -11% 0% -3% 1% -2% -7% 6% 2% 6% -6% 0%

Mean 0% 0% 0% 0% 0% 0% 0% -1% 0% 0% 0% 0%

Median 0% 0% 0% 0% 1% 1% 0% 0% 0% 0% 0% 0%

st. deviation 0% 0% 0% 1% -3% -2% 2% -2% 0% 2% -2% 0%

mean 20% 26% 51% -3% 3% 0% -13% -2% 17% 5% 27% 33%

Median 22% 26% 53% 0% 0% 0% -13% -2% 17% 0% 28% 28%

st. deviation 26% 6% 33% -10% 34% 21% -14% -5% 22% 9% 27% 39%

mean 18% 27% 50% 0% 10% 10% -12% -2% 16% 7% 27% 35%

Median 27% -24% -3% 11% -40% -33% -23% 31% -2% 0% -30% -30%

st. deviation 106% 112% 336% 131% 123% 417% -43% -55% 288% 30% 100% 160%

DH AH PZRH

Withdrawal 

flow

(trj/month)

outflow

(trj/month)

Waitinglist 

(trj)

Waiting 

time

(week)

 
FIGURE 8-5 WAITING TIME DISTRIBUTION AH (WK) 
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Queue 
mechanisms 

 Statistic FIFo Priority Random 

Mean 191 106 182 

Median 189 106 181 

 Stdev.  4,1E+06 1,2E+06 4,7E+06 

 
TABLE 8-2 CHILD LAYER QUEUE LENGTH(TRJ) 

 

Table 8-3 Relative Sensitivity 

children queue length to queue 
mechanism (%) 
 

 
Relative queue length: 

 
FIFO Priority FIFO 

 
Priority Random Random 

Mean -45% 72% -5% 
Median -44% 71% -4% 
stdev -71% 300% 15% 

Surprisingly, the FIFO system results in the longest average child layer waiting lists. Noticeably is the 
large decrease in waiting list when applying a priority based queue mechanism. The child waiting 

time, arguably the most important performance indicator in the sector is analyzed next.  
 

 

 
Waiting time (wk) Relative difference (%) 

   
FIFO Priority FIFO 

Percentile FIFO Priority Random Priority Random Random 

Min 0 0 0 0% 0% 0% 

25% 5 2 1 -56% -46% -76% 

median 7 7 3 3% -50% -49% 

75% 8 9 8 10% -8% 1% 

Mean 7 6 6 -6% -3% -9% 

max 49 64 234 30% 267% 377% 

<9weeks 88% 79% 78% -9% 0% -9% 

 
The mean child waiting is not sensitive the queue mechanism, the individual child waiting time 

distribution is.  

8.8.2 Sensitivity withdrawal curves 

The abstraction and calibration of the withdrawal curves into the simulation model is described 
previously in section 6.6 and in sub-section 7.4.5 A trend line through a set of scattered data points 

implements the withdrawal curve into the simulation model. The validity of some of these data points 

is small due to a low frequency of children in the long waiting time intervals. The withdrawal curve is 
calibrated in between the boundaries of the observed data points, to mitigate this implementation risk. 

A sensitivity analysis is performed to test the impact of small changes of the withdrawal curve on the 
system behaviour. For each care type the withdrawal curve is decreased by 10%, the resulting 

percentages of change of the average withdrawal flows and the queue lengths are presented in Table 

8-4. The base case and the experimental run are calibrated with a FIFO queue mechanism. 
 

TABLE 8-4 SENSITIVITY WITHDRAWAL CURVE 

Variable DH AH PZ RH Child 

Withdrawal curve -10% -10,0% -10,0% -10,0%   
Withdrawal flow 
(trj/month) -2,6% -2,8% -0,3% -3,0%   

Queue length (trj)/(child) 12,0% 8,6% 7,7% 2,4% 7,5% 

Waiting time(wk) 11.2% 9.9% 12.4% 8.2% 9.9% 

 

In conclusion, the withdrawal flows and queue lengths are stable to changes in the withdrawal curve. 
The change in queue lengths and waiting times are proportional to the change in withdrawal curve. 

When calibrating the withdrawal curve it is necessary to optimize both the withdrawal flow and the 
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queue length. Basing the analysis purely on the withdrawal curve is likely to lead to significant 

discrepancy in queue length. 

8.8.3 Child return probabilities 

Because the distribution of the number of sequencing care sets a child was not determinable with the 
available data sources an alternative approach was used to specify to model, as elaborated on in 

section 7.4. The children return behaviour is implemented to the model, with a conditional return 

probability dependent on the accommodation type of the previous care set. The values of these return 
probabilities where determined by a calibration experiment. This section evaluates the sensitivity of 

the simulation model to these return probabilities in order to provide further inside into the 
conditionality relations and to determine the value of risks embedded in the made assumptions. 
 

Important to note is the difficult interaction of the different care system in relation to these return 

probabilities. While the return probability is dependent on the accommodation type of previous care 

set the accommodation type of the returning care set depends on the sequential care sets relations. A 
change in one of the return probabilities could have impact on each of the care systems. 

 
A set of experiments is performed to increase the insight and understanding into these mechanisms. 

The model outputs of a base case run are compared to a set of experimentation runs. The 

experimentation runs are initialized with a 10% increase in comparison to the base case of one of the 
independent return probability variables. The resulting change in output variables is normalized to the 

base case outputs for each experimental run. Table 8-5, presents the normalized experiment outputs.  
 

  
Independent variable: return probability 

 
Dependent variable DH+10% PZ+10% RH+10% AH+10% 

DH 
Inflow (trj/month) -0,8% 1,1% 1,1% 16,0% 

Queue length (trj) -1,9% 7,9% 7,9% 135,5% 

PZ 
Inflow (trj/month) 0,4% 0,6% 0,6% 24,5% 

Queue length (trj) 7,7% 12,4% 3,7% 201,5% 

RH 
Inflow (trj/month) 0,6% 1,2% 0,2% 20,7% 

Queue length (trj) 2,0% 1,7% 1,7% 132,0% 

AH 
Inflow (trj/month) -0,6% 0,1% 0,1% 17,7% 

Queue length (trj) 0,5% 1,9% 1,9% 131,6% 
TABLE 8-5 SENSITIVITY RETURN PROBABILITIES 

 

Each care system is highly sensitive to the return probability after a care set which exist solely of 
ambulatory care, due to their high frequency. The sensitivity to the other return probabilities is low. 

This test provides a first indication that the model structure can be simplified by using the same return 
probability after every care set.  

8.8.4 Conclusion empirical assumption tests 

The queue mechanism of a care system has a large impact, not only on the distribution of waiting 

times, but also on the average waiting time and queue length of the trajectories in that care system. 
The children waiting list length and the mean waiting time is not sensitive to different queue 

mechanisms. The distribution of individual waiting times is sensitive to the queue mechanism. It can 

be concluded that more insight into the queue mechanism is required in order to make quantitative 
predictions with the DES model. 

 
 The care systems are not sensitive to changes in the withdrawal curves, the calibrated withdrawal 

curve calibrated on the available data is considered accurate enough for the modelling purpose.  

 
The system is sensitive to the withdrawal probability after care sets, which solely exist of ambulatory 

trajectories due to high frequency of these care sets into the system. The system is not sensitive to 
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the withdrawal probabilities after care sets with accommodation care. Based on this insight, it is likely 

that system simplification to one return probability independent of the care type will have a low 

impact on the system accuracy.  

8.9 Quantitative validation 
The most definitive test of a simulation model‟s validity is establishing that its output data closely 

resemble the output data that would be expected from the real world system. If the two sets of data 
compare with the accuracy required for the indented model purpose then the model is considered 

“valid”. Validated are the process that determines the care set composition, the trajectory and the 

child layer.  
 

8.9.1 Trajectory and care set composition 

This section validates the process that creates a child‟s care profile when a child arrives. The process 

is dependent on the abstracted parallel relations in care sets, the sequential relations between care 
sets and the conditional return probability after a care set. As described in previous chapter the 

parallel and sequential relations are quantified with the help of observed data over 2009. The return 
probabilities are quantified by a calibration experiments, which optimize the average monthly 

trajectory arrivals at the four care systems over 2008.  The model view is based on disaggregated 

individual care sets that assign trajectories to individual children.  The validation takes a helicopter 
view by comparing the resulting aggregates from the model with the aggregates from the real system 

observed over 2009. The care type division, the distribution of the number of trajectories a care set 
and the distributions of ambulatory trajectories a care set are cross-compared with real system. The 

abstraction of the care set composition in the SD model is cross-compared to the DES model and the 
observed real world data. While the care set composition is an output of the disaggregated DES 

model, it serves as an input for the aggregated SD model. The composition of care sets in the DES 

model is not related to the state of the system, therefore no warm-up time is considered. A run length 
of 10 years assures enough child arrivals to derive a statistical significant result. 
 

      
 

 
 

FIGURE 8-6 VALIDATION BAR CHART CARE SET COMPOSITION 

 

The SD model does not make a distinction between the composition of new and return care sets. Chi 

square tests are performed to check if there is a significant difference between the care set division in 
the real world and both models. The test statistics are presented in Table 8-6, all statistics are above 

the 0.05% significance level and therefore not significantly different than the real deviation. The 
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deviation of the SD model scores better for care sets assigned to new arrived children, the DES 

models scores higher for returning children.  
 

TABLE 8-6 CHI-SQUARE STATISTICS CARE SET COMPOSITION 

 
Chi square statistic 

Arrival 
type DES SD 

New  0,41 0,75 

return 0,89 0,35 

 

The number of care set is abstracted in the SD model by a constant of 3.04 trajectories a care set. 
This constant is remarkably higher than the average of the real world and DES distribution. This can 

be explained by the abstraction of a care set in the SD model. Care set arrivals in the SD model are 

based on the children flows. Overlapping care set arrivals do not involve child flows, the children are 
already in the system before and after care set arrival. As a result overlapping care sets cannot be 

abstracted in the SD model. Each care set arrival creates a larger amount of trajectories to keep the 
total amount of trajectories consistent with the real system. The constant is calculated by dividing the 

total amount of trajectories a month by the total children inflow. The bar chart that presents the 
distribution of the number trajectories in first arrival care sets is presented in  

Figure 1-1.   

 
 

FIGURE 8-7 VALIDATION BAR CHART NUMBER OF TRAJECTORIES A CARE SET 

 

The bar charts, which present a comparison of the distribution of the number of trajectories a care set 
for returning children and the distribution of the number of ambulatory trajectories a care set for both 

arrival categories, are presented in appendix E.2. A chi-square is performed to test if the simulation 
output differs significantly from the real system, the test statistics are presented in Table 8-7 
 

TABLE 8-7 CHI-SQUARE TEST  STATISTICS NUMBER OF TRAJECTORIES A CARE SET 

Distribution number of 
a care set 

Care set 
category 

Chi square statistic 
Real system-DES 

model 

trajectories 
new 0,991 

return 0,989 

AH trajectories 
new  0,999 

return 0,991 

 
 
Conclusion 
The care set composition in a DES model results in a division care types, a distribution of the number 

of trajectories a care set and distribution of the number of ambulatory trajectories a care set. The 

differences between these distributions, in the DES model and in the case study, do not differ 
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significantly. The care set composition algorithms and relations are accurate enough for the intended 

modelling purpose.  

 

8.9.2 Limitation quantitative stock and flow validation 

Section 8.4 described the available data sources for model calibration and validation. The conclusion 

was drawn that based on  29 monthly records, taking into account the expected randomness and 

expected auto correlation, the variance of the real world system can be expected to be larger than the 
observed sample variance in the data set. That creates increased uncertainty into the validation 

process and especially entwines a risk for the mean queue length, because it also used to calibrate 
the model. This section attempts to create a better understanding of the vulnerability of the mean 

queue value of the data sample of 29 records created by inherent system uncertainty and auto 

correlation of the sample records.  
 
Experimental settings 
Experiments with the simulation model are performed to increase the understanding into the risk of 

using a data sample of 29 monthly data records to calculate the mean queue values, under the 

assumptions that the simulation model is a creditable representation of the real world system. A 
simulation experiment of 100 replications, with a 10 year warm-up time and a run length of 29 

months is performed. The model is configured with a FIFO queue mechanism. The risks for the mean 
queue values over a data sample of 29 records, of the care systems, are analyzed because those are 

used both to calibrate and validate the model.  
 

Output analysis 
For each care system, the mean queue values of the replications are visualized in a box plot in order 
to provide insight into the expected spread of a 29 month data sample.  

  

 
 

FIGURE 8-8 BOXPLOT MEAN QUEUE LENGTHS (DATA SAMPLE OF 29 MONTHS) 

 
The inter quartile range is large for every care type, on the basis of this knowledge it can be 

concluded that the data set of 29 months is too small to provide an accurate quantitative validation of 
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the care systems. Furthermore, calibrating the system to the observed mean in the data entwines a 

large risk of wrongly perceiving system validity, while the predictive validity of the model is in reality 

not proven. It should be noticed that this wrongly perceived system knowledge is a risk for both DES 
modelling for as the currently used SD model. 

