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Abstract

This thesis investigates the gap between the theoretical ideals and practical realities of distributed
exchange protocols in peer-to-peer sharing economies. While classical economic models and
stylised trading mechanisms have been extensively studied, their assumptions often overlook the
complexities and behavioural nuances of real-world agent-based markets. Conversely, more em-
pirically grounded approaches tend to be highly case-specific, limiting their generalisability and
disconnecting them from established economic concepts.
The central aim of this work is to develop and analyse an algorithmic economic model that more
faithfully captures the dynamics of decentralised resource sharing — balancing fairness, effi-
ciency, and resistance to manipulation, while retaining a useful level of abstraction.
In light of this purpose, the thesis performs a comparative theoretical analysis of centralised and
distributed exchange mechanisms, and introduces a novel exchange market model that incor-
porates heterogeneous strategies, bounded rationality, and asynchronous timing. A series of
numerical experiments evaluates the performance and robustness of different protocols under
these features of sharing economies.
The results show that distributed, mixed-strategy protocols can achieve stable and desirable out-
comes, however their success is sensitive to population diversity, limited information, and strategic
behaviour. These findings highlight the importance of integrating behavioural aspects into proto-
col design, and provide insights towards building more robust models for the sharing economy.
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1
Introduction

1.1. Motivation and Context
The sharing economy has emerged as a rapidly growing and popular alternative to traditional
ownership-based economic systems [1]. Driven by technological developments in trading plat-
forms and dissatisfaction with conventional economic outcomes (e.g., recessions, inflation [2]),
adoption of online, agent-supported sharing economies (e.g., file-sharing through BitTorrent1) has
steadily increased [3].

With no universally agreed-upon definition, the term sharing economy has been subject to varied
interpretations [4, 5]. Generally, it is characterised by consumer-to-consumer interaction, utilisa-
tion of underused resources, and temporary access [6, 7, 8]. In this thesis, we adopt a peer-to-
peer (P2P) trading perspective — distinct from on-demand models such as Uber or DoorDash,
which generate new service jobs to meet immediate demand.

Enabled by the ubiquitous connectivity of modern digital platforms, sharing economies facilitate
direct, decentralised connections between users. Each user acts as a prosumer, simultaneously
consuming and providing resources, and independently deciding how much unused capacity to
share with the expectation of future reciprocity. These exchanges aim to promote inclusivity, re-
duce idle capacity, and strengthen local trade [9, 10, 11]. Several practical examples of such
systems include:

• Resource-sharing via user-provided networks. Participants share assets such as band-
width, processing power, or storage. For instance, the Swarm2 storage network, and Wi-Fi
sharing platforms like Guifi.net3 and FON4, allow users to form ad hoc mesh networks, dy-
namically routing traffic across peers [12].

• Energy sharing in micro-grids. Decentralised energy systems, such as the Brooklyn Mi-
crogrid [13], connect local electricity producers and consumers [14], in a P2P setting [15,
16], trading to improve the network’s overall flexibility [17, 18].

• (AI-driven) agentic markets. As autonomous software agents become more capable,
machine-to-machine exchanges increasingly involve agents acting on behalf of users. An
expanding number of online resources are now managed algorithmically [19]. For example,
idle computational power can be allocated via AI agents that evaluate supply and demand
in real time [20, 21].

1https://en.wikipedia.org/wiki/BitTorrent
2https://web3edge.io/research/what-is-swarm/
3https://guifi.net/
4https://fon.com/
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While such real-world sharing economies vary in form, their shared features can be represented
through an abstract, networked, exchange market, as visualised in Figure 1.1. In such a trading
market, users trade (1) in a high-frequency, distributed manner, (2) without using money, (3) using
diverse and stochastically available resources, and (4) based on the utility they derive from those
resources. Generally, in such a network, some sort of stable and fair state — an equilibrium — is
a desired outcome. Such equilibria characterise the steady-state behaviour of markets and allow
the assessment of the impact of various economic regulations on market outcomes.

Figure 1.1: Abstract representation of exchange in a sharing economy.

Sharing economies built on agentic P2P interactions often rely on distributed, standardised trading
protocols, which introduce several challenges [22]: Issues such as free-riding and fairness require
further investigation to enable effective regulation and robust market design [23].
A key issue with such sharing economies is the discrepancy between the theoretical performance
of trading protocols and their behaviour in real-world deployments. Many existing studies rely on
overly stylised or unrealistic models of exchange [24].
This resulting discrepancy has often been exemplified in real-life trading protocols. For example,
the proportional trading protocol PropShare [25], was originally considered strategy-proof and fair.
Although theoretically capable of achieving equilibrium [26, 27], empirical findings showed that
agents often failed to estimate neighbours’ contributions accurately due to limited information,
thereby reducing market efficiency [27].

One promising direction is to model these trading protocols in more realistic market environments,
which allows for the exploration of the protocol’s limitations and refine them in accordance with
the system’s specific priorities and vulnerabilities [28].
Algorithmic approaches offer a powerful means to examine market behaviours [19] and have long
been a foundational tool in computer science. Such computational economics enable the simu-
lation of market dynamics and the exploration of interventions, trading structures, and allocation
mechanisms, and have traditionally been employed to reason about exchange and pricing sys-
tems [29, 30], and to guide the design of economic policies and reforms [31, 32]. More specifically,
in the context of sharing economies, algorithmic modelling can inform the design of principled trad-
ing protocols aimed at reducing friction in agentic economies [22]. This thesis argues that rather
than discarding classical economic theory, we can reinterpret its foundations to expose dynamics
that are well-suited to P2P settings.

One might argue that data-driven machine learning approaches can more accurately replicate
market behaviour and yield context-specific insights, thereby addressing key research gaps. How-
ever, such techniques suffer from limited interpretability, often referred to as the “black box” cri-
tique [33]. Consequently, machine learning models are primarily used for predictive tasks on
case-specific data, rather than for inferring causal relationships [34].
In contrast, algorithmic economic models (rule-based mechanisms grounded in economic the-
ory) emphasise transparency and interpretability, enabling clearer insights into how specific mar-
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ket features affect outcomes. This economic perspective supports the inference of general and
causal relationships [35], which is crucial for designing fair and robust market systems. As an in-
creasing number of resources are governed by algorithmic, agentic markets [19, 36], the need for
interpretable and transparent allocation mechanisms becomes more pressing [37]. Understand-
ing both what allocations occur, and also why they occur, is essential for anticipating outcomes
and fostering trust in sharing economy platforms.

Beyond their interpretability, algorithmic market models gain strength from being grounded in
foundational economic principles, such as equilibrium definitions and optimality metrics like Pareto
efficiency. These concepts allow us to characterise and evaluate equilibria in stylised market
settings. Fairness and stability are core attributes of equilibria and are often central concerns
in the design of exchange markets. As such, they provide valuable benchmarks for analysing
market performance.
However, the challenge lies in the fact that these foundational economic concepts are not tailored
to the kinds of exchange markets considered here. This misalignment complicates efforts to use
such concepts not only to evaluate the performance or efficiency of P2P markets, but also to
compare them with more conventional markets.

1.2. Research Gap
Despite significant advances, important gaps remain in applying algorithmic economic research
to sharing economies. These gaps stem from fundamental differences in how sharing economies
operate compared to traditional markets, and from challenges in realistically capturing the decen-
tralised, dynamic behaviour of agents within these systems. Specifically, we focus on two main
issues:

• Much of the existing economic literature focuses on classical monetary economies, where
equilibrium concepts are well-defined under assumptions such as price-based exchange
and fully rational agents. However, these assumptions often do not hold in sharing economies,
which rely more on resource-based reciprocity and non-monetary exchanges [19, 38, 39].
As a result, the theoretical tools and equilibriummodels developed for traditional markets fail
to capture the unique dynamics of sharing economies. This leaves a significant gap on how
sharing economies can be modelled using existing knowledge on the modelling of classical
economies.

• Algorithmic economics is interdisciplinary, drawing from computer science, economics, and
psychology to model market behaviour [40, 41]. Building a model of connected agents de-
mands the design of coordinated protocols that account for trust, technical feasibility, and
economic constraints [22]; at the intersection of software engineering and economics, such
protocols become highly complex— and, if poorly implemented, can lead to significant finan-
cial risks and inefficiencies [42]. However, striking a balance between abstracting markets
to enable efficient modelling through computational tractability and incorporating realistic in-
terdisciplinary factors such as trust remains a persistent challenge [43].
While significant progress has been made in incorporating realistic elements into abstract
economic models — such as bounded rationality, diverse trading strategies, and asyn-
chronous trading —many of these insightful results are studied in isolation and in traditional
market settings. As previously noted, these findings do not easily translate to the context of
the sharing economy. Current sharing economy research remains largely lacking in terms
of combining both economic, social, and equilibrium concepts to fully explain how realistic
market factors operate in sharing-based systems [44].

A complicating factor in this field is the vast body of relevant literature, dating back to Walras’ the-
orems in 1874 [45]. The lack of standardised terminology across studies makes model definitions
ambiguous and hard to distinguish [46, 47]. Assembling this literature into a coherent analysis is
therefore a challenge in its own right.
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1.3. Research Questions
Having established the research gap concerning the lack of applicability of existing economic
theory to sharing economies — both terms of in their general structure and in capturing real-world
aspects — we formulate the following research question:

How can models of behaviourally-driven distributed exchange capture the dynamics of
sharing economies?

To approach this, we break down the research question into more manageable sub-questions:

1. How can we derive a theoretical model of the sharing economy from existing programs and
distributed algorithms?

2. How can wemodel real-world factors, such as strategy diversity andmanipulation incentives,
to understand their impact on the trading dynamics of distributed market algorithms?

Through addressing these questions we develop and analyse a market model as a more realistic
testing ground for trading protocols. By demonstrating how theoretically optimal algorithms can
fail under certain conditions, the model helps identify where market designs or protocols may
break down and how they might be improved. This approach advances both theoretical insight
and practical guidance for designing robust, efficient sharing economy systems.

1.4. Notation and Model
To expand on the model from Figure 1.1, we formulate a more detailed market model of a compet-
itive, decentralised sharing economy that captures the practical cases described in Section 1.1
to some level of abstraction. The exchange market under consideration is time-slotted market,
where agents trade sequentially for a horizon of T timeslots, constrained to some network G. G is
defined on nodes (agents) N and edges (connections) E : G = (N , E). This network represents
the trading options of the agents, where each agent i may only trade with direct neighbours that
are in its neighbourhood Ni = {j | (i, j) ∈ E}.

There is a setN of n prosumer agents. Each of these have the intention to trade and obtain some
value from this trading. Each agent owns one specific resource, unique to that agent, i.e. agent i
owns resource i and agent j owns resource j, and so forth. Agent i’s resource has some positive
(static) per-unit value vi. The agents trade these resources without the explicit assumption of a
monetary device. This is exactly in accordance with Strathern [48]’s definition of a barter market
as a market where diverse objects are exchanged freely without the use of an abstract value
measure.

Each timeslot, the agent produces some amount of its resource. Because of the stochastic char-
acter of the market, the agent does not produce the exact same amount each timeslot. Instead,
the agent produces some amount of distributable resource Di(t) at timestep t, sampled stochas-
tically with a normal distribution. Consequently, the long-term average of Di(t) approaches the
endowment value εi. So Di(t) ∼ N(εi, σ

2), E[Di(t)] = εi, and at t→ ∞ we have Di(t) = εi.

With its distributable resourcesDi(t), agent i decides on an allocation, expressed in the allocation-
vector xi, by allocating portions xij of its distributable resource Di to other agents j. The allo-
cations are summarised in the allocation matrix X. Each agent allocates no more than its dis-
tributable resources each timeslot, i.e. Di ≥

∑
j∈Ni

xij . As a visual aid, Figure 1.2 presents an
example of trading.
From the trades in timeslot t, agent i receives resources ri = [xji]j∈Ni

. These resources provide
the agent with utility, defined by the utility function ui(ri). This utility function is taken to be linear,
meaning agent i receives total utility ui(ri) =

∑
j∈Ni

vj · xji.
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Figure 1.2: An example of how trading works in the defined exchange market: Agent i’s neighbourhood consists of
agents j and k. At this timeslot t, agent i allocates all of its 2 resources to neighbour k, while receiving 3 resources from

neighbour j.

Through these trades, the market may (or may not) approach a desired state known as the equi-
librium. This process we call convergence towards the equilibrium. We define the equilibrium as
the conditions that the market clears (i.e., each agent allocates all its resources) and all agents
maximise their utility. More formally:
Definition 1.4.1 (Equilibrium). An allocation matrix X is an equilibrium allocation matrix X∗ if
the following holds:

• Market Clearance: ∀i ∈ N ,
∑
j∈Ni

xij = εi

• Utility Maximisation: ∀i ∈ N ,X ∈ argmaxX ui(ri)

With this definition of an equilibrium, we refine the objective of finding programs that model the
exchange market: We investigate programs, both central and distributed, that model the trading
decisions xi of prosumers in this exchange market. These programs compute an allocation matrix
X that satisfies the conditions of Market Clearance and Utility Maximisation of definition 1.4.1.

1.5. Contributions
Building on this concept of an exchange market, this work makes several important contributions
to advancing the theoretical understanding and computational modelling of sharing economies:

1. Using an in-depth literature review, we clarify key conceptual gaps, especially between
(price-based) classical models and the features of trading behaviour in real-world sharing
economies. It becomes clear that an exchange market framework which is (1) aligned with
the characteristics of sharing economies, (2) abstracted sufficiently to express various prac-
tical instances, and (3) grounded in classical economic theory, offers a natural way to think
about the sharing economy.

2. We prove that the Eisenberg-Gale program [49], Shmyrev’s program [50], and Jain’s pro-
gram [51], can be adapted to compute the equilibrium in the exchange market. The main
modification being the conversion from explicit prices to inherent resource values. This re-
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sult highlights that modelling sharing economies does not require reinventing the wheel;
rather, it calls for a principled reinterpretation and reformulation of existing theory.

3. We demonstrate that two distinct distributed trading strategies (one based on proportional
response and one on a greedy behaviour) both approach the equilibrium in our exchange
market model, despite relying on different behavioural assumptions. We found that the pro-
portional strategy aligns with mirror descent in this context — a connection thusfar unproven
in this specific market setting — and elucidate the dependence of distributed algorithms on
the consensus on resource values.
Additionally, we prove that any linear combination of optimal distributed algorithms remains
optimal. This reveals the possibility to design more behaviourally diverse protocols without
sacrificing fairness and stability.
We use convergence guarantees established in idealised settings as a basis for analysing
and informing more realistic market models, noting that while the proposed strategies are
not universally optimal, their simplicity aligns well with explainable mechanism design.

4. Finally, we find that extending distributed algorithmswith realistic behavioural features (namely,
heterogeneous strategies, asynchronous updates, memory decay, and manipulative be-
haviour) significantly alters trading dynamics and outcome fairness.
We find that incomplete information undermines market integrity and increases susceptibil-
ity to manipulation; intriguingly, however, the agents who manipulate the market are not
always the ones who benefit the most. Effective protocol design must incorporate memory
mechanisms and address these vulnerabilities to maintain trustworthiness.
Additionally, consensus emerges as an influential factor on market robustness and fairness,
making it especially important for market regulation and design to encourage alignment in
environments characterised by diverse behaviours and principles.
Overall, we find that effective decentralised market modelling requires managing strategic
diversity through coordination and incorporating factors like timing and memory to ensure
robustness and fairness in practical applicability beyond idealised theory.

1.6. Roadmap
The thesis has a two-part structure: it presents both a theoretical analysis and numerical exper-
iments, which are closely connected as shown in Figure 1.3. This approach allows us to clearly
distinguish between the two main research gaps addressed. Before these core sections, we con-
duct an in-depth literature review (Chapter 2) to map the extensive work in this field and clarify
where current models of sharing economies fall short, motivating Contribution 1.

Part I: Theoretical Analysis
Part I demonstrates how existing economic literature can be leveraged to accurately model the
exchange market. Using the insights gathered in the literature review we analyse existing pro-
grams and propose adapted distributed models that fit the exchange market (Chapter 3) to form
Contribution 2. Then, we analyse distributed algorithms that model the trading decisions of agents
(Chapter 4) and compare them to the previously discussed programs. The discussion on these
theoretical models, supported by several mathematical proofs, finish up Contribution 3.

Part II: Numerical Experiments
The analysis of Part I provides the support for the proposal of a novel exchange market model
(Chapter 6). Additionally, the model is extended with aspects that tackle the limitations of the cur-
rent state-of-the-art. We conduct numerical experiments to explore how themodel’s components—
strategy heterogeneity, asynchronous dynamics, memory limits, and manipulative strategies—
shape market phenomena (Chapter 7). These explorative experiments aim to examine trade-offs
and risks in exchange markets and to assess whether the proposed model captures aspects of
real-world market behaviour often overlooked by other approaches. Together with the discussion
of these results, the experiments conclude Contribution 4, as the last contribution of this research.
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Figure 1.3: Roadmap of this Thesis



2
Literature Review

This literature review covers key models and methods in market equilibrium theory. The selec-
tion of previous works, based on scoping [52] and citation chaining (otherwise known as snow-
balling1), traces developments from classical Fisher and Arrow-Debreu models to decentralised
trading mechanisms. The goal is to identify core concepts and computational techniques, while
critically examining limitations in the recent state-of-the-art, especially regarding agent behaviour,
equilibrium convergence, and applicability to real-world sharing economies.

2.1. Preliminaries
2.1.1. Equilibria
Studying equilibria and how to compute them has long been a key focus in economics [53]. From
a system-wide perspective, the most desirable market state is such an equilibrium: a market state
that is both fair and stable. An often used metric for fairness is the proportionality, where agents
receive returns proportional to their contribution (e.g., [54, 55, 56]). From the individual agent’s
perspective, however, the most desirable state of a market is a state in which it maximises their
utility function. In a state in which that agent maximises its utility, the agent has no incentive to
deviate from the current state, making that market state inherently stable.
Although many types of equilibria exist, the most common for competitive markets (e.g., Fisher
market, AD market) is the Competitive Equilibrium (CE), which combines both system-level inter-
ests and agent-level interests. This state is Pareto-optimal2, meaning that no resources can be
redistributed to benefit one agent, without diminishing the utility received by another agent. Given
some monetary budget mi for each agent i, we can define the CE as follows:

Definition 2.1.1 (Competitive Equilibrium). An allocation matrix X and set of prices p form a
Competitive Equilibrium if the following holds:

• Market Clearance: ∀i ∈ N ,
∑
j∈N xij = εi;

• Budget feasibility: ∀i ∈ N ,
∑
j∈N xij · pj ≤ mi;

• Utility Maximisation: ∀i ∈ N ,X ∈ argmaxX ui(ri).

Proving these three conditions to be true means that the market has reached equilibrium. Of the
three conditions, market clearance, is quite straightforward: Each agent allocates or trades all
their resources. The utility maximisation condition is often the most complex to prove. However,
budget feasibility is particularly interesting in exchange markets, which lack a monetary device. In

1https://pure.tudelft.nl/ws/portalfiles/portal/9993402/how_to_write_a_literature_review_paper_
version_after_review_no_track_changes.pdf

2https://en.wikipedia.org/wiki/Pareto_efficiency
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markets with explicit prices, the budgetmi and endowment εi are separate possessions of agent
i; in contrast, in exchange markets, agents trade directly using their endowments, so budget and
endowment represent the same resources. As a result, the budget feasibility constraint and the
market clearance constraint can be merged. This aligns with a well-established result in literature:
Equilibrium computation is effectively utility optimisation restricted by packing constraints.
In the special case in which all agents have equal budgets ∀i ∈ N , εi = 1, the CE is called
the Competitive Equilibrium from Equal Incomes (CEEI) [57]. Both the CE and the CEEI have
desirable properties, including the maximum Nash Social Welfare and Pareto efficiency, as well
as envy-freeness and proportional fairness [58].

A closely related concept is the Sharing Equilibrium (SE) [59], which is specifically applicable
to exchange markets. This equilibrium is defined on sharing ratios ρ: an agent’s ratio of value
received to value allocated.
Definition 2.1.2 (Sharing Equilibrium). A vector of sharing ratios qualifies as equilibrium sharing
ratios ρ∗ = [ρ∗i ]i∈N in a Sharing Equilibrium if the following holds:

• Utility maximisation: Agent i allocates resources to agent j such that i maximises its ex-
pected received resource Ri;

• Feasibility: The allocationsX satisfy the constraint that no agent i receives more resources
than it is entitled to by the equilibrium sharing ratio ρ∗i and endowment εi: Ri ≤ εi · ρ∗i ;

• Rational behaviour: Each agent i expects to receive resource xij/ρ∗j from agent j after
allocating resources xij .

Although this definition of an equilibrium is aligned with the CE as described earlier, it is specifically
tuned to a market in which there is no explicit monetary tool.

2.1.2. Markets
A well-known market, similar to the exchange market, is the Arrow-Debreu (AD) market3 [60]. In
this market, agents have an initial endowment of resources and utility functions defined on those
resources. Agents sell their initial resources and use the proceeds to acquire others’ resources.
This market was originally formulated by Walras [45], who questioned whether such a market is
guaranteed to have an equilibrium. Arrow and Debreu [60] confirmed that indeed this equilibrium
exists, provided the agents’ utility functions are concave. Hence the name Arrow-Debreu market.

Fisher markets are closely related to AD markets, the key difference being how agents derive
their budget: Fisher markets assign budgets externally, while AD markets derive budgets from
resource sales. The endogenous value of money in an AD market induce a double effect of
prices, affecting both demand and budgets. As such, the AD market is often seen as a more
complex market, while the Fisher market is considered to be a simplified case of the AD market
[61]. The difference in complexity is exemplified by the lack of a mathematical program with a
constructive proof for the AD market, while there is such a program for the Fisher market [51].

Exchange markets differ from Fisher and AD markets in several key ways. While Fisher and AD
markets are typically modelled as centralised systems with complete information — where agents
act as buyers with fixed budgets (Fisher) or prosumers with initial endowments (AD) — exchange
markets feature decentralised, P2P interactions where agents assume trade resources multilat-
erally. Unlike the monetary mediation of trades in Fisher and AD markets, exchange markets
often operate without money, relying on local, platform-facilitated exchanges. Additionally, Fisher
and AD models emphasise efficiency, budget feasibility, and equilibrium under idealised assump-
tions, whereas exchange markets often prioritise finding an equilibrium under trust, reciprocity,
and adaptability within networked platforms. Table 2.1 highlights these and other distinctions,
showing how traditional models diverge from the fundamentals of exchange markets.

3The term exchange market is often used synonymously with AD markets, where agents trade money and goods.
However, this thesis uses exchange market to refer to an abstract model of a sharing economy without explicit money
exchange.
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Fisher Markets AD Markets Exchange Markets

Agent Roles

Agents are buyers with
fixed budgets or sellers
with fixed resources;
buyers spend budgets
to maximise utility.

Agents are prosumers
with fixed
resources.

Agents are prosumers,
flexibly trading in
peer-based roles.

Exchange
Mechanism

Money and prices
mediate trades;
agents come to the
market with a fixed
budget.

Money and prices
mediate trades;
agents earn a budget
by selling initial
resources.

Exchange is often
moneyless, with
decentralised, local
platform-matched
trades based on
reciprocity.

Market Design
& Principles

Often modelled as
centralised market with
complete information.
Emphasises efficiency
and budget feasibility.

