
Improving riverbed sediment classification using backscatter
and depth residual features of multi-beam echo-sounder systems

Dimitrios Eleftherakis,a) AliReza Amiri-Simkooei,b) Mirjam Snellen, and Dick G. Simons
Acoustic Remote Sensing Group, Faculty of Aerospace Engineering, Delft University of Technology,
Kluyverweg 1, 2629 HS Delft, The Netherlands

(Received 7 September 2011; revised 29 February 2012; accepted 29 February 2012)

Riverbed and seafloor sediment classification using acoustic remote sensing techniques is of high

interest due to their high coverage capabilities at limited cost. This contribution presents the results

of riverbed sediment classification using multi-beam echo-sounder data based on an empirical

method. Two data sets are considered, both taken at the Waal River, namely Sint Andries and

Nijmegen. This work is a follow-up to the work carried out by Amiri-Simkooei et al. [J. Acoust.

Soc. Am. 126(4), 1724–1738 (2009)]. The empirical method bases the classification on features of

the backscatter strength and depth residuals. A principal component analysis is used to identify the

most appropriate and informative features. Clustering is then applied to the principal components

resulting from this set of features to assign a sediment class to each measurement. The results show

that the backscatter strength features discriminate between different classes based on the sediment

properties, whereas the depth residual features discriminate classes based on riverbed forms such as

the “fixed layer” (stone having riprap structure) and riverbed ripples. Combination of these two sets

of features is highly recommended because they provide complementary information on both the

composition and the structure of the riverbed. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.3699206]

PACS number(s): 43.30.Pc [AIT] Pages: 3710–3725

I. INTRODUCTION

The morphology and sediment composition of the sea/

river bed is of high importance to a large number of offshore

activities such as oil and gas exploration, the installation of

offshore windmill farms, and the study of marine biology.

Furthermore, in countries like the Netherlands, where a great

number of rivers are used for navigation, insight into the

river morphology and its dynamic behavior, and sediment

composition is essential. An attractive system for obtaining

information both for the sea/river bed bathymetry and sedi-

ment composition is the multi-beam echo-sounder (MBES).

The sonar emits short pulses of sound towards the sea/river

floor to determine the depth and the backscatter strength for

a large number of beams. The MBES provides high spatial

coverage of an area at moderate costs and within a short

time. Therefore, it appears as a good alternative to the con-

ventional, expensive and time-consuming approach of map-

ping the sea/river floor composition by taking a large

number of physical sediment samples. A brief overview of

the techniques used for determining sediment properties in

shallow waters is given in Ref. 1.

The MBES classification methods can be divided into

phenomenological (or empirical) and model-based (or physi-

cal). Model-based approaches make use of physical models

and determine the sediments type by maximizing the match

between modeled and measured signals or signal features,

where sediments type or parameters indicative of sediment

floor type, are input into the model. These approaches allow

for direct coupling between the acoustic classes and sedi-

ment characteristics if the MBES sensitivity is known. On

the other hand, the empirical approaches base the classifica-

tion on features of the data, after dividing the area into small

regions. This approach is considered in the present work.

The outcome of this approach is a qualitative description of

the sediment distribution of an area (e.g., finer, fine, coarse,

coarser), but ground truth is required for associating the clas-

sification results to physical parameters of the sediments

(e.g., mean grain size). The advantage of the empirical meth-

ods is their ease of implementation and use.

The main information provided by an MBES is the

backscatter strength and the bathymetry of the area. Both

can be treated as individual values or as images by plotting

their spatial distributions over an area.2 The potential of the

backscatter for empirical sediment characterization has been

highlighted in previous work.3,4 Significant work in this field

has been done by Quester Tangent Corporation (QTC) where

132 features are calculated and processed both from the

backscatter amplitude and backscatter texture. Detailed in-

formation about QTC can be found in Refs. 5–11. During

the last few years, research considered the potential of the in-

formation contained in the bathymetry for classification12,13

and now the interest has focused on how to combine a

broader range of information that may include backscatter

and bathymetry features in many forms into the clustering

models.14 An extensive review of the different classification

approaches can be found in Ref. 15.

In two previous studies16,17 a new model-based method

employing backscatter, denoted as the Bayesian classification
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methodology (BCM), for deriving the sediment distribution in

two parts (Sint Andries and Nijmegen) of the River Waal in

the Netherland gave promising results. However, one impor-

tant artificial riverbed feature, the fixed layer, was not identi-

fied by the method as a separate bottom type. This fixed layer

consists of big stones with rip rap structure and is applied for

fixation of the sediment. In this paper a combination of back-

scatter and a bathymetric feature, namely the residuals of

depth, is successfully used to identify the different sediment

classes, including the fixed layer. Principal components analy-

sis (PCA) is used for data reduction and the common

K-means method for clustering the data. The importance of

the present paper is twofold: (1) it clearly demonstrates the

advantage of the combination of features on capturing the

range of different formations on riverbeds, and (2) it provides

a physical explanation of the contribution of each feature.

The paper is organized as follows. Section II gives in-

formation both about the surveyed areas and the details of

the surveys. This section also provides a brief description of

the methodology of Refs. 16 and 17, and results obtained

from the previous studies on the same areas. Section III

provides details on the methodology (PCA and K-means

clustering) used for identifying the different sediment types.