 

8.9.3 Care system quantitative comparison 

Based on the small real world data sample and the risk of determining a mean value theses data 
samples statistical procedures are not applicable. Therefore, a heuristic approach is chosen that 

compares box plots and histograms of the output of the real system and the simulation model.  

 
DES model set-up 
For each queue mechanism, the output of an experiment of 100 replications, with a run-length of 10 
years and a warm-up time of 10 years are compared.  

 
SD model set-up 
A model run of the deterministic SD model is compared the real world data. The SD model is started 

at the observed historical values and ran until it reaches its steady state condition.  
 

The box plots and histogram are presented Appendix E. The power to reject the simulation outputs of 
this method is low. It is concluded that the DES model is not able to produce the variability and the 

extreme values observed in the ambulatory treated outflow, as concluded from the box plot presented 

in Figure 8-9. Furthermore, the extreme values observed in the DH treatment outflow, which are 
arguably the result of seasonal behaviour, are not accounted for in the DES model either. For the 

other stocks and flows no clear difference between the simulation and real system output can be 
distinct. For current research no disaggregated waiting time data is available, the author argues that a 

validation with this disaggregated waiting time data would provided additional insight in the best 

suitable queue mechanism.  
 

 
FIGURE 8-9 BOXPLOT VALIDATION AMBULATORY TREATED OUTFLOW 

 

An overview of the mean, median and stand deviation statistics of the real world, the DES model with 

the three distinct queue mechanism and the SD model are presented in appendix E.3. Based on the 
data limitations introduced in previous section the main statistics of the data sample cannot be used. 

Consequently directly comparing the real world statistics with the simulation outputs is there for 
meaningless. For the same reason it is impossible to validate the SD model based on these statistics.  
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8.9.4 Children layer validation 

This section validates the DES model children stocks and flow to the children stock and flow 
information in the case study data sources. It should noticed that INITI8 current information systems 

does not measure the individual child waiting list and waiting time. An overview of the available 

statistics from the available and the mean statistics of the DES model outputs are presented in Table 
8-8. Appendix E.8 presents the box plot of the distinct variable.  There is no significant difference 

between the exogenous children inflow in the real system and in the simulation model. The child layer 
dynamics are driven by the trajectory dynamics, the author argues that to increase the credibility of 

the child layer it is important that first the trajectory waiting times are proven valid. Current section 
provides insight into the gap between the real world and the DES performance indicators without 

attempting to provide a proof of validity.  
 
 

  

DES  model 
 Queue mechanism 

 

data FIFO Priority Random 

New children inflow 
(child/month) 

69,38 69,45 

Active children 

(child) 
1555,07 1617,52 1617,42 1632,36 

Return inflow 

children 

(child/month) 

25,21 37,99 37,23 36,21 

System outflow 

(child) 
92,1 107,41 106,36 105,69 

 
TABLE 8-8 CHILD LAYER MEAN STATISTICS OVERVIEW 

 
The DES model generates the number of children significantly higher than observed in the real world 

system. The relative differences between both means values are small, around 4%.  Based on the box 

plot and the difference in mean it can be concluded that the performance indicator cannot be used for 
quantitative prediction, it however does provide quantitative insight into the system relations. 

Furthermore, the sensitivity to the different queue mechanisms is small. 
 

The return inflow in the system and the system outflow are abstracted significantly higher than in the 
real system. The observed difference in flow size is likely to be influenced by definition. Children in the 

youth care sector are only registered flown out of the system if the did not receive care for more than 

six months, in the simulation model however they become inactive at the moment they do not have 
any active trajectories in the care systems.  

8.10 Conclusion verification and validation 
During the different phase of the modelling cycles various verification experiments and techniques 
have been performed to check if the model been coded and transferred from the conceptual phase 

into the specification as intended. Furthermore, the validity of the inputs into the model have are 

checked.  
 

The first phase of the validation increased the model creditability by a face validation. A comparison of 
the real world queue behaviour, the queue behaviour of a single DES model run and the queue 

behaviour of a single run of the SD model increased the creditability of the DES model, the monthly 

queue steps are better abstracted in the DES than in the SD model13. A comparison of the observed 
real world queue behaviour and the output space of the DES model over 100 replications runs 

provides trust in the creditability of both the DES model and into the intrinsic assumption of the DES 
model that the observed real world system behaviour is the result of steady state variability.  

                                                 

 
13

 DES model configured with a FIFO queue mechanism, arguments are valid for all care systems.  
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The second phase of the validation quantitatively tests the assumptions made during the development 

of the DES model. A sensitivity analysis is performed to get a better understanding of the risk 
embedded in the made assumptions, the following assumptions where analyzed: the queue 

mechanism, the withdrawal curve and the return probability.  
 

Queue mechanism: Not only the distribution of waiting times is sensitive to the queue 

mechanism, the queue length and average waiting time are also sensitive. In conclusion, the 
DES model cannot provide insight into the queue length or expected mean waiting time 

without rising insight into the queue mechanism used in the real system.  
 

Withdrawal curve: The sensitivity of the withdrawal flow to the withdrawal curve is small; the 
change in queue length is in proportion to change input. Given the accuracy of the withdrawal 

curve data and the small sensitivity of the care systems to the withdrawal curve indicated that 

the risk embedded in the withdrawal curve assumptions is low. When manually calibrating the 
system to the withdrawal curve it is required to base the calibration not solely on the 

withdrawal flow to queue length should also be taken into account.  
 

Return probability. The return probability after a care set is modelled dependent on the 

accommodation care type of that care set. It can be concluded that the outputs of each care 
system are insensitive to the return probability after a care set with one or more RH, PZ or DH 

trajectories, the system is very sensitive to the return probability after care sets with 
ambulatory care arguably due to the high frequency of those care sets. The insensitivity to 

the other return probabilities provides a first indication that it might be justified to simply the 
model to a non-care set dependent uniform return probability. 

 

The third phase of validation quantitatively compares the model output data and the output of the real 
system. The validity and limitations of the available data sources are analyzed after which the care set 

composition process, the care system sub-model and the child layer dynamics are validated.  
  

Validation care set composition. The distribution of the distinct care types over the trajectories 

and the number of trajectories a care type are compared for both the DES and the SD model. 
No significant differce between the real world care type distribution and the DES and SD 

model are found. The SD model does not abstracts the difference in composition between 
new and returning care sets, however the aggregate of both does not significantly differ from 

the new and returning care set composition. No significant difference was found between the 

numbers of trajectories a care set abstracted in the DES model, for both new and returning 
care sets. The SD model does not allow to abstract different number of trajectories a care set 

due to perfect mixing, every care set is abstracted with the same number of trajectories.  
 
Data limitations stocks and flow validation. The expected auto correlation in sequencing 
observations biases the standard deviation of the small data set as estimator of the population 

standard deviation. As a consequence, the confidence interval of the mean is expected to be 

much larger than calculated from the sample statistic. The simulation model is used to create 
insight into the expected risk of calibrating and validating the model on the bias of estimators 

of a small data source. A simulation experiment, with the DES model configured with a FIFO 
queue mechanism, of 100 replications with a run-length of 29 months was performed. The 

large spread of mean queue values of replications indicates that calibration and validation the 

mean queue length of data with a 29 month span imposes large risks in the youth care sector.  
 

Care system quantitative validation. Due to the possible bias in the mean indicator of the 
small data sample, the quantitative validation cannot based on these statistics and the SD 

model cannot be validated to the real world output. A heuristic approach of comparing the 
box plots and histograms of the real world and The DES simulation outputs is applied. The 

heuristic validation approach has a low power to reject the simulation outputs. The validity of 

the AH and DH treatment outflow can be rejected. The DES model does not resemble the 
variability observed in the real system; arguably the variability in the real system can be the 
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result of seasonal effects. The validity of the other model variables cannot be rejected based 

on the currently available data.  

 
Children layer. The relations of the children layer are dependent on the validity of the 

trajectory waiting times in the care system. In order to validate the relations of this process 
the inputs, the trajectory waiting times, require to be valid. The number of active children in 

the system is significantly higher than in the real world, however the relative difference 

between the outputs of the real world and the simulation model are small (4%). The 
performance indicator can there for be used a qualitative indicator. The children outflow and 

return flow are abstracted significantly higher in the DES model; the possible influence of 
“definitions” is likely to have a large influence on this error.   
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Chapter 9 

Ch9 Cross-comparison: Sensitivity to scenario’s and 
policy measures 

Previous chapter cross validated, where possible, the SD and DES model in the base case situation. 

This chapter presents a cross-comparison of the sensitivity of both models to a scenario in which the 
children inflow increases and to a number of policy measures, which increase the capacity places of 

the distinct care types.  

9.1 Scenario increase children demand 

The sensitivity of both models to scenario in which a 10% increase in the number of new children 
arrivals at the care provider is analyzed. For the DES model, the percentage of change between the 

steady state mean of the base experiment and the steady state mean of an experiment with a 10% 
increase of daily children arrivals are calculated for the FIFO, priority and SIRO queue mechanism. For 

the SD model the percentage of change between the initial steady state and the resulting steady are 

compared.  
 

The impact of a scenario of 10% increase in the number of children arrivals is experienced at the care 
provider evaluated for both the DES and SD model. For the DES model, the percentage of change of a 

between a base case experiments and an experiment with a 10% increase of daily children arrivals is 

compared. The percentage change is evaluated for the FIFO, priority and SIRO queue mechanism, to 
evaluate the impact of different queue mechanisms on the demand sensitivity. For the SD model the 

percentage of change is calculated by the initial steady state and resulting steady state situation after 
a 10% increase in child arrivals. For both models the transient behaviour to arrive to this new steady 

states are not taken into account.  

 
An overview of the mean output values for both the base case and scenario experiments is presented 

in appendix F.1, Table 9-1 presents an overview of the resulting relative changes in the care system 
performance indicators.  

 

  
SD FIFO Priority Random 

Inflow ( trj/month) 

AH 

11% 10% 10% 10% 

Withdrawal (trj/month) 51% 66% 67% 65% 

Waiting list (trj) 28% 68% 80% 83% 

Waiting time(wk) 15% 52% 65% 66% 

Inflow ( trj/month) 

DH 

11% 11% 10% 10% 

Withdrawal (trj/month) 55% 45% 42% 39% 

Waiting list (trj) 35% 70% 79% 70% 

Waiting time(wk) 22% 53% 63% 55% 

Inflow ( trj/month) 

PZ 

11% 10% 11% 10% 

Withdrawal (trj/month) 137% 79% 79% 78% 

Waiting list (trj) 66% 73% 77% 89% 

Waiting time(wk) 50% 58% 58% 72% 

Inflow ( trj/month) 

RH 

11% 10% 10% 11% 

Withdrawal (trj/month) 42% 30% 37% 34% 

Waiting list (trj) 27% 49% 66% 61% 

Waiting time(wk) 17% 39% 49% 48% 

 
TABLE 9-1 SENSITIVITY CARE SYSTEM SCENARIO 10% CHILD DEMAND INCREASE 
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The relative changes in the trajectory inflow of each care system are in proportion to the relative 

increase in children arrivals for both the SD model and DES model. A difference is observed in the 

relative change of withdrawals flows for the SD and DES model. The increase of these flows measured 
in terms of trajectories is small; the large relative changes are a result of the small initial withdrawal 

flows. It appears that the waiting list length in the DES model is more sensitive for changes in the new 
children inflow than the waiting list length in the SD model. Furthermore, the queue configuration has 

an impact on the waiting list sensitivity to changes in the children inflow. The average waiting time in 

the SD model is less sensitive to changes in the children inflow than the waiting time indicator in the 
DES model.  

 
Table 9-2 presents the output from the DES model configured with the priority queue mechanism, for 

the base case and the experiment run for a 10% increase in children inflow. Three performance 
indicators are considered, the number of children on the waiting list, the mean waiting time in weeks, 

and the percentage of children that wait less than 9 weeks. These three performance indicators are all 

sensitive to changes in the exogenous inflow of new children.  
 

 

Child 
waiting list 

Mean 
waiting 
time 

Percentage< 
9 week 

Base 179.8 6.2 0.8 

Experiment 324.1 10.1 0.3 

Percentage 80% 62% -59% 
TABLE 9-2 SENSITIVITY CHILD LAYER TO 10% ICNREASE NEW CHILDREN INFLOW 

 

9.2 Sensitivity capacity changes 

The sensitivity of the care provider system to a 10% increase of capacity for the different care system 

is analyzed for both the SD and DES model. The outputs of both models are visualized in Table 9-3. 
The first column presents the care system of the capacity change, the second column the output 

variables. For both models the steady state mean of the base case, the mean of the experimental run 
and the relative difference between both are presented. 

