
 
 

Delft University of Technology

Smell Driven Navigation for Soft Robotic Arms
Artificial Nose and Control
Piqué, F.; Stella, F.; Hughes, Josie; Falotico, Egidio ; Della Santina, C.

DOI
10.1109/RoboSoft55895.2023.10122116
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the IEEE International Conference on Soft Robotics, RoboSoft 2023

Citation (APA)
Piqué, F., Stella, F., Hughes, J., Falotico, E., & Della Santina, C. (2023). Smell Driven Navigation for Soft
Robotic Arms: Artificial Nose and Control. In Proceedings of the IEEE International Conference on Soft
Robotics, RoboSoft 2023 IEEE. https://doi.org/10.1109/RoboSoft55895.2023.10122116

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/RoboSoft55895.2023.10122116
https://doi.org/10.1109/RoboSoft55895.2023.10122116


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Smell Driven Navigation for Soft Robotic Arms: Artificial Nose and Control

Francesco Piqué, Francesco Stella, Josie Hughes, Egidio Falotico and Cosimo Della Santina

Abstract— Elephants and other animals heavily rely on the
sense of smell to operate. Soft robots would also benefit from
an artificial sense of smell, which could be helpful in typical
soft robotic tasks such as search and rescue, pipe inspection,
and all the tasks involving unstructured environments. This
work proposes an artificial nose on a soft robotic arm that
ensures separate smell concentration readings. We propose
designing the nose to generate a one-to-one matching between
the sensors’ inputs and the actuators. This design choice allows
us to implement a simple control strategy tailored to reach
a dynamically varying smell in the environment, which we
validate on a two-segment tendon-driven soft robotic arm
equipped with the proposed artificial nose. We also propose
and validate in simulation a control strategy for reaching tasks
in the case of a stationary smell.

I. INTRODUCTION

The birth and development of soft robotics is strongly tied
to bio-inspiration and bio-mimicry [1], [2]. The capabilities
of animals like the octopus or the elephant are facilitated by
the softness of their bodies, and also by their senses which
allow them to intelligently explore the environment and make
internal models based on the sensory data. The elephant, for
example, is known to heavily depend upon the sense of smell
through its trunk for cognitive tasks [3]. Inspired by this, in
this paper we introduce an artificial nose for a soft robotic
arm. Equipping soft robots with artificial sensing is nowadays
a thriving field of research [4]. Vision has been implemented
both with cameras at the tip in an eye in hand fashion [5],
[6], and with external cameras, whose frames are usually
used as ground truth data for machine learning schemes.
Self sensing, or proprioception, has been implemented with a
variety of sensors either embedded [7], [8], [9], [10], placed
at the robot’s base [11], or on the robot’s body as a skin
[12]. Tactile sensing via soft skins [13] is also a well studied
topic. Audio devices have also been integrated in to soft
robotic systems [14].
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Fig. 1: The tendon driven soft arm used in this work, with the
electronic nose placed on the tip. Thanks to a reduced model of the
structure and the sensing on the tip, the soft manipulator is able to
reach the source of signal.

However, out of the five senses, smell and taste have yet
to be integrated into soft robotics. This paper concerns itself
with the former, and its application to blind exploration.
Outside of soft robotics, Persaud and Dodd [15] have first
introduced the concept of “electronic nose”. Using only two
generic gas sensors, they could compare the ratios of the
responses to different smells and gases and use such com-
pared measures as an identifier for a specific odour. Later,
electronic noses have been applied to navigation of mobile
vehicles [16], [17], [18]. No examples exist of application
to manipulators. With this work, we propose a nose design
for applications in soft robotics, as shown in Fig. 1. The
nose includes three sensors, this way allowing for directional
sensing of odors. We align them with the typical topology
of tendon driven soft robotic arms, so to pair each sensor
with a tendon. We also propose two smell driven control
strategies tailored for stationary or dynamic smells. The first
is discussed in Sec. III and the second in Sec. IV. We validate
the stationary one in simulation, leading to a precision in
reaching a smell source of 5 % of the robot’s length in
average. We validate the second strategy with the platform
shown in Fig. 1.20
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Fig. 2: The schematic of the wiring between a Figaro TGS-2600
gas sensor and the Arduino Nano.
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Arduino Nano
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Fig. 3: The 3D CAD model of the custom designed holder for
three gas sensors at a 120° angle and the Arduino Nano.

