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Abstract

In MEMS modelling the electro-mechanical coupling
takes an important place. Indeed many devices use electro-
static forces as actuator. The numerical modelling of this
type of problem needs a strong coupling between the me-
chanics and the electrostatic field. In fact when the struc-
ture is moving, the electrostatic field around it has to be
modified in consequence. The first solution is to use finite
element method to model the electrostatic field. In this case
the mesh has to be updated depending on the displacement
of the structure. Many researches have been performed to
deform properly the electrostatic mesh, but when large dis-
placement are taken into account, the elements become dis-
torted. Furthermore, when the pull-in is achieved, the elec-
trodes are in contact and the layer of electrostatic elements
is totally squeezed. The second usual solution is to use the
boundary element method to model the electrostatic field.
In this case, there are no more remeshing problem, but the
computational time is larger and singularity problems ap-
pears when the electrodes become in contact.
One solution for this remeshing problem is to use ex-

tended finite elements (X-FEM) which are a new type of
elements tailored to simulate problems involving discon-
tinuities and moving boundaries. Initially this methodol-
ogy was created for crack propagation problems [1, 3, 5],
but its application has been extended to several other prob-
lems such as elastic problem involving inclusions, flow-
structure interaction and solidification problems. In this
paper the concept of extended finite elements is applied to
develop modelling approaches for the electro-mechanical
coupling. The method will be illustrated here for a one-
dimensional problem and implementation issues relative to
the two-dimensional case are discussed.

1. Introduction

This research aims at modelling of electro-mechanical
coupling that normally takes place in some micro-electro-
mechanical systems (MEMS) like micro-resonator or RF
switches. The problem can be described as a conducting
mechanical structure with applied voltage, which generates
a surrounding electrostatic field. The electrostatic field, in
its turn, causes an appearance of electrostatic force, applied
to the structure. This type of problem is a strongly non-
linear problem since the electric domain changes with the
deformation of the structure. The usual numerical tech-
niques to model this type of electro-mechanical problem
are the finite element method and the boundary element

method. The mechanical structure is usually simulated
by a finite element model and the electrostatic domain is
solved by either finite element method or boundary ele-
ment method. For both cases some problems appear when
the structure undergoes large displacements and when the
electrodes come into contact. Indeed, the electrostatic finite
element mesh has to be modified as the structure moves.
Moreover, the electrostatic mesh can be severely deformed
if the structure undergoes large displacements. Further-
more, when the electrodes come into contact, the elements
between the electrodes have to be deleted. The boundary
element method proposes a partial solution to this prob-
lem: the electrostatic domain is meshed only on the bound-
ary hence allowing large displacements to the structure.
However this increases the computation time. Moreover,
when the structure comes into contact, the boundary ele-
ment can no longer be applied since it requires that a gap
exists between the electrodes. In order to simplify and im-
prove modelling of structures moving in an electric field,
we propose to make use of the concept of eXtented Fi-
nite Elements. They are a new type of elements tailored
to simulate problems involving discontinuities and moving
boundaries.

The basic idea is to have an electrostatic mesh covering
the entire domain and that does not change while the struc-
ture part is moved within the field. The electro-mechanical
problem is considered as a bi-material problem where the
mechanics and the electricity are computed and coupled on
a single element. Following the variational approach de-
veloped in [4], electrostatic forces may be derived and ap-
plied at the interface of the element. The electromechani-
cal problem may then be solved and the results correspond
very well to the analytical solution for a one dimensional
problem. A short discussion will be also given about im-
plementation issues of this techniques in 2 dimensions.

2. eXtended Finite Element Theory
The extended finite element method consists in discretis-

ing the entire electro-mechanical problem with a fixed
mesh and in following the interface between two domains
through this mesh. At the interface the physical field or its
gradient are no more continuous. To model this disconti-
nuity, special shape functions are used to enrich the usual
discretisation. For instance, the mechanical displacement
u is enhanced by discontinuous shape functions Mi such
as:

u(x, t) = ZNi (x) Ui (t) +ZMj (x, t)Aj (t)
i I

(1)
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where Ni are the standard shape functions and Mj are the
enriched shape functions taking the discontinuity into ac-
count. New unknowns Aj are introduced to model the dis-
continuity.

