Optimisation of Reinforced
Concrete Structures
Literature study

&
9]
@)
=
9]
=
(%]
A
o
2
c
)
)
<
O
8L
c
<
9
—

Delft
e t University of
Technology

Challenge the future

OPTIMISATION OF REINFORCED CONCRETE
STRUCTURES

LITERATURE STUDY
by

Guido Slobbe

in partial fulfilment of the requirements for the degree of

Master of Science

in Civil Engineering

at the Delft University of Technology,

Supervisor: Prof. ir. R. Nijsse TU Delft

Thesis committee: Dr.ir. drs. R. Braam, TU Delft
Dr.ir.]J. L. Coenders, TU Delft
Ir. H. G. Krijgsman, = ABT

An electronic version of this thesis is available at http: //repository.tudelft.nl/.

Delft
e t University of
Technology

http://repository.tudelft.nl/

Acronyms
1 Introduction

2 Structural optimisation

2.1 Ashorthistory of optimisation in general.
2.2 Whatisoptimisation?.
2.3 Structural optimisation terminology
2.4 Structural optimisation classifications

2.5 Basic types of optimisation algorithms

3 Optimisation Algorithms

3.1 Brute force algorithms
3.2 Simulated Annealing
3.3 Cycliccoordinatesearch
3.4 Nelder-Mead simplexmethod
3.5 GeneticAlgorithm (GA).
3.6 Particle Swarm Optimisation (PSO)
3.7 Ant Colony Optimisation (ACO).

3.8 Gradient based firstordermethods

3.9 Gradient (Hessian) based second order methods

3.10 Comparing algorithms

4 Object Function

4.1 Typesofsolutionspaces
4.2 Scorefunction 0.,

4.3 Penalty functions and constraints.

5 Geometry Design

5.1 Method 1: Triangulation

5.2 Method 2: Building blocks (Legos)

ii

CONTENTS

iv CONTENTS

6 Reinforced Concrete Costs Analysis 49
6.1 Processo e e e e e e 50
6.2 CONCIete COSES . « v v v v v v vt e 51
6.3 Reinforcementcosts Lo e e e e e e e e e e 52
6.4 Formworkcosts. L L e e e e e 54
6.5 Costsanalysismodel L. Lo e e 57

7 Reinforced Concrete Structural Analysis 59
7.1 Design of reinforced concreteelements. Lo oo 60
7.2 Structural behaviourofelements Lo Lo Lo 62
7.3 Detailing e 64
7.4 Structuraldesignmethods Lo Lo L e 67
7.5 Comparingmethods L L e e 73

Bibliography 75

List of Figures 77

List of Tables 81

A Examples 83
A.1 Example: Reinforcement optimisation with Grasshopperand GSA 83

A.2 Example: Behaviour of Particle Swarm Optimisation (PSO) 84

ACO
EC2
EVO
FEM
GA
PSO
SLS
SA
STM
ULS

ACRONYMS

Ant Colony OptimiSationttt ettt e et e et e e e 45
Eurocode 2: Design of concrete structures, NEN-EN 1992-1-1 [37]ooiiiiiiiiiiniiiinneennnenn. 61
Evolutionary OptimiSationcuu ottt ettt e 23
Finite Element Method ... e e e e 14
Genetic AlGOTIthIm oo e 4
Particle Swarm OptimiSationveu ettt ettt 84
Serviceability LImit StAteooeunteit e 60
Simulated ANNealing.ooiuiiii e 77
Strut-and-Tie MOdeloooii it e 83
Ultimate LIMit STATE oottt ettt ettt et et e eeaans 60

INTRODUCTION

This Master’s thesis consists of two reports: the main report and a literature study. The main report focusses
on the main research topic: the development of a structural optimisation methodology for reinforced con-
crete elements. This report, the literature study, contains the background and some alternatives on the dis-
cussed topics in the main report.

Performing structural optimisation on reinforced concrete requires research in both fields. The field of struc-
tural optimisation is wide, with applications in multiple disciplines of engineering and with lots of literature
available. Most literature on this topic originates from the period 1990 - 2014. This can be traced back to the
development of computational power, which is required to solve optimisation problems. The field of rein-
forced concrete engineering is rather different, but the origin and development of reinforced concrete has a
surprisingly optimisation related goal. Reinforced concrete was developed by a French gardener for the pur-
pose of strengthening his pottery. Further developments of the material are usually performed with goals like
"increase strength" or "reduce costs". These goals can be directly linked to optimisations of some sort.

Reinforced
concrete design

Model of geometry

—

e Concrete costs
Optimisations SEHmERENE

Figure 1.1: Major subjects in discussed in this literature study: modelling of structural (geometry), (structural) optimisation, costs es-
timations for reinforced concrete and structural engineering for reinforced concrete. The model, or simplification of the structure is
required in all other subjects.

This literature study focusses on 4 topics: modelling of structures, structural optimisation, costs estimations
and structural analysis of reinforced concrete. The second (optimisation), third (costs) and fourth (structure)
subject follow logically from the research goal. Figure 1.1 displays the how these are linked together. The first
subject, the model of the geometry, is required to model (or simplify) structural properties. In this Master’s

2 1. INTRODUCTION

Thesis, a truss model is used to estimate structural behaviour (including reinforcement), to create design
variables for the optimisation process and partially to estimate costs.

In order to explain the field of structural optimisation, information is given on three topics. The first topic
explains optimisation in general and the link between optimisation and structural optimisation. The second
topic analyses and compares different optimisation algorithms and the third topic gives some background
on object functions. Information on these three topics is required to be able to understand and select a good
combination of techniques.

Structural optimisation requires information on the geometry of structures. The developed methodology
works with truss based structures to model this geometry. Standardised truss "blocks" are used to represent
"random" 3D structures in the analysis. There are several possible trussing methodologies which result in
useful solutions. A system can be chosen based on certain requirements, like truss behaviour. Some knowl-
edge on how trusses are used in the process is required to design standardised trusses to model geometry.
Inaccurate models can result in inaccurate and/ or unreliable optimisations.

The objective of the developed methodology is to optimise the costs of a reinforced concrete structure. For
this reason, information is required on the costs analysis of reinforced concrete. The goal is to develop a
function to estimate the costs of options in the object function, based on the geometry model.

The final part of the literature study is on how to perform (a standardised) structural analysis and verifica-
tion of a 3D reinforced concrete structure. The chapter on reinforced concrete engineering analyses several
aspects and techniques in order to select a useful methodology for the verification of the safety of structures.
To allow methodology to be applied in practice, the structural analysis has to fulfil the requirements set in
Eurocode 2: Design of concrete structures, NEN-EN 1992-1-1 [37] (EC2).

The goal of the literature study is to research different techniques to optimise and analyse reinforced concrete
engineering problems. The main requirement of this Master’s Thesis is to create a structural optimisation
methodology for reinforced concrete with costs minimisation as objective. Based on the subjects discussed
in the literature study, knowledge is gathered on how to select options and what option to select.

STRUCTURAL OPTIMISATION

2.1 Ashorthistory of optimisationingeneral. e e e .. 4
2.2 Whatisoptimisation? ¢ v ¢ ¢ ¢ o e ¢ o o o o o o s o o o o s s s o s e e 00 e 5
2.2.1 Mathematical description of the structural optimisation problem 5
222 Commondifficulties. L Lo e 7
2.3 Structural optimisationterminology ¢ . 00 et e e e e e e e 9
2.3.1 Designvariable terminology L L o 9
2.3.2 Optimisation algorithm terminology 10
2.3.3 Objectfunctionterminology L L o 10
234 outputterminology L oL Lo e e e e e e e 11
2.4 Structural optimisation classifications 0 00 00 0 e 0 e e e e e e e e 12
2.4.1 Sizingoptimisation [2,10] L L0 e 13
2.4.2 Shapeoptimisation [2,10] Lo e 13
2.4.3 Topologyoptimisation [2,10].o Lo 13
2.4.4 Multi-material topology optimisation [7,17] 13
2.5 Basictypesof optimisationalgorithms 000000 14
2,51 Calculusbased optimisation00 15
25.2 Deterministicmethodso oL 15
2,53 Stochasticmethods L Lo 15
254 Directsearchmethods. L L oo o 16
2,55 Natureinspiredalgorithms. o000 16
25.6 Gradientbasedmethods.o oL o Lo 17

The goal of this chapter is to study the background of optimisation and its structural application in particular.
The content discusses some historical background, the basic principles and some possibilities of structural
optimisation. Chapter 3 continues on the subject with a study on a number of optimisation algorithms. Ap-
pendix A contains a set of simple examples used by the author to improve understanding of the topic and it’s
applications.

Relevant questions in relation to the research questions which are discussed in this chapter are:

* How can a structural optimisation problem be expressed mathematically (Section 2.2.1)?

* What input information is required to be able to structurally optimise a reinforced concrete structure
in terms of costs?

° What are possible processing strategies for optimisations (Section 2.4)?

4 2. STRUCTURAL OPTIMISATION

* What are advantages and disadvantages of different optimisation techniques?

According to the dictionary [1], the definition of optimisation is: "To find the best compromise among several
often conflicting requirements, as in engineering design". This definition outlines two pieces of knowledge.
First, optimisation is generally considered as "The search for the best possible solution" and second: "The
definition of the optimal solution is often based on a complex mix of requirements.". Usually, the optimal
solution is defined in terms of: "The option x that results in the minimum (or maximum) score f(x) while
requirement(s) g(x) is/ are satisfied.".

2.1. A SHORT HISTORY OF OPTIMISATION IN GENERAL

The first known stories of optimisation date back as far as ancient Greece. In this era, mathematicians like
Euclid, Zenodorus and Heron [2] attempted to solve mostly geometrical problems. Euclid, who lived as early
as 300 BC, proved for example that a square is the rectangle with the greatest area given a total length of edges.
These kind of optimisation problems found their use mostly in cartographic applications.

1000 400

1000 1000
2200 700 700

100] 100

Figure 2.1: A classical rectangular (farm)area maximisation problem. "A farmer has n meters of fence, what is the largest rectangular
area A that can be enclosed with this fence? Since all fence-lengths in this figure are equally long, it is simple to find that the centre figure
has the largest surface. This problem based on and courtesy of Calculus, Early transcendentals [3].

Modern optimisation methods have their origin in the period around 1650-1750. In these days, people like
Newton, Gauss, Fermat and Lagrange proposed calculus based and iterative formulas for finding minima or
maxima. Especially differential calculus methods like for example minimisation and maximisation functions,
Taylor expansions and Newton-Rapson [3] (which can be used for the approximation of roots or zeros of real
valued functions) have been of great influence.

"The steepest-descent method is the simplest, one of the oldest, and probably the best known numerical
method for unconstrained optimisation" [4]. This method was developed by Cauchy in 1847 and was one
of the first gradient based methods. Gradient based optimisation methods take differential equations into
account and can therefore be very effective to find minima and maxima.

During and shortly after World War 2, optimisation methodology advanced quickly [5]. Especially due to
logistical (war-time) efforts, a number of techniques where developed. In this period, the Simplex method
(Section 3.4) was developed by Dantzig (1947) and research was done on optimality conditions by Kuhn and
Tucker (1951). The Simplex method was one of the first linear optimisation techniques and had a large influ-
ence on the field of logistics [6].

Developments in the field of optimisation over the past years are relatively synchronised with the develop-
ment of computers [7]. The capability of computers to perform very large amounts of computations in a short
period of time makes them useful for standardised iterative processes. Numerous optimisation algorithms
are developed to be such procedures and can therefore be applied with computers effectively. Notable de-
velopments with interesting applications in the field of structural optimisation are among others: topology
optimisation (Section 2.4), nature inspired algorithms and population based techniques. These techniques
have been successfully applied in modern architecture to achieve optimised structures.

Many nature inspired and population based algorithms have been developed in the past 25 years. This can be
explained by their requirement of a large computational power to run. Especially the Genetic Algorithm (GA)
(which is discussed in Section 3.5) has been popular in structural optimisation. An example of a structural
application of the GA can be seen in Figure 2.2. Another recent development is the Particle Swarm Optimi-

2.2. WHAT IS OPTIMISATION? 5

Figure 2.2: Application of structural optimisation on a space-truss. The goal of optimisation in this project: "Nationaal Militair Museum
Soesterberg", was to minimise the weight of a 8000 element truss. The result was a 60 kg/m3 roof instead of the 100 kg/m? which is
usual for these kind of spans. The engineer in this project is ABT [8]. Courtesy: ABT [8]

sation (PSO) methodology (which is discussed in Section 3.6). This technique was developed by Eberhart
and Kennedy [9] in 1995. PSO is an example of a nature inspired, population based algorithm that replicates
the behaviour of birds or fish in nature. In this Master’s thesis, this algorithm applied for the optimisation of
reinforcement in concrete.

2.2. WHAT IS OPTIMISATION?

By analysing the definition of optimisation ("To find the best compromise among several often conflicting
requirements, as in engineering design" [1]), it is possible to show a generalisation of the optimisation pro-
cess. The goal of the process is described by "find the best". This implies that some definition of the "perfect"
solution should exist (usually a minimum or maximum value of some "objective" function). The terms "com-
promise" and conflicting requirements” indicate that is usually impossible to find the "perfect" solution for
all requirements, because they can be contradicting. Based on this information, any optimisation process re-
quires a goal, requirements (limitations) and some process/ method that "searches" for "optimal" solutions.

Practical examples of optimisation can be found in many fields. Every day examples can, among others, be
found in fields like: logistics, economics and engineering. Navigation software for example uses optimisa-
tion algorithms to determine the "best" route from location to destination (for example: see the "traveling-
salesman problem in Figure 2.3). Economists continuously attempt to maximise profit and engineers try to
improve their designs, for example by minimising the mass of a structure.

"Structural optimisation" is the technical term for the application of optimisation on structures. According to
An Introduction to Structural Optimal Design, by [10]: "Structural optimisation is the subject of making and
assemblage of materials sustain loads in the best way.". Usually, this translates in a minimisation of material,
while stresses are kept below some level (which is partially conflicting due to Hooke’s law).

2.2.1. MATHEMATICAL DESCRIPTION OF THE STRUCTURAL OPTIMISATION PROBLEM

According to literature, it is possible to describe optimisation as a mathematical model. Insight in such model
can help to understand the basic principles of the problem. This standardised formulation shows the optimi-
sation parameters (which are the variables that are optimised) and the constraint(s) of the system. In theory,
it should be possible to solve the optimisation problem based on the information of this function.

Anumber of functions and variables are always present in a structural optimisation problem [10]. A structural
optimisation problem (SO) can be described in as a minimisation or maximisation of a certain function. The
goal of this function is to define a certain predefined “perfect score”, which is a compromise between the
score and the constraints. It depends on the optimisation algorithm (Chapter 3) what variables are tested

6 2. STRUCTURAL OPTIMISATION

50 km
—r

30 mi

Figure 2.3: Impression of a traveling-salesman probem. The objective can be to visit all cities on the map with the shortest possible
route. A possible restraint could be that all cities can only be visited once. Assuming that all cities can be used to start or finish, there are
approximately 19 cities with each 2-4 roads, resulting in many possible solutions to the problem.

at what time (and therefore if the global optimum is being found). Each problem contains a set of input
information, also known as the design variables. Functions and/ or variables can be limited by certain values,
these limitations (i.e.: domain and range) are called “constraints”.

Generally, there are three questions to answer in order to define the optimisation problem:

° “What are the design variables?”: In this Master’s thesis, the design variables contain the stiffness of
truss elements E A and therefore represent the amount of concrete or steel in a truss geometry.

* “What are the design constraints?”: The design constraints ensure the quality (safety) of the structure
and limits the amount of possible solutions. In this Master’s Thesis, safety is tested by the Strut-and-Tie
Model (STM) technique. One major limitation is that cross sections should be positive and below some
maximum value.

“«

* “How to determine the optimal solution?”. The optimal solution in case of costs optimisation is the one
with the lowest costs which is still safe.

The mathematical formulation of this problem is of the form:

minimise f(x,y) with respecttoxandy
behavioural constraint(s) ony

(5.0)= subjected to

design constraint(s) on x @1

equilibrium constraint(s)

2.2. WHAT IS OPTIMISATION? 7

Where:

fxy) Is/ are the objective function(s) f(x,y) = [fiX,y...fn X, ¥)] T These functions are used to
describe the design in terms of the variable(s) that needs to be optimised, the design vari-
ables. For example, the results(s) f(x,y) can represent the cost of some option.

X Are the design variable(s) x = [x;...X;,] T The optimisation process searches for the values
of x resulting in the "best" or optimal solution. These design variables can i.e. describe the
geometry, materials or reinforcement of a structure.

y Are the state variable(s) y = [y,...y,]”. For a given design, y is a function or vector that
represents all constant properties of the problem, like the shape of the truss, the materials
and structural limitations.

In case there are multiple object functions, it is usually harder to find a optimal solution. The design variables
of such cases can result in different (even opposing) solutions for multiple object functions (for example: find
the optimum value x for the combined problem: minimise f(x, y), with: fj(x,y) =y + (x — 1)2 and flx,y) =
y— (x+1)?). The result of such situations is usually a compromise between the multiple optima of individual
object functions. To deal these kind of problems, the definition of a “Pareto optimum” [4] is introduced.

The definition of a Pareto optimum is described by "An introduction to Structural Optimisation" [10] as: “An
allocation is defined as "Pareto efficient" or "Pareto optimal” when no further Pareto improvements can be
made.” Meaning that each change of the Pareto optimal variables (x*,y*) that makes at least one individual
more “perfect” will also decrease the score of one or more variables.

The importance of the Pareto definition is shown if multiple object functions and design variables are present,
each having a unique optimum solution. In such situations, optima can be obtained by a summation of all
object functions. The "best" set of design variables in this situation is called the Pareto optimum.

n
> wi+ fi(x,y) (2.2)
i=1
Where:
w; Is the weight factor to indicate the importance of each object function. w; = 0 and the sum
of all weight factors is always equal to 1. Y7 | w; = 1.
filx,y) Is a object function.

2.2.2. COMMON DIFFICULTIES

There are many possible pitfalls when dealing with optimisations. A number of important pitfalls are dis-
cussed in this section. Avoidance of these difficulties can help to increase the success of optimisations in
general.

DEFINE PROBLEM AS SIMPLE AS POSSIBLE.

A well known statement of Albert Einstein is: "Everything should be made as simple as possible, but not sim-
pler." [11]. This statement also applies on optimisations in general. The simpler the structural optimisation,
the more understandable the solution and therefore the lower the chance to create errors. Simpler models or
object functions tend to be less computationally intensive. As a result, the algorithm can become faster and
result in better solutions.

A warning has to be given on the topic simplification: models represent reality, if a model is simplified to
the point that it is no longer realistic, the model becomes useless, regardless the results of an optimisation
process.

THE "CONCEPT OF NO FREE LUNCH" [12].

The concept of no free lunch states that: "There is not one function to solve all problems". For optimisation
techniques, this is relevant because this states that there is not one optimisation algorithm that works best

8 2. STRUCTURAL OPTIMISATION

for all problems. It is common for problems to have multiple good solutions. Which one is best depends on
the type problem. Understanding on different types of object functions, optimisation algorithm classes and
the problem in general is required to select algorithms, functions and processes to solve certain problems.

DEALING WITH MODEL WEAKNESSES.

In sports, one way to win is by cheating. If the cheater wins a match, this can mean that someone wins a com-
petition who is not necessarily the best. In some situations, optimisation algorithms tend to select winners
(cheaters) that should not be selected for various reasons. Especially in structural design it is important to
have some fail-safes to prevent unsafe options from being selected as winner.

A well known example of a model weakness in structural optimisations are penalised (unsafe) options that
are selected due to a low overall score. For example: if the cheapest possible, but safe structure (object =
costs * penalty) should be found for a problem, the model might select a very cheap, penalised solution
on which the penalisation has a low influence (object = 0 * penalty). This situation indicates a too small
influence of the penalisation on the problem. A possible solution is to perform (object = costs+ penalty)
as object function, or otherwise prevent penalised functions from being selected by some filter.

Dealing with model weaknesses can be done on several levels, the following list shows the preferred order of
dealing with weaknesses:

1. Remove weaknesses from model.
2. Prevent weak options from being selected.
3. Ensure identification of weak options by model.

4. Ensure identification of weak options by user.

"GRAND-CANYON-PROBLEM"

Some object functions contain so called "Grand Canyon" problems. This are regions containing a global or
local optimum, surrounded by a "impenetrable" infeasible region (as is displayed in Figure 2.4). If it cannot
be shown that such situations cannot occur in a object function, it is possible to run into a local optimum
due to this problem. "Grand Canyon" problems work in two directions: they can prevent algorithms from
entering a (promising) solution space or they can prevent them from escaping.

Different algorithm classes have different methods to solve this problem. Population based systems are less
sensitive for this problem. A population is usually spread over both sides of the "canyon". Also, they can have
a functionality that replaces some bad individuals with random new ones at certain points. Other algorithms
use a capability that allows sudden changes in parameters or have some build-in randomness or another
solution.

A more difficult version of the "Grand Canyon" problem is the "Needle in a haystack" problem (Figure 2.4).
The "Needle", or spike in such functions has such small influence on the rest of the solution space that it can
hardly be detected. If this needle represents the global optimum, than it can be very hard to find.

TIME-INTENSIVE OPTIMISATIONS

The required time to run optimisation processes largely depends on four factors: amount of possibilities,
computational intensity of object function(s), applied optimisation algorithm and the complexity of the so-
lution space. Assuming that the fastest possible class of algorithm is applied on a problem, the speed can be
increased by several means: reduce size and complexity of solution space, improve computational efficiency
of code and use faster computers or computation techniques (like for example parallel computing).

