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Abstract

Accurate classification of ice particles in clouds is essential for improving the understanding of cloud
microphysics and improving weather and climate models. This thesis investigates the use of spectral
polarimetry in millimetre-wavelengths, combined with a Discrete Dipole Approximation (DDA) and
Gaussian Mixture Model (GMM) scattering database, to classify ice particles through fuzzy logic. Uti-
lizing a dual-wavelength (94 and 35 GHz), dual-polarized cloud radar installed in Cabauw, this study
analyses two non-precipitating ice cloud events. Spectral polarimetric variables, including differential
reflectivity (ZDR), Slanted Linear Depolarization Ratio (SLDR), backscattering phase (ϕbs), and Dual
Spectral Ratio (DSR), were derived from radar measurements and compared with modelled values
from the scattering database. Results indicated that different ice particle types exhibited distinct po-
larimetric characteristics, but a lot of overlap between particles remained.
A fuzzy logic classifier was developed, incorporating both 1D and 2D membership functions to im-
prove differentiability between particle types. Adding temperature and liquid water path as variables
was necessary to distinguish between branched planar, aggregates and graupel particles. The classi-
fication results were mostly consistent and as expected, though there was a high dependence on tem-
perature, suggesting areas for further refinement. Through fuzzy logic outputsQ andQ-gap, the most
probable type of ice particles is identified and a first assessment on the quality of this identification is
given.
This study demonstrates that combining spectral polarimetric variables with an advanced scattering
database has potential to improve the classification of ice particles. In particular, the proposed tech-
nique could allow the classification of possible different ice particle types for each radar observation
volume. The method lays the basis for future developments in cloudmicrophysics and radar-based ice
particle classification.
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1
Introduction

Clouds, and in particular ice clouds, are currently amajor source of uncertainty in climatemodels. This
is due to a lack of knowledge of their exact radiative properties and thus their role in the Earth’s radia-
tion budget [51]. This uncertainty is propagated into atmospheric circulation models and regional cli-
mate models [16, p. 1022]. The reason for the differences in scattering properties is that the ice particles
in ice clouds can have many different shapes and sizes, each with different microphysical properties
[4]. For example, Figure 1.1 shows typical examples of some of the different ice particles that can be
found in a cloud.

Figure 1.1: Different ice crystal morphologies as a function of temperature and supersaturation, from Libbrecht [27]

Within numerical weather and climate models, cloud microphysics are parameterised [4]. These pa-
rameterizations are based on classification profiles such as Figure 1.2 [10]. As can be seen, this clas-
sification currently does not distinguish between ice particles, instead grouping all pure ice particles
under ’ice’. More detailed classification can decrease the uncertainty in numerical weather prediction
[23] and global climate models [4], improve understanding of cloud microphysics in general, and nu-
merous other applications such as severe weather surveillance, flight assistance, and now casting [35].
In short, it is worthwhile to improve the classification of ice particles within clouds.
This chapter starts with summarising the current state of the art in section 1.1. From this, the goal of the
research and the corresponding research questions are formulated in section 1.2. Lastly, the structure
of the report can be found in section 1.3.

1
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Figure 1.2: Cloud radar reflectivity and hydrometeor classification result on January, 1st 2025 at Cabauw (The Netherlands).
The classification algorithm, cloudnetpy, is used in Europe for all the cloud remote sensing national atmospheric sites. The
inputs of cloudnetpy are cloud radar, microwave radiometer and lidar data. Note that there is no classification among the

different ice particle types.

1.1. State of the art
Different ways to observe ice particles in clouds are, among others, in situ (e.g. with airplanes), from
space using satellites, and from the ground. From the ground, observing may be done with e.g. cm-
wavelength radar or LiDAR, or cloud radar (mm-wavelength). Classification from the ground origi-
nated using S-band (long-rangeweather radar) to differentiate precipitation types, such as drizzle, rain,
hail, and snow [19, 29, 42, 63]. Its success drove the use of the smaller C and X Bands as well [9]. When
decreasing wavelength, the sensitivity to smaller particles increases. This allowed the rough distinc-
tion between different shapes [54]. With the introduction of cloud radar, sensitivity to smaller particles
was increased, and thus more shapes could be discerned, in theory. Ka and W-Band were used in this
case [3, 30].
Key in the progress has been the introduction of dual polarisation radar, introducing variables such as
the differential reflectivity and linear depolarization ratio. Not every polarimetric variable contains in-
formation about each hydrometeor type. However, by combining as many as possible, more and more
classes could be discerned [9]. Another way to add information to base classification on, is by combin-
ing different wavelengths, especially as the size of the particles and the wavelengths start overlapping.
Not only does this double the amount of polarimetric variables, but the dual wavelength ratios can
also be used [3, 25, 30, 13].
One characteristic of radar is that the measured reflectivities reflect an average of all particles in the
resolution volume. Within these so-called bulk variables, the larger particles in the resolution volume
have a big influence. A way to divide the particles within a resolution volume is by looking at the
Doppler spectrum. This allows the separation of radar signatures in Doppler velocity bins. With that,
so-called spectral polarimetric data can be generated. Dufournet and Russchenberg [13] proved that
classification based on spectral polarimetry is possible, and can provide more detailed data to discern
microphysical properties.
Regardless of the amount of variables, there is a lot of overlap between classes. This is partly because the
ice crystals morph during their lifetime, so there really are no distinct boundaries. Because of this, Liu
and Chandrasekar [29] promoted the use of fuzzy logic. This classifier deals with this lack of distinct
classes through ‘fuzzification’. It is described in more detail in section 2.3. Its use has been proven
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by numerous cases, such as in Thompson et al. [54], Hailong et al. [18], Park et al. [42] and Al-Sakka
et al. [1]. For fuzzy logic, all the information that the classification is based on needs to be provided.
Through this, an advantage is that it is not a ’black box’, and weights and parameters can all be fine-
tuned where necessary. Unlike machine-learning based techniques such as decision trees or vector
support machines, fuzzy logic does not require any training data. Moreover, fuzzy logic classifiers are
effective in situations where feature values are missing or noisy [34, 50].
Initially the properties of different precipitation types were based on physical knowledge of the parti-
cles such as shape and size. Romatschke and Vivekanandan [47] used in situ measurements to tune the
classifier. Alternatively, classification can also come based on values from scattering models, notably
T-matrix models [54, 12, 38, 1]. Because computing the scattering properties of ice crystals is compu-
tationally expensive, databases are used. Since it is impossible to encompass all possible wavelengths
and ice particles, these databases are always limited. T-matrix, for example, is only applicable to ro-
tationally symmetric particles. On top of that, it shows convergence problems as particles are larger
or have high aspect ratios compared to the wavelength [25]. Sometimes authors choose to produce
a database for their specific topic, omitting the need to have a general database, like Leinonen and
Moisseev [26].
A foreseen limitation of this method is the lack of verification data. This problem has been addressed
in several ways before, for example using airborne in-situ measurements as verification [56, 28], us-
ing a ceilometer, or comparing with other classification data.[47] Zrnic et al. [65] suggests using self-
consistency checks and the fuzzy logic outputs to assess the quality of the results rather than using data
from external sources.

1.2. Research Aim
From section 1.1 it is clear that there has been research in using radar to classify ice particles in clouds for
decades already. Yet, performance has been limited by the quality and quantity of both radar variables
and scattering databases. However, combining dual-polarization, dual wavelength spectral data has,
as far as known, not been attempted to build an ice particle classifier. At the end of 2020 a new cloud
radar was installed in Cabauw, which provides Ka and W-band dual-polarized spectral data. The
quality of the data is improved by increased spatial, time, and Doppler resolution.
On top of that, a relatively new database of the scattering properties of ice particles by Lu et al. [31]
became available. This database contains the scattering data of about 1600 different modelled parti-
cles. Because it uses the discrete dipole approximation (DDA) or generalised Mie method (GMM) to
compute the scattering properties, it is more accurate than the T-matrix methods that are often used.
Importantly, the scattering database provides the full scattering matrices of the modelled ice particles,
thus making it possible to derive polarimetric variables.
Combining the wealth of data the Cabauw cloud radar provides, and the scattering database could
improve the classification of ice particles. To achieve this, several steps need to be taken. Polarimetric
variables need to be extracted from both the cloud radar and the scattering database, and then com-
pared. From that, a fuzzy logic classifier needs to be built. Through analysis of the results, the most
important variables can be identified to increase understanding. Finally, the quality of the results needs
to be assessed.
As such, the main research question is:
How can ice particles be classifiedwith fuzzy logic using the combination of spectral polarimetry inmm-wavelengths
and a DDA/GMM scattering database?

To compile a complete answer, the following subquestions are formulated:
• Howcan cloud radar variables be related to thosemodelled by a state-of-the-art scatteringdatabase?
• How can fuzzy logic be used to build an ice particle classifier?
• What are the most important radar variables for differentiating between different types of parti-
cles?

• How can the quality of the classification results be assessed?
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Each of these questions describes a step in the complete process and help guide in forming a complete
answer to the main research question.

1.3. Plan of approach
In the following chapters, the steps to reach the research questions are explained in detail. First, in
chapter 2 the background information that forms the foundation of this thesis is explained. Here, some
theory on ice particles can be found, as well as the derivation of all spectral polarimetric variables
used for both the cloud radar and the scattering database. Additionally, the basics of fuzzy logic are
explained. After that, the specifications of the scattering database and the cloud radar data are given
in chapter 3.
In chapter 4 the steps taken to build the classifier from the scattering database are first explained. First,
the polarimetric variables are extracted from the database. From the spread of the particles among these
variables, the fuzzy logic classifer is made. The description of the events analysed and the cloud radar
data preparation can be found here as well. The results are then presented in chapter 5, and interesting
observations are noted here. Also in this chapter is the introduction of somemetrics to assess the quality
of the results. The results are then discussed in chapter 6. Themethod is evaluated here as well. Finally,
the research questions are answered in chapter 7, with recommendations for future work.



2
Background knowledge

In this chapter, some key theoretical concepts necessary to understand the method used is introduced.
First, the formation of the different classes of ice particles is explained in section 2.1. Then, spectral
polarimetric variables are defined in section 2.2 from the cloud radar measurements and the scattering
database outputs. Last, fuzzy logic is explained in section 2.3.

2.1. Ice crystals
In this thesis, ice particles are divided into the five distinct types Lu et al. [31] uses: plates, columns,
branched planar, aggregates, and graupel. However, anyone might know that ‘no two snowflakes are
alike’. The shapes ice crystals may take on are influenced by temperature and water vapour saturation
levels, as well as available ice nucleation particles throughout the entire lifetime of the particle. Since
the conditions for two ice particles are rarely exactly the same, neither are their shapes.
Roughly said, there are two main ways an ice particle can form. The first is homogeneous nucleation,
which happens at temperatures lower than −36◦C. Heterogeneous nucleation requires ice nucleation
particles, which are aerosol particles, with surface particles that allowwatermolecules to form ice struc-
tures on them. This means that once water reaches a temperature below 0◦C it does not immediately
turn into an ice crystal; rather, it needs to come into contact with a particle with the right specific sur-
face properties, or it needs to cool down further until about −36◦C. Water droplets that are below 0◦C
are called supercooled and play an important role in the formation of graupel. [7, 44]
Once an ice particle is formed, it can grow in various ways. The threemost important to consider in our
case are vapour deposition, riming, and aggregation. Vapour deposition happens when water vapour
molecules attach to an existing ice particle. Interestingly, the preferred side on which a water molecule
will attach depends on temperature and supersaturation levels: either on the faces (leading to columns,
see Figure 2.1) or on the edges or corners (leading to plates, Figure 2.3). Experiments show that as an ice
particle moves through different temperatures and humidities, so does the preferred growth direction,
leading to almost infinite different shapes. The transition temperatures are near −4, −9 and −22◦C
[27]. When supersaturation is high and the temperature levels reflect preferred growth on corners and
edges, branched planar crystals (also called dendrites) form. Some examples are shown in Figure 2.4.
The ideal temperatures for branched planars to form is between −20 and −12◦C [52]
Riming happens when an ice particle comes into contact with a supercooled water droplet, which will
freeze onto it upon contact. Once the original shape of the ice crystal is no longer distinguishable, the
particle is called graupel. Exact definitions do not exist here. Graupel usually has a density less than
0.8g/cm3 and can take on a rounded, conical, or more irregular shape. [44] Some typical examples of
graupel can be seen in Figure 2.2. For graupel, sufficient supercooled liquid water needs to be present.
Usually a liquid water path of 100g/m2 is maintained as a requirement for graupel to form, though
Fitch and Garrett [15] have also shown graupel at concentrations as low as 50g/m2.
Aggregates form through the collision of multiple ice crystals, as seen in Figure 2.5. As such, they do

5



2.2. Radar variables 6

Figure 2.1: Columnar ice crystals
photomicrographed by Wilson
Bentley, used under CC BY 4.0

Figure 2.2: Examples of conical
graupel from the Multi-Angle

Snowflake Camera (MASC). Source:
Praz et al. [43] Fig. 3, cropped, used

under CC BY 3.0

Figure 2.3: Planar ice crystals
photomicrographed by Wilson
Bentley, used under CC BY 4.0

Figure 2.4: Examples of
dendrites from the Multi-Angle
Snowflake Camera (MASC).
Source: Praz et al. [43] Fig. 3,

cropped, used under CC BY 3.0

Figure 2.5: Examples of
aggregates from the

Multi-Angle Snowflake
Camera (MASC). Source: Praz
et al. [43] Fig. 3, cropped, used

under CC BY 3.0

not have a distinct shape and can grow to a couple of millimetres. The chance of aggregates forming
increases with higher temperatures, as crystals are more likely to stick to each other. [44]
The temperature ranges where the above-mentioned particles are most likely to grow are summarised
in Table 2.1.

