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ABSTRACT

We study how global system parameters and local realizations of quenched disor-
der shape the dynamics of a classical many-body spin system and how classical
indicators of chaos, Lyapunov’s exponents, relate to quantum signatures of chaos.
In particular, we focus on the classical analogue of the quantum spin glass shards
model in a random transverse magnetic field studied by Georgeot and Shepelyan-
sky. The classical spin phase space is constructed as a symplectic manifold and
we evolve trajectories with a second-order Suzuki–Trotter integrator. This symplectic
structure-preserving scheme enables reliable computation of Lyapunov’s exponents
via standard repeated QR-based orthogonalization of tangent vectors, yielding accu-
rate finite-time Lyapunov spectra for trajectories in different regions of phase space.

Using these tools, we examine the dynamics of trajectories sampled from differ-
ent regions of phase space while varying two global system parameters: the relative
strength of the spin-spin coupling and the transverse magnetic field. We find that
both the strong spin-spin coupling and strong magnetic field limits are nearly inte-
grable, with maximal chaos emerging at intermediate coupling–field ratios. When
initial spin configurations are sampled uniformly over the Bloch sphere, different dis-
order realizations do not qualitatively change whether dynamics are chaotic or inte-
grable, while configurations concentrated near the - or z-axis are highly sensitive
to the specific disorder realization and can exhibit either almost fully integrable or
strongly chaotic behavior under identical global parameters.

For 17 spins, all observed trajectories in the classical system are chaotic when the
spin-spin coupling is approximately three times stronger than the transverse field. A
comparison with the quantum level-spacing statistics of the corresponding quantum
model shows qualitative agreement regarding which choices of global parameters
lead to integrable or chaotic dynamics. However, there is a quantitative mismatch in
which global parameter values produce the strongest chaotic dynamics. This demon-
strates that the relationship between classical Lyapunov exponents and quantum
energy-level spacing statistics is complex and non-trivial.

vii





1
INTRODUCTION

Many foundational subjects in statistical physics can be formulated within the
framework of classical Hamiltonian dynamics [Khi49; Tol38], and a central one is:

"Under what conditions on the microscopic Hamiltonian dynamics does the
long-time values of macroscopic observables coincide with the predictions of

equilibrium statistical ensembles?"

Statistical physics assumes that equilibrium values of physical observables are
obtained as averages over an appropriate statistical ensemble, such as the
microcanonical ensemble [LL80]. Thermalization refers to this process by which,
after some time, the values of macroscopic observables relax to stationary values
that can be described by an equilibrium ensemble, and become essentially
independent of the detailed initial conditions, except through conserved quantities
such as energy [Rei08]. The justification for this process is given by the ergodic
hypothesis, which assumes that a Hamiltonian system evolves so that a typical
trajectory effectively explores the whole constant-energy surface in phase space,
spending time in each region in proportion to the total available phase-space.
Since Hamiltonian dynamics preserves phase-space volume, this implies that the
infinite-time average of any reasonable observable coincides with its microcanonical
ensemble average [Khi49].

Nonlinearity is generally associated with more complex dynamical behavior:
individual solutions no longer combine by simple superposition, and small
perturbations of the initial conditions can lead to large differences in the long-time
evolution, as illustrated by the standard (Chirikov–Taylor) map [Zas07]. By contrast,
in a linear system any solution can be written as a sum of independent solutions
that evolve without influencing one another, so the motion generally remains
periodic or quasi-periodic and typically explores only a restricted region of the
energy shell in phase space. With this perspective, Fermi, Pasta, Ulam, and
Tsingou (FPUT) designed their famous experiment to test whether introducing weak
nonlinearities would be sufficient to drive a many-body system toward equilibrium
[Fer+55]. Instead, they observed long-lived quasiperiodic dynamics and a lack
of energy equipartition. This unexpected result triggered a substantial body of
subsequent work, reshaping our understanding of thermalization and leading to
major developments in statistical physics and nonlinear dynamics [For92; Gal08].

A major conceptual advance in understanding such observations came with the
development of Kolmogorov–Arnold–Moser (KAM) theory [Arn63; Kol54; Mos62].
KAM theory shows that, for Hamiltonian systems that are small perturbations of
integrable ones, a large measure of invariant tori survives, carrying quasiperiodic
motion with slightly deformed frequencies. As a consequence, the phase-space
dynamics can remain largely confined, and energy exchange between different
degrees of freedom is absent, even in the presence of nonlinearity. This provides
a explanation for the persistence of quasiperiodic behaviour and the lack of
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equipartition seen in the FPUT experiment, and offers one possible answer to why
weakly nonlinear many-body systems may fail to thermalize on certain time scales
[BP23].

In the quantum setting, the situation is even more subtle. The underlying
quantum dynamics are linear and do not exhibit sensitive dependence on initial
conditions in the classical sense, so the usual trajectory-based notion of chaos is
not applicable. As a result, there is no universally accepted, dynamical definition
of quantum chaos. Instead, one characterizes quantum systems as chaotic
or integrable through indirect signatures, such as random-matrix energy-level
statistics, properties of eigenstates, or the growth of certain correlation functions
[Haa10]. These developments have led to a rich theory of quantum chaos
that parallels, but also fundamentally differs from, the classical picture based on
nonlinear equations of motion and invariant structures in phase space [Gha+20;
GMW98; Stö99].

There remain, however, important conceptual links between classical and
quantum chaos and, more broadly, between dynamical systems and ergodic theory.
Spectral statistics of quantum systems retain imprints of the underlying classical
phase-space structure: integrable classical dynamics is typically associated with
Poissonian energy-level statistics, as conjectured by Berry and Tabor [BT77a],
whereas classically chaotic, ergodic dynamics is associated with Wigner–Dyson
statistics as in random-matrix theory. This correspondence is encapsulated in the
Berry–Tabor conjecture for integrable systems and the Bohigas–Giannoni–Schmit
conjecture for fully chaotic systems [BGS84], which together postulate that quantum
systems inherit spectral statistics from the nature of their underlying classical
dynamics. However, explicit counterexamples to both conjectures have been
constructed [Bar+08; BSS92]. The stated conjectures about the link between
classical dynamics and quantum spectral statistics can therefore no longer be
regarded as universally valid, but rather as characterizations in suitably generic
systems.

In this thesis, we examine this link between chaos in a classical and quantum
system by focusing on a concrete classical and quantum many-body model: the
spin glass shards in a random transverse magnetic field studied by Georgeot and
Shepelyansky [GS98]. In this model, the microscopic couplings are drawn from a
random distribution, so each realization corresponds to a specific choice of local
interactions, while the overall behavior is governed by a smaller set of global control
parameters, such as the strength of the transverse field and the distribution of
couplings. By tuning these global parameters, the system exhibits a crossover in its
energy-level spacing statistics from Poissonian behavior, characteristic of integrable
or weakly interacting regimes, to Wigner–Dyson behavior, which are indicators of
quantum chaos and strong level repulsion. Our strategy is to construct and simulate
the corresponding classical Hamiltonian system, generating the same disordered
structure at the local level, and to examine whether its phase-space dynamics
shows a similar transition, for example from quasi-integrable motion to strongly
chaotic. For this purpose, we compute the Lyapunov exponents of the classical
dynamics and compare their behavior across different disorder realizations and
different choices of the global control parameters, using the methods introduced in
[Ben+80a; Ben+80b]. By comparing these exponents with the quantum spectral
statistics across many realizations of disorder, we aim to identify how changing
the global control parameters and the local disorder affects both the onset of
Wigner–Dyson statistics in the quantum system and the onset of strong classical
chaos in the classical system, as reflected in the Lyapunov exponents, and to
identify regions in phase space that are effectively integrable or chaotic and how
these regions are influenced by the system parameters.
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This thesis is organized as follows. In Chapter 2, we introduce several
examples of classical determistic Hamiltonian chaos, such as the kicked rotator, the
Fermi–Pasta–Ulam–Tsingou chain, classical limaçon billiards, and classical spin-chain
models, and use them to illustrate how integrable and chaotic dynamics emerge
in the classical regime. Chapter 3 then reviews several signatures of quantum
chaos, level-spacing statistics and Loschmidt echoes, reviews the quantum limaçon
billiards model, and introduces the quantum spin glass shards model whose
classical analogue we research for the remainder of the thesis. In Chapter 4,
we develop the geometric formulation of classical spin dynamics as Hamiltonian
flows on a symplectic manifold, introduce the second-order Suzuki-Trotter integrator
and present the numerical framework for computing Lyapunov spectra in classical
spin systems. Chapter 5 applies this framework to the classical spin glass shards
model we research, validates the numerical implementation, and analyzes Lyapunov
spectra for individual trajectories, phase space ensembles, and quenched disorder
realizations as functions of the spin-spin coupling and transverse magnetic field
strength. Finally, Chapter 6 discusses the implications of these results and the
observed relation between classical and quantum chaos in spin glass shards, while
Chapter 7 summarizes the main conclusions and outlines possible directions for
future work.





2
CLASSICAL CHAOS

Whether a classical Hamiltonian system is integrable or chaotic controls how a
system explores its phase space and therefore whether it thermalizes in the way
statistical mechanics assumes [Khi49; Tol38]. Integrable systems have many
conserved quantities and confined motions. Chaotic systems, by contrast, exhibit
sensitive dependence on initial conditions and strong mixing, which underpins
ergodicity and the emergence of standard thermodynamic behavior. This distinction
between chaos and integrability is central for understanding when and whether a
system will thermalize.

Formally, a Hamiltonian system with N degrees of freedom is defined by N pairs
of generalised coordinates (q1, . . . , qN) and momentums (p1, . . . pN) together with
a Hamiltonian function H(p, q) ≡ H(p1, q1, . . . , pN, qN) [Zas07, Section 1.1]. These
satisfy the Hamiltonian equations of motion

ṗ = −
∂H

∂q
, q̇ =

∂H

∂p
, ( = 1, . . . , N).

We will (optionally) consider Hamiltonian functions that depend on time and are
time-periodic with period T = 2π/ν. That is,

H(p, q; t + T) = H(p, q; t). (2.1)

Due to the time variable being an additional canonical variable we define the
system (2.1) as having N + 1/2 degrees of freedom.

For a Hamiltonian system H(p1, q1; t) with 1 + 1/2 degrees of freedom, one
canonical pair (q1, p1) and an explicit periodic time dependence with period T, it is
convenient to describe the dynamics using a Poincaré map. Instead of following the
continuous-time trajectory (p1(t), q1(t)), we record its state at discrete times

tn = t0 + nT, n ∈ N,

that is, once every driving period. The Poincaré map then sends the phase-space
point at time tn to the one at time tn+1, and the trajectory is represented in the
two-dimensional phase plane by the sequence of points

�

p1(tn), q1(tn)
�

.

In this way, the continuous Hamiltonian flow is reduced to an area-preserving map
on the (p1, q1) plane. Intuitively, one may think of this as taking stroboscopic
snapshots of the system.

Even for such low-dimensional systems, the Poincaré map can display a
rich mixture of dynamical behaviors, such as invariant curves corresponding to
integrable motion coexist and scattered points filling regions associated with chaotic
trajectories.

5
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To distinguish between integrable and chaotic regions, we compute Lyapunov’s
exponents, which measure the mean exponential rate at which nearby trajectories
separate. For a periodically driven Hamiltonian system with 1 + 1/2 degrees of
freedom, the stroboscopic dynamics are described by a two-dimensional Poincaré
map

zn+1 = F(zn), zn = (p1(tn), q1(tn)) ∈ R2,

which is area-preserving. Equivalently, its Jacobian satisfies detDF(z) = 1 for all z.
As a consequence, the two Lyapunov’s exponents of the map, λ+ and λ− , must
sum to zero and therefore occur as a pair

{λ+ , λ−} = {λ,−λ}.

Here λ > 0 measures the mean exponential rate at which nearby trajectories
separate along the most unstable direction, while −λ describes the compensating
contraction along a transverse direction required by area preservation.

To make this precise, consider two nearby initial conditions z0 and z0 + δz0, where
δz0 ̸= 0 is infinitesimal. Linearizing the map around z0 gives

F(z0 + δz0) ≈ F(z0) + DF(z0) δz0,

so after one iteration the deviation evolves as δz1 ≈ DF(z0)δz0. Iterating these
linearized dynamics yields

δzn ≈ DF(zn−1) · · ·DF(z1)DF(z0) δz0 ≡ Mn δz0,

where Mn is the product of Jacobians along the trajectory.
If the deviation typically grows (or shrinks) exponentially with n, we are led to

define the finite-time Lyapunov’s exponent

λ(n)(δz0) =
1

n
ln
∥Mn δz0∥

∥δz0∥
. (2.2)

Taking n→∞ defines the (asymptotic) Lyapunov’s exponent

λ(δz0) = lim
n→∞

1

n
ln
∥Mn δz0∥

∥δz0∥
, (2.3)

whenever the limit exists. By Oseledets’ multiplicative ergodic theorem [Ose68], for
every nonzero δz0 this limit exists and can only take one of the two values λ or −λ,
depending on whether δz0 has a component along the expanding or contracting
Oseledets direction.

In numerical computations, repeatedly multiplying by Jacobians tends to align δz0
with the most expanding direction, so (2.3) typically yields the largest Lyapunov’s
exponent λ [Ben+80a; Ben+80b]. A positive λ indicates sensitive dependence on
initial conditions and is a standard diagnostic of chaos.

One of the standard examples where the Poincaré map exhibits coexisting regular
islands and chaotic seas is the kicked rotator model, which we introduce next.

2.1. KICKED ROTATOR
The kicked rotator describes a free rotor subjected to a sequence of kicks and
admits a description in terms of a two-dimensional Poincaré map, the standard
(Chirikov–Taylor) map [Chi79]. In what follows we derive this map from the
time-dependent Hamiltonian and briefly summarise its main dynamical regimes as
a function of the kick strength K and calculate the Lyapunov’s exponent for the
standard map.
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The kicked rotator model is a Hamiltonian system with 1+ 1/2 degrees of freedom
defined by the Hamiltonian

H(p, q; t) =
1

2
p2 − K cos(q)

∞
∑

n=−∞
δ(
t

T
− n). (2.4)

This model can be interpreted as an unperturbed Hamiltonian

H0 =
1

2
p2

that is perturbed by a periodic sequence of delta-peaks with period T = 2π/ν and
amplitude proportional to the scalar K cos(q) [Zas07, Section 1.2]. When the
variable q is taken to be cyclic, i.e. q ∈ (0,2π), this model corresponds to a free
rotator. The derived equations of motion from (2.4) are

ṗ = −K sin(q)
∞
∑

n=−∞
δ(
t

T
− n), q̇ = p.

We observe that p = const and q = pt + const in between consecutive delta-peaks.
Let 0 < ε < T and observe that

p(nT + ε) − p(nT − ε) =
∫ nT+ε

nT−ε
ṗdt

= −K
∫ nT+ε

nT−ε
sin(q)

∞
∑

n=−∞
δ(
t

T
− n)dt = −K sin(q).

By taking the limit ε → 0 we observe that p change by the value −K sin(q) right
after a delta-peak at t = nT, while q remains continuous.

We can construct a Poincaré map by defining (pn, qn) as the values of (p, q) in
time right before the n-th delta-pulse. The derived equations of motion are

pn+1 = pn − K sin(qn), qn+1 = qn + pn+1.

This map is called the standard map, also known as the Chirikov–Taylor map.
For K = 0, this is a simple linear map for which there exist only periodic and
quasi-periodic orbits. For increasing values of K, more non-linearity is introduced
to the map, which allows for the existence of chaotic dynamics in certain regions
of phase space. Figure 2.1 illustrates the progression from a near-integrable to
a strongly chaotic regime as K increases. For K = 0.5, most trajectories remain
confined to smooth, closed invariant curves. For K = 1.0, thin stochastic layers form
near separatrices. For K = 1.5, widespread torus breakup yields a large chaotic sea
punctuated by stable islands; For K = 3.0, the dynamics are mostly chaotic, with
only one visible surviving elliptic island.
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(a) K = 0.5 (b) K = 1.0

(c) K = 1.5 (d) K = 3.0

Figure 2.1.: Phase–space portraits of the standard map showing how increasing
nonlinearity K transforms the dynamics. Each panel plots 2000 orbits
in the coordinates (q, p) mod 2π (distinct colors denote different initial
conditions only).

To calculate the Lyapunov’s exponent for the standard map, we first calculate the
Jacobian DF(zk) at zk = (pk , qk)

DF(zk) =

 

∂pk+1
∂pk

∂pk+1
∂qk

∂qk+1
∂pk

∂qk+1
∂qk

!

=
�

1 K cosqk
1 1 + K cosqk

�

.

Observe that det(DF(zk)) = 1 for all values of k, so the Poincaré map is
area-preserving.

Inserting this expression in (2.3) allows us to construct figure 2.2 and compare
it with figure 2.1c, observe how the phase-space of the standard map model, for
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K = 1.5, is clearly divided into stable integrable islands (λ ≈ 0) and chaotic seas
(λ > 0).

Figure 2.2.: Phase–space portraits of the standard map, for K = 1.5, showing how
the maximum Lyapunov’s exponent varies over the entire phase-space.

2.2. FERMI-PASTA-ULAM-TSINGOU CHAIN
The Fermi-Pasta-Ulam-Tsingou (FPUT) chain describes a one-dimensional periodic
chain of particles with weak nearest-neighbour interactions and was originally
introduced as a numerical experiment to test how quickly such systems approach
equipartition of energy among normal modes. We recall the standard FPUT model,
summarise the original paradoxical numerical observations, and explain how they
can be understood by viewing the FPUT chain as a small perturbation of the
integrable periodic Toda lattice.

Introduced in 1955 [Fer+55], the Fermi-Pasta-Ulam-Tsingou (FPUT) chain model is
a Hamiltonian system with N degrees of freedom defined by

H(p, q) =
N
∑

j=1

1

2
p2
j
+ (qj+1 − qj),

where qN+1 ≡ q1 and

(z) =
1

2
z2 +

α

3
z3 +

β

4
z4.

When β = 0 (α = 0) this model is called the FPUT-α (FPUT-β) model. It represents a
periodic chain of particles linked by Hooke’s law and a non-linear correction, which
is quadratic for the FPUT-α model and cubic for the FPUT-β model.

In 1955, the original research project [Fer+55] tested the expectation that the
weak non-linear interactions cause energy to disperse among normal modes until
an equilibrium is reached, which is a central assumption of statistical mechanics.
However, the numerical results deviated from this expectation, as can be seen in
figure 2.3. Starting with a single linear normal mode, energy leaked into other
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modes only partially and then returned near the original mode after a sufficiently
long time.

Figure 2.3.: Energy of the normal modes during the time evolution of the FPUT-α
chain model with N = 32;α = 0.25;. The initial shape of the chain was a
single sine wave. Image sourced from the original project [Fer+55].

This result challenges the usual picture of macroscopic irreversibility that underlies
the second law of thermodynamics. In the microcanonical framework, irreversibility
is explained by assuming that, for a typical initial condition, the Hamiltonian
trajectory explores the entire constant energy shell in phase space and is most
present in the region corresponding to the equilibrium macrostate. In that case,
time averages of observables coincide with microcanonical ensemble averages, and
energy effectively spreads over all normal modes. The near-recurrence observed in
the FPUT chain indicates that the dynamics remains confined to a much smaller
portion of the energy shell, repeatedly returning close to the initial nonequilibrium
configuration. This failure to efficiently explore the full energy shell prevents the
system from exhibiting the expected macroscopic irreversibility and thermalization.
Insights from the FPUT project show that this relaxation is more complex than
expected, and not guaranteed by non-linear influences in the Hamiltonian. They
support the idea of a prethermalization phase in which certain systems, that are
nearly integrable or are slow mixing, approach equilibrium in two steps. First the
system quickly reaches a quasi-stationary state where macroscopic observables
appear frozen. Then, on much longer timescales, those observables slowly drift to
their true thermodynamic values. More details on prethermalization can be found
in [BBW04].

To better understand this phenomena, it is instructive to view the FPUT model
not as an altered harmonic chain but as a perturbation of the periodic Toda lattice
model. Introduced in 1967 [Tod67], the periodic Toda lattice system is a non-linear
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Hamiltonian system with 2 degrees of freedom defined by

H(p, q) =
N
∑

j=1

1

2
p2
j
+ Ψ(qj+1 − qj),

where qN+1 ≡ q1 and
Ψ(z) = A(e−Bz + Bz − 1).

Moreover, the periodic Toda lattice model is completely integrable. By choosing
A = 1

4α2 and B = −2α we can observe that

(z) − Ψ(z) = (
β

4
−
α2

6
)z4 + O(z5).

Thus, at small perturbations |z| ≪ 1, the FPUT model is indeed an analytic
perturbation of the integrable Toda lattice model of size O(z4).

Perturbations of integrable Hamiltonian systems can be written (after a suitable
transformation) in the form

H(, θ) = H0() + ϵH1(, θ), 0 < ϵ≪ 1,

where H0 is integrable,  are so called action variables, θ are angles, and ϵ
measures the strength of the perturbation. KAM theory states, roughly speaking,
that for sufficiently small ϵ most nonresonant invariant tori of the integrable system
survive as slightly deformed invariant tori of the perturbed system. On these
tori the motion remains quasi-periodic. Nekhoroshev’s theorem addresses what
happens to the actions (t) even in regions where resonances and small chaotic
layers appear, under suitable nondegeneracy and convexity conditions one has

||(t) − (0)|| ≤ C1ϵb for all |t| ≤ exp(C2ϵ−),

for some positive constants , b, C1, C2 [Nek77]. Thus, away from strong resonances,
the actions can drift only very slowly, remaining close to their initial values for
times that are exponentially long in ϵ−1. Together, KAM theory and Nekhoroshev’s
theorem provide an explanation for quasi-integrable behavior in weakly perturbed
Hamiltonian systems.

For the periodic Toda lattice, global action–angle coordinates are constructed in
[HK08] for which the Hamiltonian is a function of the actions alone and verify the
nondegeneracy/convexity conditions that permit the application of KAM theory on
(almost) all parts of phase space to small Hamiltonian perturbations of the periodic
Toda lattice. Consequently, for actions on open regions away from resonances, the
corresponding invariant tori persist and the motion remains quasi-periodic.

Moreover, by proving strict convexity of the periodic Toda lattice Hamiltonian
in [HK09], it follows on (almost) all parts of phase space Nekhoroshev’s theorem
applies to sufficiently small perturbations, implying exponentially slow drift of the
actions for exponentially long times. Viewing the low-energy FPUT chain as a
small perturbation of the periodic Toda lattice, these results together motivate the
persistence of quasi-periodic tori due to KAM theory and exponentially long stability
of actions away from resonances due to Nekhoroshev’s theorem, which underlies
the observed long-lived prethermalization plateau in the FPUT model [BP23].

From this perspective, the FPUT chain shows how macroscopic irreversibility can
fail, or at least be strongly delayed, in nearly integrable systems. The usual
argument for irreversible relaxation to equilibrium assumes that the microscopic
dynamics efficiently explores the entire energy surface in phase space, so that
macroscopic observables rapidly forget their initial conditions. In contrast, for the
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FPUT chain, the system can remain trapped for very long times in a quasi-integrable
region where macroscopic observables appear stationary, the prethermal plateau,
and only on much longer, typically exponential, time scales do the microstates
explores the entire energy surface in phase space and restore the effective
irreversibility expected from thermodynamics.

2.3. CLASSICAL LIMAÇON BILLIARDS
Billiards form another key class of systems whose dynamics span integrable
motion, mixed regimes, and fully developed chaos. Billiard models provide a
minimal, mechanics-only setting to examine how macroscopic phenomena, such
as diffusion and heat conduction, emerge from microscopic dynamics. A billiard
system describes a point particle that moves along straight lines inside a chosen
two-dimensional domain Ω and reflects elastically off the domain’s boundary ∂Ω.
The geometry can make motion integrable or strongly chaotic.

A particularly important example in this class is the Sinai billiard, consisting
of a point particle moving in a square with a circular disk removed from the
interior. This model provides a clear example of deterministic chaos, it is known
to be ergodic, mixing, and a K-system [Sin70]. Physically, it can be interpreted
as a simple Lorentz gas, where a particle moves freely between elastic collisions
with fixed circular scatterers. As such, Sinai billiards serve as a prototype for
understanding how macroscopic irreversibility and transport can emerge from
microscopic, time-reversible dynamics. Moreover, this model motivates the study
of other billiard families in which the onset of chaos can be tuned by continuously
changing the geometry of the billiard domain.