II. HARDWARE

After briefly introducing the two segment soft robot that
we use in this work, we dive in the description of the
proposed nose with directional sensing capabilities in II-B,
and we validate its effectiveness with experiments in II-C.

A. Soft robot setup

A low cost, large scale, tendon driven soft arm has been
built for this work. Its main body is made of two indepen-
dently actuated segments made of a soft deformable foam
(expanded polyethylene). On the tip and in the mid section
Inertial Measurement Units (IMUs) have been placed so as
to provide the orientation data in real time [10] (Fig. 1). The
cables providing power and connection to the IMUs and the
gas sensors are hosted in a custom made hole along the center
of the foam body. Six Dynamixel XM430-W210 motors
placed at the base of the robot, three for each segment,
actuate the tendons which are attached to the tip of each
segment and are routed along the body of the robot through
3D-printed guides.

B. Electronic nose

The sense of smell in humans and animals relies on
receptors sensible to volatile chemical compounds. Similarly,
in this work a triplet of Figaro TGS-2600 gas sensors was
used. The sensors are composed by a typology of metal
oxide sensors based on tin oxide (SnO2) which, if heated,

is subject to decrease in resistance when exposed to various
nocive gases such as methane, carbon monoxide, ethanol,
iso-buthane and hydrogen. The sensors were placed on the
tip of the soft robot by means of a custom holder, shown
in Fig. 3. The holder is designed so that the sensors are
placed symmetrically at a 120° angle, so that each sensor is
pointed towards a different direction around the robot’s tip.
This geometry also reflects the configuration of the tendons
which actuate the arm. Each sensor was placed in a semi-
closed separate housing, so as to better differentiate the
direction sensed by each sensor. In this way each sensor has
its own directionality, and its information can be exploited
to formulate an approximation of the local gradient of gas
signal, and so derive a smell-driven robot controller. The
housing also contributes to physically separate the sensors
from each other so as to ensure that their measures are as
independent as possible. In front of the opening of each
housing a 5V Sunon axial fan was placed in order to create a
flow of air from the surrounding environment to the sensing
element, and out of the housing from a slit placed at the
back. The fans ensure a larger range of action of the sensors.
Moreover, they ensure a shorter recovery time of the sensors
because the gas is allowed to flow freely out of the housing
without stagnating around the sensor after the smell source is
removed from the proximity of the robot [19]. The sensors
are then wired to an Arduino Nano placed on top of the
holder structure, which streams the sensor data via a USB
cable placed in the hollow of the robot’s body to a PC. The
schematic of the sensing element is shown in Fig. 2. For each
sensor, The 5 V of the Arduino powers a heating element,
RH , and the sensing element Rs. A loading resistance of
RL = 11kΩ is placed for readout between the analog output
of the sensor and ground. The voltage over the loading
resistor VRL is read by the analog input of the Arduino,
and the sensing element resistance can be derived with
Rs =

(5V−VRL)
VRL

RL. Every sensor must be pre-heated before
reaching its regime resistance. Such baseline resistance R0
is subject to variations in between sensors and is also related
to temperature and humidity conditions. In Fig.5 it is shown
the pre-heating phase of the three sensors. After about 15
minutes the baseline resistances are reached for each sensor.
Notably each sensors reaches a different baseline resistance.

C. Experimental results

To characterize the response of each sensor a smell source
was placed around the electronic nose at constant distance
of 10 cm and removed after few seconds while the response
of each sensor was recorded. The trial was repeated with
the smell source directly in front of every sensor, and in a
halfway position between every sensor couple, so as to span
the sensing space all around the nose. A cotton swab imbued
in ethanol was used as a smell source due to availability
of ethanol and to its relative non-toxicity with respect to
the other gases to which the sensor is sensitive to. During
the experiment the axial fans were turned on to ensure air
flow. The resistances of the sensors fall accordingly to the
location of the smell source in Fig. 4 (a-f). When the smell
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Fig. 4: Response of the electronic nose to smells placed at different orientations. In a),c),e) the smell is placed in front of sensor S1,S2,S3
respectively. In b),e),f) the smell is placed halfway in between sensors S1-S2, S2-S3 and S3-S1 respectively. In g) the response of the
electronic nose to a smell placed sequentially in front of S1,S3,S2 without interrupting the trial is shown.

