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In recent years the advent of multi-omic techniques have shown great promise in the
field of oncology. In light of these advancements, this thesis focuses on the use of mul-
tiple data types to find methylation markers around transcription start site regions for
colorectal cancer in the cell-free DNA (cfDNA) domain. It combines several methods
of finding these markers, based on publicly available data obtained from solid tissue
biopsies. These methods are both based on a single data type, as well as integrating
multiple different data types. The resulting selections of methylation markers are
then tested for significance on two independent datasets of cfDNA samples. The se-
lections produced are tested on these datasets for their significance in distinguishing
colorectal cancer samples from healthy samples. On one of these datasets, the selec-
tions are also tested for being differentially methylated between a group of patients
with recurring tumors versus non-recurring tumors. The results on these two different
datasets vary, showing that the methods of selecting potential methylation markers
are capable of doing so on one platform, but that these results cannot be validated
on another.
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Chapter 1

Introduction

In the field of oncology, the paradigm of personalized medicine is becoming ever more
important. The focus on the genomic information of the individual patient informs
decisions in diagnostics, prognosis, treatment, and prevention of cancer[1]. However,
this also brings with it several challenges.

The full scope of genomic information available from a patient is diverse, consisting
of many different ’omic platforms. Not only this, but the scale of individual types of
data is also expanding, with an increasing amount of datasets and increasingly more
extensive datasets[2].

One way to exploit this wider spectrum of data is by using the data on multiple
’omics platforms to improve the selection of biomarkers for one of these platforms.
The use of multi-omic data in the selection of biomarkers for one omic platform could
potentially improve selections as opposed to finding biomarkers based on just a single
type of data.

In analyzing this sort of multi-omic data, one might analyze the individual data
types to combine their conclusions at a later point. However, this risks not considering
the broader scope of the data[3] and drawing multiple conclusions that could be
difficult to reconcile. The heterogeneous nature of the available data calls for different
approaches that can form conclusions in a broader spectrum of ’omics data.

Not only is there great variety in the different types of genomic information used,
but also in the way of sampling this data. In oncology, solid biopsies of, for instance,
tumorous tissue remains an important method of collecting patient data. However,
solid biopsies are a relatively invasive and intensive procedure.

Liquid biopsies are another way of obtaining data on a patient. The sampling of
bodily fluids is significantly less invasive than solid tissue biopsies. Usually, this liquid
is blood, but other liquids such as urine or cerebrospinal fluid are also used. Liquid
biopsy samples hold a wealth of genetic information on the patient from which it is
obtained. For example, liquid biopsy samples could also potentially carry more infor-
mation than a solid tissue biopsy of a single metastatic site in metastatic patients[4].
For these reasons, this thesis will focus on data obtained from liquid biopsies rather
than the classical solid biopsy domain.

Now that we have established some potential reasons for performing a liquid-
rather than a solid biopsy, we should consider how a liquid like blood contains the
data required to be useful in a clinical context in the same way solid biopsy samples
are.

Products present in the blood carry genetic information. One of these carriers of
genetic data is cell-free DNA (cfDNA), fragments of free-floating DNA. This DNA is
released into the blood through a number of pathways. Both controlled and uncon-
trolled cell death, as well as secretion through extracellular vesicles, release cfDNA
into the blood, as shown in figure 1.1. This figure also shows the types of data that
can be obtained from cfDNA, for instance: changes in methylation, single nucleotide
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polymorphisms (SNPs), or copy number variations (CNVs). Both healthy and tu-
morous cells release cfDNA into the blood.

Figure 1.1: Origins and range of alterations in cell-free DNA, from
[5]

Here, however, lies a potential challenge of translating results in a classical solid
biopsy context to the domain of liquid biopsies, as there are significant differences
between these two methods of sampling. For example, when sampling tumorous
tissue in a solid biopsy, a large amount of the tissue that is sampled will be from
tumorous tissue. In a liquid biopsy context, for instance, when working with cfDNA,
the resulting signal mostly contains DNA from a healthy origin.

cfDNA is far from the only product that can be obtained from a liquid biopsy.
Other products, for instance, circulating RNAs or circulating tumor cells (CTC) can
also be found in blood[6]. In this thesis, however, the focus will be on cfDNA as data
is more widely available for cfDNA than it is for example CTCs or RNA.

1.1 Objectives
Given the background above, we can lay out the objectives for this thesis.

We have already described that we will focus on multi-omic data in a liquid biopsy
context and given our reasoning for these choices. Specifically, we wish to be able to
specify biomarkers that appear in a cfDNA context that are indicative of the presence
of cancer. Our hypothesis regarding this selection is that through the use of data on
multiple ’omics platforms, we are able to find more biomarkers than what would be
possible using only a single data type.

We have chosen to target changes in methylation in colorectal cancer specifically.
These choices were made for a number of reasons. Solid biopsy data on colorectal
cancer patients, especially methylation data was already widely available. On top
of that, we had access to a dataset containing methylation data on colorectal cancer
patients as well as healthy controls, by Erasmus University.

Besides these technical reasons colorectal cancer has one of the highest incidence
rates worldwide, as well as having relatively high mortality compared to other types of
cancer[7]. Detecting the presence of colorectal cancer early could significantly improve
the chance of survival in such cases. Analysis of liquid biopsy samples could prove to
be an essential method of early detection, potentially detecting tumors before they
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can be identified by current imaging techniques and sampled by classic solid tissue
sampling.