Type Temperature [◦C]
Plates <0
Columns Growing from -32 to -22 and -10 to -3
Branched Planars Growing from -40 to 0, most likely between -20 to -10
Aggregates Growing from -20 and 6, most likely between -10 and 5
Graupel Any

Table 2.1: Growth regions for different ice particles [12, 44, 62, 2, 27]

2.2. Radar variables
The radar measurements are mostly influenced by the size distribution of the particles in the resolution
volume and therefore do not reflect the properties of the particles themselves. One way to reduce the
influence of the particle size distribution is by looking at the Doppler spectrum. On top of that, by
looking at ratios, the influence of the number concentration is dropped. In this section, first some radar
basics are given and the Doppler spectrum is explained, and then the spectral polarimetric variables
are derived for both the database and the cloud radar measurements.

2.2.1. Radar basics
Polarimetric radar works by transmitting electromagnetic waves in both horizontal and vertical polar-
ization. As the wave encounters a particle, part of the wave is scattered back. The radar then receives
the horizontal and vertical components of the backscattered wave. For each particle, the following
equation holds: [

Es
h

Es
v

]
=

[
Shh Shv

Svh Svv

] [
Ei

h

Ei
v

]
, (2.1)
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where E is the electric field with i for incident and s for scattered. v and h denote the vertical and
horizontal polarizations, and S is the scattering matrix.
The radar reflectivity measured with horizontal polarization in transmission and reception, zhh, is pro-
portional to the sum of all backscattering radar cross sections σhh = 4π|Shh|2. Here, |S|2 = S ·S∗, with
S∗ the complex conjugate of S. zhh is then an integral of the diameter:

zhh =
λ4

π5|K|2

∫
N(D)σhh(D)dD =

4λ4

π4|K|2

∫
N(D)|Shh|2dD [mm6m−3] (2.2)

where |K|2 is the dielectric factor andN(D) the number of particleswithmaxdiameterD. The dielectric
factor is a radar property, and for the two frequencies it is |K35|2 = 0.90 and |K94|2 = 0.74. Often,
reflectivities are given in decibels, which can be distinguished by using capital letters:

Zhh = 10 log10(zhh) [dBZ] (2.3)

Equation 2.2 only takes single scattering into account. However, the electromagnetic wave may scatter
multiple times before reaching the receiver again, see [64, p. 96]. This ’multiple scattering’ effect in-
creases for smaller wavelengths, but after correcting for attenuation effects, it is negligible when using
a small beam [5], except in unusual conditions like strong hail storms [66].

Doppler spectrum
zhh thus contains the sum of all particles within the resolution volume. These particles generally have
different velocities, e.g. due to mass and size [21]. A Doppler radar can measure this difference in
velocity by measuring the Doppler shift, which describes the phase shift a wave goes through as it
encounters a moving object. Each particle within the radar volume has its particular backscattering
properties as well as a Doppler shift. A Doppler radar divides the backscattered signal among Doppler
velocity bins, allowing the calculation of polarimetric variables per Doppler bin. In general, heavier
particles will have a larger fall velocity [37, 20]. Thus, the size and density of particles will spread
them along the Doppler spectrum, facilitating the separation of particles within a resolution volume.
Integrating over the Doppler spectrum will give the total reflectivity of the resolution volume:

zhh =

∫
szhh(vd)dvd =

λ4

π5|K|2

∫
N(D(vd))σhh(D(vd))

∣∣ dD
dvd

∣∣dvd. (2.4)

Then,
szhh(vd)dvd =

λ4

π5|K|2
N(D(vd))σhh(D(vd))

∣∣ dD
dvd

∣∣dvd (2.5)

The s indicates that szhh is spectral measurement.
For the measured cross-spectrum, sChh,vvdvd, is

sChh,vvdvd =
4λ4

π4|K|2
N(D(vd))S

∗
hh(D(vd))Svv(D(vd))

∣∣ dD
dvd

∣∣dvd. (2.6)

2.2.2. Spectral polarimetric variables
In this subsection, the used spectral polarimetric variables are derived or defined. Because the scatter-
ing database provides scattering matrices while the cloud radar measurements provide spectral reflec-
tivities, each variable is defined for both cases. Some other polarimetric variables have been considered
but not used. They can be found in Appendix A.

Differential Reflectivity
The differential reflectivity in decibels (ZDR) is defined as [8, p. 60]:

ZDR = 10 log10(
σhh

σvv
), [dB] (2.7)
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for the scattering database. This relates to the ZDR for the spectral radar measurement:

ZDR = 10 log10(
szhhdvd
szvvdvd

). [dB] (2.8)

Note that in Equation 2.7, λ4

π5|K|2N
∣∣ dD
dvd

∣∣dvd drops from Equation 2.5 because it is the same in the nu-
merator and denominator. When an oblate particle is more horizontally aligned, ZDR > 0, and vice
versa. With the particles above, that mostly means that graupel will produce negative ZDR.

Slanted Linear Depolarization Ratio
The slanted linear depolarization ratio (SLDR) is calculated with the co-polar scattering cross-section
(σco) and the cross-polar scattering cross-section (σcx). These cross sections are obtained in the case of
the polarization basis (45o, 135o), as opposed to LDR (linear depolarization ratio) which is acquired
using the polarization basis (0o, 90o) [8, p. 482–483].

σcx = π|Svv − Shh|2 [mm2] (2.9)
σco = π|Shh + 2 · Shv + Svv|2 [mm2] (2.10)

SLDR = 10 log10(
σcx

σco
) [dB] (2.11)

For the scattering database, the above equation can be used. However, as the cloud radar does not
provide Shv , the SLDR cannot be used in this way to compare database and radar results. As justified
in subsection 4.1.2, because of this Shv will be set to 0 in the database calculations. Then the equation
can be rewritten to radar variables1:

σcx

σco
=

|Shh − Svv|2

|Shh + Svv|2

=
(Shh − Svv)(Shh − Svv)

∗

(Shh + Svv)(Shh + Svv)∗

=
(Shh − Svv)(S

∗
hh − S∗

vv)

(Shh + Svv)(S∗
hh + S∗

vv)

=
ShhS

∗
hh + SvvS

∗
vv − ShhS

∗
vv − S∗

hhSvv

ShhS∗
hh + SvvS∗

vv + ShhS∗
vv + S∗

hhSvv

=
|Shh|2 + |Svv|2 − ShhS

∗
vv − (ShhS

∗
vv)

∗

|Shh|2 + |Svv|2 + ShhS∗
vv + (ShhS∗

vv)
∗

=
|Shh|2 + |Svv|2 − Re(ShhS

∗
vv)− Im(ShhS

∗
vv)j − Re(ShhS

∗
vv) + Im(ShhS

∗
vv)j

|Shh|2 + |Svv|2 +Re(ShhS∗
vv) + Im(ShhS∗

vv)j +Re(ShhS∗
vv)− Im(ShhS∗

vv)j

=
|Shh|2 + |Svv|2 − 2Re(ShhS

∗
vv)

|Shh|2 + |Svv|2 + 2Re(ShhS∗
vv)

=
szhh + szvv − 2Re(szhh,vv)

szhh + szvv + 2Re(szhh,vv)

(2.12)

Similarly to the ZDR, in the last step π, K, λ, N and dvd drop from the equation. Matrosov et al. [38]
showed that the SLDR contains information on ice particles, particularly the structure.

Dual Spectral Ratio
The Dual Wavelength Ratio (DWR) is proportional to the ratio of the copolar reflectivity (hh or vv)
at two different wavelengths. For example, for horizontal polarization and the full radar resolution
volume:

DWRhh = 10 log10(
zhh,35
zhh,94

) [dB] (2.13)

1(ShhS
∗
vv) = Re(ShhS

∗
vv) + Im(ShhS

∗
vv), so (ShhS

∗
vv)

∗ = Re(ShhS
∗
vv)− Im(ShhS

∗
vv)
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Inserting Equation 2.5 for the spectral variable leads to

DWRhh = 10log10

(
szhh,35dv35
szhh,94dv94

)
(2.14)

= 10log10

( λ4
35

π5|K35|2N(D(v35))σhh,35(D(v35))
∣∣ dD
dv35

∣∣dv35
λ4
94

π5|K94|2N((D(v94))σhh,94(D(v94))
∣∣ dD
dv94

∣∣dv94
)

(2.15)

= 10log10

(
λ4
35|K94|2σhh,35

λ4
94|K35|2σhh,94

)
(2.16)

The simplification occurring fromEquation 2.15 to Equation 2.16 holdswhen the sameDoppler velocity
resolution is used for the frequencies 35 and 94 GHz, namely dv35 = dv94.
LikeMontopoli et al. [39], the Dual Spectral Ratio (DSR) can be defined, which is slightly different from
the DWR:

DSRhh = 10log10

(λ4
35σhh,35

λ4
94σhh,94

)
(database) (2.17)

= 10 log10

( |K35|2szhh,35
|K94|2szhh,94

)
(radar data) (2.18)

To use these simplified expressions, the difference in Doppler velocity resolution dv between the two
wavelengths is addressed in subsection 4.3.2.
In the case of the DSR in vertical polarization, hh is substituted for vv. The DSR relates to the size of
the particles, especially as they are in the range of the wavelengths used [53, 17].

Differential Phase
The differential phase is the difference between the phase of the horizontal and vertical signals. Each
particle has a differential backscatter phase ϕbs, which is defined as:

ϕbs = arctan

(
Im(ShhS

∗
vv)

Re(ShhS∗
vv)

)
. [◦] (2.19)

From the cloud radar spectral data, the differential phase is retrieved as:

Ψ = arctan

(
−Im(sChh,vvdvd)

Re(sChh,vvdvd)

)
[◦] (2.20)

However, next to the differential backscatter phase, this data contains two additional differential phases:
the differential propagation phase and the differential system phase, such that

Ψ = ϕbs + ϕdp + ϕsys [◦] (2.21)

The differential propagation phase ϕdp consists of the cumulative phase difference from the scatterers
along the propagation path. ϕsys is a radar hardware property and can be dealt with through calibra-
tion.

The differential phase will increase for non-spherical particles [24, p. 36-37], as well as for larger parti-
cles [55].
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2.3. Fuzzy logic
To go from the scattering database to classified particles, a classifier needs to be build. As mentioned
in chapter 1, a fuzzy logic classifier was chosen. In this section, the basics of the fuzzy logic as used in
this thesis are explained, such that it can be applied in chapter 4.
A fuzzy logic algorithm consists of three parts: fuzzification, aggregation, and defuzzification.
Fuzzification of input variables happens by mapping them to a membership function. These functions
have values ranging from 0 (not a member) to 1 (member). For each class, membership functions have
to be constructed for each input variable, such as the trapezoidal membership function in Figure 2.6.
Here, Xmin and Xmax are the minimum and maximum values for this variable. Per class, a, b, c and d
can be determined. A sensible example is setting a as the minimum value for that class, b the 5th, c the
95th percentile, and d the maximum value.

Figure 2.6: Trapezoid membership function for one variable and one class. Xmin andXmax are the minimum and maximum
occurring values for that variables. a, b, c, and d can be chosen. Often, a and d are the minimum and maximum values of this

variable for this class, and b and c the 5th and 95th percentile.

By ’mapping’ the membership function to the measurement value is meant: taking the value of the
measurement and finding the corresponding value between 0 and 1 per measurement and per class.
The mapped value is P j

i , with i the feature input and j the class.
The aggregation happens by assigning a weight to each variable, Wi. Then, for the number of classes
n, the aggregated value Qj can be calculated:

Qj =

n∑
i=0

WiP
j
i (2.22)

Defuzzification happens by taking the class with the highest value for Q as output. As Zrnic et al. [65]
points out,Q contains information about the confidence of the classification. The classification is more
likely to be correct when Q is higher and when the gap to the second-highest value is large.