Another billiard model that illustrates this tuning principle particularly well is the
limaçon billiard model which is, for some ε ∈ [0,1], defined in polar coordinates by
the domain

Ω ≡ {(1 + ε cos(ϕ), ϕ)|ϕ ∈ [0,2π)}. (2.5)

Figure 2.4 illustrates how the extremes of this model either correspond with an
integrable system, for which the domain is circular (ε = 0), or a system that is
ergodic, mixing, a K-system and a Bernoulli system for which the domain is a
cardioid (ε = 1) [Woj86; Szá92; Mar93; LW95; CH96].

Figure 2.4.: Regular motion in a circular billiard (ε = 0) contrasted with chaotic
motion in a cardioid billiard (ε = 1). Image sourced from [Bäc07].

To study the transition between these type of dynamics it is worthwhile to
construct a Poincaré map that takes a snapshot of the billiard every time it collides
with the boundary of the domain. Let L denote the length of the boundary ∂Ω. We
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introduce the coordinate of the n-th collision as (sn, n). Here sn ∈ [0,L] denotes
the arclength along the boundary ∂Ω and n = 〈, T(p)〉 is the projection of the unit
velocity vector  after the reflection along the unit normal vector T(p) at the n-th
collision point p ∈ ∂Ω. Figure 2.5 illustrates the progression from a near-integrable
to a strongly chaotic regime as ε increases. For ε = 0.1, most trajectories remain
confined to smooth, closed invariant curves. For ε = 0.2, thin stochastic layers form
near separatrices. For ε = 0.3, widespread torus breakup yields a large chaotic sea
punctuated by stable islands; For ε = 0.4, the dynamics are predominantly chaotic,
with a small amount of surviving stable islands.

(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3 (d) ε = 0.4

Figure 2.5.: Phase–space portraits of the limaçon billiard model showing how the
changing domain transforms the dynamics. Each panel plots 2000
orbits in the coordinates (s/L, ) (distinct colors denote different initial
conditions only).

2.4. SPIN CHAIN MODELS
Classical spin chains provide a setting to study nonlinear many-body dynamics and
chaos. Different choices of spin interactions lead to qualitatively distinct dynamical
behaviours, ranging from fully chaotic to exactly integrable. In this section we focus
on two examples: the non-integrable classical Heisenberg chain, which models an
isotropic ferromagnet, and the integrable Ishimori chain, which supports an infinite
amount of conservation laws while featuring strongly nonlinear spin interactions.

A classical spin model describing N spins is defined by N three-dimensional
vectors S = (S ,S

y
 ,S

z
 ) with length ||S|| = 1. The equations of motion for these
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spins are given by

Ṡ =
∂H

∂S
× S,

for some Hamiltonian H(S1, . . . ,SN). The classical non-integrable Heisenberg chain
model describes an isotropic ferromagnet and is one of the simplest dynamical
models of magnetism. It is defined by the Hamiltonian

H = −J
∑



(S · S+1 − 1), (2.6)

where the constant J > 0 denotes the strength of the nearest-neighbour interaction.
Unlike integrable spin chains, the Heisenberg chain model appears to possess
only a small set of conserved quantities (energy, total magnetization, and total
momentum).

The classical Ishimori chain model is described by the Hamiltonian

H = −2J
∑



ln
�

1 + S · S+1
2

�

. (2.7)

This model is, in contrast to the Heisenberg chain model, an example of a
strongly non-linear yet exactly integrable system, it admits an infinite set of local
conserved quantities in addition to energy and total magnetization [Ish82]. The
conserved quantities are implied by the existence of an infinite amount of exact
soliton solutions S(t), which are spin configurations defined for some arbitrary
real parameters ω,, that evolve in time without changing shape according to the
relation

S+n(t +
n


) = Rz(

nω


)S(t),

where Rz denotes a rotation around the z-axis, for all integers n.



3
QUANTUM CHAOS

There is no single, universally accepted criterion for what should count as quantum
chaos. Because the Schrödinger evolution is linear and unitary, the usual
trajectory-based definition of chaos simply does not carry over. Instead, one
diagnoses chaotic versus integrable behavior indirectly, for example through the
random-matrix character of energy-level statistics, the structure and delocalization
properties of eigenstates, or the growth of correlation functions [Haa10]. One of the
more popular of these signatures is defined in terms of the statistical properties of
the energy levels of the Hamiltonian.

3.1. LEVEL-SPACING STATISTICS
Historically, the level-spacing statistics signature was developed in the research
of describing the level repulsion observed in neutron scattering. In 1951, Wigner
postulated that the associated Hamiltonian is modeled as a large real symmetric
random matrix whose entries are independent, up to the symmetry constraint, and
Gaussian-distributed [Wig51]. This results in the following probability distribution

P(H) ∝ exp(−cTr(H2)), c > 0,

which is equivalent with the Gaussian orthogonal ensemble (GOE). To compare
different systems in this ensemble, the nearest-neighbor level spacings are
constructed as

sn = En+1 − En ≥ 0,

where {En} is the sequence of energies of the system ordered monotonically. One
then studies the probability density P(s) of these spacings, with the convention that
〈s〉 = 1. For the GOE, this level-spacing distribution is well approximated by the
Wigner surmise

P(s) =
π

2
s exp

�

−
π

4
s2
�

, s ≥ 0,

which exhibits level repulsion at small spacings. This distribution turned out to
describe the level repulsion observed in neutron scattering remarkably well. An
illustrative example how the assumption that the Hamiltonian is Gaussian-distributed
leads to the GOE distribution is provided in Appendix A.1.

For different symmetries, different random-matrix ensembles need to be applied.
If the Hamiltonian is modeled as a complex Hermitian matrix with independently
distributed Gaussian entries. This defines the Gaussian unitary ensemble (GUE),
whose level-spacing distribution (again with 〈s〉 = 1) is described by

PGUE(s) =
32

π2
s2 exp

�

−
4

π
s2
�

, s ≥ 0.
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A third class appears when the Hamiltonian is represented by self-adjoint matrices
with independently distributed Gaussian quaternions as elements. This leads to the
Gaussian symplectic ensemble (GSE), with the level-spacing distribution

PGSE(s) =
�

64

9π

�3

s4 exp
�

−
64

9π
s2
�

, s ≥ 0.

In this thesis we will not analyze the GUE or GSE cases further, since the
Hamiltonian of interest is real and symmetric and therefore belongs to the GOE
class.

In contrast, for an integrable quantum system there exists a complete set of
mutually commuting conserved operators {Q} with [H,Q] = 0 and [Q, Qj] = 0 for
all , j. One can then choose a basis {|α〉} of simultaneous eigenstates of H and all
{Q} [SN20, Section 1.4.3], defined by

H|α〉 = Eα |α〉, Q|α〉 = q,α |α〉. (3.1)

If the Hamiltonian depends on some external parameter λ which can vary while
preserving the commutation relations [H(λ), Q] = 0 for all , then the eigenstates
can be labeled by the same eigenvalues q,α for every λ. Additionally, because of
[H(λ), Q] = 0 we have

〈α|QH(λ)|β〉 = 〈α|H(λ)Q|β〉. (3.2)

Using Q|α〉 = q,α |α〉 and Q|β〉 = q,β|β〉 this becomes

q,α〈α|H(λ)|β〉 = q,β〈α|H(λ)|β〉, (3.3)

so that
(q,α − q,β)〈α|H(λ)|β〉 = 0. (3.4)

Hence, if q,α ̸= q,β for some , it follows that 〈α|H(λ)|β〉 = 0, which implies that
there are no matrix elements of H between states with different sets {q,α}. The
corresponding eigenvalues Eα(λ) therefore change independently as functions of λ,
and whenever Eα(λ) = Eβ(λ) for α ̸= β the associated levels simply cross rather than
repelling each other. Thus, level crossings are common and there is no tendency for
nearby levels to push each other apart. This implies that the energy levels behave
approximately like independent random points on a line. Such an uncorrelated
sequence of points with constant average density defines a Poisson point process,
whose nearest-neighbour spacing distribution is PPoisson(s) = exp(−s) after setting
the mean level spacing 〈s〉 = 1 [BT77b].

3.2. LOSCHMIDT ECHOES
The Loschmidt echo is another signature of quantum chaos and quantifies how
well a many–body quantum system can be time–reversed in the presence of small
imperfections. One prepares a localized spin excitation |ψ〉 at time t = 0 and lets
it evolve under a many–spin Hamiltonian H0, during which the excitation spreads
through the lattice via spin diffusion [Sli90]. At a later time t, a sequence of
radiofrequency pulses is applied that ideally reverses the sign of the Hamiltonian.
In practice, this pulse sequence generates an effective backward evolution under
−(H0 + ), where the perturbation  accounts for pulse imperfections and residual
interactions. Such time–reversal protocols were first realized for dipolar–coupled
spins by Rhim, Pines, and Waugh [RPW71].
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After evolving forward under H0 and then backward under −(H0 + ), one probes
how close the system returns to its initial state at the echo time 2t by measuring
the return probability to |ψ〉. This is the Loschmidt echo,

M(t) =
�

�

�

�

〈ψ|exp
�

(H0 + )t

ℏ

�

exp
�

−
H0t

ℏ

�

|ψ〉
�

�

�

�

2

, (3.5)

which directly measures how sensitive the many–body dynamics is to the small
perturbation  and thus to imperfections of the attempted time reversal [JP01].

For systems whose classical counterparts are chaotic, one typically finds an
exponential decay of the echo over a broad time window when the perturbation 
is small. The corresponding decay rate can be related to the classical Lyapunov
exponents [Gor+06; JP01]. By contrast, integrable or otherwise nonergodic
dynamics usually lead to a slower decay of M(t). These slower decays reflect
long–lived correlations in the underlying dynamics and the absence of strong
phase–space mixing [Pro02; PŽ02].

In the semiclassical regime of a quantum–chaotic system, Silvestrov, Tworzydło,
and Beenakker showed a more detailed connection between the Loschmidt echo
and classical chaos [STB03]. The time evolution under two slightly different
Hamiltonians can be viewed as the motion of two initially nearby wave packets
in classical phase space. Their separation and deformation are controlled by
the classical Lyapunov exponent λ, with typical separations growing as eλt. The
Loschmidt echo essentially probes the phase–space overlap of these two packets.
For generic initial states in a quantum–chaotic system, this leads to a characteristic
double–exponential decay of the form

M(t) ∝ exp
�

−Ce2λt
�

, (3.6)

where C > 0 is some constant. In this way, the classical Lyapunov exponent λ
appears explicitly in the time dependence of M(t), making the Loschmidt echo a
direct indicator of classical–like exponential instability in the semiclassical limit.

The case of interacting spin systems provides another example of how classical
and quantum notions of chaos can differ. Fine et al. studied Loschmidt–echo–type
responses in both chaotic lattices of classical spins and nonintegrable systems of
quantum spins 1/2, using the recovered total magnetization after an imperfect
time–reversal protocol as the Loschmidt echo [Fin+14]. For classical spin systems
with chaotic dynamics, they showed that the deviation from perfect reversal,

1 − F(t) ∝ exp (2λt) , (3.7)

grows exponentially in an intermediate time window, where F(t) is an appropriately
normalized magnetization echo and λ is the largest Lyapunov exponent of the
underlying classical dynamics. This result demonstrates that λ can, in principle, be
extracted from a macroscopic observable in a many–spin system.

In striking contrast, for quantum spin–1/2 systems, which display GOE level-
spacing statistics, Fine et al. found only a power–law sensitivity of the magnetization
echo to small perturbations, with no exponential growth regime. This means that
one cannot define a Lyapunov’s exponent from the echo dynamics of the quantum
spin-1/2 system.

3.3. QUANTUM LIMAÇON BILLIARDS
Having introduced two signatures of quantum chaos, we now turn to a concrete
model that illustrates how chaotic and integrable dynamics are reflected in the
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level-spacing statistic. In the quantum regime, the state of a particle with mass m
at position r and time t is described by a complex-valued wave function ψ that
evolves according to the Schrödinger equation

ℏ
∂

∂t
ψ(r, t) = −

ℏ2

2m
Δψ(r, t) + V(, t)ψ(r, t), (3.8)

where V(r, t) is the potential energy function of the environment and Δ denotes the
Laplacian operator. The quantum variant of the limaçon billiard model is once again
defined by the two-dimensional domain

Ω ≡ {(r(ϕ), ϕ)|ϕ ∈ [0,2π)}, (3.9)

where ε ∈ [0,1] and r(θ) = 1 + ε cos(ϕ). The environment of this model is
represented by the potential function

VBilliards(r) ≡
¨

0, r ∈ Ω
∞, r /∈ Ω

.

The energy levels En of the stationary solutions ψn of (3.8) are governed by

−
ℏ2

2m
Δψn(r) = Enψn(r), r ∈ Ω (3.10)

combined with the Dirichlet boundary condition ψn|∂Ω = 0. Note that due to
enforcing the mean level spacing 〈s〉 to be 1 the factor ℏ2/2m is irrelevant in the
eventual level spacing statistics. We choose units such that ℏ2/2m = 1 so that
(3.10) reduces to the Helmholtz equation

(−Δ − k2
n
)ψn(r) = 0, r ∈ Ω, (3.11)

where En = k2
n
. Analytic solutions of (3.11) are available only for a limited class

of domains, such as rectangles and disks. For more general shapes of Ω, we
must resort to numerical methods to compute the corresponding eigenvalues and
eigenfunctions of (3.11), of which we numerically can only calculate a finite amount
N.

Having obtained N eigenvalues and eigenfunctions of (3.11), we can construct
the level spacing statistic through constructing the histogram of the energy level
spacings sn = En − En+1, which are normalized such that the mean level spacing
〈s〉 is 1. These histograms are show in figure 3.1 for the circle billiard (ε = 0) and
cardioid billiard (ε = 1). We observe how the level spacing statistic distribution is
described by the Poisson distribution for the circle billiard, which corresponds with
the expected distribution for an integrable system. In contrast, observe how the
level spacing statistic distribution for the cardioid billiard is described by the GOE
distribution (A.1) for the cardioid billiards, which is characteristic for systems with
chaotic dynamics and energy level repulsion.
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Figure 3.1.: Level–spacing distribution for (a) circle billiard (100000 eigenvalues;
ε = 0) and (b) cardioid billiard (11000 eigenvalues; ε = 1). Image
sourced from [Bäc07].

In figure 3.2, we also observe for the circle billiard that the probability density is
concentrated in certain subregions of the domain, while in the chaotic cardioid case
it is, aside from fluctuations, distributed over the entire domain.

Figure 3.2.: Classical trajectories (first column) and probability densities |ψn(r)|2
of eigenfunctions (other columns) of (3.11) for the circle billiard (top
row) and the cardioid billiard (bottom row). From left to right, the
eigenfunctions shown correspond to the indices n = 100, n = 1000,
n = 1500 and n = 2000. Sourced from [Bäc07].

3.4. SPIN GLASS SHARDS
The term spin glass shard refers to a finite cluster of strongly interacting spins
embedded in a larger system. These finite clusters can be modeled by a fully
connected spin-glass Hamiltonian in a random transverse field, and provide a setting
to study level spacing statistics. The spin glass shards model we are studying can
be viewed as the Sherrington–Kirkpatrick model subject to a transverse magnetic
field. This model allows us to analyse the crossover from integrable to chaotic
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quantum dynamics as the strength of the field changes.
Now, we will introduce the quantum system whose classical analogue we will

study in this thesis. The model is defined, for N spins in the quantum regime, by
the Hamiltonian

H =
∑

<j

Jj σ


σ j

+
∑N

=1
 σ z , (3.12)

where σ 


and σ 
z

are the Pauli matrices for the -th spin, and the first sum runs over
all distinct spin pairs [GS98]. The local transverse magnetic field is represented
by the coefficients  which are drawn independently from a uniform distribution
in the interval [0,]. The exchange interactions Jj are taken to be independent
random variables uniformly distributed in the interval [−J/

p
N, J/

p
N]. The 1/

p
N

factor ensures the variance of the local field stays finite rather than diverging with
system size. In this way one obtains a well-defined thermodynamic limit as N→∞.

In this model the randomness is quenched: the couplings Jj and local fields  are
randomly drawn once and then kept fixed during the time evolution. Physically, they
represent static imperfections of the sample, such as fixed positions of magnetic
ions or defects in a solid, which do not fluctuate on the timescale of the spin
dynamics. A single choice of all {Jj} and {} at fixed J, > 0 is called a realization
of disorder. Because the couplings Jj have random signs, the system is generally
frustrated due to it generally not being possible to choose spin orientations that
simultaneously minimize all pairwise interaction terms. As a result, there is usually
no simple ferromagnetic or antiferromagnetic ground state, unless ≫ J.

When constructing the level-spacing statistics we must also account for the
symmetries of the Hamiltonian. In particular, H is invariant under the global
spin-flip operation generated by P =

∏N
=1 σ


z
, which flips all σ 


→ −σ 


while leaving

H unchanged. Since [H, P] = 0, the Hilbert space splits into two independent
symmetry sectors, S1 and S2, corresponding to the eigenvalues P = +1 and P = −1,
respectively. In the σz basis this means that states in S1 are superpositions of basis
states with an even number of spins up, whereas states in S2 are superpositions
of basis states with an odd number of spins up. Thus the Hamiltonian is block
diagonal H=HS1 ⊕ HS2 , with HS1 acting only on the sector S1 and HS2 only on S2.
The eigenvalues in S1 and S2 therefore come from two independent blocks. To
obtain meaningful level-spacing statistics, we therefore restrict ourselves to a single
block, S1 or S2.

The model contains two simple integrable limits. For J/→ 0 (J/(J + )→ 0), the
Hamiltonian reduces to a sum of terms proportional to σ z . In this case, there are
N conserved quantities given by the commuting operators σ z , and the Hamiltonian
is diagonal in the σ z basis. The level spacings between many-body eigenvalues
are then uncorrelated. Consequently, in this integrable regime the level spacing
distribution P(s) is expected to be Poissonian, P(s) = PPoisson(s).

As the ratio J/ is increased from zero, the interaction term
∑

<j Jjσ


σ
j
 mixes the

states that are eigenstates of the transverse magnetic field term, destroying the
set of conserved quantities associated with σ z . One then expects a progressive
breakdown of integrability and the onset of quantum chaos. In this regime the
level spacings should exhibit level repulsion and be well described by the GOE
distribution, with P(s) approaching PGOE(s) characteristic of chaotic dynamics.

However, in the opposite limit J/→∞ (J/(J+)→ 1), the transverse magnetic field
becomes negligible compared to the spin-spin interaction term. The Hamiltonian
then commutes with all N operators σ 


and is diagonal in the σ  basis. This again

yields a set of conserved quantities and an integrable many-body system. As a
result, the level statistics in this limit returns to the Poisson distribution PPoisson(s).
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Thus, as a function of J/ (J/(J + )) the system exhibits two crossovers from
Poissonian to GOE statistics, as can be seen in figure 3.3.

Figure 3.3.: Crossover from Poissonian to GOE statistics in the model for the states
in the middle of the energy band (±12.5% around the center) for
N = 12: J = 0, η = 0.984 (+); J/ = 0.38, η = 0.3 (×); J/ = 0.866,
η = 0.027 (*); J/ = 6.15, η = 0.3 (◦);  = 0, η = 0.99 (□). Full curves
show the Poisson and GOE distributions. Total statistics (NS) is more
than 3 × 104; s is in units of mean level spacing. Inset shows P(s)
for the first excitation from the ground state in the chaotic regime for
N = 15, J/ = 0.465, η0 = 0.018 (NS = 3000) (×); the full line shows
PGOE(s). Data are for S2 symmetry. Sourced from [GS98].

To quantify the crossover from Poissonian to GOE statistics it is convenient to
introduce the dimensionless parameter

η =

∫ s0

0

�

P(s) − PGOE(s)
�

ds

∫ s0

0

�

PPoisson(s) − PGOE(s)
�

ds

, (3.13)

where s denotes the level spacing measured in units of the mean spacing, and
s0 ≈ 0.4729 is the intersection point of the Poisson and GOE distributions, i.e. the
solution of PPoisson(s0) = PGOE(s0). By construction, η = 1 when P(s) coincides with
the Poisson distribution (integrable limit) and η = 0 when P(s) is equal to the GOE
distribution (chaotic limit). For intermediate values of J/ (J/(J + )), 0 < η < 1
provides a convenient single-parameter measure of how close the spectrum is to
either integrable or chaotic behavior. As J/ (J/(J + )) is tuned, η tracks the
approach to GOE statistics and its subsequent return towards Poissonian statistics
as the system crosses between the integrable magnetic, chaotic, and integrable
spin-spin regimes, see figure 3.4.
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Figure 3.4.: Dependence of η on J̃ = J/(J + ): n = 7 (full circles), n = 9 (◦),
n = 11 (+), n = 13 (×), n = 15 (full triangles), n = 17 (⋄), n = 19 (□);
2000 ≤ NS ≤ 30000. Full curves connect data for n = 7,17. Inset shows
η1 in the region near J/ ≈ 0.5 in more detail; 6000 ≤ NS ≤ 90000. Data
are for S1 symmetry. Sourced from [GS98].



4
HAMILTONIAN DYNAMICS AND LYAPUNOV’S

EXPONENTS

Classical mechanics knows several equivalent formulations. Historically, the initial
introduction of forces in Newtonian mechanics enabled the study of planetary
trajectories [New87]. However, one is required to go through a rather laborious
process to analyze complex systems. In 1788, Joseph-Louis Lagrange introduced
the equivalent Lagrangian mechanics, which defines the Lagrangian L from which
the time evolution can be derived through the Euler–Lagrange equation [Lag88].
In 1834, Sir William Rowan Hamilton introduced Hamiltonian mechanics which
introduced the Hamiltonian H [Ham34]. This formulation made use of the Poisson
bracket operation {·,·}, defined earlier by Siméon Denis Poisson in 1809 [Poi09], to
establish the time evolution equation of any observable ƒ as

dƒ

dt
= {ƒ ,H} +

∂ƒ

∂t
. (4.1)

Under suitable conditions, one usually defines L = T − V and H = T + V, where T
and V respectively denote the kinetic energy and potential energy of the system.
For a modern treatment of classical mechanics in its Newtonian, Lagrangian, and
Hamiltonian formulations, see [GPS02]. To define Hamiltonian dynamics on more
exotic phase spaces, one requires the concept of symplectic manifolds. In ordinary
Hamiltonian mechanics this structure is the usual phase space R2n, but for more
exotic phase spaces, such as motion on a sphere, it becomes essential. Symplectic
manifolds are precisely the spaces on which Hamiltonian time evolution is defined
and captures geometric features like Liouville’s theorem.

4.1. SMOOTH MANIFOLDS
Firstly, to properly describe Hamiltonian dynamics on symplectic manifolds some
additional mathematical concepts are required. The definitions and basic results on
smooth manifolds, tangent spaces, and symplectic manifolds used in this section
are adapted from [Arn89; Lee97; Lee13]. The full mathematical definitions and
results mentioned in this section are provided in Appendix A.2. Firstly, one is
required to introduce the concept of a smooth manifold M. In general, a smooth
manifold M is an n-dimensional space that locally looks like Rn and we can do
calculus on, so that we can define derivatives.

The tangent space TpM at a point p on a manifold M is the collection of all
possible velocity vectors of smooth curves passing through that point, organized
into a linear space. The set of all such vectors forms the tangent space.

The tangent space behaves like the optimal linear approximation of the manifold
near a point p, so that even though the manifold may be curved or complicated
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globally, in the tangent space you can use linear algebra and calculus as if you
were in an ordinary vector space.

To perform calculations on a manifold, it is necessary to introduce local
coordinates. A coordinate system around a point p ∈ M is given by a map
φ : U ⊂ M → Rn from a neighbourhood U of p into Euclidean space. In these
coordinates, the point p is described by (1, . . . , n), and tangent vectors at p
can be represented by their components with respect to differentiating in these
coordinate directions ∂

∂
. This allows one to temporarily replace the structure of M

near p by familiar multivariable calculus on Rn, perform computations there, and
then interpret the results back on the manifold.

To measure the size of tangent vectors, one can define an additional Riemannian
metric g on M. A Riemannian metric g on M is a smoothly varying inner product on
the tangent spaces. For each point p ∈ M it defines a bilinear, symmetric, positive
definite map

gp : TpM × TpM→ R,

depending smoothly on p. This inner product induces a norm on each tangent
space via

||||g :=
q

gp(,),  ∈ TpM.