This dataset contains data on metastatic colorectal cancer patients both before
and after surgery, as well as information on whether and when a tumor recurred.
Using this, we are not only able to analyze biomarkers for how well they differentiate
between a colorectal cancer patient and a healthy individual. By combining the
post-surgery data on a patient with the information on tumor recurrence, we can
also analyze whether a biomarker appears to differentiate between a patient where
a tumor will recur and a non-recurring patient. This latter analysis could point to
biomarkers that indicate prognosis after surgery.

To summarize, our goals are as follows:

• This thesis centers around the primary goal of finding DNA methylation markers
of colorectal cancer (CRC), with the focus being that these markers are also
present in cfDNA samples.

• Additionally, this work selects biomarkers based on multiple data types and
thus centers around the challenge of combining them in a meaningful way and
comparing its results to a selection based on a single data type in isolation.

• Finally, another goal is to investigate whether potential DNA methylation mark-
ers are related to tumor recurrence.
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Chapter 2

Methods

2.1 Data types and sources
This section will give an overview of the different data sources used in this thesis. The
primary type of data used in the methods shown in this thesis consists of methylation
data since our primary goal is to predict methylation markers for colorectal cancer.
As we are focusing on finding these markers within blood, we also use data on normal
blood samples.

Besides methylation data, this thesis also investigates the integration of other
types of data in selecting methylation markers for colorectal cancer. Specifically, we
also include gene expression data. Finally, in order to validate our findings we use
two methylation datasets on cfDNA samples. An overview of the different datasets
described here can also be found in table 2.1.

2.1.1 TCGA Pan-Cancer Atlas

Methylation data

Methylation data of solid tissue biopsies were obtained from the TCGA Pan-Cancer
Atlas project[8] through the Xena browser[9]. The TCGA Pan-Cancer Atlas (Pan-
CanAtlas or PANCAN) project contains methylation data on a great number of tissue
samples for colorectal cancer, as well as a large variety of other cancers. This data
encompasses 33 different types of tumors and also includes healthy tissue samples for
a subset of the total patients (n = 9639) in the dataset. This data consists of Illu-
mina HumanMethylation27, as well as Illumina HumanMethylation450[10] BeadChip
though only the HumanMethylation450 data was used, targeting far more methyla-
tion sites than the HumanMethylation27 BeadChip.

Gene expression data

Besides methylation data, the TCGA Pan-Cancer Atlas also contains gene expression
data on many of the samples from section 2.1.1.

The gene expression data used consisted of RNAseq data from the TCGA Pan-
Cancer Atlas project, obtained through the Xena browser. This data was already
processed to have batch effects removed, and the data were normalized, consisting of
20532 features across 11060 samples. This data was captured on the Illumina HiSeq
platform.

2.1.2 Whole blood samples

Data on whole blood samples were obtained from studies by Hannum et al.[11] and
Harris et al.[12]. These two datasets contain 656 and 20 samples of healthy subjects,
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Name Data type Platform

TCGA Pan-Cancer Atlas[8] DNA Methylation Illumina HumanMethylation450
Illumina HumanMethylation27

TCGA Pan-Cancer Atlas[8] RNA-seq Illumina HiSeq
Hannum et al.[11] DNA Methylation Illumina HumanMethylation450
Harris et al.[12] DNA Methylation Illumina HumanMethylation450
Moss et al.[13] DNA Methylation Illumina MethylationEPIC

MeD-seq[14] DNA Methylation Methyl-dependent restriction
enzyme based method

Table 2.1: Overview of the datasets used.

respectively. Both of these datasets were captured on the Illumina HumanMethyla-
tion450 BeadChip. These two datasets were combined to yield one dataset spanning
676 healthy blood samples.

2.1.3 Liquid biopsy data

A small, independent dataset of cfDNA samples originates from a study by Moss
et al.[13]. This dataset contains 4 colorectal cancer (CRC) patients and 4 healthy
controls as well as sepsis patients and lung- and breast cancer patients. These samples
have been obtained on the Infinium MethylationEPIC BeadChip.

A separate dataset was obtained, which contains samples from 41 colorectal cancer
patients at multiple points in time as well as 9 healthy controls, collected through
Methylated DNA Sequencing (MeD-seq)[14], based on the use of a DNA methylation-
dependent restriction enzyme.

The data on CRC patients were sampled at three points in time. T0 samples were
collected before the patients underwent surgery, T1 samples were collected around
one week after surgery and T2 samples were collected at least two weeks after surgery.

2.2 Data preprocessing

2.2.1 Pan-Cancer Atlas datasets

For the data obtained from the Pan-Cancer Atlas, only samples that appeared in
both the methylation data as well as the gene expression data were retained. This
was done in order to be able to analyze this data in a multi-omic context, eliminating
samples for which only one data type was available.

2.2.2 Grouping individual CpG sites to transcription start sites

Only CpG sites within a 2000 base pair region around the transcription start site of
genes were included. The transcription start sites (TSS) were determined through the
Ensembl human genome annotation.[15] In particular, version 104 was used. Based
on this assembly, the groups of interest spanned 2kb, centered around the individual
TSSs.

The function of this grouping is twofold, both to be able to directly link differential
methylation of a group to a transcription start site as well as to reduce the number
of features in our data.

With the use of the Ensembl human genome annotation, for each transcript, the
start location on the genome was found. The region 1000kb upstream up to 1000kb
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downstream of this location was denoted as a single TSS region belonging to this
transcript. This yielded a total of 206479 regions surrounding a transcription start
site.