Fig. 5: Power up of the three gas sensors mounted on the tip of
the soft robot. Note that each sensor reaches a different resistance
baseline in about the same amount of time.

is placed in between two sensors the resistances of both the
sensors decrease. A trial where the smell source is placed in
front of each sensor sequentially was also performed and the
response of the nose is shown in Fig. 4g. Here, we observe
that, when the smell source is placed next to sensor S1, it’s
resistance normalized with respect to the baseline R0 falls
immediately and faster than for sensor S2. Then, when the
smell source is placed in front of S3 we see its resistance fall
while S1 is recovering and S2 is stationary, and finally when
the smell source is placed close to S2 its resistance falls
while the others are recovering. These experiments prove
that the proposed nose provides not only information on the
magnitude of the smell, but also its direction. We will use
this information in the control strategies that we discuss in
the next two sections.

III. STATIONARY SMELL

A. Control strategy

In this section we present a smell driven control strategy
for the task of reaching an odour source in the case of a smell
whose concentration profile is constant over time. Based on
the previously proved capability of our electronic nose to
provide information about the direction of a smell location,
we propose to exploit that information by computing itera-
tively a target in task space in the detected direction of the
smell. It is reasonable to assume that the smell source will be
in the premises of the sensor with highest reading at a given
time. However this does not guarantee that the direction of
the smell is precisely where that sensor is pointing. For this
reason we consider the reading also of the second highest
sensor and compute the vector of the new target, with respect
to the center of the tip of the soft robot, as follows:

#»x target = k(G1
# »w1 +G2

# »w2) (1)

where # »w1 and # »w2 are the versors indicating the direction of
the line joining the center of the soft robot to the two sensors
with the highest readings in Ohms G1 and G2 respectively
(Fig. 7). In this way the direction vector will be pointing
more towards either one or the other sensor, based on the
magnitude of their readings. The constant k is set to be
inversely proportional to the the mean of all the sensor
readings, in the current iteration: k ∝ (G1+G2+G3

3 )−1. In
this way the distance travelled by the robot towards the smell
source at a given iteration will be greater when the source
is far and smaller as the mean sensor reading rises, while
the robot gets closer to the source. This process is done
iteratively so that the robot can search for the smell source by
moving along the detected direction of the incoming smell,
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Fig. 6: Configuration space of the constant curvature segments
constituting the PCC model with the main variables highlighted.
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Fig. 7: The target computed by the proposed control strategy for
stationary sells.

until the smell source is reached. The inverse kinematics
of the soft robot is used to compute at every iteration the
appropriate motor commands to reach the target. Since this
strategy maps directly the magnitude of the sensor reading
to the location of the odor source (1) it ignores dynamical
properties of the smell. Therefore it is suitable for a situation
where the smell concentration is constant over time. This
method is proposed for cases where a constant smell source
(e.g. a leak in a tank) is diffusing in an open space and it is
reasonable to assume such profile to never become uniform
over time due to the absence of spatial boundaries. Since this
situation is hard to replicate in laboratory conditions, we have
opted to validate the proposed strategies in simulation. Given
the simple geometry of the soft robot at hand, a simple PCC
model of the two segment soft robot was developed, with
one CC segment per actuated segment. Referring to [20], we
define the mapping from the actuator space (cable lengths) l
to configuration space q as

s =
l1 + l2 + l3

3
, ϕ = atan2

(√
3(l2 + l3 − 2l1)

3(l2 − l3)

)
,

κ =
2
√
l21 + l22 + l23 − l1l2 − l1l3 − l2l3

d(l1 + l2 + l3)
,

(2)

Fig. 8: Example of evolution over time of the configuration
variables ϕ, κ, s for each simulated PCC segment and of the
corresponding motor actions l1...6.

where s is the arc length, κ the curvature, ϕ the rotation
along the z axis as in Fig. 6, and d is the diameter of
the section of the soft robot. The tendon lengths are l1, l2
and l3. Using geometrical considerations [20], it is possible
to derive the homogeneous transform T for every segment
which provides the position and orientation of the tip of each
segment with respect to its base. The multiplication of the
two homogeneous matrices produces therefore the mapping
from the robot’s configuration space to its task space. The
final homogeneous tranform and (2) constitute the forward
kinematics of the robot: x = fFK(L) where L = [l1, ..., l6]
are the tendon lengths and x is the position of the robot’s
tip in Cartesian space. After computing the jacobian of the
robot as

J =

[
∂fFK(l1)

∂l1
, ...