The Riemannian metric also induces a distance between points on M. Given a
smooth curve γ : [0,1] → M with γ(0) = p and γ(1) = q, its length with respect to g
is defined by

Lg(γ) =
∫ 1

0

�

�|γ̇(t)
�

�|g dt =
∫ 1

0

Ç

gγ(t)
�

γ̇(t), γ̇(t)
�

dt.

The Riemannian distance between two points p, q ∈ M is then defined as the
infinimum of Lg over all possible smooth curves γ : [0,1] → M with γ(0) = p and
γ(1) = q. With this distance function (M,dg) becomes a metric space, and curves
that locally minimize Lg are called geodesics.

4.2. SYMPLECTIC MANIFOLDS
A symplectic manifold is a smooth, even-dimensional manifold M with an additional
geometric structure called a symplectic form ω. Intuitively, the symplectic form ω
takes two tangent vectors in TpM at a point p on the manifold M and returns a real
number measuring an oriented infinitesimal area spanned by those tangent vectors.
This pairing is bilinear, antisymmetric, closed and non-degenerate. Moreover, this
structure varies smoothly from point to point. On a symplectic complex manifold
one can always define a Riemannian metric g that is compatible with the symplectic
form ω [dSil01, Corollary 12.7], so that the Riemannian volume coincides, up to a
constant factor, with the Liouville volume.

Building on this, a vector field XH arises when one specifies a smooth function
H : M→ R, typically interpreted as the total energy of the system on the symplectic
manifold M. The differential dH : TpM → R tells you how H changes along any
tangent direction at a point p, the symplectic form ω allows you to transform this
into a vector field XH on M, assigning to each p ∈ M a tangent vector XH(p) ∈ TpM.

Once you have a vector field, you can interpret it as describing how points in
phase space move in time under the dynamics generated by a function. Given a
smooth function ƒ : M → R, its vector field Xƒ assigns to each point p a tangent
vector Xƒ (p) that describes the direction the system will move in if it is at p. Letting
the system evolve according to Xƒ traces out trajectories in M.

Now take another function g : M→ R, representing some observable of the system
(for example, a position component, momentum component, or some other derived
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quantity). As the system moves along the trajectories determined by Xƒ , the value
of g will generally change in time. The Poisson bracket {·, ·} is defined as the
antisymmetric bilinear operation

{g, ƒ} := Xƒ (g),

and can be read as the instantaneous rate of change of g when the system evolves
according to the dynamics generated by ƒ . Intuitively, the Poisson bracket tells
you how much the observable g changes when the system follows the motion
prescribed by ƒ . Additionally, the Poisson bracket satisfies the Leibniz rule

{ƒ , gh} = g{ƒ , h} + {ƒ , g}h.

When ƒ is chosen to be the Hamiltonian H, the Poisson bracket directly encodes
the time evolution of any observable g. In this case, the Hamiltonian vector field
XH generates the actual physical motion of the system in phase space, so the rate
of change of g along a trajectory is given by

d

dt
g = XH(g) = {g,H}.

Thus, the Poisson bracket with H tells you how fast an observable g changes in time
under the dynamics determined by the Hamiltonian. Additionally, it immediately
implies that the Hamiltonian H is conserved in time due to d

dtH = {H,H} = 0. In this
sense, the Poisson bracket provides a way to express the equations of motion for
all observables of the system.

Figure 4.1.: From left to right: A graphical representation of a spherical manifold
M, tangent space TpM at a p ∈ M, and the Hamiltonian vector field XH
evaluated at p, i.e. X(p) ∈ TpM.

4.3. CLASSICAL SPIN SYSTEMS AS SYMPLECTIC MANIFOLDS
For a system of N classical spins, the phase space is no longer a space of positions
and momenta but a product of spheres. Each spin S ∈ R3 is a normalized vector
(|S| = 1) and lies on a 2-sphere S2. It is convenient to describe a single spin
S = (S, Sy, Sz) using spherical coordinates (θ,φ), with

S = sinθ cosφ, Sy = sinθ sinφ, Sz = cosθ.

On S2, the standard area form, which we choose to be the symplectic form, is

ωS2 = sinθdθ∧ dφ.

Moreover, S2 is a complex manifold [Van08, Example 2.1]. We equip S2 with the
standard Riemannian metric [Lee97, Exercise 5.5.7]

gS2 = dθ
2 + sin2 θdφ2.
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Its Riemannian volume form is

volgS2 = sinθdθ∧ dφ = ωS2 ,

so the Riemannian volume coincides with the Louiville volume. In this sense gS2 is
compatible with the symplectic form ωS2 . On S2, the induced geodesic distance
between two points ,v ∈ S2 is the angle between them,

distS2 (,v) = rccos( · v),

where the Euclidean inner product on R3 is used [Lee97, Proposition 5.5.13].
Using the coordinate expression for the Poisson bracket associated with this

symplectic form (Appendix A.2, Definition 25), one finds that for observables ƒ (θ,φ)
and g(θ,φ) on S2 the Poisson bracket is

{ƒ , g} =
1

sinθ

�

∂ƒ

∂θ

∂g

∂φ
−
∂ƒ

∂φ

∂g

∂θ

�

.

To relate this to observables written as functions of the Cartesian spin components
S, Sy, Sz, we use the chain rule and find that

{S, Sy} = Sz, {S, Sy} = Sz, {Sz, S} = Sy.

These relations can be compactly written as

Ṡα = {Sα, Sβ} = ϵαβγSγ, α, β, γ ∈ {, y, z},

where ϵαβγ is the Levi-Civita symbol. For a system of N spins, the entire phase
space is the product manifold (S2)N, which is also complex [Lee24, Example 1.8],
and the symplectic form is the sum of the area forms on each sphere,

ω =
N
∑

=1

sinθ dθ ∧ dφ.

and the product Riemannian metric

g =
N
∑

=1

�

dθ2

+ sin2 θ dφ2

�

.

The corresponding Riemannian volume form is

volg =
N
∧

=1
sinθ dθ ∧ dφ =

N times
︷ ︸︸ ︷

ω∧ · · ·∧ω

N!
,

so g is compatible with ω and the Hamiltonian flow preserves both the Louiville
volume and the Riemannian volume. For the metric g on (S2)N, the induced
distance is the ℓ2–product of the individual S2-distances, so

distg(U,V) =

√

√

√

√

N
∑

=1

distS2 (,v)2 =

√

√

√

√

N
∑

=1

rccos
�

 · v
�2
,

for U = (1, . . . ,N) ∈ (S2)N and V = (v1, . . . ,vN) ∈ (S2)N [Ste05, Section 3.9.3].
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The corresponding Poisson bracket of two observables ƒ ({θ, φ}) and g({θ, φ})
is then

{ƒ , g} =
N
∑

=1

1

sinθ

�

∂ƒ

∂θ

∂g

∂φ
−

∂ƒ

∂φ

∂g

∂θ

�

.

Since the variables of different spins live on different copies of S2, the single-spin
relations above give

Ṡα = {Sα

, S

β
j } = δj ϵ

αβγS
γ
 .

Finally, the Hamiltonian equations of motion for the spins follow directly from
the Poisson bracket. Let H(S1, . . . ,SN) be the Hamiltonian and consider the time
evolution of a single component Sα :

Ṡα

= {Sα


, H}.

Using the Leibniz rule and the fact that H depends on the spin components, we
write

Ṡα

=
∑

β

∂H

∂S
β


{Sα

, S

β
 } =

∑

β,γ

∂H

∂S
β


ϵαβγS
γ
 .

Introduce the gradient of the Hamiltonian with respect to the -th spin,

∂H

∂S
≡



















∂H

∂S
∂H

∂S
y


∂H

∂Sz



















,

and recall that the α-component of a cross product is
�

A × B
�α = ϵαβγAβBγ.

Comparing with the expression for Ṡα above, we obtain

Ṡα

=
� ∂H

∂S
× S

�α

,

which in vector form reads

Ṡ =
∂H

∂S
× S. (4.2)

Thus, each classical spin precesses around the local field ∂H/∂S.

4.4. SYMPLECTIC INTEGRATORS
In many applications one uses general-purpose time-evolution methods such as
Runge–Kutta schemes (e.g. RK4) to integrate systems of ordinary differential
equations. These methods have well-understood advantages such as having a
high order of accuracy, relatively simple implementation, and good short-time
error control. However, when applied to Hamiltonian systems they suffer from a
fundamental drawback: they do not preserve the underlying symplectic structure.

Let (M,ω) be a 2n-dimensional symplectic manifold, and let H : M→ R be a smooth
Hamiltonian. The Hamiltonian flow φH

t
generated by H preserves the symplectic

form,
(φH

t
)∗ω = ω,



4

28 4. Hamiltonian dynamics and Lyapunov’s exponents

and therefore preserves the associated Liouville volume form. By Liouville’s theorem
the phase-space volume is exactly conserved by the Hamiltonian dynamics, and
the corresponding phase-space probability measure is invariant under the flow.

For such a measure-preserving dynamical system (M,μ, φH
t
), Oseledets’ multiplica-

tive ergodic theorem applies and guarantees the existence of a set of Lyapunov’s
exponents

λ1 ≥ λ2 ≥ · · · ≥ λ2n,

that describe the average exponential rate at which nearby trajectories in phase
space separate or converge under the Hamiltonian dynamics.

A generic, non-symplectic numerical integrator (such as RK4) does not preserve
ω and hence does not preserve phase-space volume. The discrete-time map
generated by such an integrator is typically not measure-preserving, so one loses
the invariant probability measure which underlies the application of Oseledets’
multiplicative ergodic theorem. As a consequence, the existence of Lyapunov’s
exponents for the system is no longer guaranteed, and even when they exist, the
symplectic constraints

∑

 λ = 0 and λ = −λ2n+1− need not hold.
In addition, conserved observables of the system, in particular the Hamiltonian H

itself, typically exhibit a drift under non-symplectic schemes when integrated over
long times, rather than remaining nearly constant. This long-time drift leads to
significant inaccuracies in the properties of the dynamics.

These considerations motivate the use of time-integration schemes which
preserve the symplectic form and therefore the phase-space volume. Such schemes
are called symplectic integrators. For a modern overview of symplectic integrators
we refer to [HLW06, Chapter VI].

A one-step method with step size Δt generates a discrete-time map

Δt : M→ M, zk+1 = Δt(zk).

The method is called symplectic if Δt is a symplectic map,

∗Δtω = ω

for every Δt, here ∗Δt denotes the pullback of Δt (Appendix A.2, Definition 30). In
this case, the numerical flow is symplectic and therefore preserves the phase-space
volume, just as the exact Hamiltonian flow does.

In the following we focus on a specific class of symplectic integrators, namely the
second order Suzuki–Trotter time integrator [Suz90; Tro59; Yos90]. However, we
first recall the definition and relevant properties of the Liouvillian operator.

4.5. SECOND ORDER SUZUKI-TROTTER
Let the smooth function ƒ : M→ R be an observable. The Hamiltonian flow generated
by H induces the evolution

d

dt
ƒ (t) = {ƒ (t), H},

where {·, ·} denotes the Poisson bracket. It is convenient to introduce the linear
Liouvillian operator LH : C∞(M)→ C∞(M) acting on observables by

LHƒ := {ƒ , H}.

In this notation, the exact time evolution of ƒ can be written as

ƒ (t) = etLH ƒ (0), t ∈ R.
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We now assume that the Hamiltonian splits as

H = HA + HB,

where HA and HB are two Hamiltonians whose flows φ
HA

t and φ
HB

t can be computed
exactly. By linearity of the Poisson bracket,

LH = LHA + LHB ,

so that
ƒ (t) = et(LHA+LHB )ƒ (0).

If LHA and LHB commuted, we would have the exact factorization

et(LHA+LHB ) = etLHA etLHB = etLHB etLHA .

For Liouvillian operators this is generically not the case. Using the antisymmetry of
the Poisson bracket and the Jacobi identity,

{HA,{HB, ƒ}} + {HB,{ƒ , HA}} + {ƒ ,{HA, HB}} = 0,

we obtain

{{ƒ , HB}, HA} = {HA,{HB, ƒ}}, (4.3)

{{ƒ , HA}, HB} = {HB,{HA, ƒ}}. (4.4)

Therefore

[LHA ,LHB ]ƒ = LHA (LHB ƒ ) − LHB (LHA ƒ ) (4.5)

= {HA,{ƒ , HB}} − {HB,{ƒ , HA}} (4.6)

= {HA,{HB, ƒ}} − {HB,{HA, ƒ}} (4.7)

= −{ƒ ,{HA, HB}}. (4.8)

Recognizing the Liouvillian operator generated by {HA, HB},

{ƒ ,{HA, HB}} = L{HA,HB}ƒ ,

we find the operator identity

[LHA ,LHB ] = − L{HA,HB}.

In general {HA, HB} ̸= 0, hence LHA and LHB do not generally commute.
Consequently, one must use approximate exponential factorizations for non-
commuting operators, such as the second order Suzuki-Trotter factorization [HLW06,
Theorem III.5.3.6], which we will now introduce.

As in [BCM24, Section 1.2], the evolution of observables associated with a flow
can be written in terms of Lie derivatives. In particular, for the exactly solvable flows
φ
HA

t and φ
HB

t we associate the Lie derivatives F1, F2, which in the Hamiltonian case
coincide with the Liouvillian operators LHA , LHB . The second order Suzuki-Trotter
factorization corresponds to the following composition of the flows

φSTΔt := φ
HA

Δt/2 ◦ φ
HB

Δt ◦ φ
HA

Δt/2,

and the associated evolution operator on observables is [BCM24, Equation 1.16]

Ψ(Δt) = e
Δt
2 F1 eΔtF2 e

Δt
2 F1 = e

Δt
2 LHA eΔtLHB e

Δt
2 LHA . (4.9)
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To examine the error of (4.9) with respect to the exact solution of the evolution
operator eΔt(LHA+LHB ), we follow the steps in [BCM24, Section 2.1.1], where φSTh is
written as eY(Δt) with

Y(Δt) = Δt(F1 + F2) −
Δt3

24
[F1, [F1, F2]] −

Δt3

12
[F2, [F1, F2]] + · · · .

Substituting F1 = LHA and F2 = LHB shows that Ψ(h) agrees with eΔt(LHA+LHB ) up to
terms of order Δt3. For a more detailed error analysis we refer to [HLW06, Section
III.5.1-III.5.3].

Therefore, if we can compute exactly the Hamiltonian flows φ
HA

t and φ
HB

t , the
evolution of an observable ƒ over one time step Δt can be approximated to second
order by

ƒ (Δt) = e
Δt
2 LHA eΔtLHB e

Δt
2 LHA ƒ (0)

Equivalently, in terms of points p ∈ M, one time step is given by

p 7→ φ
HA

Δt/2 ◦ φ
HB

Δt ◦ φ
HA

Δt/2(p).

This is precisely the second-order Suzuki–Trotter symplectic integrator for the
Hamiltonian H = HA + HB [HLW06, Section II.5]. Each of the maps φ

HA

Δt and φ
HB

Δt is an
exact Hamiltonian flow and thus symplectic. The composition of symplectic maps is
again symplectic, so the numerical one-step map

Δt := φ
HA

Δt/2 ◦ φ
HB

Δt ◦ φ
HA

Δt/2

is symplectic for every Δt. Consequently, the Suzuki–Trotter scheme preserves the
symplectic form ω and the phase-space volume, and it preserves the Lyapunov’s
exponent constraints, up to inaccuracies arising from the finite step size Δt and
method order. Next, we will present a detailed account on Lyapunov’s exponents
and their properties.

4.6. LYAPUNOV’S EXPONENTS
Defined in [Lya92], Lyapunov’s exponents describe how sensitive a dynamical
system is to small changes in initial data. For Hamiltonian systems, they quantify
how small perturbations of a trajectory grow or shrink under the Hamiltonian flow.
In this section we briefly recall the Hamiltonian setting, explain the linearized
evolution of perturbations, and then state the multiplicative ergodic theorem in
terms of the associated linear cocycle and its invariant subspaces. Further, we
provide an account of the numerical methods used to calculate all the Lyapunov’s
exponents for a Hamiltonian system, which are adapted from [PP16, Chapter 3].

The Lyapunov’s exponents λ describe the average exponential rate at which
nearby trajectories in phase space separate or converge under the dynamics. We
consider a symplectic manifold M with a Hamiltonian

H ∈ C2(M,R),

so that the associated Hamiltonian vector field and its flow are sufficiently regular.
The Hamiltonian flow

φt : M→ M

is defined by following the Hamiltonian equations in time. For a point p ∈ M, the
curve t 7→ φt(p) is the trajectory starting at p.
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A small perturbation of the initial condition p is represented by a tangent vector
 ∈ TpM. To understand Lyapunov’s exponents, we track how such perturbations
evolve along the trajectory.

The linearized evolution of a perturbation  ∈ TpM along the trajectory is given by

(dφt)p ∈ Tφt(p)M,

the differential (Jacobian) of the flow at time t applied to . The map (dφt)p is the
linear approximation of how the flow changes when we slightly change the initial
condition. For a nearby point p + ϵ with small ϵ,

φt(p + ϵ) − φt(p) = ϵ (dφt)p + o(ϵ),

so (dφt)p gives the first-order change in the evolved state due to the perturbation
. The Lyapunov’s exponents quantify how ||(dφt)p|| grows or decays on average
as t→ ±∞.

4.7. THE MULTIPLICATIVE ERGODIC THEOREM.
For Hamiltonian systems, the existence of Lyapunov’s exponents is guaranteed
by the multiplicative ergodic theorem (Appendix A.3, Theorem 35) [Ose68]. This
theorem applies when H is sufficiently regular, for example when H ∈ C2, and
there exists an invariant probability measure for the flow. In the Hamiltonian
case, Liouville’s theorem (Appendix A.3, Definition 34) provides such a measure by
stating that the Hamiltonian flow φt preserves phase-space volume.

The multiplicative ergodic theorem is a theorem about linear cocycles over a
measure-preserving dynamical system. Given a flow (φt)t∈R on M, a (linear) cocycle
over φt is a family of linear maps

A(t, p) : TpM→ Tφt(p)M, t ∈ R, p ∈ M,

such that

A(0, p) = dTpM, A(t + s, p) = A
�

t, φs(p)
�

◦ A(s, p) for all t, s ∈ R.

In our setting, the base dynamics are given by the Hamiltonian flow φt, and the
linearized dynamics are given by its differential. The map

A(t, p) := (dφt)p

is a linear map from TpM to Tφt(p)M and satisfies

(dφt+s)p = (dφt)φs(p) ◦ (dφs)p,

so {(dφt)p}t∈R is a linear cocycle over the Hamiltonian flow. The multiplicative
ergodic theorem will be applied to this cocycle.

The multiplicative ergodic theorem states that, for almost every point p ∈ M, the
tangent space at p splits into a direct sum of subspaces

TpM = E1(p) ⊕ · · · ⊕ Ek(p)(p).

Here k(p) is the number of distinct Lyapunov subspaces at the point p. Each
E(p) corresponds to a different Lyapunov’s exponent λ and thus to a different
asymptotic growth rate. In particular,

1 ≤ k(p) ≤ dimM = 2n.

The direct sum decomposition means:
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1. Unique decomposition: Every tangent vector  ∈ TpM can be written in a
unique way as

 = 1 + · · · + k(p),  ∈ E(p).

2. Disjoint: For  ̸= j,
E(p) ∩ Ej(p) = {0}.

Thus the tangent space at p is split into distinct families of directions E(p).
Each family consists of perturbation directions that share the same asymptotic
exponential growth rate under the linearized dynamics.

These subspaces satisfy the invariance property

(dφt)p
�

E(p)
�

= E
�

φt(p)
�

for all t ∈ R,  = 1, . . . , k(p).

That is, if  ∈ E(p) at time 0, then the evolved vector (dφt)p at time t lies in
the corresponding subspace E(φt(p)). The flow may stretch or contract vectors in
E(p), but it does not mix them with directions from any Ej(p) with j ̸= .

Each subspace E(p) is associated with a Lyapunov’s exponent λ. Vectors in E(p)
are precisely those perturbations whose norm, under repeated application of the
linearized flow, grows or decays asymptotically at the exponential rate λ. More
concretely, for  ∈ E(p) \ {0},

λ = lim
t→±∞

1

t
log ||(dφt)p||,

whenever the limit exists. This definition of Lyapunov’s exponents uses a norm on
each tangent space, and hence depends on a choice of Riemannian metric on M.

The family of subspaces {E(p)}, together with their exponents {λ}, thus
organizes infinitesimal perturbations according to their long-time growth rates under
the linearized Hamiltonian dynamics.

Additionally, the Lyapunov’s exponents of a Hamiltonian system are not arbitrary.
The Hamiltonian structure imposes three structural constraints on the spectrum.

First, Liouville’s theorem (Appendix A.3, Definition 33) states that the Hamiltonian
flow φt preserves phase-space volume. Consider a small 2n-dimensional
parallelepiped in TpM, spanned by tangent vectors that we decompose into
Oseledets directions. Under the linearized flow, each of these directions is
stretched or contracted roughly like eλt, so the volume of the parallelepiped grows
asymptotically like

exp
�

t
2n
∑

=1

λ
�

.

Volume preservation means that this volume must remain constant in time, so the
exponential factor cannot grow or decay. This forces the sum of all Lyapunov’s
exponents to vanish (Appendix A.3; Theorem 36):

2n
∑

=1

λ = 0.

Further, this causes phase space to also become infinitesimally stretched out when
there are positive Lyapunov’s exponents.
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Figure 4.2.: Graphical representation of the time evolution of tangent vectors
1, 2 at time t = Δt,2Δt,. . . for a 2-dimensional system, and the
parallelepiped spanned by these tangent vectors with constant volume.

Secondly, preservation of the symplectic form ω imposes a pairing between
expanding and contracting directions. The nondegeneracy of ω means that for
every nonzero tangent vector  ∈ TpM there exists a unique tangent vector  ∈ TpM
such that ω(, ·) is represented by . Since the Hamiltonian flow φt is symplectic,
it preserves ω:

ω
�

(dφt)p, (dφt)p
�

= ω(,) for all t ∈ R.

If  is expanded asymptotically with rate λ (so (dφt)p ∼ eλt), then the identity
above can only hold if  is contracted at the opposite rate −λ. Thus, for every
positive Lyapunov’s exponent there is a corresponding negative exponent of the
same multiplicity. As a consequence, the Lyapunov spectrum is symmetric with
respect to zero. In particular, after ordering the exponents as λ1 ≥ · · · ≥ λ2n, one
has (Appendix A.3; Theorem 40)

λ = −λ2n+1−,  = 1, . . . , n.

Finally, every independent integral of motion produces an additional pair of
vanishing Lyapunov’s exponents. Let  : M → R be a smooth conserved quantity,
 ◦ φt = . Trajectories are confined to the level set

−1(c) = {p ∈ M : (p) = c},

that is, the subset of phase space on which  takes the constant value c.
The Hamiltonian vector field generating φt is everywhere tangent to −1(c). A
perturbation proportional to this vector field is equivalent to a small time shift
along the same trajectory. The perturbed trajectory is therefore just the reference
trajectory with a slightly shifted time origin, so the separation does not grow
exponentially in time, and therefore has Lyapunov exponent 0. To see that there
is also a transverse zero exponent associated with , note that for constant c the
set −1(c) is a smooth (dimM − 1)-dimensional surface in phase space. At each
point of this surface there is a single direction perpendicular to it, and this normal
direction is precisely the one given by ∇. Since  ◦ φt = , the derivative of  in this
normal direction is preserved along the flow, so the component of any perturbation
normal to −1(c) cannot grow or decay exponentially without changing the value of
. This normal direction therefore carries Lyapunov exponent 0. Each independent
integral of motion therefore contributes at least two zero exponents: one along the
flow and one normal to the corresponding invariant set −1(c) in the above sense.
In particular, in our case the Hamiltonian H is conserved, so there are already two
zero exponents on the energy shell H−1(E): one along the Hamiltonian flow and one
associated with the normal direction determined by ∇H (Appendix A.3, Theorem 41).
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4.8. KOLMOGOROV-SINAI ENTROPY
An additional measure of dynamical complexity is the Kolmogorov-Sinai entropy
HKS, which quantifies the average rate of information production in a dynamical
system. Intuitively, the Kolmogorov-Sinai entropy measures how rapidly two initially
close trajectories become distinguishable when one observes the system with finite
resolution. A larger Kolmogorov-Sinai entropy corresponds to a faster loss of
predictability and hence to stronger chaos. For smooth, ergodic dynamical systems
with a well-defined Lyapunov spectrum, Pesin’s theorem [Pes77] establishes that
the KS entropy can be expressed as the sum of all positive Lyapunov exponents:
HKS=

∑

λ>0λ. In practice, this result allows one to estimate the Kolmogorov-Sinai
entropy numerically by computing the Lyapunov spectrum and summing its positive
components [ER85].