Illumina platforms

The datasets that were generated on the Illumina platforms use beta values as their
measure of methylation. For a CpG site probe, a beta value is defined as the ratio of
methylated intensity and overall intensity. This ratio results in a number between 0
and 1. A beta value of zero would indicate that a CpG site is completely unmethy-
lated, while a value of 1 would mean that a CpG site is methylated in all measured
copies of that site[16].

The datasets that use the Illumina HumanMethylation450 platform, as well as the
Illumina MethylationEPIC platform, were transformed to this approach that groups
individual values based on transcription start sites. Firstly, only CpG sites with
values for > 50% of the total samples were retained. For each TSS, the beta value
was taken to be the mean of the beta values of the CpG sites within the 2kb region
centered around that TSS.

MeD-seq

In contrast to the Illumina platform, the MeD-seq sequencing technique does not
yield the methylation level of a CpG site relative to the number of unmethylated
copies that are read. MeD-seq sequencing yields a count of methylated copies. Thus,
a value of 0 would, similarly to the beta value used by the Illumina platform also
indicate that no methylated copies of a CpG site were read. However, this value is
not constrained to be between 0 and 1, and for values greater than 0 defines only a
measure of how many methylated CpG sites were read without comparing this count
to any unmethylated copies of a CpG site.

In the case of the dataset based on the MeD-seq sequencing, the counts of the
individual CpG sites are summed to yield a total count for each 2kb region centered
on a TSS. Thus, the value of such a region represents all counts for sites within that
region. Transforming the original data in this way yields 112609 TSS regions, as not
all of the regions in section 2.2.2 are covered by the MeD-seq sequencing. Finally,
trimmed mean of M values (TMM) normalization[17] was then applied on the MeD-
seq dataset.

2.3 Multi-omic integration

2.3.1 JIVE

The integration of data across multiple types of genetic information is performed
through JIVE[18]. JIVE was applied to the preprocessed TCGA Pan-Cancer Atlas
methylation and gene expression data as two blocks across the same samples. This
yielded a decomposition of the original data into:

• A joint term

• Individual terms

• Noise
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This attempts to capture patterns present across different types of data, as well as
signals that occur only in one individual data type. Figure A.1 in appendix A shows
an example of data consisting of these three components. In particular, the R.JIVE
implementation was used[19].

A formal description of the JIVE model is given as:

X1 = J1 +A1 + ϵ1

Xk = Jk +Ak + ϵk,
(2.1)

Where X1 up to Xk are n × pi matrices corresponding to k different datasets of
pi variables on n samples. Thus the number of variables in a dataset can differ from
other datasets, though always over the same samples. J1 up to Jk are the submatrices
of a single joint matrix J corresponding to Xi. A1 up to Ak represent the individual
matrices for dataset Xi.

As in this thesis, only two different data types are considered for our purposes the
JIVE model can be simplified to:

XM = JM +AM + ϵM

XGE = JGE +AGE + ϵGE ,
(2.2)

Where M denotes the methylation dataset and GE denotes the gene expression
dataset.

The joint and individual terms in JIVE are constrained to be of a certain rank.
This choice of these ranks is important as it functions as a measure of how much
variance should be accounted for in the joint component and how much the dimen-
sionality of the data is reduced. This rank constraint is applied to only those two
terms. The dimensionality reduction that is performed by restricting both the joint
and individual components to a lower rank than the input data is responsible for
accounting for noise and separating it from the joint and individual effects.

The JIVE algorithm can be summarized as follows:

1. Take the complete data X = [X1, X2, ..., Xk] as the joint term Xjoint.

2. Find a rank r singular value decomposition of Xjoint being J = [J1, J2, ..., Jk]

3. For each data type i, Ai = Xi − Ji

4. Take the rank ri SVD of Ai as the new individual term Xindividual
i

5. Update Xjoint to be Xi −Ai

6. Select new rank constraints

This is then performed iteratively until it converges or a maximum number of itera-
tions has been reached.

The algorithm that is used to estimate the ranks is included in appendix B

2.3.2 aJIVE

A number of other techniques have by now been developed that extend on JIVE,
altering the process by which decompositions are generated. One of these techniques
is aJIVE, or angular JIVE [20].

As one of the most impactful changes to the method, aJIVE foregoes the iterative
algorithm that JIVE uses. Instead, aJIVE favors another approach where singular
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value decomposition is sequentially applied a fixed number of times to obtain the
joint and individual components.

The changes that aJIVE makes to the JIVE technique both decrease runtime and
are also aimed at improving the quality of the decompositions, especially when there
exists correlation between individual components.

An example of this can be found in appendix C, where data is constructed con-
sisting of a joint and individual component for blocks X and Y in figure C.1. Both an
aJIVE and JIVE decomposition are given in figures C.2 and C.3 respectively. While
the aJIVE decomposition manages to deconstruct the original signal accurately, the
JIVE decomposition erroneously attributes underlying individual effects to the joint
component.

2.4 Selection of differentially methylated TSSs
To select regions that are significantly differentially methylated in tumorous samples
as opposed to healthy samples in cfDNA, five different selection methods were used:

• Thresholding

• JIVE loadings

• aJIVE loadings

• Random Forest

• A combined selection

Figure 2.1 gives a summarized overview of how these methods fit together and what
type of data they use for their selection. These next sections will describe the details
for each selection method.

Figure 2.1: A summary of the method used to find a selection of
TSS regions.