2.3. STRUCTURAL OPTIMISATION TERMINOLOGY 9

Figure 2.4: Representation of a "Grand Canyon" (left) and "Needle in a haystack" (right) problem. Some algorithms will be mislead by
these curves if they are not capable of crossing the "Canyon" or finding the "Needle". The global optimum of the left figure is at the
bottom of the parabola left of the "mountain range". The global optimum of the right problem is at the bottom of the "Needle". The kind
of problems are usually solved with stochastic and/ or population based algorithms.

2.3. STRUCTURAL OPTIMISATION TERMINOLOGY

Optimisation methodology is used in certain terms and definitions. As a part of the literature study;, this sec-
tion contains some important terms and definitions in the field of optimisation. The described terminology is
related to one (or more) of the four categories: design variables, algorithm, object function (including fitness
and constraint) and output.

2.3.1. DESIGN VARIABLE TERMINOLOGY
BOUNDEDNESS

"Proper bounds are necessary to avoid unrealistic solutions." [2]. For example: it is obvious that cross sec-
tions of beams are limited by a minimum and maximum cross section. Cross-sections can never be negative
and are usually limited in size as well. Applying bounds can result in a serious reduction of the size of the
optimisation problem due to less possibilities and therefore less options.

CONTINUOUS VARIABLES
"When design variables can have any numerical value within their allowable range, the problem is called a
continuous-variable optimisation problem." [4].

DISCRETE VARIABLES

"A design variable is called discrete if its value must be selected from a given finite set of values. For example,
a plate thickness must be one that is available commercially: /g, /4, 3/g, 1/, 3/4 and 1 inch, and so on.
Similarly, structural members must be selected from a catalogue to reduce fabrication costs. Such variables
must be treated as discrete in the standard formulation." [4]

DESIGN VARIABLES

Design variables are functions or vectors that describe the design, and which can be changed during opti-
misation. It may represent geometry of choice or material. When it describes geometry, it may relate to a
sophisticated interpolation of shape or it may simply be the area of a bar, or the thickness of a sheet [4].

INTEGER VARIABLES

An integer variable, as the name implies, must have an integer value, for example, the number of crates to be
shipped, the number of bolts used, and so on. Problems with such variables are so called discrete and integer
programming problems. [4]

10 2. STRUCTURAL OPTIMISATION

STATE VARIABLES

State variables are those parameters that are important for the process, but are no design variables. These
can for example be material data, like the yield strength of certain elements.

STOCHASTIC VARIABLES

A Stochastic optimisation algorithm is an algorithm that includes random values at some point. These ran-
dom values are called Stochastic variables. A stochastic variable can be any value within a given set (or do-
main) and can be either discrete or not.

2.3.2. OPTIMISATION ALGORITHM TERMINOLOGY
ITERATIVE METHODS

Iterative implies analysing several trial designs one after another until an acceptable design is obtained [4].
In computational mathematics, iterative methods are defined as: "An iterative method is a mathematical
procedure that generates a sequence of improving approximate solutions for a class of problems.".

TAYLOR SERIES EXPANSIONS

Some optimisation algorithms, especially the gradient based ones, use Taylor polynomials [13] their approx-
imation of the optimum position. The mathematical description of the Taylor polynomial is:

_m2 _ n
Pp(x) = F(O)+ (x— O f'(c) + % Q)+t % £) 2.3)

Depending on the cut-off position, the numerical version of this polynomial also has an error. This error, or
rest term, can be used to define the numerical accuracy of optimisation algorithms. If a polynomial is cut-off
after n = i, the function is of the ;" order. The cut-off error can be described by:

_ mh+l
Ry(x) = n—f(”“) © 2.4)

2.3.3. OBJECT FUNCTION TERMINOLOGY

CONSTRAINT

A constraint is a represents a limitation of the object function. A constraint can be expressed in multiple ways,
for example by setting a domain for certain parameters or by applying penalty functions. In the context of
this Master’s Thesis, it will represent the structural safety penalisation and geometry limitation.

CONTINUOUS AND DISCONTINUOUS FUNCTION

In Calculus, early trancendentals [3], the definition of continuity is given by: "A function f is continuous at a
number a if limy_., = f(a). A function f is continuous on an interval if it is continuous at every number in
the interval.". If object functions contain several continuous parts, for example f and g, then the result # is

alsocontinuousif:h:f+g,h=f—g,h=c*g,f*g,gifg;éo.

It is potentially profitable to create continuous object functions, even if the applied optimisation algorithm
can handle discontinuities. Continuous functions tend to be simpler to solve than their counterparts because
they create less disturbance. Therefore, a continuous objective function is profitable for the speed (faster
convergence), and reliability (higher probability for finding the global optimum) of the process.

2.3. STRUCTURAL OPTIMISATION TERMINOLOGY 11

1 F(x) tF()

Continuous Discontinuous

Figure 2.5: Example of a continuous (left) and discontinuous (right) function. The continuous function is usually easier to solve for
optimisation algorithms, because they are not "mislead" by the objective function.

DETERMINISTIC AND STOCHASTIC PROBLEMS

Deterministic problems are methods that do not include stochastic variables. Stochastic problems are meth-
ods that do include stochastic variables.

OBJECTIVE FUNCTION

The object function is what defines the "goodness" of options. It contains both the optimisation goal and its
constraints. The object function is usually of the shape F(x, y), in which x is a parameter, vector or matrix
containing the optimisation parameters and y contains the design variables.

SINGLE AND MULTI-OBJECTIVE PROBLEMS

Multi-objective problem is a problem with multiple objective functions. For example, if both the costs and
weight of a structure should be minimised for some reason. Objectives in such situations can be contradict-
ing, which makes a problem much more difficult. Also the balance between the different objectives should
be taken into account.

SOLUTION SPACE

The solution space [6], or feasible region, is the set of all possible options of an optimisation problem that
satisfy the problems constraints, potentially including inequalities, equalities and integer constraints. This is
the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
In case of large multidimensional objective functions, it is often too complex to plot the solution space of a
problem.

2.3.4. OUTPUT TERMINOLOGY
PARETO OPTIMALITY

"A design is Pareto optimal if there does not exist any other design that satisfies all of the objectives bet-
ter." [10]. This definition coincides with the definition of the optimal solution ("To find the best compromise
among several often conflicting requirements, as in engineering design" [1]), which states that the best solu-
tion is usually a compromise between several requirements.

UTOPIA POINT

A point is the multi objective solution space is called utopia point if the solution is optimal for all individual
objectives [4].

12 2. STRUCTURAL OPTIMISATION

LINEAR AND NON LINEAR RESPONSES

"A function f is linear if it satisfies f(x; + x2) = f(x1) + f(x2) and f(ax;) = a f(x;) for every two points x; and
X, in the domain and all a." [14].

CONVEX AND NON-CONVEX RESPONSES

A convex response is defined as: "Any line connecting 2 points on the graph lies above it or on it." [2]. A non-
convex function does not fulfil this requirement, it has "many local optima", non-linear constraint functions

can result in non-convex feasible domains", "non-convex feasible domains can have multiple local boundary
optima, even with linear objective functions", i.e. multi-modal functions.

SMOOTH OR NON-SMOOTH RESPONSES

Smooth functions are continuous and differentiable [3]. Non smooth functions are all functions that do not
fulfil these requirements. All non smooth functions cannot be used in gradient based optimisation algo-
rithms, since no gradient or continuity is available.

2.4. STRUCTURAL OPTIMISATION CLASSIFICATIONS

Structural optimisation in general can be classified into several strategies [6, 10]. These strategies differ mostly
in the optimisation goal, type of input variables and output information. The mathematical part of the op-
timisation technique can still be solved according to various algorithms. Depending on the applied strategy,
certain algorithms are preferred over other ones for various reasons. This principle is in accordance to the
concept of "no free lunch" [12], which suggests that there is not one "magic" tool to solve all problems.

The given structural optimisation strategies are unique for their characteristic types of goals. The four main
strategies are: sizing, shape, topology and material optimisation. In essence, these strategies are related or
even overlapping with. The first three strategies are represented by Figure 2.6, which gives a schedule that in-
dicates the type of structural optimisation. Material optimisation is usually related to one of these strategies.

e | N [o

Figure 2.6: The three main structural optimisation strategies: sizing, shape and topology optimisation, courtesy: [15]. Sizing optimisation
focuses on individual elements, shape optimisation attempts to adjust an initial solution and topology optimisation searches for the best
possible shape within a given (boundary) volume.

2.4. STRUCTURAL OPTIMISATION CLASSIFICATIONS 13

2.4.1. SIZING OPTIMISATION [2, 10]

In sizing optimisation, the dimensions (or materials) of elements are the design variables. Since the geometry
and boundary conditions (like loads and constraints) are already known, these can be used to define the
constraints of the beam in terms of geometry, strength, deformation, etc. The object function is the goal of the
optimisation, usually mass, stiffness or costs, but other goals could easily be defined. A sizing optimisation is
used to optimise all individual elements of a structure.

Sizing optimisations are often applied in case of large steel structures with lots of repetition (trusses, space
frames, etc.). The goal of sizing optimisation of trusses is usually to find the optimal cross-sections for the
individual bar elements. The example: "Nationaal Militair Museum Soesterberg" in Figures 2.2 and 2.7 is an
example of sizing optimisation by ABT [8].

Figure 2.7: Application of structural optimisation on a space-truss. The goal of optimisation in this project: "Nationaal Militair Museum
Soesterberg", was to minimise the weight of a 8000 element truss. The result was a 60 kg/m3 roof instead of the 100 kg/m? which is
usual for these kind of spans. The engineer in this project is ABT [8]. Courtesy: ABT [8]

2.4.2. SHAPE OPTIMISATION [2, 10]

In a shape optimisation, structures are being transformed to find the optimal solution. For this reason, the de-
sign variables of a shape optimisation are the values x that transpose the original geometry of the structure.
The constraints are similar to the ones for sizing optimisation. The only difference is that their definition
is adjusted to the design variables. Geometrical constraints are described in terms of maximum transforma-
tions. The equilibrium of forces becomes more depending on the shape of the structure of each option. Shape
optimisations are usually applied on "free formed" structures with a known basic shape. The goal could for
example be to remove material to create a lighter structure.

The goal for a shape optimisation of a truss would be to find the optimal node locations for a certain truss
with a given amount of nodes, bars and a certain bar-connectivity.

2.4.3. TOPOLOGY OPTIMISATION [2, 10]

Topology optimisations are based on the principle of removing material where it is not needed. To be able to
work with a topology optimisation, the starting point is the design space of a structure. The design variables
can then be described as a mesh of that design space. In this situation the constraints are still similar to
sizing and shape optimisation. When it is found that an element is “useless” it is removed (or faded) from
the equation until the optimal situation is found. Topology optimisations are often quite rough and serve as
inspiration for the actual form of the structure.

2.4.4. MULTI-MATERIAL TOPOLOGY OPTIMISATION [7, 17]

In case of multi-material topology optimisation, a structure can be created from multiple materials. Usually,
one material takes the tensile forces another material the compressive ones. In theory, this principle is per-
fectly suited for reinforced concrete structure, where the reinforcement takes the tension and the concrete
the compression.

14 2. STRUCTURAL OPTIMISATION

Figure 2.8: Left: Shape optimisation, transformation of initial truss into the optimal structural lay-out in terms of node locations. In this
case: the British Museum in London, the structure was tested for more than just efficiency. Also architectural demands, like solar gain
and acoustic performance where taken into account. The design variables can be traced back to the shape (curvature) and refinement
of the truss structure [16].

Figure 2.9: Right: Attempted topology optimisation during the TU-Delft high-rise workshop 2013-2014. The goal of the optimisation was
to find the lightest truss tube-structure for a high-rise building. The available design space was one cross section and a very dense truss
surrounding the entire building. The design variable was a on-off switch for every bar in the given truss shape. The result was a very
dense truss at the bottom of the building and a much opener truss at the bottom. Note: a very small number of bars was added later for
architectural purposes.

Topology optimisation is not considered to be a structural design method, but a optimisation strategy. Due
to the combination of Finite Element Method (FEM) and structural design which is required to use this tech-
nique. It is quite capable of giving an impression of the optimal design of structural shapes.

The main problem of a 3D multi-material optimisation is the processing time. Assuming a certain minimum
accuracy for a problem, a three dimensional problem (R®) has much more possibilities than a two dimen-
sional one (R?). Since the structural calculation and the amount of materials will also increase the intensity
of the process, even a small and simple problem can consume a lot of computing power. According to Table
2.1, which is based on [17], the intensity for 3D topology optimisations is a factor 50 larger than a 2D optimi-
sation. The explanation for the difference can be found in the amount of equations required to solve a 2D or
a 3D option. Therefore, users should be careful when choosing a what method to use for a optimisation, 3D
results may be more accurate, but take much longer to compute.

2d topology optimisation 3d topology optimisation

Mesh size: [xb Mesh size Ixbxh

Finite element size: 8 nodes (quadratic) Finite element size: 20 nodes (quadratic)

Stiffness matrix: 8x8 Finite element size: 20 nodes (quadratic)

Amount of finite element equations for 1 iteration | Amount of finite element equations for 1 iteration
of an object with 100x100 elements: 8.0 * 10* of an object with 100x100x5 elements: 1.2 * 10°

Table 2.1: Differences between 2D and 3D topology optimisation.

2.5. BASIC TYPES OF OPTIMISATION ALGORITHMS

Over time, many different algorithms for optimisation have been developed. Unfortunately, not one algo-
rithm is the best option for all possible problems. Usually, the type of problem, the formulation of the object
function, the amount and complexity of variables and the available computational power decide what algo-
rithm is best for a situation. A common statement in the field of optimisation is "the concept of no free lunch"
[18], which states that "no magic bullet can exist against all problematic features". Important motivations to
chose one type of algorithm over another are:

¢ Computational efficiency (required time to run algorithm).

2.5. BASIC TYPES OF OPTIMISATION ALGORITHMS 15

10L

X Pl

— 3L

Figure 2.10: Example of three-dimensional cantilever beam. Courtesy: "Large scale topology optimization in 3D using parallel comput-
ing" [17].

* Accuracy of solution.

* Reliability (or robustness): does an algorithm find the global optimum within a known period?
 Simplicity: is the optimisation process understandable and usable?

* Possibility: is it realistically possible to apply the methodology?

* Availability (practical motivation): is the process known to a user or program?

Usually, the selection process of an optimisation algorithm runs in roughly two steps. First, the algorithm
classification is selected, next the algorithm within this class itself. The rest of this section shows a number of
optimisation algorithm classes and their basic properties. It is possible for optimisation algorithms to fit into
multiple classifications.

2.5.1. CALCULUS BASED OPTIMISATION

This simple and elementary class of optimisation is based on casual calculus [3]. Application of calculus
is usually the first attempt of engineers in optimisation [19]. In this strategy, object functions are solved
analytically in order to find the exact solution space of a problem and therefore the exact solution. If it is
simple and possible to find optima with this technique than this is preferred over alternatives. For larger or
more complex problems, this is usually not the case.

A simple example of an application of a calculus based method is the classical rectangular (farm)area max-
imisation problem which was discussed in Figure 2.1. The solution (shown in Figure 2.11) to this problem is
exact, undeniable and can clearly show the impact of alternative solutions. Application of alternative classes
of optimisation algorithms give less clear, but still good results to the same problem.

2.5.2. DETERMINISTIC METHODS

"Deterministic methods find the global minimum by an exhaustive search over the set." [4]. This class of
methods searches trough the entire search space (for example by a pattern search) of a problem, resulting
in a computationally very expensive, but guaranteed accurate method. Since the amount of possibilities in
these kind of problems is known, the required number of steps is as well. Deterministic methods are usually
applied in cases where it is absolutely required to find a global optimum and the problem is not too large. For
example to scientifically prove the effectiveness of other methods in example optimisations.

2.5.3. STOCHASTIC METHODS

"Stochastic optimisation methods are optimisation methods that generate and use random variables" [4].
Stochastic methods have been developed as variations of the random search method (which literally searches

800000

16 2. STRUCTURAL OPTIMISATION

700000
600000
500000
400000
300000
200000
100000 I

0

<& @6‘

& @ & & e S o8

O L O
& & © &£ & £ g S
-+ F ¥ & & &
& & & & & & <& & $
S G %

Surface of Farm area in square meters

&
q}@ o

N

Figure 2.11: Solution to the rectangular farm area problem shown in Figure 2.1. The 600 x 1200 m solution results in the largest area.
Because the continuous variables of this optimisation algorithm can be analysed analytically, it is possible to prove that this solution is
the global optimum.

trough the solution space randomly to find optimal solutions) with the goal of searching more effectively.
Stochastic methods are generally much more efficient than deterministic methods, but do not give an abso-
lute guarantee of finding the global optimum unless all possible options are attempted (which would make
the method perform a similar computation as deterministic methods).

Stochastic methods usually search in two phases. First the algorithm searches for feasible regions and next,
these regions are analysed in detail. Depending on the type of problem and method, algorithms may have
trouble with discontinuous functions, run into local optima or become very slow.

Random numbers which are required in stochastic methods are usually computer generated. If stochastic
methods are applied for scientific purposes, it can be required to reproduce the applied random numbers in
order to reproduce experiments. In such cases, computer programs (like Matlab [20]) offer a "random seed"
in order to apply similar random numbers for each run.

2.5.4. DIRECT SEARCH METHODS

The basic principle of many direct search method is to start on a random or estimated position (which de-
pends on the amount of pre-knowledge), and then iteratively improve this position in order to find the opti-
mum. Basic methods in this class are robust, but sensitive for local optima in case of non smooth or discon-
tinuous object functions.

Direct search (or line search) methods do not use gradients to determine optima [4]. These methods are
therefore useful in situations where gradients are difficult to find or if they result in local optima. As a conse-
quence, direct search methods tend to be less efficient than gradient based methods. A well known method
of this class is the Nelder-Mead-Simplex method.

2.5.5. NATURE INSPIRED ALGORITHMS

Nature inspired optimisation algorithms are classified as all methods which are based biological events.
Examples of nature inspired algorithms are Simulated Annealing (SA), GA, PSO and Ant Colony Optimisa-
tion (ACO), which are respectively based on cooling of metal, evolution, swarm behaviour of fish or birds and
the behaviour of ants.

Nature inspired search methods fall into the category of direct search methods [4]. A major advantage of
nature inspired methods over the direct search ones is that some of them do not require continuous object
functions to run. This class of algorithms can usually overcome multiple objectives at once, mixed design

2.5. BASIC TYPES OF OPTIMISATION ALGORITHMS 17

variables, discontinuous non differentiable object functions. Nature inspired algorithms can and often will
find global optima, but it is usually unknown when it is found [2].

The wide range of applications, their relative simplicity, efficiency and accuracy makes this class of algorithms
relatively popular in engineering practice [18].

Figure 2.12: Particle swarm optimisation is a nature inspired optimisation algorithm based on the behaviour of fish schools. Imagine
how individual fish search for food (goal), avoid predators (boundary) and influence the behaviour of their neighbours. Photo courtesy:
David Doubilet.

2.5.6. GRADIENT BASED METHODS

Gradient based methods are more accurate than direct search methods. This class usually converges in a
finite amount of steps. Gradient methods are applicable in case of continuous differentiable functions [4] that
are not too complex to compute. Algorithms of this class are usually based on Taylor series [13]. First order
methods only take gradient functions into account, second order techniques also apply Hessian functions,
etc. Due to this Taylor based, numerical approach, methods can experience computational errors due to the
"cut-off" of the Taylor sequence after a number of parts.

This type of optimisation is applied on smooth non-linear problems. Algorithms tend to converge in less
steps, which makes them much more efficient. Unfortunately, gradient based methods may not be robust
due to errors and can be mislead by certain gradient-functions. Still, if a gradient is available, this class of
method outperforms the other discussed classes and are therefore preferable in such situations.

OPTIMISATION ALGORITHMS

3.1 Bruteforcealgorithms. ¢ ¢ ¢ ¢ ¢t v v ot b o e et e e e e e e e e e e 20
3.2 SimulatedAnnealing 0 i Lt e s e e e s e e e e e e e e e e e e 20
3.3 Cycliccoordinatesearch. ¢ ¢ v ¢ v v v v b v v it e e e e e e e e e e e 21
3.4 Nelder-Meadsimplexmethod ¢ ¢ ¢ v v v v o v v v o 0 ot v o s o o o o o 22
3.5 GeneticAlgorithm (GA) . & ¢ ¢ v v ¢ v o 6 v o o o o o o o o s o o o o o o s o o o o o 23
3.5.1 Pseudocode for the Genetic Algorithm (GA). 24
3.6 Particle Swarm Optimisation (PSO) ¢ ¢ ¢ o 0 0 0 v v v v it e e e e e e 25
3.6.1 PSOalgorithm mathematics 26
3.6.2 Pseudocode for the Particle Swarm Optimisation (PSO) algorithm.. 28
3.6.3 PSO algorithm propertieso oo 28
3.7 AntColony Optimisation (ACO) . « ¢ v v ¢« ¢ o ¢ ¢ ¢ o ¢ s o o o o s o o o s o o o o o 31
3.7.1 Pseudocode for the Ant Colony Optimisation (ACO) algorithm. 32
3.8 Gradientbased firstordermethods. 000000 oo e e e e e 32
3.9 Gradient (Hessian) basedsecondordermethods ¢ ¢ ¢ v ¢ ¢ ¢ v o o o o o o« 33
3.10 Comparingalgorithms 0 v v v v v i i s e e e e e e e e e e e e 33

There are many optimisation techniques that can serve as “engine” in optimisation processes. A number of
such techniques are discussed in this chapter. Techniques can be divided into several classes. There are an-
alytical (calculus based [3]) approaches and iterative (numerical) approaches. The analytical ones are exact,
the numerical [13] are not and can experience numerical errors. Analytical optimisations are often unique
problems that require a specific solution (like the one in Section 2.1). Numerical methods are used to esti-
mate solutions of problems with standardised techniques. Structural optimisations are usually solved with
standard numerical approaches because of their complexity and unique objective functions.