4.9. FINITE-TIME LYAPUNOV’S EXPONENTS
The limit definition of Lyapunov’s exponents above can be interpreted directly in
terms of the separation of two nearby trajectories. We fix a smooth Riemannian
metric g on M, and denote by dist(·, ·) the induced distance on M by the metric
g and by || · || the induced norm for tangent vectors. Fix a point p ∈ M and a
direction  ∈ TpM. For a small parameter δ0 > 0, consider a second point pδ0 which
is obtained by moving p for δ0 time along the geodesic starting at p in the direction
. Then, the distance between the two points is

δ0 = dist(p, pδ0 ).

We obtain the points φt(p) and φt(pδ0 ) after evolving the two initial conditions for
time t, and we denote their distance by

δt(δ0) := dist
�

φt(p), φt(pδ0 )
�

.

Since φt is differentiable with respect to the initial condition (Appendix A.2,
Definition 29), we can write a first-order Taylor expansion of φt around p in the
direction  in local coordinates:

φt(pδ0 ) = φt(p) + δ0(dφt)p + O(δ20).

Subtracting φt(p), dividing by δ0, and taking the limit δ0 → 0 yields

lim
δ0→0

1

δ0

�

φt(pδ0 ) − φt(p)
�

= (dφt)p.

The geodesic distance between φt(p) and φt(pδ0 ) is given to first order by the norm
of the displacement vector, hence

δt(δ0) = dist
�

φt(p), φt(pδ0 )
�

= δ0 ||(dφt)p|| + O(δ20),

and therefore

lim
δ0→0

δt(δ0)

δ0
= ||(dφt)p||.

This motivates the standard finite-time Lyapunov’s exponent, defined via

λT (p,) := lim
δ0→0

1

T
log

δT (δ0)

δ0
=

1

T
log ||(dφT )p||.

For fixed p and a direction  lying in one of the Lyapunov subspaces E(p), we then
let the time T become large. Under the assumptions of the multiplicative ergodic
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theorem, this finite-time quantity converges for almost every p and every nonzero
 ∈ E(p) to the corresponding Lyapunov’s exponent:

λ = lim
T→±∞

λT (p,) = lim
T→±∞

1

T
log

�

dist(φT (p), φT (pδ0 ))

dist(p, pδ0 )

�

,

for any fixed δ0 > 0 sufficiently small. The limit only depends on the subspace E(p)
that contains the initial perturbation , not on the particular choice of  ∈ E(p)\{0}.
In this sense, the Lyapunov’s exponent λ is the asymptotic exponential rate at
which the distance between two trajectories, initially separated by δ0 in a direction
belonging to E(p), grows or decays as time evolves.

4.10. CALCULATING LYAPUNOV’S EXPONENTS ON BOUNDED PHASE SPACE
Theoretically, the task of calculating all the Lyapunov’s exponents for an unbounded
phase space is rather straight forward. For a 2n-dimensional phase space M one
simply picks points p, p1, . . . , p2n ∈ M such that for some sufficiently small δ0 > 0,
every p is obtained by moving p for δ0 time along the geodesic starting at p in the
direction  ∈ E(p). Then one finds all Lyapunov’s exponents as the limit of the
finite-time Lyapunov’s exponents

λ = lim
T→±∞

λT (p,) = lim
T→±∞

1

T
log

�

dist(φt(p), φt(p))

dist(p, p)

�

.

There is one significant advantage when we are working in a compact symplectic
manifold. The limit definition of Lyapunov’s exponents is dependent on a choice
of Riemannian metric. However, when M is compact, any two smooth Riemannian
metrics g1 and g2 on M are uniformly equivalent in the sense that there exist
constants 0 < c ≤ C <∞ such that their induced norms satisfy

c ||||g1 ≤ ||||g2 ≤ C ||||g1 for all p ∈ M,  ∈ TpM,

where the constants c and C can be chosen independently of p [Heb00, Section
2.2]. If the Lyapunov’s exponents are computed using || · ||g1 and || · ||g2 respectively,
then for the associated cocycle (dφt)p we apply the above inequality and obtain

c ||(dφt)p||g1 ≤ ||(dφt)p||g2 ≤ C ||(dφt)p||g1 .

Taking logarithms and subtracting log ||(dφt)p||g1 yields

log c ≤ log ||(dφt)p||g2 − log ||(dφt)p||g1 ≤ logC.

Hence
�

�log ||(dφt)p||g2 − log ||(dφt)p||g1
�

� ≤mx{| log c|, | logC|},

Dividing by t > 0 gives
�

�

�

�

1

t
log ||(dφt)p||g1 −

1

t
log ||(dφt)p||g2

�

�

�

�

≤
1

t
mx{| log c|, | logC|},

which converges to 0 as t → ∞ for every nonzero  ∈ TpM. Thus, on a compact
symplectic manifold, the limits defining the Lyapunov’s exponents are independent
of the particular smooth Riemannian metric used to define the norm on each
tangent space [Fro84; Kat80].

However, for bounded phase spaces, such as for spin systems, there is one
significant drawback due to dist(φt(p), φt(p)) increasing exponentially when λ > 0
and approaching the maximum separation between points in the phase space for
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some finite time, and does not meaningfully capture the exponential separation any
more. One insight that circumvents the problem of a uniform bound on dist(·, ·) is
by using the cocycle property of the differential of the flow, and observing that we
can decompose

(dφT )p = (dφNτ)p = (dφτ)φ(N−1)τ(p) ◦ · · · ◦ (dφτ)φτ(p) ◦ (dφτ)p.

For convenience, define

Ak := (dφτ)φkτ(p), k = 0,1, . . . , N − 1,

so that
(dφNτ)p = AN−1 ◦ · · · ◦ A1 ◦ A0.

Then

λ = lim
N→∞

1

Nτ
log ||AN−1 ◦ · · · ◦ A1 ◦ A0 ||.

The expression above suggests interpreting λ as an average of local stretching
rates. To make this explicit, we factor out the growth at each step. For now, we
consider a single vector . We introduce a sequence {̂

(k)}k≥0 of rescaled tangent
vectors with a fixed small norm δ0 > 0:

̂
(0) := δ0



||||
, ||̂(k)|| = δ0 for all k.

Given ̂
(k), we apply the linearized map over one time step:

k := Ak ̂
(k) = (dφτ)φkτ(p)̂

(k).

We then define the local stretching factor

αk :=
||k ||

δ0
> 0,

and rescale to obtain the next vector of norm δ0:

̂
(k+1) := δ0

k

||k ||
.

By construction, ||̂(k)|| = δ0 for all k. An inductive argument shows that

AN−1 · · ·A1A0 ̂(0) =

 

N−1
∏

k=0

αk

!

̂
(N).

Since ̂
(0) = δ0/ ||||, we have

AN−1 · · ·A1A0  =
||||

δ0
AN−1 · · ·A1A0 ̂(0) =

||||

δ0

 

N−1
∏

k=0

αk

!

̂
(N).

Taking norms and using ||̂(N)|| = δ0 gives

||AN−1 · · ·A1A0 || =
||||

δ0

 

N−1
∏

k=0

αk

!

||̂(N)|| = ||||
N−1
∏

k=0

αk .
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Therefore,
1

Nτ
log ||AN−1 · · ·A1A0 || =

1

Nτ
log |||| +

1

Nτ

N−1
∑

k=0

logαk .

In the limit N→∞, the contribution 1
Nτ log |||| vanishes, and we obtain

λ = lim
N→∞

1

Nτ

N−1
∑

k=0

logαk , αk =
||(dφτ)φkτ(p)̂

(k)||

δ0
.

The quantity
1

τ
logαk =

1

τ
log
||(dφτ)φkτ(p)̂

(k)||

δ0
can be interpreted as the local stretching rate over the time interval [kτ, (k + 1)τ]
along the direction ̂

(k). The Lyapunov’s exponent λ is then the long-time average
of these local stretching rates:

λ = lim
N→∞

1

N

N−1
∑

k=0

1

τ
log
||(dφτ)φkτ(p)̂

(k)||

δ0
.

In the case of a single exponent, this repeated rescaling keeps the perturbation
norm fixed at δ0. For the full spectrum λ1, . . . , λn, one propagates a basis of tangent
vectors 1, . . . , n and repeatedly rescales them, recording the corresponding local
stretching factors for each direction.

Figure 4.3.: Graphical representation of the time evolution of initially nearby
trajectories while periodically rescaling at t = τ,2τ,3τ, . . . .

4.11. CALCULATING LYAPUNOV’S EXPONENTS WITH fiNITE PRECISION
To practically calculate all the Lyapunov’s exponents λ1, . . . , λ2n, there is one more
issue we need to address. If we simply propagate and rescale several tangent
vectors 1, . . . , 2n independently, without enforcing any orthogonality, we run into
a major problem. Due to the presence of numerical rounding errors, all tangent
vectors tend to align with the fastest expanding subspace E1(p) associated with
the largest Lyapunov exponent λ1. Even if the initial vectors  are carefully
chosen to lie in different Lyapunov’s subspaces E(p), finite precision and the
different growth rates imply that, after sufficiently many steps, the component
along E1(p) dominates in each , and the remaining components become negligible
numerically. As a result, the algorithm effectively converges only to the largest
Lyapunov’s exponent λ1.
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Figure 4.4.: Graphical representation of the eventually convergence of some
arbitrary tangent vector init

1 to true
1 ∈ E1(p) over multiple rescaling

events at t = τ,2τ, . . . .

The goal is to ensure that, over long times, one vector converges to E1(p),
another to E2(p), and so on, so that each  eventually aligns (and remains aligned)
with the corresponding subspace E(p). To achieve this, we start at time t = 0 with
n tangent vectors

1, . . . , 2n ∈ TpM
that are mutually orthogonal with respect to the Riemannian metric g. Without loss
of generality, we may think of 1 as the vector that will eventually align with E1(p)
under the dynamics. After evolving the system over a time step τ, the images
(dφτ)p have, due to the dominance of the most unstable direction and numerical
imprecision, all acquired significant components along E1(p). If we remove from
each (dφτ)pj the projection onto (dφτ)p1, then over long times only the evolved
1 can align with E1(p): the others are continually forced to lie in directions
transverse to E1(p).

Repeating this idea, we also remove from (dφτ)pj the projections onto (dφτ)p1
and (dφτ)p2 for j ≥ 3, and so on. Inductively, this ensures that 2 aligns with
E2(p), 3 with E3(p), etc. This procedure is nothing other than a Gram–Schmidt
orthogonalization applied after each propagation step. It stabilizes the tangent
vectors and allows us to separate the different growth directions associated with
the full Lyapunov’s spectrum.

When δ0 ≪ 1, we may interpret 1, . . . , 2n as vectors in euclidean space,
since the curvature is negligible. From a linear algebra point of view, the
Gram-Schmidt procedure applied to a collection of linearly independent vectors
1, . . . ,2n ∈ R3n is equivalent to computing a QR decomposition of the 3n × 2n
matrix W = [1 . . . 2n]. (In the next section, we will choose each 1, . . . ,n
to represent a different tangent vector.) Concretely, Gram-Schmidt produces an
orthonormal family q1, . . . , q2n and scalars rj such that

W = QR, Q = [q1 . . . q2n] ∈ R3n×2n, R = (rj) ∈ R2n×2n,

where QTQ = 2n and R is upper triangular with rj = qT j for  ≤ j and rj = 0 for
 > j. In numerical practice, this factorization is usually computed by QR algorithms
such as Householder reflections rather than by the classical Gram–Schmidt
procedure, because the explicit QR viewpoint leads to algorithms that control loss
of orthogonality much better in finite machine precision. As a result, QR-based
orthogonalization is significantly more stable and reliable when n is large.

4.12. CALCULATION SCHEME FOR CLASSICAL SPIN SYSTEMS
We now specialize the above construction to a classical spin system with N spins.
The phase space is

M = (S2)N ⊂ R3N,
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but each spin S ∈ S2 is constrained to have unit length, so the phase space has 2N
degrees of freedom. Consequently, there are 2N Lyapunov’s exponents

λ1 ≥ λ2 ≥ · · · ≥ λ2N.

We will use the standard algorithm for computing the full Lyapunov spectrum via
periodic QR orthogonalization of tangent vectors [PP16, Section 3.2] adapted to
the phase space (S2)N. However, in our calculation scheme we do not construct
the tangent vectors explicitly. Instead, we evolve one reference trajectory and 2N
nearby trajectories at distance δ0 from the reference, and reconstruct approximate
tangent vectors at each reorthogonalization time by taking differences between the
reference and the nearby trajectories. These differences are arranged as columns of
a 3N × 2N matrix and orthogonalized by a QR decomposition. The upper triangular
factor contains the local stretching factors whose long-time averages give the
Lyapunov’s exponents.

REPRESENTATION OF DEVIATIONS
Let

S(t) =
�

S1(t), . . . ,SN(t)
�

∈ (S2)N ⊂ R3N

denote the reference trajectory, where each spin S(t) ∈ R3 satisfies ||S(t)|| = 1. We
choose 2N nearby trajectories

S(j)(t), j = 1, . . . ,2N,

with initial conditions at t = 0 such that

δ0 = ||S(j)(0) − S(0)||

for all j, where || · || is the Euclidean norm on R3N. For small enough δ0, the
differences

ΔS(j)(t) := S(j)(t) − S(t) ∈ R3N, j = 1, . . . ,2N,

approximate the evolution of 2N linearly independent tangent vectors.
At a given time tk = kτ, we collect these deviations into a 3N × 2N matrix

W(k) :=
�

ΔS(1)(tk), . . . ,ΔS(2N)(tk)
�

,

whose j-th column is the deviation of the j-th nearby trajectory from the reference
trajectory. Note that, although W(k) lives in R3N×2N, its rank is at most 2N, reflecting
the 2N physical degrees of freedom.

INITIALIZATION OF NEARBY TRAJECTORIES
At the initial time t0 = 0 we construct the 2N nearby trajectories in a symmetric
way. Starting from a given reference configuration S(0), we first clone it to all
trajectories:

S(j)(0)← S(0), j = 1, . . . ,2N.

We then perturb the spins one by one. For each spin index  ∈ {1, . . . , N} we create
two nearby trajectories by rotating only the -th spin of the reference configuration
while leaving all other spins unchanged.

More precisely, for each spin  we choose a small rotation angle θ0 > 0 and define
two perturbed configurations:

• one trajectory where S(0) is rotated by +θ0 with respect to the ŷ-axis,
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• one trajectory where S(0) is rotated by θ0 with respect to the ẑ-axis,

The angle θ0 is chosen such that each perturbed configuration has Euclidean
distance

||S(j)(0) − S(0)|| = δ0

from the reference configuration. This construction yields 2N nearby trajectories
whose deviations form a well-conditioned initial set of approximate tangent vectors
of norm δ0. Then, a single QR step, before starting the time evolution, is performed
to ensure that all these approximate tangent vectors become orthogonal. This QR
step is not used in the calculation of Lyapunov’s exponents.

SINGLE QR STEP
Assume that at time tk the deviations have already been orthogonalized and
rescaled so that

W(k) = Q(k)δ0,

where Q(k) is a 3N × 2N matrix whose columns are orthonormal in R3N and each
column has norm ||q(k)j || = 1. Equivalently, the columns of W(k) have norm δ0 and
are mutually orthogonal.

One QR step from tk to tk+1 = tk + τ consists of the following operations:

1. Propagation of trajectories. Evolve the reference and all nearby trajectories
with the same integrator over the time interval [tk , tk+1]:

S(tk) 7→ S(tk+1), S(j)(tk) 7→ S(j)(tk+1), j = 1, . . . ,2N.

2. Construction of deviations. Form the new deviation matrix

W(k+1) :=
�

ΔS(1)(tk+1), . . . ,ΔS(2N)(tk+1)
�

,

where
ΔS(j)(tk+1) := S(j)(tk+1) − S(tk+1).

3. Orthogonalization through QR decomposition. Compute the QR
decomposition of the 3N × 2N matrix W(k+1):

W(k+1) = Q(k+1)R(k+1),

where

• Q(k+1) is a 3N× 2N matrix with orthonormal columns (so (Q(k+1))⊤Q(k+1) =
2N),

• R(k+1) is a 2N × 2N upper triangular matrix with positive diagonal entries

r
(k+1)
 > 0,  = 1, . . . ,2N.

The matrix Q(k+1) provides a new orthonormal basis of deviation directions,
and the diagonal elements of R(k+1) encode the local stretching factors along
these directions over the time step [tk , tk+1].
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4. Rescaling and reconstruction of nearby trajectories. To keep the
deviations small and well within the linear regime, we reset the nearby
trajectories so that their deviations from the reference have norm δ0 and
directions given by the columns of Q(k+1). Let q

(k+1)
j denote the j-th column

of Q(k+1). We define new nearby trajectories at time tk+1 by

S(j)(tk+1)← 
�

S(tk+1) + δ0 q
(k+1)
j

�

, j = 1, . . . ,2N,

where  denotes the operation of normalizing each spin S to unit length. With
this rescaling, the updated deviation matrix becomes

W
(k+1)
reset = Q

(k+1)δ0,

ready for the next propagation step.

Note that although W(k+1) has size 3N × 2N, the upper triangular matrix R(k+1)

is only 2N × 2N. Thus, at each step we obtain exactly 2N diagonal elements r
(k+1)


corresponding to the 2N Lyapunov’s exponents of the system. The embedding
dimension 3N only affects the size of the orthonormal basis Q(k+1).

PHASE SPACE VOLUME AND LYAPUNOV’S EXPONENTS
Over K such QR steps, with total integration time T = Kτ, we obtain a sequence of
upper triangular matrices

R(1), R(2), . . . , R(K),

each with diagonal entries r
(k)
 > 0 for  = 1, . . . ,2N and k = 1, . . . , K. The diagonal

coefficients r(k) encode the change of the phase space volume element spanned by
the 2N deviation vectors. Indeed, the 2N columns of W(k) span a 2N-dimensional
parallelepiped in R3N whose volume (in the induced Euclidean metric) is

V(k) =
�

�detR(k)
�

� =
2N
∏

=1

r
(k)
 .

Finally, the Lyapunov’s exponents are given by the time-averaged logarithmic
growth of these diagonal entries:

λ = lim
K→∞

1

Kτ

K
∑

k=1

log r(k) ,  = 1, . . . ,2N.

In practice, for a finite integration time T = Kτ, we approximate

λ
(T)
 :=

1

Kτ

K
∑

k=1

log r(k) ,  = 1, . . . ,2N,

and monitor convergence as T increases.
Finally, we note the we are using the second-order Suzuki-Trotter numerical

scheme while carrying out this calculation. Due to this calculation of Lyapunov’s
exponents generally requiring simulations over relatively long periods of time, we
make use of the following identity,

NΔt = φ
HA

Δt/2 ◦ φ
HB

Δt ◦ φ
HA

Δt ◦ φ
HB

Δt · · · ◦ φ
HB

Δt ◦ φ
HA

Δt ◦ φ
HB

Δt ◦ φ
HA

Δt/2,
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for N time steps of size Δt, which provides a significant improvement of the
numerical scheme’s efficiency. However, we must remind ourselves to apply the
aforementioned QR step and calculate the finite-time Lyapunov’s exponent only at
integer multiples of Δt. Therefore, we structure the method as follows

NΔt = τΔt ◦ (QR step) ◦ τΔt ◦ (QR step) ◦ · · · ◦ τΔt ◦ (QR step),

where τ denotes the amount of time steps of size Δt before we apply the QR step
and calculate the finite-time Lyapunov’s exponents.



5
INVESTIGATIONS OF LYAPUNOV’S EXPONENTS IN

SPIN GLASS SHARDS

To restate our goal, we aim to gain insight in the connection between signatures
of chaos between a quantum many-body system and its classical many-body
counterpart. Specifically, we focus on the spin glass shards system in a random
transverse magnetic field studied by Georgeot and Shepelyansky [GS98]. In the
quantum regime, one signature of chaos is given by energy-level spacing statistics
and their crossover from Poissonian behavior, typical of integrable regimes, to GOE
statistics with strong level repulsion. The system of interest crosses between the
integrable magnetic, chaotic, and integrable spin-spin regimes, see figure 3.4.

In parallel, we construct and simulate the corresponding classical Hamiltonian
system (5.1) and quantify its dynamics via Lyapunov’s exponents computed using
the methods described in section (4.12). By comparing quantum energy-level
spacing statistics and classical Lyapunov’s exponents across many disorder
realizations and system parameter choices, we aim to identify how changing the
global system parameters and local disorder parameters simultaneously influences
the onset of classical chaos, and to map regions of parameter and phase space that
are effectively integrable or chaotic.

To further specify, we are studying the classical analog of the quantum system
introduced in section 3.4. The model is defined, for N classical spins, by the
Hamiltonian

H =
∑

<j

Jj S


S
j
+
∑N

=1
 Sz := HA + HB, (5.1)

where the first sum runs over all distinct spin pairs. This model represents a
classical spin glass shard interacting with a random transverse magnetic field. The
random transverse magnetic field is represented by the coefficients  which are
drawn independently from a uniform distribution in the interval [0,mx]. The
exchange interactions Jj are taken to be independent random variables uniformly
distributed in the interval [−Jmx/

p
N, Jmx/

p
N]. The 1/

p
N factor ensures the

energy per spin H/N stays finite rather than diverging with system size. In this way
one obtains a well-defined thermodynamic limit as N → ∞. For later convenience
we introduce the parameter

R :=
Jmx

Jmx + mx
.

R ≈ 0 corresponds to a system dominated by the transverse magnetic field, while
R ≈ 1 corresponds to a system dominated by the spin-spin coupling.

In this model the randomness is quenched: the couplings Jj and local fields  are
randomly drawn once and then kept fixed during the time evolution of the system.
A single choice of all {Jj} and {} at fixed J, > 0 is called a realization of disorder.

43
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Because the couplings Jj have random signs, the system is generally frustrated: it
is not possible to choose spin orientations that simultaneously minimize all pairwise
interaction terms. Consequently, for J not too small compared to , the ground state
is typically spin glass-like rather than a simple ferromagnetic or antiferromagnetic
configuration. Only in the strong-field limit ≫ J does one recover a field-polarized
ground state, with spins aligned mostly along the transverse field direction.

The Hamiltonian H can be split into two parts, HA and HB. The equations of
motion for these parts are obtained by applying equation (4.2), from which it follows
that

�

dS

dt

�

HA

=
∂HA

∂S
× S,

∂HA

∂S
=









∑

j ̸=
JjS


j

0
0









,

and
�

dS

dt

�

HB

=
∂HB

∂S
× S,

∂HB

∂S
=





0
0




 .

Thus, φHA

Δt (resp. φHB

Δt ) from the sympectic integrator is realized by rotating each spin
S around the -axis (resp. z-axis) by an angle

θ
(HA)
 =

�∑

j ̸=
JjS


j

�

Δt, θ
(HB)
 = Δt.

All data underlying the results presented is available at [Hui25].

5.1. NUMERICAL VALIDATION
For the second-order Suzuki–Trotter time integration scheme (Section 4.5) and
the calculation scheme for the Lyapunov’s exponents (Section 4.12) we adopt
the following notation: the parameter T denotes the total time duration of the
simulation, the parameter Δt denotes the duration of a single time step, τ denotes
the number of time steps between successive QR orthogonalization steps, and
δ0 denotes the initial deviation between the reference trajectory S(0) and the
perturbed spin configurations. We denote by 〈H〉 and 〈logV〉 the time-averaged
Hamiltonian and the time-averaged natural logarithm of the phase-space volume,
respectively. In the following, we determine suitable choices of these numerical
parameters such that the integration remains stable, in the sense that the
phase-space volume is approximately preserved, the Hamiltonian exhibits bounded
fluctuations around a constant mean without systematic drift, and the sum of all
Lyapunov’s exponents converges to zero within numerical accuracy.

CONSERVATION PROPERTIES OF THE INTEGRATOR
We start by validating the phase volume V and Hamiltonian H values that are
obtained during the simulation. For N = 17 and δ0 = 10−4 we expect

〈logV〉 ≈ 2N log δ0 ≈ −313.152,

which is consistent with the numerical results shown in figures 5.1b and 5.1d.
The amplitude of the fluctuations of logV around its mean is approximately an
order of magnitude larger for the RK4 time integrator than for the second-order
Suzuki–Trotter scheme.
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Moreover, a drawback of the non-symplectic RK4 integrator is immediately
visible in figure 5.1c: the Hamiltonian H exhibits an approximately linear drift in
time. In contrast, the second-order Suzuki–Trotter integrator yields a Hamiltonian
that remains bounded and fluctuates around a constant mean, see figure 5.1a.
However, we do note that the drift associated with the RK4 integrator is an
order of magnitude smaller than the observed fluctuations with the second-order
Suzuki-Trotter integrator.