 

TABLE 9-3 SENSITIVITY CARE SYSTEM TO 10% CAPACITY INCREASE 
 

base Capacity+10% % base Capacity+10% %

withdrawal 44,65 25,36 -43% 34,88 16,38 -53%

waitinglist 351 262,3 -25% 353,31 227,75 -36%

waitingtime 6,69 5,03 -25% 6,67 4,33 -35%

outflow 179,92 197,91 10% 194,03 213,35 10%

withdrawal 2,64 1,55 -41% 3,07 2,13 -31%

waitinglist 33,52 24,24 -28% 39,82 22,64 -43%

waitingtime 11,13 8,11 -27% 13,22 7,38 -44%

outlfow 10,27 11,27 10% 9,99 11,04 10%

withdrawal 1,75 0 -100% 3,12 1,32 -58%

waitinglist 25,4 0,74 -97% 26,81 12,48 -53%

waitingtime 4,88 0,14 -97% 4,82 2,24 -54%

outlfow 20,55 22,13 8% 21,17 23,00 9%

withdrawal 6,8 4,34 -36% 9,41 7,18 -24%

waitinglist 60,52 46,82 -23% 94,17 58,09 -38%

waitingtime 8,87 6,91 -22% 12,72 7,83 -38%

outlfow 22,46 24,7 10% 22,64 25,12 11%

SD model

AH

DH

PZ

RH

DES model: priority
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No general conclusion can be drawn about the sensitivity of the withdrawal flow. For the PZ care 

system the withdrawal and the average waiting list become close to zero in the +10% capacity 

scenario.  For the other care systems, the sensitivity of the DES model is larger than the sensitivity of 
the SD model. The differences in outflows are comparable for both models.  

 

 
 

Child layer performance 
indicator 

Base Capacity+10% % 

AH 

Waiting list (trj) 191.03 131.95 -30.92% 

Mean waiting time (wk) 6.74 4.79 -28.87% 

Percent waiting<9 weeks 
(%) 

79.30% 92.90% 13.60% 

DH 

Waiting list (trj) 191.03 182.26 -4.59% 

Mean waiting time (wk) 6.74 6.52 -3.27% 

Percent waiting<9 weeks 
(%) 

79.30% 89.90% 10.60% 

PZ 

Waiting list (trj) 191.03 182.26 -3.01% 

Mean waiting time (wk) 6.74 6.52 -3.88% 

Percent waiting<9 weeks 
(%) 

79.30% 89.90% 10.60% 

RH 

Waiting list (trj) 191.03 131.95 -30.92% 

Mean waiting time (wk) 6.74 4.79 -28.87% 

Percent waiting<9 weeks 
(%) 

79.30% 92.90% 13.60% 

TABLE 9-4 SENSITIVITY CHILDREN LAYER TO 10% CAPACITY INCREASE 

Table 9-4, presents the sensitivity of the model, configured with the priority based queue mechanism. 
The children waiting list and waiting time are sensitive to capacity changes in to the ambulatory and 

residential care system, the system is not sensitive to changes in day care and foster care system. The 
larger number of children can explain these findings in the ambulatory and residential care system. It 

however surprising that the percentage of children that waits less than nine weeks is equally for 

capacity changes in all care systems. In order to use the model get insight in the most effective 
strategy it is important to put the capacity not in percentage of change, but as a percentage of costs. 

9.3 Conclusion cross comparison 

The waiting list and waiting time of the DES model are more sensitive to changes in the inflow of new 

children than the SD model. This difference in sensitivity is a result of translating the aggregated 
mechanism of the SD model to disaggregated individual mechanism, which account for stochastic 

variability for both the withdrawal mechanism and the treatment times. Furthermore, the sensitivity of 
the DES models differs for the different queue mechanism. In conclusion, individual variability has an 

impact on the sensitivity of the care provider system, in order to make valid prediction with the DES 
model further insight into the queue mechanism is required. 

 

In general, the DES model care systems are more sensitive to capacity changes than the care system 
abstraction in a DES model. No general relation can be found between the sensitivity of the 

withdrawal flows. The sensitivity of the DES model child layer to capacity changes at the different care 
providers is analyzed for a priority queue mechanism. The child waiting list and waiting time are 

sensitive to changes in the care systems with large trajectory flows, the waiting list and waiting time 

are insensitive to capacity changes of the smaller PZ and RH care systems. Surprisingly, the sensitivity 
of the percentage of children, which receives care is equally sensitive to capacity changes of the all 

care systems. In other words, the child waiting list length has not a direct and obvious relation with 
the percentage of children that wait less than nine weeks before receiving care. The DES simulation 

model can provide insight this relation. 
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Chapter 10 

Evaluation, Recommendation and Reflection 
In this final chapter, we return to the main research objective: evaluating the DES modelling 

methodology in the youth care decision-making process. This research was initiated based on the 
assumption of both the author and problem owner INITI8 that in the youth care sector, which has a 

high intolerance to failure for every child, the disaggregated DES methodology better fits the model 
worldview and modelling objectives than the aggregated SD methodology. 

10.1 Evaluation research questions 
We answer the main research question, presented in the first chapter in two parts. First by providing, 

a structured overview of the answers to the research questions found scattered through the thesis. 
Based on the knowledge embedded in this research question, the main research question is answered 

in the second part. The main research question was defined as: 
 

“What additional insights can a DES decision support model provide, in addition to currently used SD 

model, to evaluate the DES modelling methodology in the youth care capacity decision making 

process?” 

10.1.1 A review of the research questions 

The set of chronological research questions that together tackle the main research question are 
answered in this section.  

 
Research question 1: What are the objectives for a decision support model in the youth care sector 

(Chapter 2)? 

The Youth Care Act defines the legal entitlement of youth care to children within an acceptable 

waiting time of maximum nine weeks. The authorities of the provinces and urbanized regions are 
responsible for a sufficient provision of care capacity and provide the budget for that capacity to the 

autonomic care providers in their region. The Dutch youth care sector faces long waiting lists and over 
utilized resources. The government provided additional capacity injections to increase capacity. The 

policy resulted in an initial decrease of waiting lists, however shortly after the capacity increase 

unexpected increases in waiting lists and waiting times occurred. The provincial and regional systems 
did not manage to guarantee the maximum child waiting time of nine weeks. 

 
Management in the youth care sector is complex and in-transparent due to different horizontal and 

vertical aggregations layers (Leewen, Naborn et al. 2008). The national performance indicators 

measure the number of children on the waiting lists and the waiting time for each child. A child can 
receive multiple care services called trajectories. The trajectories can be subdivided in four main care 

types according to their resource needs; Ambulatory care (AH), Day care (DH), Residential care (RH) 
and Foster care (PZ). The care provision processes are subdivided in four independent parallel sub-

systems aggregated to these care types, the care systems. (Section 2.4.2) 
 
The objective of decision support modelling in the youth care sector is to create insight into the 

interrelations between the anticipated child demands, optimal capacity policies for the different care 
systems and the resulting waiting times for individual children.  

 
Research question 2: What are the expected benefits of a DES model in addition to currently used SD 

model (Chapter 3, Chapter 4)? 

 

The essential difference between the SD and DES methodology is their difference in system 
aggregation. A SD model abstracts the system as a continuous quantity rather like a fluid no individual 

entities are distinct. A DES model disaggregates the system to individual entities, each of those 
entities can posses characteristics that determine their individual flow through the system.  

 

The effectiveness of a decision support system can be expressed in a combination of three factors: 
Usefulness, Usability and Usage (Keen and Sol 2005).The usefulness of a decision support model 
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relates to the analytical model, the embedded knowledge and the information resources available in 

the model or tool. The usability of a decision support model expresses the communicative value, 

stakeholders trust and understanding of the decision support model. The usage of a decision model 
expresses the suitability of the model for the organizational, technical or social context. It refers the 

time and cost of adapting the model to changing environment and objectives. 
 

In a DES model, individual children and the heterogeneity in their characteristics that determine their 

path through the system are directly abstracted by individual entities in a DES model. As in the real 
system, children are assigned a set of trajectories and performance indicators can be calculated for 

individual child and trajectory in the model. Unlike a DES model, currently used SD model cannot 
capture the variability in individual characteristics neither can it abstract the coupling between children 

and trajectories. The SD model can only provide insight into the aggregated system behaviour, 
individual child or trajectory waiting times cannot be analyzed.  

 

 A disaggregated model however requires disaggregated data, for each child the specific 
characteristics which determine its path through the system, needs to be determined and quantified to 

accurately calculate the individual performance indicators. The question arises if this disaggregated 
data is available or even collectable. In terms of usability, the disaggregated worldview of a DES 

model is a clear advantage to derive stakeholder comprehension and trust into the simulation outputs. 

It involves however a downside, experiments need to be set-up by stochastic distributions which 
increase the time and cost of initializing an experiment. Furthermore, a DES experiment requires 

additional time to run because of the increased level of detail and the need to run multiple replications 
due to the stochastic nature of the models. The disaggregation level of the model also influences the 
usage of a decision support model. An aggregated SD model is generally less sensitive to changing 
environments and objectives than a detailed disaggregated DES model. 

 

A DES model has benefits in comparison to a SD model for the modelling of real world systems that 
face heterogeneous entities, a large impact of individual variability and a high intolerance to failure for 

those entities, such as in the field health and youth care. A precondition for those benefits in such a 
system is the availability or collectability of data to quantify the individual characteristics. Furthermore, 

the higher level of detail should be worth the required additional investments of time and costs.  

 
 Research question 3: What are the differences between the abstraction of the care provider system in 

aggregated SD and disaggregated DES concepts (Chapter 4, Chapter 5,Chapter 7)? 

 

A care provider consists of a set of independent sub-process the care systems. Children are the 

entities that flow through the care provider system. The care systems describe the flow of trajectories 

through the care provider system. Trajectories are matched to a care system with the appropriate 
resource by the care type attribute. Four care types are distinct: Ambulatory care, Day care, 

Residential care and Foster care. Each care system has its own number of capacity places. This main 
structure is comparable between both the SD and DES model.  

 
The coupling between children and trajectories is made by assigning the children care sets. A care set 

holds an arrival time and a set of trajectories of one or multiple care types. Each trajectory 

distinguishes three state transitions: trajectory registration, start care and end care. A child can have 
parallel, overlapping and sequential trajectories. (Section 5.2). The SD model assumes perfect mixing 

of children and care sets in the care provider systems and of trajectories in a care system. Only 
parallel and sequential trajectories are abstracted in the SD model, in order to compensate for the not 

abstracted overlapping trajectories, the number of parallel trajectories in each care set is increased.  

 
A DES model can capture heterogeneity of children and care sets by abstracting conditionality and 

dependency relations. In order to simplify the data study and the abstraction of those relations, the 
assumption is made that a child‟s trajectories that are registered in the same calendar month belong 

to the same arrival care set. The DES model abstracts these trajectories as arriving at the same day.  

 
The care systems are essentially queuing systems. Unlike the SD model, the DES models distinguish 

individual trajectories in those queues. A queue mechanism, which determines the order of the 
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trajectories in the queue, needs to be defined for each queue system. In the real world system 

children can withdraw trajectories for a variety of reasons. In the SD model the withdrawal 

percentage is abstracted dependent on the mean waiting time in the care system. In the DES model 
the withdrawal probability for each trajectory is dependent on its individual waiting time. 

 
In the SD model the trajectory treatment times, in each care system, are assumed to be exponential 

distributed, the model is initialized with the mean value observed in the real system. In the DES model 

for each trajectory an individual treatment time is drawn from a stochastic distribution. The SD model 
cannot calculate different children states. In the DES model the children states are steered by the 

states of their trajectories. The number of children on the waiting list and their waiting time can be 
calculated.  

 
Research question 4: What are the heterogeneity and conditionality relations of influence in the care 

provider system (Chapter 6)? 

 

In order to abstract the heterogeneity in the care provider system the important system objects and 
relation need to be distinct. The impact of both children‟s first care sets and additional care sets on 

the total inflow of trajectories of each care system is significant, in size and variability. The care set 
composition of first and additional care sets significantly differs, both in number of trajectories and in 

the care types of assigned trajectories. A purposeful DES model requires abstracting both children‟s 

first and additional care sets, each with different composition algorithms (Section 6.2).  
 

There are significant conditionality relations between the care types of trajectories in a common care 
set for both children‟s first care sets and additional care sets. The three accommodation care types 

DH, PZ and RH are mutual exclusive in a common care set. A significant parallel conditionality relation 

exists between the accommodation care type of a care set and the occurrence of ambulatory care in 
that care set. The accommodation type of children‟s sequencing care sets are related to the 

accommodation type of the child‟s previous care set (section 6.3). Furthermore, the time between a 
child‟s sequencing care sets is related to the accommodation type of the previous care set (Section 

6.4). The time span of the available data was too small to provide accurate and reliable insight into 
distribution of the number of care set assigned a child and the relations that influence this distribution 

(Section 6.5). A heuristic graphical approach proved that a longer trajectory waiting increases the 

probability of trajectory withdrawal (Section 6.6).  
 