2.4.1 Thresholding approach

This approach is based, in part, on works by Cho et al.[21] and Lange et al.[22]. This
method of selecting TSS regions compares tumorous versus normal tissue samples,
as well as healthy tissue versus normal blood samples. The reasoning here is that
the methylation level of selected regions should differ significantly in tumorous versus
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healthy tissue while not appearing to be methylated differently in healthy tissue
versus blood. The hypothesis here is that this will select regions that will also appear
differently methylated in cfDNA samples.

Figure 2.2: Overview of the different steps in the thresholding selec-
tion method. Example values are used for the thresholds denoted in

red.

∆beta values are calculated for each individual TSS across the set of tumorous
colon tissue samples versus the set of healthy tissue samples by subtracting the mean
beta value across the tumorous samples by the mean beta value across the healthy
samples. This value represents the difference in beta value between these two sets.
A threshold is then applied to these ∆beta values to select TSS regions that are
significantly different in tumorous tissue as opposed to healthy tissue. This step
corresponds to the top section of figure 2.2.

The next step is to filter the TSS regions selected in the previous step by their
absolute ∆beta value in a healthy tissue versus whole blood sample comparison. This
excludes regions with means that are significantly different between these two groups.
In figure 2.2 this step is represented by the middle block.

Finally, another filtering step is then applied on the remaining TSS regions that
calculates ∆beta values for tumorous colon tissue versus each other tumorous tissue
type. TSSs that do not have an absolute delta-beta value larger than a certain
threshold are then filtered out in order to select TSSs where the difference in mean
beta value is unique to tumorous colon tissue. This corresponds to the lower part of
figure 2.2.

2.4.2 JIVE loadings

Similar to principal component analysis, JIVE can yield scores and loadings. For
each block Xi, this yields a scores and loadings matrix, Ui and S respectively for
the joint component and Wi and Si respectively for the individual component. A
representation of the JIVE model including these scores and loadings is given in
figure 2.3. These loadings were then used in forming a selection of TSSs.
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Figure 2.3: Factorized version of the JIVE model. From [18].

Once JIVE had obtained a decomposition as described in 2.3.1, the jive.predict
function was used on these same two blocks to obtain loadings for the joint and
individual components. The loadings for the joint component are given as a single
matrix, which was split to match each individual data type. Both the joint and
individual loadings were used to generate selections of transcription start sites.

Depending on the rank of the joint or individual component chosen by the JIVE
algorithm, the number of columns in the loadings matrix varies. The top 200 highest
absolute loadings were obtained for each column of the joint and individual spaces.
The TSS regions corresponding to these were considered selected. It is to be noted
that the individual component is more likely to be of higher rank, and thus selects a
larger amount of TSS regions.

The idea behind this method of selecting potential methylation markers for col-
orectal cancer is that TSS regions with the highest loadings should be responsible for
a relatively high amount of variance in the data. Since within a dataset of both nor-
mal tissue and tumorous tissue samples, it would seem likely that a large amount of
variance would stem from the difference between these two groups. Through this, we
expect TSS regions to be selected that will be significantly differentially methylated
between normal and tumorous tissue.

aJIVE loadings

In a similar fashion to the application of JIVE detailed above, aJIVE[20] was also
applied to generate a decomposition and loadings for the joint and individual com-
ponents of this decomposition.

This was performed similarly to the steps in section 2.3.1 through the ajive library
in R. Unlike the steps used in obtaining the loadings for JIVE, they could be directly
obtained through the get_block_loadings method in the ajive package.

2.4.3 Random forest

A random forest classifier model was also used to obtain a selection of transcrip-
tion start sites. The RandomForestClassfier from scikit-learn[23] was used for this.
The training data consisted of a subset of the TCGA Pan-Cancer Atlas methylation
dataset which contained samples of both normal colon tissue and tumorous colon
tissue, with labels corresponding to their tumorous or non-tumorous origin. For this
classifier, 200 trees were used. Other hyperparameters for the classifier were left to
the scikit-learn defaults and are described in appendix E. The importance weights
were then used to obtain a selection of features with the SelectFromModel method.

This method of selecting potential methylation markers is especially interesting
in a comparison with the selection methods that use multiple data types. It serves
primarily to highlight the performance of both the thresholding approach from section
2.4.1 as well as the multi-omic approaches in light of a relatively complex method that
only takes a single data type into account.
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2.4.4 Combining selections

While every selection type on its own is capable of providing meaningful selections of
TSS regions, we hypothesize that a combination of these selections could yield a se-
lection that contains more significantly differentially methylated regions proportional
to the number of regions selected.

Figure 2.4: Process by which the individual selections are combined.
The weights shown here are to serve as an example and can be any
real number. Letters are used to represent TSS regions. The final

combined selection is denoted in bold.

Through the steps above, which are also shown in figure 2.4, multiple selections can
be combined into a single selection. Individual selections were combined by counting
how often each TSS region occurred in each selection. The different types of selection
were weighted differently with weights assigned to each type of selection. These
weights were selected in order to balance the JIVE and aJIVE joint and individual
components.

In practice, this means reducing the weight on the individual component. As
noted earlier in section 2.4.2, the individual component is more likely to be of higher
rank and thus select more TSS regions. Through this, the unweighted selection of
the individual component could overpower the other selections. The reduced weight
compensates for this.

The resulting, combined selection consists of scored transcription start site regions.
Of these, the top 100 highest scoring regions are taken as the combined selection.