Section IV describes the data preparation procedures.

Section V presents and discusses the results from the PCA

and K-means clustering analysis. Finally, the main conclu-

sions are summarized in Sec. VI.

II. EXPERIMENTS AND PREVIOUS RESULTS

A. A description of the surveyed areas

The MBES data was collected from parts of the Waal

River in the Netherlands during surveys conducted by the

Directorate General for public works and water manage-

ment. The Waal River is one of the branches of the Rhine

River and the main inland waterway transport artery between

the port of Rotterdam and urban and industrial areas of Ger-

many. The Waal River has prominent bends at Nijmegen

and Sint Andries. The interplay of water and sediment in

these bends had produced characteristic bed topography of

deep outer-bend pools and shallow inner-bend point bars.

The latter formed obstacles for navigation, despite the large

depth available in the pools, because they reduced the space

for two-way traffic with possibilities to overtake other ships.

The problem has been addressed using three strategies: (1)

by dredging in order to remove the shoals, (2) by construct-

ing groynes in order to change the alignment of the river,

and (3) by constructing non-erodible layers in order to lower

the point bar and increase the navigation width. Therefore,

the deep pools have been filled and covered with riprap to

form a fixed, non-erodible layer in the outer bend. The

resulting scour in the inner-bend made the river sufficiently

deep over a larger width.

The first fixed layer is located between Sint Andries and

Zuilichem (km 925–928). It is 140 m wide and 3.1 km long,

and was constructed in the years 1997–1999. It lies 3.5 m

below the Dutch river low water reference level (OLR).18

The bathymetry (not referenced to OLR) of the river at Sint

Andries as produced from an October 2007 multi-beam

survey is presented in Fig. 1 (top). It shows the general pat-

tern of shallow inner bends and deeper outer bends, but also

the more detailed forms of underwater dunes as well as local

scour holes at the tips of transverse river training structures

called “groynes.”

The second fixed layer is located in the Waal river bend

at Nijmegen (km 883–885). This fixed layer has a width of

150 m, a length of 2 km and a depth of 3.5 m below the

OLR.18 It was constructed in the years 1986–1988. Figure 1

(bottom) presents the bathymetry of the river in this area as

produced from a May 2008 multi-beam survey, again not

referenced to OLR.

Samples were collected from both areas, using a bottom

grab. Figure 2 shows the histograms of the distribution of the

mean grain size of the samples collected at Sint Andries

(Fig. 2, left) and at Nijmegen (Fig. 2, right).

B. Details of the surveys

The sonars used in both surveys were of the same type: a

Kongsberg EM3002 single-head multi-beam echo-sounder.

This sonar is well suited for shallow water depths as its high

frequency ensures narrow beams with small physical dimen-

sions. The operational frequency was 300 kHz and the maxi-

mum number of beams (of equidistant pattern) per ping was

254. The swath width was 130�, the pulse length 150 ls,

and the maximum ping rate 40 Hz. The beam width was

1.5� �1.5� at nadir. All beams were electronically stabilized

for pitch and roll. For each beam and each ping a single back-

scatter value is given. This value is the result of first applying

a moving average over the time series of amplitude values and

then selecting the maximum average level of each beam.19

C. A summary of applying the BCM to the areas

The method in Refs.16, 17, and 20 employs the backscat-

ter strength collected at a certain incident angle instead of

studying the angular behavior of the backscatter strength. The

classification is performed per angle separately from other

angles and hence is considered to be angle-independent. The

method is based on the assumption that the backscatter values

are an average value of the sample amplitude values. There-

fore, according to the central limit theorem—for independent

random values— the averaged backscatter value for a single

sediment type follows a Gaussian distribution for a suffi-

ciently large number of scatter pixels. Figure 3 illustrates this

principle. In this figure h is the grazing angle and u the angle

of incidence. The required large number of scatter pixels is

achieved for shallow waters16 by averaging the backscatter

values over small surface patches, which consist of a small

number of beams in the across-track direction and a few

pings in the along-track direction. The creation of surface

patches, apart from ensuring Gaussianity, has the additional

advantage that it allows for two kinds of corrections of the

backscatter data due to the presence of slopes: one correction

to account for changes of the signal footprint’s area, and a

second correction to account for the slope effect on the beam

grazing angle.

The method fits a number of Gaussian Probability Den-

sity Functions (PDFs) to the histogram of the backscatter
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data at a given incident angle. The optimum number of PDFs

is found by consecutively increasing the number of PDFs

until a chi-square distributed test statistic becomes less than a

critical value. The number of Gaussians then represents the

maximum number of classes that can be discriminated based

upon the backscatter values, and the borders of the classes

are the intersections of each Gaussian with its neighbor. The

backscatter data at a few low grazing angles are processed in

order to estimate the mean backscatter strength, the variance

and its coefficient per class. These parameters are used as

guidance for the statistical processing of all other angles. The

surface patches in Refs. 16 and 17 were of size 0.5 m � 0.5

m, but the final maps resulted after using weighted moving

average for surface patches of 2 m � 2 m.