Due to the nature of the way the classifier is set up, the information in the correlation between two
variables is lost. To include this information, 2D membership functions can be used [1, 2, 8, p. 522].
Al-Sakka et al. [1] has defined a simple way to set up a 2D membership function between variable A
and B:

1. Divide the A range in bins.
2. For each range bin, determine the highest and lowest value of B for each class.
3. For a data point p, the bin corresponding to the value of Ap gets assigned to its corresponding

bin.
4. If then the measurement of this data point Bp falls in between the minimum and maximum for

that bin, a 1 is returned. Else, a 0 is returned.
Apart from the weights in Equation 2.22 there is another way to combine variables and include impor-
tance. When including a variable instead of adding it in the summation, the value can be multiplied.
Take variable x with mapped values Px, Px can be included within the summation, using

Qj = (

n∑
i=0

WiP
j
i ) · P

j
x . (2.23)
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Since P j
x can take up a value between 0 and 1, adding variable x like this makes sense if it concerns a

condition that makes it (im)possible for an outcome to happen. To illustrate, Al-Sakka et al. [1] used
temperature as a multiplicative term, e.g. the variable ’temperature’ for the class ’ice’ P ice

T = 0 if
T > 5◦C . Using Equation 2.23, the aggregated value for ice Qice is 0 for temperatures too high.



3
Data description

This chapter contains a short description of the data used. First, the particle database is introduced
in section 3.1. Then, the radar data is described in section 3.2. Temperature and other profiles from a
radiometer are also used, and described in section 3.3.

3.1. Particle Database
As mentioned in chapter 1, the database used in this thesis is the one of Lu et al. [31]. The particles
represented are divided in 5 types: plates, columns, branched planar crystals, aggregates, and conical
graupel. An overview is given in Table 3.1. For the plates and columns the shapes are relatively straight-
forward, which is why their numbers are limited. The branched planar crystals and aggregates have
many different shapes they can take on, as explained in section 2.1. Notably, the models of aggregates
also differ in the way the crystals are attached together. The graupel particles span across densities of
0.05 to 0.9[g/cm3] and cone angles. The exact formation and definition of the different crystals can be
found in the corresponding paper of the database. [31]

Type Number Dimension range [mm] Thickness ratios
Plates 44 0.1–2.52 0.5, 1.0, 2.0
Columns 30 0.18–4.31 1.0, 2.0
Branched Planar Crystals 405 0.5–5.63 0.5, 1.0
Aggregates 660 0.38–62.58 NA
Conical Graupel 640 0.2–2.5 NA

Table 3.1: Overview of particle number and dimensions in the database by Lu et al. [31].

The database contains smaller files with the most important information per particle. For each particle,
the scattering matrix

S =

[
Shh Shv

Svh Svv

]
(3.1)

is given. Then, for example Shh, is given inRe(Sf
hh), Im(Sf

hh),Re(Sb
hh) and Im(Sb

hh), with f for forward
and b for backward. This scatteringmatrix is given in the FSA (Forward Scatter Alignment) convention.
Since most polarimetric variables are used as defined in Bringi and Chandrasekar [8], which uses the
BSA (Backward Scatter Alignment) convention, the scattering matrix can be transformed to BSA as
follows:

SBSA =

[
−1 0
0 1

]
SFSA =

[
−Shh −Shv

Svh Svv

]
FSA

(3.2)

For each particle in the database, scatteringmatrices are givendepending onwavelength, incident polar
angle, and incident azimuth angle. The wavelengths are 3.19, 8.4, 22.4, and 31.86 mm, corresponding

12
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to 94, 35, 13 and 9 GHz, respectively. The incident angles are given in increments of 10◦ starting at 0◦.
In Figure 3.1 note how θ = 0 corresponds to a 90◦ elevation angle.

Figure 3.1: Rotation angles of the particles. With the particle in xyz coordinates and x”y”z” the scattering coordinate system, θ
is the incident polar angle and ϕ the incident azimuth angle, from [31].

There are some advantages to using this database specifically. First, the database consists of several
types of particles, and has different thickness ratios and maximum dimensions for each type, leading
to quite an extensive amount of modelled particles. Second, the database contains the scattering prop-
erties depending on incident angle, as opposed to averaging over orientations or choosing a random
orientation. This allows for the computation of polarimetric variables [57]. Furthermore, the scattering
data is computed using either DDA or GMM. These methods are more accurate at mm-wavelength
for non-homogeneous and complex shaped particles than the often used T-matrix method [25]. More-
over, the database contains the full scattering matrix for each particle, as opposed to just providing
backscattering radar cross sections. This too is necessary to compute some of the polarimetric vari-
ables. Finally, the database is described in detail such that limitations and assumptions are clear, and
it is freely available online.
Of course, there are some limitations as well, and Lu et al. identifies three. First, the database can never
encompass all possible particle types. Notably, it also does not include rimed or melting particles.
Second, because the calculations are done with incident polar angle increments of 10◦, interpolation
will be necessary when taking other incident angles. Last, the absorption cross sections are based on
older dielectric constants [22]. However, this mostly poses a problem when working with passive
observation [14].

3.2. Cloud Radar Data
The radar used is a dual-frequency polarimetric scanning cloud radar, specifically the RPG-FMCW-DP-
KW type, located in Cabauw. It is manufactured by Radiometer Physics GmbH. The radar operates in
Simultaneous Transmission Simultaneous Reception (STSR) mode at 94 and 35 GHz. The beamwidths
are 0.85◦±0.05◦and 0.56◦±0.03◦(HPBW), respectively. Detailed specifications can be found inMyagkov
and Rose [40]. During the chosen events, the radar was operating in slanted position, with an elevation
angle of 45◦. The data is divided in 3 chirps, with slightly different configurations, see Table 3.2.

Chirp 1 Chirp 2 Chirp 3
Range FFTs 256 256 128
Height [m] 84–843 864–3458 3503–10587
Range resolution [m] 29.8 29.8 55.0
35 GHz Doppler velocity resolution [m/s] 0.1548 0.1261 0.1678
94 GHz Doppler velocity resolution [m/s] 0.0576 0.0470 0.0625

Table 3.2: Chirp table for the cloud radar in Cabauw.

The radar provides data in two levels: LV0 and LV1. Since LV0 contains the spectral data, this one is
focussed on. The LV0 contain the Doppler spectrum at horizontal and vertical polarization, and the
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real and imaginary part of the cross-spectrum.

CHSpec = szhh(r, vd)dvd

CVSpec = szvv(r, vd)dvd

CReVHSpec = Re(sChh,vv(r, vd)dvd)

CImVHSpec = Im(sChh,vv(r, vd)dvd)

Here, r is the resolution volume, and vd the Doppler velocity.
The LV0 data is internally calibrated every 1000 seconds. Additional calibration is applied as described
in subsection 4.3.2.

3.3. Radiometer Data
Next to the cloud radar is a microwave radiometer, a HATPRO (Humidity And Temperature Profiler)
[48]. It operates at two frequency bands, 22-31 GHz and 51-58 GHz and provides humidity and tem-
perature profiles, as well as integrated water path, liquid water path. The temperature and humidity
profiles are used to calculate the attenuation affecting the reflectivity values, and the temperature and
liquid water path are used as variables in the classifier. The profiles are given in 93 altitude layers, from
0 to 10000m, with the height resolution increasing with altitude, from 10 to 200m.



4
Method

This chapter describes which steps are taken from the data as described in chapter 3, to the results in
chapter 5. The method is built around three main components: the scattering database, the cloud radar
data, and the fuzzy logic classifier tying them together. An overview of the necessary steps is given in
Figure 4.1.

Figure 4.1: Schematic overview of approach to go from a particle database and cloud radar data to results with fuzzy logic.

As can be seen, both the particle database data and the cloud radar measurements need to be pre-
processed before obtaining the polarimetric variables. The respective steps taken are explained in sec-
tion 4.1 and section 4.3. From the variables of the scattering database, the fuzzy logic classifier is made.
The approach taken here is explained in section 4.2. Because there is no validation data, extra care is
taken to introduce intermediate results to check the method. The results are found in chapter 5.

4.1. Pre-processing database data
In order to use the database data, two assumptions are made. First, that the elevation angle of 45◦ can
be achieved by averaging over 40◦ and 50◦. Second, that the Shv part of the scattering matrix can be
set to 0. These assumptions are justified in this section.

15
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4.1.1. Incident angles
When retrieving the scattering properties of a particle from the scattering database, the incident az-
imuth and incident polar angles need to be specified. The values from the scattering matrix are taken
as the average over all incident azimuth angles (see Figure 3.1). This does not give notable changes
compared to using just one incident azimuth angle. As for the incident polar angle, the average of the
values for 40◦ and 50◦ is taken. To check if this is a valid approach, the backward scattering magni-
tudes have been plotted against the incident polar angle. The curve was near-linear around 40-50◦ for
all particles, which confirms that interpolation is a valid method.
Going forward, unless specified otherwise, scattering properties from the database contain the imagi-
nary and the real part (Shh = Shh_real + Shh_imag * j), averaged over all incident azimuth angles
and averaged between 40◦ and 50◦ incident polar angles.

4.1.2. Omitting S_hv
With the LV0 variables, there is no access to Shv itself. Therefore, the SLDR cannot be computed using
σco as defined in Equation 2.10. However, as long as the SLDR is computed the same from the database
as from the radar measurements, and SLDR still contains the same amount of information on the parti-
cles, Shv could be omitted. For that purpose, the magnitudes of σhv compared to σhh and σvv from the
database are shown in Table 4.1. The values for σhv are significantly lower than σhh and σvv , suggesting

mean σb
hv[mm2] mean σb

hh[mm2] mean σb
vv[mm2] σb

hv/σ
b
hh σb

hv/σ
b
vv

aggregates 0.0009 0.139 0.06 0.006 0.015
conical graupel 7e-13 3.16 6.27 2e-13 1e-13
dendrites 1e-08 0.012 0.008 1e-06 2e-06
plates 0.0002 0.02 0.005 0.009 0.04
columns 3e-09 0.01 0.007 4e-07 5e-07

Table 4.1: Comparison of magnitudes of the backscattering cross-sections of σhh and σvv with σhv for different particle types
from the database.

it might not have a big influence on the overall scattering properties of the particles in the scattering
database. As can be seen in the last two columns of the table, the value for σhv is largest compared
to σhh and σvv in plates and aggregates. Therefore, leaving out Shv will probably affect those particle
types most.

(a) (b)

Figure 4.2: Comparison between SLDR with and without taking into account Shv . The relations are mostly linear, suggesting
that the simplification of omitting Shv has minimal impact.
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When comparing the SLDR with and without Shv in Figure 4.2, it can be seen that overall, leaving
out Shv has little to no influence on the SLDR values. Again, an influence does not matter, as long
as it is calculated the same for the cloud radar data and the scattering database data, and it can be
used to differentiate between particle types. To that end, Figure 4.3 is plotted. Indeed, comparing the
scatterplots of ZDR against SLDR with or without Shv (in Figure 4.3) shows little difference except
for some aggregates and the columns as a whole. In fact, the difference between columns and plates
becomes a bit bigger, making it easier to differentiate between these two types.

(a) (b)

Figure 4.3: Comparison between ZDR vs SLDR with and without taking into account Shv .

So, when working with the database, Shv = 0 in order to compare scattering model results and radar
measurements.
With the above modifications, the polarimetric variables are calculated as they are defined for the scat-
tering database in subsection 2.2.2.

4.2. Design of fuzzy logic classifier
With the polarimetric variables for every particle in the scattering database, the difference between ice
particle types can be investigated. These differences are then used to build a fuzzy logic classifier. To
illustrate the spread of the particles across the different variables, they are mapped against each other
in a 2D space in Figure 4.4.
From these plots it can be seen that, as expected, the different types have a lot of overlap. However,
each type also shows distinct features, like graupel being the only type to have negative ZDR in Ka-
Band, and branched planar having ϕ at 0 for Ka-Band but not for W-Band. The difference between
plates and columns is subtle, but their features are distinct nonetheless. With the spread per type per
variable known, the fuzzy logic classifier can be made. First, a 1D version is made. Then, the option of
using 2D fuzzy logic is investigated and applied in subsection 4.2.2. At the end, three different set-ups
with the membership functions are defined. After, the way environmental variables are included is
explained in subsection 4.2.3.