Research question 5: Can we abstract and quantify the care provider system in a DES simulation 

model (Chapter 7)? 

 

The discrete conceptualization, presented in chapter 5, used class diagrams, state charts and process 

flows to make the body of knowledge transparent. AnyLogic simulation software is chosen because it 
is based on a native java environment, which provides a full object-oriented structure, and it enables 

to mix process oriented flowcharts and dynamic state chart elements in a visual development 
environment. 

 

A first step of quantifying the inputs was to analyze if the input variables in the data set were 
stationary over time. Based on the time span of the available data and the observed behavioural 

patterns in the data set, the assumptions can be made that the distribution of all input variables were 
stationary over the time span of the data set (Section 6.7).  

 
The discrete model quantification with the available dataset imposes a set of challenges. The time 

span of the data set is too small to derive the distribution of the number of sequencing care sets a 

child, the relation between trajectory waiting times and withdrawal probabilities is scattered and the 
queue mechanism is unknown. An alternative model structure based on a binominal return probability 

after each care set and a quantification method based on calibration solved the first challenge 
(Section 7.4.3). A calibration difficulty was found, the interrelation between the withdrawal curves and 

the queue mechanisms make the average waiting time dependent on the queue mechanism in the 

system. Accurate calibration of the withdrawal curve requires a better insight into the applied queue 
mechanism at the care providers (Section 7.4.4). The real world queue mechanism cannot be defined 
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form the available data sources. In order to create more insight into the impact and stability of 

conclusions for different queue mechanisms experiments are cross-compared for a FIFO, Priority 

based and SIRO queue mechanisms (Section 7.4.6).   
 

Research question 6: Do the DES and SD model represent and correctly reproduce the behaviour of 

the real world system (Chapter 8, Chapter 9)? 

 

Unlike the stochastic configuration of the SD model, the DES model abstract a comparable variability 
in monthly waiting lists changes as observed in the output of the real world system. Furthermore, the 

observed real world outputs lie in the boundaries of the DES model output space, which provides a 

proof that the observed waiting list dynamics can be produced by variability in a stationary system 
and increases the credibility of the DES model (Section 8.7).  

 

A limitation was found with respect to the available data for model validation and calibration. To 

assure that the calibrated model is a valid model of the system and not only representative for the 
particular set of input data, an independent data set is required for model calibration and validation. 

The available data set is, given the observed variability, however too small to subdivide it in two 
accurate independent data sets for calibration and validation. Consequentially more confidence in the 

uniqueness of predictions was obtained by assessing the sensitivity of the system prediction to 

variation in model and calibration assumptions (Section 8.4).  
 

Further research into the applied queue mechanism is indispensable to predict future waiting lists and 
waiting times. Not only is the distribution of trajectory waiting times sensitive to the applied queue 

mechanism the average waiting time is also influenced. The sensitivity of the system to the 

withdrawal curve was found to be in proportion to the input percentage of chance of the withdrawal 
curve. The system is insensitive for changes in the probability of receiving an additional care set, after 

a care set with accommodation trajectories (RH, PZ, DH). The system is highly sensitive to the 
probability of receiving a sequential care set after a care set with solely ambulatory care. Which 

indicates that it might be possible to simplify the current DES model by abstracting the probability for 

a sequencing care set independent from the composition of previous care. (Section 0) 
 

Due to the infinite nature of the youth care system, the large process times of multiple months until 
multiple years, the large variability and the auto-correlation of monthly data points, a large time span 

of validation data is required to determine accurate estimators of system statistics. The available data 
set of 29 months is too small for a quantitative validation; it imposes a large risk to validate the model 

based on biased data estimators (Section 8.9.2). The credibility of the DES outputs are increased by 

comparing box plots and histogram of the real system and model outputs. The calculated trajectory 
stocks are creditable (Section 8.9.3), the children stocks and flows are abstracted significantly higher 

than observed in the real system (Section 8.9.4). 
 

The DES model is, for every queue mechanism, significantly more sensitive to scenario and policy 

changes than currently used SD model. Arguable, these conflicting insights are a result of a better 
abstraction of the care provider system and the variability in that system by the DES model (Chapter 

9).  

10.1.2 Review of the main research question 

This section evaluates the main research question: 
 

”What additional insights can a DES decision support model provide, in addition to currently used SD 

model, to evaluate the DES modelling methodology in the youth care capacity decision making 

process?” 

 

This section answers the main research question and makes the overlapping knowledge created 
during the research transparent. From the sixth research question, it is concluded that the DES model 

cannot provide accurate quantitative predictions without a better insight into the queue mechanism. 
The DES model can be used to create qualitative insight into the care provider system, controlled for 

the stability of the conclusions for different queue mechanisms, to derive a funded conclusion for the 
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real world system. In this research the DES model provided additional insight into the system 

behaviour. A base case experiment with the DES model showed that the dynamics in the real world 

outputs can be produced by the observed variability in a stationary system. Furthermore, cross 
comparison of the DES and SD model provided a first glance of conflicting insights in system 

sensitivity between the disaggregated and aggregated system abstraction.  
 

The following additional system insights can be created by further experimentation with the developed 

DES model: 
 

Robustness of the stationary system behaviour. While the queue mechanism is unknown, the 
robustness of the system with different queue mechanisms can be analyzed. Furthermore, the spread 

in outputs of the stationary DES model makes the dynamic complexity of decision making in the youth 
care sector transparent and thereby provides insight in the extreme difficulties the authorities face in 

the youth care sector.  

 
Queue mechanisms. Experimentation with the DES model makes the expected effects of alternative 

queue mechanisms transparent. For instance, the impact of implementing a multi layer policy that 
evaluates priorities based on children waiting times instead of trajectory waiting times can be 

evaluated.   

 
Robustness of future scenario‟s. In a sector with such a high uncertainty to failure as the youth care 

sector it can be defended to base policy measures on expected worst case scenario‟s rather than 
management on averages. A DES model can provide insight into the expected spread and possible 

worst case scenarios.  
 

Multi-layer impact capacity changes. The impact of possible capacity changes make on a care system 

are difficult to oversee. The impact on the child layer and especially on the number of children which 
exceed the nine weeks waiting time performance indicators are impossible to oversee for a human 

mind. The DES model can provide insight into the effect of different capacity policies, controlled for 
the stability of the policies for different queue mechanisms.  

 

Data validation. A creditable DES model can provide insight into the possible bias of data sample 
estimators, by evaluating the variability of these estimators for a set of replication runs, controlled for 

different queue mechanisms.  

10.2 Barriers for simulation in health and youth care 
As aforementioned, recent studies suggest that the way modelling and methods are often used in 

industry and defence are often to failure in health care  (Chanal and Eldabi 2010). Patients are not 

typical customer, mainly because each has an individual urgency and they are responsive and 
increasingly keen to exercise meaning full and informed choice. The main difficulty of simulation youth 

care found in thesis is the quantification and specification of human behaviour in the youth care 
system. The interactions of the queue and withdrawal behaviour in the care provider system where 

found to be difficult to interpret, quantify, calibrate and validate.  
 

The challenge of simulation in the youth care sector faces arguably even larger difficulties than 

experienced in most health care systems. The challenges are created by the non-finite system 
characteristics; the long treatment times and the extreme variability in those treatment times create 

extreme drawbacks for the understanding of observed system behaviour and the requirements for 
specification and validation data sources. A large time span of historical data is required to derive 

unbiased sample estimators for the real system. The challenge of collecting data over such a large 

time span is that reality keeps changing; the distributions of no real world system are stationary over 
times.  The long treatment times and large variability make it difficult to determine if the 

characteristics of the system behaviour are the result of transient or steady state behaviour.  
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10.3 Recommendations 
This research provides a proof of concept of DES modelling in the youth care sector. The additional 

insights a DES model can provide are evaluated and additional system knowledge is created. 

Recommendations are made to the problem owner INITI8 with regard to further research necessary 
to implement the DES care provider system successfully in the youth care decision-making process.  

 
 

Queue mechanism and priority categories. This research showed that the queue mechanism and 

priority order applied in the youth care sector has a large impact on both the individual waiting times 
and the mean waiting time. It is recommended to INITI8 to increase the insight in the priority 

categories applied in the youth care sector and into the subjective decision making process behind the 
queue decisions. If objective priority categories are distinct, it is recommended to disaggregate the 

data collection to these priority categories. Interviewing the care provider employees responsible for 
the queue management is recommended to create further insight into the subjective child selection 

process 

 
Validation with domain experts. The author recognizes that a simulation model should not be an 

abstraction developed by an analyst working in isolation. Involving domain experts in the modelling 
process helps to determine the level of model detail and can provide insight into what components of 

the proposed model are likely to have the greatest impact on the model behaviour. Furthermore, 

expert involvement increases model validity, credibility and the likelihood of implementation. Sadly, 
the involvement of the problem owner and domain experts in the modelling process of this research is 

not considered satisfaction able, partly due to the long research delay as elaborated on in the 
reflection. It is recommended to problem owner to fully utilize the domain knowledge in an additional 

model validation with additional involvement of domain experts. 
 

Cross comparison SD model. This research provides a first glance of conflicting insights created by the 

SD and DES model. After further research increased insights towards the applied queue mechanism 
and priority categories, and if the credibility of the DES model is increased by domain experts, a cross 

comparison is recommended to evaluate the validity of the SD model. It is recommended to evaluate 
both the steady state and the transient behaviour of the DES and SD model.  

 

Care set assumption. The impact of the care set assumption, which assumes that a child‟s trajectories 
arriving in the same calendar month belong to the same care set and there for arrive at the same 

moment in the DES model can be tested. For example by comparing the outputs with a model 
initialized with the assumption trajectories arriving in the same week belong to a common care set. 

10.4 Reflection 
Simulation projects can consume much more time than typically presumed, in fact it has been 

observed that many simulation projects take at least twice as long as originally estimated (Benneyan 
1994). That certainly holds true for this research, initiated as a four month EPA graduation project the 

total span of this project turned out to more than 1.5 year. In this section the author reflects on the 
causes of this delay and the lesson he learned throughout the long process. 

 
 “There are some serious misunderstandings concerning the nature of simulation and its ease of 
employment. The truth of the matter is that there‟s no such thing as “simple simulation” (Keller, 
Harrel et al. 1991) 
 
Looking backwards, the author did not realize the full complexity entwined with simulation modelling. 
While the author, with a mechanical engineering background, had previous experience with process 

oriented flow chart modelling in ARENA, the author was inexperienced in modelling with other 

conceptual views and the concept of object orientation. The process of learning these methodologies 
while applying them on the complex youth care system was a time consuming challenge. 

Furthermore, the unavailability of the Any Logic software made it difficult to transform the extensive 
simulation literature into practical understanding of the subject. 
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The complexity of the data study, which involved capturing the returning children flows and the 

parallel, overlapping and sequential trajectories of those children, formed a large barrier in the 

preceding of this research. This barrier was overcome after one year of struggling thanks to the 
insights Alexander Verbraeck provided. The required AnyLogic software license became available at 

the start of November 2010. From that moment all the pieces of available literature, conceptual 
methodologies and the data study came together and the process of model building was like a walk in 

the park.  

 
“Building a model may be the easiest part of the process; addressing the technical concerns of 
simulation, designing a valid simulation experiment, and conducting a rigorous analysis of the results 
remain sophisticated endeavours” (Benneyan 1994).  
 
A number of interesting challenges occurred during the model validation. The author learned that 

simulation in a real world context imposes larger challenges than in an educational context. The 

availability of a large amount of data does not necessarily make it possible to quantify all parameters. 
The consequence of losing the critical pad at the start of the research resulted in the withdrawal of 

the problem owner‟s involvement and trust before the first model was build. The verification and 
validation was therefore a process of the modeller in isolation. Furthermore, the access to domain 

experts and additional data in the validation and verification process was hampered. 
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Appendix C 

 Appendix C Data study : Variance Heterogeneity 
& conditionality 

C.1 Care provider treatment times 
Observed treatment time in months over 2008 and 2009, categorized to their care type.  

