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Introduction Background

Pedestrian Comfort Pollutant Dispersion Building Design

Urban Wind Flow



Introduction Background

Traditional Method

Computational Fluid Dynamics (CFD)

Based on three fundamental conservation laws:

These laws are expressed as a set of equations (Navier-
Stokes) that are solved numerically.

1. Mass is conserved.
2. Momentum is conserved.
3. Energy is conserved.



Introduction Motivation

A New Approach

• The high computational and time cost of CFD.

• Recent advancements in deep learning offer a promising alternative.

• Deep learning models has been proven can learn complex spatial patterns from data.

Opportunity: Can we use a deep learning model as a surrogate to approximate CFD results 
rapidly?



Research Questions

Main Research Question:

To what extent can a Swin-Transformer-based surrogate accurately 
simulate wind fields in urban environments under specific initial conditions?

Sub-questions:

● How do different urban building layouts affect the accuracy of the surrogate in 
simulating wind fields?

● How do varying inflow speeds affect the accuracy of the surrogate in urban wind 
field simulation?

● How does introducing a flow-aware loss function influences the surrogate’s 
accuracy?



Introduction Scope

Scope of the Thesis:

• Scale: 2D urban domains of 100m×100m.

• Conditions: Steady-state wind flow.

• Representation: Wind flow represented as 2D raster images.

• Wind Direction: A single, fixed inflow direction.

• Exclusions: Building height, terrain, vegetation, and thermal effects are not considered.
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Methodology

• Dataset Generation: 
Create a large dataset of urban geometries.

• CFD Simulation: 
Use Ansys to simulate wind flow for each geometry.

• Model Training: 
Train the Swin Transformer surrogate model on the generated data.

• Evaluation: 
Systematically test the model's performance based on the research questions.



Methodology

Dataset Generation

• Source: Building footprints were extracted from 3DBAG.

• Processing: 

1. Partitioning
2. Cleaning
3. Visual Check



Methodology

• Training & Validation Set: 690 unique urban tiles.

• Test Sets: 
General: 60 uncategorized samples to test general performance.

Layout-Specific: 

Dataset Overview

• Attached (22)

• Detached (30)

• High-Rise (17)

• Industrial (30)

• Mixed (26)



Methodology

CFD Simulation with Ansys

• Software: Ansys was chosen for its robust workflow and scripting capabilities for automation.

• Turbulence Model: The k-ϵ model.

• Boundary Conditions: 

• Inlet: Bottom boundary.

• Outlet: Top boundary.

• A 50m margin was added 

to the top and bottom to 

minimize boundary 

effects.



Methodology

CFD Simulation with Ansys

DesignModeler Ansys Mesh Ansys Fluent

Geometry Mesh Wind



Methodology

Mesh Resolution Study

• Challenge: Find the optimal balance between computational cost and simulation accuracy.

• Experiment: Tested mesh element sizes from 1.0m down to 0.3m.

• Decision: An element size of 0.5m was chosen. 



Methodology

Data Processing for Model Input

• Point-to-Raster Conversion

• Normalization

• Mask Generation



Methodology

The Swin Transformer Surrogate Model

• The original Swin Transformer architecture was preserved.
• Adapted for per-pixel regression.

Baseline Loss function: RMSE Custom Loss Functions:

• Buffer Loss:
L = Outer RMSE + 𝜔𝜔 ⋅ Inner RMSE 

• Divergence Penalty:
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Results & Analysis Target Format

Experiment: Trained two models—one predicting only wind magnitude, the other predicting x and y 
velocity components separately.
• The XY-based model consistently outperformed the magnitude-only model across all inflow speeds.
• The XY model better preserves sharp gradients and avoids the "blurry" predictions seen in the magnitude 

model, especially in narrow passages.



Results & Analysis Inflow Speed

• Prediction error (RMSE) scales linearly with inflow speed.
• As inflow speed increases, velocity gradients near building walls become sharper.
• The model struggles to resolve these sharp transitions, leading to increased underestimation of velocity at 

higher speeds.