Three classes were identified for each area. The plots

can be seen in Refs.16 and 17. The areas of the fixed layer

could not be discerned from the other parts of the river.

III. METHODOLOGY

In this section we briefly explain basic concepts of the

PCA and the K-means clustering approach. Though the

methods are well established, many variations of them exist

in the literature, depending on the nature of different investi-

gations. Therefore, the scope of this section is to provide

only the necessary details of the methodology followed in

this paper for creating the sediment distribution maps of the

Sint Andries and Nijmegen areas.

FIG. 1. Bathymetry of the Waal River at (top) Sint Andries and (bottom) Nijmegen. Indicative positions of scour holes behind the fixed layer, scour holes at

the tips of groynes, and bed foms (ripples and dunes) are shown in the figure.
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A. Principal component analysis

The PCA was first described by Refs. 21 and 22. The aim

of the PCA is to reduce a multivariate dataset into a small set

of variables called principal components (PCs) that can

adequately describe the variability of the whole dataset. The

reduction can be achieved if the original variables are at least

moderately correlated.23 Unlike the initial features, the PCs

are independent, thus each PC represents a different dimen-

sion in the data. Furthermore, they are sorted in descending

importance order from the first PC, which explains the largest

amount of the data variation to the last one representing the

smallest variation. Therefore, varðY1Þ � varðY2Þ � � � �
� varðYpÞ, where Yi is the ith principal component.

Considering the (nxp) matrix F containing all n meas-

urements of the p features, a principal component Yi is a lin-

ear combination of the p original features (variables)

F1;F2; :::;Fp (Fi denoting the ith column of F) as

Yi ¼ ai1F1 þ ai2F2 þ :::þ aipFp; (1)

with the condition that its variance, varðYiÞ, is maximum,

subject to the constraint that23 a2
i1 þ a2

i2 þ :::þ a2
ip ¼ 1, and

that Yi is uncorrelated to the other principal components,

thus having zero covariance, i.e., covðYi; YkÞ ¼ 0 for i 6¼ k.

The calculation of the principal components is performed in

four steps:

First, the original features fji, where i ¼ 1; 2; :::; p (num-

ber of features) and j ¼ 1; 2; :::; n (size of data) are standar-

dized. This step is necessary when the variables have

different scales or common scale with significantly different

ranges. The standardization is performed as follows:24

zji ¼
fji � lfi

rfi

; (2)

where lfi and rfi are the sample mean and standard deviation

of the feature i, respectively,

Second, the covariance matrix R of the standardized

data Z is determined as24

R ¼ ZTZ

n� 1
; (3)

where Z ¼

z11 z12 � � � z1p

z21 z22 � � � z2p

..

. ..
. . .

. ..
.

zn1 zn2 � � � znp

2
6664

3
7775.

The diagonal elements of R are the variances of the fea-

tures, all having a value of 1 due to standardization, while

the non-diagonal elements of R are the correlation coeffi-

cients among the features.

Third, the eigenvalue decomposition of the matrix R is

obtained as

R¼EKET ; (4)

where E is the square matrix of the eigenvectors of R and K
is the diagonal matrix of the corresponding eigenvalues

(each column of E corresponds to one element of K).

Finally, the PC matrix Y is calculated by multiplying the

original data matrix F with the eigenvectors matrix E as

Y¼FE: (5)

FIG. 2. Histograms of the mean grain size distribution of the samples collected (left) at Sint Andries and (right) at Nijmegen.

FIG. 3. Across-track cross section (y-z plane) for signal footprint of an

oblique beam for three configurations: (a) shallow water, (b) non-flat bot-

tom, and (c) deep water. h denotes the grazing angle and u the incident

angle. The figure has been taken from Ref. 16.
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After obtaining the Y matrix, the optimum subset of PCs has

to be determined. The subset must consist of the minimum

number of PCs that contain most of the original data’s infor-

mation. A large number of tools exist for deciding the opti-

mum number of PCs. An extensive comparison between

various tools can be found in Ref. 25.

In the current research we consider one of the simplest

but still acceptable tools26 available for selecting the number

of principal components. The criterion is to choose adequate

PCs to explain a specific percentage of the total variability in

the data. The percentage of the standardized data variance

due to the first m (m � p) PCs is given as

tm ¼ 100�

Pm
k¼1

kk

Pp
k¼1

kk

; (6)

where k is the variance explained by each principal compo-

nent. The threshold percentage varies (70%–90%)26 and

frequently depends on the specific details of a data set.

Our application of PCA in this contribution is twofold:

(1) PCA was used to determine the most appropriate features

among all features, thus reducing the number of the original

variables to only the necessary ones, and (2) the optimum set

of PCs are grouped into different classes by using K-means

clustering.

B. K-means clustering

The K-means27 unsupervised algorithm partitions n
observations into k mutually exclusive subsets Sj (clusters)

so as to minimize the sum of point to centroid (point whose

parameter values are the average of the parameter values of

all points in a cluster) squared Euclidean distances:

J ¼
Xk

j¼1

X
n2Sj

xn � lj

�� ��2; (7)

where xn is the nth data point and lj is the geometric cent-

roid of the data points in Sj. Detailed information about

the algorithm of the K-means clustering can be found in

Ref. 28.