2.5 Differential analysis

2.5.1 Liquid biopsy data

To validate transcription start sites that are expected to have differential methyla-
tion, found by this method, a small independent dataset of cfDNA samples by Moss
et al. described in section 2.1.3 is used. For each TSS that is selected, an independent
two-sided t-test is performed between the group of healthy samples and the group
of colorectal cancer patients to determine whether a TSS is indeed significantly dif-
ferentially methylated in the tumor group. Similar to the Pan-Cancer methylation
data, this is performed through the limma package in R. Bonferroni correction is then
applied to account for multiple testing.

2.5.2 MeD-seq data

Trimmed mean of M values, TMM normalization[17], was applied on the MeD-seq
dataset consisting of 41 colorectal cancer patients and 9 healthy controls through
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the EdgeR package in R. Differential methylation analysis is performed through the
EdgeR[24] package. For this exactTest is used. This performs the exact test by
Robinson and Smyth[25], yielding two-sided p-values and fold change among other
statistics.

The exact test was performed on two tasks. Firstly, the test was performed
comparing the T0, before surgery, timepoint of the 41 colorectal cancer patients
versus the 9 healthy controls. Secondly, the exact test was performed on data from
the T2 timepoint, which was recorded >2 weeks after surgery as described in section
2.1.3. This data consisted of 13 patients in which the disease recurred within one
year, versus 17 patients in which it did not recur within one year.

The exact test used by EdgeR does not automatically account for multiple test-
ing. To account for this, multiple testing correction is applied to the p-values that
exactTest returns. For this, p.ajust in the R stats package is used which is used with
Bonferroni correction.

2.6 Evaluation
We want to test whether the selection of TSS regions produced by the different
presented selection methods actually contains regions that are significantly differently
methylated in tumorous tissue versus normal tissue.

In order to test this, p-values and fold changes were generated for each TSS
region in the TCGA Pan-Cancer Atlas data. The R package limma[26] is used for
this analysis. Bonferroni correction was applied afterward to the uncorrected p-values
obtained from limma through the p.ajust function in the R stats package as multiple
testing correction.

Two tests were performed here, one for the full TCGA dataset including all types
of tissue, as well as one for a subset of the TCGA data including only colon samples.
We denoted TSS regions with a p-value of < 0.05 as being significantly differently
methylated in tumorous tissue versus normal tissue. For every selection method, the
amount of TSS regions with a p-value of < 0.05 in these tests was calculated, as well
as the percentage of significant regions out of the total amount of regions selected.
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Chapter 3

Results

3.1 Significance of found transcription start sites
We wish to test whether transcription start site regions selected by the different
methods presented actually are differentially methylated in tumorous tissue samples
versus normal tissue samples in the TCGA Pan-Cancer data. In order to do so, the
analysis described in 2.6 was performed.

These results of this analysis are given in table 3.1. This table lists each selection
method, as well as the total amount (regardless of significance) of TSS regions selected
by each method. For the JIVE and aJIVE methods, r denotes the rank of the joint
and individual components. This rank determines the number of selected regions as
noted in section 2.4.2.

A volcano plot was generated for the TCGA methylation data with the com-
bined selection highlighted, visualized in figure 3.1. In this plot, the horizontal red
line denotes a p-value of 0.05 and the 100 transcription start sites from the com-
bined selection as performed in 2.4.4 are highlighted in red. Of the selection of 100
transcription start sites, 89 have p-values < 0.05. Volcano plots with highlighted
selections for each individual selection method were also created. These individual
selections can be found in appendix D.

The results in table 3.1 indicate that most of the methods for selecting transcrip-
tion start site regions yield significant TSS regions for a large portion of the total
regions selected. Another conclusion that can be drawn here is that, throughout each
selection method except for the thresholding approach, the selections seem to contain
more methylation markers that are significant in the subset of TGCA data from colon
samples, thus highlighting that the techniques for selecting TSS regions are somewhat
colon-specific. Finally, it can be noted that selections that are based on the JIVE and
aJIVE methods select, by far, the greatest amount of TSS regions that are actually
significant in the PANCAN bulk data.

For the JIVE individual component, due to its considerably higher rank than the
other JIVE and aJIVE components, it produces a relatively large selection. This
leads both to it having a high number of significant TSS regions, while also having
a very low percentage of significant regions relative to the total number of selected
regions.
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Figure 3.1: Volcano plot for the combined selection of 100 transcrip-
tion start sites. Selected TSS regions from the combined selection are

marked in red.

Selection Total PANCAN colon tissue
tumor vs normal

PANCAN all tissue
tumor vs normal

Thresholding 37 37 (100%) 37 (100%)
JIVE joint (r=1) 200 200 (100%) 185 (92.5%)
JIVE individual (r=12) 2400 561 (23.4%) 553 (23.0%)
aJIVE joint (r=2) 400 350 (87.5%) 314 (78.5%)
Random forest 325 184 (56.6%) 160 (49.2%)
Combined 100 99 (99%) 97 (97%)

Table 3.1: The number of significant (p < 0.05) selections for each
type of selection in the PANCAN tissue differential analyses.

3.2 Validation on BeadChip liquid biopsy data
To validate the TSS regions selected by the different selection methods in a liquid
biopsy context, we first turn to a relatively small (n = 8) dataset by Moss et al[27].
The choice for this dataset was made as it, like the PANCAN dataset, has been cap-
tured on the Illumina MethylationEPIC platform. This simplifies the comparison to
the PANCAN data, as this is relatively similar to the Illumina HumanMethylation450
platform. Platforms yielding, for instance, different types of values could confound
results.