(a) Second-order Suzuki–Trotter; Hamiltonian
fluctuations.

(b) Second-order Suzuki–Trotter; Phase space
volume fluctuations.

(c) RK4; Hamiltonian drift. (d) RK4; Phase space volume fluctuations.

Figure 5.1.: Results for N = 17, Δt = 10−2, τ = 50, δ0 = 10−4, Jmax = 1 and max = 1
(R = 0.5).
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DEPENDENCE ON TIME STEP

(a) (b)

Figure 5.2.: Results for N = 17, T = 104, τ = 0.5/Δt, δ0 = 10−4, Jmax = 1 and max = 1
(R = 0.5).

From figures 5.2 and 5.3 we observe that, for the 17-spin system, the choice of
time step Δt has a negligible effect on the maximal Lyapunov’s exponent λ1, on the
total sum

∑34
=1 λ, and on 〈logV〉.

Furthermore, we recall that τ counts the number of time integration steps
before reorthogonalizing the tangent vectors in the Lyapunov’s exponent calculation
procedure. In our implementation we represent tangent vectors as small deviations
between trajectories, which is only valid as long as these deviations remain
sufficiently small so that the curvature of phase space is negligible. Keeping the
product τΔt, the physical time interval between successive QR orthogonalization
steps, constant ensures that changing Δt does not change how long the deviations
are physically allowed to evolve before being orthogonalized. If τΔt is too large,
the deviations can potentially grow for too long between orthogonalizations such
that deviations will no longer accurately represent elements of tangent space.
We observe in figure 5.3, for which we fix τΔt = 0.5, that as a consequence
of not letting deviations grow for too long that tangent space is sufficiently well
approximated due to the observed preservation of phase-space volume.

Figure 5.3.: Results for N = 17, T = 104, τ = 0.5/Δt, δ0 = 10−4, Jmax = 1 and max = 1
(R = 0.5).

In contrast, we observe in figure 5.4 that the mean value of the Hamiltonian 〈H〉
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does depend on Δt. For Δt ≫ 10−2 we observe a pronounced deviation of 〈H〉 from
its reference value. Moreover, the standard deviation σ(H) grows approximately
quadratically with the time step as σ(H) ∝ Δt2.

(a)

(b)

Figure 5.4.: Results for N = 17, T = 104, τ = 0.5/Δt, δ0 = 10−4, Jmax = 1 and max = 1
(R = 0.5).

DEPENDENCE ON RESET INTERVAL
Next, we fix Δt = 10−3 and vary the reset interval τ. Over the range considered, τ
has a negligible influence on the mean and standard deviation of the Hamiltonian
H. However, beyond a certain threshold the preservation of phase-space volume
deteriorates. As shown in figure 5.5a, the phase-space volume is approximately
conserved for τ ≤ 500, while for τ > 500 systematic deviations appear. Furthermore,
figure 5.5b indicates an approximately linear growth of the standard deviation
σ(logV) with τ.

The maximal Lyapunov’s exponent λ1 remains essentially constant for τ ≤ 200,
but starts to deviate for larger reset intervals t > 500, see figure 5.5c. The
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dependence of
�

�

�

∑34
=1 λ

�

�

� on τ is more complex. The sum attains a minimum
near τ ≈ 100. For smaller τ the sum increases again, possibly because the
reorthogonalization interval is too short to clearly numerically distinguish between
linear and exponential separation of deviation trajectories. For larger τ the sum also
increases, which may be attributed to the deviations between trajectories becoming
too large, such that tangent space vectors are no longer properly approximated
by deviations due to the local curvature of phase space. To balance numerical
accuracy and computational efficiency, we use τ = 500 as an upper bound in the
simulations and adopt τΔt = 0.5 as the maximal reorthogonalization time.

(a) (b)

(c) (d)

Figure 5.5.: Results for N = 17, Δt = 10−3, δ0 = 10−4, Jmax = 1 and max = 1.

DEPENDENCE ON INITIAL SEPARATION
Finally, we briefly mention the role of the initial separation δ0 observed during
our investigation. For 10−7 ≤ δ0 ≤ 10−2 the simulations are generally stable. For
the 17-spin system, the Lyapunov spectrum and phase-space volume statistics are
largely insensitive to δ0 within this range. For larger spin systems, however, smaller
initial separations are required for numerical stability, typically δ0 ≪ 10−3. For the
remaining simulations δ0 is set equal to 10−4.

5.2. EXAMPLES OF LYAPUNOV SPECTRA
Having validated our choice of numerical parameters, we next examine several
representative realizations of the spin glass dynamics. In figure 5.6a we show the
time evolution of the finite-time Lyapunov’s exponents for a system with N = 17
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and coupling parameter R = 0.5, for which we expect influences from both the
spin-spin coupling and the transverse magnetic field. The exponents initially exhibit
substantial fluctuations, but gradually converge towards approximately stationary
values as the elapsed time increases.

A more detailed view is provided in figure 5.6b, where the Lyapunov’s exponents
and time are plotted on a logarithmic scale. We observe that two exponents
continue to approach zero, in agreement with the theoretical prediction of two
vanishing Lyapunov’s exponents for this system (Appendix A.3, Theorem 41),
while the remaining exponents reach quasi-stationary values and no longer change
significantly in time.

The final finite-time approximation of the Lyapunov spectrum is displayed in
figure 5.6. The numerical Lyapunov spectrum satisfies the expected properties: it
is symmetric, its sum is (within numerical accuracy) equal to zero, and it contains
precisely two exponents that are numerically close to zero. Moreover, the presence
of a strictly positive maximal Lyapunov’s exponent, λ1 ≈ 0.04, indicates that the
corresponding dynamics are chaotic.

(a) (b)

(c)

Figure 5.6.: Results for N = 17, Δt = 2.15 · 10−4, τ = 2321, δ0 = 10−4, Jmax = 1 and
max = 1 (R = 0.5).
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In figures 5.7a and 5.7b we show the time evolution of the finite-time Lyapunov’s
exponents for a classical spin glass system with N = 17 and coupling parameter
R = 1, a regime in which the dynamics are expected to be integrable. In this case,
the spins predominantly precess around the -axis due to the dominant spin-spin
coupling. We observe, as expected, that the finite-time Lyapunov’s exponents
clearly converge towards zero as the elapsed time increases. This behavior is
clearly visible in the logarithmic representation in figure 5.7b, where all exponents
continue to decrease and approach zero, in agreement with the absence of chaotic
dynamics in the integrable regime.

(a) (b)

Figure 5.7.: Results for N = 17, Δt = 2.15 · 10−4, τ = 2321, δ0 = 10−4, Jmax = 1 and
max = 0 (R = 1).

In figures 5.8a and 5.8b we show the time evolution of the finite-time Lyapunov’s
exponents for a classical system of spins in a transverse magnetic field with N = 17
and coupling parameter R = 0, a regime in which the dynamics are also expected
to be integrable. In this case, the spins predominantly precess around the z-axis
due to the dominant transverse magnetic field.

The finite-time Lyapunov’s exponents rapidly decay and converge towards zero
as the elapsed time increases, in agreement with the absence of chaotic behavior.
Moreover, compared to the spin-spin coupling dominated case (R = 1), the absolute
values of the exponents in this system (R = 0) are approximately five orders of
magnitude smaller at the last timestep, indicating a significantly faster convergence
to zero.

Having examined one chaotic realization (R = 0.5) and two integrable limits
(R = 0;R = 1) of the dynamics, we now turn to an intermediate regime that exhibits
a mixture of integrable and chaotic behavior. In figures 5.9a and 5.9b we show the
time evolution of the finite-time Lyapunov’s exponents for a classical system of spins
in a transverse magnetic field with N = 17 and coupling parameter R = 0.0909. This
parameter choice interpolates between the purely magnetic field-driven and the
strongly interacting spin-spin regimes and is therefore expected to generate mixed
dynamical behavior.

The corresponding finite-time Lyapunov spectrum at the end of the simulation is
shown in figure 5.9c. A substantial fraction of the Lyapunov’s exponents are close
to zero, indicating tangent-space directions associated with nearly integrable or
weakly chaotic motion. In contrast, a subset of exponents attains clearly non-zero
values, signaling directions in phase space for which nearby trajectories separate
exponentially.
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(a) (b)

Figure 5.8.: Results for N = 17, Δt = 2.15 · 10−4, τ = 2321, δ0 = 10−4, Jmax = 0 and
max = 1 (R = 0).

(a) (b)

(c)

Figure 5.9.: Results for N = 17, Δt = 2.15 · 10−4, τ = 2321, δ0 = 10−4, Jmax = 1 and
max = 10 (R = 0.0909).
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LARGER NUMBER OF SPINS
To demonstrate the capability of the present approach, we compute the full
Lyapunov spectrum for a system with N = 100 spins and coupling parameter
R = 0.5. The resulting spectrum satisfies all expected structural constraints: it is
symmetric, its sum is (within numerical accuracy) equal to zero, and it contains
precisely two exponents that converge to zero, as illustrated in figure 5.7b.

The computation of Lyapunov spectra for such large systems is, however,
numerically demanding, owing to both the long integration times required for
convergence and the cost of repeated QR decompositions in a high-dimensional
tangent space. In the remainder of this work we therefore focus on the N = 17 spin
system, which is also the second-largest amount of spins examined in [GS98].

(a) (b)

Figure 5.10.: Results for N = 100, Δt = 10−4, τ = 5000, δ0 = 10−4, Jmax = 1 and
max = 1 (R = 0.5).

5.3. LYAPUNOV SPECTRA FOR PHASE SPACE ENSEMBLES
We expect the phase space of our classical spin system to contain regions in
which either predominantly integrable or chaotic dynamics are present. Intuitively,
configurations with spins oriented closer to the z-axis are expected to be more
strongly influenced by the transverse magnetic field, whereas configurations closer
to the -axis are expected to be dominated by the spin-spin coupling. To
quantitatively inspect these distinct regions, we introduce three different ensembles
of initial configurations in phase space, each sampling a specific region of interest,
see figure 5.11.

The first ensemble is the uniform ensemble, for each spin S one samples polar
and azimuthal angles (θ, ϕ) with cosθ uniformly distributed in [−1,1] and ϕ
uniformly distributed in [0,2π), and set S = (sinθ cosϕ, sinθ sinϕ, cosθ).

The second and third ensembles concentrate the sampling near a specific
direction in spin space. In the z-focused ensemble, we fix the z-component of each
spin to a prescribed value

Sz

= 1 − Δz, Δz ∈ [0,2],

and sample the components (S , S
y
 ) uniformly on the corresponding circle of radius

Æ

1 − (1 − Δz)2 in the y-plane. Concretely, this can be implemented by choosing
an angle ϕ ∈ [0,2π) uniformly at random for each spin and setting

S

=
q

1 − (1 − Δz)2 cosϕ, S
y
 =

q

1 − (1 − Δz)2 sinϕ.



5.3. Lyapunov spectra for phase space ensembles

5

53

In the -focused ensemble, we instead fix

S

= 1 − Δ, Δ ∈ [0,2],

and sample (Sy , S
z
 ) uniformly on the circle of radius

Æ

1 − (1 − Δ)2 in the yz-plane
by choosing ϕ ∈ [0,2π) uniformly and setting

S
y
 =

Æ

(1 − (1 − Δ)2 cosϕ, Sz

=
q

1 − (1 − Δ)2 sinϕ.

Figure 5.11.: A graphical representation of each ensemble, a dot representing a
sampled point of a trajectory. The uniform, z-focused and -focused
ensemble are shown in the respective left, middle and right image.

TYPICAL TRAJECTORIES IN DIFFERENT ENSEMBLES

We first consider spin trajectories initialized in the uniform ensemble, where a
single spin configuration is sampled uniformly on the unit sphere. When R = 0.75,
indicating that both the magnetic field and spin-spin coupling are dominant, we
observe in figure 5.12a that the spin trajectory explores a substantial part of the
entire phase space. This indicates that the associated energy shell is effectively
spread over a large region of phase space, consistent with chaotic dynamics.

When the coupling parameter is increased to R = 0.975, the system is placed in
a nearly integrable regime dominated by the spin-spin interaction, the qualitative
nature of the motion changes significantly. As illustrated in figure 5.12b, the
trajectory of the same spin, started from the same initial configuration in the
uniform ensemble, becomes confined to a comparatively small subset of phase
space and is characterized by quasi-periodic precession around the -axis, which is
expected for this specific choice of R.
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(a) max = 0.33 (R = 0.75). (b) max = 0.02564 (R = 0.975).

Figure 5.12.: Spin coordinates of the first spin S1 over time for a trajectory from
the uniform ensemble. Chosen parameters are N = 17, Δt = 10−3,
τ = 500, δ0 = 10−4 and Jmax = 1. More trajectories are provided in
appendix A.2.

To further illustrate the qualitative behavior of typical trajectories, we focus on the
z-focused ensemble for several representative values of R and Δz. For Δz = 0.05
and R = 0.2, the trajectory of a single spin, shown in figure 5.13a, remains close to
the z-axis and exhibits predominantly quasi-periodic precessions around the z-axis,
as expected for a nearly integrable regime in which the transverse magnetic field is
dominant.

Increasing the coupling parameter to R = 0.5, while keeping the same initial spin
configuration for Δz = 0.05, leads to a distinctly different behavior (figure 5.13b):
the trajectory becomes more irregular and explores a larger fraction of the
accessible phase space, although its support on the energy shell is still largely
confined to the upper hemisphere.

Another picture emerges when the system is evolved in a regime where the
spin-spin interactions dominate. In figures 5.13c (Δz = 0.05) and 5.13d (Δz = 0.01),
trajectories initialized in the z-focused ensemble are shown for R = 0.975. Although
the spins are initially aligned predominantly with the transverse magnetic field, the
subsequent dynamics are rapidly governed by the spin-spin coupling. Consequently,
the long-time motion is characterized by quasi-periodic precession around the
-axis.
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(a) Δz = 0.05,max = 4 (R = 0.2). (b) Δz = 0.05,max = 1 (R = 0.5).

(c) Δz = 0.01,max = 0.0256 (R = 0.975). (d) Δz = 0.05,max = 0.0256 (R = 0.975).

Figure 5.13.: Spin coordinates of the first spin S1 over time for a trajectory from
the z-focused ensemble. Chosen parameters are N = 17, Δt = 10−3,
τ = 500, δ0 = 10−4 and Jmax = 1. For Δz = 0.01, more trajectories are
provided in appendix A.3.

LYAPUNOV SPECTRA IN DIFFERENT ENSEMBLES

Having examined the typical trajectories, we now turn to the Lyapunov spectra for
spin configurations initialized in the uniform ensemble. In figures 5.14a, 5.14b
and 5.14c we show the final finite-time Lyapunov spectra for R = 0.2, R = 0.75 and
R = 0.975, respectively. For R = 0.2 and R = 0.75 the Lyapunov’s exponents form
a relatively compact band, with no clear separation into distinct groups, indicating
that the typical trajectories sampled by the uniform ensemble exhibit comparable
dynamics.

In contrast, for R = 0.975 we observe a bimodal structure in the spectrum.
Some trajectories have clearly positive Lyapunov’s exponents, indicative of chaotic
dynamics, while others have significantly smaller exponents that cluster near zero,
indicative of integrable dynamics. This splitting suggests that, for this specific
disorder realization, in the regime where the spin-spin coupling is dominant but a
weak transverse magnetic field is still present, spin configurations sampled from the
uniform ensemble can exhibit qualitatively different dynamical behaviour, ranging
from strongly chaotic to nearly integrable.
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(a) max = 4 (R = 0.2). (b) max = 0.33 (R = 0.75).

(c) max = 0.02564 (R = 0.975).

Figure 5.14.: The Lyapunov’s exponents for 100 trajectories (blue dots) from the
uniform ensemble and each exponent’s average (black dot). Chosen
parameters are N = 17, Δt = 10−3, τ = 500, δ0 = 10−4 and Jmax = 1.
More Lyapunov spectra are provided in appendix A.1a.

For trajectories initialized in the z-focused ensemble (Δz = 0.05), we do not
observe a bimodal Lyapunov spectrum, see figure 5.15. Instead, as shown
in figure 5.15a, the tangent space contains a larger number of directions with
Lyapunov’s exponents close to zero for R = 0.2 than in the corresponding uniform
ensemble case. This indicates that the initial coupling to the transverse magnetic
field remains dynamically dominant over long times, leading to dynamics that are
close to integrable.
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(a) Δz = 0.05,max = 4 (R = 0.2). (b) Δz = 0.05,max = 1 (R = 0.5).

(c) Δz = 0.05,max = 0.0256 (R = 0.975).

Figure 5.15.: The Lyapunov’s exponents for 100 trajectories (blue dots) from the
z-focused ensemble and each exponent’s average (black dot). Chosen
parameters are N = 17, Δt = 10−3, τ = 500, δ0 = 10−4 and Jmax = 1.
More Lyapunov spectra are provided in appendix A.1b-A.1c.

AVERAGING PROCEDURES FOR THE MAXIMAL LYAPUNOV’S EXPONENT
We introduce one additional heuristic concerning the averaging procedure when
calculating the average Lyapunov’s exponent for several trajectories in a given
ensemble. There are two types of averaging we apply. The first method is to take
the trivial arithmetic average 〈λ〉arithmetic of all the individual maximum Lyapunov’s
exponents of each trajectory. The second is to average all the traversed distances of
all the individual trajectories in the direction of the maximum Lyapunov’s exponent,
and use that average distance to calculate the Lyapunov’s exponent as

〈λ〉dist = lim
t→∞

1

t
log

�

〈dist(t)〉
�

.

Because the logarithm is concave, Jensen’s inequality implies 〈λ〉arithmetic ≤ 〈λ〉dist.
If 〈λ〉arithmetic ≈ 〈λ〉dist, it means that different trajectories have similar dynamics.
If the two values differ significantly, that indicates that some trajectories in the
ensemble are much more unstable than others and strongly influence the average
distance [Tex20].

DEPENDENCE OF λ1 ON THE COUPLING RATIO R
We expect the appearance of integrable or chaotic dynamics to depend on several
factors, including the overall strength of the spin-spin coupling Jmx, the strength
of the transverse magnetic field mx, the specific realization of disorder, and
the region of phase space in which the trajectory is initialized. We investigate
this dependency by fixing a specific ensemble and, for one or more realizations
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of disorder, investigate how the maximal Lyapunov’s exponent λ1 and the
Kolmogorov–Sinai entropy HKS depend on the coupling ratio R = Jmx/(Jmx + mx).

In figure 5.16 we show the dependence of λ1 on R for trajectories initialized
in the uniform ensemble. In the limits mx ≫ Jmx and mx ≪ Jmx the system
exhibits expected integrable dynamics, as shown by the vanishing of λ1. For
values of 0 < R < 0.04, figures 5.16a and 5.16c show a small integrable plateau
in which λ1 remains close to zero, indicating that the transverse magnetic field is
still sufficiently strong to suppress chaotic behavior. In contrast, for the realization
of disorder shown in figure 5.16d, this plateau is significantly smaller, indicating a
weaker effective magnetic-field dominance for that particular disorder configuration.
Across all realizations considered, the maximal Lyapunov’s exponent attains its
largest value near mx ≈ Jmx/3 (corresponding to R ≈ 0.75).

(a) Realization of disorder #1, uniform. (b) Realization of disorder #1, uniform.

(c) Realization of disorder #2, uniform. (d) Realization of disorder #3, uniform.

Figure 5.16.: The maximum Lyapunov’s exponent λ1, Kolmogorov-Sinai entropy
HKS, 〈λ1〉arithmetic (black dot) and 〈λ1〉dist (red dot) for 200 ratios of
Jmax/(Jmax + max). For each sampled ratio, 100 runs were executed.
Each run was chosen from the uniform ensemble. Chosen parameters
are N = 17, T = 3 · 104, Δt = 10−2, τ = 50, δ0 = 10−4 and Jmax = 1.

In figure 5.17 we show the dependence of λ1 on R for trajectories initialized in
the z-focused ensemble with Δz = 0.05. For 0 < R < 0.018, figures 5.17a and 5.17c,
in comparison to the uniform ensemble, show a larger integrable plateau in which
λ1 remains close to zero. This indicates that, within the z-focused ensemble,
comparatively small values of the global magnetic field strength mx are sufficient
to suppress chaotic dynamics, in contrast to the behavior observed for the uniform
ensemble. At the same time, for 0.05 < R < 0.6 the curves display a clear
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dependence on the specific realization of disorder. In figures 5.17a, 5.17c and
5.17d we observe several peaks and valleys where the R-dependence of λ1 differs
substantially between realizations, signaling a significant sensitivity to quenched
disorder in this ensemble. Nevertheless, across all realizations considered, the
value of R at which the maximal Lyapunov’s exponent attains its largest value is
consistent, occurring near R ≈ 0.8.

(a) Realization of disorder #1, Δz = 0.05. (b) Realization of disorder #1, Δz = 0.05.

(c) Realization of disorder #2, Δz = 0.05. (d) Realization of disorder #3, Δz = 0.05.

Figure 5.17.: The maximum Lyapunov’s exponent λ1, Kolmogorov-Sinai entropy
HKS, 〈λ1〉arithmetic (black dot) and 〈λ1〉dist (red dot) for 200 ratios of
Jmax/(Jmax + max). For each sampled ratio, 100 runs were executed.
Each run was chosen from the z-focused ensemble for Δz = 0.05.
Chosen parameters are N = 17, T = 3 · 104, Δt = 10−2, τ = 50,
δ0 = 10−4 and Jmax = 1.

By concentrating the z-focused ensemble more closely around the z-axis
(Δz = 0.01), we observe in figure 5.18a that, in the interval 0.25 < R < 0.35, the
dynamics vary greatly per trajectory. Some trajectories remain nearly integrable
with λ1 ≈ 0, while others exhibit clearly positive Lyapunov’s exponents indicative of
chaotic behavior. In contrast, when the ensemble is placed farther away from the
z-axis (figure 5.18c) the near-integrable trajectories disappear and the ensemble
consists primarily out of trajectories with chaotic dynamics.
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(a) Δz = 0.01. (b) Δz = 0.01.

(c) Δz = 0.10. (d) Δz = 0.10.

Figure 5.18.: The maximum Lyapunov’s exponent λ1, Kolmogorov-Sinai entropy
HKS, 〈λ1〉arithmetic (black dot) and 〈λ1〉dist (red dot) for 200 ratios of
Jmax/(Jmax + max). For each sampled ratio, 100 runs were executed.
Each run was chosen from the z-focused ensemble. The realization of
disorder for the chosen system is #1. Chosen parameters are N = 17,
T = 3 · 104, Δt = 10−2, τ = 50, δ0 = 10−4 and Jmax = 1.

In figure 5.19 we show the dependence of the maximal Lyapunov’s exponent λ1
on R for trajectories initialized in the -focused ensemble, for several values of Δ.
For Δ = 0.01 and Δ = 0.10 (see figures 5.19c and 5.19d), we observe a narrow
integrable plateau in the interval 0.95 < R < 1, where λ1 remains close to zero.
This indicates that a sufficiently strong spin-spin coupling can enforce integrable
dynamics. Moreover, we also find a thin integrable plateau for 0 < R < 0.05,
showing that in this -focused ensemble a sufficiently strong transverse magnetic
field can also enforce integrable dynamics. In contrast, for the uniform and
z-focused ensemble we were unable to find a sufficiently strong spin-spin coupling
Jmx to enforce integrable dynamics when mx ̸= 0.

In figure 5.19 we also see that, for each value of Δ, there exists a global
parameter range, when Jmx ≫ mx, for which λ1 changes rapidly under small
variations of R. This sharp crossover suggests that there exists a threshold value
of R in this range at which the qualitative nature of the dynamics changes for
almost all trajectories in the ensemble and the chosen realization of disorder.
Furthermore, in the -focused ensemble the value of R at which the maximal
Lyapunov’s exponent attains its largest value is slightly reduced compared to the
uniform and z-focused ensembles, occurring at R ≈ 0.65–0.7.
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(a) Δ = 0.05. (b) Δ = 0.05.

(c) Δ = 0.01. (d) Δ = 0.10.