In this paper, two tools are considered in conjunction for

determining whether the preselected number of clusters is

acceptable or not: (1) the total sum of distances, and (2) the

silhouette plot.

The total sum of distances has to decrease for successive

ascending values of k in order to successfully partition the

dataset into clusters. However, this sum always decreases

with an increasing number of clusters. Therefore, we have

selected the relative reduction in the sum, expressed as the

percentage reduction. A second tool for determining the

quality of the separation between clusters is the silhouette

plot, which is mainly a visual measure. One may also define

the silhouette coefficient for an individual point as29

si ¼
bi � ai

max ai; bið Þ ; (8)

where ai is the average distance (dissimilarity) of the point i
to all other points of its cluster, and bi gives the minimum

average distance (dissimilarity) of i to all points of other

clusters. Values for si for each cluster fall in the range from

�1 to 1. A negative value is undesirable because it corre-

sponds to the case that ai is greater than bi. A desirable case

occurs, in general, when the silhouette coefficient is positive

indicating that ai < bi, and, in particular, when it is close to

one. Therefore, si ¼ 1 indicates that there is a high probabil-

ity for the points to be successfully clustered. The average

silhouette coefficient (aSC) of all the clusters can be used as

a quantitative criterion. A proposed (see Table I) interpreta-

tion is described in Ref. 29.

In general, a definite selection of an optimal number of

clusters is ambiguous. Therefore, in this paper the number of

clusters in most of the cases is predefined based on the

knowledge gained from Refs. 16 and 17 and the two tools

described above are used to determine whether the separa-

tion of the selected number of clusters is within the accepta-

ble range or not.

IV. DATA PREPARATION

A. Extracting the features from the surface patches

The data were grouped per beam, in small surface

patches, where each surface patch consisted of the mean data

values over a few beams in the across-track direction and a

few pings in the along-track direction. The typical size of

each surface patch was approximately 0.5 m� 0.5 m and all

the features were determined for this surface size. This pro-

cedure was the same data grouping procedure followed in

Refs. 16 and 17. For this paper, the data size was, at the last

stage, further reduced by constructing boxes of 10 m � 10 m

in order to be able to process effectively the whole dataset

and significantly reduce the fluctuations of the features

extracted. For example, the standard deviation of the resid-

uals was calculated for each one of the 0.5 m � 0.5 m boxes

and then these values were averaged over 10 m � 10 m

boxes to give the final values of the standard deviation of the

residuals. For the approach of Refs. 16 and 17 the larger

boxes could not be made, because it would result in combin-

ing backscatter values over a range interval where the angle

dependence can not be neglected.

For each surface patch the average, the standard devia-

tion, and higher-order statistical moments were determined

for both the backscatter strength and the least-squares depth

residuals. In addition, the slopes of the surface patches were

considered. The backscatter value is an important classifica-

tion parameter of the sediments on river/sea beds3,4 and

should be accounted for in the classification. The residuals

TABLE I. Proposed interpretation of the average Silhouette Coefficient

(aSC) (Ref. 29).

aSC Proposed Interpretation

0.71–1.00 A strong structure has been found

0.51–0.70 A reasonable structure has been found

0.26–0.50 The structure is weak and could be artificial;

please try additional methods on this data set

<0.26 No substantial structure has been found
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represent the difference between the observed depth values

and the fitted surface patch estimated by the least squares

method. In fact, they contain information about the sedi-

ments size variations in a “purer” way than the depth itself

because they take the slopes of the patches into account.

A comment on the estimation of the least squares (LS)

depth residuals is in order. The along-track (x) and across-

track (y) slopes of each surface patch were calculated based

on the method described in Ref. 16. The polynomial used for

fitting a surface to each patch has the form:

z ¼ f ðx; yÞ ¼ ao þ a1xþ a2yþ a3x2 þ a4y2 þ a5xy: (9)

The LS method, details of which can be found in Ref. 30,

was used to solve the over-determined system of equations.

According to LS, the estimate of a linear model EðzÞ ¼ Aa is

determined as â ¼ ðATQ�1
z AÞ�1ATQ�1

z z, where A is the

design matrix, z is the vector of depth measurements, and Qz

is the covariance matrix of z. The residual vector is calcu-

lated as ê ¼ Aâ� z.

The first four statistical moments, namely, mean, stand-

ard deviation, skewness, and flatness (kurtosis) of the back-

scatter and depth residuals were computed. The arithmetic

mean is the most widely used statistical parameter. The

standard deviation is also an important parameter since it

gives a measure of the variability of the data. Skewness is a

measure of the asymmetry of the distribution. Kurtosis is

the measure of flatness of the data relative to a normal distri-

bution. Skewness and kurtosis were selected because the

K-distribution is a potential sediment classification tool

based on results from previous research16 as it can describe

the backscatter distribution.

In addition, the median, mode, minimum, maximum,

and mean absolute values were used as new features. In

cases where the distribution of the backscatter and/or the

residuals is not purely symmetric, the median is different

from the mean, and can provide the middle point of the dis-

tribution. Mode is the value that has the most frequent

occurrence within the data set. It shows the main tendency

of the features within a surface patch. The minimum and

maximum values were included as indicators of the data

extremes.