Results & Analysis Layout

Experiment: The XY-based model was tested on five categorized urban layouts at a fixed inflow speed of 10.0 m/s.
• Mixed and Attached layouts produced the highest errors, while the Detached layout had the lowest.
• Urban morphology is a primary driver of model error. 
• Irregular street canyons and complex building shapes pose a significant challenge.



Results & Analysis Buffer Loss

Goal: To improve accuracy in near-building regions.
• Adding the buffer loss resulted in only a marginal improvement.
• RMSE Reduction: 4.1628 → 4.1315 (a decrease of only 0.03).
• While some localized improvements were seen, persistent issues like directional errors and magnitude 

underestimation remained largely unsolved.

Ground Truth

Prediction



Results & Analysis Divergence Loss

Goal: To enforce physical consistency in the flow field.
• The divergence penalty also offered only a marginal global improvement.
• RMSE Reduction: 4.1628 → 4.1195 (a decrease of ~0.04)
• The model produced fields with slightly lower divergence, but the overall velocity prediction quality was 

not significantly enhanced.

Ground Truth

Prediction



Results & Analysis Combining Buffer and Divergence Loss

Hypothesis: Combining both loss terms could leverage their complementary strengths.
• The combined-loss model did not produce a cumulative improvement.
• RMSE: 4.1199, comparable to the divergence-only model.
• The model's predictive capacity seems to be constrained by factors other than the loss function design.

Buffer

Divergence

Buffer&
Divergence



Results & Analysis Architectural Resolution

Experiment: Compared the baseline model (patch size 2) with a model using a larger patch size of 5.
• Increasing the patch size from 2 to 5 caused a massive increase in error.
• RMSE Increase: 4.16 → 4.91. This change was far more significant.
• A larger patch size results in visibly less detailed predictions, confirming that the model's structural resolution 

is critical.



Table of Contents

4. Discussion & Conclusions



Discussion

• Input Format is Key: Training on XY-components is superior. It provides directional information and 
presents smoother gradients for the model to learn.

• Error Correlates with Complexity: Errors rise with both inflow speed and geometric irregularity (e.g., 
Mixed layouts) because both create sharper, harder-to-predict gradients.

• Error is Concentrated Near Buildings: The proportion of pixels adjacent to buildings strongly correlates 
with overall RMSE, highlighting that these high-gradient zones are the primary source of error.

• Soft Constraints are Insufficient: Buffer and divergence losses offered only minor fixes. The model 
prioritizes minimizing average pixel error over enforcing physical behavior, revealing the limitations of 
using them as "soft" constraints.

• Architecture is Paramount: The model's ability to capture fine detail (set by patch size) is the most 
dominant factor influencing performance.



Discussion

The Main Advantage: Computational Efficiency

Despite its limitations, the surrogate model offers a massive advantage in speed.

CFD Simulation: ~4 minutes 20 seconds per sample.

ML Surrogate: ~4 seconds per sample on the same hardware.



Conclusion

Conclusion 1: Answering the Sub-Questions

• Urban Layouts: Densely packed and irregular layouts lead to higher error because they contain more 
high-gradient, near-building zones.

• Inflow Speeds: Error increases linearly with inflow speed because higher speeds create sharper, harder-to-
resolve gradients.

• Flow-Aware Loss: Custom loss functions provide only negligible improvements to overall RMSE. They 
cannot overcome the model's fundamental architectural limitations.



Conclusion

Conclusion 2: Answering the Main Research Question

• The surrogate is capable of approximating the general structure of the wind field but consistently fails 
in high-gradient zones near buildings.

• Its accuracy is decisively governed by architectural factors.

• For rapid, preliminary flow estimation on open area where speed is more important than precision.
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Future work

Based on the findings and limitations, future research could explore:

1. Geometric Scale: 
3D Voxel Input
Larger Coverage

2. Transient Inflow

3. Model Modification
Physics-Informed Loss
Architecture with better performance



Thanks for your listening!
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