If numerical methods are applied to solve optimisation problems, than there are a number of effects that
require attention. Important aspects are amongst others: solvability (can a method find a global optimum
within a certain amount of time), reliability (what is the probability to find the global optimum?), efficiency
(what time is required to find a sufficiently accurate solution) and sensitivity for errors (method diverges,
numerical errors, etc.). To select specific algorithms for problems, it is possible to divide methods into classes.
Based on these classes, it is possible to make a couple of statements [6]:

* When simple and possible, it is preferable to solve problems analytically. The analytical solution is

precise and reliable.
« Simple 0" order methods can often (for some methods, like the random ones, always) be solved with
high accuracy, but they can be inefficient and/or unreliable.

19

20 3. OPTIMISATION ALGORITHMS

m—————— 1
INPUT: 1
N 1 .
Objective F 1 Optimisation i Pro(zgs:ﬂu-cl;.ata
Limitations I algorithm ; F(x °)
Stopping criterion 1 I e
I Xi F(Xi) I
1 1
1 1
: Solve F(x;) I po while
e —— _! stopping criterion

Figure 3.1: Basic diagram to show the location of an optimisation algorithm in the optimisation process.

* Line search methods are more effective for most problems then random methods, but require more
computationally intensive algorithms that usually require less computations. Some line search meth-
ods can converge in local optima, especially in case of chaotic functions. Some algorithms, like the
population based ones, solve this problem with swarm intelligence.

¢ Complex, higher order (i.e.: gradient based) methods are more efficient than 0* h order ones, but are not

always solvable or precise. If functions are not differentiable, higher order methods cannot be used.

Special attention should be paid to the accuracy and reliability of the solution due to the possibility of

numerical errors.

3.1. BRUTE FORCE ALGORITHMS

Brute force (or random search [2]) methods are among the simplest analysis concepts in mathematical op-
timisation. The optima (within the given constraints) are computed by trying all (or at least a very large
representative set of) options in a structured or random order. This process is very robust, since it will even-
tually consider all possible types of solutions and will therefore always find all local and global optima. A
major disadvantage of trying all options is the computational intensity. For example: a simple problem with
3 parameters with 200 possible values would result in 200% = 8.000.000 possible solutions. This number, and
therefore the required time to solve a problem, increases exponentially with the amount of parameters.

Nevertheless, brute force optimisation can be useful for simplistic optimisations where computation time is
not a problem. In case of more complex optimisations with lots of variables, the system can still be surpris-
ingly useful, although it can be infeasible to run all options. Because the process has no problems with local
minima or strange formulas, it will always find some answer. The "Needle in a haystack" problem (Section
2.2.2) is therefore not a problem for this algorithm. Brute force methods are usually a last resort, they will
only be used when all other methods have failed, or the amount of options is relatively small. One applica-
tion for brute force algorithms in science is to confirm the methodology more efficient algorithms. Running
a complete brute force optimisation can confirm the results of other algorithms in such cases.

3.2. SIMULATED ANNEALING

Simulated Annealing (SA) [2] is a nature inspired random optimisation method based on the physical pro-
cess annealing (heating and gradual cooling of metal/ glass to relieve internal stresses). For an annealing
process to work effectively, it is required to let material cool slowly. If applied properly, the material achieves
a minimum amount of residual stresses (which is considered to be optimal for metals). Translated to the
SA algorithm, this indicates that sufficient time should be applied on analysing different "temperatures” or
search areas, so the parameters "or material" can finds best configuration. Areas with a large influence are
given more time to cool than areas with a slow one. In other words: promising areas are analysed more ex-
tensively, so if a local optimum is found, the algorithm is likely to "scout" the area surrounding this point for
more feasible options. Finally, a cooling piece of metal cannot suddenly increase its heat. The SA algorithm
remembers its optima and only replaces these in case more feasible solutions are found.

3.3. CYCLIC COORDINATE SEARCH 21

A SA process consists of the following steps [7]:

e Step 1: Choose an initial temperature T and a starting point xy to obtain f(xp). Initialise the iteration
counter as K =0, and another counter k = 1.

» Step 2: Randomly generate a new design variable x; close to xp. If the point is infeasible, generate
another random point until feasibility is satisfied. Generate a random number z uniformly distributed
in[1,0] and Af = f(xz) — f (x0).

» Step 3: if Af <0, then take x; as the new best point xp, set f(xg) = f(xx) and go to step 4. Otherwise,

A
calculate the probability density function P(Af) = exp (Tf) If z < P(Af), then take xj as the new best
k
point xy and go to step 4. Otherwise, go to step 2.

e Step 4: If k < L, then set k = k+ 1 and go to step 2. If k > L and any of the stopping criteria is satisfied,
then stop. Otherwise, go to step 5.

e Step5:Set K=K+1, k=1;set Ty = Tx_;; go to step 2.

Simulated annealing has several characteristic properties. First, the acceptance of bad steps (temperature
increase) is likely in the initial phase, but reduces at the end. Furthermore, simulated annealing is capable
of escaping of local optima, which makes is a robust method which is a bit more efficient that the random
methods, but can still be time consuming.

Dptima

>

Target Funciion

Figure 3.2: The Simulated Annealing (SA) algorithm. The red arrowed jumps represent the algorithms ability to randomly search for
new options. The green arrows represent the "cooling behaviour" of the material, used to "scout" the areas around solutions for more
optimal ones. Courtesy: http://www.frankfurt-consulting.de.

3.3. CYCLIC COORDINATE SEARCH

Cyclic coordinate search [2] method(s) use analysis of their surroundings to continuously search for the most
feasible search direction. This process is effective when the amount of design variables is limited and the
solution space is continuous. The method uses partial minimisations in each design variable direction to
achieve convergence. Unfortunately, this method can have slow convergence and is sensitive for local min-
ima.

» Step 1: Select initial starting point X;,isi4; and find fX;nizial)
» Step 2: Search for alternatives in each coordinate direction (design variable)

e Step 3: Perform single-variable optimisation along each direction s: min,(f (x+ as))

22 3. OPTIMISATION ALGORITHMS

* Step 4: Continue until convergence is achieved (go to step 2)

If this method is becomes inefficient (/slow), the Powell’s conjugate directions method [7] can be used. This
method is similar to the cyclic coordinate search method, but adjusts the search directions to improve con-
vergence. This variant is guaranteed to converge in n cycles for quadratic functions [6].

Figure 3.3: Optimisation for 2 design variables with cyclic coordinate search method. Every step, 1 dimension (or variable) is improved
until the optimum is achieved. courtesy: [2]

3.4. NELDER-MEAD SIMPLEX METHOD

The Nelder-Mead simplex method [2] uses triangular shapes to move towards a minimum. The method uses
several starting points, and then replaces the worst point for an improved one. This "improved" point is
generated based on difference between the worst point and the average of the best points. As a result, the
triangle is "flipped" over its best "axis" to generate a new triangle (this process is displayed in Figure 3.4).
This process is repeated until convergence is achieved.

* Step 1: Determine values for f(x) at n+ 1 points in R” and order them according to the values at the
vertices: f(x1) < f(x2) < ... = f(Xp).

* Step 2: Calculate xy, the centre of gravity of all points except X;+1.

* Step 3: Compute the reflected point X, =X + a(Xg —X,+1) if the reflected point is better that the second
worst, but not better than the best, i.e.: f(x;) < f(x;) < f(x;), then obtain a new simplex by replacing
the worst point x,,4+; =X, and go to step 1

* Step 4: if the reflected point is the best point so far, f(x;) < f(x;) then compute the expanded point
X, =Xg +Y(Xo —Xp+1), if the expanded point is better than the reflected point f(x.) < f(x,) then obtain
a new simplex by replacing the worst point x,,4+; = X, and go to step 1. Else, obtain a new simplex by
replacing the worst point X, =X, and go to step 1. Else, go to step 5.

e Step 5: If f(x;) = f(x,), compute contracted point X, = Xy + p (X9 —X,+1) if the contracted point is better
than the worst point, i.e.: X, < f(X,+1) then obtain a new simplex by replacing the worst point X, +1 = X
and go to step 1. Else, go to step 6.

* Step 6: For all but the best point, replace the point with x; =X; + 0(Xg —X,+1) forallic 2,...,n+1 and
go to step 1. Note, a, Y, p and o are respectively the reflection, the expansion and the shrink coefficient.
Standard values are « =1,y = 0.5,p = —0.5 and 0 = 0.5.

The Nelder-Mead simplex method is often seen as one of the more effective 0 order methods. The method
has proven to be more effective than random search, cyclic search and simulated annealing [6]. The method
can experience problems with discontinuous or chaotic objective functions and is therefore not guaranteed
to converge in the global optimum.

3.5. GENETIC ALGORITHM (GA) 23

Figure 3.4: Optimisation for 2 design variables with Nelder-Mead-simplex method. Courtesy: [2].

3.5. GENETIC ALGORITHM (GA)

The Evolutionary Optimisation (EVO) method (also Genetic Algorithm (GA)), is based on the theory of evo-
lution by Charles Darwin (“Survival of the fittest” [21]). In this method, design options are encoded in “chro-
mosomal strings” (genes) that contain information from the input variables. In case of a GA, the strings are
often (but not necessarily) build from a binary "DNA" string [2]. An algorithm can be used to translate this
string into a structure (or specie) and therefore to solve the object function.

GA is a population based algorithm. To achieve optimisation, a set of options x, "generation i". This set
of options is solved before the algorithm determines a next generation (i + 1). In some situations, parallel
computing can is used to solve a generation simultaneously and safe time. An advantage of the population
based principle is that (discontinuous) "Grand Canyon" problems can be avoided because species are placed
on both sides of the canyon.

The evolutionary theory states that only the "fittest" samples will survive to reproduce. A new "generation i +
1" is created by combining the "surviving" subjects. This iterative process can be repeated until the stopping
criteria (for example: maximum number of iterations, convergence, time limit, etc.) are met. An example of
a GA is described by Principles of Optimal Design [6]:

 Step 1: Create an initial population x. Each string has a certain length (number of variables) and each
population has a number of strings. Strings can be created manually or with a certain randomness build
in. Alarge and diverse population is more reliable, but will take longer to converge towards the optima.
This can be explained by a larger range of possibilities (covering a bigger domain) and an increased
number of options (which would take more time).

* Step 2: Evaluate the “fitness” of all the individuals f(x). The fitness is determined by the result of the
object function. Test the termination criteria to see if convergence is already reached. If not, continue
with the new population, otherwise, the optimisation is completed.

 Step 3: Select individuals for reproduction. A larger selection results in slower, but more reliable con-
vergence, a smaller one does exactly the opposite.

* Step 4: Create a new population, the selected individuals will reproduce (copy)/ combine /mutate
(transform) to achieve this goal. In case of a slow object function, it can be useful to create a database
with a history of solutions. In this way, solving strings twice might be prevented (which can save some
processing time).

 Step 5: Return to step 2 for the next iteration.

The reproduction procedure of a GA normally has two options, combine and mutate. Figure 3.5 shows how
they can be applied. In case of "combinination", the best species are selected for reproduction, then the

24 3. OPTIMISATION ALGORITHMS

generation is split at one random position in the string. A new generation is then created by combining the
left half of strings with the right half of the other strings. The size of the new population is determined by the
|

selection. The amount of options is equal to the permutation [22]: , in which » is number of selected

(n—-2)!
species and the number 2 indicates that the string is cut only once.
—
ER— | 1010{1010 | | 1010]0000
. @ :> Combination
1111,0000 1111j1010
| 10101010 | | | |
| 11110000 | <§:j | 11101000 |
| Mutation

01111000 |

Figure 3.5: Genetic algorithm reproduction types: combination and mutation. Combination lets genes exchange parts of their string.
Mutation changes random gene parts to their opposite value. Because only the strongest species survive, only the strong strings get to
reproduce and therefore "evolve".

In case of a mutation, each specie is "mutated" at a random location. In this case a "1" becomes "0" and
vise versa. The number of mutations per string can be varied by the designer. The consequence of more
mutations per string would be slower, but more reliable convergence due assessment of more options.

Properties of GA are [7]: very robust (also work for discontinuous/ non-differentiable functions), global min-
imum can be found (although this can take an unknown amount of time while it cannot be verified that the
result is the actual global optimum unless all options are assessed), many strategies are possible, time con-
suming. EVO is often applied in case of topology optimisations.

3.5.1. PSEUDOCODE FOR THE GENETIC ALGORITHM (GA).
Source: clever algorithms [23].

Data: POPUZationSize, Problemys;ze, Perossovers Pmutation
Result: Sy,

1 Population < InitializePopulation(Populations;ze, Problemyze);
2 EvaluatePopulation(Population);
3 Spest — GetBestSolution(Population);
4 while StoppingCondition() do
5 Parents — SelectParents(Population, Populationg;ze);
6 Children — @;
7 foreach Parent,, Parent, c Parents do
8 Child,, Child, «— Crossover(Parent;, Parenty,Pcrossover);
9 Childen— Mutate(Child:,Pnuration);
10 Childen — Mutate(Childs,Pmutation);
11 end
12 EvaluatePopulation(Children);
13 Spest — GetBestSolution(Children);
14 Population — Replace(Population, Children);
15 end

16 Return Spegy;

3.6. PARTICLE SWARM OPTIMISATION (PSO) 25

3.6. PARTICLE SWARM OPTIMISATION (PSO)

The original Particle Swarm Optimisation (PSO) algorithm(s) were created to simulate social behaviour of
animals by Kennedy and Eberhart [9, 24]. PSO is a type of nature inspired algorithm that solves the global
optimum and does not require a gradient function. The advantage of the PSO algorithm over a GA is its
simplicity. GA algorithms require complex steps like mutations and/or crossovers, where PSO do not. The
function is based upon "location" x; and "speed" v;. The function for the speed parameter shows strong
similarities to the explicit numerical derivative "Euler Forwards" technique [13].

The inspiration of the algorithm is a swarm of (simple) animals, like a school of fish or a swarm of birds.
Each animal in the "swarm" is a "particle" with limited knowledge. Only 5 types of knowledge are required to
perform the optimisation process [4]:

1. Current location of variable (x;).

2. Current speed of variable(v;).

3. Fitness of particle (f(x;)).

4. Bestlocation of particle (or personal) record (Xp).

5. Bestlocation of overall (or swarm) record (Xg;).

Swarm particles behave according "partice intelligence" and "swarm intelligence". This can be explained
by a group (the swarm) of humans (the particles) trying to find the fastest route from A to B (considering
the 5 types of knowledge as described above). The first iteration, each person (particle) would take it’s own
(random) route. After arrival, the fastest person (swarm leader) shares it’s route with the other particles. The
second iteration, each individual adjusts it’s route according to it's own experience and the knowledge gained
from the group. This process continues until the fastest route is found and all particle record routes become
similar (convergence).

Unfortunately, it is not possible to conclude that the global optimum is found. The only ways to conclude
this, is when all options are analysed or with some additional information (like the number of possibilities
or the exact solution). In situations with a near endless amount of possibilities, it could always be possible
to find "fitter" solutions than the current global optimum x,,,. Figure 3.6 gives an example of a 2 parameter
optimisation (f(x, y)) in which a set of particles is searching for the lowest or highest point within the design
space. Especially for non-smooth (discontinuous) and multi-modal (like sinusoidal) functions, it can be time-
consuming to find the global optimum.

Figure 3.6: Particle swarm optimisation for a function f(x,y). Each "ant" searches the minimum or maximum by taking their speed,
personal best location and overall best location into account. Courtesy: Qirong Tang, Universitat Stuttgard.

Figure 3.7 shows the basic principle of a PSO algorithm. The dots and solid arrows display the influence four
of the five types of knowledge (location, speed, particle record and swarm record). The fifth type: "fitness"

26

3. OPTIMISATION ALGORITHMS

cannot be found in this figure. "Fitness" is represented by the solution to the object function for some option.
A selection procedure to find the best solutions is used during every iteration to find particle and/or swarm

record.

Particle Swarm Optimisation

Vit
Xit1 = Xi T Viyq

Starting point

=v;t+cqry (xpr

—x;) + Cara(xgy

— Xg)

Particle and swarm record Combine influences

New starting point

‘ PARTICLE Xx;

.‘ CURRENT VELOCITY v;

PARTICLE x;_;

PARTICLE RECORD Xx,,,.

PARTICLE X; ‘
Clrl(xpr i)

/ s €212 (Xsr — %)

PARTICLE x; k’ ‘
PARTICLE x; 1
. \
o

PARTICLE x;,
PARTICLE x; ! ‘

NEW VELOCITY v;,,

SWARM RECORD x,,

Figure 3.7: Behaviour of a PSO algorithm. the image shows, step by step how the optimisation algorithm combines the influences of
current "velocity", particle record and swarm record to determine a "new velocity" and thus a next location. Mind that the images
displays only one iteration of one particle in the PSO process. It is also important that the particle and swarm records have to be checked
each iteration.

The behaviour of PSO over time can be described as sinusoidal. From the moment that the speed, particle and
swarm record vectors point in opposing directions, the speed reduces (due to opposing vectors). During the
next iterations, the velocity can shift "turns" towards the current optima. Eventually, this results in an effect
similar to a pendulum slowing down at the lowest location after a couple of "swings" due to its momentum.

3.6.1. PSO ALGORITHM MATHEMATICS

Step-by-step PSO algorithm, based on "Introduction to optimum design" [4]:

¢ Step 0: Initialisation. Select the number of particles Ny, the influence factor for the personal record c¢;

(usually between 0.5 and 2.0) , the influence factor for the swarm record c, (usually between 0.5 and
2.0) and the stopping criteria, like if X; and X;; become similar, then stop and the maximum number
of iterations before the algorithm stops i,,4x. Set the initial velocity v;=; = 0 and the iteration counter
i=1.

Step 1: Initial generation. Using a random procedure, generate N, particles x;. The procedure should
derive the initial generation within the boundaries x,,;, and Xx,,4x and solve the object function f(x;).
The final step is to determine the best solutions x,,, (particle record) and x,, (swarm record). In the first
iteration, the particle record is equal to the initial score of each particle.

Step 2: Calculate velocities. The function for velocity contains three influences: initial velocity, personal
record and swarm record. Calculate the velocity of each particle as:

Vit1 =Vi+ 1 Xpr —Xi) + 272 (Xer —Xi) @.1)
Update the positions of the particles as:
Xj+] =Xj + Vit (3.2)
Check and enforce bounds on the particle positions:
Xmin =Xi+1 = Xmax (3.3)

Note that if the velocity becomes small for the entire swarm, this is a sign of convergence. The factors r;
and r» are used to apply some randomness to the solution. The higher the randomness, the larger the

3.6. PARTICLE SWARM OPTIMISATION (PSO) 27

chance of finding a global optimum. A consequence of a large randomness is however a more random
and therefore (usually) slower algorithm.

e Step 3: Update the best solution. Calculate the costs function at all new points f(x;+1) and update x,,
and xgr if f(x;11(n) < f(xp,(n)) or f(x;41(n)) = f(xs). In the case where it takes some computational
power to determine the fitness of a particle, it can be useful to create a database of particles and their
solutions. In case a particle already exists, the fitness is copied from the database in order to safe time.
All new solutions are added to the database.

* Step 4: Stopping criterion. Check for convergence of the iterative process. If a stopping criterion is
satisfied (i.e., k = k4 Or convergence), stop. Otherwise, set k = k + 1 and go to Step 2.

The applied parameters in the PSO algorithm are:

Np
C1
C2

lmax

is the swarm size (number of species) Ni...Ny...Nj

is a parameter describing the influence of the local record of ant N,

is a parameter describing the influence of the global record of all ants

is the maximum number of iterations

is the "current” speed of generation i

is the iteration counter 1,2, i, ..., imax

is the "current" location of generation i

is the lower bound value of x

is the upper bound value of x

is the object function.

is the location of the particle (/local) record for each ant i

is the location of the swarm (/global) record for all ants

is the new speed of generation i + 1

is a parameter which introduces a randomness to avoid local convergence
is a parameter which introduces a randomness to avoid local convergence

In order of finishing the explanation of the optimisation algorithm, the flowchart in Figure 3.8 is created.
The flowchart shows steps that have to be taken to realise the optimisation process. Note that the algorithm
described is one for a minimisation process. In a maximisation algorithm, the personal and swarm records
would search for the largest value instead of the smallest one.

)

!

(random) Initial :
: Parameters n,, in.X, €1, C
generation X

> Evaluate f(x;)

!

Update particle record
X, 1f F(x;) < f(x,,)

!

Update location: Update swarm record
Xit1 = X; +V; Xsr if f(xi,J) < f(xsr)

'Y l
Stopping criteria YES R e
reached? " il
[no

Update velocity:
Viy1 = Vi + C1T1(xpr —x;) + e (s — %)

Storage:
id - f(x;) - x;

Figure 3.8: Flow chart of a PSO algorithm. Noticeable parts are among others the evaluation of the objective function f(x;) for option x;
and the set of rules used to determine the next set of solutions that are to be evaluated. Mind that this flowchart is slightly different from
the description in this section, which is explained by the overlapping parts of the initialisation phase and the iterative phase.