For the residuals of the bathymetry, the mean absolute

error (MAE) was calculated instead of the mean. Since the

values of the residuals are small and can be positive and neg-

ative, the mean value could be each time close to zero. The

mean absolute error is an average value for the absolute

errors, given by the equation MAE ¼ 1
n

P
eij j. Therefore, it

provides a measure of closeness between the predicted and

measured values.

The 17 features that were taken into account for classifi-

cation are summarized in Table II.

B. Correcting for slope and angular effects in
backscatter data

Standard corrections to account for slopes were applied.

In the present paper the same procedure and equations as those

described in Ref. 16 were used for applying the corrections.

Standardisation of the data was applied to account for

the angular effect on the backscatter strength, as in perform-

ing the K-means clustering method, the data from all angles

had to be gathered and processed at the same time. In fact,

also the statistical distributions of the backscatter data are

angular dependent. To account for this, the data of each

angle was first standardised according to Eq. (2), allowing

simultaneously processing the data corresponding to angles

from 20� to 70�. This standardization concerns the first and

second statistical moments. Standardization of the higher-

order moments might also be applied.

The effect of the standardization procedure followed in

this paper can be seen in Fig. 4. The backscatter values ver-

sus angles for the complete dataset of Nijmegen have been

plotted before standardization (Fig. 4, left), and after stand-

ardization (Fig. 4, right). Figure 4 (left) shows that there is

an angular dependence of the backscatter values. This de-

pendence is eliminated after standardization, resulting in the

mean value of the backscatter measurements for all angles to

be zero and the standard deviation to be one (Fig. 4, right).

The same was done for Sint Andries.

C. Determining the optimum set of features

An important step before the classification is to determine

those features among the 17 features presented in Table II that

are representative of the river floor sediment. PCA was

applied to the available features and the first 3 principal com-

ponents that expressed most of the variability of the data

(around 75%) were obtained using Eq. (6). The features were

then correlated to these principal components.

Figure 5 presents the results obtained following this

strategy for Sint Andries (Fig. 5, left) and Nijmegen (Fig. 5,

right) for all the 17 features. From these, it can be seen that

the most informative features include the mean, median,

minimum and mode of the backscatter and the mean absolute

error, standard deviation, minimum and maximum of the

least-squares depth residuals (Table III). This approach

where the number of features is decreased, in this case from

17 to 8, is a relatively standard approach and a variation of it

is described in Ref. 26. It, in general reduces the number of

PCs needed and consequently eases the interpretation of the

results. In fact, using only one feature from each of the two

parameters, i.e., reducing the number of features to 2, is

TABLE II. Features calculated for surface patches including statistical

moments of backscatter values and least-squares depth residuals (16 fea-

tures). The 17th feature is the total slope of each surface patch.

# BS # LS depth residuals

Mean (MAE) 1 H 9 H
Std. dev. 2 H 10 H
Skewness 3 H 11 H
Kurtosis 4 H 12 H
Median 5 H 13 H
Mode 6 H 14 H
Minimum 7 H 15 H
Maximum 8 H 16 H

17 SLOPES
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found to result in the same map as when using more features

(see Sec. V). The balance between the two different sources

(backscatter and LS residuals of depth) of information about

the sediments was considered to be the optimum for provid-

ing reliable and highly discriminative classification results.

It has to be noted that the threshold value has been selected

in both cases as the value that satisfies three conditions: (1)

it is close to the mean value of the ratio of correlations, (2) a

sufficient number of features is included for the analysis (in

this case 50%), and (3) gives consistent results for both

areas.

V. RESULTS AND DISCUSSIONS

This section is divided into four subsections. The first

subsection presents the classification results for the two

areas using the PCA and K-means clustering applied to the

four extracted features of the backscatter strength. The

second subsection presents the classification results based

on the LS depth residual features. The third subsection

gives the results based on all of the features extracted

using the given backscatter and bathymetry data (Table

III). Finally, the last subsection presents a discussion of

the results.

A. Classification based on backscatter strength

The first investigation is to use the four backscatter fea-

tures only and apply the PCA and K-means clustering to cre-

ate classification maps of these two areas with three different

sediment classes. We hence aim to directly compare the

results of the Bayesian classification methodology16 and the

K-means clustering method.

The results in Sint Andries area indicate that the first

and second principal components account for 96.4% and

2.4% [using Eq. (6)] of the variability of the data, respec-

tively. These numbers are 96% and 2.5% for Nijmegen.

Because the first PC carries most of the variability, it is an

indication for the presence of high correlation among the

four backscatter features. Therefore, if one tries to obtain the

classification map based on each of these features separately

the results should be very similar.

The first two PCs are fed to the K-means clustering

method. As a first step the clustering is carried out for three

clusters equal to the number of sediment types that could be

discriminated with the BCM. Figure 6 shows the scatter plots

of the first PC versus the second PC of the clustered data.

We can see that the “cuts” between the clusters are more or

less parallel to the second PC. This explains that the first PC

FIG. 5. Ratio of sum of absolute correlations for the first 3 principal components to sum of absolute correlations for the remaining components; (left) Sint

Andries and (right) Nijmegen.

