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1. Introduction



Background

Urban Wind Flow
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Pedestrian Comfort Pollutant Dispersion Building Design




Background

Traditional Method

Computational Fluid Dynamics (CFD)

Based on three fundamental conservation laws:

1. Mass is conserved.
2.  Momentum is conserved.
3. Energy is conserved.

These laws are expressed as a set of equations (Navier-
Stokes) that are solved numerically.




A New Approach

* The high computational and time cost of CFD.
* Recent advancements in deep learning offer a promising alternative.

* Deep learning models has been proven can learn complex spatial patterns from data.

Opportunity: Can we use a deep learning model as a surrogate to approximate CFD results
rapidly?



Main Research Question:

To what extent can a Swin-Transformer-based surrogate accurately
simulate wind fields in urban environments under specific initial conditions?

Sub-questions:

e How do different urban building layouts affect the accuracy of the surrogate in
simulating wind fields?

e How do varying inflow speeds affect the accuracy of the surrogate in urban wind
field simulation?

e How does introducing a flow-aware loss function influences the surrogate’s
accuracy?



Scope of the Thesis:

* Scale: 2D urban domains of 100mx100m.

e Conditions: Steady-state wind flow.

* Representation: Wind flow represented as 2D raster images.
* Wind Direction: A single, fixed inflow direction.

* Exclusions: Building height, terrain, vegetation, and thermal effects are not considered.



2. Methodology



* Dataset Generation:
Create a large dataset of urban geometries.

 CFD Simulation:
Use Ansys to simulate wind flow for each geometry.

* Model Training:
Train the Swin Transformer surrogate model on the generated data.

* Evaluation:
Systematically test the model's performance based on the research questions.



Dataset Generation

* Source: Building footprints were extracted from 3DBAG.

* Processing:

1. Partitioning
2. Cleaning
3. Visual Check




Dataset Overview

* Training & Validation Set: 690 unique urban tiles.

* Test Sets:
General: 60 uncategorized samples to test general performance.
Layout-Specific:
* Attached (22)
* Detached (30)
* High-Rise (17)
* Industrial (30)
*  Mixed (26)



CFD Simulation with /Ansys

* Software: Ansys was chosen for its robust workflow and scripting capabilities for automation.
*  Turbulence Model: The k-e model.

* Boundary Conditions:

* Inlet: Bottom boundary.

*  QOutlet: Top boundary.

* A 50m margin was added
to the top and bottom to

minimize boundary

effects.



CFD Simulation with /Ansys
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Mesh Resolution Study

Challenge: Find the optimal balance between computational cost and simulation accuracy.
» Experiment: Tested mesh element sizes from 1.0m down to 0.3m.

* Decision: An element size of 0.5m was chosen.

Element Size () Time Cost (s)

1.0 12
0.7 25
0.5 55
0.3 201

0.7 m 0.5m 0.3m



Data Processing for Model Input

nodenumber, x-coordinate,

1, 4.745848894E+01,

2, 4.744303513E+01,

3, 4.793317795E+01,

: : 4, 4.,794179916E+01,
Point-to-Raster Conversion 5. 1605777803t 101
6, 4.695264053E+01,
7, 2.550842094E+01,
8, 2.501681137E+01,
9, 2.507768440E+01,
18, 2.557164955E+81,

Normalization

Mask Generation

Mask

y-coordinate,
1.076950760E+02,
1.071796341E+02,
1.071626434E+02,
1.076788635E+02,
1.677165255E+02,
1.971958923E+02,
9.358595848E+00,
9.36511@397E+00,
8.878129959E+00,
8.873749733E+00,

Magnjtude

x-velocity,

y-velocity,velocity-magnitude

-4.606513023E+00, 1.130503845E+01, 1.220760059E+01
-4.676264763E+00, 1.135389900E+01, 1.227925682E+01
-4.630705833E+00, 1.142044640E+01, 1.232362175E+01
-4.561842918E+00, 1.137207317E+01, 1.225300312E+01
-4.651576996E+00, 1.123671818E+01, 1.216152663E+01
-4.7223196@3E+00, 1.128634548E+01, 1.223452473E+01
3.4411280@16E+00, 9.511457443E+00, 1.011491585E+01
3.460210800E+00, 9.420621872E+00, 1.003611469E+01
3.369159698E+00, 9.417509079E+00, 1.000214577E+01
3.351234198E+00, 9.505628586E+00, 1.0@7918358E+01

X-Velocity

y—Velocity



The Swin Transformer Surrogate Model

* The original Swin Transformer architecture was preserved.
* Adapted for per-pixel regression.

Baseline Loss function: RMSE Custom Loss Functions:

* Buffer Loss:
L = Outer RMSE + w - Inner RMSE
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* Divergence Penalty:
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3. Results & Analysis



Target Format

Experiment: Trained two models—one predicting only wind magnitude, the other predicting x and y
velocity components separately.
* The XY-based model consistently outperformed the magnitude-only model across all inflow speeds.

* The XY model better preserves sharp gradients and avoids the "blurry" predictions seen in the magnitude
model, especially in narrow passages.
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CFD simulation Mag model prediction XY model prediction

Inflow (m/s) Mag MAE XY MAE Mag RMSE XY RMSE
10.0 2.2663 2.1085 4.3963 4.1628




Inflow Speed

* Prediction error (RMSE) scales linearly with inflow speed.
* As inflow speed increases, velocity gradients near building walls become sharper.
* The model struggles to resolve these sharp transitions, leading to increased underestimation of velocity at

higher speeds.