Every selection method was tested on this dataset as described in methods section
2.5.1, the results of which are included in table 3.2. For the combined selection,
the overlap between the set of TSS regions with statistically significant differential
methylation (p < 0.05) and the selected TSS regions was determined, yielding 67
significant out of the 100 selected TSS regions.
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Figure 3.2: Volcano plot visualizing TSS regions in the GSE122126
data for the CRC patients versus healthy controls. Selected TSS re-

gions from the combined selection are marked in red.

Selection Total Moss et al.
cfDNA data

Thresholding 37 29 (78.4%)
JIVE joint (r=1) 200 124 (62%)
JIVE individual (r=12) 2400 272 (11.3%)
aJIVE joint (r=2) 400 174 (43.5%)
Random forest 325 145 (44.6%)
Combined 100 67 (67%)

Table 3.2: The number of significant (p < 0.05) selections for the
differential methylation analysis on the Moss et al. cfDNA data.

These results show that the results in section 3.1 seem to also apply to an indepen-
dent, albeit small, dataset on liquid biopsy data. Primarily that for every selection
method a relatively large amount of TSS regions appear significant in the data by
Moss et al.

Especially the selections based on the JIVE and aJIVE joint components select
a large amount of significant TSS regions, while also having a high percentage of
significant regions out of the total amount of regions selected. Although it is also to
be noted that random forest performs similarly to the methods using multiple data
types in this data.

3.3 Validation on MeD-seq data
After having validated the selected TSS regions on the dataset by Moss et al., we
want to perform a similar validation on the data captured through the MeD-seq
platform. The different selection methods were tested against a group of CRC patients
at timepoint T0 versus a group of healthy controls.
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The number of selected regions that appeared significant in this test are given in
table 3.3. The combined selection method is highlighted in the visualization of figure
3.3. This yielded only one region associated with the transcript CTNND2-201 that
appeared in the combined selection of 100 regions that were found to be significant
(p < 0.05) in the Bonferroni corrected MeD-seq p-values.

Figure 3.3: Volcano plot visualizing TSS regions in the MeD-seq
data for the T0 CRC group versus healthy controls. Selected TSS

regions from the combined selection are marked in red.

Selection Total MeD-seq
T0 CRC vs Healthy

Thresholding 37 0 (0%)
JIVE joint (r=1) 200 0 (0%)
JIVE individual (r=12) 2400 1 (<1%)
aJIVE joint (r=2) 400 1 (<1%)
Random forest 325 0 (0%)
Combined 100 1 (1%)

Table 3.3: Number of significant (p < 0.05) selections for the MeD-
seq differential analysis.

From these results, it seems that there is very little overlap between regions that
appear significant in the MeD-seq data and the selections that are significant in the
PANCAN colon methylation data (table 3.1) as well as the cfDNA microarray dataset
by Moss et al. (table 3.2). As is apparent from the results presented above, nearly
none of the selected TSS regions across every selection method are significant in
the MeD-seq data. Only one of these selections, transcript CTNND2-201 appeared
significant in both analyses.

This particular gene might be notable, however, as this same TSS region did
also appear significant in both the PANCAN colon methylation data as well the
independent cfDNA dataset by Moss et al as detailed in section 3.2.
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Another observation that can be made here is that only the JIVE- and aJIVE
based methods find this singular TSS region. The combined selection also includes
this region, but it is a combination of the individual methods. This also serves to
underline that the use of multiple data types increases the ability to find differentially
methylated regions in this case.

3.4 Selection of differentially methylated TSS regions in
tissue

We have now reflected on how many of the regions selected by the methods presented
are significant in a number of different datasets. Although until now we have not
considered how these methods actually compare to simply performing differential
methylation analysis on the TCGA tissue samples and using the regions that appear
significant as a selection.

The reasoning behind performing this additional analysis is simple. If testing
the tumorous versus normal groups in the TCGA data and using regions with p-
values under a certain threshold as a selection would yield better performance to
the selection methods presented, there would be no benefit to using the presented
selection methods.

This selection is defined as regions that appear significant (p < 0.05) in the differ-
ential analysis as performed with the R limma package as described in 2.6. This was
compared to the EdgeR analysis of the MeD-seq data. More specifically, the number
of regions that overlap between the TSS regions with low p-values (p < 0.05) in the
MeD-seq data and the TCGA tissue data was calculated.

A volcano plot for the TSS regions in the MeD-seq data is given in figure 3.4,
with the selections based on the significance of TSS regions in the test on the TCGA
tissue data for tumorous tissue versus normal tissue.

This yielded three significant TSS regions, including the same region found to be
significantly differently methylated in section 3.3, CTNND2-201.

It is to be noted that the amount of TSS regions that appeared significant from
the differential analysis of the tissue data (8955) was far greater than the number of
selected TSS regions in the combined selection of 3.3 (100). Thus, it does not appear
that simply testing each region in the tumorous versus normal TCGA tissue samples
and selecting regions with low p-values performs better than the selection methods
presented. When only selecting the TSS regions with the 1000 lowest p-values from
the differential methylation analysis of the tissue data, none appear significant in the
MeD-seq data.
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Figure 3.4: Volcano plot visualizing TSS regions in the MeD-seq data
for the T0 CRC group versus healthy controls. Significant TSS regions
from the solid tissue differential methylation analysis are marked in

red.