FIG. 4. Backscatter values versus grazing angles for Nijmegen (left) before standardization and (right) after standardization.
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has the largest contribution to the clustering, and that the

second PC has no significant effect; very similar results can

thus be obtained using only the first PC. This supports our

remarks made above about the significant correlation among

the features.

In general empirical classification approaches provide

acoustic classes only. For the situation considered here how-

ever the relation between the PCs and a physical parameter,

namely backscatter, can be established. Based on this rela-

tion, colors have been added to Fig. 6, indicating higher

backscatter values for lower values of the first PC. Here,

green corresponds to fine material (low BS), yellow to inter-

mediate (intermediate BS), and red to coarse (higher BS).

This is based on the fact that highest values of the backscat-

ter strength are expected for coarsest grains whereas as the

grains become finer as the backscatter strength decreases.

The correspondent sediment distribution maps of Sint

Andries and Nijmegen are shown in Fig. 7. In the Sint

Andries area, the percentage of each class that resulted from

the classification procedure is 28.9%, 42.2%, and 28.9% for

the fine, intermediate, and coarse sediments, respectively.

These numbers change to 12.8% 43.4% 43.8% for Nijmegen.

The percentages are different from those obtained using the

Bayesian method in Refs. 16 and 17, which were 5% (fine),

40% (intermediate), and 55% (coarse) for Sint Andries, and

5% (fine), 30% (intermediate), and 65% (coarse) for Nijme-

gen. An important difference between the two methods is the

number of measurements over which averaging is per-

formed. For the approach of Refs. 16 and 17 the number of

beams which can be averaged is limited due to the angular

dependence of the backscatter data. In Ref. 16 a significant

overlap existed between the three classes. Here due to the

standardization, averaging was carried out over a much

larger number of measurements, improving the discrimina-

tion performance.

As a second step, it is investigated whether it is possible

to further increase the number of clusters. To this end, Fig. 8

presents the % reduction (left y-axis) and the average silhou-

ette coefficient (right y-axis) against the number of clusters

from 2 to 8 for Sint Andries (Fig. 8, left) and Nijmegen (Fig.

8, right). It is observed that the maximum % reduction in dis-

tances and the largest average silhouette coefficient is

achieved for the case of 2 clusters but the value of aSC is still

high for 3 clusters (0.66 and 0.63 for Sint Andries and Nijme-

gen, respectively) showing that the separation of the 3 clusters

is “almost strong” according to Table I. When increasing the

number of clusters to more than 3, the two parameters gradu-

ally drop, indicating that further discrimination will be accom-

panied with less good separated clusters. Therefore, for the

current paper the investigation stops at k¼ 3.

B. Classification based on LS depth residuals

The first step is to determine a suitable number of

classes that could be obtained by using the four statistical

features determined from the LS depth residuals. In Sint

Andries, application of the PCA indicates that the first and

second PCs account for 99.7% and 0.2% of the variability of

the data, respectively. These numbers are 99.4% and 0.38%

for Nijmegen. Again it can be concluded that high correla-

tion exists among the four features. Figure 9 shows the com-

bined plot of the % reduction in the distances (left y-axis)

and the average silhouette coefficient (right y-axis) against

the number of clusters for Sint Andries (Fig. 9, left) and

Nijmegen (Fig. 9, right). It is apparent that the case of 4 clus-

ters appears to provide good separated clusters since both

the values of the % reduction and the aSC are high (more

than 0.7). Therefore, the suitable number of clusters was

selected as 4.

For the clustered data, again a “parallel cut” to the sec-

ond PC appears, indicating that if one uses only the first PC

TABLE III. Final remaining features; four backscatter features and four LS

depth residuals features.

# of feature Backscatter LS depth residuals

1 Mean

2 Median

3 Minimum

4 Mode

5 Mean absolute error

6 Standard deviation

7 Minimum

8 Maximum

FIG. 6. Scatter plot of PC1 versus PC2. The colors indicate different clusters resulting from four backscatter features (k ¼ 3); (left) Sint Andries and (right)

Nijmegen.
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FIG. 7. Classification map based on the first two PCs and K-means methods applied to only the backscatter features in which the number of clusters was set to

k ¼ 3; (top) Sint Andries and (bottom) Nijmegen.

FIG. 8. Reduction percentage in the sum of distances (left y-axis — grey line) and average silhouette coefficient (right y-axis — black line) versus number of

clusters (from 2 to 8) for (left) Sint Andries and (right) Nijmegen, when classifying using backscatter.
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FIG. 9. Reduction percentage in the sum of distances (left y-axis — grey line) and average silhouette coefficient (right y-axis — black line) versus number of

clusters (from 2 to 8) for (left) Sint Andries and (right) Nijmegen, when classifying using LS depth residuals.

FIG. 10. Classification map in terms of degree of depth variations based on the first two PCs and K-means methods applied to only the depth residual features

in which the number of clusters was set to k ¼ 4; (top) Sint Andries and (bottom) Nijmegen.
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very similar results can be obtained. The sediment distribu-

tion maps of Sint Andries and Nijmegen, are shown in

Fig. 10. Here the first class (blue) has the lowest variations

in depth residuals, indicating that the data points can best fit

to the surface patch, and class 4 (red) has the highest varia-

tions in depth residuals.