28 3. OPTIMISATION ALGORITHMS

3.6.2. PSEUDOCODE FOR THE PARTICLE SWARM OPTIMISATION (PSO) ALGORITHM.
Source: Introduction to optimum design [4].

Data: SwarmSize,Xmin, Xmax, C1, C2, 1, I'2
Result: Fg;, X,

iteration=0;

-

2 Generate swarm of random solutions x;, i = 1,2,..., SwarmSize;
3 Check domain x; < [X;;in, Xmax];
4 foreach Particle in swarm do
5 x,,r = Xi,
6 v; =0;
7 Evaluate fitness f(x;);
8 Store f(x;) in database;
9 end
10 while stopping condition() do
11 Select swarm leader S;;;
12 Update particle velocity v;4+1 = v; + c171(Xpr — X;i) + C272(Xr — X;);
13 Update particle position xj+1 = X; + Vj41;
14 Check domain x; < [Xin, Xmax];
15 foreach Particle in swarm do
16 if x; in database then
17 | Retrieve f(x;);
18 else
19 Evaluate fitness f(x;);
20 Store f(x;) in database;
21 end
22 Iff (xpr) > f(x;) Update particle record xp, = x;;
23 end
24 iteration=iteration+1;
25 update stopping condition();
26 end

27 Return fyr;

3.6.3. PSO ALGORITHM PROPERTIES

In the main report of this Master’s Thesis, PSO is chosen as the preferred algorithm for optimisation. Some
experimentation has been performed in order to understand the behaviour of a PSO algorithm in practice.
The behavioural study is a useful tool to help users understand what constants to select for the optimisation
process to achieve the required behaviour. If the factors Ny, ¢1, ¢z, r1 and r; are chosen correctly, than this
results in a fast and efficient algorithm. Appendix A.2 contains an overview of some experimentation with a
PSO algorithm in case of a simple object function and a small amount of design variables.

The object function chosen for this the analysis is similar to the penalty function in Section 4.3. This function
is:

flx)= 1+5(x—1)2+?tan_1(25(x— 1) (3.4)

ANALYSIS OF GLOBAL OPTIMUM WITHOUT OPTIMISATION

The first step of the process is to determine the global optimum. This is required to verify the accuracy of
results found in the analysis. As can be seen in the plot of the function and it’s derivative, the global minimum
isnear x =0.8.

3.6. PARTICLE SWARM OPTIMISATION (PSO) 29

F(X) F'(X)

Figure 3.9: Function f(x) and it’s derivative.

A more exact computation results in an analysis of the differential equation to find minima and maxima for
f'(x) = 0. Given Figure 3.9, there is only one minimum in the range x c [-1;2,5].

fl=10x-1)+ 20 ! =0 (3.5)
T 25(x-1)%+1 ’
A simplification of this function results in:
—625x> +1875x — 1876x + 610,08 = 0 (3.6)
In order to solve this equation, the Newton Rapson method [13] is applied. This results in:
(%)
Xiyl = Xij— g, : (3.7)
8'(xi)
with:
g(x) = —625x> +1875x* — 1876x + 610,08 (3.8)
g'(x) = —1875x% +3750x — 1876 (3.9)

After some iterations, convergence is achieved in x = 0.70761, which coincides with the global minimum of
the objective function f(x). Part of the Newton-rapson computation is shown in Table 3.1.

Iteration i 1 2 3 4 5 6

input x; 0,80000 0,65901 0,70104 0,707468 0,70761 0,70761
g(x;) -10,716 9,206 1,108 0,023 1,11E-05 2,59E-12
g'(x1) -219,0 -168,6 -161,5 -161,3 -161,3 -161,3

Table 3.1: Results of the first 6 iterations of the Newton Rapson method. Convergence is found at the fifth iteration. The value xg =
0.70761 is the global minimum of f(x).

BEHAVIOURAL ANALYSIS RESULTS

In case of a large number of particles N, the initial diversity of the swarm is relatively large. A large number of
particles may result in slower iterations (n times a certain equation takes less time than n + + times the same
equation). The larger diversity results a larger probability on finding a "fitter" solution in the first iteration.
An advantage of a large diversity is the larger probability of finding the global optimum. If a group of particles

30 3. OPTIMISATION ALGORITHMS

finds a local optimum, the rest of the swarm can still find the global one. Figure 3.6 shows an example of a
"fitness" landscape with some local and a global solution. The effect of a larger population can be clearly
seen in this figure. A larger (spread) swarm would have a larger probability of finding the optimum.

Figures 3.10, 3.11 and 3.12 demonstrate the influence of factors c¢; and c;. Literature states that the value of
these factors has to be between 0,5 and 2,0. The images show what will happen in case this is not done. In
case of a small c-factor, step sizes get small but accurate. This accuracy comes with a price. More steps have
to be taken to achieve the optimum and the method is therefore slower that one with a higher c. In case the c-
factor is too large, particles start moving too fast. In this situation, the a particle shows a sinusoidal behaviour
with an increasing amplitude. The result is high, or even diverging particles, resulting in inaccurate solutions
of the algorithm. In case the factor ¢; * r; > 1, particles will tend to move past their optima because of larger
step sizes. This results in a more random behaviour of the algorithm.

Progress Values of particles over iterations

160,000 20,00

140,000

120,000

10,00
100,000

80,000
0,00
60,000

40,000

20,000 -10,00

0,000

Figure 3.10: Particle progress for ¢] = c2 =0, 1. Alow value for ¢ and ¢ can result in accuracy, but slow convergence.

Progress Values of particles over iterations

160,000

140,000

120,000

100,000

80,000 -+

60,000

40,000

20,000 \

0,000 ; -

Figure 3.11: Particle progress for ¢ = ¢ = 1. A normal value for ¢; and ¢ should result in reasonable accuracy and convergence.

Progress Values of particles over iterations

160,000

140,000

120,000 -

100,000

80,000

60,000

40,000
20,000 \

0,000 = g T - §

L —

Figure 3.12: Particle progress for ¢; = ¢z = 2. A high value for c1 and c1 can result in low accuracy and divergence of parameters. Note
that particles tend to behave much more random in this situation.

3.7. ANT COLONY OPTIMISATION (ACO) 31

The function shown in Figures 3.10, 3.11 and 3.12 is the result of a 50 step iteration process with 10 ants and
one parameter. the object function used for this test is the combined quadratic-arctangent penalty function
shown in section 4.3.

The final parameters of a PSO algorithm are r; and r,. The main purpose of these parameters is to include
randomness in the optimisation. Randomness can be a useful tool to escape from local optima and increase
the probability of finding the global optimum. The larger the influence of r; and r,, the more an algorithm
will represent a brute force algorithm (see 3.1). As a consequence, a more random algorithm is usually slower
in convergence. The word "usually" is used in this statement because a random optimisation technique has
some chance on finding the optimum based on a "lucky shot".

3.7. ANT COLONY OPTIMISATION (ACO)

Ant Colony Optimisation (ACO), which was invented in 1992 by Marco Doringo, which performed a Ph.D.
Thesis on the subject [25]. The algorithm is based on the behaviour of ants in nature, especially on their
"food-searching-behaviour". The best known application of this algorithm is the so called "traveling sales-
man problem" [18]. This problem can be solved quite directly with this algorithm because inspiration of the
system is very similar.

ACO is part of the Discrete, stochastic, nature inspired and swarm intelligence classes of algorithms. ACO is
closely related to PSO, which is also a nature inspired swarm class algorithm. This means that the algorithm
can find global optima for discontinuous and multi-modal problems, but the required amount of time to
solve a problem is unknown.

The description of ACO is done best with its natural inspiration. The process starts with a number of ants that
"wander" from their colony into the environment. Once an ant locates a food-source, it returns to the colony
while leaving a trail of pheromones. The purpose of the pheromones is to mark the route for future ants. Over
time, this marker evaporates and therefore gets weaker. When new ants leave the colony, they have a larger
probability of following the paths which are marked strongest with pheromones (due to short routes or more
visits). This way, the shortest route to a food source gets more popular and therefore even more pheromones.
Due to the evaporation process, only the shortest routes will "survive" because ants have a higher probability
of choosing this route, leaving other routes relatively unvisited. After a while the algorithm will focus on a
global optimum solution.

The amount of pheromone that ant i assigns to option j is defined by:

m
r,-,j«—(l—p)*r,-,ﬁkZArfj (3.10)
=1

The probability of ant i to pick option j as (partial) solution for the problem is computed by the probability
function. This function is described by:

a« B
Ti i j

T i (8t

(3.11)

in which:

i Ant number in colony

j design variable number

m Number of ants

k Current ant number

Tij Pheromone of component

0 Decay factor
PN Arj.fj 1/Scost

32 3. OPTIMISATION ALGORITHMS
P; Probability of selection of component
a Heuristic coefficient
B History coefficient
c Set of usable components
n’l.i i Contribution of overall score to selecting component

3.7.1. PSEUDOCODE FOR THE ANT COLONY OPTIMISATION (ACQO) ALGORITHM.

Source: Clever algorithms [23].

Data: ProblemSize, PopulationSize, m, p, a,
Result: Py,

1 Create heuristic solution Pjp,;;
2 Costs Ppesy,costs Of Ppest;

3 Initialize pheromone;

4 while stopping condition() do

5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20

3.8. GRADIENT BASED FIRST ORDER METHODS

Determine candidates S;

fori=1tomdo

Probabilistic stepwise construction;

Analyse costs S;,costs;

if S; costs < Ppes: then
Pbest,costs = Si,Costs;
Ppest = Si;

end

Candidates;

end

Decay of pheromone;

foreach Solution in candidates do
update pheromone;

end

end
Return Ppegy;

First order methods are usually recognisable for their capability to use the gradient of the object function.
When the gradient of a function is known, it becomes easier to find the optimum, since it can now be known
what direction to search for. First order methods, like the “Steepest decent method [6]” are usually based on
numerical algorithms (often in the form of Taylor polynomials [3]) to estimate the optimum function. 1st
order methods in general are more powerful, but less robust than 0th order methods. If not used carefully,
they can diverge or suffer from numerical errors. The steepest descent method is described below:

Step 1: start with a (random) arbitrary x;

Step 2: Set first search direction d; = —Vf;

Step 3: Line search to find the next point: x;1 = X; + a;d;

Step 4: Update search direction: d;+; = —Vfi41

Step 5: Repeat the process from step 3 on until the stopping criterion (convergence) is reached.

3.9. GRADIENT (HESSIAN) BASED SECOND ORDER METHODS 33

3.9. GRADIENT (HESSIAN) BASED SECOND ORDER METHODS

The second order Newton method [6] is considered to be more powerful than the first order methods. In this
method, the second order derivative is also used in a second order Taylor series. This function is capable of
finding the minimum value of a quadratic function in 1 step, but if the Hessian function H is not positive,
divergence will occur. The results of this method are very efficient, but not robust. According to the literature,
robustness-problems might be avoided via certain additions to the method.

Local approximation: 2”4 order Taylor polynomial:

1 ~
fx+Ax) = fx) + (VDT + EAxTHAx‘ = f(Ax) (3.12)
in which:
0f10x;
The gradient [13] function is: Vi= 0f10xz
0f10xy,
Pf o f >f
ﬁ 0x10x; 0x10xn
2
The Hessian matrix [13] is: H(f) = 9x20%1 0% 9x20%n
Ozf 62f 02f
0xp0x1 0x,0%2 0x2

If the step-size is derived from the equation above, this results in: Vi(AX) =0=>V f+HAx=0=>Ax=—-H_;Vf.
Summarised, this method can be displayed in the following steps:

* Step 1: Step-size: sy = —H_; Vf

 Step 2: Update: Xy = Xg + Sk

* Step 3: Check for divergence and/ or numerical errors (as is usual in numerical functions)

3.10. COMPARING ALGORITHMS

The selection of an optimisation algorithm depends on the type of problem (concept of "No free lunch" [12]).
Especially the amount of design variables, the type of solution space (continuous/ discontinuous, smooth/
chaotic), the computational intensity of the object function and the required time and accuracy can be influ-
ential in the selection process. In some cases, it is possible to design functions such that they compliment the
properties of the selected optimisation algorithms.

Table 3.2 summarises a number of properties that can be useful when selecting an algorithm. The properties
in this table can be used to exclude classes of optimisation algorithms. In general, gradient based order
methods are faster, but result in complex, time-consuming object functions. Stochastic methods are very
robust, but usually very slow and cannot guarantee that the global optimum is found before all options are
analysed.

34 3. OPTIMISATION ALGORITHMS

Algorithm Primary type Solution space Population Stability Efficiency
based

Brute Force Stochastic Discontinuous No Very robust n<10
Simulated Annealing SA Stochastic Discontinuous No Very robust n<10
Cyclic coordinate search Direct search Continuous No Local optima 10<n<50
Nelder-Mead simplex Direct search Continuous No Local optima 10<n<50
method
Genetic Algorithm GA Nature inspired | Discontinuous Yes Robust 50 < n < 500
Particle Swarm Nature inspired Discontinuous Yes Robust 50 < n <500
Optimisation PSO
Ant Colony Optimisation Nature inspired Discontinuous Yes Robust 50 < n <500
ACO
First order methods Gradient based Continuous No Not robust n>1000
Second order methods Gradient based Continuous No Not robust n>1000

Table 3.2: Comparison of optimisation algorithms.

Figure 3.13 shows a number of algorithm classifications. Because classifications sort algorithms on certain
properties, the can be useful for a comparison. In the main report, PSO is selected as preferred optimisation
algorithm. A motivation is given in the main report.

Discrete
techniques

Numerical techniques

Nature inspired

Population based

Evolutionary Swarm

. . Particle Swarm
Genetic Algorithm Optimisation
Differential Ant Colony
Evolution Opfimisation

Gradient methods

Direct search methods

Figure 3.13: relation of algorithm to other optimisation techniques

OBJECT FUNCTION

4.1 Typesofsolutionspaces « « ¢ ¢ ¢ v v v v v 0 v 4o v bt e et e e e e e 35
4.2 Scorefunction 0 i i e s e 37
4.2.1 Common structural optimisationgoals 37
4.3 Penaltyfunctionsandconstraints ¢ ¢ v 0 0 vt et e e e e e e e e e 38
4.3.1 Logarithmic orlog barrier [4] penalty function. 38
4.3.2 Quadratic or non-linear [7] penalty function. 39
4.3.3 Unit-step or multiple segment [7] penalty function. 39
434 Arctangentpenaltyfunctiono oo oL oo 40
4.3.5 Combined arctangent + quadratic penalty function. 40

The goal of optimisation processes is to find the design variable(s) which result in the highest or lowest value
of the object function. The object function is what describes the "goodness" of options. Mathematically, this
means: "Find X,p¢imum resulting in the minimum value of the object function f (Xoprimum) = min(f (x)).".
The influence of the type or shape of functions is significant. Some optimisation algorithms run more effi-
cient with certain types of functions than others. Especially subjects like: smoothness, continuity and differ-
entiability are important factors. For example: numerous algorithms require derivatives of object functions
to run, such algorithms are impossible if the derivative cannot be found.

Obiject functions usually contain two parts: score and penalty. The score defines the ultimate goal of the
process, for example: "find the fastest route from point A to point B". The penalty function contains the
(negative) reaction to certain constraints. A simple example of a penalty function is: "if your speed exceeds a
certain level, you have to wait x minutes". In these examples, moving too fast will costs time and will therefore
make certain options less feasible. The balance of between score and penalisation can influence the global
optimum and have to be treated carefully. In some situations, a small penalty is no problem, in others (like
the case of structural safety), penalty is not allowed at all.

The goal of this chapter is to improve knowledge of object functions in general in order to select and/ or
construct efficient algorithms and functions. The first section explains the influence of solution spaces of
object functions on optimisation algorithms. The other sections describe the basic principles of score and
penalty functions, which are respectively used to determine the goodness and to penalise options that do not
fit restraints

4.1. TYPES OF SOLUTION SPACES

In practice, there are many types of solution spaces for object functions. Certain algorithms work better with
certain solution spaces. For this reason, it is important to understand the shape of the solution space to solve

35

36 4. OBJECT FUNCTION

a problem. In order to give simple examples of the solution space, this section focusses on problems with 1
or 2 parameters. An increase in parameters increases complexity of the solution space, but the comparison
between types of solutions is similar.

For the selection of certain classes of optimisation algorithmes, it is important to know if object functions are
continuous or discontinuous, smooth or multi-modal and if gradients are easily determined or not. Changing
parameters can significantly influence the score. For example: if only one element in a structure is made
slightly stronger, they usually has only a small influence on the solution, but if the material is changed, the
entire solution can be different.

The basic types of object functions are displayed in Figure 4.1. Smooth (parabolic) functions are the best pos-
sible situation. Smooth functions have only one optimal area for each parameter. The gradient of a smooth
function can usually be determined with relative ease. Multi-modal functions are "the next best" situation.
Although there are multiple (local) optima, the gradient function is still solvable. Sinusoidal functions are an
example of multi-modal situations.

Chaotic and discontinuous functions are harder to solve. Gradients of these functions can be misleading or
hard to find. The discontinuity can also force algorithms into local optima, for example due to the effect
of "Grand Canyon" effects. Flat functions can disable the progress of optimisation algorithms due to their
constant value. If processes cannot determine what direction to go to, they tend to work as random search
algorithms or assume that the optimum is found.

Smooth Multi-modal

Score F(x;))
Score F(x;;)

“Chaos” Flat or discontinuous

Score F(x;;)
Score F(x;)

“Needle in a haystack” “Grand Canyon”

Score F(x;;)
Score F(x;))

Figure 4.1: Different types of object function solution spaces.

One very hard function to solve is the "Needle-in-a-haystack" problem[18]. These are relatively flat functions
with one "spike" at a random location (see Figure 4.1) which represent an optimum. The problem with such

4.2. SCORE FUNCTION 37

functions is that "spikes" are hard to find and/or identify. Thus it is often unknown whether or not they
exist, where they are and if they represent an optimal situation. Solution spaces that contain "Needle-in-a-
haystack" problem can be mislead by their gradient and functions have trouble noticing "spike" optima due
to their small size.

4.2. SCORE FUNCTION

In Optimisations, object functions determine the "fitness" (or quality) of certain options. The object function
generally contains two parts: the score and the penalty. The configuration of score and penalty depends on
the chosen optimisation goal and functions [4]. Common configurations in practice are: Fopjecr = Fscore +

Fpenalry and Fobject = Fscore * Fpenalry-

The score-function is determined by the optimisation goal. There is a large variety of possible goals for ob-
jective functions. Because the shape of the score function depends on its goal, it is considered to be hard to
determine a standardised score function. It makes more sense to analyse the principals of objective function
analysis and design them such that they perform well in optimisation algorithms. This can be achieved by
designing smooth, continuous functions with proper boundary values.

It can be useful to influence the output of the score functions such that it is within a certain range. By con-
trolling the score, it is partially possible to manage the interaction between the score and penalty function. A
proper score-function should at least answer some basic questions. Three such questions that, according to
"Principles of Optimial design" of Papalambros [6] need to be answered are:

* How are designs, and especially their differences described?

* What is the criterion for "best" design?

* What are the available means?
These questions describe the usual challenges in the definition of optimisation problems. score-functions

should be a relatively accurate model of the problem. There should be a clear definition of the "best" (or
optimal) score and functions can only be described by available information.

4,2.1. COMMON STRUCTURAL OPTIMISATION GOALS
Structural optimisation can be performed on numerous goals, but is mostly applied to minimise costs or to
improve the safety of a structure within certain limits. Common goals are:

* Economical: minimise costs or maximise profit

* Weight: safe costs by removing material or make a structure float in water.

* Geometrical: improve safety, optimise use of floorspace.

* Risk: improve safety, reduce construction risks or improve reliability.

* Time: Reduce construction time
For this Master’s Thesis, it is chosen to work with costs minimisation of reinforced concrete structures. A
major argument for this objective is that costs minimisation is usually the purpose of optimisations. Many
optimisations with other goals are applied to achieve this goal. In case of reinforced concrete optimisation,
costs are a more stable optimisation goal compared to weight and/ or geometry. A weight or geometrical opti-

misation would not necessarily result in the cheapest solution due to the mix of concrete and reinforcement.
This problem is discussed in Chapter 6.

38 4. OBJECT FUNCTION

4.3. PENALTY FUNCTIONS AND CONSTRAINTS

Penalty functions represent the constraints of the object function. For example: "for f(x) = x?, find the value
Xoptimum resulting in the lowest f(x) = finin while X;,in < X < Xmax". In this situation the limitation X, <
X < Xmax can be achieved by both a constraint or a penalty function. A constraint would prevent function f(x)
from attempting options out of x,,;;, < X < X;uax. A penalisation would ensure that "out-of-range" options
are not feasible.

Penalisations and/or constraints can be applied on several levels in a problem. It is advised to design con-
straints and penalisations in the same picking order as safety regulation strategies. Problem solving according
to safety regulations is usually applied in the following order:

1. Prevent problem from occurring (no measures requires)

\S)

. Solve problem at source (apply limitations to prevent situation(s) from occurring: x,,;, < X < X;nqx)
3. Prevent problem at location of "pain" (apply smooth penalty functions that work for every x)

4. Limit "pain" at location (apply non-smooth penalty functions that do not work for every x)

By applying this principle to penalty functions, a design strategy is presented with several advantages. Pre-
venting problems from occurring results in a more reliable model since boundary condition problems do
not occur. Giving a range to design parameters limits the amount of options, resulting in a faster process.
Preventing problems at location results in smooth penalty functions that still show the direction of the best
solution. The final measure works, but potentially disrupts the model by non-existent or infinite values at
penalty locations.

Itisimportant that the influence of the score and penalty function onto each other is carefully designed. Large
influences of one function can undermine the influence of the others, resulting in solutions based on score or
penalty instead of score and penalty. This effect can be illustrated by a penalty function that dominates the
object function. Optima of such functions are found at the minimum value of the penalty function. This effect
influences the optimisation such that the objective, which is described by the score function, is neglected. In
case of structural optimisation, this can result in a strong (very safe), but expensive solution due to over-
dimensioning of elements.

In general, it is advised to design object functions such that penalty functions have most influence when
penalisations are required, but are minimal when they do not. The shape of penalisation functions influences
the effectiveness of optimisation algorithms similarly to score functions. Therefore, the penalisations work
best if they are smooth, continuous and differentiable.