Often modelled as
centralised market with
complete information.
Focus on equilibrium
and optimal allocation.

Decentralised systems
shaped by platforms
and underlying networks.
Emphasises trust and
reciprocity.

Table 2.1: Fundamental differences between three types of markets.

2.1.3. Computational Efficiency
The computational complexity of methods used for computing equilibria has been a topic of inter-
est for decades [62]. The computation of a CE for the AD market in general has been established
to be PPAD-hard (Polynomial Parity argument on a Directed Graph) [63]. The PPAD class of
problems refers to a subclass of TFNP (Total Function Nondeterministic Polynomial) that can be
reduced, in polynomial time, to the directed graph problem called End-of-a-Line [64]. The relation
of these complexity classes to well-known classes P and NP can be seen in Fig. 2.1. The PPAD
class of problems is guaranteed to have a solution as a result of mathematical proof considering
its specific combinatorial structure.

Figure 2.1: The relation of complexity-classes PPAD and TFNP to P and NP.
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Although imposing restrictions on themarket can decrease the complexity of computing the equilib-
rium, guaranteeing polynomial-time solutions remains challenging. The computational complexity
of finding equilibrium solutions is a significant concern: Jain [51] argued that the market of rational
agents can be interpreted as a Turing machine trying to compute the next move. If a more com-
plex Turing machine (a modern computer) cannot compute the equilibrium within a reasonable
time, then it is unreasonable to expect a simple Turing machine (the market) to be able to com-
pute the equilibrium. One could thus argue that it is then more valuable to have an uncomplex
approximation of the equilibrium, rather than a computationally complex exact equilibrium.

2.2. Seminal Works
This section surveys key results underpinning modern equilibrium computation. While not limited
to money-free exchange markets, these models provide essential context for understanding how
sharing economies can be modelled within broader market equilibrium theory.

2.2.1. Tâtonnement
Walras [45] introduced the tâtonnement process as an early approach to finding market equilibria.
Tâtonnement is a sequential process which adapts prices due to excess demand. Each step,
agents experiencing excess demand, adjust their prices upwards, and vice versa for a lack of
demand. Cheung et al. [65] later showed this process to converge to the CE for Fisher markets by
drawing a parallel between tâtonnement and gradient descent over a convex function expressing
the negative excess demand.

2.2.2. Eisenberg-Gale program
Eisenberg and Gale [49] proposed a relatively simple program, based on the geometric mean of
agents’ utility functions, that can be used to compute the CE in a Fisher market:

max
X

(Πi∈Nui(ri)
mi)1/

∑
i∈N mi

Constrained to the endowments and the budgets, and taking the log of the above function results
in the following definition of the Eisenberg-Gale (EG) program:

max
X

∑
i∈N

mi log ui(ri)

s.t. ∀i ∈ N :
∑
j∈N

xij ≤ 1,

∀i, j ∈ N : xij ≥ 0

(P1)

.

Closely related to the EG program is Shmyrev’s program [50], which is actually the dual of the
dual of the EG program, up to a change of variables [66]:

max
b

∑
i,j∈N

bij · log vij −
∑
j

pj · log pj

s.t. ∀j ∈ N :
∑
i∈N

bij = pj ,

∀i ∈ N :
∑
j∈N

bij = mi

∀i, j ∈ N : bij ≥ 0

(P2)

where the agents place bids bij on resources, and allocations are determined by the ratio of bids
and prices (xij = bji/pi). vij denotes how much agent i deems j’s resource to be worth. This
notation means agents value a resource differently from one another, as opposed to vj where
agent j’s resources has the same value to each other agent.
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2.2.3. Proportional Response Dynamics
Proportional Response Dynamics (PRD) are a simple, distributed dynamics, which provably con-
verges to the CE [26]. Originally set in the context of bandwidth allocation, much of the research
concerning distributed equilibrium-finding has been based on these dynamics, especially in Fisher
markets.
In the most common interpretation of PRD, agents allocate their resources sequentially based on
how much utility they gained in the previous timeslot: In the first step, each agent i places a bid
bij (within its budget mi) on the resource of agent j. Next, each agent divides its own resource
among its trading partners, in proportion to how much those partners bid on the resource: If agent
j offers a higher bid to agent i, then agent i allocates more of its resource to agent j. Once all
allocations are made, each agent i receives a bundle of resources xij from others and gains utility
from them. Finally, agents update their bids, proportionally to the utility the agent received from
that partner’s resource in the previous timeslot. An example of this mechanism is shown in Figure
2.2.
In the case of an exchange market, the bidding step is skipped entirely. Agents instead allocate
their resources directly in proportion to the utility they received last timeslot —more closely resem-
bling the original PRD [26]. There have been multiple adaptations of this mechanism, including,
for example, asynchronous PRD [67], damped PRD [68], and lazy PRD [69].

Figure 2.2: Example of a PRD bidding and allocation timeslot

The convergence of PRD in Fisher markets can be better understood by connecting it to mirror
descent. The PRD update rule resembles how mirror descent would solve Shmyrev’s program
[70]. This fundamental insight provides both convergence guarantees and an intuitive interpreta-
tion of PRD: PRD is not just a heuristic, but can be viewed as performing a principled optimisation
over the utility landscape defined by the market.

2.2.4. AD Market models
Early algorithms to compute the CE in an AD market were approximations through fixed-point or
Newton-based methods. Additionally, the running time of these algorithms was exponential, mak-
ing them computationally expensive [61]. Jain [51] demonstrated how polynomial time solutions
could be obtained by defining the equilibrium as a solution to a central convex program:

∀i ∈ N :
∑
j∈N

xij = 1

∀i, j ∈ N : xij ≥ 0

∀i, j ∈ N : log pi − log pj ≤
(∑

k∈N vik · xki
vij

) (P3)
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This program computes any and all equilibrium solutions of the AD market4. To complement this
convex program, the authors also proposed the first polynomial exact algorithm for computing the
CE in the AD market, using the ellipsoid method.
The similarities between the convex program proposed by Jain and the KKT-conditions of the
EG program are evident, and there exists a variation on Program P3 that Jain interprets as a
generalisation of the EG program. Jain’s convex program for the linear AD market is however
quite different from the EG program and Shmyrev’s reformulation, in the sense that it does not
confirm existence of an equilibrium in an AD market, but only computes it if such an equilibrium
exists. Additionally, the proof is non-constructive, unlike the proof of the EG program.

Jain’s work inspired several new findings; Ye [72] presented an interior point algorithm to solve the
program in O(n4 log(1/ϵ)) time. Later, Duan and Mehlhorn [61] found the first combinatorial poly-
nomial algorithm for the AD market that performs in O(n6 log(n · Umax)), where Umax is the max-
imum integer utility. It is based on balancing network flow, and at a high-level its price-adaptation
mechanism seems to share similarities with the basic ideas of tâtonnement. This algorithm was
inspired by Devanur et al.’s work who worked with flows to find algorithms for the linear AD mar-
ket [74]. Eventually, Garg and Végh [75] developed the first strongly polynomial algorithm for AD
markets. Unlike earlier approaches, its convergence does not depend on the desired precision
parameter ϵ.
Together, these developments show how ideas from convex programming and flow-based algo-
rithms have gradually improved our ability to compute equilibria in AD markets. While challenges
remain, this work has laid useful groundwork for tackling similar problems in more general ex-
change settings.

2.3. Recent Trends
Having reviewed the seminal works that form the foundation of equilibrium computation, we now
turn our attention to recent trends in the field. These state-of-the-art works build directly on the
seminal works, but aim to address some of their key limitations. By examining how recent research
has narrowed the gaps left by earlier seminal works, we canmore clearly identify which challenges
have been addressed and which remain open. This, in turn, helps establish a foundation for
modelling dynamic distributed exchange in P2P markets based on the fundamental economic
concepts discussed earlier in this chapter. We frame our critique around four core assumptions
that limit their ability to capture the distinctive features of exchange markets:

1. Stochasticity of markets: the modelling of static environments of markets.

2. Distributed & asynchronous exchange: the centralised manner of equilibrium computa-
tion and assumption of synchronous concurrent trading actions.

3. Heterogeneous allocation strategies: the assumption of homogeneity in the type of deci-
sion rules agents use.

4. Bounded rationality: the assumption of agents to be entirely rational, with full information
availability.

While there is undeniably a large body of research on P2P networks that addresses some of
these critiques, much of it consists of narrowly scoped, case-specific studies5. Though these ap-
proaches yield valuable insights, they often fall short of offering generalizable design guidance.
This leaves a gap between conceptual understanding and practical application in designing vi-
able P2P systems. Accordingly, our focus in recent trends shifts more toward abstracted models
grounded in the seminal works discussed earlier.
The discussed papers are summarised in Table 2.2, to provide an overview of how the current
state of equilibrium research compares to the objectives of this research.

4Similar convex programs were actually found earlier by Nenakov and Primak [71] in 1983.
5A particularly large share of this focusses exclusively on energy markets.
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Market Contribution

[76]
Fisher market with central
allocator and price updates.

Simple price updates under belief
heterogeneity and bounded rationality.

[77]
Fisher market with central
allocator and bidding buyers.

Dynamic allocation with sequential
agents and private stochastic types.

[78, 79, 56]
Fisher market with central
allocator and online arrival.

Online allocation mechanism with
unknown stochastic item arrivals.

[80]
Allocation market with central
allocator to multiple agents.

Online allocation with unknown
demand of sequentially arriving agents.

[81]
Fisher market with central
seller and buyer bidding.

Online pricing with fluctuating values
and private buyer information.

[67]
Fisher market with asynchronous
proportional bidding.

Asynchronous bidding converges via
market-based game formulation.

[59]
Exchange market with
decentralised peer trading.

Greedy, myopic prosumers in
markets with stochastic resource
availability.

[82]
Arrow-Debreu market with
decentralised peer exchange.

Trading under heterogeneous beliefs
and learning in non-rational equilibria.

Table 2.2: Overview of state-of-the-art research, highlighting market types, mechanisms, and agent assumptions
relevant to current research gaps.

2.3.1. Stochasticity
A long-standing shortcoming in economic theory is the focus on static markets [83] — in which
variables such as the budgets and endowments remain fixed over time (e.g., [84, 85]) — when
real exchange markets are generally subject to change [81, 86].
Researchers have often opted for simplified static models for the reason that incorporating market
dynamics can introduce significant complexity. Modelling a market as a dynamic system leads to
a dynamic equilibrium [86], implying that the quality and approximation of the equilibrium changes
over time, resulting in a higher complexity of analysing equilibria in dynamic markets.

A number of recent works addressed these issues by including market stochasticity, specifically
modelled as dynamically available resources; Yang et al. [81] considered this stochasticity in a
Fisher market, with an online version of PRD which allocates stochastically-valued resources to
buyers. This online PRD achieved logarithmic convergence rates in markets with strongly convex
market objectives.
Another approach, by Gao et al. [78], was to model sequentially arriving resources and leverage
dual averaging to drive a Fisher market to equilibrium. In this model, termed PACE, a central al-
locator must make pricing decisions, by ensuring buyers’ time-averaged utilities converge to the
equilibrium. So although PACE includes considerations for the dynamic character of a market, it
does rest on the assumption of some central allocator. PACE was later extended upon by Liao
et al. [79] and Yang et al. [56], who achieved logarithmic convergence bounds when modelling
inter-arrival times of the resources as non-stationary and parameter-free, respectively.
Turning to exchange markets, Georgiadis et al. [59] presented a greedy distributed algorithm
converging to equilibrium in settings with stochastic resource availability. Beyond a few efforts,
research on stochasticity in exchange markets remains limited compared to Fisher markets. Fu-
ture work should thus build on these to develop dynamic models that handle stochastic resource
variations in exchange markets.
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2.3.2. Distributed & Synchronous computation
Understanding how agents arrive at an equilibrium is just as important as identifying the equilib-
rium itself [87]; markets are rarely governed by a single resource-allocating authority, and agents
typically interact in a decentralised, uncoordinated fashion [88]. Even if we can compute equilib-
rium efficiently, it does not follow that independent agents will arrive at that market state. Thus, it
is non-trivial to study whether and how equilibrium can emerge from these local interactions.

Nevertheless, foundational models prioritise centralised computation over decentralised process.
We refer to such approaches, which ignore the trading process and compute the equilibrium from a
centralised perspective, as central programs. In much of the literature, an equilibrium is treated as
an output to be computed by an omniscient entity, rather than as an emergent property of agent
interaction. A recurrent justification for this choice in literature is the objective to compute the
equilibrium state efficiently, rather than simulating the market process. The gradual decentralised
processes observed in real exchange markets are not guaranteed to converge to an equilibrium
[89] and a distributed, agent-oriented complicates the convergence to equilibria [90]. As such,
decentralised processes are often not seen as the right tool for this goal. Therefore, although the
process of getting to the equilibrium is important, many works deem it a better choice to compute
the equilibrium state with a central program without constraints on the process leading there.

Some seminal works seemingly address the concern of the decision-making process towards the
equilibrium: PRD and tâtonnement. However, the latter makes the assumption that no trading
actually takes place until the equilibrium prices have been established, and thus tâtonnement
cannot really be categorised as a process-oriented model. PRD on the other hand, clearly states
the sequential updates of allocations each timeslot, and is thus a process-oriented model. How-
ever, PRD assumes that all agents trade proportionally and synchronously: assumptions that are
unrealistic in large, decentralised markets. Enforcing synchronous trading can introduce artifi-
cial coordination that misrepresents the inherently asynchronous nature of real-world exchange
markets, and impose unnecessary overhead that grows with market scale [91, 92]. Therefore,
although seemingly there were process-oriented models among the seminal works, these by far
do not realistically model the process of trading.

More recently, the restriction of synchronous trading has been addressed to some degree. For
instance, Kolumbus et al. [67] showed that a Fisher market, where an adversary asynchronously
selects batches of agents to actively trade, can still reach equilibrium. Earlier, Cheung and Cole
[93] used a similar strategy to show the convergence of asynchronous tâtonnement. The authors
of both papers use the connection of these algorithms to some type of descent algorithm to show
that, each asynchronous step improves some potential function that models the market, thus guar-
anteeing convergence. In a related direction, Sinclair et al. [80] and Jalota and Ye [77] found that
the allocation of resources in a Fisher market where agents arrive sequentially is only guaranteed
to converge when utility functions are known and uses prediction based on past observations to
overcome this limitation.

These approaches suggest that partial information and timing uncertainty do not necessarily pre-
vent emergence of an equilibrium: Asynchronous mechanisms can sometimes cause greater
stability in some equilibrium-computing processes [94, 95], while at the same time it can make
determining the convergence rate a more difficult task [67]. The effects of asynchronous dynam-
ics depend on the market structure as well as the agent selection strategy and their response to
market conditions.
While most of these results are limited to Fisher markets, extending them to exchange settings
remains a promising direction. Overall, models of market interaction should move away from un-
realistic assumptions of synchronous allocation and centralised computation, and instead reflect
the asynchronous, decentralised nature of real-world dynamics.
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2.3.3. Heterogeneous Allocation Strategies
Another recurring limitation of exchange market models is the lack of heterogeneity in the em-
ployed allocation strategies among the population of agents [96]. Although the presence of differ-
ent levels of wealth often indicates heterogeneous strategies [97], surveys have shown that many
models fall short in modelling this aspect [98]. The vast majority of the heterogeneity that we
do see in market-modelling research is rooted in the different preferences and resources agents
have (e.g., [99, 56]), leaving strategy heterogeneity relatively unexplored. The justification for the
choice of homogeneous strategies across the population is often superficial and relies on broad
assumptions without in-depth empirical or theoretical support.

Some variations on well-known trading rules have started to shed light on a heterogeneous strat-
egy population; for instance, several studies have examined variations on PRD, such as lazy
PRD [69]. Le and Ramazi [100] studied markets with mixed-strategy populations and found that,
although mixed-strategy populations often reach equilibrium, the equilibrium becomes unstable.
This suggests that strategy heterogeneity could have adverse effects on the convergence of mar-
kets. The authors leave further insights on the convergence of mixed-strategy markets as future
work.

However, the most advancement in terms of heterogeneous strategies can be found in terms of
manipulative strategies. Multiple works have studies the impact of having one or more manipula-
tive agents among truthful agents (e.g., [101, 102]).
One way to assess a market’s robustness to manipulative trading is through the Incentive Ratio
(IR) [103], which quantifies how much an agent can potentially gain by employing a manipulative
strategy. The incentive ratio w.r.t some agent i and marketM is defined as follows:

ζMi = max
s,s′i

maxX(s−i,s
′
i
)
ui(ri)

minX∗
(s)
ui(ri)

(2.1)

where s is a configuration of truthful strategies, where si denotes agent i’s strategy and s−i de-
notes all strategies except that of agent i. Its counterpart, s′, denotes the same concepts for
untruthful strategies. X(s) is the allocation matrix that the strategy configuration s has converged
to. In other words, the IR computes in the numerator the maximum possible utility obtained by
agent i by employing manipulative strategy s′i, while all other agents keep a truthful strategy, while
in the denominator it computes the minimum obtained utility for agent i is the whole population
trades truthfully.

The total IR of the marketM for misreporting such weights is then:

ζM = max
i∈N

ζMi (2.2)

As of yet, most research on the IR has been in the context of Fisher markets [104, 101, 102],
where relatively tight bounds have been found for the IR. For instance, when agents misreport their
utility functions in Fisher markets, the IR has been shown to have an upper bound of 2 [103, 101].
However, for AD markets, the situation is more complicated. Even basic forms of manipulation,
such as misreporting utilities, can lead to unbounded IR values [105]. More progress has been
made in the context of IR in AD markets, mostly focussed on the specific case of Sybil attacks6.
For example, Cheng et al. [106] found that the IR of Sybil attacks in AD markets is at most 3 for
general networks. More specific results include an IR of 2 for tree-structured networks [107] and√
2 for complete networks [108].

While recent studies have started to address behavioural heterogeneity in manipulative strategies,
this area remains underexplored [109]. This gap is especially notable for exchange markets as we

6https://en.wikipedia.org/wiki/Sybil_attack

https://en.wikipedia.org/wiki/Sybil_attack
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define them, since most IR research focuses on Fisher and AD market models, and no formal IR
results currently exist for exchange markets. Thus, alongside heterogeneity in truthful allocation
behaviour, there is substantial room for progress in understanding manipulative behaviour within
exchange markets.

2.3.4. Bounded Rationality
Frequently, researchers assume that agents’ capabilities are sufficient to make logical decisions
to satisfy a given strategy [110]. Although unrealistic, such an assumption does simplify the model.
One concept that could be used to tackle this trade-off is bounded rationality, which acknowledges
that agents may have cognitive or informational limitations while still assuming some form of com-
putational ability. Studies have shown that assuming bounded rationality yields more realistic
models and can meaningfully affect equilibrium outcomes [111, 112]. Bounded rationality offers
a promising middle ground between unrealistic rational models and overly simplistic equilibrium
approaches [113].

Although seminal works do not consider any type of bounded rationality, some recent work incor-
porates bounded rationality explicitly: Dvijotham et al. [76] considered that agents’ responses to
trading events should be simple, such that the algorithm would be applicable to computationally
bounded agents, and thus modelled belief-forming with finite horizons in Fisher markets. Their
findings suggest that convergence to the equilibrium is still possible under simple heterogeneous
beliefs. Similarly, Choo et al. [82] considered equilibrium-finding with information asymmetries
in an AD market and shows that market-wide beliefs can emerge even when some agents are
rationally bounded by incorrect information. Angeletos and Sastry [114] proposed a more intricate
model, where agents’ attentions can vary in an AD market, and provide different conditions under
which heterogeneous attention spans may or may not be disruptive to the system.

Still, in otherwise advanced models bounded rationality has often been overlooked. For instance,
the works on the PACE algorithm ([78, 79, 56]) can be considered state-of-the-art, however it
assumed a fully rational central allocator with perfect memory, conflicting with their explicitly stated
aim to model more realistic markets. We stipulate that these algorithms might show different
convergence if the allocators were subject to cognitive constraints. Similarly, Kolumbus et al. [67]
considered asynchronous dynamics, but left the effects of imperfect information availability as an
open question. This leads to the question of whether limitations in information processing could
disrupt algorithms that usually converge well in exchange market models. To answer this question
and better reflect real behaviour, market models should explicitly incorporate bounded rationality
and information-processing constraints.

In the examples above one specific category of bounded rationality becomes apparent: the avail-
ability of information. Many equilibriummodels assume unrealistically complete knowledge on the
part of agents [115]. One way to address this is by incorporating limited memory or memory decay,
where agents gradually forget past information. Such simple cognitive limitations offer a pragmatic
way to introduce bounded rationality without over-specifying agent psychology, thereby preserv-
ing the appeal of equilibrium theory: the freedom of choice [116]. As such, a simple concept
of bounded rationality can really add to the realism of the market, without restricting the agents
too much, striking balance between over- and under-specification of the cognitive capabilities of
agents.

2.4. Conclusion
The discussion on recent trends in this field of research has revealed several limitations concern-
ing the state of current literature: Market models tend to rely on centralised mechanisms and
make unrealistic assumptions about agent behaviour, information, and market dynamics. While
foundational models offer valuable analytical tools w.r.t. optimality, they typically assume static
markets, full rationality, homogeneous strategies, and synchronous decision-making — assump-
tions that fail to capture the complexity of real-world exchange markets.
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In fact, the most progressive state-of-the-art works in terms of modelling dynamic and varied agent
behaviour have been focussed on the Fisher market, which is fundamentally different from the ex-
change market. The limited attention paid to decentralised exchange markets highlights a critical
shortcoming in literature.
The identified limitations define a core research gap on the lack of algorithmic models capturing re-
alistic trading behaviour and structural constraints in decentralised sharing markets. This directly
informs Contribution 1 in understanding how current models fail to represent realistic trading be-
haviour in sharing economies.
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Theoretical Analysis
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3
Centralised Approaches

Our starting point in modelling the market is to identify centralised programs that compute equi-
librium allocations. Although these do not directly capture the distributed character of the market,
they play a vital role in assessing and explaining the convergence behaviour of the distributed
allocation strategies introduced later.
In light of this, we examine how existing central programs can be adapted to the exchange market.
Multiple programs that are significant to the field and connect meaningfully to distributed market
models are considered. Each of these programs can model the exchange market described in
Section 1.4 and are able to identify its equilibrium state.
With such central programs identified, we discuss the suitability of these programs for computing
the equilibrium solution that will serve as a benchmark. This benchmark allows us to evaluate
and compare the results of distributed allocation strategies in later chapters.

3.1. Adaptation of the EG Program
The original EG Program (P1) can compute a market equilibrium for the Fisher market. However,
the Fisher market is a significantly different market from the one described in Section 1.4, and so
the EG Program must be adapted in order to model the exchange market.