We would intuitively expect that coarser sediment gives

the highest variations (e.g., highest standard deviations).

This however seems not to be the case, because highest var-

iations belong to the finer sediment. That is likely due to the

fact that in finer sediment “ripples” can be formed, while

coarse sediments will usually form “dunes.” Ripples, which

are small triangular sand waves, usually are shorter than

about 60 cm and not higher than about 60 mm. Ripples typi-

cally being about 1 order of magnitude shorter than dunes.

Also dunes generally form at larger flow and sediment trans-

port rates, while ripples often form on the upstream slopes of

dunes at smaller rates of flow.

The highest depth variations belong to the fixed layer,

which is due to the riprap structure. It can therefore be

clearly discriminated from the rest of the river. Moreover the

northern part of the right-hand side of the fixed layer has

been identified as a different class. We hypothesize that this

part has been covered by sediments due to the river flow and

the resulting sediment transport processes. This leads to

lower depth variations with respect to the original fixed layer

but higher variations compared to the entire river.

C. Classification using all features

This subsection considers all eight features presented in

Table III. The objective of this subsection is (1) to further

investigate the nature of all final features considered using

the PCA process; (2) to assess the potential of using all fea-

tures in order to identify the fixed layer; (3) to evaluate the

maximum number of classes resulting from all features; (4)

to apply this number of classes to both areas and make the

classification maps; and (5) to correlate the classification

results with the grab samples taken.

The four backscatter features are highly correlated to

each other. This holds also for the four residuals features.

There is however no significant correlation among the back-

scatter features and the depth residual features; the average

absolute correlation among them for the two areas is around

0.25. This indicates that these two sources of information are

independent to a large extent, and hence can provide com-

plementary tools for classification. Therefore, any attempt

for applying the PCA process on the combined features is

expected to give the first two principal components as a com-

bination of backscatter features and a combination of the re-

sidual features. This means that any pair of the features of

the kind (BS, LS Residuals) can also be used for providing

the classification map of the areas that is visually similar to

what is presented in this subsection.

Again the PCA is used to combine the information pro-

vided from all the features. In Sint Andries, the first, second,

and third PCs account for 68.9%, 29.4%, and 1.2% of the

variability of the data, respectively. These numbers change

to 53.8%, 44.4%, and 0.9% for Nijmegen. Together the first

two PCs account for about 98% of the variability and hence

will be used for further analysis. The results indicate that the

first PC is influenced slightly more by the depth residual fea-

tures than the backscatter features. The opposite holds for

the second PC.

We set the number of classes to 4 based on the results

of previous subsections. The first two PCs are fed to the

K-means clustering. Figure 11 presents the separation of the

clusters versus the first and second PCs. A clear distinction

between the clusters can be seen for both areas. The sedi-

ment distribution maps of Sint Andries and Nijmegen with a

fixed number of four classes is given in Fig. 12. These results

are in fact similar to those with three classes using only the

backscatter features (Fig. 7) plus the fixed layer. The first

three classes are mainly due to the backscatter effect. The

fourth class is the fixed layer, which can only be detected if

the LS depth residual features are used (cf. Figure 10 with

four classes). This implies that the fixed layer has on average

a similar backscatter property to the other parts of the river,

but it definitely behaves differently on the LS depth residual

features.

The next step is to assess the possibility of further dis-

crimination. The combined plot of the % reduction in the

FIG. 11. Scatter plot of PC1 versus PC2 when K-means clustering is applied to the first two PCs obtained from all features of backscatter and depth residuals

(k ¼ 4); (left) Sint Andries and (right) Nijmegen.
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distances (left y-axis) and the average silhouette coefficient

(right y-axis) against the number of clusters for Sint Andries

(Fig. 13, left) and Nijmegen (Fig. 13, right) is given in

Fig. 13. Although there is a drop for 5 clusters, there is

another peak for 6 clusters before the values start to gradu-

ally drop with increasing clusters number. Therefore, the

case of six clusters will be further investigated.

Figure 14 presents the separation of the clusters versus

the first and second PCs for 6 classes. A clear distinction

between the clusters can be seen for both areas. The resulting

sediment distribution maps of Sint Andries and Nijmegen

are shown in Fig. 15.

These results are in fact similar to those with four

classes using only the backscatter features plus two fixed

layers given by the depth residual features. Therefore, the

first four classes are mainly due to the backscatter effect, and

the fifth and sixth classes are mainly due to the depth resid-

ual features. This can also be seen in the scatter plots of the

first and second PCs in Fig. 14. Classes 1 to 4 correspond to

the finest to coarsest sediments respectively (as will become

clear later in this section where the classification results are

compared with the samples). The fixed layer can also be

identified here. In addition, for both rivers, on the northern

part of the right-hand side of the fixed layer, a separate class

FIG. 12. Classification maps based on the first two PCs and K-means clustering when all features from backscatter and depth residuals are used (k ¼ 4); (top)

Sint Andries and (bottom) Nijmegen.
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can be identified. The degree of depth variations is lower

compared with the original fixed layers and probably they

(for both rivers) have been covered by sediments. This leads

to lower depth variations with respect to the original fixed

layer but higher variations compared to the entire river.