3.5 Prognosis prediction
The MeD-seq data is recorded over several points in time for each patient, as described
in section 2.1.3. This allows, not only, for finding markers that differentiate between
healthy controls and colorectal cancer patients, but also for comparing patients with
and without recurrence. The different selections of genes were tested against a group
of patients with less than 1 year of disease-free survivial versus a group of patients
with greater than one year of DFS in the MeD-seq data. The combined selection
yielded one transcription start site region that appeared significant in the MeD-seq
data across a combined selection as performed in 2.4.4 of 100 TSS regions. This TSS
corresponded to the SLIT2-202 transcript.

Selection Total MeD-seq
<1y DFS vs >1y DFS

Thresholding 37 0 (0%)
JIVE joint (r=1) 200 0 (0%)
JIVE individual (r=12) 2400 3 (<1%)
aJIVE joint (r=2) 400 1 (<1%)
Random forest 325 3 (<1%)
Combined 100 1 (1%)
PANCAN Colon differential methylation 8955 37 (<1%)

Table 3.4: Number of significant (p < 0.05) selections for the MeD-
seq T0 vs T2 differential analysis.

The results for every individual selection is given in table 3.4. Here, the selection of
transcripts that appear significant (p < 0.05) in the differential methylation analysis
on the PANCAN colon data as performed in 2.6 were also considered, denoted as
’PANCAN Colon differential methylation’ in the table above. 37 of the transcription
start site regions that appeared significant in the PANCAN tumorous versus normal
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tissue analysis were also significant in the MeD-seq analysis when comparing patients
with less than 1 year of disease-free survival versus the group of patients with greater
than one year of DFS in the MeD-seq data.
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Chapter 4

Discussion

4.1 Findings
In this thesis, we have presented methods for selecting regions of the genome associ-
ated with transcription start sites that could serve as methylation-based biomarkers
for colorectal cancer. The JIVE- and aJIVE based methods take into account gene
expression data, as well as methylation data to produce these markers.

Firstly, the results in section 3.1 show that a large part of the TSS regions selected
by the presented methods is differentially methylated in the TCGA data. These re-
sults are primarily presented in table 3.1. Along with this, the results also show that
the JIVE and aJIVE methods generate the most TSS regions that appear signifi-
cant in the TCGA data in an absolute sense. The thresholding method produces
a lower number of selected TSS regions, but all of them appear significant. It also
demonstrated the ability of the combined method to integrate the different individ-
ual methods into a single selection of TSS regions with 99% of selected regions being
significant in the TCGA data.

Secondly, the individual selections were validated on an independent dataset of
methylation samples obtained through liquid biopsies. The data resulting from this
was obtained on the Illumina MethylationEPIC platform, a similar platform to the
platform on which the TCGA tissue data was obtained. Here, primarily in table 3.2,
we see that the conclusions that can be drawn from section 3.1 seem to correspond
to these results. Again, the selection methods presented seem to select TSS regions
that are differentially methylated, also in this dataset. Here we can also note that
the JIVE- and aJIVE based selection methods, especially when looking at the joint
components, produce a large number of significant selections, both absolute as well
as relative to the total number of regions selected.

The results from sections 3.1 and 2.5.1 do not seem to translate to the MeD-seq
data. From table 3.3 we see that only one of the selected regions throughout all of
the different selection methods appears to be significantly differentially methylated
between CRC patients and healthy controls in this data.

A simple alternative method for selecting TSS regions based on TSS regions that
appear significantly differentially methylated in the TCGA tissue data when com-
paring tumorous tissue versus normal tissue was also considered in section 3.4. This
produced three TSS regions that appeared differentially methylated in the analysis on
the MeD-seq data. However, the large amount of TSS regions that appear significant
in the TCGA dataset makes this a comparatively poor method of selecting potential
methylation markers for colorectal cancer.

Besides the selection of biomarkers for the presence of colorectal cancer, the MeD-
seq data also allows us to validate whether TSS regions are differentially methylated
in a group of patients with less than 1 year of disease-free survival versus a group
of patients with greater than one year of DFS. From the findings, primarily in table
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3.4, we can note that like the validation of biomarkers for the presence of CRC,
the different selections presented only find one TSS region that appears significantly
differentially methylated.

4.2 The benefit of integrating multiple data types
This thesis is primarily focused on the use of multiple data types in finding methy-
lation markers for colorectal cancer. The methods for doing so presented in this
thesis appear to assist in finding significant methylation markers. This conclusion
stems from the results in section 3.1 as well as from section 3.3. Selecting the largest
amount of significant regions in the former and selecting the only significant region
in the latter.

One thing to note is that the JIVE methods, as well as derivatives of this method
(like aJIVE), are capable of integrating far more different types than just the two
types shown in this thesis. Thus, research into integrating more than just the two
data types shown in this thesis might be able to show how changes in the amount
of different data types or the particular types used might influence the discovery of
biomarkers for one particular data type.

The selection methods presented here only focus on combining two particular
types of data, methylation and gene expression data. The reasoning for this is that
these two data types are available for a relatively large number of samples within The
Cancer Genome Atlas project, adding more data types to the analysis would have
decreased the number of samples for which all of these types are available.

4.3 Results on microarray data do not translate to MeD-
seq

From the results presented in section 3.3 and 3.2 it is clear that there is a significant
difference between the amount of selected TSS regions that appear significant in the
independent microarray cfDNA dataset compared to the MeD-seq dataset.