4.2.1. 1D fuzzy logic set-up
The first step in making a fuzzy logic classifier is constructing the membership functions from the po-
larimetric variables. As explained in section 2.3, trapezoidal membership functions are made from the
extent of the values the variables take on per type. When taking the lowest and highest value a variable
can take on for one type and setting the membership function to 1 between these two values, this first
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Figure 4.4: Polarimetric variables for all particles in the database. Particles are coloured by mass, where the darkest shade for a
given colour is the maximum mass for that particle type and the lightest colour is the lightest particle for that type.

step is completed in its simplest form. Doing this, two problems are encountered: the membership
functions become either too wide or too narrow.
To illustrate this first problem, consider the ZDR at both frequencies for graupel. While most conical
graupel particles show negative ZDR, from the database we also get some positive values. So, when
setting the membership function at 1 from highest to lowest value, it will simply be 1 for every single
value of ZDR. However, arguably when the ZDR is positive, it is most likely not a conical graupel
particle, and thus the membership function should be at least lower than 1. A way to deal with this
was already proposed in section 2.3: by using trapezoidal membership functions, where the function
linearly decreases towards the most extreme values on the left and right. Referring back to Figure 2.6,
as suggested there, the membership function decreases linearly outside 5-95% of the values for that
particle type.
The second problem concerns the complete opposite: the range of values is so narrow that the member-
ship function barely exists. For this, consider the differential phase of plates, columns, and branched
planars at Ka-Band. From the database, all particles have a differential phase of 0◦. When making a
membership function of that, a measurement of 0.001◦ will already fall outside the function. For that,
a rough fix has been implemented: if the range of values for a variable for a type encompasses less
than 5% of all possible values, the membership function is widened by 1% on both sides. So, for Φ35
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of plates, the lowest value is 0◦ and the highest 0.21◦, which is less than 5% of the possible values.
The range of values from the database particles goes from −178◦ to 153◦ for this particular variable, so
the membership function of plates for Φ35 is set to range from −3.3◦ to 3.5◦. A second argument for
enlarging this range of values is the presence of some light noise in the radar data.
When constructing the membership functions as described above, one more detail arises as a possible
problem, namely the size of the particle groups. Again regarding the ZDR of graupel, the particles that
account for the values around, say, 5[dB] can be regarded as outliers. The ability to represent them
with a lower value of membership is a strength of the fuzzy logic classification. However, the column
and plate particles show values that are all close together and are in line with expectations. Excluding
the most extreme values for these types just narrows the membership function needlessly. For now,
this problem is not addressed in the making of the membership functions but is regarded again in the
discussion.
With those two additions, the membership functions can be constructed. For each variable, the func-
tions are visualized in Figure 4.5. The weights are set atW = 1.

Figure 4.5: 1D trapezoidal membership functions.

4.2.2. 2D fuzzy logic set-up
Looking at Figure 4.5, the overlapping problem that is inherent to this ice particle classification becomes
clear. When these graphs are all the classification is based on, a measurement of a column can easily
be classified as plate, for example. However, in the scatterplots from Figure 4.4, these two types are
distinct when looking at the DSR plot. Though subtle, together with the differences that can also be
seen in the ZDR-SLDR plots the two particle types can be differentiated. However, this 2D information
is lost when moving to the 1D membership functions in Figure 4.5. As introduced in section 2.3, Al-
Sakka et al. [1], among others, have constructed a way to include this 2D information by using 2D
membership functions. Based on that, a simple way to set up a 2D membership function is as follows:
While taking SLDR and ZDR as an example:

1. The range of SLDR is divided into bins.
2. For each bin, the highest and lowest value of ZDR for each particle type are determined.
3. For a data point, the SLDR is assigned to its corresponding bin.
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4. When theZDRmeasurement is in between theminimumandmaximumof that bin, a 1 is returned
for that data point. Else, a 0 is returned.

Applying the method above leads to the 2D membership functions as in Figure 4.6. The bin size is set
at 5[dB]. This value was based on visual inspection: balancing keeping enough detail in the shape of
the function, while not having too many holes in the range.

Figure 4.6: 2D membership functions based on the scattering database of Lu et al. [31] and the method if Al-Sakka et al. [1]. Bin
size is 5dB.

A consideration of 2Dmembership functions is their shape. On one hand, the 2Dmembership function
is added to decrease the problem of overlap. As such, the areas should not be too big, or the problem
remains. On the other hand, the particles in the database only span a range of possibilities, so leaving
out the area between particles may leave out a lot of important information. For now, for example,
the membership function ZDR of the conical graupel now still encompasses all positive values. At the
same time, one could imagine that a columnar ice particle can take on aZDR and SLDR value at 94GHz
that falls exactly in between the two ’islands’ that can now be seen in Figure 4.6. Looking at Figure 4.4
ZDR,94 = 5dB and SLDR = −10dB would fit exactly in the row of columnar particles, but would
return as a 0 from the 2D membership function.
Another consideration in 2Dmembership function is the question of which variables to combine. Keep-
ing a robust classifier inmind thatmight also performwhen leaving out one frequency, the combination
SLDR-ZDR for both 94 and 35GHz and DSR94-DSR35 is chosen. As such, when one frequency is not
available or is very noisy, at least one 2D function can be used. However, this scenario does highlight
a weakness of using 2D functions in general: it is more sensitive to noisy or bad data. Looking at
the differential backscatter phase in Figure 5.2, the 2D overview does not add above the 1D functions.
Therefore, the phase is not considered as an input for the 2D functions. The option to use principal com-
ponent analysis to form new variables that can discriminate particle types better has been investigated
in Appendix B.
With the 1D and 2D membership functions, three different set-ups are considered:

1. All variables have 1D trapezoidal membership functions.
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2. SLDR-ZDR are 2D for both frequencies; the rest have trapezoidal membership functions.
3. Both SLDR-ZDR and DSR have 2D membership functions; only ϕ still has 1D membership func-

tions.
These set-ups are compared against each other in section 5.2.

4.2.3. Incorporating environmental variables
Apart from polarimetric variables, there are other factors that can help classify ice particles. From sec-
tion 2.1 it is clear that temperature and water vapour saturation influence the formation and growing
of ice particles. Since the temperature and liquid water path are available from the microwave ra-
diometer, and because the polarimetric variables alone might not be enough to classify reliably, these
environmental variables can be added in the fuzzy logic classifier.
The addition of these variables has been done before. Aydin and Singh [2] use temperature as a 1D input
to the fuzzy logic algorithm. They only differentiate columnar crystals from other ice particles and
give graupel a value of 1 for all temperatures. Al-Sakka et al. [1] on the other hand, uses temperature
as a multiplicative term. This means that, if the temperature falls outside the range of a particle, it is
immediately deemed impossible. In this way, temperature gets a more important role. As explained
in section 2.1 there are many factors influencing the exact growing of ice particles, and temperature
alone cannot distinguish particles. Al-Sakka et al. [1] does not differentiate between many particles,
but instead between ’ice’ and ’rain’. Indeed, in that case it makes more sense to use temperature as a
definitive factor.

Figure 4.7: Membership functions of temperature for aggregates, branched planar, columns and plates. The values correspond
to Table 2.1.

The situation is different when incorporating the LWP. The formation of graupel is dependent on a
minimum value for the LWP. As mentioned in section 2.1 graupel can exist with liquid water paths
from about 50g/m2, but is typically seen from 100g/m2. Therefore, the membership function of the
LWP is as in Figure 4.8. Because here the LWP is a prerequisite for graupel, it is incorporated as a
multiplicative term, as in Equation 2.23. In other words, when the LWP is below 50g/m2, the Q value
for graupel becomes 0. For all other particle types, the membership function is simply 1, meaning it
has no influence.

Figure 4.8: Membership function of liquid water path for graupel.

Thus, the temperature is only added as a 1D fuzzy logic membership function in the fuzzy logic al-
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Figure 4.9: The pre-processing procedure for the spectral cloud radar data to obtain spectral polarimetric variables.

gorithm. The membership function of the LWP is applied to graupel as a multiplicative term. All
weights are set atW = 1. With the fuzzy logic algorithm, it is possible for the value ofQ to be the same.
When two or more particle types have the highest value of Q, the classifier returns the classification as
'none'.

4.3. Radar data preparation
When obtaining the radar data, the measurements cannot be used as an input for the classifier imme-
diately. The steps that are needed are visualised in Figure 4.9. The first step is to de-alias the Doppler
spectra and interpolate them. Only then the polarimetric variables are be calculated as described in
section 2.2. Further, for ZDR and ϕ additional calibration is available and thus applied. Since attenua-
tion depends on the wavelength, the SLDR needs to be corrected for this, as it contains two different
wavelengths. These steps are described in subsection 4.3.2. But first, the events need to be chosen.

4.3.1. Events
Throughout the definition of the spectral polarimetric variables, some necessary assumptions are men-
tioned. The first is that a non-precipitating event needs to be chosen. This is because precipitation
increases attenuation, which is then different for polarizations and frequency. This would influence
the accuracy of all variables using two polarizations or two wavelengths. Moreover, precipitation de-
creases the range of the radar. Since ice clouds are often quite high in the Netherlands, maximizing
range is preferable. By choosing a non-precipitating event, the differential propagation phase is kept
to a minimum as well. Another requirement is, of course, that the cloud case has to be an ice cloud. In
order to use spectral polarimetric variables, the cloud radar needs to have an intermediate elevation
angle in the range of 30◦- 45◦. The elevation angle 45◦ is chosen.
As introduced in section 2.2, the phase as measured by the cloud radar consists partly of the differential
propagation phaseϕdp. Because in comparisonwith the database only the differential backscatter phase
ϕbs is used, this ϕdp needs to be minimized as well. Again, this is done by omitting precipitating events.
Two study cases are considered. The first case is a single-layer ice cloud and the second one consists
of a two-layer ice cloud, which may increase the complexity of the media to be classified. They both
occurred on the 26th of January 2021 and were documented inWang [61]. Documented ice cloud cases
are first deemed for the analysis of the proposed new classification method.

Event A
The first event occurred in the time interval 18:00-19:00 UTC. Here we have a single cloud layer. In
Figure 4.10 some of the bulk variables of this case are depicted. The differential phase is left out on
purpose, because all values were practically 0◦. In this plot, ZDR is calibrated. Note that the SLDR is
depicted instead of SLDR. This is because we are considering bulk variables and thus SLDR instead
of the spectral SLDR. As a first check, indeed this case does not include precipitation. Looking at the
temperature, the cloud seems to be from −20◦C to −30◦C, so most likely an ice cloud.
Throughout this event, the liquidwater path heavily fluctuates between 10 and 70g/m2, see Figure 4.11.
Wang [61] explains that convection at the top of the cloud leads to ice particles, which then fall down
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Figure 4.10: Bulk variables, temperature, and relative humidity for Event A.

Figure 4.11: Liquid water path Event A

the fall streaks clearly visible in the Ze profiles. Near 18:00, the ZDR is slightly higher and the SLDR
quite low, which might indicate small, non-spherical particles. Later, SLDR increases and ZDR nears 0,
indicating larger and rounder particles.

Event B
Event B occurred later on the same day, between 20:00-21:00. Because these graphs will be compared in
the final bulk plot, they are included here as well in Figure 4.12. The cloud can be split into two parts,
divided at a height of about 4000m. Especially the high DWR stands out, as well as streaks of high and
low SLDR in the lower part. There, there is not only a big difference between the two wavelengths,
but also between the two polarizations, as can be seen in the ZDR. Some fall streaks are seen as well,
albeit weaker than in event A. The negative temperature indicates a full ice cloud, and the LWP is low
enough for analysis; see Figure 4.13.
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Figure 4.12: Bulk variables, temperature, and relative humidity for Event B.

Figure 4.13: Liquid water path for Event B.

4.3.2. Retrieval of polarimetric variables
To obtain the spectral polarimetric variables from the cloud radar data, the two spectra of the two bands
need to be matched, for which the dealiasing code of Wang [60] is used. The dealiased spectra are used
to calculate the spectral polarimetric variables. These are then calibrated, and the SLDR is corrected
for attenuation.

A: De-aliasing
When combining the Doppler spectra of the twowavelengths, a problem appears: the Doppler velocity
resolution dvd is not the same for the two spectra, and neither are the Nyquist velocities. In Wang [60]
a code to dealias the Doppler spectra has been made. The output of this code consists of a spectrum
per height and time index. Each spectrum is defined by a minimum Doppler velocity and step (bin)
size, for both frequencies.
As the step size in 35GHz is bigger than that of 94GHz, the 94GHz spectra are linearly interpolated
to those of 35GHz. This is shown in Figure 4.14. The magnitude of the 94GHz spectrum is smaller
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because the dv is smaller, and thus, as per Equation 2.5, szhh is smaller as well.

(a)
Dealiased Doppler spectra before interpolation.

(b) Dealiased and interpolated 94GHz Doppler spectrum, before and
after adjusting for different dv.