Prediction Error vs Inflow Speed

—eo— Mag MAE
—e— XY MAE

| —e— Mag RMSE
—e— XY RMSE

50m/s 75m/s 10.0 m/s 125 m/s 15.0m/s

Error Value

Figure 3.3: Comparison of ground truth (top) and predicted magnitude fields (bottom) at five inflow 3l
speeds.

Inflow (m/s) XY MAE XY RMSE

5.0 1.0434 2.0568
7.5 1.5772 3.0724

10.0 2.1085 4.1628 1

12.5 2.6378 5.2062 - L == - o

15.0 3.0828 6.2352 Inflow (m/s)




Layout

Experiment: The XY-based model was tested on five categorized urban layouts at a fixed inflow speed of 10.0 m/s.

*  Mixed and Attached layouts produced the highest errors, while the Detached layout had the lowest.
*  Urban morphology is a primary driver of model error.
» Irregular street canyons and complex bulldlng shapes pose a significant challenge.
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Attached Detached High-rise Industrial Mixed 2
Figure 3.5: Predicted wind magnitude fields and directions (bottom row) and corresponding ground
truth (top row) for each layout type. All cases use the XY-based model at 10.0 m/s. 1
Layout Type Prediction MAE Prediction RMSE ol g g - s
Attached 2.8163 5.1063 o e Leveut e e
Detached 1.5176 2.6771
High-rise 1.8168 3.2231
Industrial 2.1914 4.5721

Mixed 2.5982 5.2886
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While some localized improvements were seen, persistent issues like directional errors and magnitude
Ground Truth

RMSE Reduction: 4.1628 — 4.1315 (a decrease of only 0.03).
underestimation remained largely unsolved.

Adding the buffer loss resulted in only a marginal improvement.

Goal: To improve accuracy in near-building regions.




Divergence Loss

Goal: To enforce physical consistency in the flow field.

The divergence penalty also offered only a marginal global improvement.

RMSE Reduction: 4.1628 — 4.1195 (a decrease of ~0.04)

The model produced fields with slightly lower divergence, but the overall velocity prediction quality was
not significantly enhanced.

Ground Truth

Model Prediction MAE Prediction RMSE
Baseline 2.1085 4.1628
With Divergence 2.0559 41195

Prediction



Combining Buffer and Divergence Loss

Hypothesis: Combining both loss terms could leverage their complementary strengths.

The combined-loss model did not produce a cumulative improvement.
RMSE: 4.1199, comparable to the divergence-only model.
The model's predictive capacity seems to be constrained by factors other than the loss function design.

Buffer

Divergence

Buffer&
Divergence

Model Prediction MAE Prediction RMSE
Baseline 2.1085 4.1628
With Buffer 2.0860 4.1315
With Divergence 2.0559 4.1195
With Buffer & Divergence 2.0939 4.1199




Architectural Resolution

Experiment: Compared the baseline model (patch size 2) with a model using a larger patch size of 5.
* Increasing the patch size from 2 to 5 caused a massive increase in error.
* RMSE Increase: 4.16 — 4.91. This change was far more significant.

* A larger patch size results in visibly less detailed predictions, confirming that the model's structural resolution
is critical.

Patch Size Window Size Prediction MAE Prediction RMSE
2 10 2.1085 41628
5 10 2.6494 49148




4. Discussion & Conclusions



* Input Format is Key: Training on XY-components is superior. It provides directional information and
presents smoother gradients for the model to learn.

* Error Correlates with Complexity: Errors rise with both inflow speed and geometric irregularity (e.g.,
Mixed layouts) because both create sharper, harder-to-predict gradients.

* Error is Concentrated Near Buildings: The proportion of pixels adjacent to buildings strongly correlates
with overall RMSE, highlighting that these high-gradient zones are the primary source of error.

* Soft Constraints are Insufficient: Buffer and divergence losses offered only minor fixes. The model
prioritizes minimizing average pixel error over enforcing physical behavior, revealing the limitations of
using them as "soft" constraints.

* Architecture is Paramount: The model's ability to capture fine detail (set by patch size) is the most
dominant factor influencing performance.



The Main Advantage: Computational Efficiency

Despite its limitations, the surrogate model offers a massive advantage in speed.
CFD Simulation: ~4 minutes 20 seconds per sample.

ML Surrogate: ~4 seconds per sample on the same hardware.

Step CFD ML surrogate
Ansys DesignModeler 3min -
Ansys Mesh 1min 10s -
Ansys Fluent 10s -

Total per sample 4min 20s 4s




Conclusion 1: Answering the Sub-Questions

« Urban Layouts: Densely packed and irregular layouts lead to higher error because they contain more
high-gradient, near-building zones.

* Inflow Speeds: Error increases linearly with inflow speed because higher speeds create sharper, harder-to-
resolve gradients.

* Flow-Aware Loss: Custom loss functions provide only negligible improvements to overall RMSE. They
cannot overcome the model's fundamental architectural limitations.



Conclusion 2: Answering the Main Research Question

* The surrogate is capable of approximating the general structure of the wind field but consistently fails
in high-gradient zones near buildings.

» Its accuracy is decisively governed by architectural factors.

* For rapid, preliminary flow estimation on open area where speed is more important than precision.



5. Future Work



Based on the findings and limitations, future research could explore:

1. Geometric Scale:
3D Voxel Input
Larger Coverage

2. Transient Inflow
3. Model Modification

Physics-Informed Loss
Architecture with better performance



%
TUDelft

Thanks for your listening!
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