First of all, the utility function has to be defined as a linear utility function such that ui(ri) =∑
j∈Ni

vj · xji. Additionally, the weight mi represents the value of the agents’ resources, rather
than a direct monetary budget. Depending on budget mi, the geometric mean of the agents’ utili-
ties will shift, meaning that the computed equilibrium shifts along with it.
Rather than using monetary budgets, we define their weights based on the expected value of
their own resources. Because of the stochastic availability of resources, the value of an agent’s
resources varies over time. However, for any central program considered in this thesis, we as-
sume the long-term expected value of the distributable resource: E[Di] = εi. This assumption
is similar to those made in other works (e.g., [77, 56]. Thus, the weight of agent i becomes the
value of its endowment: vi · εi. This gives us the following adapted version of the Program P1:

max
X

∑
i∈N

(vi · εi) log

∑
j∈Ni

vj · xji


s.t. ∀i ∈ N :

∑
j∈Ni

xij ≤ εi,

∀i, j ∈ N : xij ≥ 0

(P4)
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This program is constrained to the underlying network G, by including the notation of neighbour-
hoods Ni. The values vi can, without loss of generality, be scaled to 1 by inversely scaling εi.
However, retaining vi offers two advantages: It allows for more straightforward interpretation and
representation in terms of distinguishing between value and amount, and it aligns with related
literature, where values v and amounts ε are typically treated separately, making comparisons
more straightforward. Program P4 offers a clear model of the exchange market, taking on the
same intuitive concepts of optimising the Nash Social Welfare, as in Program P1.
The optimality of this program for themarket fromChapter 1.4 is proven through the KKT-conditions,
as seen below.

Theorem 3.1.1 (Optimality of Program P4). Program P4 computes the equilibrium allocations
X∗ according to equilibrium definition 1.4.1.

Proof. The Lagrangian of the objective function in Program P4 is as follows:

L(X,λ,µ) =
∑
i∈N

(vi · εi) · log (ui(ri))− λi · (
∑
j∈Ni

xij − εi)

+
∑
i,j∈N

µij · xij

The derivatives of this function with respect to xji, λi, and µij are

∂L

∂xji
= vj ·

vi · εi∑
k∈Ni

vk · xki
− λj + µij

∂L

∂λi
= εi −

∑
j∈Ni

xij

∂L

∂µij
= xij

Often, the dual variable λi is interpreted as the relative price of resource i at equilibrium. Given
the exchange market, the concept of explicit prices is not a suitable interpretation. Rather, it is
better to think of λ as the relative value of resources to be allocated to others (or ’paid’) in order
to receive an amount of returned value, i.e. the relative cost. Given these derivatives we can
construct the KKT-conditions.

• primal feasibility: ∀j ∈ N :
∑
i∈Nj

xij ≤ εi

∀i, j ∈ N : xij ≥ 0

• dual feasibility: ∀i ∈ N : λi ≥ 0

∀i, j ∈ N : µij ≥ 0

• complementary slackness: ∀i ∈ N : λi · (
∑
j∈Ni

xij − εi) = 0

∀i, j ∈ N : µij · xij = 0

• stationarity: ∀i ∈ N , ∀j ∈ Ni : vj ·
vi · εi∑

k∈Ni
vk · xki

− λj + µij = 0

From these conditions we can derive the following statements:

1. ∀i ∈ N : λi > 0 ⇒
∑
j∈Ni

xij = εi

(due to the complementary slackness of λi)
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2. ∀i ∈ N , j ∈ Ni :
vj
λj

≤
∑
k∈Ni

vk · xki
vi · εi

(due to the stationarity condition & dual feasibility of µij)

3. ∀i ∈ N , j ∈ Ni : xji > 0 ⇒ µij = 0 ⇒ vj/λj =

∑
k∈Ni

vk · xki
vi · εi

(due to the stationarity condition & complementary slackness of µij)

Given the assumption that for each resource i, vi > 0, we can derive that ∀i ∈ N , λi > 0: If agents
value a resource i positively and it were free (meaning λi = 0), then each agent would demand an
unbounded amount of that resource. This would automatically drive up λi. Thus, ∀i ∈ N : λi > 0,
and therefore statement 1 tells us that ∀i ∈ N :

∑
j∈Ni

xij = εi. This proves the market clearance
condition of the equilibrium 1.4.1.

To prove the other condition of the equilibrium 1.4.1, utility maximisation, we use notation βi to
denote how much value agent i has had to allocate in order to receive back value (often referred
to as the inverse best bang-per-buck). This means that βi = (vi · εi)/(

∑
j∈Ni

xji · vj). Given
condition 2, we know that vj/λj ≤ 1/βi so βi ≤ λj/vj . Given condition 3 we know if xji > 0
then λj/vj = βi ≤ λk/vk. This means that, if agent i receives resources from agent j, then there
must have been no other agent k that could give agent imore value for a lower relative cost. This
means that agent i is achieving the best possible value-received to value-allocated ratio, thus
proving the utility maximisation condition of the equilibrium.
Given that these conditions of the equilibrium as defined in 1.4.1 are satisfied, we can conclude
that Program P4 solves the market described in Section 1.4.

3.2. Adaptation of Shmyrev's program
Another approach to computing the equilibrium in a Fisher market is Program P2, which is closely
related to the EG Program P1. Given that we can adapt the EG program to suit the exchange
market, we ask if it is possible to do the same with the Shmyrev program. The program below
gives an affirmative answer:

min
X

∑
j∈N

∑
i∈Nj

vi · xij

 · log

∑
i∈Nj

vi · xij

−
∑
j∈N

∑
i∈Nj

vi · xij

 log vj · εj


s.t. ∀i ∈ N :

∑
j∈Ni

xij ≤ εi,

∀i, j ∈ N : xij ≥ 0

(P5)

The changes, compared to Shmyrev’s Program P2, are as follows: We introduce the endowments
ε and replace the bids bij by the value of the allocated resources vi · xij . Following this, prices pj
are replaced with

∑
i∈Nj

vi · xij , which represents the total value received by agent j. Similarly
to Program P4, Program P5 can be used to compute the equilibrium of the exchange market; we
show in Appendix A.1 that Program P5 yields a market equilibrium.

Theorem 3.2.1 (Optimality of Program P5). Program P5 computes the equilibrium allocations
X∗ according to equilibrium definition 1.4.1.

While Program P4 and Program P5 are likely duals of each other (due to the similar relationship
between the EG program and Shmyrev’s program) and therefore share a close structural relation-
ship, there are still notable differences: Program P5 appears more complex and less intuitive at
first glance. It has a less clear connection to the Nash social welfare, and its components lack im-
mediate economic interpretation. Nevertheless, Program P5 plays a crucial role in understanding
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the dynamics of distributed strategies. In particular, Program P5 is more naturally connected to
(proportional) decentralised trading behaviour, as will become clear in Chapter 4. Thus, while its
connection to classical economic equilibrium concepts is less direct, its relevance its highlighted
in the analysis of distributed processes.

3.3. Adaptation of Jain's program
As established, the AD market is closely related to the exchange market under study here, which
allows us to derive central equilibrium programs from existing formulations. In particular, we adapt
the convex feasibility Program P3 proposed by Jain [51].

As the defined market has no prices p, as used in Program P3, we recall the sharing ratio ρ from
the SE (Definition 2.1.2) as the ratio of an agent’s total value received to total value allocated:

ρi =

∑
j∈Ni

vj · xji
vi · εi

(3.1)

According to [12], these sharing ratios ρ and the prices p coincide. We use this insight to factor out
the prices from the program. If we introduce neighbourhoods Ni, increase all endowments from
1 to εi, factor out the log-terms, and replace values vij with vj1, we obtain the following program:

∀i ∈ N :
∑
j∈Ni

xij = εi

∀i, j ∈ N : xij ≥ 0

∀i ∈ N , j ∈ Ni :
vj
ρj

≤
∑
k∈Ni

vk · xki
ρi · εi

∀i ∈ N : ρi > 0

(P6)

Several elements of Program P6 can be recognised from the KKT conditions of Program P4.
Specifically, the first rule corresponds to the capacity constraint, while the second and fourth rules
reflect primal and dual feasibility, respectively. The third rule captures the stationarity condition
from the KKT conditions of Program P4, which, as shown in the proof of Theorem 3.1, supports the
utility maximisation argument. We can therefore interpret this third rule as the utility maximisation
clause.

Theorem 3.3.1 (Optimality of Program P6). Program P6 computes the equilibrium allocations
X∗ according to equilibrium definition 1.4.1.

A formal proof of the optimality of Program P6 for the exchange market under consideration is
provided in Appendix A.2. Despite its strong connection to Program P4, Program P6 lacks one
important feature: While the Program P4 and Program P5 come with a constructive proof guaran-
teeing a solution, Program P6 does not. As a result, Program P6 can verify an equilibrium when
one exists, however it does not ensure a solution in all cases — unlike Program P4 and Program
P5, which always return a result.

3.4. Benchmark Choice
Each of the discussed convex programs can be used to compute a market equilibrium. However,
we adopt Program P4 as our method of choice for several reasons. First, Program P4 is intuitive,
offering a clear economic interpretation as the maximisation of Nash Social Welfare. Program P5
on the other hand, lacks a straightforward economic interpretation. More importantly, Program

1The reasoning behind this reduction will become clear in Chapter 4.
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P4 guarantees to always yield a single solution. In contrast, Program P6 may admit multiple solu-
tions, requiring additional justification for how to select among them. By relying on a optimisation
program instead of a feasibility program, we avoid the need to impose such arbitrary selection
criteria and ensure interpretability and consistency in our equilibrium computations.
The equilibrium solution computed by Program P4 can serve as a reference to gauge the fairness
and stability of other (possibly sub-optimal) distributed allocation strategies. This development
marks the completion of Contribution 2, by demonstrating how existing equilibrium programs can
be adapted to capture key features of exchange markets.



4
Distributed Approaches

Building on the contents of Chapter 3, we continue to address the gap of modelling exchange
markets using existing market models; while the central programs found in Chapter 3 provide an
exact solution for the equilibrium, they do not explain how such an equilibrium might be reached
through distributed exchange. To address this, we now turn our attention to distributed algorithms
that can approximate this equilibrium.
Specifically, we explore two commonly used distributed trading strategies: greedy and propor-
tional. Drawing inspiration from established algorithms in related exchange markets, we adapt
these ideas to the market model introduced in Section 1.4 and compare the found market states
to the equilibrium found by Program P4.

Along the way, we explain how each strategy converges toward the equilibrium, providing novel
insights into the connections between distributed strategies and the central programs discussed
earlier. These connections clarify why either strategy converges to equilibrium and also address
an open question posed by Birnbaum et al. [70].

This chapter thus completes Contribution 3 by providing a comprehensive model of the distributed
trading process in the exchange market and sets the stage for Contribution 4 by establishing a
foundation for a new mixed-strategy approach.

4.1. Greedy Strategy
A greedy strategy is an allocation strategy for which each agent i maximises the expected utility
Ûi of next timeslot:

xi(t) = max
xi

(Ûi(t+ 1))

Given the allocations of a greedy strategy, the agents can compute a sharing ratio ρ, as defined
in equation 3.1. However, considering that this is a distributed strategy that computes allocations
over timeslots t, we introduce instead ρ(t).

ρi(t) =

∑
j∈Ni

vj · xji(t)
vi · εi

In greedy strategy, which we refer to as π, each agent i allocates its resources Di(t) to the neigh-
bour j with the lowest value ρj(t). The reasoning behind this is as follows: Agent i assumes ρj to
indicate neighbour j’s sharing behaviour. As such, when allocating value vi · xij(t) to neighbour
j,it expects to receive back (vi · xij(t)/ρj(t)— similar to the rationality clause in the SE. As such,
allocating all resources neighbour j | j ∈ argmink∈Ni ρk is expected to return the highest reward.
Based on this strategy π, we propose the following algorithm:
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Algorithm 1: Algorithm implementing strategy π
1 for t = 1, 2, . . . do
2 foreach i ∈ N do
3 Agent i announces to its neighbours the weighted sharing ratio:

ρi(t) =
(∑

j∈Ni
vj · xji(t)

)
/(vi · εi) ;

4 end
5 foreach i ∈ N do
6 Agent i distributes its resources Di(t) evenly over its neighbour j ∈ Ni having the

smallest weighted sharing ratio ρj(t) in set Ni;
7 end
8 end

Strategy π is primarily inspired by the greedy approach proposed by Georgiadis et al. [59], which
was shown to converge to equilibrium in the limit , within a stochastic exchange market closely
resembling the one described in Section 1.4, differing in its use of valuation functions v and defines
equilibrium based on the SE framework. An interesting aspect of allocation strategy π is that
it can be derived from the third constraint of Program P6. Intuitively, we argue that, as π is a
greedy strategy, it inherently performs utility optimisation. As such, π logically optimises the third
constraint of Program P6: The utility maximisation clause. For the interested reader, we refer to
Appendix A.3 for a more detailed explanation.

4.2. Proportional Strategy
The proportional allocation strategy we propose considers, for each agent i, the proportional con-
tribution to its utility that it received from each neighbour j:

xij(t+ 1) = Di(t+ 1) · vj · xji(t)∑
k∈Ni

vk · xki(t)
(4.1)

Each agent i returns in the next timeslot t+ 1 the number of resources proportional to how much
it has benefited from each neighbour’s last allocation, i.e. a proportional response. We will refer
to this strategy as ϕ.

Allocation strategy ϕ is based on the Proportional Response Dynamics (PRD) by Wu and Zhang
[26]. For the Fisher market and the AD the allocations of PRD are interleaved with bidding rounds.
Wu and Zhang’s original formulation is particularly suited to our setting, as it does not involve ex-
plicit monetary updates. Although ϕ differs from PRD in terms of notation and interpretation, the
underlying mechanism remains the same.
Wu and Zhang established a convergence rate of O(log(n/ϵ)/(1− c)) for PRD, given strictly con-
cave utility functions, in a deterministic market where each resource is valued the same. Wu and
Zhang left convergence for linear utilities in exchange markets open. For both the linear Fisher
and the AD market a convergence rate of O(1/t) has been proven [70, 69]. However, as our
market is neither a Fisher market nor and AD market and does not have strictly concave utility
functions, we may not assume either convergence rate.

4.3. Convergence Analysis
We have now identified two strategies that model a way to exchange resources in the exchange
market, both of which are derived from strategies that were proven to converge to the equilibrium
in closely related markets to the exchange market of this thesis. However, we have not yet shown
why π and ϕ may intuitively be expected to converge to equilibrium in this exchange market.

The reasoning behind the convergence of ϕ can be found in a mirror-descent-type algorithm,
specifically, a mirror descent over the objective function of Program P5.
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Theorem 4.3.1 (Mirror-Descent of ϕ). ϕ is equivalent to a mirror descent algorithm over Program
P5.

The proof of this theorem is presented in Appendix A.4. Consequently we state that, due to the
convergent, optimal nature of the mirror descent algorithm, ϕ converges to the market equilibrium.
Additionally, this insight extends the relationship between proportional allocations strategies and
Shmyrev’s program, identified by Birnbaum et al. [70], to the exchange market, and provides
an explanation for why ϕ may be expected to converge to the equilibrium. Moreover, this proof
resolves an open problem posed by Birnbaum et al. regarding the existence of convex programs
linked to proportional trading via mirror descent in exchange markets. Although left out in this
thesis, Theorem 4.3.1 likely also implies a convergence rate similar to that of O(1/t) determined
by Birnbaum et al.

The reasoning behind π converging to the equilibrium is somewhat less formal. We visualise the
convergence of π next to that of ϕ, to provide more context. Figure 4.1 below demonstrates the
convergence process along a generic convex program (representing, for example, Program P5)
solving the market at its minimum. The space, which is usually of a high dimension, is heavily
simplified for the purpose of clarity.
In Figure 4.1 (b), the mirror descent process of ϕ is shown. In Figure 4.1 (a), the process of update
steps of π is shown. Clearly the update steps of π do not approach the exact minimum (equilibrium)
in the way ϕ does, instead, it oscillates around the equilibrium. This is a consequence of π only
allowing integral allocations, where agents allocate all resources to the same neighbour. In the
limit, at t→ ∞, the average of these allocations converges to the point in the middle, the minimum.
This averaging over time is what makes it possible for the greedy allocations to converge to the
optimal solution. Although not a formal proof, this interpretation sheds light on why π might be
expected to converge.

π ϕ

Figure 4.1: Possible allocations in a heavily simplified convex solution space. (a) Allocations chosen by π. (b)
Allocations chosen by ϕ over some generic convex program that solves the exchange market.

4.4. Uniqueness & Measuring Optimality
Provided that both π and ϕ converge to the equilibrium, an important difference with Program P4,
is that these strategies only approach the equilibrium as t progresses, while Program P4 computes
the equilibrium directly. Thus, before some final timeslot T , the exchanges brought on by strategy
π or ϕ have not yet brought the market to equilibrium. At any time t, the market’s distance to the
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equilibrium can be measured. We will show how the equilibrium computed by Program P4 can be
used to measure that distance, allowing us to characterise the quality of the market state that a
distributed strategy converges to.

For a distance measure based on Program P4 to be meaningful, we have to know that, in the limit
t → ∞, both π and ϕ converge to the specific equilibrium computed by Program P4, and not just
any equilibrium. Program P4 is not unique in equilibrium allocationsX∗ as previously established.
Therefore, it is not guaranteed that the solutions found by the three different components are
equal.
However, although equilibrium allocations X∗ might not be unique, there is another variable in
which the exchange market under study is unique: equilibrium utilities U∗. Since the market
in question uses linear utility function ui(ri) (qualifying as both submodular and supermodular
functions), the gross substitutes property holds [117]. Therefore, an increase in the cost for one
resource, results in an increase the demand for other resources. Gross substitutability guarantees
that the equilibrium utilities U∗ that the agents receive are unique [118]. The insight that linear
markets lead to unique utility vectors at equilibrium was already established by Gale [119], who
showed that in a linear economy, all agents are indifferent to the different equilibria, indicating that
the utility they receive is the same across all equilibria.
Thus, if π or ϕ converge to the market equilibrium, then they also compute the same (unique)
vector of utilities U as Program P4 computes. This means that a distance measure comparing
the vectors of received utilities U(t) to the equilibrium vector U∗ would be a suitable measure to
denote how far ϕ and π are removed from equilibrium at time t.

We have concluded that we can use Program P4 to measure the performance of these two strate-
gies. Important to note, however, is that the manner in which we have discussed π and ϕ thusfar,
both strategies converge to the equilibrium differently; while π converges when taking the average
over all trading iterationsU(T ), ϕ converges in the last iterateU(T ). Now we will show that ϕ con-
verges in U(T ) as well: The Cesaro Mean Theorem1 states that if some variable a converges to
value l in the limit, then the average of that value will converge to the same value. More formally:

lim
T→∞

aT = l ⇒ lim
T→∞

a1 + ...+ aT
T

= l

Thus proving, if in the last iterate U(T ) computed by ϕ converges to U∗, U(T ) also converges
to U∗. Having ϕ and π converge in the same manner will be helpful later-on when analysing
the convergence of a combined strategy. This finding, that ϕ converges on average as well, is
supported by the convergence in the base experiments in Section 7.2.

4.5. Common Values
Individual valuations vij provide more flexibility than common values vi, and are more suitable to
the context of an exchange market, which have been shown to exhibit different preference pro-
files between agents [120]. However, individual valuations vij pose a problem for the distributed
allocation strategies considered in this thesis.
The challenge in finding such a distributed strategy is as follows: Without a common reference,
agents have no common ground to assess the worth of the resources they are exchanging. As-
sume agent i values a resource differently from agent j. If agent i allocates resources to agent
j, agent j might perceive its value differently. When agent j then allocates resources in return,
the value of these returns may differ from (1) what agent i finds proportional and (2) what agent i
expected to receive in return.
This lack of consensus prevents agents from reliably predicting what they will receive in return
and from trading accordingly. Since the trading strategies discussed generally rely on some form
of expectation — such as predicted returns or proportional fairness — to guide decisions and
support stability, the inability to make reliable predictions becomes a significant issue.

1https://proofwiki.org/wiki/Cesaro_Mean

https://proofwiki.org/wiki/Cesaro_Mean
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The question then becomes: How does introducing common values vi resolve this issue? Given
common values vi, we can determine a universal metric of value. All agents agree on the value of
resources, meaning that we can express the value of all resources in terms of one type of resource
(i.e., normalise the values). Essentially, this is also what the prices p denote in programs such as
Program P3; prices can function as a abstract scale by which to measure the value of resources.

Clearly, we must either use common values vi, or have some external measure of value (i.e.,
prices) to deal with individual valuations vij . Barter trade, like the trade in this exchange market,
has no prices by definition. Thus we can conclude that, the reduction from vij to vj is necessary
for agents to trade in this distributed exchange market.
The same reduction from vij to vj can be seen in PRD: The original PRD was proposed in an
exchange market without prices [26], and featured only common values vj . Later versions of this
allocation strategy are interleaved a price-based bidding round, which enabled them to extend the
values to vij .

Seemingly, bilateral trade (in which trading only happens in pairs) offers the solution for this prob-
lem: Agents i and j can measure the value of of each other’s resources in the context of each
other’s valuations vji and vij , allowing individual valuations without pricing. However, bilateral
trading does not necessarily converge to market equilibrium [121]. This means that distributed
strategies that only consider bilateral trading can be sub-optimal.
In theory, bilateral trading can sometimes converge to a market equilibrium, if and only if the tran-
sition rate matrix (an adaptation of the equilibrium allocation matrix X∗) is reversible [122]. This
insight is based on the connection between exchange markets and (reversible) Markov Chains.
Aperjis and Johari [121] explains, more intuitively, that a bilateral allocation only qualifies as an
equilibrium if it produces ’supporting prices’: a set of prices p that can form a CE with the found
allocation matrix X∗.
Finding a distributed strategy that computes such an allocation matrix (with guaranteed support-
ing prices) would be valuable, as it would produce a stable and fair solution based on personal
valuations vij , without the use of a universal metric of value. This would provide the freedom to
model barter trading with more specific utility functions. Creating such an strategy, however, is a
far from trivial task, and will not be solved in this research.



5
Discussion of Theoretical Findings

5.1. Evaluation of Proposed Models
We have discussed variations of the EG Program (P4), Shmyrev’s Program (P5), and Jain’s Pro-
gram (P6), all proven to compute the equilibrium. Program P4 was chosen as the benchmark for
evaluating convergence to equilibrium due to its economic interpretability (Nash social welfare)
and optimisation formulation, which guarantees a solution. Notably, the other programs have
close links to the distributed strategies; mirror descent over Program P5 is equivalent to propor-
tional strategy ϕ— resolving an open question by Birnbaum et al. [70] regarding an analogue to
Shmyrev’s program for resource allocation markets — while greedy strategy π corresponds to the
utility-maximising clause of Program P6.
These previously unestablished connections offer valuable insight into the convergence behaviour
of ϕ and π, revealing a key distinction between them: While both are ergodically convergent, ϕ
also converges in the last iterate. This allows the distance to equilibrium to be estimated using
limited information. In contrast, assessing π always requires knowledge of the entire sequence
of iterates, making evaluation of π practically unobservable in real-world, infinitely sequential mar-
kets.

The convergence of distributed allocation strategies matters to equilibrium — not solely because
equilibrium is always the objective in modelling markets — but because it provides a foundational
baseline for evaluating the impact of other market aspects (e.g., network topology, asynchronous
behaviour). If equilibrium fails to emerge, the deviation stems from added complexities, not the
core strategy. Thus, equilibrium serves as a diagnostic tool, allowing platform regulators and re-
searchers to pinpoint inefficiencies by comparing market behaviour against a clear convergence
reference point.
Beyond serving as a diagnostic baseline, theoretical equilibria help identify the set of Pareto op-
timal allocations, which can guide the design and regulation of real-world environments. By nar-
rowing the design space to these efficient outcomes, market design is better equipped to steer
exchanges toward desirable allocations [123].
However, while convergence in stylised settings offers analytical value, it is not sufficient for real-
world deployment. Many realistic aspects of exchange markets remain overlooked in traditional
economic models, limiting their applicability to exchange markets— this includes π and ϕ. Models
of distributed exchange must therefore be tailored to specific system objectives, while still retain-
ing some level of abstraction for generalizability. Convergence in simplified settings may provide
a baseline, but it does not guarantee optimality in practice.