A large amount of TSS regions that were found in the tissue data through the dif-
ferent selection methods could be verified to also be significantly differentially methy-
lated in the cfDNA microarray data. This would support the idea that the different
methods of selecting potential methylation markers for CRC in tissue presented here
are capable of finding potential biomarkers for CRC in the cfDNA domain. This
leaves the question of why the data captured in the cfDNA domain on one platform,
Illumina HumanMethyalation450 in this case, does not translate to data captured
through MeD-seq.

One potential explanation can be found when comparing the volcano plots in
figures 3.2 and 3.3. One thing that is apparent here is the far greater number of sig-
nificant TSS regions that appear differentially methylated between the CRC patients
and the healthy controls in the microarray dataset. Because of this, the chance of
(part of) a selection appearing in the set of significant TSS regions also increases.

Still, it remains a somewhat puzzling find and potentially warrants further re-
search into how methods based on one platform can be translated to the greater
scope of available data. As well as if results stemming from data obtained on a
single platform are a good representation of the real-world processes that this data
describes.
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4.4 Literature concerning CTNND2 and SLIT2
Following the results from section 3.3 and section 3.5, an informal search for literature
concerning these two genes, in particular, was performed.

4.4.1 CTNND2

This particular gene has been shown to be related to cancer formation as found
in the RefSeq sequence database[28], although not specifically said to be related to
colorectal cancer. Another work details that the protein coded for by this gene "to
be overexpressed in various types of cancers"[29].

While not being directly connected to colorectal cancer, it is clear that this gene
and proteins coded by this gene seem to play a role in the formation of cancer. The
study by Huang et al. cited above concludes that -Catenin, a protein coded for by
CTNND2, promotes the malignancy of human lung cancer. Next to this, the authors
also note its potential as a biomarker for various types of cancers.

4.4.2 SLIT2

The SLIT2 has been quoted by various sources to be related to colorectal cancer.
One study reports overexpression of the SLIT2 gene in intestinal tumors[30]. Other
studies also report methylation of regions of the DNA associated with the SLIT2 gene
in cancer-affected patients[31][32].

One of these latter studies by Dallol et al.[31] suggests that the SLIT2 gene acts
as a tumor suppressant and is silenced through methylation, not only in colorectal
cancer patients but also in lung and breast tumors.

4.5 Concluding remarks
This thesis has detailed a number of methods of finding methylation markers for
colorectal cancer, as well as a combination of these methods. These selections were
then evaluated for how many of their selections were significant in multiple datasets,
both in tissue as well as in a liquid context. These tests compared tumor samples
versus normal samples, as well as patients with tumor recurrence as well as non-
recurring patients.

In these tests, results were given as an amount of transcription start site regions
that appeared significant in the tested data, both as an absolute number as well as a
percentage of the total amount of regions selected.

There is, however, a certain difficultly in judging the performance of a method as
well as comparing performance between different methods. When both the absolute
amount of regions with significant differential methylation as well as the percentage
relative to the total amount of regions selected is much higher for one method than
another, this comparison is relatively clear. However, when two methods are closer or
one method produces far more selections than another, thus obtaining a high absolute
amount of significant selections but a low percentage compared to the total amount
of selections, the comparison becomes blurry.

In an ideal scenario, we wish to evaluate selections by how well they select TSS
regions associated with genes that actually play a role in colorectal cancer. For two
of our selected regions, we have found literature supporting the hypothesis that they
play a role in cancer in section 4.4 of this discussion. But we have also demonstrated
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in section 4.3 that our findings on one platform do not necessarily translate to another
platform, or that they are indicators of real-world processes.

Finally, in light of this, the methods of selecting markers for colorectal cancer
presented in this thesis have selected some TSS regions corresponding to genes as-
sociated with (colorectal) cancer, but that more research is needed in investigating
how well methods like these are actually capable of identifying markers that can be
confirmed in other platforms and how specific their selections truly are.
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Appendix A

JIVE example visualizations

Figure A.1: JIVE example for two data blocks. From [18].

Figure A.2: JIVE estimates for the blocks from figure A.1. From
[18].
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Appendix B

JIVE rank selection

On both the joint and the individual matrices, the ranks are constrained to be r for
the joint term and ri for i = 1, ..., k individual terms corresponding to k datasets.
Below are given the algorithms through which the initial rank constraints are found.

Figure B.1: Rank selection for r. From [18]

Figure B.2: Rank selection for rj . From [18]
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Appendix C

aJIVE example

Figure C.1: Dataset constructed from a joint and individual compo-
nent. From [20]
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Figure C.2: aJIVE decomposition of data constructed in figure C.1.
From [20]

Figure C.3: JIVE decomposition of data constructed in figure C.1.
From [20]
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Appendix D

Volcano plots of PANCAN colon
data with individual selections
highlighted

Figure D.1: Volcano plot for the thresholding selection of 100 tran-
scription start sites.

Figure D.2: Volcano plot for the JIVE joint selection of 100 tran-
scription start sites.
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Figure D.3: Volcano plot for the JIVE individual selection of 100
transcription start sites.

Figure D.4: Volcano plot for the aJIVE joint of 100 transcription
start sites.

Figure D.5: Volcano plot for the random forest selection of 100 tran-
scription start sites.
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Appendix E

Hyperparameters for the
Random Forest Classifier

Parameter Setting
criterion gini
max_depth None
min_samples_split 2
min_samples_leaf 1
min_weight_fraction_leaf 0.0
max_features auto
max_leaf_nodes None
min_impurity_decrease 0.0
bootstrap True
oob_score False

Table E.1: Hyperparamaters for scikit-learn’s RandomForestClassi-
fier
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