There are different ways to create these additional shape
functions. Moes [2] proposes to define these functions
based on the standard shape functions by the relation:

My(x,t) =Nj(x)O(x,t)

enrichment 0 becomes:

)a = forO< 1 < F

®b = 1 -r for1<l < 1

The plot of these functions is illustrated in Figure 2 and

(2)

where 0 (x, t) is defined by:

("-(x,it)= lVj NN- ,V
i i

(3)
ba

where ](x, t) is the level set field describing the location
of the interface, and vi is the value of the level set of the
node i. The level set is described by a surface function
intersecting the problem plan at the interface.

First this methodology will be applied in a one-

dimensional electro-mechanical example and the electro-
mechanical problem will be solved by computing electro-
static forces at the interface. Then this methodology will
be adapted to the two dimension problem.

3. Implementation in One Dimension

3.1 Shape Functions in ID

In this section the shape functions for a pure mechanical
bi-material element are presented in one dimension. In that
case the usual shape functions Ni on a reference element
are the following:

0 F

Figure 2. Extended finite element.

the enriched shape functions are:

Mla
M2a

Mlb

M2b

(1 -1

1r

1-11fl 1-ll
(6)

The sum of these two shape functions corresponds to the
expression of 0 (see equation (5)).

f Mla+M2a= r

Mlb +M2b = 1 -
(7)

N, = 1-n

N2r=
(4)

These shape functions are represented in Figure 1. They
allows to model linear behaviour in the element.

I1I1

which correspond of the plot in Figure 2

3.2 Application to Electro-mechanical Coupling

The extended finite elements methodology is now ap-

plied to electro-mechanical coupling in one dimension.
The element is divided in two sub-domains: the mechanical
domain called "a" (in grey) which represents a conducting
material and the electrostatic domain "b" (in white) repre-

senting a non-conducting medium. The part "b" represents,
for instance, the air in which the structure moves (see Fig-
ure 3).

0

k =0
Figure 1: Linear shape functions in ID. a

U,

b

L
U,

Then the enriched shape functions are added to model
the discontinuity. The enriched shape functions, follow-
ing the approach of Moes [2], are given by (2) where 0
is defined by the level set T equal to the signed distance
between the point x and the discontinuity which is located
at a distance F from the first node. In the ID model, this

Figure 3: Extended finite element.

In electro-mechanical problems, the physical unknowns
are the displacement u and the voltage 4. Both fields will

(5)

No

I

C =V

I
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be discretised on domain a and b. Hence we assume that
there is a mechanical field and an electrostatic field in both
parts and define:

{ Ua

Ub

Oa
Ob

N1 U1 + N2U2 + MlaA l + M2aA2
N1 U1 + N2U2 + MlbA1 + M2bA2
Nl1'l + N2P2 + MlaBi + M2aB2
Nl4'1 +N2P42 +MlbB1 + M2bB2

where Ni are the standard shape functions, and Mia and Mib
are the enriched shape functions for each domains:

{
N1

N2 x
L

x
L

MMa= (1 L) x

M2a
x

Mib- (I- )- (9)

M2b LL L/

where 1 is the position of the interface.
The unknowns of this problem are U1, U2, (cl and (D2,

the displacement and the electric potential at the extremi-
ties of the element. and the new unknowns A1, A2, B1 and
B2 used to model the discontinuity of the mechanical field
and the electric potential.

3.2.1 Electrostatic Potential

Along the extended element including the conductor
structure and the air gap between the electrodes, the elec-
tric field is discontinuous. Indeed the voltage is contant on

the conductor (mechanical part a) and decreases linearly on
the electric domain b.
A potential difference is applied between the extremities

of the element (Dl = V and (P2 = 0) as shown in Figure 3.
The stiffness matrix associated to the electrostatic field may
be computed by integration over both parts of the element:

6qT OO6q5 a60 a6d I FLa6O a60
~ ~ ~Ca-jx+ b dx¢¢ 2 Joax aax 2 Jlax bax

(10)
where Ca and Eb are the permittivity of domain a and b, re-

spectively. Considering the structure as a perfect conduc-
tor, the voltage on this part has to be constant. To keep the
voltage constant on the mechanical part, the permittivity of
this domain is imposed to be a very large number compared
to the void permittivity. In this case we will take Ca= 1 and
-b = -0-

Solving the pure electrostatic problem, the obtained po-

tential along the element is constant on the mechanical part
and decreases linearly between the electrodes as plotted in
Figure 4.