The proposed central programs illustrate this limitation by failing to account for the dynamic and
distributed nature of our exchange market model. The programs require global information of
the market, which is rarely available in decentralised exchange markets. Assuming agents in a
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distributed network to have global information, such as the topology, has lead to inefficiencies in
P2P networks [124]. As a result, these approaches face significant privacy challenges, making
them impractical for large or sensitive platforms where confidentiality is a concern. Thus, although
exchange market model aligns with realistic expectations by restricting agents to local neighbour-
hood knowledge, the proposed central programs lack in this aspect.

Although the discussed distributed allocation strategies π and ϕ clearly model distributed ex-
change, they still have limitations regarding their direct applicability as a trading protocol: π and
ϕ do not address any complexities outside pure strategies in idealised market settings. Relying
solely on these models may result in stylised behaviours that do not reflect real platform dynamics.
For an illustration we refer to the case of PropShare: a theoretically optimal, proportional trading
protocol for BitTorrent [25], similar to ϕ. This protocol assumed a single, pure principle of trading
for all its agents — just like ϕ and π do. However, the protocol exhibited reduced performance due
to the unexpected preference of users to sporadically deviate from proportional trading by explor-
ing new allocations [27]. A market model incorporating more diverse trading preferences would
likely have revealed equilibrium deviations, highlighting the link between strategy homogeneity
and convergence.
Beyond accounting for the strategic diversity of agents, we must also consider the bounded cog-
nitive capacities of agents, as case of PropShare also exemplified that agents were not able to
reliably to compute proportional shares of their neighbours contributions [27].
It is thus clear that the theoretical optimality of strategies like π and ϕ carrying over to real-world
applications is unlikely. This illustrates the need for protocols to accommodate strategic flexibility
and bounded rationality.

5.2. Refining the Models
To better capture the dynamics of agentic exchange markets, several theoretical extensions are
proposed. Local feedback mechanisms can substitute global information, drawing on neighbour
interactions and historical behaviour rather than objective truths. Introducing asynchronous or
stochastic variants of π and ϕ reflects decentralised varied decision-making.
However, incorporating additional complexities into market models inevitably increases their in-
tricacy. As such, we require a balance between flexible strategies and the computational capa-
bilities of agents. Incorporating bounded rationality addresses this challenge, while still allowing
allocations to be guided by multiple simple principles (e.g., reciprocity combined with utility max-
imisation), supporting greater behavioural diversity. The simplicity of such extensions align with
Boland [116]’s emphasis on preserving freedom of choice in economic modelling.
It is important to note that, as agent-based markets grow in complexity, explainable mechanism
design remains essential [37]. In this context, ϕ and π continue to provide a valuable founda-
tion for protocol design, particularly due to their interpretability and grounding in intuitive trading
principles, and do not need to be entirely discarded, but rather adapted.

In conclusion, the distributed strategies π and ϕ examined do not constitute a one-size-fits-all trad-
ing mechanism for online P2P platforms. Rather, they provide a solid foundation for modelling
distributed trades within exchange markets. Their optimality facilitates the evaluation of how real-
world factors affect the market’s capacity to reach equilibrium. By developing models that more ac-
curately emulate real-world market phenomena, we can better understand the qualitative effects
of various system features. Addressing these identified gaps is essential for developing mecha-
nisms that are both theoretically sound and practically robust in real-world sharing economies.
Crucially, this analysis highlights that technical solutions alone are insufficient to capture the socio-
technical complexities at play in algorithmic economics. In line with Sutherland and Jarrahi [44],
future models must increasingly account for behavioural constraints and social dynamics if they
are to inform effective and equitable market design.
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6
Proposed Model

This chapter addresses the second gap stated in Section 1.2, concerning the lack of a realistic,
distributed trading model for the exchange market. To this end, we propose a model grounded
in our earlier analysis of π and ϕ in Chapter 4. We introduce a mixed trading strategy, set in an
asynchronous market model for agents with limited memory. This corresponds to the key limita-
tions highlighted in Section 2.3, embodying a more realistic and adaptable approach to modelling
trades in a decentralised exchange market.

6.1. Mixed Strategy
Mixed strategies can be interpreted in two distinct ways. The first interpretation considers a pop-
ulation composed of agents adhering to pure strategies, as is assumed by Le and Ramazi [100]:
for instance, a population in which 40% of agents behave in a purely greedy manner, while the re-
maining 60% act according to a purely proportional strategy. The second interpretation assumes
that each agent individually adopts a mixture of strategies: for example, agent i is 20% greedy and
80% proportional, while agent j might follow a 40% greedy and 60% proportional mix. Although
both perspectives yield a population-level mix of strategies, the former lacks behavioural richness:
Each agent is still confined to a single pure strategy. In contrast, the second interpretation allows
for agents whose decision-making reflects multiple underlying principles, such as greedy utility
maximisation and proportional reciprocity. This richer behavioural model captures agents who
deal with potentially conflicting objectives or uncertainty in their preferences. In this thesis, we
thus adopt the second interpretation.

The proposed mixed strategy ψ consists of the greedy strategy π and the proportional strategy
ϕ. Each agent i has a preference for the use of these strategies, as indicated by a weight wi.
A weight of 1 means that an agent is completely greedy and thus follows π, while a weight of 0
means that the agent will follow ϕ. This structure allows the population of trading agents to exhibit
mixed behaviour: A population with identical w values is referred to as a homogeneous (hom.)
population, while one with varying w values is referred to as a heterogeneous (het.) population.
The allocation in each timeslot is:

xψi (t) = wi · xπi (t) + (1− wi) · xϕi (t) (6.1)

where xϕi are the resources i allocates according to ϕ, and xπi are the resources i allocates accord-
ing to π. For example, if agent i with wi = 0.3 has greedy allocation vector xπi (t) = [2, 3, 1] and
proportional allocation vector xπi (t) = [4, 2, 0]. Then, at timeslot t, agent i allocates the following
resources to its neighbours xψi (t) = [0.3 ·2+0.7 ·4, 0.3 ·3+0.7 ·2, 0.3 ·1+0.7 ·0]⊤ = [0.4, 2.3, 0.3]⊤.

Greedy strategy π assumes that agent i receives back a certain amount of value from agent j as
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a result of allocation xij(t). In this mixed setting, however, j’s expected behaviour has changed.
Thus, we might consider that agent i’s expectation of returned resources is no longer accurate.
However, in Appendix A.6, we show through simple arithmetic that agent j’s mixed strategy does
not require a change in agent i’s expectation of returned resources.

Given the assumed convergence of π and ϕ (as reasoned about in Section 4.3), combined strat-
egy ψ converges as well, as stated in Theorem 6.1.1.

Theorem 6.1.1 (Weighted Convergence). If ϕ and π converge to equilibrium of a market (in
the ergodic sense) then the linearly weighted combination of π and ϕ, such as strategy ψ, also
converges to equilibrium, provided that strategy weights w are the same across all agents.

Theorem 6.1.1 is proven in Appendix A.7. This result allows us to distinguish between two sources
of ’mixedness’: heterogeneity in the population (i.e., agents having different values of w) and
mixing at the strategy level (i.e., all agents having homogeneous weight w). Given a linearly
mixed rule for which convergence holds in the homogeneous case, any sub-optimal behaviour
observed can more confidently be attributed to population heterogeneity.

6.2. Limited Cognition
Bounded rationality refers to the limitations that individuals face in accessing or fully processing
all relevant information [125]. Bounded rationality can be modelled by incorporating knowledge
limitations and fading-horizonmemory (e.g., [82]). Memory effects, which are commonly observed
in markets, can improve alignment between models and empirical observations. More specifically,
decaying memory provides a simple mechanism for incorporating recency bias — where recent
events are more influential than past events — into the market model [126, 127].

To extend the model to these limitations, we implement extensions where (1) agents are not aware
of their exact long-term endowments εi and must approximate these by recent observations, and
(2) the memory of the agents fades away, introducing inaccuracies when agents approximate
variables using time-averaged estimates.

Firstly, removing the requirement that each agent knows their own average resource generation
εi can be done by replacing εi with the time-averaged distributed resources Di(t):

Di(t) =

∑t
τ=1Di(τ)

t

Which gives us

ρi(t) =

∑
j∈Ni

vj · xji(t)
vi ·Di(t)

=

∑
j∈Ni

vj · xji(t)∑
j∈Ni

vi · xij(t)

Additionally, agents experience memory decay. This decay is typically exponential (e.g., [128,
126, 129]). At timeslot t, an array of size t is generated where the entry at each index τ is e(τ−t)·γ
(Γ(t) = [e−t·γ , ..., e−2·γ , e−1·γ , e0·γ ]). These weights are then applied to some variable, thereby
changing the way an agent computes the time-averaged variable. We denote a γ-discounted
variable with a subscript ·γ . For example, for xji we have:

Regular computation

xji(t) =

∑t
τ=1 xji(τ)

t

γ-discounted computation

xjiγ(t) =

∑t
τ=1 xji(τ) · e(τ−t)·γ∑t

τ=1 e
(τ−t)·γ

As such, the most recent memories have the most influence on the current actions, depending
on the factor γ. The lower γ is, the more uniformly the memories are weighted. An agent with
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γ = 0 thus has a perfect memory. A visualisation of the weights in Γ memory decay is presented
in Figure 6.1.

Figure 6.1: Memory weights (τ−t)·γ , decaying exponentially

This gives us the following adaptation of the sharing ratio formula:

ρ′i,γ(t) =

∑
j∈Ni

vj · xjiγ(t)∑
j∈Ni

vi · xijγ(t)

6.3. Asynchronous Dynamics
Following Kolumbus et al. [67], we implement asynchronous update dynamics, where a selected
subset of agents update their allocations each timeslot, while the allocations of the remaining
agents remain unchanged. This approach reflects markets in which agents may respond less
quickly to market changes.
Kolumbus et al. also highlight the open problem of convergence in asynchronous dynamics driven
by fully asynchronous information. Similarly, Li et al. [130] emphasise the importance of explor-
ing asynchronous dynamics under partial information. This makes the interaction between asyn-
chronous dynamics and limited information a particularly compelling area for further investigation.

To select which batch of agents is allowed to update their allocations, an adversary chooses the
agents that it expects would be the worst-case choice. In Kolumbus et al. [67], the adversary
computes this through a potential function that relates closely to the agents’ allocation strategy.
The authors found that asynchronous PRD converges, regardless of which agents the adversarial
chooses, by determining that the potential function increases regardless of batch choice. This
potential function is based on the relationship between Shmyrev’s program and PRD.
Since no program with similar relationship to the mixed update rule 6.1 has been identified so
far, defining a corresponding potential function is less straightforward. Instead a heuristic is used
to select agents; for each agent i, a score of potential improvement is computed. This potential
∆i is measured how close agent i might bring the market to equilibrium: We use Program P4 to
compute a market score based on the market’s current state X, then we compute in the same
way the market score if only the agent i is allowed to update its allocation xi. ∆i is the difference
between these two scores, meaning that the higher∆i, the closer agent i’s allocation has brought
the market to the equilibrium. A number of agents with the lowest ∆i are selected, which are
the agents that would improve the market the least. The algorithm is detailed below, where P(·)
denotes Program P4.
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Algorithm 2: Batch selection process
1 current market score := P(X);
2 foreach i ∈ N do
3 potential market scorei := P(X−i, xi);
4 ∆i := current market score− potential market scorei;
5 end
6 selected agent := argmini∈N ∆i

7 batch := selected agents + required agents;
8 return batch;

This strategy ignores the interaction effects of agents’ allocations. However, this is a tractable
heuristic, and computing all possible combinations for any batch of size has some tractability
concerns. The alternative, namely finding an exact potential function that matches the mixed
strategy ψ, is out of scope for this thesis.

6.4. Complete Model
Given mixed strategy ψ for computing the new allocations, the asynchronous mechanism, and a
model for memory decay, we propose the following model:

Algorithm 3: Asynchronous market model with mixed strategy ψ and memory decaying
agents.

1 for t = 1, 2, . . . do
2 foreach agent i ∈ N do
3 Update the sharing ratio ρ′i,γ ;
4 end
5 Select a batch B of agents with sub-process 2 ;
6 foreach agent i ∈ B do
7 Update xψi ;
8 end
9 foreach agent i ∈ N do
10 Allocate xψi ;
11 end
12 end

6.4.1. Complexity
In each timeslot, the agent updates their sharing ratios (lines 2-4), which takes O(n) time. Next,
batch selection is performed (line 5), following Algorithm 2. This step requires computing the
planned allocations for each agent to inform decision-making. First, the current market state is
computed via matrix operations, which takes constant time. Then, for each agent i, planned
allocations are computed by iterating over their neighbours, taking O(|Ni|) time. In the worst-
case scenario (i.e., a complete network) we have |Ni| = n− 1, yielding O(n) time per agent and
thus O(n2) in total. Scoring each planned allocation is a constant-time operation. Sorting the
agents by score takes O(n log n) time, and the subsequent selection and batch creation are again
constant time. Therefore, the entire batch selection sub-process takes O(n2) time. Following
this, each agent in the batch B updates its allocation to the newly updated allocation (lines 6-8).
This takes O(n) time in total, with the assumption that the worst-case batch includes all agents
in N . Finally, during resource allocation (lines 9-11), each agent loops over their neighbours to
distribute resources accordingly. This step also takes O(n2) time in the worst case. In total, each
of the T iterations of Algorithm 3 has a time complexity of O(n2).

From the agents’ perspective, the batch selection process is handled externally. Consequently,
their role is limited to computing the sharing ratio and determining subsequent allocations, which
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reduces their computational burden. This lower complexity supports the interpretation of agents
as potentially bounded in terms of computational capacity.

6.4.2. Vulnerability
In the proposed model, agents rely on the information provided by their neighbours (e.g., ρj) to
compute the new resource allocations. However, making such information public is not always
feasible or realistic. In fact, the types of exchange markets described in this thesis often operate
under the assumption of private information [131, 132].
Another piece of information missing for the agents in the exchange market is the network topol-
ogy: The distributed character of the market means that no agent is aware of the entire structure of
the market. This lack of information leaves the proposed model vulnerable to two manipulations:
misreporting ρ and the Sybil attack.

Although the concept of misreporting ρ is straightforward— agent i reports to its neighbours that it
has a sharing ratio of ρ′i instead of ρi—aSybil attack is somewhatmore complicated: Agent i splits
into m virtual identities im in order to elicit more resources from its neighbours [133]. The utility
that agent i obtains is that of all its new virtual identities added. Agent i divides its endowment εi
over those identities such that

∑
m ε

m
i = εi. Agent i’s original neighbours in Ni see only the Sybil

identity im and their sharing ratio ρmi , instead of agent i itself. Figure 6.2 illustrates an instance of
such a Sybil attack. In this manner, agent i hopes to manipulate its neighbours and receive more
resources from them.

Figure 6.2: Example of a Sybil attack. (a) An initial allocation instance with the utilities of each agent denoted below. (b)
An allocation in which agent c employs a Sybil attack and splits itself between two new identities c1 and c2, thereby

increasing its received utility from 4 to 5.

Both manipulations pose a common threats to exchange markets, largely because they are rel-
atively easy to execute compared to, for example, collusion among multiple agents [134, 108].
They are often considered realistic risks precisely because the distributed nature of exchange
markets prevents any single agent from accessing complete global information [135, 136].



7
Experiments

This chapter addresses Research Question 2 through seven numerical experiments on the pro-
posed market model of Chapter 6. The first set of (5) experiments explores how mixed strategies,
asynchronous dynamics, and memory decay — individually and in combination — affect conver-
gence properties of the market. We isolate the impact of each aspect and observe their interaction
effects as we build toward the full market model 3.

The second set of (2) experiments investigates the model’s vulnerability to manipulation, focusing
on the allocation rule 6.1 to isolate the effects of non-truthful behaviour from those of asynchrony
and memory decay. We examine two key threats: Sybil attacks and misreporting of the sharing
ratio. We evaluate whether such manipulation disrupts convergence and to what extent its in-
centive can be numerically bounded. These experiments deepen our understanding of strategic
behaviour and support our broader aim of assessing the performance of trading strategies through
realistic market models.

7.1. Experimental Setup
7.1.1. Metrics
Market-level Loss
The market-level loss is defined as the Euclidian distance between the current market state and
the equilibrium solution. We express the current market state at timeslot t in the vector of time-
averaged received utilities of all agents U(t), as discussed to in Section 4.4. The loss of the
market at timeslot t is thus defined as:

leq(t) =

√√√√ n∑
i=1

(
Ui(t)−U∗i

)2
Similar loss functions have been used in previous works (e.g., [81, 77, 69]). To compare two
instances of a loss measure, it is important to realise that market instances are randomly gener-
ated within some parameter ranges, meaning that the optimal utility vectorU∗ might be a different
length per instance. As such, we normalise the loss: leqnorm = leq/|U∗|.

Agent-level Sharing Ratios
In addition to the market-level loss, we take on another metric: the sharing ratios ρ, which can
be used to analyse convergence on the agent-level. Although the loss clearly approaches 0
when converging to equilibrium, there is no similar general value for sharing ratios at equilibrium.
Depending on the exact market structure, sharing ratios can have different values at equilibrium.

38



7.1. Experimental Setup 39

For a complete network, it can be derived from the KKT conditions of Program P4 that ∀i ∈ N :
ρ∗i = 1, provided that ∀i ∈ N : vi · εi ≤

∑
j∈N vj · εj . However, we do not obtain a similar general

result for other types of networks.

We refer to plots in which we track each agents sharing ratio as agent-level plots. Each agent-level
plot is representative of only a singular network-instance. Shown instances are representative of
broader trends1. To avoid clutter, we omit the legend in agent-level plots when no statements are
made about specific agents.

Incentive Ratio
To measure the effects of manipulative strategies, we measure the IR. We rewrite equation 2.1
to suit the exchange market under consideration. Given unique equilibrium utilities U∗, we know
that ui(ri) is the same for all X∗. Provided that equilibrium allocations are computed by Program
P4, and thus independent of the agent strategies (s), we write:

ζMi = max
s,s′i

ui(ri,(s−i,s′i)
)

U∗i
(7.1)

We collect two IR-based metrics: the maximum observed IR across all network instances, which
serves as an estimate of ζM , and the average IR across all runs to gauge the expected advantage
gained through manipulation. Given the equilibrium sharing ratios ρ∗ = 1 for complete networks,
we can reason about the IR: We know that ∀i ∈ N : ρ∗i = 1 → U∗i = vi · εi. Given that an agent
can at most receive all the resources from its neighbours, we can state that in a complete network
we have the bound ζMi ≤

∑
j∈N vj · εj/vi · εi.

7.1.2. General Parameters
Each experiment iterates over 400 timeslots (T = 400), however, some results may show only the
first 100 iterations to highlight initial market behaviour.

For each experiment, networks of size n are generated randomly. To account for randomness in
the generation process, we generate 30 networks: a rule of thumb for approximating the normal
distribution with a limited sample size [137, 138]. To estimate the IR, we increase the number
of repetitions to 100: Since we are interested in capturing an extreme value, a high number of
repetitions likely improves our chances of coming across the instance that obtains this extreme
IR.
Induced by these repetitions is a 95% confidence intervals that illustrates variability of the mea-
sured metrics. Since the sharing ratios are specific to a single network instance, instead of an
average of multiple instances, no confidence intervals are shown for agent-level graphs.

The choice of underlying network is far from trivial [139]. As such, to capture the diversity of prac-
tical instances of exchange markets, we consider different network structures: complete, random,
grid, scale-free, or small-world. These network structures reflect patterns observed in real-world
exchange markets. For instance, small-world networks with high clustering coefficients are com-
mon in internet infrastructure [90], while grid structures resemble energy micro-grids [140]. These
are visualised in Figure 7.1 and have the following parameters:

1The full set of plots is available at https://github.com/RixtHellinga/Thesis-Results.git

https://github.com/RixtHellinga/Thesis-Results.git
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Figure 7.1: The different types of network topologies used in the experiments, visualised in random instances.

Method Parameter Values
complete - - - -
random network Erdős–Rényi [141] probability of edge creation q 0.2

grid network - dimensions m× l n
4 × 4

scale-free
network

Barabasi-Albert [142]
number of edges to attach from
a new agent to an existing one

m 1

small-world
network

Watts-Strogatz [143]
mean degree k n/2

probability to rewire an edge q 0.05

clustering coefficient [144] - > 1

Table 7.1: Parameter settings for the networks.

A constraint placed on all the networks is that they must be connected, meaning there are no
independent sub-networks, and there are no singular loops so agents may not trade with them-
selves: i ̸∈ Ni. This is because the solution to an allocation problem on a disconnected network
is simply the combination of the solutions for each separate component. As such, analysing a dis-
connected network does not offer any further insight beyond what can be gained from examining
its parts individually.

The endowments ε and values v are distributed uniformly over the range of 1 through 5, where
the distributable amount of resources each timeslot is sampled with Di ∼ N(εi, σ) and σ = 0.1.
Considering that the uniform ranges can be scaled without loss of generality, general conclusions
can be drawn even from such a restricted range. These parameters are summarised in Table 7.2.

Parameter Values
iterations T 400

endowments ε {ε ∈ Z|1 ≤ ε ≤ 5}
endowment stochasticity σ 0.1

resource values v {v ∈ Z|1 ≤ v ≤ 5}

Table 7.2: General parameter settings.



7.1. Experimental Setup 41

7.1.3. Experiment-Specific Parameters
While the general parameters remain the same for all experiments, we vary over other param-
eters. Specifically, we vary over the heterogeneity of strategies, asynchronous dynamics, level
of memory decay, and the presence of a manipulating agent. The parameters are defined as
follows:

• Strategy Heterogeneity: For parameter w in strategy ψ, multiple settings are used. Pure
(non-mixed) strategies π and ϕ fix w = 1 and w = 0, respectively. For heterogeneous
mixed settings (ψ het.), w is sampled uniformly: w ∼ Uniform(0, 1). Homogeneous mixed
settings (ψ hom.) assign the same non-integer w to all agents.

• Asynchronous dynamics: We use three settings: synchronous, asynchronous, and se-
quential. In the synchronous setting all agents update each timeslot. In the asynchronous
setting only a batch selected though process 2 updates each timeslot. In the sequential
setting only one agent updates each timeslot.
The liveliness constraint is set equal to population size n, ensuring feasibility even if in the
worst-case where only one agent updates each timeslot.

• Memory decay: The default γ = 0 denotes perfect memory. Values γ = {0.05, 0.1} model
decayed memory. These values are loosely based onMiller’s law 2, which states that people
can roughly remember the last 7 events. With these values for γ, we guarantee that in the
worst case (γ = 0.1), the half-life of memory is always at least 7.

• Manipulation - Misreporting ρ: The manipulation strategy where agents misreport ρ is
repeated for increasing values of multiplication factor αi, where αi · ρi = ρ′i. For the exper-
iments on misreporting ρ we plot the IR against the values of α, and observe if the IR con-
verges as α→ 0. We vary of parameter α from 0 to 1 in steps of 0.1: α ∈ {0, 0.1, 0.2, ..., 1}.