Figure 4.14: Interpolation and bin size dvd correction, for Event A t = 18 : 00 : 36, h = 2762m.

Adisadvantage of interpolating like this is that information is lost on the 35GHz spectrum by not using
the tails, as well as on the 94GHz spectrum by interpolating.
After dealiasing, the polarimetric variables are calculated. This is done as described in chapter 3. The
fact that dv94 ̸= dv35 in Equation 2.16 is corrected for by multiplying sZhh,94 with dv35/dv94 as shown
in Figure 4.14b.

B: Calibrating
Calibration was applied to both ZDR and ϕ for both frequencies. This was done using the method of
Mak [33]. She provided a calibration profile, which the dealiased variables were multiplied by (ZDR)
or added to (ϕ). This profile is based on zenith-pointing radar data from a light stratiform rain day as
close in time to the events in her thesis, namely 19-05-2021.

C: Correcting for attenuation
While a radar beam travels through the atmosphere, some of it energy is lost through interaction with
gasses in the atmosphere and particles on its path. This is known as attenuation[45]. Attenuation is
larger in smaller wavelengths [6], and thus needs to be taken into account when computing the DSR.
Considering the attenuation due to the presence of gasses and/or spherical particles, the polarimetric
variables are all ratios where the numerator and denominator are expressed at the same frequency and
thus experience the same attenuation, which is then cancelled out.
Calculating attenuation is done using recommendations from ITU R676-10 [11] For that, temperature,
pressure, and water vapour density are needed. Temperature and water vapour density (absolute hu-
midity) profiles are taken from the microwave radiometer. Since the surface pressure (psurf ) is known,
the pressure at any height can be calculated with surface temperature Tsurf , the gas constant R, gravi-
tational acceleration g = 9.81m/s2, the lapse rate a = −0.006K/m and the temperature T [59]:

p = psurf

(
T

Tsurf

)− g
aR

(4.1)

The attenuation of ice particles is ignored, since it is several orders ofmagnitude smaller than other com-
ponents in the atmosphere [58]. The liquid water attenuation is also ignored, since non-precipitating
events are chosen. (Non-precipitating) water particles suspended in the air are generally small and
round, and thus influence the horizontal and vertical polarizations equally for one wavelength. An
alternative to calculating pressure profiles is obtaining them from ECMWFmodels [41]. This shows at
most a 4% difference in pressure from the method above, and is not used due to the extra steps needed.
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The attenuation in [dB/m] is calculated for each measurement level of the microwave radiometer, and
added together to form a total attenuation in [dB] for each height of the cloud radar. This is done using
a Python package [11].
With the attenuation a[dB] of both frequencies from the ground to a given height, the DSR is calculated
with

DSR = DSRmeasured − 2
a94 − a35
sin(45◦)

. (4.2)

Note that the attenuation is divided by sin(45◦) because the radar beam is slanted and thus experiences
more attenuation than if it was pointing towards the zenith. The attenuation is multiplied by 2 because
the path is travelled twice: forwards and backwards.

D: Signal-to-noise ratio
Applying a filter based on signal-to-noise ration (SNR) can clean up the data before applying the clas-
sifier. The noise from the cloud radar data is given as CHNoisePower, which is the noise power per
timestamp and height. To get to spectral noise power, it is divided by the amount of velocity bins:

sSNR(t, r, vd) = CHNoisePower(t, r, vd)/Nd(r), (4.3)

withNd the number of Doppler velocity bins. A negative SNR in the logarithmic scale means the noise

Figure 4.15: SNR of 35GHz horizontal polarisation at event A, 18:00.

is larger than the signal. In Figure 4.15 it can be seen that in the middle of the data the noise is the
smallest. This is not strange considering that the noise is the same over every Doppler bin, but the
signal strength follows a curve (like in Figure 4.14); the signal is weaker on the edges, and so the SNR
is lower.
Applying a signal-to-noise ratio (SNR) can lead to cleaner data; however, it also leads to fewer data
points. A SNR of 0dB removes 17% of all points, while a SNR of 5dB removes about 35% of data points.
Looking at Figure 4.15, setting the SNR at a maximum of 0 already gets rid of the strangest values.
When a value is significantly noisy, it will fall outside the membership functions, and thus this noisy
measurement will be picked out by the classifier by having a lowQ value (see Equation 2.22) for every
particle type. The SNR is applied to all variables at SNR = 0dB for both frequencies.
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Results

Following the method from the previous chapter, the results can be obtained. This chapter contains
these results and some observations and preliminary discussion points. The structure follows that of
the research (sub)questions. and the method (see Figure 4.1). First, the spectral polarimetric cloud
radar variables are compared with those as modelled by the scattering database in section 5.1. Then,
theoretical performance of the different fuzzy logic set-ups is shown in section 5.2. The classifier is
applied to specific timestamps of the events in, and the results are shown in section 5.3. The quality
metrics of the results Q and Q-gap can be found here as well. Following, the sensitivity to some of the
different variables is depicted in section 5.4. Finally, the results are summarized in some bulk plots,
showing the entire events, in section 5.5.

5.1. Comparing cloud radar variables against scattering database
variables

To answer the question: “How can cloud radar variables be related to those modelled by a state-of-the-
art scattering database?” the polarimetric variables were derived in subsection 2.2.2. The polarimetric
variables are obtained using the method in section 4.1 for the scattering database, and section 4.3 for
cloud radar measurements. As introduced in section 1.2, an important assumption in the method used
is that the ice particles in a resolution volume are spread out over the Doppler spectrum through differ-
ent fall speeds, such that every velocity bin only contains one particle type. With this assumption, the
scattering properties from the scattering database can be related to cloud radar data without the need
for a particle distribution. To check the sensibility of the assumption and the pre-processing steps in
the method, the polarimetric variables obtained from the scattering database and the cloud radar are
compared in this section. First, all data points are compared to the spread of the modelled variables in
subsection 5.1.1. Then, a spectrogram example is shown in subsection 5.1.2.

5.1.1. Spread of the spectral polarimetric variables
To see if spectral cloud radar measurements can be related to single scattering database particles, plots
such as Figure 5.1 are made. The expected values in this case are those retrieved from the scattering
database, which is why the outline of the 2D membership function is shown as well. For clarity’s
sake only the outline of the 2D membership function of graupel is shown in this graph, as it is quite
representative of the values that for SLDR and ZDR that the particles from the scattering database take
on. Clearly, there are some clusters of data points falling far outside the expected regions. Note that
though it seems like a third of the cloud radar data points fall inside the expected region, there are
1.5 million points, and the point density near the 2D membership functions is higher. These plots are
similar for the other spectral variables, with clusters of radar measurements far outside the regions
as modelled by the scattering database. The reason for the clusters around SLDR values of −60 and
−120[dB] is explained by looking at the SNR. It becomes apparent that the somewhat strange clusters
on the left correspond to very low signal-to-noise ratios.

27
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Figure 5.1: The 35GHz SNR for SLDR vs ZDR for 35GHz cloud radar measurements of Event A with the 2D membership
function for graupel (black lines).

After applying the SNR for both 35 and 94GHz, the 2D scatterplots of the variables are as in Figure 5.2.
The comparison of the membership functions and the data points for the phases can be seen in Fig-
ure 5.3. The measurements are centred around 0, with a relatively small amount of points slightly
positive or negative. This indicates that the particles are limited in size and most likely consist of dry
ice [55]. In general, the measurements cover roughly the same region as those modelled by the scat-

Figure 5.2: The scatterplots of all cloud radar measurements of Event A after applying SNR=0[dB] (orange dots). The outlines
of the 2D membership functions are given per particle type (black lines)
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Figure 5.3: Phase membership functions (below) and all cloud radar measurements of Event A after applying SNR=0[dB](top).

tering database. Figure 5.2 exposes one of the shortcomings of the way the 2D fuzzy logic classifier is
set up right now. Since the membership functions are based on the (limited) values from the database,
it was inevitable that some measurement data points would fall outside this region. Aside from the
points with low SNR, there seem to be quite a lot of points with decent SNR that do not fit inside any
of the membership functions. Actually, it seems the points showcasing particularly low SLDR values
have the highest SNR. This shortcoming will show up in the classification results when the value of
Q is 0 for all particle types.

5.1.2. Spectrogram of polarimetric variables 18:00
With the first check if the polarimetric variables from the scattering database and the cloud radar com-
pare, the data can be analysed in more detail. For Event A, the spectral polarimetric variables for one
timestamp look like Figure 5.4. With the Doppler velocity in the x-axis, the spectra look quite squiggly.
This is because when the elevation angle is 45◦ the horizontal component of the velocity also plays a
part, and thus horizontal winds do as well. This is also a reason why in this method the fall velocity

Figure 5.4: Spectral polarimetric variables for Event A, 18:00.
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is not taken as an input to relate to particle mass and size; the influence of the wind velocity would
have too big a part and is not measured accurately enough yet to be able to decompose the horizontal
(wind-dependent) and vertical (particle-dependent) components of the Doppler velocity. Note that the
data points up to a height of 3500[m] are closer together because the Doppler velocity bins are smaller
below that height.
Looking at the variables, a couple of things can be noticed. Checking the measured values against the
values that are expected from the scattering database, themagnitudes span about the same ranges. This
affirms the methods used to calculate the variables both for the scattering database and the cloud radar
data. Across the Doppler velocity axis, some different values can be seen. Especially the DSRs and
SLDRs show some gradient. The DSR is influenced by the size of the particle, and since the Doppler
velocity is dependent on the fall velocity and thus size of the particle, a gradient in DSR across the
Doppler velocity is indeed expected. This because the DSR increases for particle size, and heavier
particles are falling faster, thus spreading the particle sizes along the Doppler velocity spectrum. This
difference in values across the spectrum confirms that ice particles are separated in different velocity
bins according to shape. There is not a lot of difference in the kind of values at the bottom of the cloud
versus at the top, suggesting that the cloud particles are quite consistent throughout the altitudes.
With an SNR of 0 dB, some outliers may still be present at the edges of the spectra where the spectral
SNR is the lowest. However, with the fuzzy logic classification, that may not be an issue, as explained
in Equation 4.3.2.

5.2. Fuzzy logic set-ups tested on database
The fuzzy logic classifier is made with the variables from the scattering database. As in section 4.2,
some choices were made concerning the classifier. In this section, different set-ups are tested against
the particles of the database that the classifier was based on to compare them. First, the 1D is compared
with the 2D set-up. Then, a set-up with only the 94GHz band is tested.

5.2.1. 1D vs 2D
In section 4.2, three different set-ups for the fuzzy logic classifier are defined. With these set-ups defined,
there are two questions about the performance of the classifier. First, if the different particle types can
be differentiated with the current approach, and which particles might have the largest overlap. And
second, how the different set-ups compare.

Figure 5.5: Misclassification percentages for the different fuzzy logic algorithm set-ups, vertical is the input and horizontal is
the output. A = Aggregates, G = Conical graupel, BP = Branched planar, C = columns, P = plates. E.g. for set-up 1, 22.7% of

aggregates get misclassified as plates.

To start answering these two questions, the particles from the database can be used as an input to the
classifier. Of course, this is by nomeans a proper classifier test as the testing data are the exact data that
the classifier is built with, but it servesmerely as an indication if the classes are at all differentiable solely
by the spectral polarimetric variables. In Figure 5.5 the three different set-ups have been tested. What
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can be seen are the percentages of misclassifications. Since the input and the testing data is the exact
same, each particle gets appropriately assigned to the correct class. However, it often also gets classified
as another particle. That is, in the first set-up for any plate or columnparticle as inputQ ismaximum for
aggregates and graupel as well. To illustrate: of all graupel particles in the scattering database, 89.1%
also gets misclassified as an aggregate in Set-up 1. One takeaway from the first set-up is that graupel
is not often misclassified, but other particles are easily classified as graupel. This is no surprise when
looking at Figure 4.5. There we see that the 1D membership function of graupel encompasses almost
every possible value. What Figure 5.5 clearly shows is that using at least the 2D ZDR−SLDRmatrices
adds to the discrimination between types. Only plates still almost always get classified as aggregates.
The third set-up seems to behave slightly better in most cases. Indeed, columns and plates are separate
in the scatterplot of the DSRs in Figure 4.4, and thus their 2D membership functions are different in
Figure 4.6, where they are almost exactly the same in the 1D functions.
Keep in mind that these results do not include temperature and liquid water path as variables; they
merely serve as a check for the classifier based on the polarimetric variables from the database. Actu-
ally, what they show is that with just the spectral polarimetric variables, there is still a big chance that
particles get misclassified as aggregates. Further, without the inclusion of any other variable such as
LWP, in an ideal case at least 50% of aggregates would also get classified as graupel. The expectation is
thus that the temperature and LWP will play a big role in the performance of the classifier, specifically
to differentiate between graupel, branched planars, and aggregates.
Since set-up 3 seems to perform best here, this is the one continued on with. Unless specified, the
results shown are thus using this set-up.

