MICROSTRUCTURE EVOLUTION OF CR₂ALC CERAMIC BEFORE AND AFTER OXIDATION INDUCED CRACK HEALING

J. Rao¹, D. Jia¹, X. Duan¹, Z. Yang¹, Y. Zhou¹, J. Ouyang¹, W.G. Sloof² and S. van der Zwaag³

¹ Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin, 150001, China – e-mail: jcrao@hit.edu.cn

² Department of Material Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands – e-mail: W.G.Sloof@tudelft.nl

³ Novel Aerospace Materials, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands – e-mail: S.vanderZwaag@tudelft.nl

Keywords: Cr₂AIC ceramic, self-healing, SEM, TEM

ABSTRACT

Ternary Cr₂AlC composites have good properties like other MAX phases, such as high temperature strength, oxidation and corrosion resistance, good electrical and thermal conductivity, and machinability. In present work, Cr₂AlC ceramic is produced by reactive hot-press sintering with the starting materials of chromium, aluminium and graphite powders. Crack damage was induced with a Knoop indenter in three point bending samples. The pre-cracked specimens were healed at 1100 °C in air for various times. XRD, SEM, TEM as well as SAD, EDS, HAADF techniques were used to characterize the phase constitution and microstructure evolution of Cr₂AlC ceramic before and after oxidation induced crack healing. The mechanism of atom diffusion and crack healing effect in Cr₂AlC will be uncovered through intensive study of the oxidation of aluminium and chromium.