In the situation that a penalty function is required, there are a number of options. If possible, it is more
profitable to prevent a penalty situation from happening. For example, if an optimisation variable has to be
within a certain range x,,;, < X < Xpmqyx, it is preferred not to analyse options that are "out-of-range". An-
other advantage of this principle is the limitation of the amount of possible solutions and so a computational
improvement. Especially direct constraints on the design parameters are suited for this principle.

If a penalty function is required, than there are numerous possibilities. It can be useful to design custom
penalty-functions to achieve project related behaviour for certain situations. A number of penalty types are
discussed in the rest of this paragraph.

4.3.1. LOGARITHMIC OR LOG BARRIER [4] PENALTY FUNCTION

A logarithmic penalty function [7] (see Figure 4.2) is a useful "barrier" penalty function. The real value of
a logarithm will grow towards infinity from some infeasibility point. Real valued solutions for this function
do not exist for values larger that the infeasibility point. This has some consequences for the use of this
type of functions in algorithms. Optimisation algorithms have to be able to detect the "barrier" before it
is reached. Therefore, the application of logarithmic functions limits the step-size and therefore speed the

4.3. PENALTY FUNCTIONS AND CONSTRAINTS 39

optimisation process. If for some reason the infeasibility point is passed, than the non-existing points of the
penalty function result in a crash of the algorithm.

The nature of this function ensures that any option that does not fulfil the requirements is penalised with
an extreme penalty. The main advantage of this function is also its disadvantage. In case of infinite values,
optimisation algorithms tend to give extreme results. Algorithms will therefore avoid such points. To avoid
such situations, algorithms take small steps in order to detect and react the slope of a logarithmic function
before the infeasibility point is reached. A consequence of this technique is that the first iteration should
never create a penalty to avoid infinity results. This system can be problematic in case of "Grand-canyon"
problems, because algorithms can hardly cross the Canyon.

y=a-log(x—Db) 4.1)
Smooth function? yes.
Solvable for every x? singularity after penalty value.
Penalty application speed: yes (exponential).
Lowest penalty direction: lowest penalty at x =0, x € (0,inf).
Penalty type: 4: limit pain.

4.3.2. QUADRATIC OR NON-LINEAR [7] PENALTY FUNCTION

Quadratic penalty functions (see Figure 4.2) are relative simple solutions. These functions tent to penalise all
functions the further they become from a certain value. The advantage of this principle is that optimisation
algorithms tend to search for these points. A disadvantage is that the relatively slow penalty may allow values
above certain points while this is not allowed. In some situations, it can be useful to combine this function
with other penalty functions in order to create the lowest penalty score on a location of choice. Quadratic
functions are especially useful in case all functions are penalised and if penalisation of options is acceptable.

y=a+bx(x—d)+c*(x—d)? 4.2)

Smooth function? yes.
Solvable for every x? yes.
Penalty application speed: no, penalties increase for larger and smaller x.
Lowest penalty direction: yes.
Penalty type: 3: solve at location.

Logarithmic function Quadratic function
0 025 05 0,75 1 1,25 15 0 025 05 0,75 1 1,25 1,5

Figure 4.2: Logarithmic (left) and quadratic (right) penalty functions

4.3.3. UNIT-STEP OR MULTIPLE SEGMENT [7] PENALTY FUNCTION

The unit-step function [26] (see Figure 4.3) is a direct translation of the required effect of a penalisation.
This function can be designed to have no effect when no penalty is required, but can have extreme effects if

40 4. OBJECT FUNCTION

this is. Unfortunately, a unit-step function is not a smooth function and contains primarily constant values.
This results in a major disadvantage. Optimisation algorithms can hardly determine the location x where a
function is penalised. This can be explained by the derivative of the penalty function. The derivative of a unit
step function is zero for all values of x, with a infinitely small pulse located at the step. For this reason, no
information on the location of the step can be found in other functions of x then the step itself.

{ r=ay 4.3)
x>a y=c

Smooth function? no.

Solvable for every x? yes.

Penalty application speed: yes (infinite speed).

Lowest penalty direction: no, constant values.

Penalty type: 4: limit pain.

4.3.4. ARCTANGENT PENALTY FUNCTION

A arctangent [3] shaped penalty function (see Figure 4.3) looks much like a unit-step function. A major differ-
ence between these two functions is the "smoothness" of the arctangent function. This smoothness partially
solves the optimisation algorithms inability to find the location of the penalty. The solution can also create a
disadvantage. This type of functions has no constant values at the beginning and end. Due to this effect, an
optimisation algorithm may consider options with a very low penalty "fitter" while this is not necessarily the
case. The steepness and amplitude of arctangent function should therefore be designed carefully.

b b -1
y=(a+-)+—x*tan (c(x—d)) (4.4)
2"
Smooth function? yes.
Solvable for every x? yes.
Penalty application speed: yes.
Lowest penalty direction: lowest penalty at x = 0, x € (0, inf).
Penalty type: 3: solve at location.
Arctangent function Unit-step function
0 0,25 05 0,75 1 1,25 15 0 0,25 05 0,75 1 1,25 15

Figure 4.3: Arctangent (left) and unit-step (right) penalty functions

4.3.5. COMBINED ARCTANGENT + QUADRATIC PENALTY FUNCTION

For some penalty functions, it is advantageous to combine several functions. For example, if a normal force
unity check is performed for a structural element, the unity check (%) may never be higher than
a certain value, but optimal usage of the material is normally found just below this point. To achieve this
effect, a combination of a quadratic and arctangent function can be made (see Figure 4.4). This function

avoids the disadvantage of an arctangent to search for the lowest penalty while maintaining the influence of

4.3. PENALTY FUNCTIONS AND CONSTRAINTS 41

the arctangent function to create infeasibility near the penalty point. In case of the situation in Figure 4.4, the
best values are found near a unity check of 0,9, although the characteristics of the function can be designed
to fit some given requirements.

. f

y=(a+bx(x—-d)+cx* (x—d)z) +[(e+ E) + - stan” ! (g(x - d)) (4.5)
Smooth function? yes.
Solvable for every x? yes.
Penalty application speed: yes (arctangent effect).
Lowest penalty direction: yes (quadratic effect).
Penalty type: 3: solve at location.

"Quadratic + Arctangent” penalty function

-
i —r—
- e o
— e —

I A S e e e e oI I A [PN MRS A

0 0,1 0,2 0,3 04 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 14 1,5

Figure 4.4: Combined arctangent + quadratic penalty function

GEOMETRY DESIGN

5.1 Methodl:Triangulation. ¢ ¢ v ¢ v v v i b v v b v v e o s o o s o o o s o 44
5.2 Method 2: Buildingblocks (Lego’s) v v v v v v v v vt e e e e e e e e e e e e 45

The main report uses truss models to represent reinforced concrete geometry. There are multiple techniques
capable of systematically designing such truss models. This chapter is used to present a number of such
techniques. Eventually, users can decide what technique to use, or to design a truss by themselves. The
resulting truss is allowed if it fulfils certain requirements (which are described in the main report). These
requirements are shown in Figure 5.1. Major requirements include: Strut-and-Tie Model (STM) requirements,
geometrical limitations, and truss configuration requirements.

h<<L l J

/N : /

L RN A\? /]

’ \ & /7
’ \ (
—
A A
< h
Node Bar Flow of Kinematically Building
shape(s) elements forces determined blocks

Figure 5.1: Limiting conditions for STM truss design: node shape (due to Eurocode 2: Design of concrete structures, NEN-EN 1992-
1-1 [37] (EC2) analysis), bar elements (due to truss methodology and volume limitations), flow of forces (the truss should be capable
of representing the flow of forces), kinematics (truss should not be able to move to ensure matrix displacement analysis stability) and
building blocks (modular and systematic approach).

The type of optimisation parameters is influenced by the design of the truss model. There are basically two
optimisation approaches. The first approach generates a standardised truss from a structure, resulting in a
shape optimisation (Figure 2.6). In this case, the parametric design of the shape gives the input parameters.
The amount of bars in the truss, and their locations, might change during the process. This approach allows
optimisation of the structural shape. The other approach generates a sort of 3D mesh inside a given shape. In
this approach represents a sizing optimisation. In this case, the amount of parameters is equal to the amount
of bar elements. This approach specialises in the optimisation of reinforcement in a constant shape.

For structural design of a constant shape, the costs optimisation can be reduced to "optimising the reinforce-
ment within a certain shape". Reducing the amount of reinforcement (given a constant complexity of that
reinforcement) in a constant shape is identical to reducing the costs of such structure. This can be stated

43

44 5. GEOMETRY DESIGN

because the amount of concrete and the shape of the formwork are constant and will therefore have no influ-
ence on the costs of the element. The only major costs parameter left is reinforcement.

The quality of a STM depends for a large part on the chosen truss model. The shape and stiffness of the truss
determines the force distribution. Therefore, the shape of the truss is important to determine the reinforce-
ment and quality of a solution. This chapter describes two possible approaches (see Figure 2.6): Triangulation
and building blocks. The design parameter of the optimisation process is assumed to be the axial stiffness E A,
resulting in one optimisation parameter per bar element in a truss.

5.1. METHOD 1: TRIANGULATION

The first considered method to design a truss in a 3D shape is called "triangulation". A STM optimisation
based on triangulation searches for the optimal shape of a truss. A set of node locations (each within the given
shape) generates a triangular mesh over the nodes. If this is executed correctly, the output can be considered
to be a truss. The truss can be analysed, the object function can then be solved and the next iteration can be
started to find the optimum. The definition of triangulation can be described as:

"Triangulation is the division of a surface or plane polygon into a set of triangles, usually with the restriction
that each triangle side is entirely shared by two adjacent triangles. It was proved in 1925 that every surface has
a triangulation, but it might require an infinite number of triangles and the proof is difficult.” [27]

As can be seen, this definition is for surfaces and polygons. To create a truss for a 3D structure, a triangulation
existing out of tetrahedrons can be made (Figure 5.3). To create this kind of truss, a so called Delaunay trian-
gulation" can be adjusted to handle 3D shapes. This can be done according to [28]. A major advantage of this
triangulation type is it’s availability in 3d modelling programmes like "Rhinoceros" [29], "Grasshopper" [30]
and mathematical programmes like "Matlab" [20]. With the help of these programmes, it is relatively simple
to create a set of lines to represent the truss structure.

Figure 5.2: Representation of truss building with a Delaunay algorithm. Nodes are connected in two steps. First, a Vonaroi diagram is
drawn to analyse what areas are closest to what nodes. Next, all nodal areas that "share a border" are connected linearly.

The following definition definition shows the capability of a Delaunay triangulation to deal with multi dimen-
sional triangulations:

"For a set P of points in the (d-dimensional) Euclidean space, a Delaunay triangulation DT(P) such that no
point in P is inside the circumhypersphere of any simplex in DT(P) it is known that there exists a unique De-
launay triangulation for P, if P is a set of points in general position; that is, there exists no k-flat containing k+2
points nor a k-sphere containing k+3 points, for1 < k < d -1 (e.g., for a set of points in>; no three points are on
a line, no four on a plane, no four are on a circle, and no five on a sphere)." [31]

The application of a triangulation based truss in a STM can be very useful. For this situation, the node lo-
cations, which are described within the design space, can be used to define the truss. A change in node
locations may lead to a different truss and so an alternative solution. Based on the deformation method (as
is described in section 7.4.2), the normal forces of the truss can be determined. By adjusting the (smallest)
strut cross-sections with the angle of the bars, the concrete stress can be kept at a relatively constant value
(considering small deformations). This holds true because the assumed small deformation of the truss re-
duces the force-stiffness influence, while the cross section and normal force share a linear relationship (cross

5.2. METHOD 2: BUILDING BLOCKS (LEGO’S) 45

Figure 5.3: Example of a tetrahedron, for the triangulation, the shape of the tetrahedron can change, but it will still have 4 nodes with 6
lines each. (left: 1 tetrahedron, right: random mesh example build from tetrahedrons)

section grows with force).

ADVANTAGES AND DISADVANTAGES:

e Advantage: Truss shapes generated with the Delaunay system tent to avoid narrow angles. Narrow can
angles create overlapping struts in the STM and are therefore not preferable.

» Advantage: Node locations can be a very efficient parameter to determine the optimal truss shape. It
reduces the optimisation to a well known "road search" problem, which can be solved by for example
an Ant Colony Optimisation (ACO) [6].

» Advantage: Given a sufficiently refined triangulation, practically every shape is approachable.

* Advantage and disadvantage: This method puts a truss trough the effective part of the structure. Due
to this effect, not all of the structure is checked, ineffective parts are left out.

» Disadvantage: Each node is unique in its connectivity and angles. A separate analysis might be required
for each node to verify it’s strength.

» Disadvantage: A Delaunay triangulation can create a complex truss with different angles for each el-
ement. This can result in complex reinforcement shapes. These shapes are not preferable due to in-
creased workloads of construction workers for more complex reinforcement shapes.

» Disadvantage: The changing truss shape makes it difficult to apply self weight forces onto the structure.

» Disadvantage: Optimisation methods, like the ACO, are not practical with a changing set of optimi-
sation parameters. Unfortunately, the preferred technique for this method would be to analyse the
simpler trusses (containing less nodes) at first, and somehow increase the amount of nodes if required.

» Disadvantage: "For a set of points on the same line, there is no Delaunay triangulation.” [31]. Not
all output of a Delaunay triangulation represents a workable truss structure, some measures may be
required to ensure triangulations to be a workable truss.

5.2. METHOD 2: BUILDING BLOCKS (LEGO’S)

An alternative technique to generate 3D truss models can be developed with building blocks. By creating a
standard block and filling a structure with such blocks, it is possible to model many different geometries. A

46 5. GEOMETRY DESIGN

building block based design can avoid the main problems (chaotic trusses and difficulties with nodal analysis
of generated nodes) of the Delaunay triangulation.

A building block based truss generation solves the problems in the triangulation technique. Standardised
building blocks can be designed to result in straight reinforcement bars and planar truss nodes. A building
block can look like Figure 5.4. This building block is limited by constant angles of its elements, resulting in a
realistic and relatively simple reinforcement design.

A building block based truss can be generate by splitting a design space into box-shaped pieces, filling each
of them with a building block to create a truss structure (Figures 5.6 and 5.7) and than filter to remove all bars
and nodes outside of the given geometry.

Figure 5.4: example of mesh pattern

The optimisation parameters of this building-block based approach is the axial stiffness (E A of the truss el-
ements. By increasing or decreasing the values of individual bars, this method can effectively use the force
stiffness relationship to optimise the structure. In case of STM optimisation, this is a major advantage, be-
cause the amount struts can be maximised while the tie cross-sections (and so the amount of reinforcement)
can be minimised. The result should be a compression based design where loads are forced to flow as direct
between two points as possible within a given shape. This will be verified in the main report of this Master’s
Thesis.

The creation of a truss with standard building blocks starts with the creation of a certain 3D element (Figure
5.6). Next a set of nodes with constant (Carthesian coordinate based) 6 x—, Ay— and Az— distances is drawn
within the shape. The 6 x—, Ay— and Az— distances are the truss design parameter used to define the refine-
ment of the truss. Too small elements can result in a computationally more intensive optimisation due to an
increased amount of nodes and lines. Note that a reduction in building block size results in an exponential
increase of building blocks, which can influence the computational intensity of the model. Larger elements
can reduce the complexity, but may create inaccuracies. Parts of a structure may be neglected if building
blocks are too large, resulting in unrealistic structures.

Spherical elements are used to analyse what nodes are closest to each node. By drawing spherical elements
with a radius of R = /Ax2 + Ay? + Az? over each node, it is possible to find all truss bars required for the
model. Figure 5.5 demonstrates this process for a 2D shape.

To create the connecting lines, all nodes within the spheres are connected to the central node. This process
is repeated for each node to achieve a complete truss. The set-up with spheres has two complications. First
this method connects every node twice (node 1 - node 2 and node 2 - node 1), this can be solved by building
in a filter that removes all duplicates. Second, the shape of the sphere describes what nodes are connected.
In this case, only nodes on the x-y, y-z and x-z plane are connected. This is done for two reasons: to reduces

5.2. METHOD 2: BUILDING BLOCKS (LEGO’S) 47

PORIRIY
XXX
XK

XIXC

N

ROT0Z026X
S

Figure 5.5: Left: design a shape, this can be a 3D object; second: create a set of nodes inside the shape, node distances Ax,Ay and Az
are constants. Than draw a spherical element centred in each node; third: find all bar positions based on node connectivity between the
centre node and all other nodes within each element (filter for duplicates). Right: remove all elements outside or intersecting with the
design-shape and check the structure for errors and if necessary adjust.

the amount of possible reinforcement angles in order to simplify the structure and to reduce the amount
of elements and so the computational intensity of the process. The consequence of this choice and system
may that some optima will be excluded because they would require curved reinforcement or reinforcement
in different angles than the ones available.

When all nodes are connected, the truss is completed. It is now possible to define all nodes and lines and
continue to the next step. Figures 5.6 and 5.7 show a possible result of this method. Note that a more refined
truss would be a little more capable of taking the difference in height of the beam into account. The constant
node distances are however perfect for including the self weight force of the structure. In case of a triangulated
structure this would be much more difficult due to changing triangle shapes and the fact that such a mesh
would not necessarily take the entire structure into account.

Figure 5.6: example shape of a beam

ADVANTAGES AND DISADVANTAGES:

* Advantage: Constant truss shape results in relative simple reinforcement shapes due to a limited amount
of possible angles and/ or directions of ties.

* Advantage: The optimisation parameter for this situation is "cross section". This technique takes the
force-stiffness relation of the statically indeterminate truss into account and uses it as an advantage.

* Advantage: The constant truss results in some very basic nodes that can all be solved similarly.

» Advantage: The constant truss shape makes it simple to apply self weight forces on all nodes, resulting
in a more realistic normal force diagram.

* Advantage and disadvantage: This method puts a truss trough the entire structure. Due to this effect,
the entire structure is checked, also the ineffective parts of the structure.

48 5. GEOMETRY DESIGN

[\ 2

L A
—~- VLA™ 4N

e L7 S

Ve

-

Figure 5.7: Example shape of meshed beam

» Disadvantage: The basic truss shape results in more nodes and elements compared to the triangulation
technique. This approach will be slightly more intensive to compute.

» Disadvantage: Truss may have some difficulties to fill slender objects or strange shapes if the block size
is not sufficiently small. This may result in "un-trussed" parts of the structure that may not be analysed.

REINFORCED CONCRETE COSTS ANALYSIS

Bl ProCesSsS. .« o v v v v v v o o s e e e s e e e e s e e e s e e e e s e e e e e e e e 50
6.2 CONCreteCOStS . « o v ¢ ¢ o o o o o o o o o o o o o o s o o o o s o o o s s o o o o o 51
6.3 ReinforcementcostS. . . ¢ ¢ ¢ o v v o v 4 o v o o s o o o 4 s b s s s e e e e e e e 52
6.4 FOormworkcoStS. . . ¢« ¢« ¢ v v v v o o v o o o o o o o o o s s s s 8 s s e e e e e e 54

6.4.1 Repetitionfactor oL e 54

6.4.2 Formworktypes. vt ot e e e e e e e e e e e 55
6.5 Costsanalysismodel ¢ ¢ v v o i bt i it e e e e e e e e e e e e e e e 57

The first step in a structural optimisation process is to define the "optimisation goal". The "optimisation
goal" depends on the target of a project. Many subjects can be used as optimisation goal, for example: light-
est, strongest. thinnest, least deformed, etc. From an economical point of view, the goal of optimisations is
“saving costs” or "find the most economical”. This goal can usually be achieved in multiple ways. A combina-
tion of these two statements can result in the following structural optimisation goal: "Find most economical
structural design that fulfils the safety requirements.".

In case of steel structures, the economical solution depends mostly on two factors. The amount of steel
defines the material costs and the amount of detailing determines the workload (welding, bolting, ...). Steel
structures can be optimised in terms of costs by reducing the mass (which leads to less material costs), the
amount of connections or by simplification of the structure (reduction of workload, mass production, ...).

In case of reinforced concrete structures, the most economical situation depends on more factors. In this
case, the costs depend materials and labour required to for concrete, reinforcement and formwork. In case of
reinforced concrete, a lighter structure with more reinforcement can be more expensive than a heavier one
with less reinforcement (and vice-versa). For this reason, and because there are usually much more design
parameters, reinforced concrete optimisations are considered to be more complex than similar steel ones.

A number of questions needs to be answered in order to perform a structural optimisation of a reinforced
concrete structure:

* What is the purpose of the (costs) optimisation? How and why is it going to be used and what level of
detail is required to solve the problem with sufficient accuracy?

* In what design stage is the optimisation process most effective? What can be learned from the optimi-
sation process and when do designers require results?

* What method should be used to estimate costs of options and what accuracy is required to select the
most economical solution?

49

50 6. REINFORCED CONCRETE COSTS ANALYSIS

* How can the costs of the concrete, reinforcement and formwork be estimated?

¢ Is it possible to compare resulting costs estimations with similar ones from practice to validate the
accuracy of the model?

6.1. PROCESS

The purpose of the costs analysis is specified in the problem statement and research goals. The costs analysis
model in this chapter is "score" part of the object function. The optimisation algorithm uses this model to
determine the most economical option (given a set of structurally safe solutions). The optimal design and the
local optima that are found can be used to determine the most economical design. The motivation for costs
as objective is that in theory, this would give more realistic results because design decisions are similar to the
ones made in practice.

The maximal effectiveness of the optimisation process can be achieved in early design stages. According
to the MacLeamy curve [32], it is still relatively simple to change the design in this stage (see Figure 6.1).
The larger design freedom in early stages results in less constraints and therefore more design possibilities.
Insights from early stage optimisation processes can easily be applied in the design to achieve maximum
effectiveness.