Figure 5.19.: The maximum Lyapunov’s exponent λ1, Kolmogorov-Sinai entropy
HKS, 〈λ1〉arithmetic (black dot) and 〈λ1〉dist (red dot) for 200 ratios of
Jmax/(Jmax + max). For each sampled ratio, 100 runs were executed.
Each run was chosen from the -focused ensemble. The realization of
disorder for the chosen system is #1. Chosen parameters are N = 17,
T = 3 · 104, Δt = 10−2, τ = 50, δ0 = 10−4 and Jmax = 1.

HAMILTONIAN RESCALING
One challenge in comparing results from different choices of global parameters
(Jmx,mx) is that both the typical values and the distribution of the Hamiltonian H
changes. The same absolute energy can then correspond to different parts of the
spectrum for different parameter sets. For example, a given value of H might lie
near the center of the energy distribution for one choice of (Jmx,mx), but in the
low- or high-energy tails for another, where the density of states and accessible
phase-space volume are different. As a result, Lyapunov’s exponents evaluated at
a fixed value of H are not directly comparable across different parameter sets.

In the quantum case for the energy-level spacing statistics, when unfolding the
spectrum, energy spacings are rescaled by the mean level spacing ΔE, so that
(E1 − E2)/ΔE has unit mean spacing. In the classical case, we can still similarly
remove the overall scale of H by normalizing with the ensemble standard deviation
σ(H). Concretely, we work with the ratio H/σ(H), where σ(H) is computed for
a chosen ensemble of spin configurations at fixed (Jmx,mx). This provides a
natural energy unit determined by the width of the energy distribution. Comparing
Lyapunov’s exponents at fixed H/σ(H) then means comparing trajectories at
similar relative positions within their respective energy distributions, rather than
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at arbitrary absolute values of H. By exploiting the symmetry and independent
probability distribution of the coefficients Jj, and spin S we can calculate σ(H) for
our three different ensembles. We obtain for the uniform ensemble:

σ(H) =

√

√

√
N − 1
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J2mx +

N

9
2mx,

and for the z-focused ensemble

σ(H) =
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√

√N − 1
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�

Δz −
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J2mx +
N

12
(1 − Δz)22mx,

and for the -focused ensemble

σ(H) =

√

√

√
N − 1

6
(1 − Δ)4J2mx +

N

6
(2Δ − Δ2)2mx.

Using these expressions for σ(H), we observe in figures 5.20-5.22 the relationship
beween the maximum Lyapunov’s exponent λ1 and the rescaled energy H/σ(H) for
several ensembles. These figures illustrate how chaotic and integrable dynamics
can arise for certain energy ranges in a given ensemble.

In figure 5.20 we compare the maximum Lyapunov’s exponent λ1 to the rescaled
energy H/σ(H) for several values of R in the uniform and z-focused ensemble. For
the z-focused ensembles, we observe that the dense clusters of points in figures
5.20b, 5.20c and 5.20d correspond to the peaks and valleys seen in figures 5.17a,
5.17c and 5.17d. This indicates that these pronounced features in λ1 are mainly
associated with trajectories with a relatively large rescaled energy, rather than with
typical rescaled energies near H/σ(H) ≈ 0.

More specifically, figure 5.21c shows that trajectories in the z-focused ensemble,
with Δz = 0.01, have large values of H/σ(H) up to relatively large values of R when
compared to the z-focused ensemble with Δz = 0.05. In contrast, figure 5.21d
shows that trajectories in the z-focused ensemble, with Δz = 0.10, have smaller
values of H/σ(H) already at relatively lower values of R than for the z-focused
ensemble with Δz = 0.05.

In figures 5.20e, 5.21c and 5.21d we also see that, as the spin-spin coupling
becomes more dominant (larger R), the sampled values of H/σ(H) move closer to
zero. For the z-focused ensemble this suggests that stronger spin-spin couplings
results in smaller energy values, whereas for small values of R the z-focused
ensemble more frequently samples larger energies. Finally, for the uniform
ensemble we observe in figure 5.20a that varying R has only a relatively small
effect on the distribution of H/σ(H), so the overall rescaled energy distribution is
relatively insensitive to changes in R.
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(a) Realization of disorder #1, uniform. (b) Realization of disorder #1, Δz = 0.05.

(c) Realization of disorder #2, Δz = 0.05. (d) Realization of disorder #3, Δz = 0.05.

(e) Realization of disorder #1, Δz = 0.05.
Zoomed out view of figure 5.20b.

Figure 5.20.: The maximum Lyapunov’s exponent for various values of H/σ(H).
For each of the 200 sampled ratios Jmax/(Jmax + max) and ensemble
choice, 100 runs were executed. Each run was chosen from the
uniform or z-focused ensemble. Chosen parameters are N = 17,
T = 3 · 104, Δt = 10−2, τ = 50, δ0 = 10−4 and Jmax = 1. More uniform
ensemble distributions are provided in appendix A.5.
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(a) Δz = 0.01. (b) Δz = 0.10.

(c) Δz = 0.01. Zoomed out view of figure
5.21a.

(d) Δz = 0.10. Zoomed out view of figure
5.21b.

Figure 5.21.: The maximum Lyapunov’s exponent for various values of H/σ(H). For
each of the 200 sampled ratios Jmax/(Jmax + max), 100 runs were
executed. Each run was chosen from the z-focused ensemble. The
realization of disorder for the chosen system is #1. Chosen parameters
are N = 17, T = 3 · 104, Δt = 10−2, τ = 50, δ0 = 10−4 and Jmax = 1.

In figure 5.22 we compare the maximum Lyapunov’s exponent λ1 to the rescaled
energy H/σ(H) for several values of R in the -focused ensemble. In figures 5.22a
and 5.22c we observe that the clusters of red points at relatively small values of
H/σ(H) correspond to the integrable plateaus seen in figures 5.19c and 5.19d near
the spin-spin coupling dominated regime.

Moreover, as the transverse magnetic field becomes more dominant, the sampled
values of H/σ(H) in the -focused ensemble shift slightly toward smaller values of
H/σ(H), but this shift is noticeably weaker than in the z-focused case shown in
figure 5.20e.
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(a) Δ = 0.01. (b) Δ = 0.01. Zoomed out view.

(c) Δ = 0.10. (d) Δ = 0.10. Zoomed out view.

Figure 5.22.: The maximum Lyapunov’s exponent for various values of H/σ(H). For
each of the 200 sampled ratios Jmax/(Jmax + max), 100 runs were
executed. Each run was chosen from the -focused ensemble. The
realization of disorder for the chosen system is #1. Chosen parameters
are N = 17, T = 3 · 104, Δt = 10−2, τ = 50, δ0 = 10−4 and Jmax = 1.
More -focused ensemble distributions are provided in appendix A.5.

These figures show that measuring energy in units of its ensemble standard
deviation, H/σ(H), is a method to compare dynamics across different system
parameter choices and ensembles. In the z-focused ensembles, the strong peaks
and dips in the largest Lyapunov’s exponent are mainly found for trajectories at
relatively large rescaled energies, while trajectories near H/σ(H) ≈ 0 have more
integrable dynamics. As the spin-spin coupling becomes stronger, the sampled
rescaled energies in the z-focused case shift toward zero, this shift is slower
for initial spin configurations that are more closely aligned with the z-axis. In
the uniform ensemble, the rescaled energy distribution hardly changes with the
coupling ratio R, and in the -focused ensembles the integrable plateaus correspond
to clusters at relatively small rescaled energies, with only a modest shift as the
transverse magnetic field increases. Overall, depending on the choice of ensemble,
the figures show that whether the dynamics are chaotic or integrable can be
associated with certain energy ranges in the rescaled energy distribution.

5.4. LYAPUNOV SPECTRA FOR MULTIPLE REALIZED DISORDERS
Having examined the dynamics for varying global parameters (Jmx,mx) and a few
realizations of disorder, the question remains to what extent different realizations
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of disorder behave similarly or differently in general. Our approach is to fix a phase
space ensemble, choose several values of R, and compute the maximal Lyapunov’s
exponent λ1 for multiple realizations of disorder at several fixed values of R.

In figure 5.23 we show the results for the uniform ensemble. The sampled energy
values span a broad interval and form an approximately symmetric distribution
around H = 0, consistent with the expectation for spins uniformly sampled on
the unit sphere. Across different realizations of disorder, the observed dynamics
(integrable or chaotic) are similar for different values of H, although the absolute
values of the exponents vary per realization, the general form is largely preserved
from one realization to another. In particular, we see in figure 5.23d, for R = 0.75,
that the largest values of λ1 occur predominantly near H ≈ 0. For R = 0.4
(figure 5.23c), the largest values of λ1 tend to occur in either the maximum or
minimum sampled value of the Hamiltonian H, depending on the specific realization
of disorder. Thus, in this regime the energy where chaos is strongest is qualitatively
more sensitive to the particular realization of disorder. Finally, for smaller values of
R, such as in figures 5.23a and 5.23b, we no longer observe a clear dependence
of λ1 on H. Instead, different realizations of disorder mainly act to shift the overall
value of λ1 up or down, with only a noisy dependency on the Hamiltonian.

(a) max = 9 (R = 0.1). (b) max = 3.28 (R = 0.2335).

(c) max = 1.5 (R = 0.4). (d) max = 0.33 (R = 0.75).

Figure 5.23.: The maximum Lyapunov’s exponent for various values of H. For each
of the 10 shown realizations of disorder, shown in different colors,
100 runs were executed. Each run was chosen from the uniform
ensemble. Chosen parameters are N = 17, T = 3 · 104, Δt = 10−2,
τ = 50, δ0 = 10−4, Jmax = 1.

In figure 5.24 we show the results for the z-focused ensemble. For this ensemble
the sampled energies are mostly positive and, for each realization of disorder,
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occupy a comparatively narrow interval, as expected from configurations whose
spins are initially concentrated near the direction of the transverse magnetic field.
For values of R ≥ 0.33, see figures 5.24c, 5.24d and 5.24e, the observed maximal
Lyapunov’s exponents are all significantly positive and form a single cluster for each
realization of disorder, with similar vertical height in λ1. The clusters are slightly
diagonal, which we can interpret by noticing that within the z-focused ensemble,
systems with larger values of H correspond to spin configurations more closely
aligned with the transverse magnetic field, resulting in a larger HB term, whereas
configurations with smaller values H at the same R have a, relative to HB, larger
contribution from the spin-spin term HA. Because chaotic dynamics are expected
to be stronger when both spin-spin interactions and magnetic field terms contribute
substantially, a slight diagonal shape of the clusters is expected.

For smaller values of R, starting around R ≃ 0.2335 (figure 5.24b), a qualitatively
different pattern emerges. For each realization of disorder, the points separate
into two distinct types: one vertically extended cluster with clearly positive λ1,
characteristic of chaotic dynamics, and a small, point cloud with λ1 ≈ 0, indicative of
nearly integrable motion. Within the set of realizations examined, each realization
appears to fall primarily into one of these two types, and we do not observe cases
that display both types. This suggests the existence, for the z-focused ensemble
at Δz = 0.05, of a certain threshold value for the coupling ratio 0.2335 ≤ R ≤ 0.33
below which the observed type of dynamics of all trajectories in the ensemble is
dependent on the specific realization of quenched disorder.
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(a) max = 5.66 (R = 0.15). (b) max = 3.28 (R = 0.2335).

(c) max = 2.03 (R = 0.33). (d) max = 1.5 (R = 0.4).

(e) max = 1 (R = 0.5).

Figure 5.24.: The maximum Lyapunov’s exponent for various values of H . For each
of the 100 shown realizations of disorder, shown in different colors,
100 runs were executed. Each run was chosen from the z-focused
ensemble with Δz = 0.05. Chosen parameters are N = 17, T = 3 · 104,
Δt = 10−2, τ = 50, δ0 = 10−4 and Jmax = 1.

In figure 5.25 we show the results for the -focused ensemble with Δ = 0.01. For
this ensemble the sampled energies form an approximately symmetric distribution
and, for each realization of disorder, occupy a narrow interval. This is consistent
with the fact that the dominant contribution to the energy comes from the spin-spin
interaction term HA, while the -component of each spin is initially fixed. Since the
z-component can vary only slightly for Δ = 0.01, and mx ≪ 1 for R > 0.925, the
contribution of the field term HB remains small, which explains the narrow spread
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in H per realization.
As in the z-focused case, we observe two types of realizations of disorder:

some realizations exhibit predominantly chaotic behavior with clearly positive λ1,
while others display point clouds with λ1 ≈ 0 indicative of integrable dynamics.
In the -focused ensemble, however, there also exist realizations that exhibit
characteristics of both types. Overall, as mx increases (corresponding to
decreasing R), the typical magnitude of λ1 grows and the fraction of integrable
point clouds decreases. For R = 0.95 and R = 0.925, among the realizations that
exhibit chaotic behavior, those with energy distribution H ≈ 0 tend to have slightly
larger maximal Lyapunov’s exponents.

(a) max = 0.0811 (R = 0.925). (b) max = 0.0526 (R = 0.95).

(c) max = 0.0256 (R = 0.975). (d) max = 0.0256 (R = 0.99).

Figure 5.25.: The maximum Lyapunov’s exponent for various values of H . For each
of the 100 shown realizations of disorder, shown in different colors,
100 runs were executed. Each run was chosen from the -focused
ensemble with Δ = 0.01. Chosen parameters are N = 17, T = 3 · 104,
Δt = 10−2, τ = 50, δ0 = 10−4 and Jmax = 1.
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DISCUSSION

We first note that the numerical results in section (5.1) confirm the correct
implementation of the second-order Suzuki–Trotter integrator and the Lyapunov’s
exponents calculation scheme. The phase-space volume and the Hamiltonian
fluctuate around their expected constant mean values, without exhibiting any
systematic drift. In addition, the symplectic form ω is preserved over the entire
integration time, as reflected in two key properties of the Lyapunov spectrum. First,
the sum of all Lyapunov’s exponents converges to zero within numerical accuracy,
as expected for a integration scheme that preserves phase space volume. Second,
the finite-time Lyapunov’s exponents converge to symmetric pairs, which indicates
that the symplectic structure is preserved by the numerical scheme.

Furthermore, we have successfully computed full Lyapunov spectra for systems
with N = 17 spins (figures 5.6, 5.7a, 5.8a and 5.9c) and also for a substantially
larger system with N = 100 spins (figure 5.10a). In both cases the spectra satisfy
the expected constraints.

DEPENDENCE ON COUPLING PARAMETERS
Our results confirm that the classical spin glass shard model (5.1) exhibits both
integrable and chaotic dynamics, depending on the relative strength of the spin-spin
coupling Jmx and the transverse magnetic field mx.

A first observation is that, as expected, for all ensembles studied (uniform,
z-focused and -focused), the dynamics indeed become integrable in the limits
R ≈ 0 and R ≈ 1, see figures 5.16, 5.17, 5.18 and 5.19. In these limits the maximal
Lyapunov’s exponent λ1 approaches zero and the motion of the trajectories are well
described by a precession dominated either by the magnetic field (R→ 0) or by the
spin-spin coupling (R→ 1).

For the z-focused ensemble with Δz = 0.05, figure 5.17 shows plateaus of
integrability at small values of R < 0.2, which are more pronounced than in the
uniform ensemble. This indicates that aligning spins closer to the z-axis makes
it easier for the transverse magnetic field to enforce integrable dynamics. At
the same time, the dependence of λ1 on R is more irregular in the z-focused
ensemble, especially when R < 0.5. In particular, in figure 5.17d we observe that
several pronounced peaks and valleys are present for one realization of disorder
that produced a relatively weak interaction with the transverse magnetic field.

The -focused ensemble exhibits its own characteristic features. For several
values of Δ we again observe integrable behaviour as R → 0 and R → 1, but
the location of the maximum of λ1 is shifted slightly to R ≈ 0.65 − 0.70, see
figure 5.19. This suggests that trajectories initially aligned closer to the -axis
become maximally chaotic at relatively stronger transverse magnetic fields than
those in the uniform or z-focused ensembles. Moreover, while we might generally
expect that concentrating the focused ensembles closer to the coordinate axes,
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by choosing a smaller Δ or Δz, makes it more likely to obtain larger plateaus of
integrability around R ≈ 0 or R ≈ 1, our results show that this expectation is not
always valid. In particular, for the realization of disorder shown in figure 5.17, the
plateau of integrability observed for Δ = 0.05 (figure 5.19a) is in fact smaller than
the corresponding plateau of integrability for Δ = 0.10 (figure 5.19d), indicating
that the emergence and size of integrable regions depend in a nontrivial way on
the ensemble choice.

One additional observation is that for all ensembles the strongest chaotic
dynamics are consistently found near mx ≈ 0.33 Jmx. For this choice of
global parameters, the maximal Lyapunov’s exponent λ1 attains its largest value,
independent of the specific realization of disorder, see figures 5.16, 5.17 and 5.19.
The location of the strongest chaotic dynamics near R ≈ 0.75 can be possibly
explained for the uniform ensemble by requiring the standard deviation of HA and
HB to be equal. This would imply that the spin-spin coupling term HA and the
transverse magnetic field term HB have similar energy scales and neither term
dominates the dynamics. Concretely, using

σ(HA) =

√
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√
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Jmx, σ(HB) =
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mx,

and equating these standard deviations, we find that

mx = Jmx

√

√

√
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6N
.

For N = 17 this yields
mx ≈ 0.396 Jmx, R ≈ 0.716

which is somewhat larger than the value mx ≈ 0.33 Jmx corresponding to
R ≈ 0.75. Nevertheless, this comparison of standard deviations provides qualitative
support for the idea that the strongest chaotic dynamics are present when HA and
HB have standard deviations of comparable size, which is broadly consistent with
the observed range of R.

DEPENDENCE ON REALIZATIONS OF DISORDER
Another goal of this work was to understand how sensitive the classical dynamics
are to the realizations of quenched disorder. Figure 5.23 shows that, in the uniform
ensemble for a fixed R, all realizations of disorder exhibit the same type of dynamics
and are either all chaotic (with λ1 > 0) or all integrable (with λ1 ≈ 0). Moreover,
for different disorder realizations the dependence of λ1 on the Hamiltonian H does
not significantly change. Therefore, for the uniform ensemble, we can generally
expect that the type of dynamics observed for one realization of disorder is
approximately representative of all realizations of disorder. For trajectories in the
uniform ensemble when mx ≈ Jmx/3, we additionally observe in figure 5.23d that
the largest maximum Lyapunov’s exponents occur when H ≈ 0. Similarly, for the
-focused ensemble at relatively large values of R = 0.95 we observe in figure 5.25
that, for all disorder realizations displaying chaotic dynamics, the maximum of λ1
again occurs when H ≈ 0.

In contrast, for the -focused and z-focused ensembles there is a significant
dependence of the maximum Lyapunov’s exponent λ1 on the realization of disorder.
Figures 5.24 and 5.25 show that, for different realizations of disorder, the dynamics
can drastically vary. For some realized disorders all the trajectories are integrable,
while for other realized disorders the trajectories all have chaotic dynamics.
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However, while the dynamics can greatly vary for each different realization of
disorder, we do observe that all realizations of disorder generally are more chaotic
for intermediate values of R, and integrable when R ≈ 0 or R ≈ 1.

In general, the main phenomenon we observe are the following:

• the existence of integrable dynamics at R ≈ 0 and R ≈ 1 and the location of the
strongest chaos near R ≈ 0.65 − 0.80 are robust across all studied ensembles.

• trajectories in the uniform ensemble exhibits the most robust behaviour with
respect to realizations of disorder, with all trajectories sharing the same type
of dynamics at fixed values of R.

• the dynamics of the trajectories in the -focused and z-focused ensembles are
more sensitive to the specific realization of disorder, especially at intermediate
values of R, depending on the specific realization of disorder.

• the dependence of λ1 on R is especially irregular in the z-focused ensemble
for R < 0.5, see figure 5.19. This dependence greatly varies for different
realizations of disorder.

• Plateaus of integrability generally appear in the -focused ensemble (z-focused
ensemble) for Δ ≪ 1 (Δz ≪ 1), becoming larger in size as mx decreases
(increases). However, there do exist exceptions to this rule, as observed in
figures 5.19a and 5.19a.

ENERGY SCALES
To further characterize for which typical energies chaotic and integrable dynamics
occur, we introduced a rescaling of the Hamiltonian H by the ensemble standard
deviation σ(H), and examined the dependence of the maximal Lyapunov’s exponent
λ1 on this rescaled Hamiltonian for different ensembles. This rescaling is motivated
by the normalization step in the spectrum unfolding procedure when constructing
the quantum level-spacing statistics.

For the z-focused ensemble, figures 5.20-5.21 shows that, once Hamiltonians H
are expressed in units of σ(H), the largest Lyapunov’s exponents tend to occur for
relatively large values of H. As the spin-spin interaction becomes more dominant
(larger R), the typical energies of the trajectories become smaller. Additionally, we
observe that the irregular dependencies of λ1 on R, observed in figures 5.17a, 5.17c
and 5.17d, correspond with certain narrow ranges of energy in figures 5.20b-5.20d.

In contrast, for the uniform and -focused ensembles (figures 5.20a and 5.22) the
strongest chaotic dynamics are less systematically associated with large values in
the ensemble’s rescaled energy distribution. In these ensembles, trajectories with
large λ1 have relatively small energy values, compared to the z-focused ensemble,
and the relation between energy and chaotic dynamics is less obvious. Taken
together, these findings suggest that the locations in the energy values for which
we observe integrable or chaotic dynamics are strongly dependent on the ensemble
choice, being most distinct for the z-focused ensemble.

COMPARISON WITH QUANTUM RESULTS
The next step in our analysis is to compare our classical findings with the results of
Georgeot and Shepelyansky [GS98], who studied the quantum analog of the spin
glass model in a transverse magnetic field and characterized quantum chaos via
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level-spacing statistics. In figure 3.4, they report for several number of spins a
small interval

0 <
Jmx

Jmx + mx
≤ 0.1

in which the level-spacing statistics are close to Poissonian, indicative of integrable
dynamics. A similar plateau of integrability is observed in our classical simulations
for both the uniform and z-focused ensembles, where λ1 ≈ 0 for sufficiently
small values of R (figures 5.16 and 5.17). However, no such plateau appears
in the -focused ensemble, indicating that the strong effective spin-spin coupling
experienced by trajectories initialized near the -axis is sufficient to sustain chaotic
dynamics even in the presence of relatively large values of mx.

At the opposite end of the interval, for

0.9 ≤
Jmx

Jmx + mx
≤ 1

Georgeot and Shepelyansky observe a rapid crossover of the level-spacing statistics
back towards Poissonian behaviour as Jmx/(Jmx+ mx) increases, without a visible
plateau of integrability. Our classical results in this regime show a similar trend: for
the uniform and z-focused ensembles the maximal Lyapunov’s exponent decreases
sharply as R → 1, but does not develop a broad integrable plateau where λ1 ≈ 0
(figures 5.16 and 5.17). In contrast, for the -focused ensemble we do observe
a narrow plateau of integrability near R ≈ 1, indicating that in this ensemble the
spin-spin interaction can enforce nearly integrable dynamics up to some non-zero
threshold value of mx.

There is, however, an important quantitative difference between the classical and
quantum indicators of chaos. For the quantum system, the level-spacing statistics
is closest to the GOE distribution for

0.3 ≤
Jmx

Jmx + mx
≤ 0.4.

In our classical analysis the maximal Lyapunov’s exponent attains its maximum at
the significantly larger ratio Jmx/(Jmx + mx) ≈ 0.75. This suggests that the global
parameters (Jmx,mx) for which we observe the largest Lyapunov’s exponents
in the classical system, does not coincide with the set of global parameters
(J′mx,

′
mx), for which we observe the strongest signature of chaos in the quantum

analog, for which ′mx ≈ 4.5mx (assuming we fix Jmx = J′mx = 1).
We emphasize that this discrepancy does not necessarily indicate a fundamental

mismatch between classical and quantum chaos, but can also be explained by
highlighting that different diagnostics (Lyapunov’s exponents versus level-spacing
statistics), applied in different regimes (classical many-body versus quantum
many-body), can quantitatively differ from each other.
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In this thesis we have investigated how global system parameters and local
realizations of quenched disorder influence the dynamics of a classical many-body
spin system, and how classical and quantum signatures of chaos relate to each
other. We examined the dynamics of the classical analog of the quantum spin
glass shards model in a random transverse magnetic field studied by Georgeot
and Shepelyansky [GS98]. We then constructed and analysed the dynamics of
the classical analogue of this spin glass shards model by computing Lyapunov’s
exponents for trajectories in different regions of phase space. For this purpose, we
described the classical many-body spin phase space as a symplectic manifold and
made use of a second-order Suzuki-Trotter integrator to evolve the trajectories while
preserving the symplectic structure needed to reliably calculate the Lyapunov’s
exponents. This allowed us to obtain accurate finite-time approximations of the
Lyapunov spectrum via the standard procedure of repeated reorthogonalization of
tangent vectors through applying the QR decomposition.