3.2.2 Electrostatic Forces at the Interface

To compute the electrostatic forces applied at the inter-
face between the mechanical structure and the electrostatic
domain, an energetic approach has been chosen as pro-

posed by the author in paper [4]. This method consists in
determining the electrostatic forces at the nodes of a finite
element by an integration on its volume. The finite element
formulation is:

fe';ecau DTF (grad6u) dQ (I 1)

x 10

Element Length [m]
Figure 4: Electrostatic potential in one ex-

tended finite element.

with
Q 0 2aa

F= 8 a ) (12)

where D is the electrostatic displacement. In one dimen-
sion this expression is reduced to:

felec1 2 aJo(ax ax (13)

The same method is now applied to the extended finite
element. The electrostatic forces is computed on each sub-
domain of the element by:

T 6U I Oa 2 a6a dx
IL a(b 2 aU

felec6)u =- J(ax)Ca a dx-2 j ( a ) Eb a dx

(14)
The electrostatic potential being constant on the conduc-
tor structure, the first term disappears and the electrostatic
forces are computed only by the integration on domain b.

3.2.3 Electro-mechanical Coupling

Now the complete electro-mechanical problem will be
considered. The mechanical stiffness of an extended one-

dimensional element is obtained by:

TKuu6 a6u a36u ~L 36u a36u
6uTKax Ea axdx+ -' b d

2 ax ax 2I ax ax
(15)

where Ea and Eb are the Young's modulus of the domain
a and b, respectively. In the present case, a mechanical
behaviour exists only on the domain a and Eb will be set to
zero.

The equilibrium position of the electro-mechanical prob-
lem may be obtained solving the system:

KUUUI=1 felec
l Ko54,0 qelec

(16)

where the array u contains the mechanical degrees of free-
dom ui and Ai and contains (i and Bi. qeiec are the

, -

tzz

I

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 06:06 from IEEE Xplore.  Restrictions apply.



charges on the nodes. This system of equation is non-linear
since the electrostatic force felec is a non-linear function of
the electric potential (see equation (14)) and because the
position of the interface 1 after deformation has to be taken
into account in the computation of the electrostatic stiffness

Koo and force feiec

b (D1,D2)
20F

(CIC)215

10

0.5 1 1.5 2 2.5 3

x 10

Displacement of the interface [in]

Figure 5: Displacement of the interface (dots) and
analytical solution (plain line).

In Figure 5 the displacement obtained with the extended
finite element method (represented with dots) is compared
to the analytical solution (plain line). These two results fit
very well for the stable part of the curve.

4. 2D Electrostatic Problem

We will now investigate possible shape functions for ex-

tending the triangular linear elements in two dimensions.
Triangular elements are often used in practice in automatic
meshing tools and are thus very common in practical mod-
els.

4.1 Moes' Shape Functions

For a triangular form Moes [2] proposes for 0 the fol-
lowing function:

= ,= iVj Nj(x,y)+ VjiNi(x,y) (17)
i i

where vi is the value of the level set of the node i. Let us

assume that, in the reference coordinate space, the interface
passes through the nodes (C1, C2) and (D1, D2) where C1 =
0 and D1 = 1-D2 as shown in figure 6. The level set may
be chosen as:

uW4t)=a4 + bq + c (8

where a = (D2 -C2), b =-D1 and c = C2D1 so that v = 0

corresponds to the equation of the interface between the
two domains. Note that this choice is not unique for a, b, c.

Figure 6. Extended finite element in 2D.

Figure 7: Enrichment hat function 0.

The enriched shape functions and the linear shape func-
tions are:

Mal

(Ni = I -4-TL Ma2,
N1 = ~ Ma3
N3 =qMbl

~~~Mb2

kMb3

-2(b+c),(I -4-,1)
-2(b + c)rlt
-2(b + c)flq
2(c+a - cr)(I- -,)
2(c + a0 -ccq)r
2(c + a0,- cq),q

(19)
The hat function 0 modelling the discontinuity is plotted
in figure 7.

"a= ZMai
i

®b = ZMbi
i

(20)

We can observe that the line of discontinuity is not hor-
izontal, which seems to indicate that these extended for-
mulation might not be suitable to impose a constant poten-
tial (as needed for a conductor inside for instance). Let us

check if this extended shape functions are suitable for the
electrostatic problem

1] 3
\\3

a

0
t 1

1
i 2

1
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So let us investigate if the extended field above can be
used to model an electric potential constant on one domain
and varying on the other. The potential is discretised by:

{ (Pa = Nl(A1 + N2 2 + N3(l3 +MlaB 1 + M2aB2 + M3aB3
lPb = Nl4l + N2'D2 + N3 (l3 + MlbBl + M2bB2 + M3bB3

(21)
Considering that the potential is constant on the quadrangu-
lar domain a (see Figure 7), we impose aa; = 0 and aOa = 0
for all values of 4 and rj on the domain a. After develop-
ment we obtain the following constraints:

Therefore we will introduce two successive changes of
variables corresponding to two isoparametric transforma-
tion of the physical space: a first between (X, Y) and ( ,rl),
and a second between (t,rl) and (s, t), as presented in Fig-
ure 8. Note that the second transformation is defined sep-
arately for the triangular and the quadrangular part if the
partitioned element.

(X Y,)~y tt

01)

(l1 = (D2 and B1 = B2 = B3
<1)(cl - c3l) (22)

2(b+c)

Only two unknowns are left, as expected, the potential (l3
and (l1 = D2.
We will now consider that the potential is constant on

the triangular domain b so that a0b= ° and aOb = 0 for all
values of 4 and rj on the domain b. The conditions to have
a constant potential on this domain are

B2 =B1 =B3 and
B= cl)1- 2La

B1
2a

2c

(23)

(X, Y)

(-1,1)

r )

(XY) (,-

3

(0,1) -

I11)

In this case, setting the triangular domain b to a constant
potential (l3 implies a relation between cl1 and (2. This
can be understood as follows.
The condition B2 = B1 = B3 enforces the linearity of the

discretisation field on domain b and as a consequence, also
the linearity of the field on the quadrangular domain a. The
relation between cl1 and cl2 implied by the second set of
constraints in (23) imposes that the values of the electric
potential at the nodes "1", "2","C" and "D" are coplanar.
So the situation where cl3 is set at a potential V (higher
electrode) and cl1 and cl2 are on the grounded lower elec-
trode, is possible only if the interface is parallel to the lower
electrode.

Thus it is impossible to impose a constant potential in-
side the triangular part of the extended element and a lin-
ear field on the quadrangular part. We must therefore con-
clude that the shape functions derived from the approach
described in [2] not suitable for electro-mechanical mod-
elling in the vicinity of conductors. Hence in the following
section, we build a different extended field to circumvent
this shortcoming.

4.2 Quadratic Enriched Shape Functions

The underlying idea of this new approach can be best
understood by observing that if the extended element was
build out of two finite elements (one for the conductor and
one for the non-conducting part), it would straightforward
to simulate the behaviour of electro-mechanical problem.
So, we will try to use quadrangular shape functions for the
trapezoidal part and triangular shape functions for the tri-
angular part.

(-1,-1)
(0,0) (1,0)(1,-1)

Figure 8: Successive transformations for an extended tri-
angular element.

4.2.1 First change of variables

The first change of variables is identical for both do-
mains a and b and may be expressed by the relation:

{ X = N1X1+N2X2 +N3X3
Y = N1Y1+N2Y2 +N3Y3

N1 = (1

N2=

N3 = 1

r'-,)

(24)
The coordinates of the point C and D is obtain by comput-
ing the intersection between the level set boundary and the
edge of the triangle. In the second space, the position of
these points are:

{C
'C

0
(XC-X1i)
(X3 -X1) T1D

(X3-XD)
(X3 -X2)
(XD -X2)
(X3 -X2)

(25)

4.2.2 Second Transformation - Quadrangular Part

The usual shape functions for a quadrangle are:

(1 -s)(l-t)/4
(1 +s)(l-t)/4
(1 +s)(l +t)/4
(1 -s)(I +t)/4

(26)

(G,40)

s
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The relation between the reference space (s, t) and the in-
termediate space (4,r') is given by the following isopara-
metric transformation:

t(s,t)
l (s, t)

1Ml + 42M2 + tDM3 + tCM4
rlMl +h2M2 +TIDM3 +TICM4

The last two shape functions will be used to enhanc
solution field since the shape functions M1 and M2 arn
sociated to the nodes 1 and 2 that already define the an
tude of the shape functions N1 and N2 in the basic elen
The total discretisation of the extended field is thus:

Oa = N1 (4(S t), rl (s,~t) ) 'D1 + N2 (4(S, t), rl (s, t) ) (D2
+N3 (4(S,t),rl(S,t)) (3 +M4(s,t)BC +M3(s,t