5.2.2. Single frequency
Since most of the RPG type cloud radars in Europe operate at the single frequency of 94 GHz, it is
interesting to know how the classifier performs only considering the variables available in that case. In
this scenario only ZDR, SLDR, and ϕbs for 94GHz are available. This is less than half of the variables,
as of course the DSRs require a second wavelength. The results are visualized similarly to the dual
wavelength results in Figure 5.6.

(a) Set-up 1 (b) Set-up 3

Figure 5.6: Misclassification percentages for a fuzzy logic algorithm based on the single frequency 94 GHz

Perhaps unsurprisingly, both of these set-ups perform significantly worse than those using the dual
wavelength set-ups. Especially the 1D set-up is unable to differentiate between particle types.

5.3. Classification results on cloud radar data
With the fuzzy logic set-up chosen, the results of the classification of cloud radar data can be made.
Some specific timestamp are highlighted to showcase some different observations. First, in subsec-
tion 5.3.1, the results for Event A at 18:00 are shown. Also visualised in this subsection are Q and Q-
gap. According to the bulk polarimetric variables, perhaps some different classifications are expected
at 18:30 in Event A. Therefore, the results on this timestamp are shown in subsection 5.3.2. Event B has
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two cloud layers, and its results in the form of spectograms is given in subsection 5.3.3.

5.3.1. Classification results Event A 18:00
Applying the fuzzy logic to the cloud radar for 18:00 leads to the classifications as Figure 5.7. Here, the
results for set-up 1 and set-up 3 from subsection 5.2.1 are next to each other. The reason to still compare
with the 1D set-up even after the results from the previous section is that the 1Dmethod is simpler, and
thus quicker to run. So if the results are similar, the 1D method is preferred.

(a) Set-up 1 (b) Set-up 3

Figure 5.7: Classification results for Event A for two different set-ups, 18:00.

Remember that the class 'none' means the maximum value of Q occurs for two types. As expected,
the 1D results do not seem good. That is, a lot of data points are not classified, and those that are, are
uniformly the same. That is of course possible, but subsection 5.2.1 shows that the 2D method should
behave better. So if the results are different, it is reasonable to say that the one using a 2D set-up is
more accurate. In Figure 5.7b the results show two particle types: aggregates and branched planars.
The absence of graupel can be explained by the low LWP, and as mentioned in subsection 4.3.1 and
Wang [61] the main expected particle type in the cloud would be aggregates. However, the DSR values
are quite low here at the first timestamp, so perhaps there could be some smaller particles such as plates
or columns.
To further investigate the results, the confidence of the classification can be studied. This can be done in
twoways: the value ofQ for the classification, and the gap between the highest and the second-highest
value of Q. See section 2.3 for the definition of Q. As a reminder, there are 6 membership functions: 2
for SLDR − ZDR and phase, plus DSRhh −DSRvv and temperature, so the maximum value of Q in
the 2D set-up is 6. Then, if the classification is made on Q = 3 the confidence is rather low. Similarly,
if the gap between the highest and second-highest Q value is low (near 1), the confidence is also low.
The value of Q might be 6, but if the second highest is 5.9, the classification is not convincing. These
two indicators are shown in Figure 5.8 and Figure 5.9. Arguably, a value of Q = 3 is too low to classify.
Namely, this could mean a classification is based solely on phase and temperature. There are some
values showing a Q of 5, and a gap of around 1. These classifications are then quite plausible.
So, these results suggest that the 2D set-up performs better when applied to cloud radar data as well.
The most ice particle types most occurring according to the classification are aggregates and branched
planars. With aQ value of around 4 and aQ-gap value often below 1, the results are plausible, but not
conclusive.

5.3.2. Classification results Event A 18:30
The change of DWR over time was briefly mentioned in subsection 4.3.1. In Figure 4.10 an increase in
DWR can be seen over time, and a decrease in ZDR. As such, it may be interesting to have a look at the
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Figure 5.8: Q at 18:00. Figure 5.9: Q-gap at 18:00.

results for 18:30 as well. The classification results are shown in Figure 5.10a.
Unexpectedly, somemore plates show up here, while larger particles were expected. There is not much
different between the classification profile of 18:00 and 18:30, even though the bulk plots in Figure 4.10
show quite some different values. Figure Figure 5.10c shows that indeed, the DSR values at 18:30 tend
to be a bit higher than at 18:00, with clear gradient across the Doppler velocity. However, this is not
reflected in the classification results. This can be explained by referring back to the 2D membership
functions in Figure 4.6. Smaller particles are associated with lower DSR, but these values are also part
of the membership functions of aggregates and branched planars.

(a) Classification (b) Q values (c)DSRhh

Figure 5.10: Classification outputs for Event A, 18:30

5.3.3. Classification results on Event B
Event B can also provide some insights into the performance of the classification. The most important
difference in this event is that it is a higher cloud, see Figure 4.3.1. In Figure 5.11, note the confidence
in which we can say that the bottom kilometre of the cloud consists of aggregates: Q is 6 and the gap is
near 2. With increasing altitude, the Q value and Q-gap both decrease, thus decreasing the confidence.
The SNR only decreases significantly after 7000[m], so it does not influence these results.



5.4. Sensitivity to different variables 34

(a) Classification (b) Q values (c) Q-gap

Figure 5.11: Classification ouputs for Event B, 20:00

5.4. Sensitivity to different variables
The third subquestion in the research questions concerns the importance of different variables in the
classification of ice particles. The hypothesis that temperature is important in the distinction between
aggregates and branched planars from subsection 5.2.1 is tested. Then, the possibility of only using the
94GHz band is in subsection 5.4.2. Also the influence of differential backscattering phase is investigated
in subsection 5.4.3. The findings are summarised in a table at the end of this section.

5.4.1. Sensitivity to temperature
The smooth transition of theQ-gapwith height in Figure 5.9 is striking. It can be explained by looking at
the membership function of temperature, Figure 4.7 and raises the question of how big the influence of
temperature is in the classifier. To that end, the classification results without temperature are shown in
Figure 5.12. This result shows that most classifications of branched planars are based on temperature.

(a) 18:00 (b) 20:00.

Figure 5.12: Classification results without the inclusion of temperature.

Recalling Figure 5.5 this is not really surprising. Already there, it was argued that aggregates and
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branched planars had a large overlap evenwhen including 2Dmembership functions, and temperature
needs to be taken into account. For the classifier this means that reliable temperature measurements
are imperative. On top of that, the inclusion of temperature in the classifier is based on the assumption
that the cloud is vertically stable. If this is not the case, the inclusion of temperature can seriously skew
the results. The effect of leaving out temperature are the same for the cases at 18:30 and 20:00, where
aggregates are still mostly classified as aggregates, but what were previously branched planars are now
either branched planars or aggregates. In short, the impression that temperature has a big influence on
the classification results is correct.

5.4.2. Classification with only Ka-band
When leaving out theW-band in the classifier, thus being left with 94GHz, the results are as Figure 5.13.
The point density of the 94GHz classifications is much higher than the other ones depicted in this
chapter, as the 94GHz spectra do not need to be interpolated before using. Almost all data points score

(a) classification results (b) Q (c) Q-gap

Figure 5.13: Classification outputs with only the 94GHz band.

full points on the classification (3 forSLDR−ZDR, phase, and temperature). TheQ-gap graph suggests
that the classification is solely based upon temperature, and since the temperature is lower than -10◦ C,
almost the entire spectrum gets classified as branched planar. An interesting observation is that some
columns and plates show up at the edges. This would be as expected, with small particles at the edge
of the spectrum, were it not that these points coincide with lowQ-values. Indeed, when cross-checking
with the output P matrix, they just fall outside some variable for all particle types, and match better
with the temperature function of columns. Realistically, this classification is not useful.

5.4.3. Sensitivity to phase
One of the research questions to answer was which spectral polarimetric variables were key in dis-
tinguishing particle types. Of the polarimetric variables used, the phase is the only one applied in a
1D function. To that end, its influence might be minimal, and thus this might be worth investigating.
Namely, leaving out variables where possible simplifies the classifier, and is a good indicator of where
improvements in measurements are most useful.
Comparing Figure 5.14 with the Figure 5.7b results, one can see that without the phase, the points that
get classified as aggregates are almost all swapped for branched planars and plates. Comparing Fig-
ure 5.14b and Figure 5.14c, mostly the 35GHz backscattering phase has this influence. This is explained
by looking at the membership functions of ϕbs in Figure 4.5. In short, the backscattering phase does
add to the classifier, and cannot be left out.
The differences made by leaving out variables are quantified in Table 5.1. These results confirm what
was shown in the single timestamps above. Interestingly, the omission of the 94GHz backscattering
phase seems to have minimal impact on the results. To understand this, Figure 5.3 can be consulted.



5.5. Bulk results 36

(a)Without either differential phase (b)Without 35GHz differential phase (c)Without 94GHz differential phase

Figure 5.14: Classification results without ϕbs,35 and/or ϕbs,94.

The exact numbers of the classificationwith only 94GHz cannot be compared one-on-one, because there
are many more data points since the spectrum is not interpolated to that of 35GHz.

Set-up 3 No T No ϕbs,35 No ϕbs,94 Only 94GHz
Branched planars [%] 64 5 87 64 72
Aggregates [%] 30 25 5 29 15
’None’ [%] 5 70 5 6 10
Plates [%] 1 0 1 1 3
Columns [%] 0 0 3 0 1
Graupel [%] 0 0 0 0 0

Table 5.1: Percentage of types in output of different classification set-ups for Event A.

5.5. Bulk results
So far, the results are only analysed by looking at the spectrograms at specific timestamps. Looking
at them for the entire event can provide more useful information. For Event A this is done for the
occurrences of the classification of aggregates and branched planar. The brightness is determined as
follows: for every height and time, there is a list of classifications on the Doppler velocity spectrum.
In the figure, the percentage of the spectrum that is classified as that particle is depicted. For 18:00 to
19:00 (Event A) this looks like Figure 5.15.
Two things can be noted from this. First is the distinct line between aggregates and branched planar.
This line perfectly coincides with the temperature line of −10◦C. Also, there is some structure corre-
sponding to the polarimetric variables. The clusters of aggregates above 3000m coincide with the more
negative ZDR values. Only aggregates and branched planars are depicted because the other types are
not occurring frequently enough to really show anything. However, it is interesting to note that most
measurements classified as plates occur higher than the temperature line of−22◦C. In general, the con-
fidence in the classification is on the low side, with a Q value of around 4 and a Q-gap value generally
below 1.
The 20:00 (Event B) case is a bit more interesting to look at over time. All particle types are combined
into the profile as in Figure 5.17. Again, there are two distinct lines: these are the temperature borders of
−10◦C at about 3000m and−40◦C at about 7000m. Also, the structure of the classification corresponds
to the bulk variables. Lighter patches do not necessarily mean bad classification results. Rather, it
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(a) Percentage of classified aggregates per spectrum. (b) Percentage of classified branched planars per spectrum.

Figure 5.15: Profiles of classification results of Event A.

(a) AverageQ per spectrum. (b) AverageQ-gap per spectrum.

Figure 5.16: Profiles of classification quality metrics of Event A.

means that there is more than one type of particle within the Doppler spectrum. To that end, the
average of theQ of the spectra is depicted in Figure 5.18e. As in the Figure 5.11b, theQ decreases with
height. In Figure 5.18d and Figure 5.18c the occurrence of some columns and plates is observed as well.
However, note the colourbar here, which goes up to 10 and 30 % respectively. In Figure 5.18f there is a
strong line at around 7000[m]. This is not an indication of a strong classification. Rather, many points
are classified as ’none’ here, which would in fact mean the Q-gap= 0. However, in the code used, the

Figure 5.17: Combined average classifications per spectrum for Event B.
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(a) Percentage of classified aggregates per spectrum. (b) Percentage of classified branched planars per spectrum.

(c) Percentage of classified columns per spectrum. (d) Percentage of classified plates per spectrum.

(e) AverageQ per spectrum. (f) AverageQ-gap per spectrum.