With these tools, we identified integrable and chaotic areas of phase space as
functions of both the relative strength of the spin-spin coupling and the transverse
magnetic field. We found that, for all regions considered, both the strong
spin-spin coupling limit and the strong transverse magnetic field limit are nearly
integrable, while the dynamics is most strongly chaotic within a consistent range of
intermediate coupling–field ratios. For spin configurations uniformly distributed over
phase space, we observed that different realizations of disorder do not significantly
affect whether the dynamics is chaotic or integrable. In contrast, configurations
with spins more concentrated near the - or z-axis are more sensitive to the
specific realization of disorder and can display either almost completely integrable
or strongly chaotic dynamics for identical global system parameters. However,
regardless of the region of phase space, for 17 spins, we find that the classical spin
system generally exhibits chaotic dynamics for all trajectories when the spin-spin
coupling is three times as strong as the transverse magnetic field. Comparing
these classical results with the quantum energy level-spacing statistics of the
corresponding quantum model reveals a qualitative agreement in the appearance
of plateaus of integrability and chaotic windows. However, these findings also
show that Lyapunov’s exponents have a complex relation to energy level-spacing
statistics. In response to global changes in the Hamiltonian, Lyapunov’s exponents
vary in a way that is correlated with, but not identical to this quantum signature of
chaos.

There are several directions in which the present work can be extended:
Firstly, we can apply the same Lyapunov’s exponent calculation scheme to

other classical spin systems with sufficiently smooth Hamiltonians H, for which a
symplectic integrators can be constructed. In such models, one could systematically
scan over the global system parameters and ensembles of initial conditions, as
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done in this work, to map out regions of integrable and chaotic dynamics and to
search for possible hidden integrals of motion.

Secondly, the present work has effectively focused on the temperature T = ∞
situation in the uniform ensemble, where initial configurations sample the energy
shell without Boltzmann weighting. A possible extension is to study finite-
temperature T < ∞ ensembles, in which initial configurations are drawn from
a Gibbs distribution with weight ∝ exp(−H/T) for T < ∞. This would require
additional information about the density of states, or the use of Monte Carlo
techniques such as Gibbs sampling to generate representative initial conditions.
Such a finite-temperature generalization would allow one to investigate how
Lyapunov’s exponents depend on temperature and to relate them more directly to
thermodynamic properties.

Finally, we remark that almost all of our results have been obtained for systems
with N = 17 spins, with only a single computation of the Lyapunov spectrum at
N = 100. Analyzing the 17 spin system is sufficient to reveal an already complex
structure of integrable and chaotic regimes, but it does not allow us gain concrete
insight into the thermodynamic limit. A suggestion for future work is therefore to
repeat the presented analysis for larger system sizes and to study how quantities
such as the maximal Lyapunov’s exponent and the existence and size of integrable
plateaus scale with N. However, it is reasonable to expect that the qualitative
results obtained here (plateaus of integrability near R ≈ 0 and R ≈ 1, strongest
chaos consistently near R ≈ 0.75) persists in the large-N limit.
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A
APPENDIX

A.1. DERIVING THE GAUSSIAN ORTHOGONAL ENSEMBLE
Let H be a real symmetric 2 × 2 matrix with

P(H11, H12, H22) ∝ exp(−c(H2
11 + 2H2

12 + H
2
22))

Firstly, write H in the following representation, with E1 ≥ E2,

H ≡
�

H11 H12
H21 H22

�

= R(θ)
�

E1 0
0 E2

�

RT (θ)

where

R(θ) =
�

cos(θ) sin(θ)
− sin(θ) cos(θ)

�

.

Then, a calculation of the Jacobian yields

|det (J(E1, E2, θ))| = |det (
∂(H11, H12, H22)

∂(E1, E2, θ)
)| = |E1 − E2|

and
P(E1, E2, θ) = |det (J(E1, E2, θ))|P(H11, H12, H22)

∝ |E1 − E2|exp(−c(E21 + E
2
2)).

Note that integrating over θ only results in a constant factor. Introduce the level
spacing s = E1 − E2 and level average Ē = E1+E2

2 . A short calculation yields

|det (J(s, Ē))| = 1

and

P(s, Ē) = P(E1, E2, θ) ∝ |s|exp(−c(2Ē2 +
s2

2
).

Note that s ≥ 0. Integrating over Ē results in another constant factor

P(s) = Asexp(−c
s2

2
).

Then, normalizing the distribution through

1 =
∫ ∞

0
P(s)ds = A

∫ ∞

0
sexp(−c

s2

2
)ds =

A

c

and enforcing the mean energy spacing 〈s〉 to be 1 through

1 = 〈s〉 =
∫ ∞

0
sP(s)ds = c

∫ ∞

0
s2 exp(−c

s2

2
) =

2c

π

results in the following distribution for the level spacing s

PGOE(s) ≡ P(s) =
π

2
sexp(−

π

4
s2). (A.1)
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A.2. SYMPLECTIC MANIFOLDS
The definitions and theorems presented in this appendix are adapted from [dSil01;
Lee13; MS17].
Definition 1. Let X and Y be topological spaces. A map ƒ : X → Y is a
homeomorphism if it is bijective, continuous, and its inverse ƒ−1 : Y → X is also
continuous.

Definition 2. A topological space X is called Hausdorff if for every pair

of distinct points p, q ∈ X there exist open sets U,V ⊂ X such that

p ∈ U, q ∈ V, and U ∩ V = ∅.

Definition 3. A topological space X is called second countable if there exists a

countable collection of open sets {Bk}k∈N such that every open set U ⊂ X can be
written as a union of some of the Bk. Such a collection {Bk} is called a countable
base for the topology on X.

Definition 4. A space M is an n-dimensional manifold if and only if it is

Hausdorff, second countable, and for every p ∈ M there exist an open neighborhood
U ⊂ M of p and a homeomorphism φ : U→ φ(U) ⊂ Rn with φ(U) open.

Definition 5. A chart on M is a pair (U,φ) with U ⊂ M open and

φ : U→ φ(U) ⊂ Rn a homeomorphism. Two charts (U,φ) and (U′, ψ) with U ∩ U′ ̸= ∅
are C∞-compatible if the transition map ψ◦φ−1 : φ(U∩U′)→ ψ(U∩U′) and its inverse
are smooth. An atlas is a collection A = {(Uα, φα)} with

⋃

α Uα = M. A maximal
C∞-atlas contains every chart C∞-compatible with all its charts.

Remark 6. Given a chart (U,φ) as above, the map φ : U → Rn can be

written in components as

φ(p) =
�

1(p), . . . , n(p)
�

, p ∈ U,

where each  : U → R is a smooth function. The functions 1, . . . , n are called
the coordinate functions of the chart (U,φ), and the n-tuple (1, . . . , n) is often
used as a shorthand for the map φ itself. In particular, for p ∈ U we may think of
(1(p), . . . , n(p)) as the coordinates of the point p in this chart.

Definition 7. An n-dimensional manifold M equipped with a maximal C∞-

atlas is called a smooth n-manifold.

Definition 8. Let M be a smooth n-manifold and p ∈ M. A linear map  : C∞(M)→ R

is a derivation at p if (ƒg) = ƒ (p)(g) + (ƒ )g(p) for all ƒ , g ∈ C∞(M). The set
of derivations at p is the tangent space TpM. The tangent bundle is TM :=

⊔

p∈M TpM.

Definition 9. For U ⊂ M open, a smooth vector field on U is a map

X : C∞(U) → C∞(U) that is R-linear and satisfies X(ƒg) = ƒ X(g) + gX(ƒ ) for all
ƒ , g ∈ C∞(U), and such that for each p ∈ U the evaluation ƒ 7→ (Xƒ )(p) is a derivation
at p. The set of all smooth vector fields on U is denoted X(U).

Definition 10. For each p ∈ M, the cotangent space is the dual space
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T∗
p
M := (TpM)∗, and the cotangent bundle is

T∗M :=
⊔

p∈M
T∗
p
M = {(p, ξ)|p ∈ M,ξ ∈ T∗

p
M}.

Note that T ∗M is a manifold [Lee13, Proposition 11.9]. A smooth 1-form on U is a
smooth section α : U→ T∗M, i.e. α(p) ∈ T∗

p
M depends smoothly on p. The space of

smooth 1-forms on U is Ω1(U).

Definition 11. Let (U,φ) = (U, (1, . . . , n)) be a chart on a smooth n-
dimensional manifold M. For ƒ ∈ C∞(U) define the coordinate vector fields ∂ ∈ X(U)
by

(∂ƒ )(p) :=
∂(ƒ ◦ φ−1)

∂
(φ(p)), p ∈ U,  = 1, . . . , n.

For each p ∈ U, the vectors
∂1|p, . . . , ∂n|p ∈ TpM

form a basis of the tangent space TpM.
Define the coordinate 1-forms d ∈ Ω1(U) as the C∞(U)-linear dual to the

coordinate vector fields ∂:

d(∂j) = δj, d

 

∑

j

Xj∂j

!

= X

for all smooth functions Xj ∈ C∞(U). Equivalently, for each p ∈ U the set

d1|p, . . . , dn|p ∈ T∗p M

form the basis of T∗
p
M dual to the basis {∂1|p, . . . , ∂n|p} of TpM.

Definition 12. Let Λk(T∗
p
M) denote the space of alternating k-linear maps

TpM × · · · × TpM
︸ ︷︷ ︸

k times

→ R. A k-form on U is a smooth section of Λk(T∗M), the space of

k-forms is Ωk(U). In particular Ω0(U) = C∞(U) and Ω1(U) is as above. There is a
bilinear wedge product ∧ : Ωk(U) × Ωℓ(U)→ Ωk+ℓ(U) characterized by

(α∧ β)(X1, . . . , Xk+ℓ)

:=
1

k! ℓ!

∑

σ∈Sk+ℓ

sgn(σ)α(Xσ(1), . . . , Xσ(k))β(Xσ(k+1), . . . , Xσ(k+ℓ)),

for α ∈ Ωk(U), β ∈ Ωℓ(U), and X ∈ X(U). Sk+ℓ denotes the symmetric group of all per-
mutations of {1, . . . , k + ℓ} and sgn(σ) ∈ {+1,−1} is the sign of the permutation σ.
It is associative, C∞(U)-bilinear, and commutative in the sense of α∧β = (−1)kℓβ∧α.

Remark 13. In a chart (U,φ), {d1 ∧ · · ·∧ dk}1<···<k is a local C∞(U)-basis of

Ωk(U). So any α ∈ Ωk(U) has a unique expression α =
∑

1<···<k 1 ···k d
1 ∧ · · ·∧ dk

with smooth coefficients 1 ···k .

Remark 14. In the special case k = ℓ = 1, the wedge product of two
1-forms α, β ∈ Ω1(U) is the 2-form α∧ β ∈ Ω2(U) given explicitly by

(α∧ β)(X, Y) = α(X)β(Y) − α(Y)β(X), X, Y ∈ X(U).
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In particular, for the coordinate 1-forms d, dj ∈ Ω1(U) one has

(d ∧ dj)(X, Y) = d(X)dj(Y) − d(Y)dj(X).

This shows directly that α∧ β = −β∧ α for 1-forms.

Definition 15. There is a unique R-linear map d : Ωk(U) → Ωk+1(U) for all
k ≥ 0 called the exterior derivative such that:

(i) dƒ (X) = X(ƒ ), for all ƒ ∈ C∞(U) = Ω0(U), X ∈ X(U),

(ii) d(α∧ β) = dα∧ β + (−1)kα∧ dβ, for α ∈ Ωk(U), β ∈ Ωℓ(U),
(iii) d ◦ d = 0.

In coordinates, if α =
∑

1<···<k 1 ···k d
1 ∧ · · ·∧ dk , then

dα =
∑

1<···<k

n
∑

j=1

∂1 ···k

∂j
dj ∧ d1 ∧ · · ·∧ dk .

A form α is closed if dα = 0.

Definition 16. A smooth 2-form on M is an element of Ω2(M). Locally,
in a chart (U,φ),

ω
�

�

U =
∑

1≤<j≤n
ωj d

 ∧ dj, ωj ∈ C∞(U).

Equivalently, ω is represented by a skew-symmetric matrix (ωj) in coordinates.

Definition 17. For a finite-dimensional real vector space V, a skew bilin-
ear form η ∈ Λ2(V∗) is nondegenerate if for any  ̸= 0 there exists an  ∈ V such
that η(,) ̸= 0.

Definition 18. A symplectic manifold is a smooth manifold M equipped
with a smooth 2-form ω ∈ Ω2(M) that is closed (dω = 0) and nondegenerate. The
form ω is called the symplectic form.

Theorem 19. Let (M,ω) be a symplectic manifold. Then for every
p ∈ M, the tangent space TpM has even dimension. In particular, M is an
even-dimensional manifold.

Definition 20. Let (M,ω) be a symplectic manifold. For each p ∈ M, the
nondegenerate 2-form ωp ∈ Λ2(T∗p M) defines a linear map

ω♭
p
: TpM→ T∗

p
M, ω♭

p
()() := ωp(,), , ∈ TpM.

Nondegeneracy of ωp means that ω♭
p

is an isomorphism for every p. These
pointwise maps assemble to a smooth vector bundle isomorphism

ω♭ : TM→ T∗M.

Theorem 21. Let (M,ω) be a symplectic 2n-dimensional manifold and let
(U, (1, . . . , n)) be a chart. On U write

ω =
1

2

2n
∑

=1

2n
∑

j=1

ωj d
 ∧ dj, ωj = −ωj.
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Let ∂ :=
∂
∂

be the associated coordinate vector fields. Then for each k ∈ {1, . . . , n},

ω♭(∂k) =
2n
∑

j=1

ωkj d
j.

Proof. We compute ω♭ on the coordinate basis {∂1, . . . , ∂n}, where ∂ :=
∂
∂

. Let
k ∈ {1, . . . , n} and Y be any vector field. Then

ω♭(∂k)(Y) = ω(∂k , Y) =
1

2

2n
∑

=1

n
∑

j=1

ωj (d ∧ dj)(∂k , Y)

=
1

2

2n
∑

=1

2n
∑

j=1

ωj
�

d(∂k)dj(Y) − d(Y)dj(∂k)
�

=
1

2

2n
∑

=1

2n
∑

j=1

ωj
�

δk d
j(Y) − d(Y) δjk

�

=
1

2

2n
∑

j=1

ωkj d
j(Y) −

1

2

2n
∑

=1

ωk d
(Y).

In the second sum, rename the index  7→ j and use skew-symmetry ωjk = −ωkj:

−
1

2

2n
∑

=1

ωk d
(Y) = −

1

2

2n
∑

=1

ωjk d
j(Y) =

1

2

2n
∑

=1

ωkj d
j(Y).

Hence the two terms are equal, and we obtain

ω♭(∂k)(Y) =
2n
∑

j=1

ωkj d
j(Y).

Since this holds for all Y, we conclude that

ω♭(∂k) =
2n
∑

j=1

ωkj d
j.

□

Definition 22. Since ω♭ : TM → T∗M is a vector bundle isomorphism, it

has a smooth inverse
ω♯ : T∗M→ TM,

Equivalently, for each p ∈ M, the map

ω♯
p
: T∗

p
M→ TpM

is the inverse of ω♭
p
. In particular, for any  ∈ TpM and α ∈ T∗

p
M,

α = ω♭
p
() ⇐⇒  = ω♯

p
(α).

Theorem 23. Let (M,ω) be a symplectic 2n-dimensional manifold and
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let (U, (1, . . . , n)) be a chart. On U write

ω =
1

2

n
∑

,j=1

ωj d
 ∧ dj, ωj = −ωj.

Let ∂ :=
∂
∂

be the associated coordinate vector fields. Then there exist unique

functions πj ∈ C∞(U) such that

ω♯(dj) =
2n
∑

=1

πj ∂, j = 1, . . . , n,

and these satisfy
2n
∑

=1

ωk π
j = δjk for all j, k ∈ {1, . . . , n}.

Moreover, for any 1-form α =
∑n
j=1 αj d

j on U we have

ω♯(α) =
2n
∑

=1

2n
∑

j=1

πj αj ∂.

Proof. From Theorem 14 we know that on U

ω♭(∂) =
2n
∑

k=1

ωk d
k for each  = 1, . . . , n.

By definition, ω♯ : T∗M→ TM is the inverse of ω♭ : TM→ T∗M, so in particular

ω♭
�

ω♯(α)
�

= α for all α ∈ T∗M.

Fix j ∈ {1, . . . , n}. Since {∂}2n=1 is a basis of TM on U, there exist unique smooth
functions πj on U such that

ω♯(dj) =
2n
∑

=1

πj ∂.

Applying ω♭ and using linearity, we obtain

dj = ω♭
�

ω♯(dj)
�

= ω♭
�

2n
∑

=1

πj ∂
�

=
2n
∑

=1

πjω♭(∂) =
2n
∑

=1

πj
�

2n
∑

k=1

ωk d
k
�

.

Thus

dj =
2n
∑

k=1

�

2n
∑

=1

ωk π
j
�

dk .

Since {dk}2nk=1 is a basis of T∗M on U, the coefficients of dk on both sides must
agree, hence for all k,

2n
∑

=1

ωk π
j = δjk .

This shows the stated relation between the coefficients πj. Finally, let α =
∑2n
j=1 αj d

j

be an arbitrary 1-form on U. By linearity of ω♯,

ω♯(α) = ω♯
�

2n
∑

j=1

αj d
j
�

=
2n
∑

j=1

αjω
♯(dj) =

2n
∑

j=1

αj
�

2n
∑

=1

πj ∂
�

=
2n
∑

=1

2n
∑

j=1

πj αj ∂.
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□

Theorem 24. Let (M,ω) be a symplectic 2n-dimensional manifold and

let p ∈ M. Then there exist an open neighbourhood U ⊂ M of p and a chart

(U, (q1, . . . , qn, p1, . . . , pn))

such that, on U,

ω =
n
∑

=1

dq ∧ dp.

The coordinates (q1, . . . , qn, p1, . . . , pn) are called Darboux coordinates for ω on U.

Definition 25. Let (M,ω) be a symplectic 2n-dimensional manifold and let
ƒ ∈ C∞(M) be a smooth function. The vector field associated to ƒ is the unique
vector field Xƒ ∈ X(M) defined by

ω♭(Xƒ ) = dƒ ,

or equivalently
Xƒ := ω♯(dƒ ).

In local coordinates (U, (1, . . . , 2n))

dƒ
�

�

U =
2n
∑

j=1

∂ƒ

∂j
dj.

Then on U the vector field has the coordinate expression

Xƒ
�

�

U = ω
♯(dƒ

�

�

U) =
2n
∑

=1

2n
∑

j=1

πj
∂ƒ

∂j
∂,

where the functions πj ∈ C∞(U) are those from Theorem 16.

Definition 26. Let (M,ω) be a symplectic 2n-dimensional manifold and let
ƒ , g ∈ C∞(M). The Poisson bracket of ƒ and g is the smooth function {ƒ , g} : M→ R
defined by

{ƒ , g} := ω(Xƒ , Xg).

In local coordinates (U, (1, . . . , 2n)) as in Theorem 16, using

Xƒ =
2n
∑

=1

2n
∑

j=1

πj
∂ƒ

∂j
∂, Xg =

2n
∑

k=1

2n
∑

ℓ=1

πkℓ
∂g

∂ℓ
∂k ,

one obtains on U the coordinate expression

{ƒ , g} =
2n
∑

=1

2n
∑

j=1

πj
∂ƒ

∂

∂g

∂j
.

For all ƒ , g, h ∈ C∞(M) and λ, μ ∈ R, the Poisson bracket satisfies:

(i) Bilinearity: {λƒ + μg, h} = λ{ƒ , h} + μ{g, h},
{ƒ , λg + μh} = λ{ƒ , g} + μ{ƒ , h},

(ii) Antisymmetry: {ƒ , g} = − {g, ƒ},
(iii) Leibniz rule: {ƒ , gh} = {ƒ , g}h + g{ƒ , h},
(iv) Jacobi identity: {ƒ ,{g, h}} + {g,{h, ƒ}} + {h,{ƒ , g}} = 0.
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Definition 27. Let (M,ω) be a symplectic manifold and let H ∈ C∞(M) be a

(time-independent) Hamiltonian function. The triple (M,ω,H) is called a Hamiltonian
system. The Hamiltonian vector field XH ∈ X(M) associated to H is defined by

XH := ω♯(dH).

An observable is a smooth function ƒ ∈ C∞(M). Its time evolution under the
Hamiltonian system (M,ω,H) is defined by

d

dt
ƒ := XH(ƒ ) = dƒ (XH) = ω(Xƒ , XH) = {ƒ , H}.

Definition 28. Let M and N be smooth manifolds. A map F : M → N is called a

diffeomorphism if it is smooth, a bijection and its inverse map F−1 is also smooth.

Definition 29. Let (M,ω) be a symplectic manifold and let H ∈ C∞(M) be

a (time-independent) Hamiltonian. The associated Hamiltonian vector field
XH ∈ X(M) is

XH := ω♯(dH).

A flow on XH is defined as the smooth map

φ :  × U→ M, (t, p) 7→ φt(p),

where  ⊂ R is an interval containing 0 and U ⊂ M is open, such that for every p ∈ U:

d

dt
φt(p) = XH

�

φt(p)
�

, φ0(p) = p.

For each fixed time t ∈ R, the map φt moves each initial condition p along its
trajectory to the point φt(p). For each fixed t ∈ , the map φt : U→ φt(U) ⊂ M is a
diffeomorphism. The family {φt}t∈ is called the Hamiltonian flow of H.

The differential (or derivative) of the flow at p is the linear map

(dφt)p : TpM→ Tφt(p)M

given by the first–order (linear) approximation of φt near p. Intuitively, a tangent
vector  ∈ TpM represents an infinitesimal perturbation of the initial condition p,
and (dφt)p() is the corresponding infinitesimal perturbation of the state φt(p) at
time t. A standard property of flows of vector fields is

(dφt)p
�

XH(p)
�

= XH
�

φt(p)
�

, t ∈ R.

Definition 30. Let F : M → N be a smooth map between smooth manifolds, and

let α ∈ Ωk(N) be a smooth k-form on N. The pullback of α by F is the k-form
F∗α ∈ Ωk(M) defined by

(F∗α)p(1, . . . , k) := αF(p)
�

(dF)p(1), . . . , (dF)p(k)
�

,

for p ∈ M and 1, . . . , k ∈ TpM, where (dF)p : TpM→ TF(p)N is the differential of F at p.

Definition 31. Let X ∈ X(M) be a smooth vector field and α ∈ Ωk(M) a

k-form with k ≥ 1. The interior product Xα ∈ Ωk−1(M) is defined by

(Xα)(X1, . . . , Xk−1) := α(X,X1, . . . , Xk−1), X1, . . . , Xk−1 ∈ X(M).
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For k = 0 we set Xα := 0.
The Lie derivative of differential forms along X is the operator LX : Ωk(M)→ Ωk(M)

defined by Cartan’s formula

LXα := d(Xα) + X(dα).

Theorem 32. Let (M,ω,H) be a Hamiltonian system with Hamiltonian flow {φt}t∈
generated by XH = ω♯(dH). Then for all t ∈ ,

φ∗
t
ω = ω.

In other words, the Hamiltonian flow φt preserves the symplectic form ω.

Proof. We first compute the Lie derivative of ω along XH. By definition of XH we
have

XHω = dH,

since ω♭(XH) = dH and ω♭(XH)(·) = ω(XH, ·). Using Cartan’s formula and the fact
that d ◦ d = 0 and dω = 0 (closedness of the symplectic form),

LXHω = d(XHω) + XH (dω) = d(dH) + XH (0) = 0.

Let φt be the flow of XH as in Definition 29. A standard result is

d

dt
φ∗
t
α = φ∗

t
(LXHα)

for any differential form α. Applying this to α = ω, we obtain

d

dt
φ∗
t
ω = φ∗

t
(LXHω) = φ

∗
t
(0) = 0.

Hence φ∗
t
ω is independent of t. At t = 0 we have φ0 = idM, so

φ∗0ω = id∗
M
ω = ω.

Therefore φ∗
t
ω = ω for all t ∈ , as claimed. □

Theorem 33. Let (M,ω,H) be a 2n-dimensional Hamiltonian system.