• Manipulation - Sybil attack: The Sybil attack can vary along two dimensions:

– The first aspect is parameter m: the number of Sybil identities that manipulative agent
i creates. It has been shown that the specific case of creating d Sybil identities, where
d is the degree of agent i, does not diminish the generality of the obtained IR through
the Sybil attack [107]. As such, we employ this setting to represent the Sybil attack,
where thus each Sybil identity im is connected to only one neighbour j.

– The second aspect is the distribution of the endowment εi into εmi . There seems to be
no specific guideline or heuristic to make this division. To tackle this information gap,
we employ three different endowment-distribution settings:

* Proportional distribution assigns endowment to Sybil identity im proportionally
to the value of its neighbour j’s endowment: Nim = {j} ⇒ εmi = εi · (vj ·
εj)/(

∑
k∈Ni

vk · εk).

* Even distribution simply divides agent i’s endowment equally over all its Sybil iden-
tities.

* Random distribution divides the endowment randomly over all the Sybil identities.

Naturally, for each of the three division types we have
∑
m ε

m
i = εi.

For each experiment, we denote separately which exact configuration is tested and with which
purpose.

7.1.4. Supporting Software
For these experiments, most of the implementation was carried out in Python. To generate the
networks the package networkx was used. To optimise Program P4, the Python convex optimisa-
tion package cvxpy3 was used, as the Program’s convex structure aligns well with the Disciplined

2https://en.wikipedia.org/wiki/The_Magical_Number_Seven%2C_Plus_or_Minus_Two
3https://www.cvxpy.org/

https://en.wikipedia.org/wiki/The_Magical_Number_Seven%2C_Plus_or_Minus_Two
https://www.cvxpy.org/
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Convex Programming (DCP) framework that cvxpy follows. Alongside this, the MOSEK solver4
was employed with the interior-point method. Although the MOSEK solver also allows the use
of the simplex method for some problems, which can leverage a warm start, the simplex method
may incur exponential runtime in the worst case.

7.2. Experiment 1: Pure Strategies
Focus and Configuration
The first experiment does not relate closely to the model from Chapter 6, rather it is meant to
support the claims made in Chapter 4 concerning the convergence of π and ϕ. This experiment
examines the convergence behaviour of both ϕ and π in different network types, where the agents
operate synchronously, and have their full memory. Since the effect of different network topologies
on a greedy strategy similar to π has already been studied [145], we focus instead on comparing ϕ
and π within a given network structure, rather than analysing their convergence separately across
topologies. The exact configuration of w, the update timing, and γ are shown in Table 7.3.

Network types n Reps.
{Complete, Random,
Grid, Scale-free,
Small-world}

{8, 20} 30

((a)) Network type, population size, and number
of repetitions for Experiment 1.

Allocation
Strategy

w
Update
Timing

γ Manipulation

π 1 Sync. 0 None
ϕ 0 Sync. 0 None

((b)) Configuration of strategy weight, update type, and memory decay, and
manipulation parameters for each line in Experiment 1.

Table 7.3: Configuration of Experiment 1.
.

Results
Figure 7.2 presents the convergence on market-level given strategies π (labelled Π) and ϕ (la-
belled Φ). These graphs suggests that both strategies approach the equilibrium, as the loss
converges towards 0. In 7.4 the loss for a network of 20 nodes is 0.04376 and 0.00642 after 100
iterations, for π and ϕ, respectively. After 400 iterations the loss is 0.01005 and 0.00161. The
loss thus decreases notably over the number of iterations, presumably converging to 0 in the limit
t→ ∞.

(a) T = 100 (b) T = 400

Figure 7.2: Market-level converge of loss over time for π (Π) and ϕ (Φ) in a complete network of size n = 20 for
T = {100, 400} iterations.

4https://docs.mosek.com/latest/pythonapi/index.html

https://docs.mosek.com/latest/pythonapi/index.html
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π ϕ

n = 8
T = 100 0.01877 0.00811

T = 400 0.00511 0.00203

n = 20
T = 100 0.04376 0.00642

T = 400 0.01005 0.00161

Table 7.4: Loss values for π and ϕ in a complete network of size n = {8, 20} after T = {100, 400} iterations.

Figure 7.2(a) depicts the loss over T = 100 and indicates that ϕ converges towards 0 faster and in
a smoother manner than π, showing fewer irregularities. This difference in smoothness is visible
as well on the agent-level: The results in Figure 7.3 visualise the sharing ratio ρ for the agents in
an instance of a complete network of size 8, where the sharing ratios converge in a jagged manner
for π and in a smooth manner for ϕ. In both instances, the sharing ratios seemingly converge to
a value of 1, indicating a convergence to equilibrium in case of a complete network, as explained
in 7.1.1.

(a) π
(b) ϕ

Figure 7.3: Agent-level convergence of sharing ratios ρ for π and ϕ in a complete network of size n = 8 at T = 100
iterations. Each agent’s sharing ratio is shown as a separate line.

Figure 7.4 shows the convergence of ϕ (labelled Φ) and π (labelled Π) for a population size of
n = 20 in different network types. In all settings, both ϕ and π approach a loss of 0, suggesting
convergence to the equilibrium. This difference in smoothness of convergence and convergence
rate diminishes in sparser networks. Especially the results in the scale-free network show that ϕ
and π barely differ in terms of convergence speed and irregularities. The results in Appendix B.1
confirm this.5

5To avoid redundancy, the graphs of Experiment 1 have been merged with the graphs of Experiment 2 in Appendix B.1.
For each of the network types we show plots containing all settings of w, which conveys the results relating to both the
Experiment 1 as well as the Experiment 2.
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(a) Complete network (b) Random network

(c) Grid network (d) Scale-free network

(e) Small-world network

Figure 7.4: Market-level convergence of loss over time for π (Π) and ϕ (Φ) in various network topologies of size n = 20
for T = 400 iterations.

Complete Random Grid Scale-free Small-world

π
T = 100 0.04161 0.01098 0.01069 0.00332 0.01725

T = 400 0.00991 0.00282 0.00268 0.00088 0.00456

ϕ
T = 100 0.00630 0.02861 0.02716 0.00667 0.01581

T = 400 0.00158 0.00780 0.00725 0.00180 0.00396

Table 7.5: Loss values for π and ϕ in various network topologies of size n = 20 after T = {100, 400} iterations.

7.3. Experiment 2: Mixed Strategies
Focus and Configuration
The second experiment focuses on the effects of mixed trading strategies, both homogeneous
and heterogeneous, where agents have a greedy, proportional, or mixed strategy, determined by
weight w. The purpose of this experiment is to investigate how heterogeneity in agent strategies
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influences both the convergence process and the quality of the resulting market state, specifically
how closely the market converges to the equilibrium.

Network types n Reps.
{Complete, Random,
Grid, Scale-free,
Small-world}

{8, 20} 30

((a)) Network type, population size, and number
of repetitions for Experiment 2.

Allocation
Strategy

w
Update
Timing

γ Manipulation

π 1 Sync. 0 None
ϕ 0 Sync. 0 None
ψ (hom.) 0.3 Sync. 0 None

ψ (hom.) 0.7 Sync. 0 None

ψ (het.) [0, 1] Sync. 0 None

((b)) Configuration of strategy weight, update type, and memory decay, and
manipulation parameters for each line in Experiment 2.

Table 7.6: Configuration of Experiment 2.

Results
Figure 7.5 depicts how the market converges to equilibrium in the complete network setting, under
different settings of w. Homogeneously mixed populations have values w = 0.3 and w = 0.7
(labelled ψ hom. w=0.3 and ψ hom. w=0.7, respectively), and the agents in heterogeneously
mixed populations may have any w ∈ [0, 1] (labelled ψ het.).
Homogeneous mixed strategies converge at speeds between ϕ and π, with w = 0.3 behaving
more like ϕ, and w = 0.7 resembling π — as expected from the allocation rule’s linear structure.

(a) n = 20, T = 100 (b) n = 20, T = 400

Figure 7.5: Market-level convergence of loss over time for greedy strategy π (Π), proportional strategy ϕ (Φ), two
homogeneous mixed strategies (ψ hom. w=0.3 and ψ hom. w=0.7), and a heterogeneous mixed strategy (ψ het.) in a

complete network of size n = 20 for T = {100, 400} iterations.

π ϕ
ψ hom.
w = 0.3

ψ hom.
w = 0.7

ψ het.

T = 100 0.04484 0.00618 0.01307 0.03189 0.03327

T = 400 0.01040 0.00155 0.00308 0.00732 0.00872

Table 7.7: Loss values for π, ϕ, ψ with w = 0.3 (hom.), ψ with w = 0.7 (hom.), and ψ (het.) in a complete network of
size n = 20 after T = {100, 400} iterations.

Although the homogeneously mixed strategies seem to converge to equilibrium across all network
types, just as ϕ and π, as can be seen in Appendix B.1, this is not necessarily the case for the
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heterogeneously mixed strategy. Figure 7.5 shows that, in the complete network, the heteroge-
neously mixed strategy behaves similarly to the homogeneous variants. However, the results for
the heterogeneously mixed strategy in the random network and grid network, as shown in Figures
7.6 and 7.7, show how the market converges to a higher loss, indicating a larger distance to the
equilibrium; the heterogeneous mixed strategy ψ seemingly converges just as quickly in initial
iterations, but stagnates earlier on in the process. This results in a converged market state further
removed from the equilibrium, largely noticeable in the random and grid network. Visually, this
might be difficult to notice in the provided graphs, however the respective scores in Tables 7.8 and
7.9 more clearly demonstrate this effect: Between T = 100 and T = 400 ψ (het.) has improved
less than the others, with a mere 8, 8% improvement, compared to the average improvement of
74, 5% of all other settings in the grid network. The same effect, although less extreme, can be
seen for the scale-free and small-world networks in Appendix B.1.

(a) n = 20, T = 100 (b) n = 20, T = 400

Figure 7.6: Market-level convergence of loss over time for greedy strategy π (Π), proportional strategy ϕ (Φ), two
homogeneous mixed strategies (ψ hom. w=0.3 and ψ hom. w=0.7), and a heterogeneous mixed strategy (ψ het.) in a

random network of size n = 20 for T = {100, 400} iterations.

π ϕ
ψ hom.
w = 0.3

ψ hom.
w = 0.7

ψ het.

T = 100 0.01260 0.03219 0.00749 0.00920 0.03188

T = 400 0.00322 0.00918 0.00185 0.00238 0.02554

Table 7.8: Loss values for π, ϕ, and ψ in a random network of size n = 20 after T = {100, 400} iterations.

(a) n = 20, T = 100 (b) n = 20, T = 400

Figure 7.7: Market-level convergence of loss over time for greedy strategy π (Π), proportional strategy ϕ (Φ), two
homogeneous mixed strategies (ψ hom. w=0.3 and ψ hom. w=0.7), and a heterogeneous mixed strategy (ψ het.) in a

grid network of size n = 20 for T = {100, 400} iterations.
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π ϕ
ψ hom.
w = 0.3

ψ hom.
w = 0.7

ψ het.

T = 100 0.01094 0.02697 0.00626 0.00819 0.03951

T = 400 0.00267 0.00732 0.00153 0.00213 0.03603

Table 7.9: Loss values for π, ϕ, and ψ in a grid network of size n = 20 after T = {100, 400} iterations.

7.4. Experiment 3: Asynchronous Dynamics
Focus and Configuration
The third experiment centres around the asynchronous dynamics, modelling more realistically
distributed systems where agents act at different speeds. This experiment explores how asyn-
chronous dynamics impact market behaviour, including whether convergence occurs, the emer-
gence inequalities, the sensitivity to update patterns, and how convergence speed and efficiency
compare to the synchronous case. The exact configuration of w, the update timing, and γ are
shown in Table 7.10.

Network
types

n Reps.

Complete {8, 20} 30

((a)) Network type, population size, and number
of repetitions for Experiment 3.

Allocation
Strategy

w
Update
Timing

γ Manipulation

π 1 Sync. 0 None
π 1 Async. 0 None
π 1 Seq. 0 None
ϕ 0 Sync. 0 None
ϕ 0 Async. 0 None
ϕ 0 Seq. 0 None

((b)) Configuration of strategy weight, update type, and memory decay, and
manipulation parameters for each line in Experiment 3.

Table 7.10: Configuration of Experiment 3.

Results
The market-level convergence graphs in Figure 7.8 depict the synchronous and asynchronous
versions of π and ϕ (labelled Π, Π async, Π seq, Φ, Φ async, and Φ seq) in a complete network
of size n = 20. Seemingly, at 400 iterations, each of the strategies has converged to a loss close
to 0, indicating convergence to equilibrium. Although the asynchronous dynamics do not seem to
strongly affect the quality of the convergedmarket state, they do affect the rate of convergence; the
asynchronous and sequential versions convergemore slowly than their synchronous counterparts.
With π, we also see this slowdown also in terms of a more smoothed out market-level response.
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(a) π, T = 100 (b) ϕ, T = 100

(a) π, T = 400 (b) ϕ, T = 400

Figure 7.8: Market-level convergence of loss over time for π and ϕ under various update types: synchronous (Π & ϕ),
asynchronous (Π async & ϕ async), and sequential (Π seq & ϕ seq) in a complete network of size n = 20 for

T = {100, 400} iterations.

π π π ϕ ϕ ϕ

sync. async. seq. sync. async. seq.
T = 100 0.04383 0.12725 0.14620 0.00628 0.02577 0.07788

T = 400 0.01108 0.02798 0.03519 0.00157 0.00645 0.01947

Table 7.11: Loss values for π and ϕ with various update types in a complete network of size n = 20 after
T = {100, 400} iterations.

On the agent-level, asynchronous dynamics show a similarly interesting effect: the convergence
of sharing ratios slows down, as seen in Figure 7.9. For π, Figure 7.9 (a) and 7.9 (c) show a
smoothing effect, where the typically jagged progression of sharing ratios becomes This suggests
that the agents respond more intensely under asynchronous conditions. Such effects do not arise
for ϕ, where the convergence of sharing ratios is already completely smooth.
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(a) π (b) ϕ

(c) asynchronous π (d) asynchronous ϕ

Figure 7.9: Agent-level convergence of sharing ratios ρ for π and ϕ for synchronous and asynchronous update types in
a complete network of size n = 20 at T = 100 iterations. Each agent’s sharing ratio is shown as a separate line.

7.5. Experiment 4: Memory Decay
Focus and Configuration
In this experiment, agents gradually forget experiences, according to decay parameter γ. This
experiment addresses how limiting agents’ memory of past payoffs affects convergence; whether
different trading strategies are equally robust to memory decay; and if memory decay in only a
few agents can also affect convergence of the entire market.
Memory decay parameter gamma varies across three values, depicting no memory decay (γ = 0),
some memory decay (γ = 0.05), strong memory decay (γ = 0.1). The value for γ is fixed for all
iterations. In some variations, only a subset of the population (10%) will be affected by decay,
while in others the entire population will be affected. The aim is to explore both global and local
effects of memory decay, and to gauge the vulnerability of the market to imperfect information.
The exact configuration of w, the update timing, and γ are shown in Table 7.12.
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Network
types

n Reps.

Complete {8, 20} 30

((a)) Network type, population size, and
number of repetitions for Experiment 4.

Allocation
Strategy

w
Update
Timing

γ Manipulation

π 1 Sync. 0 None
π 1 Sync. 0.05 None
π 1 Sync. 0.1 None
π 1 Sync. 0.1, 10% None
ϕ 0 Sync. 0 None
ϕ 0 Sync. 0.05 None
ϕ 0 Sync. 0.1 None
ϕ 0 Sync. 0.1, 10% None
((b)) Configuration of strategy weight, update type, and memory decay, and

manipulation parameters for each line in Experiment 4.

Table 7.12: Configuration of Experiment 4.

Results
As can be seen in Figure 7.10, memory decay is only influential in the cases where the agents
exhibit (partial) greediness. This is logical, considering that ϕ already does not need any informa-
tion on previous trades, with the exception of the trades in the previous timeslot.
Additionally, the higher parameter γ is, the more extreme the effect of the memory decay is on a
(partially) greedy strategy. A value of γ = 0.1 (labelled Π y=0.1) converges to a loss of 0.20259,
which is further removed from equilibrium than the settings of γ = 0 (labelled Π) and γ = 0.05
(labelled Π y=0.05), which converge to losses of 0.01117 and 0.12156, respectively.

(a) π (b) ϕ

Figure 7.10: Market-level convergence of loss over time for π and ϕ under various memory decay levels: γ = 0 (Π & Φ),
γ = 0.05 (Π y=0.05 & Φ y=0.05), and γ = 0.1 (Π y=0.1 & Φ y=0.1) in a complete network of size n = 20 for T = 400

iterations.

π π π ϕ ϕ ϕ

γ = 0 γ = 0.05 γ = 0.1 γ = 0 γ = 0.05 γ = 0.1

T = 100 0.04084 0.13987 0.21393 0.00628 0.00628 0.00628

T = 400 0.01117 0.12156 0.20259 0.00157 0.00157 0.00157

Table 7.13: Loss values for π and ϕ with various levels of memory decay in a complete network of size n = 20 after
T = {100, 400} iterations.

On the agent-level, in Figure 7.11, a similar effect can be seen. Sharing ratios tend to oscillate
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more extremely when agents have shorter memory, especially in greedier strategies. As a result,
we see that the convergence of a population suffering from memory decay, in Figure 7.11 (b), is
more volatile than the other population, in Figure 7.11 (a), in which agents have perfect memory.
Although the oscillation does seem to decrease over time, the sharing ratios converge to many
values different from 1. As such, we confirm that, in a complete network, the market converges
to a state removed further from the equilibrium due to memory decay.

(a) γ = 0 (b) γ = 0.1

Figure 7.11: Agent-level convergence of sharing ratios ρ for π under perfect memory (γ = 0) and memory decay
(γ = 0.1) in a complete network of size n = 20 at T = 400 iterations. Each agent’s sharing ratio is shown as a separate

line.

The market-level convergence in which 10% of the population experiences memory decay is illus-
trated in Figure 7.12. It is evident that, when only a subset of the population is affected by memory
decay (labelled as Π y=0.1 10%), π converges to a higher loss compared to a greedy population
with perfect memory (labelled as Π).

(a) T = 100 (b) T = 400

Figure 7.12: Market-level convergence of loss over time for π under perfect memory γ = 0 (Π) and memory decay
γ = 0.1 for 10% of the population (Π y=0.1 10%) in a complete network of size n = 20 for T = {100, 400} iterations.

γ = 0 10% γ = 0.1

T = 100 0.04394 0.15538

T = 400 0.01122 0.15212

Table 7.14: Loss values for π under perfect memory γ = 0 and memory decay γ = 0.1 for 10% of the population in a
complete network of size n = 20 after T = {100, 400} iterations.

At the agent-level, the results in Figure 7.13 (b) depict the scenario in which all agents have
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the full memory and the scenario in which 10% of agents experience memory decay. Similar to
the scenario with complete memory decay, partial decay leads to sharing ratios that do not all
converge to the equilibrium sharing ratios. However, in this case, the deviations are primarily
limited to the agents affected by memory decay — specifically, the agents that consistently reach
high sharing ratios: the dashed lines in Figure 7.13 (b).

(a) γ = 0 (b) γ = 0.1 for 10%

Figure 7.13: Agent-level convergence of sharing ratios ρ for π under perfect memory (γ = 0) and memory decay
(γ = 0.1) for 10% of the population in a complete network of size n = 20 at T = 400 iterations. Each agent’s sharing

ratio is shown as a separate line.

7.6. Experiment 5: Complete Model
Focus and Configuration
This experiment evaluates the complete model as described in Algorithm 3, with heterogeneous
strategies, asynchronous dynamics, and memory decay. This experiment explores how asyn-
chronous dynamics, strategy heterogeneity, and bounded memory interact to influence conver-
gence: whether they stabilize, destabilise, or introduce new behaviours, and whether their com-
bination leads to complex market dynamics resembling real-world exchange markets. The exact
configuration of w, the update timing, and γ are shown in Table 7.15.

Network
types

n Reps.

Complete {8, 20} 30

((a)) Network type, population size, and
number of repetitions for Experiment 5.

Allocation
Strategy

w
Update
Timing

γ Manipulation

ψ (het.) [0, 1] Sync. 0 None

ψ (het.) [0, 1] Async. 0 None

ψ (het.) [0, 1] Sync. 0.1 None

ψ (het.) [0, 1] Async. 0.1 None

((b)) Configuration of strategy weight, update type, and memory decay, and
manipulation parameters for each line in Experiment 5.

Table 7.15: Configuration of Experiment 5.

Results
Figure 7.14 shows the effects of each of the previously introduced components on the conver-
gence of the market: heterogeneous mixed strategies, asynchronous dynamics, and memory
decay. We see the heterogeneous mixed strategy (labelled ψ het.), alongside versions with only
asynchronous updates (labelled ψ het. async), only memory decay (labelled ψ het. y=0.1), and
the full Model 3 (labelled ψ het. y=0.1 async), which includes heterogeneous mixed strategies,
asynchronous dynamics, and memory decay. Figure 7.15 puts this full model in direct comparison
with the simple and idealised settings for π (labelled Π) and ϕ (labelled Φ).
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Figure 7.14 clearly shows that each component affects convergence in distinct ways. Asyn-
chronous dynamics mainly slow down the convergence, which aligns with the findings in Section
7.6. Memory decay, on the other hand, affects the final convergence point — causing the loss to
stagnate at a higher value, indicating that the market ends up further from the equilibrium. The
combination of effects in ψ het. y= 0.1 async seems to be additive: The market converges more
slowly due to the asynchronous dynamics and to a higher loss due to the memory decay.

Figure 7.15 reinforces this: While π and ϕ both converge close to equilibrium, the market full
market model clearly stagnates at a much higher loss. The distance to equilibrium seems to be
mostly determined by the memory component, while asynchronous updates merely stretch out
the timeline and heterogeneous strategies account for only a slight deviation from the equilibrium.
Overall, although the full market model 3 still converges in a general sense, it converges to a
suboptimal market state.

Figure 7.14: Market-level convergence of the
heterogeneous mixed strategy (ψ het.), a

heterogeneous mixed strategy with asynchronous
dynamics (ψ het. async), a heterogeneous mixed
strategy with memory decay (ψ het. y=0.1), and
full model 3 (ψ het. y=0.1 async) in a complete
network of size n = 20 for T = 400 iterations.

Figure 7.15: Market-level convergence of π (Π),
ϕ (Φ), and full model 3 (ψ y= 0.1 async) in a
complete network of size n = 20 for T = 400

iterations.

π ϕ
ψ

het.

ψ

het.
y=0.1

ψ

het.
async.

ψ

het. async.
y=0.1

T = 100 0.04411 0.00622 0.03513 0.11741 0.08429 0.17708
T = 400 0.01135 0.00156 0.00928 0.11148 0.01303 0.14337

Table 7.16: Loss values for π, ϕ, and ψ with various combinations of memory decay and asynchronous dynamics in a
complete network of size n = 20 after T = {100, 400} iterations.