Figure 5.18: Profiles of classification results of Event B. Note the different scales for columns and plates.

difference between the highest and the second highest is shown. So, if the Q values are [5, 5, 2, 1, 1.5],
the classification is ’none’ as two are the same, but Q-gap= 3 as the gap to the Q that is not maximum
is 3.
These bulk plots serve as a check for the classifier. Similar to the spectral results, the expectation of a
correct classifier is to show some structure in the cloud, as opposed to a completely white noise-like
classification. It makes sense for the top of the cloud to contain smaller particles, and then get bigger
as they fall and clump together to form aggregates, the growing processing described in Wang [61].
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Discussion

In the previous chapters, the steps to answer the research questions have been taken. In this chap-
ter, the degree to which they can now be answered will be discussed, as well as some of the choices
made along the way and their implications. First, some observations of relating cloud radar data to
the scattering database are discussed. Then, some of the choices made during the design of the fuzzy
logic classifier are explained. Furthermore, the quality of the results is discussed after the quality met-
rics are explained in detail. Following is an analysis on the influence of the different variables during
classification. Finally, some limitations of the methodology are mentioned.

6.1. How do the data from the scattering database and the cloud
radar compare?

As introduced in chapter 4, the polarimetric variables retrieved from the scattering database and the
cloud radar data are compared, to ensure some of the assumptions made in pre-processing are valid.
The correspondence between the variables is key for the effectiveness of the classifier. As could be seen
in Figure 5.2, generally the spectral polarimetric variables from both sources compare well. However,
there are a lot of values that fall outside the values obtained from the scattering database. This can be
due to three things: the method to retrieve the variables is wrong, the data is noisy, or the scattering
database is not an inclusive enough representation of what is found in the cloud.
If there were an error in the retrieval method, the expectation is that there would be an offset in values
between the database and the cloud radar. Because the centre of the values is approximately the same,
this is not considered themost likely. In regard to the noise in the data, an SNRof 0was applied, because
when using fuzzy logic, noisy variables falling outside membership functions will not have influence
on the classification. However, interestingly, cloud radar SLDR values that fall outside the scattering
database ranges are associated with the highest SNR. To investigate the cause of this, comparison with
literature can be done to see if this is caused by the methodology or because of a limitation of the
scattering database.
Most likely, the cloud radar values falling outside those of the scattering database is caused by the
limited amount of particles represented. This misrepresentation can be divided in three different kinds.
First, not all variants of the available ice particle types are in the dataset. A method to include these
can be to widen the membership functions. This needs careful consideration, as this will also increase
overlap betweenmembership functions. Literature or different databases can help here. Second, not all
shapes of ice particles are represented in the database. Notable types of particles not in the scattering
database are rimed particles or bullet rosettes. Last, the particles may be in transition between two
different particles, like a plate growing into a branched planar. However, if this is the case, it is expected
that its corresponding values of polarimetric variables would be in between the values of the two types,
and not falling outside the overall range of the scattering database. In subsection 7.3.3 this is addressed
again.
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6.2. Which choices were made when setting up the fuzzy logic clas-
sifier?

Throughout the setting up of the fuzzy logic classifier, several choices have been made that had a big
impact on the performance of the classification. Examples are the shape of the membership functions,
the combination of variables in 2D functions, and the weights. In this section, these choices and their
impact are discussed.
When constructing the membership functions, the particle type group sizes appear as a possible prob-
lem. This problem was first mentioned when setting up the 1D membership functions in subsec-
tion 4.2.1, where it seemed unnecessary to apply a trapezoidal function for the plates and columns,
whereas this was absolutely necessary for the three other types. Since the 1D method was not finally
chosen due to too much overlapping of the 1Dmembership functions, this problemwas not further ad-
dressed in the making of 1D set-up. However, for the 2D membership functions the problem becomes
apparent again. In the 2D membership functions Figure 4.6 there is some gap between the areas of, for
example, columns around SLDR94 = −15dB, ZDR,94 = 5dB. Intuitively, this empty space would be
part of themembership function as well. At the same time, there are parts of themembership functions
that should perhaps not be part of it, such as the far positive ZDR of graupel. One strength of using
fuzzy logic is that these kinds of adjustments are fully within possibilities. A danger of this is that the
adjustments are made too much on what might seem good based on literature or expected results.
The first problem, concerning the relatively small amount of plate and column particles, is not uncom-
mon inmachine learning. There are some common suggestions to improve such an imbalanced dataset.
The first suggestions concern undersampling the larger datasets, which in this context means taking
fewer particles as input for the larger datasets (so aggregates, branched planars, and graupel). How-
ever, in this case, this is not beneficial, as the spread of these larger datasets will still encompass the
spread of the smaller ones. On top of that, an unfavourable effect is that the membership functions of
the larger groups will be smaller and thus exclude a lot of valid measurements. Similarly, generating
new data for the smaller sets will not add a lot to the classifier, as this will not decrease the overlap
between the types. It might, however, close the gap in the 2Dmembership functions mentioned above.
One possible solution, other than filling in the gaps of the membership functions, is changing the way
the shape of the 2Dmembership function is obtained. The current methodwas chosen for its simplicity,
but slightly more complicated membership functions can be made that address some of the problems.
For example, shaping the membership functions as a concave hull around the scattering points.
Right now, the 2D membership functions are not fully using the possibilities of fuzzy logic, because
they do not contain values that are not 1 or 0. By adding some gradient as in the diagonal part of
the trapezoidal membership functions, more nuance can be given to the border of the membership
functions. A smooth transition between 0 and 1 can also decrease the total area under the member-
ship functions of the ice particle types with a large number of points, while increasing the area of the
membership functions of plates and columns.
One other aspect that has not been used is the changing of the weights. Again, this was done to not
overcomplicate the classifier before obtaining results. Now, there are two instances where changing
the weights could make sense. First, is with the inclusion of temperature. As later argued as well, the
temperature has a huge impact on the result of the classification. Reducing the weight can reduce its
impact, and give the polarimetric variables relatively more weight. Another consideration could be
the weight of the phase functions. With the 3rd set-up, the maximum value ofQ is 6. In this set-up, the
phase was included as two functions, accounting to 1/3rd of the maximum value of Q. However, the
two variables of DSRhh and DSRvv can only amount to 1/6th. By decreasing the weight of the phase
functions toW = 0.5, this imbalance would disappear.

6.3. How is the quality of the classification results assessed?
One known issue of hydrometeor classification in general is the lack of true data to validate the results.
Because of this, the events chosen were ones that we already had some knowledge about, so it can
be checked that the results were in line with the expectations. In a way, there is no real way to know
that the results are correct. However, there are a few ways to know that the results are incorrect or
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highly unlikely. These concern the consistency of the results, and the fuzziness in the output of the
classification.
An expectation, for example, is that you find smaller particles higher up, where the temperature is
lower as well as the DWR. A higher ZDR should indicate more oblate particles. Lower in the cloud,
there should be more aggregates as the temperature increases there, which encourages aggregation,
and where particles have had the time to aggregate while falling. Consistent results are results that
do not look arbitrary. A classification should be somewhat coherent with the points next to it and the
input spectral polarimetric variables. An inconsistent classification would perhaps look random, like
white noise, or show patterns different from those in the cloud radar data.
Fuzzy logic allows the quantification of confidence in the results in two ways: by using Q and Q-gap.
Ideally, the Q is maximum at every classification, which is 6 for the normal 2D set-up. This number
indicates to what degree the data point corresponds to the membership functions, and thus the scatter-
ing database, of the classified particle. When using a similar set-up as this in applications, there should
be a minimum value of Q that is deemed good enough for classification. Because this study consists
of a first analysis of the proposed methodology, it was not yet useful to set such a limit. The results as
they are allow broad analysis, and should be used to build upon and improve, rather than take as true.
Assuming that the method is correct, lowQ values canmean a couple of things. First, that the measure-
ment is noisy. If values with lowQ-value get filtered out in the end result, this is not an issue. Second, it
could mean that the measured particles are not part of the 5 types as defined in the scattering database.
This is an expected problem when basing classification on a database: simply not every particle can
be represented. Last, it could mean that the membership functions are not defined properly. This is
discussed in section 6.2 as well, and can be avoided by carefully crafting the membership functions if
it seems that this is the case.
The so-dubbed Q-gap value is also an indicator for confidence. As explained, when this value is high,
the classification is quite certain for that type, and the chance that it is another type is low. A high value
would be around 2 in the 2D case. When this value is very low, it is an indication that the classification
is not certain. A small change in any variable could lead to a whole different classification.
Another difficulty in quantifying the confidence in the results is that an ambiguous classification could
be correct. Theway the classifier is set up, with the use of spectral polarimetry and a scattering database,
relies on two assumptions. First, that all particleswithin oneDoppler velocity bin are the same. Second,
that the measured particles are similar to those in the database.
A lowQ-gap value couldmean that there are two ormore types of particles within the Doppler velocity
bin. Or, that the particles in question are somewhere between two particle types, like a plate that is
growing to become a branched planar. In this last case, the Q value should be high for both. This is
what is seen in the lower part of the cloud in Event B, where the Q-gap is near 0 and Q > 5.
An advantage of using Q values as opposed to expectation and consistency as a metric for quality is
that it is more easily quantifiable and applicable to different events. Consistency in the results could
be quantified, by for example taking into account the classifications of the data points around a point.
The three ways to indicate the confidence in the classification results have been applied to the events in
section 5.3. As mentioned before, the expectation was that the cloud would consist mostly of branched
planars and aggregates. For both events, this is indeed the case. For Event B, smaller particles were
expected higher up. Indeed, the plates that were found, were found higher up in the cloud. In Event
A, generally, the Q value is around 4, which is satisfactory, but is not convincing. Combined with the
Q-gap which is below 1 nearly everywhere, the classification is not so confident. The low Q-gap is not
strange given the large amount of overlap between branched planars and aggregates. As mentioned,
Q-gap in Event A ismainly determined by temperature, and as such, so is the result of the classification.
In Event B, the Q does reach up to 6, and there are streaks with a Q-gap of around 2, which is as good
as possibly expected. However, all other areas show low Q-gap values of below 1.
For both these events, it is interesting to note which variables are most often within the membership
functions. In away, this is done by looking at the different variables, discussed in section 6.4. Especially
in Event B the stark decrease in Q with height is quite interesting. Recommendations about further
analysis of the results can be found in subsection 7.3.3.
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6.4. Importance of different variables
The last subquestion formulated for this research concerns the importance of the different variables
used in the classifier. This can help the future ice particle classifiers, and provide more insight into
measuring ice particles with radar as a whole. To this end, three set-ups have been tested. Firstly,
without phase because it is the only 1D variable in the 2D set-up. Secondly, without temperature,
because it seemed the classifier depended a lot on it. Finally, with only W-Band because many of the
cloud radars around Europe only have this frequency.
The results of these set-ups are quite clear. Leaving only the 94GHz variables leaves little to base the
classification on. Especially the loss of the DSR relation makes it such that almost any particle also gets
classified as branched planar. Plates and columns are now completely indiscernible by spectral polari-
metric variables only. At this point in ice particle classification, it seems more variables are needed,
and leaving out the valuable information of 35GHz is detrimental for the quality of the classification.
Nevertheless, using variables that do not add any information only slows down the algorithm, costs
time to set up, and possibly introduces errors. To that end, the results without phidp have been inves-
tigated as well. From Figure 5.14 it is shown that the phase also adds information. In this specific
spectra, it can be seen that phase adds to differentiate between branched planar and aggregates. and
fewer points get classified as plates. Especially the 35GHz contains information that helps drive the
classification, which is no surprise looking at the 1D membership functions in Figure 4.5.
In short, all the spectral polarimetric variables investigated in this research need to be considered for
the ice particle classifier.
Concerning the use of spectral measurements, the hope was that the different particles within a resolu-
tion volume would be spread out along the Doppler spectrum. Indeed, this seems to be happening in
the cases described by looking at the spectral DSR and SLDR. However, in the classification results this
is not reflected. When data points are classified as columns or plates, this is more often rather random
than on the side of the spectrum. Looking at the results at 18:00 and 18:30, a difference in DSR over
the spectrum does not result in different classifications. Admittedly, whereas the DSR shows a stark
difference over the spectrum, the other variables show much less variability, let alone as structured as
the DSR does. Perhaps, the size changes over the spectrum, but the particle type does not. The results
from the database show that also the ’larger’ particles can have DSR values nearing 0dB.
From the results, it is clear that there is a distinct dependence on temperature in the classification. This
dependence showcases itself in the Q-gap following the temperature gradient in Figure 5.9, the stark
line in the bulk classification results in Figure 5.15a, and of course the results without the inclusion of
temperature in Figure 5.12.
Testing the dependence of LWP in the classification has not been done. However, from Figure 5.5 we
know that about 50% of the aggregate particles in the database get misclassified as graupel. On top of
that, there is no temperature range for graupel. What is expected is that when the LWP is sufficiently
high, a lot of the aggregates will get misclassified as graupel.