Ability to impact design

Costs of
design changes

Early design

N

Typical curve

Design Freedom

Project stage (time)

Figure 6.1: Relation between level of specification and influence on design, based on the MacLeamy curve [32]. This curves suggests that
the design freedom is largest at the beginning of the process. Because optimisations attempt can help to make efficient design choices,
they are most influential at the beginning of a process.

To be able to determine the costs of a reinforced concrete structure, the model described in the lecture notes
of the TU Delft course “CT4170 Construction Technology of Civil Engineering projects" [33] is used. This
method is specialised for civil engineering structures. For this paragraph, the assumption is made that the
cost calculation for a civil engineering structure and a building can be conducted similarly, since the method
describes sufficient parameters that are about reinforced concrete in general.

While estimating the costs of a certain reinforced concrete structure, several uncertainties must be kept in
mind. The cost estimations in this Master’s thesis consider "random" reinforced concrete structural elements,
this means that only the structure is taken into account. Major parameters in costs estimation are repetition,
location of the structure or structural behaviour.

The model performs a cost estimation, the focus is on impact of certain variables on the costs. Furthermore,
costs estimations may be inaccurate, but the comparison between the different options can still be used for a
comparison between options. Due to all mentioned uncertainties, it is possible that designers prefer certain
options over the ones with little costs. Contractors may choose for different (more expensive) solutions to
avoid or minimise risks or for many other reasons.

6.2. CONCRETE COSTS 51

6.2. CONCRETE COSTS

Concrete costs depend on several parameters, especially the mix design of the concrete (i.e.: cement, sand,
gravel and water) and the labour required for transportation, pouring and finishing are influential. Two mod-
els are suggested to compute costs of concrete. The first method uses a list to link the concrete strength class
to the costs, the second technique uses the mix design (i.e. 1 cement : 2 sand : 3 gravel, water/cement factor
0.7) and is therefore more complex (and sometimes more accurate). It is important to create a list with mix
designs for different types of concrete and current unit costs for the materials that are used.

The significance of labour costs is large because materials require processing and transportation to site. the
further away the site, the more expensive the transportation. Higher labour costs will increase the costs for
pouring and finishing of the concrete. The process used to estimate concrete costs is displayed in Figure 6.2.

CONCRETE MATERIAL COSTS: OPTION 1

The costs of the material concrete itself can be determined in two ways. The first way is to use the data from
the website http://www.bouwkosten.nl (anno 2014) to determine the concrete costs by strength class. The
costs can then simply be read from a table. The results are reasonably accurate for concrete construction in
the Netherlands. The complete data chart to determine the concrete properties and costs looks like Table 6.1:
concrete properties and costs per concrete strength class [34]. Mind that the costs values should be kept up
to date. The unconfirmed values are left open in this case. A reasonably reliable estimation of unknown costs
can be made by interpolation (or extrapolation) of the confirmed costs.

Problems with this method arise when costs are required for different environmental classes or specific con-
crete compositions. For such situations, it is advised to use the second method for determination of the
concrete costs.

Type: Class: fek fem fea fetm Fetk005 | feta Ecm Ecr Costs
Nimm? | N/mm? | Nimm? | Nimm? | Nimm? | Nimm? | Nimm? | NImm? | €/m3

C12/15 | XC1S3 12 20 8.0 1.57 1.10 0.73 27085 15477 84.50

C20/25 | XC2S3 | 20 28 13.3 2.21 1.55 1.03 30000 17143 84.50

C25/30 25 33 16.7 2.56 1.80 1.20 31500 11800

C28/35 | XC2S3 | 28 36 18.7 2.77 1.94 1.29 32308 18462 91.20

C30/37 30 38 20.0 2.90 2.03 1.35 32800 18743

C35/45 | XC2S3 | 35 43 23.3 3.21 2.25 1.50 34100 19486 98.70

C40/50 40 48 26.7 3.51 2.46 1.64 35200 20114

C45/55 | XC2S3 | 45 53 30.0 3.80 2.66 1.77 36300 20743 118.00

C50/60 50 58 33.0 4.07 2.85 1.90 37300 21314

C53/65 XC2S3 53 61 35.3 4.16 2.91 1.94 37846 21626 138.00

C55/67 55 63 36.7 4.21 2.95 1.97 38200 21829

C60/75 60 68 40.0 4.35 3.05 2.03 39100 22343

C70/85 70 78 46.7 4.61 3.23 2.15 40700 23257

C80/95 80 88 53.3 4.84 3.39 2.26 42200 24114

C90/105 90 98 60.0 5.04 3.53 2.35 43600 24914

Table 6.1: Concrete properties and costs [34]. Only data given by the source is placed into the model.

CONCRETE MATERIAL COSTS, OPTION 2

A more reliable and less location and concrete composition dependent method to determine the concrete
costs is to derive the concrete costs from its actual composition. The main problem is that the exact concrete
composition is often unknown until the final design (or execution) stages. The main advantage is that local
material cost data can be applied to give a more accurate estimation of the costs. Such material data is usually
available in practice and is therefore workable. Special types of concrete, like self-compacting concrete can
be estimated more accurately with this method.

52 6. REINFORCED CONCRETE COSTS ANALYSIS

€material = €sand + €gmvel +€cement + €water + €additives (6.1)

TRANSPORTATION TO SITE

When the concrete mixture is created, it should be transported to the construction site. A simple method to
estimate the transportation costs is to use some basic costs (i.e.: loading/ unloading of the concrete truck)
and some distance related costs (i.e.: fuel, salary). For the estimation of the transportation costs, a basic costs
of €42, — and a distance related costs of 0,2€/ km is applied.

€ransportation = €pasic + distance x €gjsrance (6.2)

POURING OF CONCRETE

The final step is the pouring and finishing of the concrete. The main factor in this case is the workload. To
be able to estimate the workload, one should look at the complexity of the job. For example, mass concrete
requires less effort per cubic metre than concrete in slender, detailed structures. The resulting costs can be
described as a workload times a certain complexity factor times the unit costs of the workload. The workload
for pouring and finishing 1 m® of concrete is estimated to be 1 hour.

€pouring = workload x complexity * €,annour (6.3)

TOTAL COSTS

The total costs of 1 €/m?® of concrete in place are estimated by combining the previous values. The flow chart
in Figure 6.2 shows the link between the parameters and the concrete costs. Note that the main parameters
are material costs, workload and complexity.

€concrete = €material +€transpormtion +€pouring (6.4)
ot o mm o mm r mmonomm o mm o omm o mm o= o
: \
[Concrete costs [€/m°>] .
I |
I / a \ |
1 Material costs Transportation and I
! (CR/n) pouring 3
= I
| A
'\ Workload]
i S S - ’

Figure 6.2: Determining the costs of the concrete volume.

6.3. REINFORCEMENT COSTS

Reinforcement costs are determined by a combination of the factors: material, transportation, cutting, bend-
ing and placing. Important parameters are the (estimated) bar diameter, the total mass and the complexity
of reinforcement configurations. These parameters determine the material costs and the workload required
to cut, bend and place the reinforcement. The complexity of the reinforcement has some influence onto the
workload required to put the reinforcement in place. The process is described by Figure 6.3.

6.3. REINFORCEMENT COSTS 53

MATERIAL COSTS

The material costs of the reinforcement depends on the amount of material ordered and the bar diameter. To
determine the material costs of the reinforcement, the data from http://www.bouwkosten.nl (anno 2014) was
used. Mind that reinforcement steel prices depend heavily on the market values for steel on a location and
can develop over time. The data is displayed in Table 6.2: reinforcement steel material cost in €/ kg for bars,
source: http://www.bouwkosten.nl. It is assumed that transportation is included in the given price levels.

Bar diameter | 0-200kg 200-500kg | 500 - 1000 | 1000 - 5000 | 5000 - | 10000 - | 25000 -
in mm kg kg 10000 kg 25000 kg 50000 kg

8 1.43 1.13 0.93 0.73 0.73 0.70 0.69

10 1.39 1.09 0.89 0.74 0.69 0.66 0.65

12 1.37 1.07 0.87 0.72 0.67 0.64 0.63

16 1.36 1.06 0.86 0.71 0.66 0.63 0.62

20 1.36 1.06 0.86 0.71 0.66 0.63 0.62

25 1.36 1.06 0.86 0.71 0.66 0.63 0.62

32 1.39 1.06 0.89 0.74 0.69 0.66 0.65

40 1.41 1.11 0.91 0.76 0.71 0.68 0.67

Table 6.2: Reinforcement steel material costs in €/ kg for bars, source: http://www.bouwkosten.nl

CUTTING BENDING AND PLACING

Cutting, bending and placing reinforcement takes time. Depending on the reinforcement percentage and
the complexity of the reinforcement, the workload can be determined. This workload can then be used to
estimate the costs for the cutting, bending and placing of the reinforcement in terms of €/ kg.

€cur,bend,place = Workload = complexity * €pmannour (6.5)

TOTAL COSTS

The total costs of the reinforcement can be estimated by combining the previous values. The flow chart in
Figure 6.3 shows the link between the parameters and the reinforcement costs. Note that the main parameters
are material costs, workload and complexity.

€rebar,unit = €mmferiul +€cut,bend,place (6.6)
€rebar = P * Vsteel * €rebar,unit (6.7)
where:
p is the reinforcement percentage in [%]
Y steel is the mass - density relation of steel, y;ee; = 8150kg/ m3
S e e e e e e — -

Workload

Transport, cutting,
bending, placing

Reinforcement
costs [€/kg] I

Material type
@ ...,b500

- o o oy,

Figure 6.3: Determining the costs of reinforcement.

54 6. REINFORCED CONCRETE COSTS ANALYSIS

6.4. FORMWORK COSTS

Determining the costs for formwork and falsework is more complex and less precise than finding the rein-
forcement or concrete costs. The falsework costs depend on the location and shape of a structure. For this
Master’s thesis, the falsework is assumed to be out of scope because it completely depends on the surround-
ing structure and location. Note that the costs of the falsework are potentially very influential.

Due to many different formwork-systems, there are lots of options. Each of the options can be a feasible
and/or preferable solution for certain conditions. To deal with the large amount of options, it is possible
create a table with properties for the individual formwork-systems. Such table has to contain information on
the costs and possibilities of formwork systems. The next step is to combine information from the gathered
data with the project information. Finally, it is possible to select the price of the most feasible solution. The
process is shown in Figure 6.4.

To determine the costs of a square meter of formwork in a certain situation, a number of factors should be
taken into account. The investment to buy the formwork(system), the investment to maintain the formwork
and the workload to place and remove the formwork. When the system is used multiple times, this can have
a significant effect on the formwork. The formwork can be bought once and then used a certain amount of
times. These factors would lead to the following formula [33]:

costs Iinvestment . manhours

= (6.8)
m? Nyepetition m?
where:
Linvestment the investment to buy and maintain the formwork times the amount
of times it should be replaced or maintained when operational.
Nrepetition The amount of times the system is used during construction.
manhours
—_— The workload for a square meter times the salary of the worker.
m
P
[Formwork costs [€/m?]] [False work costs [€/m?]] \

AR g
Workload I

Repetition

[Purchasing formwork] [Placing, maintaining

factor
Formwork type |
Complexity 7

T Emm 3 EEE O EEE O EEE O EEE F EEE § EEE F EES F BN § NN § S § B § Emm 3 e

/T

- EEm o o o o o

~

Figure 6.4: Determining the formwork costs.

6.4.1. REPETITION FACTOR

As is shown in Equation 6.8, there are some advantages for the formwork costs when it can be used several
times, instead of having to buy a new formwork every time, the system can just be maintained and re-used.
Another advantage of this repetition can be seen in the work load. People tend to work faster if actions have
to be repeated. This effect is called the “Learning effect [33]”, the learning effect can be described with the
following formula (also see Figure 6.5):

D, =¢8" % D, 6.9)

where:

6.4. FORMWORK COSTS 55

0] Repetition factor, usually between 0.65 and 0.95
n Amount of products
D, Average workload in case of multiple series of n elements

man hours per unit (%)

¢ =085
100 D, = 0,850, é
% D, =0,85D; = 0,7225D,=0,85° D,
Dy =0.85D, =0,85"D,
B0 L Dyg=0.85D, 0.85°D
- D, = average per unit
so k| N
wl
L
D, |D Dig
20t
L
o 1 R TR TS VI O D (0S| S S NN SNNN DO SN DeRS | o
12 4 8 16
repetition n

Figure 6.5: Learning cycle effect, courtesy of [33]

Mind that the repetition factor will change when the repetition process is disturbed. It will not completely
return to 100% at the slightest disturbance, but the efficiency will drop significantly. Application of the repe-
tition factor can also be applied onto the concrete and reinforcement costs per object, but is less effective in
these situations, since formwork can be reused within a single object.

6.4.2. FORMWORK TYPES

Table 6.3 shows a list with several formwork types, their costs and capabilities. Because this table does not
contain all systems, there exists a probability that the chosen formwork system is not the most efficient one
for a given situation.

Type: Purchase costs | Workload per | Maintenance Maintenance Complexity
€/m? unit hrs/ m? costs €/ m? frequenty [—]

Traditional 25 2 13 8 straigth

System 200 1 100 100 Straigth

Pre-assembled 1750 0.2 875 1000 Straigth

Traditional 400 2 200 8 Curved

curved

EPS foam 220 2 220 1 Double curved

Composite 1600 1 800 100 Double curved

curved

Table 6.3: formwork types and costs

When all considered formwork types are plotted in graphs and the repetition is known. It is possible to read
the formwork costs and type out of these graphs. Figures 6.6, 6.7 and 6.8 show the application of the given
formwork types for straight, curved and double curved formwork types. In these plots, the total size of the
structure is not taken into account. This can result in some inaccuracies in the results.

56

6. REINFORCED CONCRETE COSTS ANALYSIS

150,00

100,00

Formwork costs [€/m?]

50,00

Formwork costs per unit

SRR RS

\-.
—

/

e ——
——— \
\\
1 2 4 8 16 32 64 128

Repetition [N]

Figure 6.6: Formwork costs for non-curved formwork systems

400,00

350,00

300,00

250,00

200,00

Formwork costs [€/m?3]

Formwork costs per unit

= \

, \\

S w

| N\

| N N

Repetition [N]

Figure 6.7: Formwork costs for curved formwork systems

400,00

350,00

300,00

250,00

200,00

150,00

Formwork costs [€/m?3]

100,00

50,00

Formwork costs per unit

=N

f AN

J \

L

1 2 4 8 16 3
Repetition [N]

4 128

Figure 6.8: Formwork costs for double-curved formwork systems

6.5. COSTS ANALYSIS MODEL 57

6.5. COSTS ANALYSIS MODEL

In the former paragraphs, all relevant structural aspects of the reinforced concrete costs analysis where dis-
cussed. The next step is to combine the theory into one model to be able to have a specific and consisted
concrete costs model. By using this model, one can find the specific costs of the reinforced concrete, split in
concrete, reinforcement and formwork costs. One can analyse where the costs come from, which is essential
if one is executing a structural optimisation process.

Figure 6.9 shows the entire process of the costs analysis. Mind that the output information is a price for
the entire structure, or for just 1 m?® of concrete. The input information can be reduced to the amounts of
concrete, reinforcement and formwork surface, combined with the man-hour costs, material costs and the
repetition factor of the object.

Pouring &

finishing

Placing

Figure 6.9: Costs analysis of reinforced concrete.

REINFORCED CONCRETE STRUCTURAL
ANALYSIS

7.1 Design of reinforced concreteelements. ¢ . . 0 00 s e e e e e .. 60
7.1.1 Geometryspecification Lo e 60
7.1.2 Strengthrequirements. L0 e e e e e e e e 61
7.1.3 Deformationlimit’s0 oL e 61
7.1.4 Cracking behaviour of reinforced concrete. 62

7.2 Structural behaviourofelements.0 0000 d e e e e . 62
7.2.1 Thelink betweens structure and structuralelement 63
7.2.2 Required behaviour of a reinforced concrete object. 63

73 Detailing . . . o v o i o e 64
7.3.1 The "goldendesignrules" e e e e e e 65
7.3.2 Designissueso o oo e s e e e e e e e e e e e e e e e 65

7.4 Structuraldesignmethods. ¢ . ¢ 0 i it s e e e e e e e e e e e e e 67
7.4.1 Method 1: Regular Eurocode calculations, 67
7.4.2 Method 2: Strutand Tie Modelling 67
7.4.3 Method 3: Stringer PanelModelso 0oL 69
7.4.4 Method 4: FEM, "Reinforcement design in solid concrete” 70
7.4.5 Method 5: FEM, "Modelling reinforcement” 71
7.4.6 Method 6: Case based reasoning (non-structural) 73

7.5 Comparingmethods ¢ ¢ i i v v i i i i i it e e e e e e e e e e 73

This chapter is used for the literature study on 3D reinforced concrete analysis methodologies. The main
goal of this chapter is to gain knowledge on how to engineer a 3D reinforced concrete structures. This re-
search should help answering the research question on reinforced concrete analysis methods. A number of
questions are set for this chapter:

* What aspects are important for the design of a safe and effective 3D reinforced concrete object (Section
7.1)2

* What is the link between the structure and the object of the optimisation (Section 7.2)
° What is the influence of reinforcement detailing on the design (Section 7.3)?

* What design strategies are useful for the design of a 3D reinforced concrete structure, and which ones
are suited for a future structural optimisation process (Section 7.4 and 7.5)?

59

60 7. REINFORCED CONCRETE STRUCTURAL ANALYSIS

The research in this chapter is used for the development of a structural analysis model. Know-how on struc-
tural engineering methodology is considered important to complete this goals. The knowledge of this chapter
is combined with know-how in the previous chapters on costs analysis and optimisation techniques to create
an assessment model to compare options.

7.1. DESIGN OF REINFORCED CONCRETE ELEMENTS

The first step in the design of a “random” 3D reinforced concrete object, is to determine what design aspects
should be considered. In case of reinforced concrete, these are usually geometry, strength, deformations and
cracking criteria. The geometrical criteria represent the limits of the shape and location of objects. What
design space may be used for the structure and what are the limitations? The strength criteria are required
for the safety of the design. The object should be designed to be able to withstand the loading of a given
design situation. During this Master’s Thesis, this is assumed to be the Ultimate Limit State (ULS) (future
versions might include other load cases, such as the Serviceability Limit State (SLS)). For the sake of safety, it
is preferred if a structure warns before it fails. If a structure cracks first, yields next and fails next, than brittle
failure can be controlled. To prevent cracking from being harmful to the structure, some cracking limitations
can be set. The final main structural criterion is the limitation of deformations. Deformation criteria are
mainly set to ensure aesthetics, comfort and durability of a structure.

Ifa structural engineer is familiar with the limits (constraints) of a structure, the design process can be started.
The first design step is to look at the required behaviour of the design. possible requirements could involve
questions like: "What forces should the structure handle?" or "What size can the structure be?". If the required
behaviour of a design is analysed, it is possible to search for the input information and state what output
information is required.

7.1.1. GEOMETRY SPECIFICATION

The first design aspect of a reinforced concrete object is the geometry of the structure. Since a concrete ele-
ment is just a part of the total structure, a specific geometrical description is required. The available design
space is often limited by demands like: aesthetics, doors/ windows, mechanics (installations), etc. To deal
with these kind of demands, a design space should be defined (see Figure 7.1 for an example), existing of a
design domain (the space within which the structure must be defined) and a void domain (the space within
the structure which cannot be used for the structure) [10]. Within the given design domain, the object must

Boundary surface

Design domain
/ Designed structure

Void domain

G

Figure 7.1: Definition of "Design domain", "Void domain" and "boundary surface" for the design of a wall structure.

be constructed. Another condition is required to ensure that the structure will be connected with its sur-
rounding (structural) elements. These surfaces, where the structure is connected to the object will be defined
as Boundary surfaces. This is basically the section where designed structural element ends and another one
begins. These surfaces can hold boundary conditions in terms of external forces (or stresses) or required
stiffness (deformation limits).

7.1. DESIGN OF REINFORCED CONCRETE ELEMENTS 61

7.1.2. STRENGTH REQUIREMENTS

There exist a number of requirements to ensure safety in structural designs. One such requirement is that
the strength of a structure is sufficient to fulfil the loading requirements. How the strength of a structure is
checked depends on the method that is applied. Most strength-related methods check whether or not the
stresses (following from normal, moment and shear forces in all directions) stay within their limits. These
limits usually depend on material and design choices. Mind that in a 3D concrete structure, materials loaded
equally in compression in all directions can be far stronger than materials loaded differently from each angle.
Because concrete is a brittle material, the "von Misis yield criterion" does not hold for tensile stresses. Three-
dimensional stresses in brittle materials can be checked with for example the "Mohr-Coulomb criterion",
which is related to the “von Mises yield criterion” [35]:

1
Tvgr= o VO xx =0y)2+ 0y =022 + (022 — 0xx)? +60%, + 607, + 602, (7.1)

In case of reinforced concrete, there is another requirement to ensure the safety structures. To prevent brittle
failure, a structure should warn before it fails [36]. This effect is achieved by designing a concrete structure
to crack first and fail later (M., < Mpg4). In case of a simply supported beam, the structure should crack in
the concrete tensile zone first, than the reinforcement should yield before finally the concrete compressive
zone may (not) fail, resulting in collapse of the beam. To handle these requirements, the amount of rein-
forcement in a structure should be designed with care. Specific demands are created for the minimum and
maximum percentage of reinforcement to ensure the described behaviour of cracking first, then deforming
due to yielding reinforcement and finally failing.

In situations where reinforced concrete structures are optimised on costs, the strength requirements can
often be described as constraints (See Chapter 4.3). If a strength requirement is not met, this translates into
a certain “penalty”. The "penalty" is applied in order to prevent options from being chosen as the "fittest" (or
optimum).