Treatment time in months  
   Statistics AH DH PZ RH 

n   4445 232 428 615 
Mean   7,7533 12,5125 16,3118 7,6284 

95% 
Confidence 
Interval for 
Mean 

Lower 
Bound 

7,4995 11,393 13,7285 6,7378 

  Upper 
Bound 

8,0072 13,632 18,8951 8,519 

5% 
Trimmed 
Mean 

  6,6378 11,9796 11,8692 6,072 

Median   4,7333 11,1167 5,2667 2,4 

Variance   74,525 74,895 739,32 126,484 

Std. 
Deviation 

  8,6328 8,65421 27,19044 11,24651 

Minimum   0,03 0,03 0,1 0,03 

Maximum   81,33 41,1 165,3 72,97 

Range   81,3 41,07 165,2 72,93 

Interquartile 
Range 

  8,17 12,23 14,6 10,6 

Skewness   2,442 0,801 2,944 2,252 

Kurtosis   8,462 0,271 9,672 5,976 

 

 

 

0

10

20

30

40

50

ja
n
-0

9

m
rt

-0
9

m
e
i-
0
9

ju
l-
0
9

se
p
-0

9

n
o
v
-0

9

ja
n
-1

0

m
rt

-1
0

treatment time RH  (wk)

0

20

40

60

80

100

ja
n
-0

8

m
rt

-0
8

m
e
i-
0
8

ju
l-
0
8

se
p
-0

8

n
o
v
-0

8

ja
n
-0

9

m
rt

-0
9

m
e
i-
0
9

ju
l-
0
9

se
p
-0

9

n
o
v
-0

9

ja
n
-1

0

m
rt

-1
0

Treatment time PZ  (WK)



 

References 

 135 
 

 

 

C.2 Behavioural graphs trajectory waiting lists and incare 
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C.3 Differences in number of trajectories per care set for new and returning 
children. 

 
TEST FOR EQUAL VARIANCES 

F-test: for equal 
variances 

     
  Variable 1 Variable 2 

Average  1,846385542 1,20902256 

Variance 0,483916571 0,22565217 

Sample Size 996 1330 

degrees of freedom 995 1329 

F 2,144524372 
 P(F<=f) one tailed 1,18718E-38 
 Critical area One 

tailed 1,102040322 
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T-TEST DIFFERENCE IN TRAJECTORIES A CARE SET 

T-test: two samples with unequal variances 

     Variable 1 Variable 2 

Average 1,846385542 1,20902256 

Variance 0,483916571 0,22565217 

Sample size 996 1330 

Difference in average 0 
 Degrees of freedom 1660 
 T- statistics 24,89389046 
 P(T<=t) one tailed 8,3801E-117 
 Critic area T-test: one tailed 1,645772076 
 P(T<=t) two tailed 1,676E-116 
 Critical are T-test: two tailed 1,961394039   

 

 

C.4 Chi square tests parallel relations 
Cross tabulation and chi-square test parallel relations in care sets.  

 
APPENDIX C.4-1 CHI SQUARE TEST FIRST ARRIVAL 

 

 
APPENDIX C.4-2 CHI SQUARE TEST RETURNING CHILDREN  
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C.5 Layered sequential contingency table main care type 
The cross tabulation presents the relations between the occurrence of youth care in the previous care set 
and the accommodation care type of the sequencing care set, controlled for the previously found influence 

of the accommodation care type in the previous care set.  
 

APPENDIX C.5-1 CROSSTABULATION SEQUENTIAL RELATIONS ACCOMMODATION TYPE 

 

 

N_youth assistence * N_accommodation * N+1_accommodation Crosstabulation 

N_Accomodation service 

N+1_accommodation service 

Total None DH PZ RH 

None N_ Youth 

Assistance 

yes Count 841 62 56 126 1085 

Expected Count 841,0 62,0 56,0 126,0 1085,0 

% within N0_supportcat 77,5% 5,7% 5,2% 11,6% 100,0% 

Total Count 841 62 56 126 1085 

Expected Count 841,0 62,0 56,0 126,0 1085,0 

% within N0_supportcat 77,5% 5,7% 5,2% 11,6% 100,0% 

DH N_ Youth 

Assistance 

no Count 44 6 3 6 59 

Expected Count 49,4 3,6 2,0 4,0 59,0 

% within N0_supportcat 74,6% 10,2% 5,1% 10,2% 100,0% 

yes Count 105 5 3 6 119 

Expected Count 99,6 7,4 4,0 8,0 119,0 

% within N0_supportcat 88,2% 4,2% 2,5% 5,0% 100,0% 

Total Count 149 11 6 12 178 

Expected Count 149,0 11,0 6,0 12,0 178,0 

% within N0_supportcat 83,7% 6,2% 3,4% 6,7% 100,0% 

PZ N_ Youth 

Assistance 

no Count 48 4 85 26 163 

Expected Count 41,6 5,4 85,2 30,9 163,0 

% within N0_supportcat 29,4% 2,5% 52,1% 16,0% 100,0% 

yes Count 14 4 42 20 80 

Expected Count 20,4 2,6 41,8 15,1 80,0 

% within N0_supportcat 17,5% 5,0% 52,5% 25,0% 100,0% 

Total Count 62 8 127 46 243 

Expected Count 62,0 8,0 127,0 46,0 243,0 

% within N0_supportcat 25,5% 3,3% 52,3% 18,9% 100,0% 

RH N_ Youth 

Assistance 

no Count 81 5 14 74 174 

Expected Count 94,7 7,4 14,4 57,5 174,0 

% within N0_supportcat 46,6% 2,9% 8,0% 42,5% 100,0% 

yes Count 110 10 15 42 177 

Expected Count 96,3 7,6 14,6 58,5 177,0 

% within N0_supportcat 62,1% 5,6% 8,5% 23,7% 100,0% 

Total Count 191 15 29 116 351 
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C.6 Sequential and parallel relations return youth assistance 

 
APPENDIX C.6-1 CROSSTABULATION SEQUENTIAL AND PARRALEL RELATIONS YOUTH ASSISTANCE 

Youth assistance N * youth assistance N+1 * Accommodation service N+1. Crosstabulation 

Accommodation service N+1. 

youth assistance N+1 

Total NO yes 

DH Youth assistance N NO Count 75 31 106 

Expected Count 77,7 28,3 106,0 

% within Youth assistance N 70,8% 29,2% 100,0% 

% within youth assistance N+1 34,1% 38,8% 35,3% 

yes Count 145 49 194 

Expected Count 142,3 51,7 194,0 

% within Youth assistance N 74,7% 25,3% 100,0% 

% within youth assistance N+1 65,9% 61,3% 64,7% 

Total Count 220 80 300 

Expected Count 220,0 80,0 300,0 

% within Youth assistance N 73,3% 26,7% 100,0% 

% within youth assistance N+1 100,0% 100,0% 100,0% 

NO Youth assistance N NO Count  173 173 

Expected Count  173,0 173,0 

% within Youth assistance N  100,0% 100,0% 

% within youth assistance N+1  13,9% 13,9% 

yes Count  1070 1070 

Expected Count  1070,0 1070,0 

% within Youth assistance N  100,0% 100,0% 

% within youth assistance N+1  86,1% 86,1% 

Total Count  1243 1243 

Expected Count  1243,0 1243,0 

% within Youth assistance N  100,0% 100,0% 

% within youth assistance N+1  100,0% 100,0% 

PZ Youth assistance N NO Count 97 5 102 

Case Processing Summary 

 Cases 

 Valid Missing Total 

 N Percent N Percent N Percent 

Youth assistence N * youth 

assistence N+1 * 

Accommodation service N+1. 

1857 100,0% 0 ,0% 1857 100,0% 
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Expected Count 89,8 12,2 102,0 

% within Youth assistance N 95,1% 4,9% 100,0% 

% within youth assistance N+1 50,5% 19,2% 46,8% 

yes Count 95 21 116 

Expected Count 102,2 13,8 116,0 

% within Youth assistance N 81,9% 18,1% 100,0% 

% within youth assistance N+1 49,5% 80,8% 53,2% 

Total Count 192 26 218 

Expected Count 192,0 26,0 218,0 

% within Youth assistance N 88,1% 11,9% 100,0% 

% within youth assistance N+1 100,0% 100,0% 100,0% 

RH Youth assistance N NO Count 10 5 15 

Expected Count 10,2 4,8 15,0 

% within Youth assistance N 66,7% 33,3% 100,0% 

% within youth assistance N+1 15,4% 16,1% 15,6% 

yes Count 55 26 81 

Expected Count 54,8 26,2 81,0 

% within Youth assistance N 67,9% 32,1% 100,0% 

% within youth assistance N+1 84,6% 83,9% 84,4% 

Total Count 65 31 96 

Expected Count 65,0 31,0 96,0 

% within Youth assistance N 67,7% 32,3% 100,0% 

% within youth assistance N+1 100,0% 100,0% 100,0% 
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APPENDIX C.6-2 PEARSON CHI-SQURE TEST 

 
  

Chi-Square Tests 

Accommodation service N+1. Value df 

Asymp. Sig. (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

DH Pearson Chi-Square ,557
a
 1 ,455   

Continuity Correction
b
 ,372 1 ,542   

Likelihood Ratio ,553 1 ,457   

Fisher's Exact Test    ,496 ,270 

N of Valid Cases 300     

None Pearson Chi-Square .
c
     

N of Valid Cases 1243     

PZ Pearson Chi-Square 9,005
d
 1 ,003   

Continuity Correction
b
 7,792 1 ,005   

Likelihood Ratio 9,708 1 ,002   

Fisher's Exact Test    ,003 ,002 

N of Valid Cases 218     

RH Pearson Chi-Square ,009
e
 1 ,925   

Continuity Correction
b
 ,000 1 1,000   

Likelihood Ratio ,009 1 ,925   

Fisher's Exact Test    1,000 ,572 

N of Valid Cases 96     

a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 28,27. 

b. Computed only for a 2x2 table 

c. No statistics are computed because youth assistence N+1 is a constant. 

d. 0 cells (,0%) have expected count less than 5. The minimum expected count is 12,17. 

e. 1 cells (25,0%) have expected count less than 5. The minimum expected count is 4,84. 
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C.7 Dependency relations return time 

 

 
 

APPENDIX C.7-1 BOXPLOT RETURN TIME IN MONTHS DIFFERENT CATEGORIES 
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APPENDIX C.7-2 BOXPLOT RETURN TIME CATEGORIZED TO PREVIOUS AND RETURN ACCOMMODATION CARE TYPE 

 

C.7.1 Relation 1 : The influence of accommodation care type  in care set N on the 
time between arrivals 

 
APPENDIX C.7-3 DESCRIPTIVE STATISTICS CATEGORIES RELATION 1 

 

Test of Homogeneity of Variances 

Time between arrival sets 

Levene Statistic df1 df2 Sig. 

7,830 3 1853 ,000 

APPENDIX C.7-4 HOMOGENEITY OF VARIANCES TEST 

 

 

 
 

 

 

 

Descriptive Statistics 

 N Mean Std. Deviation Minimum Maximum 

Time between arrivalsets 1857 4,66 4,132 1 23 

residence0cat 1857 ,9246 1,21091 ,00 3,00 

 

Test Statistics
a,b

 

 Time between 

arrivalsets 

Chi-Square 10,516 

df 3 

Asymp. Sig. ,015 

a. Kruskal Wallis Test 

b. Grouping Variable: residence0cat 

 

Ranks 

 residenc

e0cat N Mean Rank 

Time between arrivalsets ,00 1085 941,98 

1,00 178 994,36 

2,00 243 838,89 

3,00 351 918,11 

Total 1857  

 

APPENDIX C.7-5 KRUSKAL-WALLIS TEST RETURN TIME RELATION 1 
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APPENDIX C.7-6 TAMHANA POST HOC TES 

C.7.2 Relation 2: Influence of the accommodation type of the returning care set on 
the time between care set arrivals 

H1 : There is a relation between the accommodation type of the return care set and the time between care 
set arrivals.  
H0 : There is no relation between the accommodation type of the return care set and the time between 
care set arrivals.  
 