∂fFK(l6)

∂l6

]⊤
, (3)

it is possible to compute the inverse kinematics of the soft
arm by means of the pseudo inverse of the jacobian [21]:

L̇ = J+(L)(xtarget − fFK(L)). (4)

Solving (4) computes the appropriate motor actions to
reach the target computed by (1), in every iteration.

B. Simulations

We have therefore modeled three ideal gas sensors placed
on the tip of the soft arm, placed at a 120° degree angle.
They act as if they sense exactly the gas concentration at
a distance of 10 cm along the imaginary line which joins
the center of the soft robot tip and the sensor. We assume
that the maximum concentration of smell coincides with the
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Fig. 9: Examples of trajectories of the simulated soft robot towards
a stationary smell source, in different locations in space.

Fig. 10: Euclidean distance between the simulated robot’s tip and
the smell source, averaged over 1000 simulated trials, with σ = 50.
We show the standard deviation band with a light blue shade area.

Fig. 11: The performance in terms of average final error of the
proposed controller for different values of smell diffusion σ and
for two different initial robot conditions.

smell source, and decreases as a Gaussian in function of the
distance from the source. Therefore the reading of a given
sensor in Cartesian space is given by:

Gn =
1√
2πσ2

e
−dn
2σ2 (5)

Where dn is the Euclidean distance between the sensor n
and the smell source. By selecting the standard deviation σ of
the Gaussian we are selecting how much the smell concentra-
tion is spread around the source, where the concentration is
maximum. We simulate a soft robot using the aforementioned
PCC model, and have it reach a stationary smell source
using the proposed iterative algorithm: iterativaly a target
is computed with (1) and the corresponding motor action,
computed with (4), is fed into the PCC model (2). We
repeat the trial 1000 times with the smell source placed in a
different reachable point in the robot’s workspace. We repeat
this for varying values of σ, representing different levels of
diffusion of the smell from the source, and for different
initial conditions (straight and bent). The performance of
the controller in terms of final reaching error in task space
averaged over all the trials is shown in Fig. 11, for varying
values of σ and of initial robot conditions. Examples of
the trajectory of the robot in task space, reaching different
smell targets are shown in Fig 9, while the evolution of the
parameters of the PCC model, and of the tendons lengths
are exemplified in Fig. 8. The average Euclidean distance of
the simulated robot’s tip with the smell source, along with
its standard deviation, is shown in Fig. 10. We note that,
for σ = 50 the robot reaches a smell source in different
locations in less than 30 iterations, with a mean error of 45
mm, corresponding to about 5% of the robot’s length.

IV. DYNAMIC SMELL

We now consider the case in which the smell concentration
is dynamic. This is the most common case in the lab, where
the smell source appears in the scene, reaches the sensor in a
given amount of time, and diffuses in the room. Local air cur-
rents or perturbations also influence the dynamics. Therefore
in this section, we present a simple control strategy based on
a one-to-one mapping of the sensors to the actuators. Such
strategy will exploit the dynamics of the smell concentration
so as to produce a reaching task towards a smell source,
suitable for application in blind exploration. We then validate
the strategy on the hardware.