To assess the potential of converting the acoustic classes

to riverfloor sediment properties such as mean grain size the

classification results are compared with the grab samples.

To make the comparison easier we correlate the mean

grain sizes to the acoustic classes 1, 2, 3, and 4; classes 5

and 6 were excluded because they belong to the fixed layer

where no grab sample is available. Figure 16 shows the best

linear fit, using the least squares method, between the classi-

fication results (classes) and the mean grain sizes expressed

as Mz ¼ �log2d in phi units, where d is the diameter of grain

in millimeters. A sample is located in an area where surface

patches of various classes are present. Each sample took the

average class number of the surface patches within a radius

of 10 m from it. The samples without any surface patches

within this radius were not used for comparison. The corre-

sponding estimated Pearson correlation coefficients are

�0.84 and �0.71 for Sint Andries and Nijmegen, respec-

tively. The same procedure was applied to the three first

classes in Fig. 12. The correlation coefficients change to

�0.84 and �0.75 for these two areas.

D. Discussion of results

The main contribution of this work is that it shows that

the combination of features can provide insights to the sedi-

ment distribution on a riverbed otherwise hidden when only

one of the features (backscatter or depth residuals) is used.

The fixed layer is clearly visible and clearly highlighted in all

maps, when the LS depth residuals or a combination of the LS

depth residuals and backscatter were used. This however, is

not the case when considering backscatter only. The inad-

equacy of detecting the fixed layer by using only the backscat-

ter strength has raised many assumptions.31 The most

probable explanation is that the blank areas between the

stones and also a thin top layer of the fixed layer is filled with

sand, due to transport processes in the outer bend of the rivers,

up to a point that this finer layer dominates the discriminative

performance of the sonar. By combining backscatter and

bathymetry information it was possible to preserve the main

patterns of the classification with 3 classes provided by the

backscatter but also adds one more class: the fixed layer.

FIG. 13. Reduction percentage in the sum of distances (left y-axis — grey line) and average silhouette coefficient (right y-axis — black line) versus number

of clusters (from 2 to 8) for (left) Sint Andries and (right) Nijmegen, when classifying using both backscatter and LS depth residuals.

FIG. 14. Scatter plot of PC1 versus PC2 when K-means clustering is applied to the first two PCs obtained from all features of backscatter and depth residuals

(k ¼ 6); (left) Sint Andries and (right) Nijmegen.
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The depth residual features and the combination of all

features gave rise to possible artifacts in the maps. Small

areas, at the borders of the river have been classified with the

same color as the fixed layer (brown). This is hypothesized

to be the effect of scour holes, resulting in high backscatter

values and irregular bathymetry. Because the standard devia-

tions of the depth residuals were larger in the finer sediment

than the coarser sediment, we hypothesize that this is due to

the riverbed ripples.

The final features used were a combination of 4 back-

scatter and 4 residual features. Though the final results pre-

sented were based on all 8 features, the high correlation

among the backscatter features as well as the high correla-

tion among the depth residual features suggested that one

can obtain very similar results if for example use is made of

only the mean backscatter and the standard deviation of the

depth residual.

VI. SUMMARY AND CONCLUSIONS

In this paper, PCA and K-means clustering were used

for the sediment classification of two parts with similar char-

acteristics (groynes, fixed layer) of the river Waal, in the

Netherlands. Three cases were investigated: (1) classification

with only the backscatter features, (2) classification with

only the LS depth residual features, and (3) classification

FIG. 15. Classification maps based on the first two PCs and K-means clustering when all features from backscatter and depth residuals are used (k ¼ 6); (top)

Sint Andries and (bottom) Nijmegen.
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with all backscatter and LS depth residual features. In the

first case, the results were compared with previous work,16,17

where a Bayesian classification methodology was used for

the classification process. The results between the two meth-

ods are similar: three classes seem to be appropriate for both

methods for these particular areas. Deviations in the classifi-

cation results can be attributed to the different averaging pro-

cedures. When averaging, a limited number of beams was

used in classification in Ref. 16 due to the angular depend-

ence, whereas in the present contribution, the averaging was

performed over a much larger number of measurement,

which was made possible due to the standardization. For the

second case, use was made of the LS depth residual features

only. It was shown that these features can clearly discrimi-

nate between the fixed layer and the remainder of the area.

The third case, with all features, could even further discrimi-

nate within the fixed layer and within the sediment classes;

six classes in total were included. The conclusion here is that

the fixed layer can be detected for both areas when use is

made of the depth residual features. Using only the backscat-

ter one cannot classify the fixed layer. The following aspects

of the research can also be highlighted.

(1) The depth residual features could detect further than

only the fixed layer. Other bottom structures such as the

fixed layer covered by sediments and the riverbed ripples

can also be identified.

(2) Due to the high correlation among the features, one

can conclude that the combination of only one backscatter fea-

ture with only one depth residual feature can provide results

that are very similar to those obtained based on all the features.

(3) Significant correlation coefficient between the classi-

fication results and the mean grain sizes along with the sig-

nificant slope of the best linear fit (Fig. 16) indicate high

potential capability of the proposed method for riverbed

sediment classification.
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