 
Group1: first care set accommodation type no PZ 

 
 

Multiple Comparisons 

Time between arrivalsets 

Tamhane 

(I) 

residenc

e0cat 

(J) 

residenc

e0cat 

Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

None DH -,281 ,341 ,958 -1,19 ,62 

PZ ,914
*
 ,248 ,002 ,26 1,57 

RH -,048 ,268 1,000 -,76 ,66 

DH None ,281 ,341 ,958 -,62 1,19 

PZ 1,195
*
 ,382 ,011 ,18 2,21 

RH ,233 ,395 ,992 -,81 1,28 

PZ None -,914
*
 ,248 ,002 -1,57 -,26 

DH -1,195
*
 ,382 ,011 -2,21 -,18 

RH -,962
*
 ,319 ,016 -1,80 -,12 

RH None ,048 ,268 1,000 -,66 ,76 

DH -,233 ,395 ,992 -1,28 ,81 

PZ ,962
*
 ,319 ,016 ,12 1,80 

*. The mean difference is significant at the 0.05 level. 
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CATEGORIZED TO THE ACCOMODATION TYPE OF THE RETURN CARE SET ARRIVAL  

 
APPENDIX C.7-7 DESCRIPTIVE CATOGRIES RELATION 2 GROUP 1 NO PZ 

 
 

 
 
 

APPE 
NDIX C.7-8 HOMOGENEITY OF VARIANCES GROUP 1 NO PZ 

 

 

 
APPENDIX C.7-9 KRUSKALL WALLIS TEST GROUP 1 NO PZ 

 

  

Descriptives 

Time between arrivalsets 

 

N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean 

Minimum Maximum  Lower Bound Upper Bound 

None 1181 4,67 4,086 ,119 4,44 4,91 1 22 

DH 254 4,76 4,231 ,265 4,24 5,28 1 21 

PZ 91 5,29 5,590 ,586 4,12 6,45 1 23 

RH 88 5,77 4,338 ,462 4,85 6,69 1 21 

Total 1614 4,78 4,226 ,105 4,58 4,99 1 23 
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Group2: first care accommodation type PZ 

 

 
APPENDIX C.7-10 DESCRIPTIVE GROUP 2 

 

 
APPENDIX C.7-11 HOMOGENEITY OF VARIANCES GROUP 2 
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APPENDIX C.7-12 KRUSKAL WALLIS TEST GROUP 2 

 
 

 

C.7.3 Relation 3: Relation 3 : Influence of youth assistance in the N care set on the 
time between care set arrivals 

 
Group 1: Return time after care set with accommodation type not PZ 

Group2 return time after care set with accommodation type PZ 
 

The following hypothesis is separately tested for the two groups: 

H1 : There is a relation between the occurrence of youth assistance in the first care set and the time until a 
sequencing care set arrival.  
H0 : There is no relation between the occurrence of youth assistance in the first care set and the time until 
a sequencing care set arrival.  
 
 

 
APPENDIX C.7-13 RELATION 3 :DESCRIPTIVE STATISTICS GROUP 1 

  
APPENDIX C.7-14 RELATION 3: DESCRIPTIVE STATISTICS GROUP 2 

 

 

Group Statistics 

 Youth assistance 

first care set N Mean Std. Deviation Std. Error Mean 

Time between arrival 

Sets in months 

NO 396 4,23 3,771 ,190 

yes 1461 4,77 4,218 ,110 

 

Group Statistics 

 Youth assistance 

first care type N Mean Std. Deviation Std. Error Mean 

Time between 

arrival sets in 

months 

NO 163 4,08 3,552 ,278 

yes 80 3,31 2,791 ,312 
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APPENDIX C.7-15 RELATION 3: T-TEST GROUP 2 

 

C.7.4 Relation 4: Influence of youth assistance in the returning care set on the return 
time. 

 
APPENDIX C.7-16 RELATION 4: GROUP STATISTICS GROUP 1 

 
APPENDIX C.7-17 RELATION 4: T-TEST GROUP 1 

 
APPENDIX C.7-18 RELATION 4: GROUP STATISTICS GROUP2 

 

Group Statistics 

 youth 

assisten

ce N+1 N Mean Std. Deviation Std. Error Mean 

Time between arrivalsets NO 314 5,06 4,668 ,263 

yes 1300 4,72 4,111 ,114 

 

Independent Samples Test 

  Levene's Test for Equality of 

Variances t-test for Equality of Means 

  

  

95% Confidence Interval of the 

Difference 

  

F Sig. t df Sig. (2-tailed) Mean Difference 

Std. Error 

Difference Lower Upper 

Time between arrivalsets Equal variances assumed 8,674 ,003 1,299 1612 ,194 ,345 ,266 -,176 ,866 

Equal variances not 

assumed 
  

1,202 437,585 ,230 ,345 ,287 -,219 ,909 

 

Group Statistics 

 youth 

assisten

ce N+1 N Mean Std. Deviation Std. Error Mean 

Time between arrivalsets NO 163 3,52 2,626 ,206 

yes 80 4,46 4,395 ,491 
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APPENDIX C.7-19 RELATION 4: T-TEST GROUP 2 

 
  

Independent Samples Test 

  Levene's Test for Equality of 

Variances t-test for Equality of Means 

  

  

95% Confidence Interval of the 

Difference 

  

F Sig. t df Sig. (2-tailed) Mean Difference 

Std. Error 

Difference Lower Upper 

Time between arrivalsets Equal variances assumed 17,623 ,000 -2,095 241 ,037 -,947 ,452 -1,838 -,057 

Equal variances not 

assumed 
  

-1,778 107,491 ,078 -,947 ,533 -2,003 ,109 
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Appendix D 

Appendix D Input Data & Distributions 

D.1 Amount of daily children arrivals: over 2008 and 2009 
The daily amount of children arrivals is an important driver of the system behaviour and perceived to be the 

most important scenario variable. The fit between the empirical data over 2008 and 2009 and a multitude 

of theoretical distributions is analyzed with the Arena Input Analyzer. An exponential distribution is 
favourable, because the distribution is easy to adapt to different scenarios based on expected average 

value. The Arena Input Analyzer indicates that the bounded beta distribution is the best fit, both measured 
in square error and by the chi-square statistic. The chi-square test indicates that the beta distribution is not 

significantly different from the observed values until a maximum significance level of 0.0952. Unlike the 
beta distribution, the exponential distribution is significantly different taking into the account the 

significance level of 0.05%. Therefore, the base case model is initialized with the beta distribution. For both 
the beta and the exponential distribution, the relevant statistics are presented tables below.  

 
Distribution Summary 

Distribution: Beta          
Expression: -0.5 + 13 * BETA(0.701, 2.64) 

 Histogram Summary 

 
Histogram Range     = -0.5 to 12.5 

Number of Intervals = 13 

Square Error: 0.002565 
Chi Square Test 

Number of intervals = 10 
Degrees of freedom  = 7 

Test Statistic      = 12.2 
Corresponding p-value = 0.0952 

 Data Summary 
Number of Data Points = 744 

Min Data Value        = 0 
Max Data Value        = 12 

Sample Mean           = 2.23 
Sample Std Dev        = 2.54 

 

 

 
Distribution Summary 

Distribution: Exponential   

Expression: -0.5 + EXPO(2.73) 
Square Error: 0.009959 

Histogram Summary 

Histogram Range     = -0.5 to 12.5 

Number of Intervals = 13 
 

Chi Square Test 
  Number of intervals = 10 

  Degrees of freedom  = 8 
  Test Statistic      = 38.5 

  Corresponding p-value < 0.005 

Data Summary 
Number of Data Points = 744 

Min Data Value        = 0 
Max Data Value        = 12 

Sample Mean           = 2.23 

Sample Std Dev        = 2.54 

 

D.2 Optimization: Number of care sets a child 
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As concluded in section 6.5, the available data sources do not allow an accurate determination of the 

number of care sets assigned to children and the conditionality relations, which influence this factor. An 

optimization experiment is performed, which optimizes the minimum error of the experienced average 
trajectory demand at the different care providers, as a function of the parameters of the chosen 

distribution. 
 

D.2.1 Implicated optimization and model structure assumptions 

The optimization experiment optimizes the process which transforms the child demand behaviour into the 

trajectory demand at the different care systems.. Based on the analysis of observed demand behaviour,  
the optimization experiment assumes that the average children and trajectory demand is constant. The 

observed behaviour is assumed to arise from system variability, not due to changes in arrival patterns or 
care set relation.  

 
Assumption dependency relation 
The dependency relations found in chapter 6, indicate a clear dependency of all factors on the 

accommodation care type of a care set. The assumption is made that the chance of return after a care set 
is dependent on the accommodation of this care set.  

 
Structure and distribution choice  
First, a choice has to be made concerning the model structure and as a result of this structure the 
distribution to optimize. In general, two possible alternative model structures are explored: 

 
1. A  model structure in which a distribution is drawn to directly determine a child‟s number of care 

sets  

2. A model structure in which after every care set drawing a binominal distribution is drawn to decide 
whether the child returns.  

 
The first model structure does not allow modelling dependency relations between the composition of each 

care set and the chance of return after this care set. Only the dependency between the composition of the 
first care set and the amount of returns can be incorporated. The second structure on the other allows 

modelling the dependency between the composition of each care set and the return chance after this care 
set. Furthermore, the data limitations introduced in section 6.5 make it impossible to determine the shape 

and boundaries of the distribution, which needs to be embedded in the first structure. The binominal 

distribution on the other hand, only has one input parameter the probability.  
 

Another practical, but convincing, argument to choose the second structure, is that optimizing the 
distributions in the first structure will require an optimization with at least 2 variables for each depend 

distribution. Taking the assumed dependency relation with the four accommodation type into account, an 
optimization of four distributions results in a minimal of 8 independent optimization variables. The Any 

Logic University License supports optimization with a maximum of 5 variables. Each binominal distribution 
requires one input parameter, which results in a optimization with 4 variables. Based on those 

considerations the second structure is implemented in the simulation model.  

 

D.2.2 Objective function 

The goal of the optimization experiment is to find the probability parameter inputs of the binominal 

distribution that results in a minimum of a function called the objective function. The objective function is a 

mathematical expression, which describes a relationship of the optimization parameters or the results of an 
operation that use the optimization parameters as inputs. The objective of the optimization experiment is to 

find the return probabilities, which results in a simulated trajectory which is equal to the in the real world 
observed trajectory arrival pattern. 

 
The objective function is based on the student T-test for unequal variances, which compares the dataset of 

simulated monthly averages with the monthly averages observed in the real world for each care type. The 

following sub-function is determined for each care type.  
  

Objective sub-function 1:             
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The introduced sub-function calculates the student T-test statistics between the averages of monthly-

observed trajectory arrivals in the simulation model and in the real world system. The standard deviation of 

both groups is unknown and assumed unequal. Therefore, the standard deviation of the differences is 
estimated with the following equation: 

 

Standard deviation of the difference:      
  

 

  
 

  
 

  
 

 
The objective is to minimize the objective sub-function for all care types. Furthermore, the total deviation 

needs to be divided equally over all care system, to assure the best system wide performance. Therefore, 

the following main objective function is minimalized during the optimization experiment: 
 

 

Main objective function:                                        

 

D.2.3 Experiment set-up 

Run length: 400 months.  
Iterations: 10.  
Replications: 500 
 
The optimization parameters are the probability of returns after a main care set of each care type. The 

variation range of the four parameters in chosen between 0.3 and 0.85.   

D.2.4 Results 

The optimization experiment indication that the optimal parameter values are: 

 

 
APPENDIX D.2-1 INPUT PARAMETERS RETURN PROBABILITY 

Accommodation  
type 

Return 
probability 

DH 0,436 

PZ 0,772 

RH 0,786 

None (AH) 0,637 
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D.3 Input sheet care set relations 
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D.4 Time between care set returns 
The time between care set returns faces the next data limitation. Each trajectory, which arrives in a 
common month, is perceived to belong to the same common care set. An analysis of the time between care 

set returns requires the grouping of trajectories to care sets, the arrival day of each trajectory is 
aggregated to the common care set arrival month. The time between those care sets can therefore, only be 

determined in months. In the simulation model the exact day of arrival needs to determined. The only 
found variable, with a significant influence on the return time, found in section 6.4 is the accommodation 

type of the previous care set. Furthermore, a post hoc test proved that the only significant difference is 
found between PZ and all accommodation care types. In conclusion, two separate distributions are 

necessary to model the returns after PZ and the other care sets. This section will first analyse the observed 

time between care set return distributions in months, followed by an explanation how these months are 
recalculated to days in the simulation model  

 
The histogram of the return times observed in months, after a care set with accommodation type RH, DH 

or None is presented below. The square error indicates that the mean difference between the fitted 
exponential distribution and the observed return time are small. The chi-square indicates that there is a 

(large) significance difference between the fitted exponential function and the observed values. On the 
basis of this chi-square test, the return time after care sets with RH, DH, or no accommodation care type is 

implemented in the simulation model with an empirical distribution. The relevant descriptives are presented 

in the following table.   

 
Distribution Summary 

Distribution: Exponential   
Expression: 0.5 + EXPO(4.27) 

Square Error: 0.003193 

Histogram Summary 

Histogram Range     = 0.5 to 23.5 
Number of Intervals = 23 

Chi Square Test 

  Number of intervals = 18 
  Degrees of freedom  = 16 

  Test Statistic      = 52.6 

  Corresponding p-value < 0.005 

 Data Summary 

Number of Data Points = 1640 
Min Data Value        = 1 

Max Data Value        = 23 

Sample Mean           = 4.77 
Sample Std Dev        = 4.21  

Histogram of the return time distribution in months after care sets with accommodation type PZ. The 

square error between the observed measures and the exponential function fitted is low. The chi-square test 

indicates that there is a significant error, taking into account significance level of 0.005. Based on the 
relatively low amount number of data points in relation to the intervals, the decision is made the 

implemented the exponential distribution in simulation model. The relevant descriptives are presented in 
the following table.   