7.1.3. DEFORMATION LIMIT’S

Concrete deformations are often difficult to find. Due to the “less predictable” modulus of elasticity of con-
crete [37] compared to steel, the deformations are highly changeable. To analyse deformations, the cracking
behaviour of the structure should also be analysed. If a structure is cracked, the modulus of elasticity low-
ers and the deformations will increase. Analysis of deformations are often performed with M —x diagrams
to find the material properties and the usual equations (i.e.: "forget-me-not" equations [38]) to estimate the
deformations.

Deformations of concrete can also be created for other reasons. Imposed deformation effects [39], like creep,
shrinkage and/or temperature loading can result in cracks or deformation of concrete. Because the effects of
these kinds of deformations are usually rather small and do not contribute to the main subject of this Master’s
thesis, the effects of imposed deformations are neglected.

Deformations (or rotations) in concrete can be seen as a structural limit for multiple reasons. They can be
limited to ensure comfort, functioning of the structure, structural behaviour, safety, to avoid cracking of con-
crete, etc. The Eurocode 2: Design of concrete structures, NEN-EN 1992-1-1 [37] (EC2) specifically states
deformation limits for different kinds of situations. Unfortunately, calculations of the deformations of rein-
forced concrete do not always represent reality. Especially when higher concrete strengths than designed are
applied, the deformation-behaviour of a structure might change, potentially resulting in different forces and
therefore deformations in the structure (especially clamped connections can be sensitive for these kind of
changes).

In this Master’s thesis, the main reason why deformations should be limited are:

* Ensuring structural behaviour. For example: a model of a clamped connection should behave similar to
the model, clamped connections should not deform like hinged connections and vice versa. The main
reason is that forces in a (statically indeterminate) structure will change with the with the stiffness of
that structure, resulting in a unreliable model.

62 7. REINFORCED CONCRETE STRUCTURAL ANALYSIS

* Deformations and cracking of the concrete are linked. Cracking of concrete lowers the modulus of
elasticity of concrete, enlarging deformations which in turn increase the cracking of concrete. Large
deformations can potentially result in unacceptable cracks in the reinforced concrete. The control of
the concrete cracking will help to limit deformations.

* Ensuring comfort/ functionality/ safety of the structure. For example: machines, facades or other parts
of the structure could be damaged by deformations of the structure. Meaning that deformations should
be limited to ensure the quality of the structure.

To ensure the limits described above, a couple of deformation limits can be set. In the first place, EC2 states
that Wyax = Wiork — We < 0.004 % [, p. in which wy,, « is the deformation of the structure in the SLS, w, is
the camber of the structure and [, s is the effective length of the part of the structure. The factor 0.004 can
be changed for specific purposes (like the ones described above).

7.1.4. CRACKING BEHAVIOUR OF REINFORCED CONCRETE

“The principal idea of designing reinforced concrete is to have the concrete resisting the compressive forces
and the reinforcement the tensile forces. Steel stresses actually start to develop after the concrete is cracked.
“Cracking” is therefore a phenomenon that is typical for the behaviour of concrete and is not a problem at all,
unless crack widths are too large so that there is risk of corrosion of the reinforcement steel” [36].

This text from the lecture notes of the TU Delft course CTB2220, “Dictaat CTB2220/3335 Gewapend beton”,
states that cracking of reinforcement is generally not a big issue. The main problem arises when the durability
of the structure is reduced due to corrosion of the reinforcement steel. To check the cracking of the concrete,
it is possible to use the formulas of the EC2. To determine the crack width criterion, knowledge is required
on the environmental class and the required behaviour (in some cases, cracking is not acceptable due to i.e.:
water tightness) of the concrete.

The cracking of the concrete is influenced by a number of factors. First the loading of the concrete should be
known in the SLS. Then, a check is required to find out in what cracking stage the concrete is. These can be:
uncracked stage, crack formation stage, stabilised cracking stage, steel bars only and finally, the yielding of
reinforcement. Finally, the formulas from the EC2 can be used to check the size of the cracks of the structure.

N crack stabilized
formation cracking
T stage stage 5
3 Nsy
/) -
sy 4 f 1 = uncracked stage
3 i 0,4 — 2 = crack formation stage
2 Pt -2 ‘E\P\ 3 = stabilisd cracking stage
Ncr i 4 4 = steel bar(s) only (unbonded)
”~
1 s 5 = yielding of reinforcement
. rd
”~
/ ~
e
= - > Al
S (0.6+a,p,)
E.p,

Figure 7.2: Cracking behaviour of a reinforced concrete tensile member, courtesy: TU Delft [36]

7.2. STRUCTURAL BEHAVIOUR OF ELEMENTS

This Master’s thesis is about the structural optimisation of reinforced concrete objects. This means that not
the entire structure, but just a part of it is reviewed. This assumption has certain effects on the calculations
that are being made. Some of them can have a large influence on the design of the structure as a whole. The
assumed starting point is that the (general) shape of the structure and the governing forces are already known.

7.2. STRUCTURAL BEHAVIOUR OF ELEMENTS 63

PRl

Figure 7.3: "Forget me not’s", courtesy: [40]

The shape/ dimensions of structural element is going to be determined with a structural optimisation. This
section discusses the issues that have to be accounted for in the process.

7.2.1. THE LINK BETWEENS STRUCTURE AND STRUCTURAL ELEMENT

The more global structural design can have a large influence on the design of individual parts of a struc-
ture. As can be seen in Figure 7.3, forces and deformations can change due to different boundary conditions.
Optimising a structure itself to minimise the amount of forces and so the required amount of material can
make a large difference in the design. One can decide where to attract more forces and where not to. Since
the starting point of this Master’s thesis is at the point where the structure and its forces are already known,
this subject is out of scope. It can however be quite interesting to keep these kind of effects in mind when
designing a proper structure.

When an object is produced more than once, the effects of repetition can be taken into account. Repetition
can have effects in materials (like formwork) that can be re-used, processes that become more efficient (less
man hours required for the n!” product then for the 1st one) and bulk materials which can be cheaper when
bought in large amounts. If possible, it can really safe costs to standardise objects to make sure repetition is
maximised [33]. More information on the cost effects of repetition can be found in Section 6.4.1.

Finally, the location of the object within the structure can have some influence on the costs of object. Espe-
cially when lots of false work is required to be able to create the structure, or when objects have to be placed
at difficult locations, this can have influence in the construction process. When secondary costs have to be
made to be able to create a structure, this is often not very efficient. The solution for this problem is often
strongly depending on the object and its location.

7.2.2. REQUIRED BEHAVIOUR OF A REINFORCED CONCRETE OBJECT
When one is designing a prefabricated reinforced concrete connection [41], a number of properties should
be taken into account. A prefabricated reinforced concrete connection is of course not completely equal
to a reinforced concrete element, but the requirements for properties are quite similar. In “Reader CIE4281
Designing and Understanding Precast Concrete Structures in Buildings" [41] it is described what these prop-
erties should be:

¢ Standardisation (mass production)

* Simplicity (beneficial for costs)

* Tensile capacity (reinforcement tensile capacity, anchor lengths, detailing)

¢ Ductility (No brittle failure, large deformations before failure)

* Movements (required stiffness, free form capacity)

64 7. REINFORCED CONCRETE STRUCTURAL ANALYSIS

* Fire resistance (Structural boundary conditions)
* Durability (concrete quality, cover, fatigue, cracking)

* Aesthetics (shape related boundary conditions)

A number of these properties are described in previous chapters (standardisation, simplicity, tensile capac-
ity, ductility, movements, durability) and others are not (fire resistance and aesthetics). Fire resistance and
aesthetics are not considered to be out of scope for this Master’s thesis.

An important aspect in the structural design of a reinforced concrete structure, is whether or not the required
behaviour is being realised. The modelled behaviour of the structure has to be similar to the actual one.
For example, a clamped connection has to behave as if it one, otherwise the model is inaccurate, which is
a potential cause of failure. A method to check whether the model is correct or not, is to check the force
equilibrium to find the forces in the structure and then make sure that no excessive deformations occur.

To perform structural optimisation, a number of properties and conditions have to be taken into account.
Unfortunately, it is difficult to make sure all properties are included. There are often selection criteria ex-
cluded from optimisation processes. This results in inaccuracies in the results of the process. The output of
the structural optimisation is just an advise (not to decide), preferably in terms of “make sure parameter x
looks like y”. The goal of the optimisation process should be to guide the design and not to be the design.

7.3. DETAILING

The relationship between structural detailing, durability and design is considered important. Sufficient qual-
ity of detailing of a reinforced concrete structure improves the durability (and therefore the quality) of the
design. In this section, a number of design issues and rules are discussed in an attempt to include detailing
of the reinforcement in the structural optimisation process.

In the current design process, detailing of reinforcement is placed at the end of the process (see Figure 7.4).
In many situations, problems arise when the beam has to be detailed. In the first stages of design, al strength,
deformation and cracking checks could have suggested that the beam was ok, but when it turns out that for
example the reinforcement does not fit into the structure, the design may still be unacceptable.

E
[
] Simple
-
calculation
>
width 5 ’ Detailing
o ® p [%o]
Estimation 7]
o Rebar design

~a@b
Be-d

Design process over time

Figure 7.4: The design process of a reinforced concrete beam. Mind the level of detailing for each stage (working from a rough design to
a detailed design)

Problems in concrete detailing can often be solved easily. Most problems arise due to the “inflexibility” at the
end of the design process, giving the engineer less space to change the dimensions of the structure. To avoid
these kind of problems, one should try to think of detailing in the earlier stages of the design (see Figure 6.1).
In this chapter, some basic “rules” for the detailing of reinforced concrete structures are formulated.

7.3. DETAILING 65

7.3.1. THE "GOLDEN DESIGN RULES"

When one is pouring and finishing concrete, some structures are easier than other structures. It is possible to
define a set of rules to ensure the workability of the concrete (and so improve the quality). The three “golden
design rules” for reinforced concrete structures, according to the book “Manual for detailing reinforced con-
crete structures to EC2 [42]” are:

Rule 1: Concrete must be cast into its final position across an essentially vertical path.

horizontal paths must be avoided. This must be taken into consideration in the design drawings for rein-
forcing bar arrangements. Concrete aggregates should be able to pass the reinforcement bars in their way
quickly.

Rule 2: The vibrator must be able to reach the bottom reinforcement.

With 65 mm spacing, a standard 50 mm vibrator will be able to reach the bottom reinforcement. Wider
spacing should always be applied to be sure compacting the concrete is possible. (note: 65 mm spacing
refers to the open space between reinforcement bars and not the distance the centre points of the bars)

Rule 3: Concrete consistency must be in keeping with the reinforcement arrangement. As a general rule the
concrete slump should be no smaller than 60 mm.

Unless the reinforcement is arranged very openly and spaciously or powerful vibration methods are used,
overly dry concrete is characterised by the following:

* The required strength can be reached in test specimen (but not on site) with a lower proportion of
cement. The real strength of the concrete can be lower

* Since the control specimens can be compacted with no difficulty, the laboratory trials will famish good
information

¢ In-situ placement and a good surrounding of the reinforcement will be difficult to achieve and the loose
consistency will lower actual on-site strength

7.3.2. DESIGN ISSUES

In this section, a number of concrete detailing design issues are discussed. The goal of the discussion is to
define a set of “rules” that should help to design a structure. The source for these points of attention is, just
like the golden design rules, “Manual for detailing reinforced concrete structures to EC2 [42]”. Other sources
are the EC2, and some basic books on reinforced concrete design [36, 43].

CONCRETE COVER

“The concrete cover is the distance between the surface of the reinforcement closest to the nearest concrete surface
(including ties and stirrups and surface reinforcement where relevant) and the nearest concrete surface [42]”
The concrete cover is meant to protect the reinforcement from corrosion, make sure the reinforcement has
enough bond strength and gives adequate fire resistance. The concrete cover can be determined according to
EC2 Chapter 4.4.1. If the concrete cover is being determined, the required environmental class in which the
concrete is designed should be known. One can then simply read the required concrete cover from tables.

Special attention should be paid to the corners of the structures. Because reinforcement bars need to be bend
to realise corners, this creates the situation where the concrete cover in corners is much larger than normal
[37]. In some situations, especially when bar diameters larger than @> 12 mm are applied, these distances
can become quite large. One should take the higher chance of damage into account in these situations. A
possible solution could be “smoothening” the corners to prevent this kind of damage.

PERMISSIBLE MANDREL DIAMETERS FOR BEND BARS (EC2, 8.3)

Reinforcement bars often have to be bend to connect to other bars, or to fit inside a structure. The mandrel
diameter should fulfil a certain set of rules. The minimum mandrel diameter for bends, hooks and loops is &

66 7. REINFORCED CONCRETE STRUCTURAL ANALYSIS

Tabel 8.1N — Minimumdoorndiameter om schade aan de wapening te vermijden

a) voor staven en draden

Staafdiameter Minimumdoorndiameter voor ombuigingen, haken en
haarspelden (zie figuur 8.1)

¢= 16 mm 4 ¢
¢> 16 mm ¢

b) voor gelaste gebogen wapening en wapeningsnetten gebogen na het lassen

Minimumdoorndiameter

Lr_ofg g‘lﬁofg

dz3¢: 5¢
d < 3¢ of lassen binnen de buigzone: 20 ¢

5¢

OPMERKING De doorndiameter mag voor lassen binnen de buigzone zijn verminderd tot 5 ¢,
als het lassen is uitgevoerd in overeenstemming met bijlage B van prEN IS0 17660.

Figure 7.5: Mandrel diameters according to EC2, courtesy: [37]

4 for bar diameters @ < 16 mm and is @ 7 for bar diameters @> 16 mm. The length of the bar bend the end of
the bend should be larger than & 5 to be allowed to take the bend into account as part of the reinforcement.
For further rules considering the bending of reinforcement bars, one should take a look at EC2 Chapter 8.3.

BUNDLED BARS

When bar spacing’s are getting too small, one of the possible solutions is to bundle reinforcement bars to
increase this spacing. When one bundles reinforcement bars, there are also two main disadvantages. The
first one is the higher difficulty with the anchoring lengths, the other one is that the more complex design
makes construction more complex and therefore more costly.

Bundling of reinforcement bars is not always allowed. To deal with this issue, certain rules can be applied. As
arule, no more than three bars can be bundled together (to make sure concrete can still surround and bond
to the reinforcement bars as much as possible). The equivalent diameter of a set of bundled reinforcement
bars cannot be larger than 55 mm. the equivalent bar diameter can be found with the formula @, = @/,
where ny, is the number of bars and @ is the diameter of each individual bar.

SURFACE REINFORCEMENT

For bars with diameters over 32 mm, it might be useful to apply surface reinforcement to control the cracking
of the concrete or to control the spalling of the concrete. Surface reinforcement should consist of a welded-
wire mesh of narrow bars. The bars applied in the surface reinforcement can also be used in the structural
calculations for the shear and moment force capacity of the structure.

ANCHORAGE LENGTHS

Not all reinforcement can be applied in one piece, therefore it is possible to anchor reinforcement bars to each
other to create a continuous system. In the EC2, specific rules for the anchorage lengths are given, especially
the concrete strength (required for the load transfer) and the bar diameter are important to be able to find
the required anchorage length of a reinforcement bar. In practice, locations with lots of anchors can have a
very dense reinforcement mesh. Therefore, a smart placement of the reinforcement can improve the quality
of the design.

7.4. STRUCTURAL DESIGN METHODS 67

7.4. STRUCTURAL DESIGN METHODS

To find out what structural engineering method is suited to use in the structural optimisation process, it is re-
quired to search for different engineering methods. Each method has its own advantages and disadvantages.
In the final section of this chapter, it will be discussed what methods are useful for optimisation and what
methods are probably not.

When a reinforced concrete object is designed, the structural engineering method can be tested for a couple
of subjects. The method should be uniform, suitable for optimisation process and capable to design rein-
forcement in a random 3D concrete shape. The results of the method should be reliable and understandable.
Paragraphs 7.4.1 to 7.4.6 will describe several structural engineering methods.

7.4.1. METHOD 1: REGULAR EUROCODE CALCULATIONS

Regular design methods are used to describe/ model a simplified 3d structure. The structure will be described
in terms of columns, beams, diagonals, slaps and walls. The structure is checked according to the regular de-
sign codes. First the dimensions of the structure have to be estimated, than the reinforcement is designed
and the structural design is completed. The optimisation parameters can be values like material types, re-
inforcement design and geometry. Normal elements in this method are: "columns", "beams", "plates" and
"slabs". Problems can arise when structures are designed that are difficult to simplify into elements (i.e: in
case of a 3D volume). The data generated with this method is normally sufficiently clear, making this method
quite accurate and workable.

THE METHOD

This method can be different for each problem. The list below describes the steps that should be taken to
design a proper structure. Mind that not all special structures can be modelled correctly with this model.
EC2 has to be taken into account to find further specifications. Especially oddly shaped objects are harder to
model with this method.

Usually, the design procedure contains the following steps:

* Assume dimensions for the geometry of the structure and determine the model that is to be used to
design the structure (column, beam, slab, wall, etc.)

* Determine the loading and load cases for the model. Then calculate the forces to design the structure
for all load combinations.

* Check the (combination of) Normal, shear and moment forces in the structure in the ULS and design
the reinforcement to fit the requirements.

If required, check the structure for the secondary effects, like punching shear, torsion, etc. If it is re-
quired, additional reinforcement or concrete should be applied.

* Check the deformations and cracking behaviour of the structure in the SLS. If required, the design
should be changed.

7.4.2. METHOD 2: STRUT AND TIE MODELLING

Strut-and-Tie Model (STM) are widely used to design i.e.: shear-reinforcement or detailing. The method is
allowed in the EC2 and is a relatively simple and uniform method to design structures. In this method, struts
are used to describe compression areas. Ties are used to design the tension areas in the concrete. This means
that a good STM shows similarities to the stress trajectories (which describe the compression and tension
stresses) of the structure. In the tension areas, a reinforcement can be designed and in the compression
areas, the compressive stress can be checked. The system works for most (well described) situations and can
be applied on 3D shapes as well [36].

68 7. REINFORCED CONCRETE STRUCTURAL ANALYSIS
+/- Advantages and disadvantages:
+ Results are simple, robust and reasonably accurate
+ Widely used and accepted in practice to design 1d and 2d structures. This generally means that

it is reliable, effective and described in the codes.

Does not describe how to design 3d reinforcement. The result is that the engineer should try to
fit simplified 1- or 2-dimensional engineering in a three-dimensional structure.

Not all shapes are possible, the method can only be applied when a structure can be simplified to
the existing design models (generally 1d beams and 2d plates).

different shapes can give different approaches. Resulting in a not so uniform method that can be
difficult to model correctly.

Table 7.1: Advantages and disadvantages of method 1

P
\ S|
g "I||||I ||I'.\ o]
'l."l' 1 ‘,'r \
b D, f;;;{:.-'ll,l I'ulllt&‘\ g —qu—clv E | beugels
o IR I
[T P
h 4 i
ey bkkiidiid fFef===g=4 ===
RRRERR A
5 VP VP

b D 2 I|I I.I'I:.': II/ \\-..:'\I III i
I/ Wi f \
Y 1||J'|' Il ——— 5 trekband
P P
- b .

Figure 7.6: Detailing in a wall usingSTM. Courtesy: [36]

THE METHOD

Determining the reinforcement in a D-region requires the following steps to be taken:

Determine the size and location of the D-regions. The disturbed length is about the size of the zone in
which the load should be spread.

Determine the boundary conditions in the border areas of the D-regions. The forces at the border areas
are partially determined by the global distribution of forces in the structure.

Visualise the flow of stresses through the D-region. This can greatly assist the engineer to create a good
model to fit the stress paths in the region.

Develop a strut and tie model to represent the flow of forces. Note that it can be beneficial to also take
the location of supports and nodes into account.

Calculate the forces in the struts, check the stresses in the compressive and nodal zones and deter-
mine the reinforcement in the tensile zones . Also check whether the designed compressive zones and
reinforcement fit within the design area.

Design and check the anchorages for the reinforcement.

7.4. STRUCTURAL DESIGN METHODS 69

* Provide additional crack control reinforcement if required.

After all steps are taken to design the reinforcement in the D-region. It is advised to synchronise/ check the
results with those of the B-regions. The anchorages of the reinforcement, the deformations and cracking of
the concrete are not taken into account in this method. Extra steps (6. and 7.) are required to ensure the
quality of the design.

+/- Advantages and disadvantages:

+ In principle, secondary effects like punching shear should not be a problem since the strut and
tie model (when conducted correctly) would take them into account.

+ The method is uniform, reliable and relatively simple for all shapes.

+ The method is easy to apply onto complex three-dimensional structures.

- Basic shape of structure required before reinforcement can be designed, the method is used to
determine the reinforcement in the structure.

- Does not tell anything about brittle failure, stability or cracking of concrete. Additional calcula-
tions should be made to check these properties.

Table 7.2: Advantages and disadvantages of method 2 (STM)

7.4.3. METHOD 3: STRINGER PANEL MODELS

The stringer panel method has been developed by the University of Denmark, Politechnico di Milano and the
TU Delft [44]. The method, which is represented by Figure 7.7, is based on stringers and panels. Stringers are
assumed to carry normal forces while panels carry the shear forces. In some cases, panels can carry normal
forces as well [45].

The concept of stringer panels is based on reinforced concrete walls. It is common for walls to have con-
centrations of reinforcement near their edges. Stringers can make full use of this property by using relatively
large lever arms for the reinforcement.

CEEE—
r——— p— ——

Figure 7.7: Stringer panel method, the stringers carry normal forces and the panels the shear (and normal) forces. The stringer panel
method is developed for the analysis of walls. Stringers can easily be "replaced" by reinforcement bars. Courtesy: Hoogenboom [45]

The stringer panel concept is somewhere between the Finite Element Method (FEM) and Strut-and-Tie Model
(STM) method. Differences between stringer panels and the STM technique are among others:

* Stringer panels tend to be have a less complicated shape composed of rectangles compared to the truss
shapes required for a STM.