On the agent-level, we see the combined effects of asynchronous dynamics and memory decay
playing out more dramatically. The result is a rather volatile and chaotic pattern in how agents
adjust their sharing ratios over time. In Figure 7.16, we can pick out some familiar patterns from
earlier experiments. The asynchronous updates are clearly at work: Agent responses appear
rounded off, yet also somewhat more exaggerated in amplitude. At the same time, we see the
effects of heterogeneity and memory decay, as the sharing ratios seemingly converge towards
suboptimal values. That said, the visual complexity of these agent-level plots makes it difficult
to isolate the effects. The interactions between heterogeneity, asynchrony, and memory decay
result in noisy dynamics that mask the individual contributions of each component.
Because of this, the clearest takeaways about the roles of memory and timing likely come from
the more aggregated market-level results, or from the earlier experiments, which analysed each
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component in isolation. The behaviour the agents under model 3 reinforces what we have already
seen, however in a significantly more chaotic manner.

(a) T = 100 (b) T = 400

Figure 7.16: Agent-level convergence of sharing ratios in full model 3 in a complete network of size n = 20 for
T = {100, 400} iterations. Each agent’s sharing ratio is shown as a separate line.

7.7. Experiment 6: Misreporting Sharing Ratios
Focus and Configuration
This experiment focusses on identifying a bound for the IR in case that an agent misreports its
sharing ratio. We note that agent i misreporting ρi can only be beneficial if its neighbourhood
has agents with the allocation strategy weight w > 0: A purely proportional neighbour does not
consider the sharing ratio of agent i, and can thus not be manipulated in such a way. However, the
influence in mixed populations is not as clear-cut. This experiment can shed light on this issue.

Additionally, we hypothesize that decreasing the reported sharing ratio ρ′i as much as possible is
expected to result in the highest returned utility, and thus the highest incentive ratio: Given the
greedy portion of strategy 6.1, agent j allocates to agent i for which ρi ∈ mink∈Nj

ρk. Reporting
ρ′i = 0 guarantees that agent i is in mink∈Nj ρk and thus always receives resources from agent j.

Network
types

n Reps.

Complete {8, 20} 100

((a)) Network type, population size, and
number of repetitions for Experiment 6.

Allocation
Strategy

w
Update
Timing

γ Manipulation

π 1 Sync. 0 Misreporting ρ
ϕ 0 Sync. 0 Misreporting ρ
ψ (hom.) 0.5 Sync. 0 Misreporting ρ

ψ (het.) [0, 1] Sync. 0 Misreporting ρ

((b)) Configuration of strategy weight, update type, and memory decay, and
manipulation parameters for each line in Experiment 6.

Table 7.17: Configuration of Experiment 6.

Results
Figure 7.17 depicts the average and maximum IR for each of the four settings for w, in a complete
network setting of size n = 8. The IR metrics are plotted over the different values of misreporting
factors α, where we clearly see the IR decrease for higher values of α.
The greedy strategy π in Figure 7.17 (a) achieves a significantly higher IR than the mixed strate-
gies ψ in Figure 7.17 (c) and Figure 7.17 (d), both in terms of maximum and average values.
Proportional strategy ϕ shows an IR of roughly 1, while the homogeneous and heterogeneous
cases yield higher values for IR, similar to one another.
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(a) π (b) ϕ

(c) ψ with w = 0.5 (hom.) (d) ψ (het.)

Figure 7.17: Maximum and mean IR, including 95% confidence interval, of different market settings for w, in a complete
network of size n = 8 for T = 400 iterations.

We also present two instance-specific results in Figure 7.18, which are representative for all ob-
served network instances, in which convergence of sharing ratios for two specific networks are
plotted. In both cases, agent 0 misreports ρ0 with a factor of α0 = 0, for which agent 0 should
obtain the highest utility. This observation, namely that the lowest value for α obtains a the high-
est IR, and disrupts the market the most, becomes apparent in the results of Appendix B.2, which
present the market-level convergence of the loss for different values of α. The legends show the
values of the endowments vi · εi for each agent i ∈ N , and clearly the Figures in Appendix B.2
consistently present the largest value for loss (and thus the highest disturbances to the market)
at α = 0.

We observe that for both instances in Figure 7.18 the sharing ratio of the manipulative agent 0
converges to 7.33 for instance 1 (a) and 3.92 for instance 2 (b), both of which equal

∑
j∈N0

vj ·
εj/(v0 · ε0). As the results show, ρ0 converges to (

∑
j∈N0

vj · εj)/(v0 · ε0). This means that this
kind of manipulation strategy seemingly reaches the hypothesised upper bound.
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Network instance #1 Network instance #2

Figure 7.18: Sharing ratios in two instances of a complete network of size n = 8 for T = 400 iterations, where the
sharing ratio of the misreporting agent 0 clearly supercedes that of truthful agents.

7.8. Experiment 7: Sybil Attack
Focus and Configuration
This experiment focusses on identifying a bound for the IR of a Sybil attack. Each setting will
be repeated for each of the three divisions of endowments (Proportional, Even, and Random), to
increase the chances of finding an IR close to the theoretical upper bound. We hypothesize that,
as network size decreases, the relative influence of a Sybil identity im on some agent j increases,
and thus the IR increases.

Network
types

n Reps.

{Complete} {4, 8} 100

((a)) Network type, population size, and
number of repetitions for Experiment 7.

Allocation
Strategy

w
Update
Timing

γ Manipulation

π 1 Sync. 0 Sybil attack
ϕ 0 Sync. 0 Sybil attack
ψ (hom.) 0.5 Sync. 0 Sybil attack

ψ (het.) [0, 1] Sync. 0 Sybil attack

((b)) Configuration of strategy weight, update type, and memory decay, and
manipulation parameters for each line in Experiment 7.

Table 7.18: Configuration of Experiment 7.

Results
The Figures 7.19 through 7.22 below show the results of the experiments of the Sybil attacks.
The tables show the maximum found IR for that setting over all 100 randomly generated network
instances. The highest out of all three types of endowment divisions for the Sybil attack is marked
in bold. Below each table we see the convergence of sharing ratios in the two instances that are
in bold for that table, i.e. the highest scoring instances for sizes n = 4 and n = 8.

For n = 4, the random Sybil strategy within a greedy population yields the highest IR, at 2.44536.
For n = 8, the even Sybil strategy in a greedy population achieves the maximum IR, at 1.48300.
These observed IR values for the greedy strategy exceed the previously determined IR bound
of

√
2 for Sybil attacks in proportionally trading populations in complete networks. The heteroge-

neous mixed strategy also exceeds this bound of
√
2, and thus, we can state that both mixed and

greedy strategies, demonstrate a lower robustness to Sybil attacks than proportional strategies.
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Proportional Even Random
n = 4 1.59700 2.30283 2.44536

n = 8 1.26645 1.38400 1.38389

Table 7.19: Maximum IR scores of different Sybil strategies in a greedy (π) population, for a complete network of sizes
n = {4, 8} for T = 400 iterations.

(a) n = 4, Sybil attack by agent 1 (b) n = 8, Sybil attack by agent 2

Figure 7.19: Sharing ratios in the two instances with the highest IR for a greedy (π) population in a complete network of
sizes n = {4, 8} for T = 100 iterations.

Proportional Even Random
n = 4 1.15618 1.01011 0.97755

n = 8 1.00858 1.00855 0.98490

Table 7.20: Maximum IR scores of different Sybil strategies in a proportional (ϕ) population for a complete network of
sizes n = {4, 8} after T = 400 iterations.

(a) n = 4, Sybil attack by agent 1 (b) n = 8, Sybil attack by agent 3

Figure 7.20: Sharing ratios in the two instances with the highest IR for a proportional (ϕ) population in a complete
network of sizes n = {4, 8} for T = 100 iterations.
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Proportional Even Random
n = 4 1.22133 1.06328 1.06722

n = 8 1.02692 1.02418 1.02229

Table 7.21: Maximum IR scores of different Sybil strategies in a mixed homogeneous population, for a complete network
of sizes n = {4, 8} after T = 400 iterations.

(a) n = 4, Sybil attack by agent 1 (b) n = 8, Sybil attack by agent 0

Figure 7.21: Sharing ratios in the two instances with the highest IR for a homogeneous mixed population in a complete
network n = {4, 8} after T = 100 iterations.

Proportional Even Random
n = 4 1.47448 1.44915 1.27565

n = 8 1.17683 1.18530 1.09794

Table 7.22: Maximum IR scores of different Sybil strategies in a mixed heterogeneous population, for a complete
network of sizes n = {4, 8} after T = 400 iterations.

(a) n = 4, Sybil attack by agent 0 (b) n = 8, Sybil attack by agent 5

Figure 7.22: Sharing ratios in the two instances with the highest IR for a heterogeneous mixed population in a complete
network of sizes n = {4, 8} for T = 100 iterations.
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Discussion of Numerical Results

8.1. Strategic Diversity
Understanding Observed Behaviour
The results of Experiments 1 and 2 shed light on how differences in agent strategies influence
convergence in market settings. In the idealised setting of Experiment 1, both strategies π and
ϕ converge toward zero loss, suggesting the market approaches equilibrium. While not a formal
proof, these empirical results provide supporting evidence for the equilibrium convergence of both
strategies, as claimed in Chapter 4.
Figure 7.2 shows that ϕ follows a convergence pattern roughly consistent with O(1/t), a rate
previously observed for PRD in AD and Fisher markets [69, 70], suggesting that a similar bound
may hold in exchange markets as well.
Although we lack a formal convergence rate for π, empirical evidence suggests it converges more
slowly than ϕ, with significant implications: While a market is out of equilibrium, some agents
accumulate disproportionately high average utility (∃i ∈ N : Ui(t) > U∗i ), creating an incentive to
exit the market early.

As discussed in Chapter 5, the idealised conditions of Experiment 1 may not generalise to real-
world performance. Experiment 2 introduces mixed strategies, providing a more realistic test of
strategic interaction. In homogeneous populations, convergence to the equilibrium occurs reliably
across all network structures, with behaviour interpolating between that of π and ϕ, as predicted
by Theorem 6.1.1.
In contrast, heterogeneous populations show slightly impaired convergence in some networks. It
is still uncertain whether this reflects convergence to a sub-optimal state or slow convergence
to an optimal state. The value of obtaining an equilibrium convergence becomes evident here:
Due to the difference in convergence of homogeneous and heterogeneous strategies, we can
conclude that it is not mixing per se that causes issues in terms of market optimality, but rather
the presence of strategic diversity across agents.

Given that Theorem 6.1.1 relies on the homogeneity of an agent population, possible degradation
in performance under heterogeneous conditions was anticipated. However, to understand why
heterogeneity impedes convergence, we draw a parallel with federated learning — a field long
known to be sensitive to heterogeneity [146]. Recall Jain’s analogy of the market as a Turing
machine: If the market is understood as a distributed machine ‘learning’ an equilibrium, then
strategic heterogeneity introduces a form of noise or non-alignment similar to that which hinders
optimisation in federated learning systems.

These findings are consistent with earlier work. Le and Ramazi [100] demonstrated that hetero-
geneity in strategy design can prevent markets from reaching equilibrium in competitive games.
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Additionally, Chien and Sinclair [147] raised concerns about the necessity of explicit coordination
mechanisms to ensure convergence in the presence of agent heterogeneity. Together, these find-
ings confirm that the convergence of a market to equilibrium is not an intrinsic property and can
be disturbed by the diversity of the agents in it.

Modelling Implications
In terms of market modelling, these insights suggest that maintaining behavioural uniformity is
more effective for ensuring convergence to equilibrium than fine-tuning individual strategy pa-
rameters. Markets in which agents adopt simple, homogeneous strategies, such as proportional
updates, tend to be more robust and predictable. However, overlooking strategic diversity in
the name of theoretical optimality can lead models to oversimplify market behaviour, resulting in
sub-optimal outcomes and failure to capture real, practical sources of market inefficiencies.

These findings reflect a fundamental trade-off in real-world protocols between allowing strategic
freedom and ensuring fairness and stability. While recognising that not each trading protocol is
possible in each market (e.g., markets involving indivisible goods require allocation strategies
based on integral allocations), we observe that this trade-off can be addressed by incorporating
a range of allocation strategies and consensus mechanisms is essential for accurately analysing
and predicting efficient market dynamics.

Rather than imposing top-down restrictions on agent behaviour, consensus algorithms allow agents
to coordinate through mutual agreement, thereby maintaining convergence to the equilibrium with-
out sacrificing agent autonomy.
Such consensus policies are commonly used in practice to reduce market-level inefficiencies. For
example, P2P electricity markets among prosumers often employ consensus-based coordination
schemes to achieve stable, system-wide outcomes, even in the presence of participant hetero-
geneity and network constraints [148].
These results show that even low agent heterogeneity can slow convergence and reduce fair-
ness, prompting protocol design in diverse markets to reassess whether mechanisms truly reflect
participants’ trading preferences. As shown earlier, a lack of consensus among agents often ne-
cessitates standardisedmeasures like money or tokens. Where such standardisation is infeasible,
evaluating markets solely through theoretical equilibrium metrics might not be entirely suitable, as
our findings suggest these may not be reliably attained in heterogeneous settings.

Overall, we have highlighted a fundamental trade-off in protocol design: Allowing for strategic
freedom may enhance flexibility and agent autonomy, but it can also compromise convergence
and fairness. Effective market mechanisms must explicitly manage this tension by incorporating
both allocation diversity and coordination mechanisms. Without modelling such diversity, there is
risk of overestimating market efficiency.

8.2. Temporal Effects
Understanding Observed Behaviour
In Experiment 3, we examined asynchronous dynamics on strategies π and ϕ. Asynchrony slows
convergence at the market level for both strategies, with smaller batch sizes causing greater
delays (Figure 7.8). At the agent level, updates appear more smooth where sharing ratio changes
become more gradual due to staggered updates.
Proportional strategies such as ϕ avoid this issue, as proportional allocations rely only on current
local states without correcting past imbalances, yielding inherently smooth convergence.

Given the connection between mirror descent and ϕ, it is natural to view sequential ϕ as a form of
coordinate descent. This sheds light on why its sequential and asynchronous variants converge
more slowly compared to the synchronous version: In settings where computing the full gradient
is no more expensive than computing the partial gradient, gradient descent can converge faster
than coordinate descent, in terms of iterations t [149].
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There is an important discrepancy between our findings and how asynchronous algorithms usu-
ally behave. In computer science, asynchronous algorithms are often seen as faster alternatives
to synchronous ones because synchronous algorithms require agents to wait for each other be-
fore proceeding. This waiting makes synchronous updates slower in real time, so asynchronous
updates can speed up the overall process. However, in our model, time is divided into discrete
steps (iterations), and only one agent updates per step in the asynchronous case. This means
that, measured by iterations, asynchronous dynamics do not actually speed up the allocation pro-
cess compared to synchronous dynamics. Instead of multiple agents updating simultaneously (as
in synchronous rounds), asynchronous updates happen one at a time, resulting in slower, incre-
mental progress rather than faster, parallel updates. This demonstrates that even the most basic
abstractions in market modelling, such as reducing time to iterations, can have significant effects.

The slowing effect of asynchronous dynamics aligns with prior research using similar iteration-
based asynchronous models. Earlier studies have consistently found that delays in agent updates
tend to slow convergence in market environments [150, 151]. Our findings reinforce this broader
understanding of how asynchrony impacts market efficiency.
Moreover, our results build upon the work of Kolumbus et al. [67], who demonstrated conver-
gence of asynchronous PRD in Fisher markets. However, their work does not directly compare
asynchronous market behaviour to synchronous baselines. In contrast, we contextualise asyn-
chronous ϕ by demonstrating it converges more slowly than its synchronous equivalent.
Kolumbus et al. also compare asynchronous PRD to an asynchronous best-response strategy,
which converges faster than asynchronous PRD. At first glance, this appears to conflict with our
observation that π performs worse than ϕ under asynchrony. Although this best-response strategy
and π are both forms of greedy algorithms, the key difference is that the best-response strategy
optimises the overall market objective, while π focuses on individual gains. This underlines the
importance of understanding agents’ objectives, and consequently, their strategies: Strategies
aligned with global objectives tend to converge more rapidly to equilibrium than those prioritis-
ing individual incentives. Since individuals often prioritise personal gains over market objectives
(even preferring free-riding above active participation) [152], effective incentives are necessary to
encourage actions beneficial to the market.

Modelling Implications
From a system design perspective, these results highlight a fundamental trade-off: Asynchronous
updates induce stability by rounding off abrupt sharing ratio spikes and distributing market shocks
over time. However, this comes at the cost of slower convergence to equilibrium.
In time-sensitive markets, such as rapid auctions, delayed convergence can lead to inefficiencies.
In such cases, synchrony-promotingmechanismsmay provide a solution. For example, Feng et al.
[153] propose a mechanism that prioritises specific trades, such as those with significant trading
imbalances, which accelerates adjustment towards equilibria. This technique represents a best-
case asynchronous scenario, in contrast to our worst-case adversarial asynchronous dynamics,
explaining the accelerated convergence compared to our observed slowdown.
Conversely, in markets where stability is vital, asynchrony may be a desirable feature. By allowing
the market to adjust incrementally, it naturally buffers against overreactions, mitigating the risk
of destabilising cascades that synchronous updates might trigger. In this way, asynchronous
dynamics act as a built-in stabiliser, trading speed for resilience.

We can thus conclude that protocols designed for real-world environments must be tested un-
der asynchronous conditions, as synchronous assumptions — though simplifying analysis — are
rarely realistic. Experiments show that deviations from synchrony can significantly impact pro-
tocol behaviour. Asynchronous updates, common in real markets, can both stabilise markets
by dampening sharp reactions while also slowing the convergence to equilibrium. Therefore,
market models should explicitly incorporate update timing and frequency to capture this trade-off
between resilience and efficiency, informing design decisions around synchronisation and update
protocols.
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8.3. Unreliable Information Challenges
Understanding Observed Behaviour
In Experiment 4, increasing memory decay parameter γ causes agents to discount past perfor-
mance, leading to oscillations in sharing ratios. These fluctuations reduce market efficiency.
In Experiment 5, combining strategic heterogeneity and asynchronous updates, memory decay
remains the dominant influence. Though the system converges, it settles at suboptimal outcomes
increasingly far from equilibrium.

Greedy strategies like π, which rely on historical averages, are particularly impacted by memory
decay. Even if merely 10% of the population suffers from memory decay, we observe suboptimal
market dynamics. Both the extent and intensity of decay substantially degrade global perfor-
mance. Agents with decayed memory gain disproportionately, demonstrating that misreporting,
or lazily reporting information is a simple yet effective strategy to obtain disproportionate gains.

Figure 7.13 shows that when only few agents are affected by memory decay, it is precisely those
agents that benefit most. This can be explained as follows: After not receiving resources for sev-
eral timeslots, the sharing ratio of a memory-decaying agent i drops sharply. The neighbours of
agent i, using greedy allocation, then favour i, concentrating inflows towards i. Agent i’s sharing
ratio spikes due to the inflow. However, this elevated sharing ratio incurs no greater penalty than
a moderately high one. From the perspective of a greedy neighbour, there is no strategic differ-
ence between i having a somewhat high or very high sharing ratio: both result in zero allocation.
Thus, memory-decaying agents, whose ratios frequently drop to the minimum in their neighbour-
hood, can outperform full-memory agents, whose ratios stay stable and rarely reach the minimum.
This indicates an asymmetry inherent to strategy π: Underreporting the sharing ratio (via memory
decay) is rewarded, while overreporting is barely penalised.

At the market level, the observed higher loss and suboptimal state corroborate previous work by
Temzelides and Yu [154], who argued that lack of public memory introduces frictions requiring
money for coordination. Although our model does not include an explicit monetary device, it
captures coordination through consensus on values. Nonetheless, memory-decaying populations
converge to non-equilibrium states, confirming that a global value measurement alone may be
necessary but not sufficient; market equilibrium convergence also depends on factors like the
trading protocols used.

Although our results might appear at odds with studies such as Cavalli and Naimzada [155], who
find weighted memory stabilises tâtonnement price dynamics, the key difference lies in the nature
of the strategies. Tâtonnement is generally not dependent on memory, and the introduction of a
weighted memory just meant an increase in information. On the other hand π depends heavily
on memory and loses information with decay, causing non-equilibrium behaviour. This raises
questions about whether weights other than exponential affect π differently, as identifying memory
weights that enable a greedy strategy like π to match or outperform tâtonnement in convergence
is challenging due to its reliance on historical data.

Modelling Implications
Agents benefitting more from volatile behaviour than from consistent behaviour creates oppor-
tunities for manipulation and encourages lazy participation where agents underreport received
utilities. Experiment 6 exemplifies these effects: An agent misreporting its sharing ratio achieves
a high IR, indicating significant deviation and increased loss. The greater the misreporting (higher
α), the larger the agent’s disproportional gains, as can be seen in Appendix B.2. The results of
experiment 6 also show that agents with higher endowments relative to their neighbours have
reduced incentives to misreport, whereas those with lower endowments benefit more from ma-
nipulation, consistent with Chen et al. [156], who find a linear increase in misreporting incentives
as relative endowment decreases. Therefore, markets exhibiting significant disparities in endow-
ment value should be mindful of manipulative low-endowment agents, who stand to gain most
from manipulation.
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As such, markets with more equal endowment distributions are less vulnerable to manipulation.
Given the IR bound for some agent i— (

∑
j∈Ni

vj · εj)/(vi · εi) — equal-resource markets yield
an IR of exactly n − 1, representing the most equitable outcome since any change in initial en-
dowment raises the IR for some agent. Mechanisms aiming to equalise resource provision would
thus enhance robustness.

In adversarial environments, protocols that accept agent inputs without verification are vulnerable
to manipulation, undermining both fairness and stability. This challenge is especially pronounced
in decentralised systems, where enforcing memory or global coordination is often infeasible due
to privacy, storage, or design constraints.
Without embedded memory or accountability mechanisms, reliance on greedy or lazy agents
leads to volatile and unfair outcomes, even in the absence of malicious intent. To address this,
systems should support verifiability, for example through blockchain-based tools, which offer trans-
parency while preserving user privacy.
These findings carry clear implications for real-world sharing economies: When local information,
limited memory, and self-interest dominate, decentralised coordination risks becoming fundamen-
tally unstable and unjust.

8.4. Risks of Decentralisation
The underlying network topology further shapes the dynamics discussed. Both pure strategies π
and ϕ appear to converge to equilibrium across networks, but the nature of convergence varies by
network type. In complete networks, convergence occurs with differing speed and smoothness.
In contrast, sparse networks limit agents’ allocation options, reducing strategy differences and
constraining market dynamics.
This suggests a trade-off in terms of network connectivity: Scale-free networks provide robust-
ness and hierarchy but limit strategic freedom, whereas complete networks encourage sensitivity,
cohesion, and potential efficiency. Both allow equilibrium convergence, but fully connected net-
works enable a more flexible path. These findings align with Celata et al. [139], who highlight
community strength and cohesion as key to participation and effective decentralised exchange.

Because the network is distributed, agents lack full topology knowledge. Information propagates
node-by-node, making consensusmore challenging than in centralised coordination and hindering
straightforward policy implementation. Such communication challenges, induced by the topology
of a network, have often lead to inefficiencies. For example, users of the Gnutella P2P network
frequently experienced overload, as its flooding-based communication protocol was poorly aligned
with the underlying network topology [157, 158]. Greater awareness of structural effects during
the modelling stage could have helped mitigate this issue.