 
Distribution Summary 
Distribution: Exponential   
Expression: 0.5 + EXPO(3.3) 

Square Error: 0.008007 

Histogram Summary 
Histogram Range     = 0.5 to 21.5 
Number of Intervals = 21 
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From months between arrivals to days between arrivals.  
Understanding the source of discard, which is the implemented definition of a care set, no alternative data 
sources can provide additional insight in the exact arrival day. To overcome this knowledge limitation, the 

simulation model uses the following procedure to recalculate the months between arrivals to the exact 
arrival day: 

1) Draw the time between care set arrivals to determine the in between time in months.  

2) Use the calendar function to determine the number days until the end of current month 
3) Use the calendar function to determine the number of days of the entire months until next care set 

arrivals.  
4) Use the calendar function to determine the amount of day the drawn proportion of the final 

months resembles.  
5) Calculate the days between care set arrivals by summing the days determined at step 2, 3, 4.  

  

D.5 Treatment time distributions 
The observed treatment times over 2008 and 2009, aggregated to their care types are analyzed in this 
section. 

 
Ambulatory care 
 
An analysis with the Arena Input Analyzer indicated that a weibull distribution was the best finding 

distribution followed by an exponential distribution. While the square error of both function where 
acceptable, the chi-square static shows that there is significant different between both distributions and the 

empirical data. Based on the significant differing theoretical distributions and the large data set, the 

empirical distribution is chosen as the best abstraction of the ambulatory treatment time distribution in the 
model.  

 
The validation face showed that there was a significant between the outflow ambulatory trajectories in the 

real system and in the simulation, when using the empirical distribution. The outflow of trajectories was 
significantly lower than the observed outflow in the real system. The insight that the treatment is the only 

parameters of influence on the trajectory outflow, in the situation that the queue size is constantly higher 
than zero, provides an opportunity for a simple calibration experiment with the theoretical distributions. The 

objective of the calibration experiment is to minimize the difference between the monthly average outflow 

observed the simulation model and in the real system. The calibration experiments with the empirical 
distribution, the exponential distribution and the Weibull distribution indicated that the Weibull distribution 

resulted in a minimum objective function. A chi-square test found no significant difference between the 
outflow of treated trajectories, with the Weibull treatment time distribution. Based on these conclusion the 

Weibull treatment distribution is implemented in the simulation model.  
 

 
Distribution Summary 
Distribution: Weibull       

Expression: 0.999 + WEIB(219, 1.01) 
Square Error: 0.001542 

Histogram Summary 
Histogram Range     = 0.999 to 996 

Number of Intervals = 40 

Chi Square Test 
  Number of intervals = 9 

  Degrees of freedom  = 7 
  Test Statistic      = 17.5 

  Corresponding p-value = 0.016 

Data Summary 
Number of Data Points = 247 

Min Data Value        = 1 
Max Data Value        = 21 

Sample Mean           = 3.8 
Sample Std Dev        = 3.32 
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Chi Square Test 
  Number of intervals = 19 

  Degrees of freedom  = 16 
  Test Statistic      = 188 

  Corresponding p-value < 0.005 
 

Data Summary 
Number of Data Points = 4445 

Min Data Value        = 1 
Max Data Value        = 2.44e+003 

Sample Mean           = 233 
Sample Std Dev        = 259 

 
 

 
Distribution Summary 
Distribution: Exponential   

Expression: 0.999 + EXPO(232) 

Square Error: 0.002031 

Histogram Summary 
Histogram Range     = 0.999 to 996 

Number of Intervals = 40 

Chi Square Test 
 Number of intervals = 21 
 Degrees of freedom  = 19 

 Test Statistic      = 154 
 Corresponding p-value < 0.005 

 

Data Summary 

Number of Data Points = 4445 
Min Data Value        = 1 

Max Data Value        = 2.44e+003 
Sample Mean           = 233 

Sample Std Dev        = 259 

 
Treatment Time DH 
The shape of the observed day care treatment times distribution presents a clear indication that the 

observed distribution is not the result of one theoretical distribution. This hypothesis is tested by the Arena 

Input Analyzer, this analysis showed that the best fitting distribution is a beta distribution. The square error 
and the chi-square test statistic indicate that the beta distribution is significantly different than the 

distribution of the observed values. There for an empirical distribution is implemented in the simulation 
model. The relevant descriptive are presented in the following table.   

 

 
Distribution Summary 
Distribution: Beta          

Expression: 0.999 + 995 * BETA(1.03, 1.9) 
Square Error: 0.010484 

Histogram Summary 
Histogram Range     = 0.999 to 996 

Number of Intervals = 15 

Chi Square Test 
Degrees of freedom  = 9 

  Test Statistic      = 41.1 

  Corresponding p-value < 0.005 

Data Summary 
Number of Data Points = 232 

Min Data Value        = 1 

Max Data Value        = 996 
Sample Mean           = 351 

Sample Std Dev        = 240 

 

Treatment time RH 
The shape of the residential treatment time is long tailed. The Arena Input Analyzer indicated that the best 

fitting distribution is a Beta distribution. The square error is acceptably low; the chi-square test indicates 
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that the distribution is equal at a significance level of 0.0266. This indicates that the beta distribution is 

significantly different at the chosen significance level of 0.05. However, it becomes clear that the empirical 

values are not smoothed out yet, which could be a results of the relative view data points in combination 
with the long tail of the distribution. Based on this observations the decision has been made to 

implemented the beta distribution in the simulation model. The relevant descriptive are presented in the 
following table.   

 
Treatment time PZ 
The Arena Input Analyzer indicates that the best fit based on the square error is an beta distribution. The 

square error is acceptably low, the chi square test indicates that there is no significant different between 
the fitted data distribution and the observed values. Based on those considerations, the beta distribution is 

implemented in the simulation model. The relevant descriptives are presented in the following table.  

 

 

 
Distribution: Beta          

Expression: 3 + 4.96e+003 * BETA(0.222, 
2.04) 

Square Error: 0.001535 

 Histogram Summary 
Histogram Range     = 3 to 4.96e+003 

Number of Intervals = 20 

Chi Square Test 
 Number of intervals = 9 

 Degrees of freedom  = 6 
 Test Statistic      = 9.41 

 Corresponding p-value = 0.166 

 Data Summary 
Number of Data Points = 428 

Min Data Value        = 3 
Max Data Value        = 4.96e+003 

Sample Mean           = 489 
Sample Std Dev        = 816 

 
 

 

D.6 Withdrawal probability graphs 

 

Distribution: Beta          

Expression: 0.999 + 2.19e+003 * BETA(0.304, 

2.62) 
Square Error: 0.001366 

 Histogram Summary 
Histogram Range     = 0.999 to 2.19e+03 

Number of Intervals = 24 

Chi Square Test 
Number of intervals = 12 

 Degrees of freedom  = 9 
Test Statistic      = 18.9 

 Corresponding p-value = 0.0266 

 

 Data Summary 
Number of Data Points = 615 

Min Data Value        = 1 
Max Data Value        = 2.19e+003 

Sample Mean           = 229 

Sample Std Dev        = 337 
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D.7 Care capacity 
The care capacity of the SD and DES model are based on the number of children, which can be treated 
parallel at the same moment of time. The quantification of this capacity is abstracted from the observed 

amount of children in care over the year 2008 and2009. The graphs of the waiting list and children in care 
dynamics are presented in Appedix  The method to abstract the system capacity from the amount children 

in care is only valid when the constraining factor is the care capacity and not the care demand. The waiting 
list observed for each care type indicates that indeed over last years the capacity was the constraining 

factor for the amount children in care. Based on the rather constant amount children in care for each care 
type, the decision has been made to quantify the base case model with a constant capacity. The constant 

capacity chosen is the average observed amount children over 2008 and 2009. 

 
APPENDIX D.7-1 CAPACITY INPUT PARAMETERS 

Care type Capacity 
(trj) 

AH 1395 

DH 124 

RH 340 

PZ 173 
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Appendix E 

Appendix E Treatment, Verification& Validation 

E.1 Start-up time 
Start-up time graphs, considered subsystems are the care provider performance from a child layer and the 

PZ care system. Analyzed performance indicators are the observed average waiting, before care capacity is 

available, a month for children and foster care trajectories.  

  
The outflow graphs for both foster care trajectories and children stabilise after 80 months.  

  
No clear stabilisation moment is observed for the average waiting time a month.  

  
Sensitivity overview of 100 runs, both graphs stabilise after circa 100 months visualized by the weighted 
average over two years.  To stay consistent, in observed simulation and real world months, a start up times 

of 108 months (9 years) is considered. 
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E.2 Care set composition validation 
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E.3 Overview cross-comparison statistics care system 

 
 

   
DES Queue mechanism 

  

 
DH Data 

First  
in first 

out Priorities Random SD Unit 

Inflow 

mean 12,8 13,1 13,1 13,1 

13,09 trj/month Median 13 13 13 13 

st. deviation 4,9 3,8 3,7 3,8 

Withdrawal 
flow 

mean 2,5 3,1 3,1 3,1 

2,49 trj/month Median 2 3 3 3 

st. deviation 1,8 2,4 2,7 2,4 

Outflow 
treated 

mean 9,7 10 10 10 

11 trj/month Median 7 10 10 10 

st. deviation 11,6 3 3 3 

WaitingList 

mean 37,9 33,5 40,2 50,5 

32,54 trj/month Median 37 32 39 49 

st. deviation 10,3 14,1 17,8 18,8 

Mean 
Waiting 

time 
mean 

14, 
78 

11,2 13,2 16,8 10,65 Week 

Appendix E.4 

   
DES Queue mechanism 

  

 
AH Data 

First  
in 

first 
out Priorities Random SD Unit 

Inflow 

mean 220,7 225,6 225,7 225,7 

228,11 trj/month Median 217 224 224 224 

st. Deviation 42,5 26,4 26,2 26,3 

Withdrawal 
flow 

mean 31,1 35,3 35,8 35,6 

47,49 trj/month Median 30 35 35 35 

st. deviation 10,2 11,9 11,6 11,7 

Outflow 
treated 

mean 187,6 194 194 193,7 

197,4 trj/month Median 188 194 194 196,5 

st. deviation 46,2 14,9 15 14,6 

Waiting list 

mean 354,8 358,7 350,3 361,2 

363 Trj Median 348,5 357 357,5 357 

st. deviation 47,5 84,7 76,5 102,8 

Mean 
waiting 

time 
mean 7,7 6,8 6,8 7,8 6,8 Week 

Appendix E.5 
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DES Queue mechanism 

  

 
PZ Data 

First  
in first 

out Priorities Random SD Unit 

Inflow 

Mean 22,6 24,4 24,5 24,5 

22,6 trj/month Median 21,5 24 24 24 

st. deviation 6,3 5,1 5,1 5,2 

Withdra
wal flow 

Mean 2,4 3,1 3,2 3,3 

1,75 trj/month Median 2 2 2 2 

st. deviation 2,7 3,3 3,5 3,3 

Outflow 
treated 

Mean 18,6 21,3 21,3 21,3 

18,66 trj/month Median 18,5 21 21 21 

st. deviation 6 5,8 5,9 5,8 

Waiting 
list 

Mean 27,9 26 27,3 34,7 

25,53 Trj Median 27,5 25 25 32 

st. deviation 5,7 18,5 20,2 25,7 

Mean 
Waiting 

time 
Mean 5,5 4,6 4,9 6,2 4,84 Week 

Appendix E.7 

 

   

 
DES Queue mechanism 

  

 
RH Data 

First  in 
first 
out Priorities Random SD Unit 

Inflow 

mean 32,5 32,2 32,3 32,3 

29,67 trj/month Median 33 32 32 32 

st. deviation 9,1 6,3 6,3 6,3 

Withdraw
al flow 

mean 7,5 9,4 9,5 9,4 

7,47 trj/month Median 7 9 9 9 

st. deviation 3,6 5,1 5,5 5,2 

Outflow 
treated 

mean 26,1 22,8 22,7 22,9 

24 trj/month Median 25 22 22 22 

st. deviation 7,1 6,2 6,1 6,2 

Waiting 
list 

mean 81,1 84,2 96,4 98,7 
64,23 Trj Median 85,5 82 94 96 

st. deviation 21,5 31,3 36,2 38,3 

Mean 
Waiting 

time 

mean 11,1 11,4 13 13,2 9,28 Week 

 
Appendix E.6 
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E.4 DH validation 

E.4.1 Overview real data statistics 

  
Inflow(trj/mnth) Outflow(trj/mnth) 

Withdrawal 
(trj/mnth) Waitinglist(trj) 

Mean 12,74 9,52 2,50 37,90 

95% 
Confidence 
Interval for 
Mean 

Lower 
Bound 

10,77 4,87 1,81 34,49 

Upper 
Bound 

14,71 14,17 3,19 41,30 

5% Trimmed Mean 12,52 7,57 2,42 37,66 

Median 13,00 7,00 2,00 37,00 

Variance 24,738 138,336 3,148 80,025 

Std. Deviation 4,974 11,762 1,774 8,946 

Minimum 4 2 0 25 

Maximum 26 55 7 55 

Range 22 53 7 30 

Interquartile Range 6 3 3 15 

Skewness ,787 3,305 ,578 ,409 

Kurtosis 1,120 10,671 -,093 -,855 

 