A. Control strategy

We propose to directly couple the motors driving the
tendons to the corresponding gas sensor, given that the
three tendon attachment points on the tip are placed at a
120° angle corresponding to each gas sensor. Such topology
is very common in the field of soft robotic manipulators
[20]. Therefore this strategy applies to many soft tendon-
driven robotic arms and beyond. The strategy consists in
first reading raw gas sensor data, streamed by an Arduino
to MATLAB at a frequency of 10 Hz. For each sensor the
data is stored in a buffer to which a sliding window averaging
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k) l) m) n) o)

Fig. 12: Photo sequence of the soft robot following a smell source using the proposed strategy for dynamic smells. a) 0 s, b) 2.5 s, c) 4
s, d) 5 s, e) 7 s. f) 0 s, g) 2 s, h) 3 s, i) 4 s, j) 5 s. k) 0 s, l) 2 s, m) 4 s, n) 7 s, o) 8 s.

filter with a window of 10 samples is applied to smooth out
the incoming data:

Si =
1

10

1∑
k=−10

Si−k+1,raw (6)

Where Si,raw and Si are the raw sensor data and the
smoothed data respectively, at time sample i. The gradient
of the resulting signal was then computed using the diff
command in MATLAB, and it was used to identify peaks of
incoming smell concentration gradient.

Si,diff = Si − Si−1 (7)

Such peaks are associated to the presence of the smell
source in the premises of the corresponding sensor. Once
the value of the smoothed and differentiated signal Si,diff

overcomes a threshold, here imposed equal to 0.5, the
corresponding motor is actuated with a step signal so that
the tendon length is shortened of 5 mm. This was iteratively
repeated every second. We summarise this control strategy
in Algorithm 1.

B. Experimental results

To validate the proposed algorithm we have placed a
smell source at a distance of about 10 cm from one of the
sensors at the tip of the robot. Then, after the robot has
reached the smell source and has stopped we have moved
slowly the smell source around the workspace. The robot
was able to follow the smell source accordingly (Fig. 12).
The soft robot directs itself towards the smell source after the
time needed for the smell to dynamically reach the sensors.
In Fig. 13 the sensor readings recorded during the trial,
the smoothed and differentiated signals used to trigger the

Algorithm 1 Algorithm for reaching a dynamically varying
smell

1: define thresh = 0.5
2: define action = 5 mm
3: while True do
4: [S1, S2,S2]← ReadSensors()
5: Buffers← Append([S1, S2, S3])
6: Smoothed← MovingAverage(Buffers)
7: Diff ← diff(Smoothed)
8: Flag← Diff(end)
9: if Flagi > thresh then

10: Motori ← action
11: wait 1 s

motors, and the corresponding actuation signals in tendon
lengths are shown. The smoothed and differentiated signal
overcomes the threshold and activates the motors in three
clearly separable moments, producing the three movements
performed by the robot shown in Fig.12. This approach
is advantageous since the motors are activated not only
when the smell impacts the robot, but also while the robot
approaches the smell source, since it is going towards a
zone of higher smell concentration thus producing a gradient
in sensor readings. This ensures the correct execution of a
reaching task. Moreover, the proposed method effectively
produces a stopping criterion for the robot due to the fact
that when the tip is very near to the source the corresponding
sensor saturates to the maximum reading. This results in
a null gradient and therefore to the stopping of the motor.
This approach has the advantage of being virtually applicable
to any tendon driven soft robot, and of being simple to
implement, since it does not require a kinematic inversion.
However, for this same reason the path to the source is only
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a)

b)

c)

Fig. 13: a) Sensor resistances. b) Smoothed and differentiated
raw signals from the sensors, shown with respect to the activation
threshold. c) The corresponding motor actions.

approximate and does not span the whole workspace of the
robot. Moreover, to respect the one-to-one mapping between
sensors and actuators, in this work we have considered only
the three actuators of the second segment which, due to heavy
coupling between segments, produce a bending motion along
all the robot’s body. A strategy which considers also the
actuators of the first segment would significantly improve
the reachable workspace of the soft robot.

V. CONCLUSION

In this work we propose for the first time an artificial
nose for a soft robotic arm. We present and validate two
smell driven control strategies for two different conditions of
smell diffusion. The first is to locate and reach a smell source
with a stationary smell profile. We validated this strategy
in simulation. The second controller considers a dynamic
smell and was validated experimentally on the hardware. The
results presented in this work are but the first step towards
integrating olfactory sense in soft manipulators and using
it for navigation, which could prove of great interest in the

search and rescue field. Future studies will focus on strategies
to locate robustly a smell source also in the case of smell
concentration varying dynamically over time.
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