Another risk from this limited knowledge is shown in Sybil attacks (Experiment 7), where IR ex-
ceeds 1, confirming agents can benefit from Sybil attacks. The system’s vulnerability arises be-
cause agents do not know the full network and cannot detect Sybil manipulations by neighbours.
Our results identify that proportional endowment division often yields the most effective Sybil at-
tack. However, this division requires knowledge of neighbours’ endowments, rarely available in
real distributed settings, limiting its practical feasibility.
Though Sybil attacks yield smaller IR than misreporting manipulations, they remain a serious
threat; in game-theoretic terms, if Sybil creation is known to all agents to be feasible, creating
many Sybils becomes a dominant strategy, triggering an arms race that escalates systemic risk.
Many models proactively test for vulnerability to the Sybil attack (e.g., [159, 160, 25]), reflecting
the significant concern for these attacks.

An interesting pattern is the inverse relationship between IR and population size: Smaller networks
exhibit higher IR under Sybil attack. We hypothesise that as markets grow, self-regulation — the
“invisible hand” — curbs manipulation, consistent with Chen et al. [103]. However, if large markets
comprise disconnected clusters rather than a complete network, Sybil attacks remain effective
locally, replicating small-network dynamics.
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Unexpectedly, the manipulating agent is not always the main beneficiary of a Sybil attack. Figures
7.19 to 7.22 show sharing ratios converging away from equilibrium. While the manipulator often
improves its ratio, agents with the lowest endowments frequently benefit most.
This suggests potential implicit collusion: Low-value agents might encourage high-value peers to
launch Sybil attacks while staying passive. Regulatory focus should thus prioritise low-endowment
agents, who disproportionately gain from manipulation. This presents a risk, not only for obtaining
fair trading situations: Although findings up until now have pointed towards the value of consensus
mechanisms in distributed markets, a Sybil attack could efficiently corrupt such consensus by
multiplying the weight of its vote through multiple identities [161]. As such, Sybil attacks are risks
in multiple phases of distributed trading.

Overall, these findings reveal a trade-off between privacy and robustness. Protocols relying on
unverifiable identities or truthful reporting without validation are vulnerable. Without safeguards,
performance and fairness guarantees fail. Our results highlight the essential role of modelling
adversaries when evaluating decentralised exchange protocols.

8.5. System-Level Interactions
Experiment 5 combines previously studied imperfections — strategic heterogeneity, memory de-
cay, and asynchronous updates. These factors do not exhibit strong interactive effects; rather,
each independently contributes to the delayed convergence to a sub-optimal market state. Here
is exemplified that in a complex market model, as Sanders et al. [162] emphasise, the existence
of an equilibrium does not imply convergence to it
This additive relationship is particularly relevant to open questions raised by Kolumbus et al. [67]
and Li et al. [130], who ask whether informational frictions and asynchronous timing jointly af-
fect equilibrium. While we interpret informational frictions slightly differently, our findings suggest
that such imperfections degrade performance primarily through independent, additive effects. Al-
though both reduce convergence quality, we observe no visible interaction between them.

At the agent level, sharing ratios exhibit chaotic oscillations before stabilising (Figure 7.16). These
dynamics obscure the individual effects of the market features. Nonetheless, the combined effect
is clear: The combination of memory decay, asynchrony, and heterogeneity leads to volatile and
unpredictable allocation trajectories.
Such chaotic dynamics are well documented in large-scale multi-agent systems. Interestingly,
while much of the literature attributes such chaos to complex learning behaviour, our results
demonstrate that even simple trading heuristics can generate similar dynamics — emulating com-
plex agent behaviour with simple concepts [36]. This supports the view that simple behavioural
rules may suffice to capture key aspects of market behaviour, as argued by Boland [116].

Analogous patterns can be observed in real-world decentralised systems. For instance, energy
micro-grids frequently exhibit early chaotic instability before reaching stable configurations [16].
These systems must balance adaptability and efficiency, often accepting short-term volatility in ex-
change for decentralised control. Our model replicates this pattern: initial chaos followed by stable
yet imperfect outcomes, suggesting that the interplay of heterogeneity, memory, and asynchrony
is a structural feature rather than a modelling artefact. Since real equilibria are rarely static, the
complexity and unpredictability observed in our model indicate that its dynamic behaviour reflects
relevant features of real-world systems and are indeed plausible.

Our modelling abstraction is diagnostic rather than predictive: Its purpose is not to replicate every
domain detail, but rather to identify which realistic factors could undermine the equilibrium, thus
directing future research and development efforts toward the most impactful shortcomings in cur-
rent market models.
By examining these targeted relaxations, we reveal the fragility of equilibrium guarantees in ide-
alised models. This suggests a validation process that begins with theoretical proofs of con-
vergence, moves on to simulations that include realistic variations, and finally advances to real-
system prototypes combining multiple elements to better capture the complexity and unpredictabil-
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ity of actual markets. Future research should build on our P2P-adapted framework, ensuring that
assessments of protocol optimality carefully consider these three key dimensions of realism be-
fore deployment.

8.6. Limitations
While the results offer valuable insights into decentralised market dynamics, several limitations
of the experimental setup should be acknowledged. First, the behavioural model was deliber-
ately simplified to maintain analytical clarity and make simulations feasible. While this enabled
straightforward comparisons across strategies and conditions, it necessarily omits many real-
world decision-making complexities. Such abstraction is inherent to all modelling — any model is,
at best, an interpretation shaped by subjective choices. For example, even our specific interpreta-
tion of timing impacted outcomes in asynchronous settings. Recognising this interpretive nature
is crucial when applying or extending the model.

Additionally, our experiments were designed to prioritise qualitative understanding over compre-
hensive quantification, focusing on a limited subset of the parameter space, such as variations
in memory, asynchrony, and strategic heterogeneity, within relatively small agent populations
of 8 to 20 agents. This constrained setup allowed us to investigate structural relationships in a
controlled environment, but it also restricted the generalizability of the results and the depth of
statistical analysis. Although outcomes were averaged over 30 repetitions and reported with 95%
confidence intervals, the analysis remained largely descriptive. More formal statistical methods,
such as hypothesis testing or variance decomposition, were not employed. These choices reflect
an intentional focus on identifying broad, interpretable patterns in decentralised allocation rather
than producing precise or empirically grounded predictions. Applying the model to real-world con-
texts would require a wider exploration of the parameter space, more robust statistical techniques,
and empirical validation in future, case-specific studies.

Finally, in the last two experiments, we restricted our analysis to complete networks. While this
choice simplifies the analysis and aligns well with P2P markets, it is not without loss of generality.
Prior work has shown that network topology significantly impacts the achievable IR, particularly
for manipulative strategies.
For the misreporting strategy, we expect the complete network to yield relatively high IR values,
as every agent can directly influence all others. This makes a misreporting agent effectively act
as a resource sink, amplifying its impact. This aligns with earlier findings in Chapter 7 showing
that sparse networks were more robust to losses due to their structural constraints.
However, in the case of Sybil attacks, we can make no similar statement, as previous work has
shown lower IR bounds for complete networks. Future work should therefore revisit how different
network structures affect vulnerability and strategic behaviour.

Together, these limitations suggest improvements to be made in future research on market mod-
elling: Expanding the parameter space and incorporating empirical data would strengthen the
applicability to specific cases, and thus the practical relevance of the insights presented in this
study.
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Conclusion

In recent years, sharing economies have gained substantial traction, marked by the increasing
prevalence of agentic networks in which autonomous agents engage in distributed exchange ac-
cording to specific protocols. While such systems have immense potential to streamline resource
allocation and decentralise market power, they simultaneously pose significant challenges to con-
ventional algorithmic economic theory. While they can serve as useful reference points, traditional
frameworks often rely on assumptions of price-based exchange, full rationality, and centralised co-
ordination, making them ill-equipped to model the dynamic and distributed nature of these emerg-
ing systems.

This disconnect between these idealised models and practical realities has led to failures in real-
world protocol deployments where mismatches between assumptions and actual agent behaviour
resulted in unexpected suboptimal market performance. In light of these shortcomings, we argue
for a fundamental reconceptualisation of algorithmic market design — one that is both rooted in
fundamental economic theory and tailored to the characteristics of sharing economies.

9.1. Research Aim and Contributions
The central aim of this thesis has been to model the distributed and behaviourally rich nature
of exchange in sharing economies and bridge the gap to idealised, classical economic theory.
Grounding the model in classical economic theory allowed us to preserve principles such as equi-
librium and Pareto optimality while extending applicability to agentic, P2P environments. This
approach facilitates a deeper understanding of how structural features of sharing economies and
behavioural features of agents interact. More specifically, we sought a model that is both realistic
in its assumptions and abstract enough to generalise across various sharing economy settings. To
this end, we constructed a principled model of distributed exchange, incorporating asynchronous
trading, bounded rationality, and heterogeneous strategies while replacing global information with
local feedback mechanisms.

A key technical contribution lies in our analysis of distributed trading strategies. Specifically, we
adapted programs well-known in conventional economic theory to align with the exchange market.
We then used these to demonstrate, for the first time in this context, why proportional and greedy
trading strategies can lead to equilibrium — contributing a novel insight into the dynamics of
distributed resource allocation.

Beyond this, we showed how our model produces a range of market phenomena with clear real-
world relevance. For instance, we observed a fundamental trade-off between cognitive bounds
and robustness: Markets that prioritise autonomy often sacrifice efficiency due to reduced robust-
ness against manipulation. Similarly, markets with discrete allocations showed more erratic be-
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haviour, as the limited decision space prevented agents from reaching ideal outcomes, reflecting
real-world constraints on feasible exchanges. These findings underline the sensitivity of decen-
tralised systems to timing, cognition, and structure.
Building on these insights, our results further illustrate that maintaining behavioural uniformity is
crucial for market robustness and reliable convergence, with globally aligned strategies support-
ing faster equilibrium. Even minor modelling choices—such as the timing of agent updates—can
notably affect system dynamics, underscoring the importance of explicitly accounting for update
frequency when balancing resilience and efficiency. Most critically, we identified that markets
lacking trustworthy information guarantees are especially vulnerable to manipulation, as passive
agents can exploit system asymmetries, leading to volatility and undermining trust.
Overall, our results suggest that sharing economies can self-organise toward fairness and effi-
ciency, however, only under specific behavioural and structural conditions. By simulating these
conditions explicitly, we gain insight into how certain market features, such as valuation diversity
or memory constraints, can either support or undermine desirable outcomes.

9.2. Research Outcome and Implications
In light of our main research question — How can models of behaviourally-driven distributed
exchange capture the dynamics of sharing economies? — we conclude that incorporating be-
havioural and structural realism is crucial to understanding how sharing economies operate; by
constructing and analysing an agent-based model extended with bounded rationality, strategic
heterogeneity, and asynchronous interaction, we demonstrated that behaviourally-informed mod-
els can meaningfully simulate the complex dynamics of decentralised exchange. These models
capture how agents adapt to uncertainty, how local interactions produce global effects, and how
structural factors like timing, information asymmetry, and allocation granularity shape overall out-
comes.

The practical implication of our work is that protocol design must explicitly account for the induced
trade-offs between autonomy, information asymmetry, and market robustness. For instance,
when agent data is kept private, market efficiency may suffer due to vulnerability to local ma-
nipulation. It is thus important to decide where to place a market along these and other trade-offs.
Additionally, a system that tolerates a single manipulative strategy may unintentionally incentivise
others to follow suit. Effective regulation must target both individual behaviour, as well as the
second-order incentives created by interaction rules.
At a more high level, our framework offers guidance to evaluate interactions and trade-offs within
markets, helping to anticipate vulnerabilities and design protocols that foster stability, efficiency,
and fairness.

Taken together, our findings indicate that the proposed model effectively captures the behaviour of
sharing economies, while also highlighting the importance of principled design in doing so. Such
models allow us to infer interpretable, causal relationships between protocol design and emer-
gent market behaviour. In turn, the proposed market model can help designers and regulators
anticipate market failures and develop appropriate regulations and incentives proactively, rather
than retroactively.

9.3. Final Reflections
This thesis has highlighted the value of interdisciplinary perspectives in addressing complex socio-
technical system modelling. As technological progress continues to drive specialisation and frag-
mentation of markets, the need for principled exchange intensifies. Agentic, distributed sharing
economies offer a promising avenue for reducing friction and increasing efficiency, provided that
their underlying mechanisms are designed with care.
These developments compel us to consider what kind of inclusive, decentralised, and transparent
sharing economy we wish to create. The design choices we make in modelling the markets will
shape the effectiveness of our regulation in economic infrastructures.
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9.4. Future work
Due to the technical contributions made— such as explaining the convergence of distributed trad-
ing strategies along new, central programs of the exchange market — several new open problems
have emerged for future research. One key area concerns formal proofs of convergence rates.
While the experimental results in Chapter 7 demonstrated a market equilibrium in many settings,
these findings remain empirical. A formal proof showing if and how heterogeneous mixed strate-
gies converge to market equilibrium would be a significant advancement for the field. Similarly, the
exact convergence rates of proportional strategies and asynchronous greedy strategies remain
open questions. Future work looking into more formal convergence proofs of heterogeneous
mixed strategies would open doors for more diverse, less restrictive trading protocols being used.

More broadly, further research could explore the dependence of non-monetary distributed trading
on consensus. As discussed in Section 4.5, a promising direction is to develop distributed algo-
rithms for exchange markets that converge even without consensus on resource valuations. This
would help model fair exchange without relying on explicit pricing mechanisms, making the role
of consensus a particularly interesting focus.

Another open direction is to expand the spectrum of agent heterogeneity. This thesis considered
linear combinations of two algorithms, however, many other strategy types exist (e.g., satisficing or
petty behaviour). Incorporating these would significantly broaden the range of possible strategies
within a population.

Additional open questions include a more network-oriented approach; market forces might con-
strain the neighbours with whom agents might trade [22], and as such, the underlying network
representing these restrictions remain an interesting road to explore. More specifically, identi-
fying specific network structures where proportional strategies outperform greedy ones. These
directions could yield deeper insights into how different restrictions influence market outcomes.
Given the ongoing evolution of real-world economies, this area of research remains relevant for
further exploration.
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A
Proofs

A.1. Optimality of Program P5
Proof. To prove the optimality of Program P5 for the exchange market we employ the Lagrangian
and the KKT-conditions, to show that each of the conditions of the equilibrium as defined in 1.4.1
holds. The Lagrangian of the objective function of Program P5 is:

L(X,λ,µ) =
∑
j∈N

∑
i∈Nj

vi · xij

 · log

∑
i∈Nj

vi · xij

−
∑
j∈N

∑
i∈Nj

vi · xij

 log vj · εj


+
∑
i∈N

λi · (∑
j∈Ni

xij − εi)

−
∑
i∈N

∑
j∈N

(µij · xij)

The derivatives are:

∂L

∂xij
=

∑
j∈N

∑
i∈Nj

vi · xij log
∑
i∈Nj

vi · xij

′ −
∑
j∈N

∑
i∈Nj

vi · xij log(vj · εj)

′

+

∑
i∈N

λi · (
∑
j∈Ni

xij − εi)

′ −
∑
j∈N

∑
i∈Nj

µij · xij

′

= vi · (log
∑
i∈Nj

vi · xij + 1)− vi · log(vj · εj) + λi − µij

= vi · (log

(∑
i∈Nj

vi · xij
vj · εj

)
+ 1) + λi − µij

∂L

∂λi
=
∑
j∈Ni

xij − εi

∂L

∂µij
= −xij

Which makes the KKT-conditions as follows:

79
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• primal feasibility: ∀j ∈ N :
∑
i∈Nj

xij ≤ εi

∀i, j ∈ N : xij ≥ 0

• dual feasibility: ∀i ∈ N : λi ≥ 0

∀i, j ∈ N : µij ≥ 0

• complementary slackness: ∀i ∈ N : λi · (
∑
j∈Ni

xij − εi) = 0

∀i, j ∈ N : µij · xij = 0

• stationarity: ∀i, j ∈ N : vi(log

(∑
i∈Nj

vi · xij
vj · εj

)
+ 1) + λi − µij = 0

So we can derive the following statements:

1. ∀i ∈ N : λi > 0 ⇒
∑
j∈Ni

xij = εi

(due to the complementary slackness of λi)

2. ∀i, j ∈ N : vi(log

(∑
i∈Nj

vi · xij
vj · εj

)
+ 1) + λi − µij = 0

⇒ (log

(∑
i∈Nj

vi · xij
vj · εj

)
+ 1)− µij

vi
= −λi

vi

⇒ (log

(∑
i∈Nj

vi · xij
vj · εj

)
+ 1) ≥ −λi

vi

⇒
∑
i∈Nj

vi · xij
vj · εj

≥ e−λi/vi−1

⇒ vj · εj∑
i∈Nj

vi · xij
≤ e1+λi/vi

3. ∀i, j ∈ N : xij > 0 ⇒ µij = 0

⇒ vi(log

(∑
i∈N vi · xij
vj · εj

)
+ 1) + λi = 0

⇒ vj · εj∑
i∈Nj

vi · xij
= e1+λi/vi

(due to the complementary slackness of µij)

Given the assumption that for each resource i, vi > 0, we can derive that ∀i ∈ N , λi > 0, because
if agents value a resource i positively and it were free (meaning λi = 0), then each agent would
want to obtain that resource infinitely much, automatically driving up the value for λi. So then,
condition 1 above tells us that ∀i ∈ N ,

∑
j∈Ni

xij = εi, thus proving market clearance.

For proving the utility maximisation we denote with βj the inverse best-bang-per-buck, i.e., how
much value agent j has had to distribute in order to receive back value: βj = (vj · εj)/(

∑
i∈Nj

vi ·
xij). Given the derived statements 2 and 3, we know that if xij > 0 then e1+λi/vi = βj ≤ e1+λk/vk .
We can regard e1+λi/vi as a(n) (increasing) function over the relative cost per value λi/vi of agent
i, meaning that if e1+λi/vi > e1+λk/vk then λi/vi > λk/vk . We can see thus that, agent j receives
resources from neighbour i (xij > 0) only if neighbour i has the smallest relative cost per value,
compared to other neighbours k: ∀i, k,∈ Nj : λi/vi ≤ λk/vk. This means that there is no other
agent k that could give j a better value per cost than what it is obtaining now. This means that j
is achieving the best possible value-received to value-allocated ratio, thus proving the utility max-
imisation condition of the equilibrium.
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With these two conditions proven, we have shown definitively that Program P5 optimises the ex-
change market according to equilibrium definition 1.4.1.

A.2. Optimality of Program P6
This appendix proves optimality of Program P6 for the market described in 1.4.

Proof. Taking the third condition of the program and multiplying both sides by xji · ρj produces:

∀i ∈ N , j ∈ Ni : vj · xji ≤
∑
k∈Ni

vk · xki
ρi · εi

· xji · ρj

Summing over j in i’s neighbourhood gives:

∀i ∈ N :
∑
j∈Ni

vj · xji ≤
∑
k∈Ni

vk · xki
ρi · εi

·
∑
j∈Ni

xji · ρj

We know, given the earlier assumption that ∀i ∈ N : vi > 0, that the denominator of this will not
be zero. As such, we can rewrite:

∀i ∈ N : ρi · εi ≤
∑
j∈Ni

xji · ρj

Summing over i gives us:

∑
i∈N

ρi · εi ≤
∑
i∈N

∑
j∈Ni

ρj · xji

Given the inherent symmetry of neighbourhoods

∀i, j ∈ N : j ∈ Ni ⇔ i ∈ Nj

we can write ∑
i∈N

ρi · εi ≤
∑
j∈N

ρj ·
∑
i∈Nj

xji ⇒∑
i∈N

ρi · εi ≤
∑
j∈N

ρj · εj

Given that this inequality clearly reduces to an equality, all the previous inequalities must have
clearly been equalities as well. This shows that whenever xji is strictly positive, the third constraint
in program P6 is an equality as well, which means that at equilibrium, an agent allocates to those
neighbours that give the maximum bang-per-buck, proving the utility maximisation constraint of
the equilibrium. In combination with the first constraint of the program, which guarantees market
clearance, this proves optimality for the exchange market.
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A.3. Deriving π from Program P6
Given the third constraint of Program P6

∀i ∈ N , ∀j ∈ Ni :
vj
ρj

≤
∑
k∈Ni

vk · xki
ρi · εi

(A.1)

we can derive strategy π. Constraint A.1 can be interpreted as the utility-maximisation clause. To
derive π, we assume that we are not at the equilibrium, and thus clause A.1 is violated for some
agent i. This means that there is some error ϵ such that ϵ = max{ϵj} = max{vj/ρj − (

∑
k∈Ni

vk ·
xki)/(ρi · εi)}j∈Ni

. This market state with ϵ > 0 is ’invalid’ according to Program P6. From such
an invalid state, we then aim to make a step towards a valid market state (i.e., the equilibrium).

To make such a step, agent i must make an allocation that decreases ϵ. Given the inequality in
clause A.1 and agent i’s action space consisting of allocation vector xi, increasing xij for neigh-
bour j with the largest violation ϵj will decrease ϵ the most, and thus make the most progress
toward satisfying the clause A.1 and finding the equilibrium. The right-hand side of clause A.1
does not depend on the choice of neighbour j, however, the left-hand side, vj/ρj , does depend
on j. Therefore, neighbour j with the highest value of vj/ρj is the one that causes has largest
violation ϵj .

We note that we can scale all vi w.l.o.g. by inversely scaling up all εi. With this scaling, we can
infer that choosing the neighbour j with the highest vj/ρj , reduces to the strategy of choosing
the neighbour with the lowest ρj , which is exactly the strategy employed in π. So, employing
this distributed greedy strategy for the exchange market, implies the direct optimisation of the
utility-maximising constraint of Program P6.

A.4. Mirror Descent of ϕ
Proof. In order to prove Theorem 4.3.1, and show a mirror-descent-based connection between
Program P5 and ϕ, we first confirm that Program P5 is a convex program. This involves showing
that both the solution space and the objective function are convex. The solution space is clearly
convex, due to the linear constraints. The objective on the other hand requires a more in-depth
analysis.

Lemma A.4.1 (Convexity of Program P5 inX). Program P5 is convex in the space of allocations
X .

Lemma A.4.2 (Strict Convexity of Program P5 inU). Program P5 is strictly convex in the space
of utilities U .

In Appendix A.5 we present the proof for both Lemma A.4.1 and Lemma A.4.2, showing both that
the objective function is convex inX and that it is strictly convex inU and thus computes the unique
equilibrium vector U∗. We employ the same technique for both: splitting the objective function
into a left-hand side and a right-hand side and showing the curvature for each side separately.