E.4.2 DH inflow validation 
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E.4.3 DH outflow treatment 

 
 

 

E.4.4 DH withdrawals 
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E.4.5 DH waiting list 
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E.5 AH validation 

E.5.1 Overview real data statistics 

  
Inflow(trj/mnth) Outflow(trj/mnth) 

Withdrawal 
(trj/mnth) Waitinglist(trj) 

Mean 220,71 187,64 31,11 352,97 

95% 
Confidence 
Interval for 
Mean 

Lower 
Bound 

204,23 169,72 27,14 334,84 

Upper 
Bound 

237,20 205,56 35,07 371,09 

5% Trimmed Mean 217,21 186,17 30,06 354,04 

Median 217,00 188,00 30,00 344,00 

Variance 1807,101 2135,275 104,618 2271,034 

Std. Deviation 42,510 46,209 10,228 47,655 

Minimum 169 102 17 250 

Maximum 335 303 69 432 

Range 166 201 52 182 

Interquartile Range 42 70 11 72 

Skewness 1,568 ,515 1,976 -,197 

Kurtosis 2,278 -,011 6,117 -,626 

 

E.5.2 AH inflow validation 
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E.5.3 AH treatment outflow validation 

 
 

 
 
 

 
 

 
 

E.5.4 AH withdrawal 

 

 
 

E.5.5 AH waiting list 
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References 

170 
 

 

E.6 RH validation 

E.6.1 Overview Real data statistics 

  
Inflow(trj/mnth) Outflow(trj/mnth) 

Withdrawal 
(trj/mnth) Waitinglist(trj) 

Mean 32,54 26,07 7,54 79,93 

95% 
Confidence 
Interval for 
Mean 

Lower 
Bound 

29,02 23,30 6,14 71,54 

Upper 
Bound 

36,05 28,84 8,93 88,32 

5% Trimmed Mean 31,99 25,79 7,39 80,24 

Median 33,00 25,00 7,00 85,00 

Variance 82,110 51,032 12,925 486,352 

Std. Deviation 9,061 7,144 3,595 22,053 

Minimum 17 17 3 45 

Maximum 63 41 15 109 

Range 46 24 12 64 

Interquartile Range 10 11 5 44 

Skewness 1,118 ,566 ,687 -,230 

Kurtosis 3,637 -,685 -,474 -1,523 
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E.6.2 RH inflow 
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E.6.3 RH treatment outflow 
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E.6.4 RH withdrawal 

 

 
 



 

References 

174 
 

 
 

E.6.5 RH waiting list 
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E.7 PZ validation 

E.7.1 PZ inflow 

PZ inflow 
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E.7.2 PZ outflow 

 
 

 

 

 

 
 

 

E.7.3 PZ withdrawal 
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E.7.4 PZ waiting list 
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E.8 Validation child layer 
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Appendix F 

Appendix F Experiment runs 

F.1 Scenario 10% increase children arrivals 
 

Base= base case experiment 

Exp.= Expirement 10% increase in children inflow 
Units= Inflow (trj/month), withdrawal (trj/month), waiting list (trj), waiting time (wk) 

 

  
AH DH PZ RH 

  
base exp. base exp. base exp. base exp. 

SD 

Inflow 228,1 252,5 13,1 14,5 22,6 25,0 29,7 32,8 

withdrawal 47,5 71,8 2,5 3,9 1,8 4,1 7,5 10,6 

Waiting list 363,0 463,4 32,5 44,0 25,5 42,3 64,2 81,6 

Waitingtime 6,8 7,9 10,7 13,0 4,8 7,3 9,3 10,9 

FIFO 

Inflow 230,2 254,3 13,1 14,5 24,6 27,0 32,4 35,6 

withdrawal 36,2 60,1 3,1 4,4 3,2 5,7 9,7 12,6 

Waiting list 368,9 618,8 33,4 56,7 26,9 46,6 87,8 131,0 

Waitingtime 7,0 10,6 11,1 17,0 4,6 7,3 11,6 16,1 

Priority 

Inflow 229,1 252,5 13,1 14,4 24,3 26,9 32,1 35,4 

withdrawal 34,8 58,3 3,1 4,4 3,1 5,6 9,4 12,9 

Waiting list 352,6 634,5 40,1 71,6 26,9 47,7 94,5 157,0 

Waitingtime 6,6 10,9 13,3 21,7 4,8 7,6 12,8 19,1 

SIRO 

Inflow 229,7 253,1 13,2 14,5 24,5 27,0 32,2 35,6 

withdrawal 35,8 59,0 3,1 4,4 3,2 5,7 9,6 13,0 

Waiting list 364,1 664,7 52,4 89,0 34,0 64,4 101,3 163,1 

Waitingtime 6,9 11,4 17,4 27,0 6,0 10,3 13,5 19,9 

 


	Chapter 1
	1.1 Research background
	1.1.1 Youth care
	1.1.2 Simulation

	1.2 Research framework
	1.2.1 Problem owner and research setting
	1.2.2 Problem formulation
	1.2.3 Research Objectives
	1.2.4 Research questions

	1.3 Research Strategy
	1.3.1 Methodology
	1.3.2 Thesis structure


	Chapter 2
	2.1 Problem context youth care sector
	2.1.1 Youth care process
	2.1.2 Care services
	2.1.3 Actors and responsibilities
	2.1.4 Coordination in the youth care chain
	2.1.5 Information hierarchy, budget allocation and performance control

	2.2 Waiting lists in health and youth care
	2.3 Decision support model requirements
	2.3.1 Sound and successful models
	2.3.2 Model requirements

	2.4 Problem and system delineation
	2.4.1 System borders and demarcation
	2.4.2  System decomposition: horizontal layers and vertical partitioned subsystems
	2.4.3 Exogenous variables
	2.4.4 Performance indicators

	2.5 Conclusion

	Chapter 3
	3.1 Conceptual and simulation modelling
	3.2 Conceptual modelling strategies
	3.2.1 System decomposition
	3.2.2 Object Orientation

	3.3 Classification of simulation
	3.3.1   Dynamic simulation vs. static simulation
	3.3.2 Definition of time and state in simulation
	3.3.3 Taxonomy of simulation

	3.4 System Dynamics (SD)
	3.5 Discrete Event simulation (DES)
	3.5.1 Passive vs. Active entities
	3.5.2 Simulation clock and modeling perspective
	3.5.3 Process orientation

	3.6 Comparisons SD and DES
	3.7 Simulation experiences in health care
	3.7.1 Requirements Usefulness
	3.7.2 Requirements usability
	3.7.3 Requirements usage

	3.8 Conclusion methodological justification

	Chapter 4
	4.1 Specification
	4.1.1 Model assumption
	4.1.2 Model initialization

	4.2 System variability
	4.2.1 Variability in SD models
	4.2.2 Variability in treatment time

	4.3 SD model outputs and limitations
	4.4 Conclusions and implications

	Chapter 5
	5.1 System structure
	5.2 Care profile: Coupling of child and trajectory arrivals
	5.3 Trajectory layer
	5.3.1 Static structure trajectory layer
	5.3.2 Process view: care system
	5.3.3 Trajectory: matching attributes with dynamics
	5.3.4 Resources

	5.4 Child layer
	5.5 Conclusion

	Chapter 6
	6.1 Inflow analysis
	6.1.1 Complications, limitations and validation of the demand analysis
	6.1.2 Children Inflow
	6.1.3 Trajectory inflow
	6.1.4 Trajectory arrivals aggregated to care type
	6.1.5 Conclusion analysis of demand behaviour

	6.2 Relation arrival type and care set composition
	6.2.1 Number of care trajectories a care set
	6.2.2 Comparison trajectories assigned to new and return care set
	6.2.3 Conclusion  relation between arrival type and trajectories

	6.3 Care set relations: conditionality and dependency
	6.3.1 Parallel conditionality
	Example analysis: Parallel relation between PZ and RH registered arrival set
	6.3.2 Sequential conditionality
	6.3.2.1 Sequential relation1: sequentiality between accommodation services
	6.3.2.2 Sequential relation 2 :  influence of previous youth assistance trajectories on new accommodation care services.
	6.3.2.3 Sequential relation 3: Sequential relations between the occurrence of youth assistance


	6.4 Time between care set arrivals
	6.4.1 Relation 1: The influence of accommodation care type  in care set N on the time between arrivals
	6.4.2 Overview time between care set return relations tests

	6.5 Limitations and complications care set returns a child
	6.6 Withdrawal mechanism
	6.7 Observed dynamics in policy variables
	6.8 Conclusion data analysis

	Chapter 7
	7.1 Model assumptions and reductions
	7.2 Anylogic software
	7.3 Model logic
	7.3.1 Static structure Anylogic model
	7.3.2 From child arrival to trajectory arrival
	7.3.3 Care set class
	7.3.4 First care set drawing
	7.3.5 Care system process and trajectory states
	7.3.6 Children states

	7.4 Model Quantification
	7.4.1 Methods and techniques to quantify input parameters
	7.4.2 Parameter calibration
	7.4.3 Calibration number of care sets.
	7.4.4 Interrelations queue and withdrawal mechanism
	7.4.5 Withdrawal curves
	7.4.6 Queue mechanism assumptions and experiments
	7.4.7 Care provider input variables

	7.5 Conclusions specification

	Chapter 8
	8.1 Treatment
	8.1.1 Start-up time
	8.1.2 Run length
	8.1.3 Number of replications

	8.2 Verification and validation methodologies
	8.3 Conceptual model validation
	8.4 Calibration and validation data
	8.5 Verification
	8.6 Validation structure
	8.7 Face validation
	8.7.1 Single replication run waiting list behaviour
	8.7.2 Waiting list spread 100 replications

	8.8 Empirical assumption tests
	8.8.1 Sensitivity queue mechanism
	8.8.2 Sensitivity withdrawal curves
	8.8.3 Child return probabilities
	8.8.4 Conclusion empirical assumption tests

	8.9 Quantitative validation
	8.9.1 Trajectory and care set composition
	8.9.2 Limitation quantitative stock and flow validation
	8.9.3 Care system quantitative comparison
	8.9.4 Children layer validation

	8.10 Conclusion verification and validation

	Chapter 9
	9.1 Scenario increase children demand
	9.2 Sensitivity capacity changes
	9.3 Conclusion cross comparison

	Chapter 10
	10.1 Evaluation research questions
	10.1.1 A review of the research questions
	10.1.2 Review of the main research question

	10.2 Barriers for simulation in health and youth care
	10.3 Recommendations
	10.4 Reflection
	Appendix A
	Appendix B
	Appendix C
	C.1 Care provider treatment times
	C.2 Behavioural graphs trajectory waiting lists and incare
	C.3 Differences in number of trajectories per care set for new and returning children.
	C.4 Chi square tests parallel relations
	C.5 Layered sequential contingency table main care type
	C.6 Sequential and parallel relations return youth assistance
	C.7 Dependency relations return time
	C.7.1 Relation 1 : The influence of accommodation care type  in care set N on the time between arrivals
	C.7.2 Relation 2: Influence of the accommodation type of the returning care set on the time between care set arrivals
	C.7.3 Relation 3: Relation 3 : Influence of youth assistance in the N care set on the time between care set arrivals
	C.7.4 Relation 4: Influence of youth assistance in the returning care set on the return time.
	Appendix D


	D.1 Amount of daily children arrivals: over 2008 and 2009
	D.2 Optimization: Number of care sets a child
	D.2.1 Implicated optimization and model structure assumptions
	D.2.2 Objective function
	D.2.3 Experiment set-up
	D.2.4 Results

	D.3 Input sheet care set relations
	D.4 Time between care set returns
	D.5 Treatment time distributions
	D.6 Withdrawal probability graphs
	D.7 Care capacity
	Appendix E

	E.1 Start-up time
	E.2 Care set composition validation
	E.3 Overview cross-comparison statistics care system
	E.4 DH validation
	E.4.1 Overview real data statistics
	E.4.2 DH inflow validation
	E.4.3 DH outflow treatment
	E.4.4 DH withdrawals
	E.4.5 DH waiting list

	E.5 AH validation
	E.5.1 Overview real data statistics
	E.5.2 AH inflow validation
	E.5.3 AH treatment outflow validation
	E.5.4 AH withdrawal
	E.5.5 AH waiting list

	E.6 RH validation
	E.6.1 Overview Real data statistics
	E.6.2 RH inflow
	E.6.3 RH treatment outflow
	E.6.4 RH withdrawal
	E.6.5 RH waiting list

	E.7 PZ validation
	E.7.1 PZ inflow
	E.7.2 PZ outflow
	E.7.3 PZ withdrawal
	E.7.4 PZ waiting list
	/

	E.8 Validation child layer
	Appendix F

	F.1 Scenario 10% increase children arrivals