6.5. Limitations
Assumptions in the methodology mean that this classifier can only be applied to non-precipitating ice
clouds, with little convection. On top of that, the radar used needs to be dual-frequency, dual-polarized
cloud radar, limiting the locations where the classification can be applied. The addition of temperature
in the classification means that accurate temperature measurements are crucial for accurate classifica-
tion.
Another limitation in this study is that only two events have been analysed. From the way the classi-
fier is set up, with low LWP it is expected that too many particles get classified as aggregates, as per
Figure 5.5. And indeed, the results show mostly aggregates and branched planars. However, for the
events chosen these were also the expected types, so just looking at the classification results one could
say the classifier performs perfectly. Only by checking with an event where it is known that there are
in fact smaller particles, it can be confirmed that there is a bias towards aggregates right now.



7
Conclusion

This chapter summarizes the findings presented in the previous chapters. First, some conclusions are
given for each research question. This is followed by an overarching conclusion to answer the main
research question. Finally, some recommendations are given for potential improvements.

7.1. Conclusions on sub-questions
To relate the cloud radar measurements to a scattering database, several spectral polarimetric variables
were derived. The spectral polarimetric variables, ZDR, SLDR, and phibs, for both 94GHz and 35GHz,
and DSRhh and DSRvv , generally compare well. This means that the pre-processing steps and assump-
tions are likely to be valid. Comparison results show that the spread of the measurements was slightly
larger than that of the scattering database over the different variables. This is most likely because the
size of the scattering database is limited: not all types of particles are represented, and it is likely that
the particles found in the cloud are more diverse than those in the scattering database. To account for
this, changes need to be made to the functions used in the classifier. Spectral profiles of the cloud radar
variables show a gradient in the DSR and the SLDR over the Doppler spectrum, suggesting a difference
in particles within one resolution volume.
The polarimetric variables derived from the scattering database were used as a base for the fuzzy logic
classifier. In this approach, the classifier was kept as simple as possible. At first, a 1D set-up was
constructed with trapezoidal membership functions. However, the five ice particle types (aggregates,
branched planars, graupel, columns, and plates). showed a significant overlap. Therefore, variables
were combined in 2D membership to provide more information to base the classification on. The com-
binations chosen were SLDR − ZDR for 94 and 35 GHz, and DSRhh − DSRvv . Testing this on the
database to check differentiability showed that the 2D method indeed performed better. However, in
order to make sure particles do not get misclassified as aggregates, more information was needed. To
that end, temperature and liquid water path are added as variables in the classifier.
The method adapted to obtain the membership functions meant there are some counterintuitive gaps
in the 2D versions, and the functions do not extend past the values from the scattering database. Specif-
ically, this could be a problem for the plates and columns, since are relatively underrepresented in the
scattering database. Additionally, the 2D membership functions only consist of 0 and 1, which does
not make full use of the possibilities of including fuzziness in a fuzzy logic classifier.
One of the main challenges in this study was the lack of a proper validation dataset to assess the perfor-
mance of the classifier. The two case studies provided some useful qualitative insight. However, since
the true particle types remain unknown, no quantitative performance could be performed.
Instead, four othermetrics were used to assess the quality of the results. The first was comparing the re-
sults with prior expectations. Based on a previous study and prior knowledge of the influence of shape
on the bulk variables, it was found that the ice clouds shouldmainly consist of aggregates and branched
planars, with in Event B some smaller particles at higher altitudes. The second quality check concerned
the consistency of the results. That is, completely random results, or artificial looking lines suggest that

43



7.2. Overall conclusion 44

the classification is improbable. Temperature appears to critically influence the classification. Indeed,
the results showed a sharp line between branched planars and aggregates in the bulk profile results
as a function of temperature. This is problematic and suggest that the classifier is too dependent on
temperature compared to other variables. Besides these, the fuzzy logic classifier makes it possible to
compute two additional metrics. One of these isQ, which indicates howmuch the measured variables
match the modelled variables per particle type. A low Q indicates low confidence in the classification.
A large difference between the highestQ and the second-highestQ values, the so-calledQ-gap, means
the classification is more certain. In this study, the Q-gap values highlighted a low confidence in the
classifications. However, in Event B, there were some areas with particularly highQ andQ-gap values,
implying a strong classification.
By analysing the different spectral polarimetric variables, the understanding of the polarimetric char-
acteristics of ice particles can be better understood. Excluding variables showed significantly different
results. For example, not including ϕbs,35 decreases the amount of points classified as aggregates from
30 to 5%. Again, the dependence on temperature was highlighted, as leaving it out showed that the
classification was dependent on temperature for 65% of all points.
Whilemany cloud radars only have the 94GHz band, classifyingwith only this band resulted in too few
variables to provide a meaningful classification. Results show that in its current set-up, the classifier is
dependent on all variables in the classifier.

7.2. Overall conclusion
The main research question of this thesis is: How can ice particles be classified using the combination of spec-
tral polarimetry in mm-wavelengths and a DDA/GMM scattering database using fuzzy logic??. The novelty of
this work lies in the use of spectral measurements to potentially identify different particle types within
one resolution volume. A key assumption was that each Dopller velocity bin contains only one particle
type. Though the results showed differences in the polarimetric variables across the Doppler spectrum,
the classification results did not reflect this. Thus, there is potential in using spectral data to classify ice
particles, but the current classifier is insufficient. The scattering database provided a strong foundation
for the set-up of the classifier, but its limitations in particle representation were evident. Overall, this
thesis demonstrates that the combination of spectral polarimetric variables and a scattering database
can form a basis of an ice particle classifier that can identify different particles within one resolution
volume.

7.3. Recommendations
Though the findings in this thesis show that there is potential in classifying ice particles using the
current methodology, there are many ways in which improvements can be made. In chapter 6 some
possible changes have been mentioned, as well as limitations of the methodology. In this section, the
changes that are deemed most important are mentioned, as well as some improvements that could
prove especially valuable.

7.3.1. New events
One of the future work recommendations is to apply and analyse the classifier to new events. Addi-
tional events can give better understanding of the performance of the classifier. An event with higher
LWP to see its influence on the classifier would be interesting. Also, ideally an event where it is known
or suspected that there are smaller, pristine ice crystalswould be beneficial. Besides givingmore insight
into the classifier, additional events alsomake sure that the classifier is not designed to the expectations
of two events used now.

7.3.2. Adjustments to the classifier
As mentioned in section 6.2 the 2D membership functions should be adjusted to not contain gaps. In-
cluding a gradual decrease from 1 to 0 in the 2D membership functions can make the classifier more
robust, and widen the functions to include some of the closer cloud radar data points that now fall
outside these functions. A first suggestion would be to have the function decrease linearly within 5
[dB] in all directions. When
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Looking at the 2Dmembership functions in Figure 4.6 and the results in general, perhaps the variables
used are not enough to differentiate different particles. An obvious solution would be to add an extra
variable. Some polarimetric variables are not considered, like the circular depolarization ratio, or the
co-polar correlation coefficient. an explanation of them and reasons why they are not used are in Ap-
pendix A. Though it might not be as straightforward as the other spectral polarimetric variables, it can
be investigated how these variables can add some information to the classifier nonetheless. Perhaps,
similarly to temperature, relative humidity can be added as a variable, since it also has an influence
on the shape of the particles formed. Just like temperature, this depends on values found in literature,
and the cloud cannot have much vertical mixing. Briefly mentioned before, an additional way to add
information is by using the Doppler decomposition to retrieve mass or density. For that, accurate wind
measurements need to be available, with vertical wind components as well.
Though the use of principal component analysis was disregarded in Appendix B, there are some other
ways the current variables could be adjusted. One way could be by transforming the variables such
that the different classes are better seperable. This could be especially beneficial in the 2Dmembership
functions. On top of that, the combination of different variables in the 2Dmembership functions could
be optimised, or variables could appear in multiple functions, like in Al-Sakka et al. [1].

7.3.3. Analysis of results
The current results should be analysedmore thoroughly in order to gainmore understanding of theway
the classifier currently performs. Examples of this are to find out which percentage of measurements
fall outside the membership functions, and if these are the same data points for all functions. Or, what
the leading variable is that determines the decrease inQwith height. By retrieving the P -matrix in the
classifier, this should not be complicated, but can highlight the influence of different variables. On top
of that, this could show changes made to the membership functions with more detail.
When working towards a final product, a metric could be formed to show total confidence in the result
using a combination of Q, Q-gap and consistency (vertically and in time). Perhaps, when a particle
has a high Q value for two particle types, the result could give both as an output. Something like
'column-aggregate' could indicate that the particle found might be in between a column and an ag-
gregate. However, this kind of results should be backed by some study to check if the scattering prop-
erties of, for example, a column slowly growing into an aggregate does indeed resemble the scattering
properties of both.

7.3.4. Comparison with other classifiers
Lack of validation data makes it more complex for the design of the classification system to be iterative.
However, there are other hydrometeor classifiers that are validated, and can be used for comparison.
Though these classifiers might not contain spectral data, some aspects can be used. For example, the
main particle type over a spectrum. Reference classifiers should be made for Ka or W-band radar with
slanted elevation angle, and discern between at least 2 types of ice crystals, for example Maahn and
Löhnert [32] and Matrosov et al. [38].
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A
Unused polarimetric variables

Circular Depolarization Ratio
The circular depolarization ratio (CDR) is similar to the SLDR. It depends less on the orientation of the
scatterer compared to LDR and SLDR, and more on the shape and phase [46, p. 126-127]. It is obtained
from radars that operate in circular polarization bases (opposite of those in linear polarization basis,
thus horizontal and vertical polarizations).[36]. The CDR is given as[56]:

CDR =
Ze,rr

Ze,rl
(A.1)

=
σrr

σrl
(A.2)

=
|Srr|2

|Srl|2
(A.3)

=
| 12 (Svv + Shv + i(Shh + Svh))|2

| 12 (Svv + Shv − i(Shh + Svh))|2
(A.4)

Converting to the BSA alignment gives

CDR =
| 12 (Svv_backward+−Shv_backward+ i(−Shh_backward+ Svh_backward))|2

| 12 (Svv_backward+−Shv_backward− i(−Shh_backward+ Svh_backward))|2
. (A.5)

However, after omitting the Shv the CDR now contains the exact same information as ϕbs, brought to
attention by a Spearman correlation coefficient of 1. Matrosov [36] and Ryzhkov et al. [49] deal with
this issue by using a special signal processing method on top of a high-power phase shifter.

Co-polar Correlation Coefficient
The co-polar correlation coefficient ρhv is calculated by [8, p. 404]

ρhv =
| − S∗

hhSvv|√
| − Shh|2|Svv|2

(A.6)

ρhv =
| − Shh_backward∗Svv_backward|√
| − Shh_backward|2|Svv_backward|2

. (A.7)

Here, the * indicates the complex conjugate. In the case that there is only one scatterer in the resolution
volume, ρhv =1. [46, p. 139] Therefore, it is not possible to use these in combination with the database,
for the polarimetric variables from the database will always be just one particle. However, it could be
used to test the assumption that the Doppler velocity bins indeed do contain only one particle type.
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Cross Polar Correlation Coefficient
The cross polar correlation is given by,

ρcx =
|S∗

vv · −Shv|√
|Svv|2| − Shv|2

(A.8)

ρcx =
|Svv_backward∗ · −Shv_backward|√
|Svv_backward|2 · | − Shv_backward|2

. (A.9)

in a vertical polarized wave [64, p. 125]. Note the minus sign in front of Shh and Shv to make use of the
BSA convention.
Just like the co-polar correlation coefficient, this variable is not used because it will always be 1 when
computing for a single particle, as is done when using the scattering database.



B
Principal Component Analysis

The option to use principal component analysis (PCA) to create new variables. The idea is that by
combining variables into new variables, so-called principal components, the variance per component
is maximized, the amount of dimensions in the classifier is reduced, and variables that are highly cor-
related are identified. The principal components are linear combinations of the original variables, and
they are uncorrelated to each other. Doing this can negate the issue of losing informationwhenworking
with 1D membership functions.
Using the polarimetric variables, the absolute loading for each principal component is shown in Fig-
ure B.1. Their cumulative variance can be seen in Figure B.2.

Figure B.1: Absolute Loading for each variable and component in PCA.
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Figure B.2: Cumulative variance of each successive component in the PCA.

With these results in mind, there are several reasons not to use PCA variables in the classifier:
1. Variables such as Zdr have been widely used, and are physically interpretable. Because of that,

classification results can be related to measurements, which would be lost when using linear
combinations of these variables.

2. Noisy measurements or calibration issues will not stand out as clearly when using principal com-
ponents, because each measurement on its own is given less weight within the component, or it
is harder to derive where odd values are combing from.

3. A strength of fuzzy logic was the ability to leave out measurements when they are in fact too
noisy or simply not available. With using principal components, whole components could be
lost if this variable has a large weight.
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