It is easy to verify that the part of the hat function
domain a can be found by setting BC = BD:

(Da = M3 +M4

This is depicted in figure 9.

(27)

z the
e as-
npli-
nent.

4.2.3 Second Transformation - Triangular Part

The shape functions for the triangular domain are the
same as the initial change of variables:

G1 = (I -s-t)
SG2=S

t G3=t

and the isoparametric transformation becomes:

4(s,t)
l (s, t)

(33)

(34)3G1 + 4CG2 + 4DG3
3G1 +TicG2 + IDG3

As for the quadrangular part only the shape function not

~)BD associated to the basic node (here G2 and G3) will define

(28) the enrichment field. The total enhanced shape functions

e in are thus, for domain b

Ob = Nl (4(S t),~' (s,~t)) 'D1 +N2 (4(S, t),q(s, t)) (D2
+N3 (4(S, t), rl (s, t) ) (D3 + G2 (s, t)BC + G3 (s, t)BD

(29) (35)
Obviously since the added degrees of freedom BC and BD
used here and used in the shape functions (28) in domain
a are identical, the continuity of the potential field is guar-
antied while the electric field, gradient of the potential, can
be discontinuous due to the enrichment field. Again we
have that the hat function 0 in the extended theory is

(pb = G2 + G3 (36)

0 0 08

~-~o :2~O -~o0.6

Figure 9: Enrichment of domain a.

Let us now compute the electric stiffness matrix. The
electric stiffness matrix is computed by the relation:

K¢))a= Js BaT(X,y) aBa(X,Y)dXdY (30)

where Sa is the surface of integration in the space (X,Y)
and where Ba(X,Y) is the matrix of electric field shape
functions obtained from the derivatives of the potential
shape functions. The change of variables between the space
(X, Y) and the reference space (s, t) may be obtained by the
relation (24) and (27) which allow us to write X(s, t), Y(s, t)
and the Jacobian J of this transformation. The electric stiff-
ness matrix may then be computed on the reference space
by:

Kta J. a C) J Ba(s,t) det(J) ds dt
a

(31)
where

aNjBa(s, t) = as
at

DM3

at3 1
at

(32)

The electric stiffness matrix is computed by the relation

Ko,b B T(X,y) bBb(XY) dXdY (37)

where Sb is the surface of integration in the space (X, Y).
Using (24) and (34) the electric stiffness matrix may be
computed on the reference space by

K¢¢b = X BbT(,JTT(J 1 Bb(s,t) det(J)dsdt

where

aN(
Bb(S,t aas

at

aN3
as
aN3
at

DG3
as
DG3
at

(38)

(39)

4.2.4 Simple Verification of the Element

We will consider the very simple 2D case of a unit square
domain where a voltage of 1V is imposed on the top and
where the lower edge is grounded. Half of the domain is
conducting and the domain is modelled with 2 triangular
extended elements as built in the previous section (See fig-
ure 10).

First the interface between conductor and vacuum is
taken parallel to the electrodes. The computed electric po-
tential is plotted in figure 11: it is observed that the po-
tential is constant on the conductor and decreases linearly
between the electrodes as expected.
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V =1V
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04-

L~~~
V=O

F'igure 10: Simple 2D model.
Figure 13: Electrostatic potential computed by
two eXtended Elements.

1.5

14

05~

0

Figure 11 Electrostatic potential
two eXtended Elements.

computed by

Next the electric potential is also computed for the case

where the interface is not parallel to the extremities as

shown in figures 10. The computed potential is shown in
13. The potential is again piecewise linear and clearly the
new shape functions of the eXtended Finite Elements can

properly handle the computation of the electric potential
even if the interface is oblique.

V=lV

V=OV

Figure 12: Simple 2D model.

5. Conclusions
The issue of mesh moving is a real challenge when

modelling electro-mechanical devices with finite elements.
This paper investigates the application of the Extended Fi-
nite Element approach to model the motion of a structure in

an electrostatic field. The electro-mechanical forces are de-
rived from the variational methodology proposed in paper
[4].
When applied to a simple one dimensional problem, the

eXtended Finite Element approach finds the exact solution
for the strongly coupled electro-mechanical problem: the
exact electrostatic potential along the element is retrieved
and, under the action of the electrostatic forces on the inter-
face, the correct relation between deformation and applied
voltage is found.

For the two dimensional case, we have discussed why
the enhancement strategy proposed in [3] is not suitable for
modelling the electric field jump in practical problems. We
propose in this paper different enhancement shape func-
tions that guaranty that the potential field across a conduc-
tor/vacuum interface can be properly approximated. It is
expected that the same approach can be applied in three di-
mensions. This will be investigate in the future together
with the global efficiency of the new elements in solving
the electromechanical coupling of real microsystems.
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