Given that Program P5 is convex, we can construct a type of mirror descent algorithm. For this
we use the Subgradient Algorithm with Nonlinear Projection (SANP), which is equivalent to the
mirror descent algorithm [163]. Before defining the SANP, we convert the solution space to the
unit-simplex, to obtain a representation of the space that aligns with convential SANP spaces.
To achieve this, we scale all v to 1, by inversely scaling each ε. Then, we scale all ε such that∑

i∈N εi = 1. This scaling is w.l.o.g. as the relative worth of each agent’s endowment remains
the same. Each descent step in SANP, over allocation space X , looks as follows:

X = arg min
Y∈X

{⟨Y, f ′(X)⟩+Bφ(Y,X)}
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where the distance function Bφ is:

Bφ(a,b) = φ(a)− φ(b)− ⟨a− b,∇φ(b)⟩

defined on some strongly convex, continuously differentiable function φ. The choice of φ can
change depending on the geometry of the problem at hand. f(X) is defined as the objective
function of Program P5, thus our problem is convex and for φ we choose the entropy function:

φ(X) =
∑
i,j∈N

xij log xij

where X /∈ X ⇒ φ(X) = ∞ and X = 0 ⇒ φ(X) = 0, to ensure continuous differentiability. This
choice of φ results in Entropic Mirror Descent. The update step becomes:

X = argmin
Y

 ∑
i,j∈N

yij · f ′ij(X) +
∑
i,j∈N

yij log

(
yij
xij

) (A.2)

Assuming that the non-negativity constraint (∀i, j ∈ N : yij ≥ 0) and the packing constraint
(∀i ∈ N :

∑
j∈Ni

yij ≤ εi) still hold, we write the Lagrangian to find Y:

L(X,λ,µ) =
∑
i,j∈N

[
yij · f ′ij(X) + yij · log

(
yij
xij

)]
+
∑
i∈N

λi · (
∑
j∈Ni

yij − 1)−
∑
i,j∈N

(µij · yij)

where f ′ij is ∂f/∂yij . The complementary slackness condition and stationarity condition of the
KKT-conditions become:

∀i, j ∈ N : µij · yij = 0

∀i, j ∈ N : f ′ij(X) +

(
log

(
yij
xij

)
+ 1

)
+ λi − µij = 0

Provided that we initialise with a point in the interior of the allocation space (Y(1) ∈ X o), we know
that ∀i, j ∈ N : yij > 0, and thus, due to complementary slackness, ∀i, j ∈ N : µij = 0. Rewriting
the stationarity condition thus becomes:

yij = xij · e−f
′
ij(X)−λi−1

Defining Zi = eλi+1, we write:

yij =
xij · e−f

′
ij(X)

Zi
(A.3)

Given that
∑
j∈Ni

yij = εi, we obtain the following:

∑
j∈Ni

yij =
∑
j∈Ni

xij · e−f
′
ij(X)

Zi
=

∑
j∈Ni

xij · e−f
′
ij(X)

Zi
= εi

meaning that
Zi =

1

εi

∑
j∈Ni

xij · e−f
′
ij(X) (A.4)

So with equation A.3 and equation A.4, we can then write:

xij = εi ·
xij · e−f

′
ij(X)∑

k∈Ni
xik · e−f

′
ik(X)

(A.5)
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Now we can start filling in f ′ij . For f with all v scaled to 1 we have:

f(X) =
∑
j∈N

∑
i∈Nj

xij log
∑
i∈Nj

xij −
∑
i,j∈N

xij log εj

and f ′ij(X) = 1− log
(
εj/
∑
k∈Nj

xkj

)
= 1− log(εj/Rj). Filling this definition of f ′ij into equation

A.5:

yij = εi ·
xij · e−1 · (εj/

∑
k∈Nj

xkj)∑
k∈Ni

xik · e−1 · (εk/
∑
l∈Nk

xlk)
= εi ·

εj · (xij/Rj)∑
k∈Ni

εk · (xik/Rk)
(A.6)

Knowing that each agent j computes its allocation xij to agent i proportionally to allocation xij
and its received resourcesRj , we can clearly recognise the proportional allocation rule of strategy
ψ here.

A.5. Convexity of Program P5
Convexity w.r.t. xij
Proof. This proof will show that the objective function of Program P5 is convex w.r.t. variable xij .
Showing this convexity can be done by separating the objective of Program P5 into the right-hand
side (RHS) and the left-hand side (LHS):

• RHS:
∑
j∈N

((∑
i∈Nj

vi · xij
)
log vj · εj

)
• LHS:

∑
j∈N

((∑
i∈Nj

vi · xij
)
· log

(∑
i∈Nj

vi · xij
))

The RHS of the objective function is clearly linear in xij , so this proof will consider only the LHS,
with the knowledge that subtracting a linear function from a convex function still results in a convex
function. In this proof, we ease notation by defining a function on x as sj(X) =

∑
i∈Nj

vi · xij .

For the LHS, just proving convexity for one entry LHSj =
∑
i∈Nj

vi · xij log
(∑

i∈Nj
vi · xij

)
suf-

fices, considering that the addition of multiple convex functions is still convex. There is, however,
interaction between several x-variables in this function, so we construct the Hessian matrix to
determine convexity. The first derivative of this w.r.t. any xij :

∂LHSj
∂xij

=
∂
∑
i∈Nj

vi · xij log
∑
i∈Nj

vi · xij
∂xij

=
∂sj
∂xij

· log(sj) + sj ·
∂ log(sj)

∂xij

With the chain rule again we have:

∂ log(sj)

∂xij
=

1

sj
· ∂sj
∂xij

=
1

sj
· vi

So we get the first derivative:

∂LHSj
∂xij

=
∂sj
∂xij

· log(sj) + sj ·
∂ log(sj)

∂xij

= vi + log(sj) + sj ·
1

sj
· vi

= vi · log(sj) + vi
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For the second derivative, w.r.t. xkl, we have to consider that it is possible that k ≠ i (j is fixed by
choice of LHSj):

i = k ⇒ ∂2LHSj
∂x2kj

=
∂(vi · log(sj) + vi)

∂xkj
= vi ·

1

sj
· vi =

v2i
sj

i ̸= k ⇒ ∂2LHSj
∂x2kj

=
∂(vi · log(sj) + vi)

∂xkj
= vi ·

1

sj
· vk =

vi · vk
sj

So we essentially have the rule that constructs a Hessian matrixM, with some fixed j, as follows:

H(j) = [∇2LHSj ](i,j),(k,l) =
vi · vk
sj

(A.7)

To prove thatH(j) is indeed positive semi-definite, we have to find the eigenvalues. We know that
H(j) = (1/sj) · vv⊤, where v is the vector of values vi. Any matrix of the form vv⊤ has a single
nonzero eigenvalue λ1 = ||v||2, and all other eigenvalues λ2 = ... = λn = 0. Multiplying by 1/sj
gets us the following set of eigenvalues for matrix H(j):

{ ||v||
2

sj
, 0, ..., 0}

Each of these eigenvalues is non-negative, and thus the Hessian matrixH(j) proves the convexity
of a single entry LHSj of the LHS.

Given the convexity of this single entry LHSj , we already know that the entire summation of
LHS is also convex. Alternatively, we can also reason about this from the perspective of the full
Hessian matrix H. The matrices H(j) constructed by rule A.7 are actually blocks ordered along
the diagonal of H.

The eigenvalues of a block-diagonal matrix are the union of the eigenvalues of its diagonal blocks.
So we get the set of eigenvalues:

{ ||v||
2

s1
, 0, ..., 0, ...,

||v||2

sn
, 0, ..., 0}

Which, again, are all non-negative, and thus prove the convexity of the entire LHS w.r.t. xij , and
by extension, of the entire objective function.

Strict convexity w.r.t. U
Proof. This proof will show the strict convexity of the objective of Program P5 w.r.t. U. Each ith
entry of U is the result of that agent i’s utility function, as follows:

Ui = ui(ri) =
∑
j∈Ni

vj · xji

This is exactly the definition of si =
∑
j vj · xji as used before.

Showing this convexity can be done by separating the objective of Program P5 into the right-hand
side (RHS) and the left-hand side (LHS):

• RHS:
∑
j∈N

((∑
i∈Nj

vi · xij
)
log vj · εj

)
• LHS:

∑
j∈N

((∑
i∈Nj

vi · xij
)
· log

(∑
i∈Nj

vi · xij
))
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proving linearity for the former and convexity for the latter. A linear function being subtracted from
a convex function results in a convex function. For the RHS we can clearly see the linearity w.r.t.
s: ∑

i,j∈N
vi · xij log(vj · εj) =

∑
j∈N

∑
i∈Nj

vi · xij log(vj · εj) =
∑
j∈N

sj log(vj · εj)

For the LHS, we will have to find the derivative w.r.t. sj =
∑
i∈Nj

vi · xij . No Hessian matrix H

seems necessary for this convexity proof, as there is no interaction between si and sj ∀i, j ∈ N ,
i.e. the LHS is separable w.r.t. all s. As a result, all non-diagonal entries of H are guaranteed
to be 0, creating a diagonal matrix. The eigenvalues of diagonal matrices are simply the entries
along the diagonal, meaning that, in order to prove that H is positive definite, we only have to
prove that the entries along the diagonal are positive, i.e. ∀j ∈ N ,

∂2LHSj

∂s2j
> 0.

The first derivative of LHSj =
∑
i∈Nj

vi · xij log
(∑

i∈Nj
vi · xij

)
= sj log sj w.r.t. sj is:

∂LHSj
∂sj

=
∂sj
∂sj

· log(sj) + sj ·
∂ log(sj)

∂sj

= log(sj) + sj ·
1

sj

= log(sj)

The second derivative then is:

∂2LHSj
∂s2j

=
∂ log(sj)

∂sj
=

1

sj

Again, given ∀j ∈ N : sj ≥ 0, we know that this is strictly positive 1
sj
> 0, and thus we have strict

convexity of the LHS w.r.t. sj (and by extension of the entire objective function).

A.6. Expected Utility for ψ
Allocation strategy π is based on the assumption that if an agent i allocates the value vi · xij to
agent j, then the next timeslot t + 1 agent i expects back value (vi · xij(t))/ρj(t). This is based
on the historical trading behaviour of its neighbours. We will show in this appendix that including
a mixed strategy into this expectation does not change its expectation, even in a mixed setting
where agents may have 0 < w < 1.

We denote the utility agent i expects back from agent j with Ûi←j , based on agent j’s mixed
strategy, as follows:

Ûi←j(t+ 1) = wj · Ûπi←j(t+ 1) + (1− wj) · Ûϕi←j(t+ 1)

Which, if expanded, with Ûπi←j = vj · xπji and Û
ϕ
i←j = vj · xϕji becomes the following:

Ûi←j(t+ 1) = wj · (vj · xπji(t+ 1)) + (1− wj) · vj · xϕji(t+ 1)

= wj ·
(
vi · xij(t)
ρj(t)

)
+ (1− wj) ·

(
vj ·Dj(t+ 1) · vi · xij(t)∑

k∈Nj
vk · xkj(t)

)
which combines both the expected returns of greedy allocation strategy π on the left-hand side,
where agents expect back the value of xij · vi/ρj , and the proportional value returned from each
neighbour vj ·Dj(t+ 1) · (vi · xij/

∑
k∈Nj

vk · xkj) on the right-hand side.
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An issue with the above formula arises for the proportional part of this prediction, where agent i
has to predict how agent j responds proportionally in the next timeslot t + 1, which is based on
the allocations of the other agents

∑
k∈Nj

vk ·xkj(t) in the current timeslot t, and the amount of j’s
distributable resources in the next timeslot Dj(t+1). This means that agent i is trying to base its
allocation of the current timeslot t on allocations of others in timeslot t, which have not yet taken
place, and on j’s distributable resource of the next timeslot, which has not been determined yet
either. This is clearly not possible. Tomake the formula feasible again, we replace

∑
k∈Nj

vk·xkj(t)
with an approximation based on its historical average

∑
k∈Nj

vk · xkj(t), and we do the same for
approximating Dj(t + 1), which we approximate with j’s endowment εj . The actual expectation
of returned value from agent j to agent i thus becomes:

Ûi←j(t+ 1) = wj ·
(
vi · xij(t)
ρj(t)

)
+ (1− wj) ·

(
vj · εj ·

vi · xij(t)∑
k∈Nj

vk · xkj(t)

)
(A.8)

Now we will show how the right-hand side vj · εj · (vi · xij(t))/(
∑
k∈Nj

vk · xkj(t)) reduces to
(vi · xij(t))/ρj(t), and thus by extension how formula A.8 reduces to the original expectation of
(vi · xij(t))/ρj(t).

We know that ρj(t) = (
∑
k∈Nj

vk ·xkj(t))/(vj ·εj) by its definition, so 1/ρj(t) = (vj ·εj)/(
∑
k∈Nj

vk ·
xkj(t)). So we can write

vj · εj ·
vi · xij(t)∑

k∈Nj
vk · xkj(t)

=
vi · xij(t)
ρj(t)

As such, we can rewrite equation A.8 to be

Ûi←j(t+ 1) = wj ·
(
vi · xij(t)
ρj(t)

)
+ (1− wj) ·

(
vi · xij(t)
ρj(t)

)
=
vi · xij(t)
ρj(t)

We can thus conclude that the original rational expectation of returned utility, that strategy π is
based on, holds even in the mixed case.

A.7. Mixed Strategy Convergence
Proof. Here we will show that if two strategies, such as π and ϕ converge to the equilibrium of
a market, then so will a linearly combined strategy ψ, such as equation6.1. To prove Theorem
6.1.1, we first define the following convex function on the utilitiesU(t) and equilibrium utilitiesU∗
in a market:

V (t) = (U(t)−U∗)2 =
∑
i∈N

(Ui(t)− U∗i )
2 (A.9)

For this function we can state that it is non-negative (V (t) ≥ 0). Additionally when the function
equals 0, then the found utilities are the equilibrium utilities (V (t) = 0 ⇔ U(t) = U∗), and thus
V (t) = 0 implies that an equilibrium is found.

We know by definition that we compute the received utility Ui as such:

Ui(t) = ui(ri(t))

= ui([xji(t)]j∈N ])

Filling in the mixed allocation rule 6.1 to compute the allocations x, we get

Ui(t) = ui(
[
wi · xπji(t) + (1− wi) · xϕji(t)

]
j∈N

)
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Now we make a non-trivial assumption: We assume that all w have the same value: ∀i, j ∈ N :
wi = wj . The consequence of this assumption is that from here on out the proof is only valid
for population in which each agent has the same value for w: homogeneous populations. This
assumption allows us to write the following:

Ui(t) = ui(
[
w · xπji(t) + (1− w) · xϕji(t)

]
j∈N

)

= w · ui(
[
xπji(t)

]
j∈N ) + (1− w) · ui(

[
xϕji(t)

]
j∈N

)

= w · ui(rπi (t)) + (1− w) · ui(rϕi (t)))

Filling this definition of Ui(t) back into equation A.9 gives us

V (t) =
∑
i∈N

(Ui(t)− U∗i )
2 =

∑
i∈N

(w · ui(rπi (t)) + (1− w) · ui(rϕi (t))− U∗i )
2 (A.10)

For any convex function f(·) we know that f(w · a+ (1− w) · b) ≤ w · f(a) + (1− w) · f(b) [164].
Thus, given equation A.10 and the convexity of equation A.9, we write

∑
i∈N

(
w · ui(rπi (t)) + (1− w) · ui(rϕi (t))− U∗i

)2
≤

w ·
∑
i∈N

(ui(r
π
i (t))− U∗i )

2
+ (1− w) ·

∑
i∈N

(
ui(r

ϕ
i (t))− U∗i

)2
=

w · Vπ(t) + (1− w) · Vϕ(t)

With these (in)equalities, and equation A.10 we write

V (t) ≤ w · Vπ(t) + (1− w) · Vϕ(t)

If we then average both sides over T timeslots we obtain:

1

T

T∑
t=1

V (t) ≤ w · 1
T

T∑
t=1

Vπ(t) + (1− w) · 1
T

T∑
t=1

Vϕ(t) (A.11)

Given the assumption that both π and ϕ converge to equilibrium in the ergodic sense, as estab-
lished in Section 4.3, we have have in the limit T → ∞ the following

1

T

T∑
t=1

Vπ(t) → 0
1

T

T∑
t=1

Vϕ(t) → 0

This means that the right-hand side of inequality A.11 converges to 0 as T → ∞. As such, we
can state that

1

T

T∑
t=1

V (t) → 0 ⇒

1

T

T∑
t=1

∑
i

(Ui(t)− U∗i )
2 → 0

(A.12)
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We apply Jensen’s inequality1, which states that f(E[x]) ≤ E[f(x)], and obtain:

(E[U(t)]−U∗)2 ≤ E[(U(t)−U∗)2] ⇒

(U(t)−U∗)2 ≤ 1

T

T∑
t=1

(U(t)−U∗)
2 ⇒

∑
i∈N

(
Ui(t)− U∗i

)2 ≤ 1

T

T∑
t=1

∑
i∈N

(Ui(t)− U∗i )
2

Given equation A.12, we can thus write

1

T

T∑
t=1

∑
i∈N

(Ui(t)− U∗i )
2 → 0 ⇒

∑
i∈N

(
Ui(t)− U∗i

)2 → 0

U(t) → U∗

So now we have shown that indeed the utilities U(t) converge to equilibrium utilities U∗ in the
ergodic sense. This indicates that a linearly combined rule, such as 6.1, converges to the equilib-
rium if the components (such as π and ϕ) also converge to the equilibrium2.

1https://www.statlect.com/fundamentals-of-probability/Jensen-inequality.
2Provided that w is equal across the population

https://www.statlect.com/fundamentals-of-probability/Jensen-inequality.


B
Supplemental Experimental Results

B.1. Mixed Strategies over Various Networks

(a) n = 8, T = 100 (b) n = 8, T = 400

(c) n = 20, T = 100 (d) n = 20, T = 400

Figure B.1: Market-level convergence of loss over time for greedy strategy π (Π), proportional strategy ϕ (Φ), two
homogeneous mixed strategies (ψ hom. w=0.3 and ψ hom. w=0.7), and a heterogeneous mixed strategy (ψ het.) in a

complete network of size n = {8, 20} for T = {100, 400} iterations.
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π ϕ
hom. mixed
w = 0.3

hom. mixed
w = 0.7

het.
mixed

n = 8
T = 100 0.02143 0.00757 0.00695 0.01371 0.02084

T = 400 0.00519 0.00190 0.00158 0.00368 0.01151

n = 20
T = 100 0.04484 0.00618 0.01307 0.03189 0.03327

T = 400 0.01040 0.00155 0.00308 0.00732 0.00872

Table B.1: Loss values for π, ϕ, ψ with w = 0.3 (hom.), ψ with w = 0.7 (hom.), and ψ (het.) in a complete network of
sizes n = {8, 20} after T = {100, 400} iterations.

(a) n = 8, T = 100 (b) n = 8, T = 400

(a) n = 20, T = 100 (b) n = 20, T = 400

Figure B.2: Market-level convergence of loss over time for greedy strategy π (Π), proportional strategy ϕ (Φ), two
homogeneous mixed strategies (ψ hom. w=0.3 and ψ hom. w=0.7), and a heterogeneous mixed strategy (ψ het.) in a

random network of size n = {8, 20} for T = {100, 400} iterations.

π ϕ
hom. mixed
w = 0.3

hom. mixed
w = 0.7

het.
mixed

n = 8
T = 100 0.00483 0.01756 0.00476 0.00447 0.01296

T = 400 0.00134 0.00472 0.00118 0.00109 0.00881

n = 20
T = 100 0.01260 0.03219 0.00749 0.00920 0.03188

T = 400 0.00322 0.00918 0.00185 0.00238 0.02554

Table B.2: Loss values for π, ϕ, ψ with w = 0.3 (hom.), ψ with w = 0.7 (hom.), and ψ (het.) in a random network of
sizes n = {8, 20} after T = {100, 400} iterations.
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(a) n = 8, T = 100 (b) n = 8, T = 400

(a) n = 20, T = 100 (b) n = 20, T = 400

Figure B.3: Market-level convergence of loss over time for greedy strategy π (Π), proportional strategy ϕ (Φ), two
homogeneous mixed strategies (ψ hom. w=0.3 and ψ hom. w=0.7), and a heterogeneous mixed strategy (ψ het.) in a

grid network of size n = {8, 20} for T = {100, 400} iterations.

π ϕ
hom. mixed
w = 0.3

hom. mixed
w = 0.7

het.
mixed

n = 8
T = 100 0.00797 0.01321 0.00381 0.00542 0.00997

T = 400 0.00179 0.00331 0.00093 0.00145 0.00598

n = 20
T = 100 0.01094 0.02697 0.00626 0.00819 0.03951

T = 400 0.00267 0.00732 0.00153 0.00213 0.03603

Table B.3: Loss values for π, ϕ, ψ with w = 0.3 (hom.), ψ with w = 0.7 (hom.), and ψ (het.) in a grid network of sizes
n = {8, 20} after T = {100, 400} iterations.
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(a) n = 8, T = 100 (b) n = 8, T = 400

(a) n = 20, T = 100 (b) n = 20, T = 400

Figure B.4: Market-level convergence of loss over time for greedy strategy π (Π), proportional strategy ϕ (Φ), two
homogeneous mixed strategies (ψ hom. w=0.3 and ψ hom. w=0.7), and a heterogeneous mixed strategy (ψ het.) in a

scale-free network of size n = {8, 20} for t = {100, 400} iterations.

π ϕ
hom. mixed
w = 0.3

hom. mixed
w = 0.7

het.
mixed

n = 8
T = 100 0.00332 0.00520 0.00264 0.00253 0.00463

T = 400 0.00092 0.00130 0.00065 0.00059 0.00266

n = 20
T = 100 0.00326 0.00727 0.00310 0.00284 0.00579

T = 400 0.00091 0.00192 0.00076 0.00067 0.00321

Table B.4: Loss values for π, ϕ, ψ with w = 0.3 (hom.), ψ with w = 0.7 (hom.), and ψ (het.) in a scale-free network of
sizes n = {8, 20} for t = {100, 400} iterations.
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(a) n = 8, T = 100 (b) n = 8, T = 400

(a) n = 20, T = 100 (b) n = 20, T = 400

Figure B.5: Market-level convergence of loss over time for greedy strategy π (Π), proportional strategy ϕ (Φ), two
homogeneous mixed strategies (ψ hom. w=0.3 and ψ hom. w=0.7), and a heterogeneous mixed strategy (ψ het.) in a

small-world network of size n = {8, 20} for T = {100, 400} iterations.

π ϕ
hom. mixed
w = 0.3

hom. mixed
w = 0.7

het.
mixed

n = 8
T = 100 0.01862 0.01232 0.00666 0.01366 0.02005

T = 400 0.00468 0.00308 0.00140 0.00303 0.01262

n = 20
T = 100 0.01852 0.01743 0.00584 0.01331 0.02316

T = 400 0.00438 0.00452 0.00155 0.00330 0.01569

Table B.5: Loss values for π, ϕ, ψ with w = 0.3 (hom.), ψ with w = 0.7 (hom.), and ψ (het.) in a small-world network of
sizes n = {8, 20} after T = {100, 400} iterations.
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B.2. Misreporting across all α

(a) T = 100 (b) T = 400

Figure B.6: Market-level converge of loss over time for π with various levels for misreporting parameter α, increasing
steps of 0.1 from α = 0 to α = 1 in a complete network of sizes n = {8} for T = {100, 400} iterations. The loss for

α = 0, becomes so large that it exceeds the plotted domain.

(a) T = 100 (b) T = 400

Figure B.7: Market-level converge of loss over time for ϕ with various levels for misreporting parameter α, increasing
steps of 0.1 from α = 0 to α = 1 in a complete network of sizes n = {8} for T = {100, 400} iterations.

(a) T = 100 (b) T = 400

Figure B.8: Market-level converge of loss over time for ψ with w = 0.5 (hom.) with various levels for misreporting
parameter α, increasing steps of 0.1 from α = 0 to α = 1 in a complete network of sizes n = {8} for t = {100, 400}

iterations. The loss for α = 0, becomes so large that it exceeds the plotted domain.
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(a) T = 100 (b) T = 400

Figure B.9: Market-level converge of loss over time for ψ (het.) with various levels for misreporting parameter α,
increasing steps of 0.1 from α = 0 to α = 1 in a complete network of sizes n = {8} for t = {100, 400} iterations. The

loss for α = 0, becomes so large that it exceeds the plotted domain.
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