Define the Liouville volume form

Ω :=
1

n!
ω∧n =

1

n!
ω∧ · · ·∧ω
︸ ︷︷ ︸

n times

∈ Ω2n(M).

Let {φt} be the Hamiltonian flow of H. For any measurable domain D ⊂ M with
compact closure,

∫

φt(D)
Ω =

∫

D
Ω,

so the Hamiltonian flow preserves phase-space volume.

Proof. By Theorem 24 we have φ∗
t
ω = ω for all t. Using the properties of the

pullback and the wedge product,

φ∗
t
Ω = φ∗

t

� 1

n!
ω∧n

�

=
1

n!
φ∗
t
(ω∧n) =

1

n!
ω∧n = Ω.
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Since Ω is a form of degree 2n, it defines a volume form on M. For any measurable
domain D ⊂ M with compact closure, the change-of-variables formula for integrals
under diffeomorphisms gives

∫

φt(D)
Ω =

∫

D
φ∗
t
Ω =

∫

D
Ω.

Thus the Hamiltonian flow preserves the Liouville volume, proving Liouville’s
theorem. □

A.3. LYAPUNOV’S EXPONENTS
Definition 34. Let φt : M→ M be a measurable flow. A Borel probability measure μ
on M is invariant under φt if

μ(φ−1
t
(B)) = μ(B) for all Borel sets B ⊂ M and all t ∈ R,

equivalently,
∫

M
ƒ ◦ φt dμ =

∫

M
ƒ dμ for all ƒ ∈ L1(M,μ), t ∈ R.

For a Hamiltonian system (M,ω,H), the Liouville measure associated to the volume
form

Ω :=
1

n!
ω∧n ∈ Ω2n(M)

is invariant by Liouville’s theorem, and can be normalized to a probability measure
on any invariant set of finite volume.

Theorem 35. [Via14, Theorem 4.2] Let (M,ω,H) be a 2n-dimensional

Hamiltonian system with Hamiltonian flow {φt}, and let μ be the associated
Liouville measure and g a chosen Riemannian metric. Then there exists a
φt-invariant Borel set M0 ⊂ M with μ(M0) = 1 such that for each p ∈ M0 there exist:

1. unique real numbers

λ1(p) > λ2(p) > · · · > λk(p)(p),

called the Lyapunov’s exponents at p, and

2. a direct sum decomposition

TpM = E1(p) ⊕ · · · ⊕ Ek(p)(p),

with the following properties:

1. Invariance:

(dφt)p
�

E(p)
�

= E
�

φt(p)
�

for all t ∈ R,  = 1, . . . , k(p).

2. Exponential growth rates: for every 0 ̸=  ∈ E(p),

λ(p) = lim
t→∞

1

t
log

�

||(dφt)p()||
�

,

where the norm is induced by the Riemannian metric g.
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If moreover μ is ergodic, then the numbers k(p) and λ(p) are constant for μ-almost
every p; in this case we simply write λ1 > · · · > λk for the Lyapunov spectrum of
(M,ω,H, μ).

Theorem 36. [Via14, Proposition 4.17] Let (M,ω,H) be a 2n-dimensional

Hamiltonian system with Hamiltonian H ∈ C2, Hamiltonian flow {φt} and Liouville
volume form Ω. Let μ be the associated Liouville probability measure and let
M0 ⊂ M be the full μ-measure set given by Theorem 35. For p ∈ M0, let

TpM = E1(p) ⊕ · · · ⊕ Ek(p)(p)

be the Oseledets splitting with Lyapunov’s exponents λ1(p) > · · · > λk(p)(p). Listing
these exponents with multiplicities dimE(p),

λ1(p), . . . , λ1(p)
︸ ︷︷ ︸

dimE1(p) times

, . . . , λk(p)(p), . . . , λk(p)(p) times
︸ ︷︷ ︸

,

we obtain 2n real numbers which we denote by λ∗1 (p), . . . , λ
∗
2n(p). Then for μ-almost

every p ∈ M,
2n
∑

=1

λ∗

(p) = 0.

Proof. We provide a self-contained proof of this statement. Fix p ∈ M0. Choose a
basis

{1, . . . , 2n}

of TpM such that each j lies in some Oseledets subspace E(p). Thus there
exist indices (1), . . . , (2n) ∈ {1, . . . , k(p)} such that j ∈ E(j)(p) and the Lyapunov’s
exponent of j is λ(j)(p). By construction,

λ∗1 (p), . . . , λ
∗
2n(p)

is exactly the list
λ(1)(p), . . . , λ(2n)(p),

so it suffices to show that
2n
∑

j=1

λ(j)(p) = 0.

Choose an inner product 〈·, ·〉q on each tangent space TqM such that the associated
Riemannian volume form on TqM coincides with Ωq. Let || · ||q denote the
corresponding norm on TqM. For 1, . . . ,2n ∈ TqM, let

Volq(1, . . . ,2n)

denote the Riemannian volume of the parallelepiped they span. By construction,

Volq(1, . . . ,2n) =
�

�Ωq(1, . . . ,2n)
�

�.

Moreover, in any Euclidean space one has the standard inequality for the volume of
a parallelepiped,

Volq(1, . . . ,2n) ≤
2n
∏

j=1

||j||q,

with constant 1 (this follows from the Gram determinant formula). For t > 0, set

j(t) := (dφt)p(j) ∈ Tφt(p)M, j = 1, . . . ,2n,
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and define

V(t) := Volφt(p)
�

1(t), . . . ,2n(t)
�

=
�

�Ωφt(p)
�

(dφt)p(1), . . . , (dφt)p(2n)
��

�.

By Theorem 29, for each j,

λ(j)(p) = lim
t→+∞

1

t
log ||(dφt)p(j)||φt(p).

Hence for every ϵ > 0 there exists Tϵ > 0 such that for all t ≥ Tϵ and all j,

||(dφt)p(j)||φt(p) ≤ e
(λ(j)(p)+ϵ)t .

Using the volume inequality for a parallelepiped, for t ≥ Tϵ we obtain

V(t) ≤
2n
∏

j=1

||(dφt)p(j)||φt(p) ≤
2n
∏

j=1

e(λ(j)(p)+ϵ)t = exp
�

�

2n
∑

j=1

λ(j)(p) + 2nϵ
�

t
�

.

On the other hand, by Theorem 32 we have φ∗
t
Ω = Ω for all t, hence

V(t) =
�

�Ωφt(p)
�

(dφt)p(1), . . . , (dφt)p(2n)
��

�

=
�

�(φ∗
t
Ω)p(1, . . . , 2n)

�

� =
�

�Ωp(1, . . . , 2n)
�

� =: V0 > 0,

so V(t) is actually independent of t. Thus for all t ≥ Tϵ,

V0 ≤ exp
�

�

2n
∑

j=1

λ(j)(p) + 2nϵ
�

t
�

.

Taking logarithms and dividing by t,

1

t
logV0 ≤

2n
∑

j=1

λ(j)(p) + 2nϵ.

Letting t→∞ we obtain

0 ≤
2n
∑

j=1

λ(j)(p) + 2nϵ.

Since ϵ > 0 is arbitrary, this implies

2n
∑

j=1

λ(j)(p) ≥ 0.

Consider now the reversed flow

ψt := φ−t , t ∈ R.

Its derivative at p is
(dψt)p = (dφ−t)p.

For t > 0 define

ej(t) := (dψt)p(j) = (dφ−t)p(j), j = 1, . . . ,2n,

and

eV(t) := Volψt(p)
�

e1(t), . . . , e2n(t)
�

=
�

�Ωψt(p)
�

(dψt)p(1), . . . , (dψt)p(2n)
��

�.
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By Theorem 29 for the original flow {φt}, for j ∈ E(j)(p) we have

λ(j)(p) = lim
s→−∞

1

s
log ||(dφs)p(j)||.

Setting s = −t with t > 0, this gives

λ(j)(p) = lim
t→+∞

1

−t
log ||(dφ−t)p(j)|| = − lim

t→+∞

1

t
log ||(dψt)p(j)||.

Thus, for the reversed flow ψt, the Lyapunov’s exponent of j is −λ(j)(p), and as
before this implies that for every ϵ > 0 there exists T′

ϵ
> 0 such that for all t ≥ T′

ϵ
and all j,

||(dψt)p(j)||ψt(p) ≤ e
(−λ(j)(p)+ϵ)t .

Using again the volume inequality for a parallelepiped, for t ≥ T′
ϵ
,

eV(t) ≤
2n
∏

j=1

||(dψt)p(j)||ψt(p) ≤
2n
∏

j=1

e(−λ(j)(p)+ϵ)t = exp
�

�

−
2n
∑

j=1

λ(j)(p) + 2nϵ
�

t
�

.

On the other hand, since ψt = φ−t and φ∗
t
Ω = Ω for all t, we also have ψ∗

t
Ω = Ω for

all t, hence

eV(t) =
�

�Ωψt(p)
�

(dψt)p(1), . . . , (dψt)p(2n)
��

�

=
�

�(ψ∗
t
Ω)p(1, . . . , 2n)

�

� =
�

�Ωp(1, . . . , 2n)
�

� = V0.

Thus for all t ≥ T′
ϵ
,

V0 ≤ exp
�

�

−
2n
∑

j=1

λ(j)(p) + 2nϵ
�

t
�

.

Taking logarithms and dividing by t,

1

t
logV0 ≤ −

2n
∑

j=1

λ(j)(p) + 2nϵ.

Letting t→∞ gives

0 ≤ −
2n
∑

j=1

λ(j)(p) + 2nϵ,

hence
2n
∑

j=1

λ(j)(p) ≤ 0

since ϵ > 0 was arbitrary. Combining the inequalities obtained thus far yields

0 ≤
2n
∑

j=1

λ(j)(p) ≤ 0,

so
∑2n
j=1 λ(j)(p)) = 0. This holds for every p ∈ M0, hence for μ-almost every p ∈ M. □

Lemma 37. [Via, Proposition 0.6.] Let (M,ω,H) be a 2n-dimensional

Hamiltonian system with Hamiltonian flow {φt} and Liouville probability measure μ,
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and let M0 ⊂ M be the full μ-measure set given by Theorem 29. For p ∈ M0 and for
each Lyapunov’s exponent λ(p), define

Eλ(p) :=
⊕

{:λ(p)=λ}
E(p).

Then for μ-almost every p ∈ M the following holds: if λ + μ ̸= 0, then

ωp
�

Eλ(p), Eμ(p)
�

= 0,

i.e. ωp(,) = 0 for all  ∈ Eλ(p) and  ∈ Eμ(p).
Proof. Fix p ∈ M0 and let λ, μ be Lyapunov’s exponents at p. Choose nonzero
vectors  ∈ Eλ(p) and  ∈ Eμ(p). We claim that

ωp(,) ̸= 0 =⇒ λ + μ = 0.

This will imply the statement by contraposition.
By Theorem 32 we have φ∗

t
ω = ω for all t, so for every t ∈ R,

ωp(,) = ωφt(p)
�

(dφt)p(), (dφt)p()
�

. (A.2)

Choose an inner product 〈·, ·〉q on each tangent space TqM such that the associated
Riemannian volume form on TqM coincides with the Liouville volume form Ωq. Let
|| · ||q denote the corresponding norm on TqM. Since ω is a smooth bilinear form on
the finite-dimensional bundle TM, there exists a finite constant C > 0 such that for
all q ∈ M and 1, 2 ∈ TqM,

|ωq(1, 2)| ≤ C ||1|| ||2||. (A.3)

Assume ωp(,) ̸= 0. Using (A.2) and (A.3) for t > 0 we obtain

|ωp(,)| ≤ C ||(dφt)p()|| ||(dφt)p()||.

Taking logarithms and dividing by t > 0 gives

1

t
log |ωp(,)| ≤

1

t
logC +

1

t
log ||(dφt)p()|| +

1

t
log ||(dφt)p()||.

Letting t→∞ and using Theorem 35 we get

0 ≤ λ + μ.

Now consider the reversed flow ψt := φ−t, which is also a measurable flow
preserving μ. Applying Theorem 35 to {ψt}, the Lyapunov’s exponent of  for ψt is
−λ, and similarly the Lyapunov’s exponent of  is −μ. Thus

−λ = lim
s→∞

1

s
log ||(dψs)p()|| = lim

s→∞

1

s
log ||(dφ−s)p()||,

and analogously

−μ = lim
s→∞

1

s
log ||(dφ−s)p()||.

Using (A.2) with t = −s and (A.3) we obtain, for s > 0,

|ωp(,)| =
�

�ωφ−s(p)
�

(dφ−s)p(), (dφ−s)p()
��

� ≤ C ||(dφ−s)p()|| ||(dφ−s)p()||.

Taking logarithms and dividing by s > 0 yields

1

s
log |ωp(,)| ≤

1

s
logC +

1

s
log ||(dφ−s)p()|| +

1

s
log ||(dφ−s)p()||.
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Letting s→∞ and using the limits above, we obtain

0 ≤ −λ − μ.

Combining the two inequalities gives λ + μ ≥ 0 and λ + μ ≤ 0, hence λ + μ = 0, as
claimed. Thus, if λ + μ ̸= 0 then necessarily ωp(,) = 0 for all  ∈ Eλ(p) and
 ∈ Eμ(p). □

Lemma 38. [Fis08, Theorem 1.1] With notation as in Lemma 37, for every λ > 0
the restriction of ωp to Eλ(p) ⊕ E−λ(p) is nondegenerate, and

dimEλ(p) = dimE−λ(p)

for μ-almost every p ∈ M.

Proof. Fix p ∈ M0 and λ > 0, and consider the bilinear map

Bλ : Eλ(p) × E−λ(p)→ R, Bλ(,) := ωp(,).

By Lemma 37, if μ ̸= −λ then ωp
�

Eλ(p), Eμ(p)
�

= 0, so ωp(, ·) can only be nonzero
on E−λ(p).

First we show that Bλ is nondegenerate in the first argument. Let  ∈ Eλ(p) and
suppose ωp(,) = 0 for all  ∈ E−λ(p). For any  ∈ TpM write

 =
∑

μ

μ, μ ∈ Eμ(p).

Then by bilinearity and Lemma 37,

ωp(,) =
∑

μ

ωp(,μ) = ωp(,−λ),

which is zero by assumption. Hence ωp(,) = 0 for all  ∈ TpM. Since ωp is
nondegenerate, this implies  = 0. Thus Bλ is nondegenerate in the first argument.

The same argument, exchanging the roles of λ and −λ, shows that Bλ is also
nondegenerate in the second argument.

Now consider the linear map

T : Eλ(p)→ E−λ(p)∗, T()() := ωp(,).

Bilinearity of Bλ in the first argument implies that T is linear. Nondegeneracy
in the first argument shows that T is injective: indeed, if T() = 0, then
T()() = ωp(,) = 0 for all  ∈ E−λ(p), and the argument above implies  = 0,
thus ker(T) = {0}.

Similarly, define

S : E−λ(p)→ Eλ(p)∗, S()() := ωp(,).

This map is linear because Bλ is linear in the second argument. Nondegeneracy of
Bλ in the second argument implies that S is injective: if S() = 0, then

ωp(,) = S()() = 0 for all  ∈ Eλ(p),

and nondegeneracy in the second argument yields  = 0, thus ker(S) = {0}.
Since Eλ(p) and E−λ(p) are finite-dimensional vector spaces, using the rank–nullity

theorem and the injectivity of T gives

dimEλ(p) ≤ dimE−λ(p)∗ = dimE−λ(p),
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and injectivity of S gives

dimE−λ(p) ≤ dimEλ(p)∗ = dimEλ(p).

Combining these inequalities we obtain

dimEλ(p) = dimE−λ(p).

□

Lemma 39. With notation as in Lemma 37, the restriction of ωp to E0(p) is
nondegenerate for μ-almost every p ∈ M. In particular, dimE0(p) is even.

Proof. Fix p ∈ M0 and let λ = 0. By Lemma 37 we have ωp
�

E0(p), Eμ(p)
�

= 0
whenever μ ̸= 0, so ωp(, ·) can only be nonzero on E0(p).

If  ∈ E0(p) satisfies ωp(,) = 0 for all  ∈ E0(p), then for any  ∈ TpM written
as

 =
∑

μ

μ, μ ∈ Eμ(p),

we have, using Lemma 38,

ωp(,) =
∑

μ

ωp(,μ) = ωp(,0) = 0.

Thus ωp(,) = 0 for all  ∈ TpM, and by nondegeneracy of ωp we obtain  = 0.
Hence the restriction of ωp to E0(p) is nondegenerate, so E0(p) is a symplectic
subspace of TpM. In particular, dimE0(p) is even.

□

Theorem 40. Let (M,ω,H) be a 2n-dimensional Hamiltonian system with
Hamiltonian flow {φt} and Liouville probability measure μ, and let M0 ⊂ M be the
full μ-measure set given by Theorem 29. For p ∈ M0 and for each Lyapunov’s
exponent λ(p), define

Eλ(p) :=
⊕

{:λ(p)=λ}
E(p),

with the convention Eλ(p) = {0} if λ does not occur. Then for μ-almost every p ∈ M
the Lyapunov’s exponents come in pairs λ,−λ, and the multiplicity of 0 is even, in
the following sense: if we list the Lyapunov’s exponents at p with multiplicities as
in Theorem 30,

λ∗1 (p), . . . , λ
∗
2n(p),

then for every λ ∈ R the number of indices  with λ∗ (p) = λ equals the number of
indices  with λ∗ (p) = −λ, and the number of indices with λ∗ (p) = 0 is even.

Proof. Fix p ∈ M0. By Lemma 38, for every λ > 0 the restriction of ωp to
Eλ(p) ⊕ E−λ(p) is nondegenerate and

dimEλ(p) = dimE−λ(p).

Thus each positive exponent λ occurs with the same multiplicity as −λ.
By Lemma 39, the restriction of ωp to E0(p) is nondegenerate, so E0(p) is

symplectic and dimE0(p) is even. This means that 0 appears with even multiplicity
in the Lyapunov spectrum.

Listing the exponents with multiplicities as in Theorem 30 and using these facts
yields exactly the stated pairing of Lyapunov’s exponents.

□
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Theorem 41. Let (M0, ω,H) be a 2n-dimensional Hamiltonian system

with Hamiltonian flow {φt} and Liouville probability measure μ. Assume that E ∈ R
is a chosen value of H, so that the energy level

E := H−1(E)

is a smooth (2n − 1)-dimensional submanifold of M0, and suppose that E is
compact. Then for μ-almost every p ∈ E the Lyapunov spectrum of the Hamiltonian
flow at p has at least two zero Lyapunov’s exponents.

Proof. We provide a self-contained proof of this statement. By Definition 27,

d

dt
H = {H,H} = 0,

so H ◦ φt = H for all t ∈ R. In particular, if p ∈ E then H(φt(p)) = E, so φt(p) ∈ E for
all t. Thus E is invariant under the flow.
Fix a Riemannian metric on M0 and let || · || be the corresponding norm on tangent
vectors. Since XH is smooth (Definition 27 and the discussion before it) and E is
compact, the function

F : E → R, F(q) := ||XH(q)||

is continuous on a compact set, hence bounded above. Thus there exists M < ∞
such that

||XH(q)|| ≤ M for all q ∈ E.

For p ∈ M0 and t ∈ R, recall that a property of the flow of a vector field is

(dφt)p
�

XH(p)
�

= XH(φt(p)).

In particular, for all t ≥ 0,
�

�|(dφt)p(XH(p))
�

�| = ||XH(φt(p))|| ≤ M.

Let λH(p) denote the Lyapunov’s exponent of XH(p) for the flow {φt}. By
Theorem 35 this limit exists for μ-almost every p:

λH(p) := lim
t→+∞

1

t
log

�

�|(dφt)p(XH(p))
�

�|.

From the bound above we obtain, for all t > 0,

1

t
log

�

�|(dφt)p(XH(p))
�

�| ≤
1

t
logM,

hence letting t→∞ gives
λH(p) ≤ 0.

Now, consider the reversed flow

ψt := φ−t , t ∈ R.

The same argument as before shows that
�

�|(dψt)p(XH(p))
�

�| = ||XH(ψt(p))|| ≤ M for all t ≥ 0.

Let −λH(p) be the Lyapunov’s exponent of XH(p) for the reversed flow {ψt}:

−λH(p) := lim
t→+∞

1

t
log

�

�|(dψt)p(XH(p))
�

�|.



A

102 A. Appendix

From the same bound we obtain −λH(p) ≤ 0. Together with λH(p) ≤ 0 we conclude

λH(p) = 0 for μ-almost every p ∈ E.

By Theorem 40, for μ-almost every p ∈ M the Lyapunov’s exponents come in pairs
λ,−λ and the multiplicity of 0 is even. Since we have just shown that 0 occurs at
least once (because XH(p) ∈ E0(p) is nonzero), it must in fact occur with multiplicity
at least 2. Thus a 2n-dimensional Hamiltonian system has at least two zero
Lyapunov exponents at μ-almost every point p ∈ E. □

A.4. ADDITIONAL DATA / RESULTS

(a) Uniform, max = 1 (R = 0.5). (b) Δz = 0.01,max = 1 (R = 0.5).

(c) Δz = 0.01,max = 4 (R = 0.2).

Figure A.1.: Additional results associated with figure 5.14c. The Lyapunov’s
exponents are displayed for 100 trajectories (blue dots) from the
uniform and z-focused ensemble and each exponent’s average (black
dot). The realization of disorder is #1. Chosen parameters are N = 17,
Δt = 10−3, τ = 500, Δ0 = 10−4 and Jmax = 1.
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(a) Uniform, max = 4 (R = 0.2). (b) Uniform, max = 1 (R = 0.5).

Figure A.2.: Additional results associated with figure 5.12b. Spin coordinates of
the first spin S1 over time are displayed for a trajectory from the
uniform ensemble. Chosen parameters are N = 17, Δt = 10−3, τ = 500,
Δ0 = 10−4 and Jmax = 1.

(a) Δz = 0.01,max = 4 (R = 0.2). (b) Δz = 0.01,max = 1 (R = 0.5).

Figure A.3.: Additional results associated with figure 5.13. Spin coordinates of the
first spin S1 over time are displayed for a trajectory from the z-focused
ensemble. Chosen parameters are N = 17, Δt = 10−3, τ = 500,
Δ0 = 10−4 and Jmax = 1.
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(a) Realization of disorder #2, uniform. (b) Realization of disorder #3, uniform.

(c) Realization of disorder #2, Δz = 0.05. (d) Realization of disorder #3, Δz = 0.05.

(e) Realization of disorder #1, Δz = 0.01. (f) Realization of disorder #1, Δ = 0.01.

(g) Realization of disorder #1, Δ = 0.10.

Figure A.4.: Additional results associated with figures 5.16, 5.17 and 5.19. The
Kolmogorov-Sinai entropy is displayed for 200 ratios of Jmax/(Jmax+max)
(part 1).
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Figure A.4.: The Kolmogorov-Sinai entropy for 200 ratios of Jmax/(Jmax + max)
(continued). For each sampled ratio, 100 runs were executed (part 1).
Each run was chosen from the -focused ensemble. The realization of
disorder for the chosen system is #1. Chosen parameters are N = 17,
T = 3 · 104, Δt = 10−2, τ = 50, Δ0 = 10−4 and Jmax = 1.

(a) Realization of disorder #2, uniform. (b) Realization of disorder #3, uniform.

(c) Realization of disorder #1, Δ = 0.05.
(d) Realization of disorder #1, Δ = 0.05.

Zoomed out view of figure A.5c.

Figure A.5.: Additional results associated with figures 5.20 and 5.22. The maximum
Lyapunov’s exponent is displayed for various values of H/σ(H). For each
of the 200 sampled ratios Jmax/(Jmax + max) and ensemble choice, 100
runs were executed. Each run was chosen from the uniform. Chosen
parameters are N = 17, T = 3 · 104, Δt = 10−2, τ = 50, Δ0 = 10−4 and
Jmax = 1.
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(a) max = 5.66 (R = 0.15). (b) max = 2.03 (R = 0.33).

(c) max = 1 (R = 0.5). (d) max = 0.0526 (R = 0.95).

Figure A.6.: Additional results associated with figure 5.23. For multiple quenched
realizations of disorder and values of H, the maximum Lyapunov’s
exponent is displayed. For each of the 10 shown realizations of disorder,
shown in different colors, 100 runs were executed. Each run was
chosen from the uniform ensemble. Chosen parameters are N = 17,
T = 3 · 104, Δt = 10−2, τ = 50, Δ0 = 10−4, Jmax = 1.
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