* Stringer panels represent the geometry of a structure while a STM represents the flow of forces trough
a structure. Some STM cannot be used for multiple load cases due to this effect.

70

7. REINFORCED CONCRETE STRUCTURAL ANALYSIS

Engineers have much more design freedom in case of STM. This is both positive due to the design
freedom and negative due to the larger difficulty in finding the best options. There are usually just a
few logical models in case of stringer panels.

THE METHOD

The described method generally uses the next steps to determine the stresses and the reinforcement in the

given

structure:

Choose stringer panel lay-out
Establish load cases and combinations
Perform a linear analysis with the stringer panel method

Select reinforcement based on this analysis

+/- Advantages and disadvantages:

+ The method is uniform for all shapes, the input that are required can be found in the boundary
conditions and the design space.

+ The simplicity of the method results in a computationally efficient technique.

+/- Stringers represent reinforcement. This can be positive because leaver arms will be relatively

large due to the position of stringers on the edges of the structure. Non-stringer positions of
reinforcement can be somewhat difficult to place.

This model is developed for wall shaped structure. It can be difficult to apply this technique on
other shapes.

The method is not described in the codes and can therefore be complex to apply in practice.

Table 7.3: Advantages and disadvantages of method 3

7.4.4. METHOD 4: FEM, "REINFORCEMENT DESIGN IN SOLID CONCRETE"

In the paper “Computation of reinforcement for solid concrete [46]”, a set of reinforcement design rules is
proposed for FEM containing volume elements. The proposed system could be used to determine the rein-
forcement in a random concrete volume object. This method is basically a finite element method for rein-
forced concrete volume elements, capable of designing reinforcement. For a more specific description, one
should look into the paper.

THE METHOD

The described method generally uses the next steps to determine the stresses and the reinforcement in the

given

structure:

Define the geometry and boundary conditions of the object. Also make sure loads are given in the SLS
and ULS.

Describe the stress criterion (Mohr, von Mises, Tresca, etc.), in other words, when does the reinforce-
ment steel yield (f,4) and when does the concrete crack (f¢r, fer)-

Equilibrium of forces, make use of the equilibrium equations of reinforced concrete in a cracked stage
to describe the forces in the structure. Determine the stresses and find out what the optimal reinforce-
ment ratio for each direction is. To be able to work and check the stresses in the cube, the principle
stresses will have to be found first .

The designed structure can now be checked in the ULS for strength and the SLS for cracking.

7.4. STRUCTURAL DESIGN METHODS 71

crack face

reinforcing bar

Figure 7.8: Stresses in small cube and cracked cube part. courtesy: [46]

Equilibrium equations for a finite element of this method [46]:

0 Oxx— Pxfyd Oxy Oyxz cosa
0| = Oxy Oyy—Pyfyd Oyz * | cos f (7.2)
0 Oxz Oyz Ozz— Pzfyd cosy
+/- Advantages and disadvantages:
+ In principle, secondary effects like punching shear should not be a problem since this model
(when conducted correctly) would take them into account automatically.
+ The method is uniform for all shapes, the input that are required can be found in the boundary

conditions and the design space.

- The method can result in a mesh of concrete cubes with each a specific reinforcement ratio. One
should learn to manage these ratios to find a realistic reinforcement design.

- The large amount of data that is generated with this method could result in a very large processing
time.

- The method is not described in the codes and can therefore be complex to apply in practice.

Table 7.4: Advantages and disadvantages of method 4

7.4.5. METHOD 5: FEM, "MODELLING REINFORCEMENT"

Finite Element Method (FEM) where already described twice in the past few sections. Finite element analysis
is potentially a very capable method to design a random reinforced concrete structure. Former sections al-
ready described a FEM analysis used in a topology optimisation to find the right place for the reinforcement
and a FEM analysis specifically designed to find the reinforcement ratio in elements. There are numerous
variants capable to design reinforced concrete objects.

One method that would specifically interesting for reinforcement design is non-linear “smeared cracking
[47]” system. This method describes basic finite elements that display a certain elastic behaviour to describe
cracks in the concrete. When also the reinforcement is modelled in the model, a quite accurate simulation of
reality could be made. Mind that smeared cracking spreads cracks over the entire structure, resulting in some
danger that the model overestimates reality.

THE METHOD

The effect of cracking is spread over the area that belongs to an integration point. Advantage: smeared cracks
can occur anywhere in the mesh in any direction. This can be modelled with a mesh element that looks like
Figure 7.9.

A crack is initiated when the principal tensile stress o; exceeds the value of the tensile strength f; [48]. The
direction of the crack is perpendicular to the direction of the principal tensile stress. After crack initiation,

72 7. REINFORCED CONCRETE STRUCTURAL ANALYSIS

Figure 7.9: Quadratic finite element with smeared cracking, courtesy: [47].

the principal stress follows a tension-softening stress-strain diagram. Three material parameters (same as for
discrete crack):

¢ tensile strength f;
e fracture energy G

* shape of the softening diagram

Additional parameter: crack band width h over which the crack is smeared out.

DISCRETE SMEARED

Figure 7.10: Stress strain relationship, courtesy: [47].

When the method is applied correctly in a finite element program. The results, in case of a deep beam ele-
ment would look like Figure 7.11. The results can be used to check the strength, deformation and cracking
behaviour of a reinforced concrete object. With this method, it is still quite simple to model reinforcement
into the concrete model. The reinforcement can be modelled as a separate (different) finite element that
behaves like steel.

Figure 7.11: Resulting cracking behaviour, courtesy: [47].

7.5. COMPARING METHODS 73

+/- Advantages and disadvantages:

+ In principle, secondary effects like punching shear should not be a problem since this model
(when conducted correctly) would take them into account automatically.

+ The method is uniform for all shapes, the input that are required can be found in the boundary
conditions and the design space.

+ Cracking behaviour is taken into account with this method.

- The method can be computationally intensive, this method might be a bit overkill for the required
optimisation process.

- Smeared cracking spreads cracks over the structure, this might lead to a overestimation of the
strength of the structure.

- The method is not described in the codes and can therefore be complex to apply in practice.

Table 7.5: Advantages and disadvantages of method 5

7.4.6. METHOD 6: CASE BASED REASONING (NON-STRUCTURAL)

Reasoning can often be described as a process. One starts from scratch and then, with the help generalised
rules, on can come to conclusions. In case based reasoning, the primary knowledge is “harvested” from
previous experiences, with the advantage of learning from previous situations. The definition of this method
can be described as:

“In CBR, new solutions are generated not by chaining, but by retrieving the most relevant cases from memory
and adapting them to fit new situations.” [49]

In practice, most logical structural options are already applied. To be able to work with this method, lots of
historical projects should be put into a database. The engineer can than specify the structure that is to be
designed and find all similar ones. The historically successful structures can then be used (copied and then
changed) for the current project. The unsuccessful ones can be used to learn from experiences that should
not reoccur.

Since this principle is out of the scope of this Master’s thesis (its not a structural engineering subject), it will
not be addressed in further analysis. The system can however be very useful for larger/ older companies
with a large history of projects. With this method they can effectively learn from their previous mistakes and
successes.

+/- Advantages and disadvantages:

+ Very effective for standard structures, a standard design can just be copied, transformed and/or
combined to fit into the surroundings. Some standardisation can be applied to make it easy for a
building to fit on its specific location.

+ This method saves time and money due to the repetition factor. If a structure is being build
multiple times, normally, the later structures will experience less errors and faster construction.

- Unique structures will not be able to use this technique and structures are often quite unique for
their situation, so some engineering will always have to be done.

- If this method gets too successful, the build environment could become filled with copied struc-
tures. People tent to find such an environment not very interesting.

- If new problems arise with the original design, this could potentially affect all copied structures.

Table 7.6: Advantages and disadvantages of method 6

7.5. COMPARING METHODS

The final step of this chapter is to compare and select the methods that are most suited for this Master’s thesis.
The methods (see Section 7.4) should be judged on several parameters that are required for the optimisation
of areinforced concrete three-dimensional structure. Finally, a selection of the most promising methods can
be made.

74 7. REINFORCED CONCRETE STRUCTURAL ANALYSIS

When a three-dimensional reinforced concrete structure is optimised, what properties would be required to
make it successful? The method should be at least capable to make a complete analysis of a three-dimensional
reinforced concrete structure, giving the properties “3D capable” and “complete analysis possible”. Further-
more, it would be preferable if the method is computationally not too intensive, and applicable for as many
shapes as possible, “simplicity” and “uniform method”. Furthermore, the results of the method should be
allowed for practical usage and should be reasonably accurate.

The list below describes all selection criteria. If a method fulfils these requirements, than it should be able to
work for optimisation processes.

* 3D capable (make sure all shapes are possible).

* Complete analysis possible (strength, deformations and cracking can all be checked).

* Simplicity (simple methods improve understanding, reduce errors and may boost computational speed).

e Uniform method (to ensure a maximum number of options are possible with one technique).

Method is described in EC2 (or other design code).

e Accuracy.

A comparison of options on these properties suggests that the STM is the preferred method. This suggestion
is motivated by a number of properties. Design according to EC2 techniques requires different methods for
different problems. This reduces the simplicity and uniformity of the technique. The stringer panel method
is very simple and uniform, but it is developed for wall shaped structures. The technique is interesting, but
requires adjustments for applications on random 3D structures and is not clearly described in EC2.

FEM techniques are computationally more complicated than STM techniques. Method 4 ("Design in solid
concrete") is capable of estimating reinforcement, but the technique seems to be experimental. Method 5
(non linear analysis with modelled reinforcement) is computationally very intensive, but also very accurate.
Reinforcement has to be modelled for all options, which is very complex.

The STM appears to have all properties of the list above. It can be used for 3D shapes (with 3D trusses)
and, given a sufficiently detailed truss, it offers a complete linear analysis of loading effects. The technique is
simple to apply and can be standardised by using "building-block-based" trusses. The technique is described
in EC2 and is usually a little conservative because material between the truss and the concrete tensile strength
are usually neglected.

Assumption: The Strut-and-Tie Model (STM) technique is selected as preferred method for the structural opti-
misation process.

(1]
(2]
(3]
(4]
(5]

(6]

(7]
(8]

(9

(10]
(11]

(12]

(13]

(14]
[15]
(16]

(17]

(18]
(19]
(20]
[21]
(22]
(23]

(24]

(25]

BIBLIOGRAPHY

W. Collins et al., Collins english dictionary - complete & unabridged 10th edition, (2014).
E van Keulen and M. Langenaar, Wb1440 engineering optimization, (2013), lecture slides.
J. Stewart, Calculus, early transcendentals (Cengage learning inc., 2011).

J. Arora, Introduction to optimum design (Elsevier, 2012).

H. Wolkowicz, Optimization: Theory, algorithms, applications, Presentation (2006).

P. Papalambros and D. Wilde, Principles of Optimal Design - Modeling and Computation (Cambridge
University Press, 2000).

S. Burns, Recent Advances in Optimal Structural Design (ASCE, Urbana, 2002).
ABT-bv, Begroting model, (2014), internal document, Dutch.

R. Kennedy, J.and Eberhart, Particle swarm optimization, Proceedings of IEEE International Conference
on Neural Networks IV, pages: 1942 t/m 1948 (1995).

P W. Christensen and A. Klarbring, An Introduction to Structural Optimization (Springer, 2009).
A. Einstein, Everything should be macde as simple as possible, but not simpler, (1950).

W. Wolpert, D.H.and Macready, No Free Lunch Theorems for Search, Technical Report SFI-TR-95-02-010,
Tech. Rep. (Santa Fe Institute, 1995).

C. Vuik, P. van Beek, E Vermolen, and J. van Kan, Numerieke Methoden voor Differentiaalvergelijkingen
(VSSD, 2006) dutch.

D. Lay, Linear algebra and its applications (Pearson, 2005).
Michi, Design variables of structural optimization problems. Website (2010).
Foster and Partners, British museum court, (2012).

T. Borrvall and P. J., Large scale topology optimization in 3D using parallel computing, Tech. Rep. (Divi-
sion of Mechanics, Mechanical engineering systems, Linkoping university, 2000).

C. Raymond, Nature-Inspired Algorithms for Optimisation (Springer, 2009).

W. Spillers and K. MacBain, Structural Optimization (Springer, 2009).

Mathworks, ed., Matlab Primer R2014b (Mathworks, 2014).

C. Darwin, The origin of species (New York PE Collier, 1909).

A. Simone, An Introduction to the Analysis of Slender Structures (TU Delft, 2007).

J. Brownlee, Clever Algorithms: Nature-Inspired programming recipes (lulu.com, 2011).

Y. Shi and R. Eberhart, A modified particle swarm optimizer, IEEE World Congress on Computational
Intelligence., The 1998 IEEE International Conference on Evolutionary Computation Proceedings , 69
(1998).

M. Doringo and T. Stutzle, Ant Colony Optimization (MIT Press, 2004).

75

http://dictionary.reference.com/browse/
www.abt.eu
http://dx.doi.org/ 10.1109/ICNN.1995.488968
http://dx.doi.org/ 10.1109/ICNN.1995.488968
http://carat.st.bv.tum.de/caratuserswiki/index.php/Users:Structural_Optimization/General_Formulation
www.fosterandpartners.com
http://dx.doi.org/ISBN 978-3-642-00266-3
http://dx.doi.org/ISBN 978-0-387-95864-4
www.mathworks.nl
http://www.biodiversitylibrary.org/item/65514
http://dx.doi.org/ISBN: 9781-4467-8506-5
http://dx.doi.org/ISBN 978 0 262 042 192

76

BIBLIOGRAPHY

(26]

(27]

(28]

(29]

(30]

[31]

(32]

[33]

(34]

[35]

[36]
[37]

(38]

(39]

[40]

(41]

(42]
(43]
(44]

(45]

(46]

(47]

(48]

(49]

W. Boyce and R. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th ed. (Wi-
ley, 2008).

G. Francis and J. Weeks, Conway’s zip proof, Amer. Math. Monthly, 393 (1999).

M. Siqueira, An Introduction to Algorithms for Constructing Conforming Delaunay Tetrahedrizations,
Tech. Rep. (University of Pennsylvania, 2003).

R. McNeel and Associates, eds., Rhinoceros 5 User’s Guide For Windows (Robert McNeel and Associates,
2014) 3d Computer Graphics.

A. Payne and R. Issa, Grasshopper Primer, Second Edition (LIFT Architects and Robert McNeel and Asso-
ciates, 2009) visual Programming.

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computation Geometry, Algorithms and Ap-
plications (Springer Berlin Heidelberg, 2008).

B. Paulson, Designing to reduce construction costs, Journal of The Construction Division (1976).

A. van der Horst, CT4170 Construction Technology of Civil Engineering Projects - Lecture notes, 3rd ed.
(TU Delft, 2013).

GTB 2010 grafieken en tabellen voor beton, Tech. Rep. (Betonvereniging, 2010) dutch.

C. Hartsuijker and H. Welleman, Mechanics of Structures CT4145/CT2031 Module: Introduction Into Con-
tinuum Mechanics (TU Delft, 2008) dutch.

J. Walraven, Dictaat CTB2220/3335 Gewapend beton (TU Delft, 2013) dutch.

Eurocode 2: Design of concrete structures - part 1-1: General rules and rules for buildings, Tech. Rep.
(Nederlands Normalisatie Instituut, 2005).

C. Hartsuijker and H. Welleman, Mechanica, statisch onbepaalde constructies en bezwijkanalyse (Aca-
demic Service, 2004) dutch.

K. van Breugel, C. Walraven, J.C.and van der Veen, and R. Braam, Concrete Structures under Imposed
Thermal and Shrinkage Deformations, Theory and Practice, edited by K. van Breugel and E. Koenders
(TU, 2013).

J. Gerrits, Bk2000 rekenvoorbeeld, Faculty of Architecture, TU Delft (2010), bijlage 2: Mechanica "Vergeet-
me-nietje".

D. Hordijk, R. Nijsse, and S. Pasterkamp, Reader CIE4281 Designing and Understanding Precast Concrete
Structures in Buildings (TU Delft, 2012).

J. Calavera, Manual for detailing reinforced concrete structures to EC2 (CRC Press, 2011).
C. Braam and P. Lagendijk, Constructieleer gewapend beton (Cement en Beton, 2010) dutch.
SPanCad, Stringer-panel method, Internet (1999).

P. Hoogenboom, Discrete Elements and Nonlinearity in Design of Structural Concrete Walls, Ph.D. thesis,
TU Delft (1998).

P Hoogenboom and A. de Boer, Computation of reinforcement for solid concrete, (2008) pp. 247-272.

J. Rots and M. Hendriks, Cie5148 computational modeling of structures, lesson: smeared cracks and rein-
forcement, (2013), lecture at TU Delft, cource CIE5148.

H. Welleman, Structural Mechanics 4 CIE3109 Module: Work and Energy Methods (TU D, 2014) dutch.

D. Leake, Case-Based Reasoning: Experiences, Lessons and Future Directions, Tech. Rep. (AAAI Press/ MIT
Press, 1996).

www.rhino3d.com
www.grasshopper3d.com
homepage.tudelft.nl/p3r3s/spancad/index.html
http://dx.doi.org/ISBN 90 9011843-8

LIST OF FIGURES

1.1 Major subjects in discussed in this literaturestudy. 1
2.1 Rectangular area maximisation with limited fencing (Problem based on Calculus [3]) 4
2.2 Application of structural optimisation on a space-truss.ot it 5
2.3 Impression of a traveling-salesmanprobem. o L oo 6
2.4 Grand Canyon and even more difficult "Needle in a haystack" problem.. 9
2.5 Example of a continuous (left) and discontinuous (right) function. 11
2.6 Structural optimisation strategies e e e 12
2.7 Application of structural optimisation on a Space-truss.« .ot vt et 13
2.8 Shape optimisation v v it i it e e e e e e e e e e e e e e e e e e 14
2.9 Topologyoptimisation i e e e 14
2.10 Example of three-dimensional cantileverbeam. i 15
2.11 Solution to the rectangular farmareaproblem 0 oL 16

2.12 Particle swarm optimisation is a nature inspired optimisation algorithm based on the behaviour

offishschools e 17
3.1 Basic diagram to show the location of an optimisation algorithm in the optimisation process. . 20
3.2 Simulated Annealing (SA) L e e e 21
3.3 cycliccoordinate searchmethod L L e 22
3.4 Nelder-Mead-simplexmethod ittt 23
3.5 Genetic algorithm, mutation and combination 24
3.6 Particle swarm optimisation. Courtesy: Qirong Tang, Universitat Stuttgard. 25
3.7 Representation of the Particle Swarm Optimisation (PSO) algorithm 26
3.8 PSOflowchart. e e e 27
3.9 Function f(x) andit'sderivative. L L e e e e e e 29
3.10 Particle progressfor c; =co =0,1 L L e e 30
3.11 Particle progressforcy =co =1 oL e 30
3.12 Particle progress for c; = Co =2 L e e e e 30
3.13 relation of algorithm to other optimisation techniques 34

77

78 LIST OF FIGURES
4.1 Different types of object function solutionspaces.. Lo 36
4.2 Logarithmic and quadratic penalty functions 39
4.3 Arctangent and unit-step penalty functions o e e 40
4.4 Combined arctangent + quadratic penaltyfunction, 41
5.1 Limiting conditions for STM trussdesign i ittt e 43
5.2 Representation of truss building with a Delaunay algorithm. 44
5.3 Tetrahedron e e e e e 45
5.4 exampleofmesh pattern i i i e e e e e e 46
5.5 trussrealisation L. e e e e e e e e 47
5.6 exampleshapeofabeam e e 47
5.7 Example shape of meshedbeam e 48
6.1 Relation specification - designinfluence 50
6.2 Determining the costs of the concretevolume.o 52
6.3 Determining the costs of reinforcement. 53
6.4 Determining the formwork costs.. o i i i it it e e e e e e e e 54
6.5 Learningcycleeffect i e e e e e e e e 55
6.6 Formwork costs for non-curved formwork systems, 56
6.7 Formwork costs for curved formwork systems 56
6.8 Formwork costs for double-curved formwork systems 56
6.9 CoStsSanalysiS . . . v v v i i e 57
7.1 Geometry limitations L L e e e e e e e 60
7.2 Crackingbehaviour L e e e 62
7.3 FOrgetmemnot’st i ittt e e e 63
7.4 Design-detailing 64
7.5 Mandrel diameters accordingto EC2 L o e 66
7.6 Detailinginawallusing STM L L 68
7.7 Stringerpanelmethod. L L 69
7.8 Stressesin small cube and cracked cubepart. oL L oo oo 71
7.9 Quadratic finite element with smeared cracking. 72
7.10 Stress strainrelationship L L 72

7.11 Resulting cracking behaviour, L L 72

LiST OF FIGURES 79

Al

A2

A3

A4

Reinforcement optimisation with Grasshopperand GSA. 83
Particle progress for c1=c2=0.1 e e e 84
Particle progress for c1=c2=1 e e e 84
Particle progress for c1=c2=2 e 84

2.1

3.1

3.2

6.1

6.2

6.3

7.1

7.2

7.3

7.4

7.5

7.6

LIST OF TABLES

Differences between 2D and 3D topology optimisation. 14

Results of the first 6 iterations of the Newton Rapson method. Convergence is found at the fifth

iteration. The value xg = 0.70761 is the global minimumof f(x). 29
Comparison of optimisation algorithms. 34
Concrete properties and costs [34]. Only data given by the source is placed into the model. . .. 51
Reinforcement steel material costs in €/ kg for bars, source: http://www.bouwkosten.nl 53
formwork types and coSts e e e e e e e e e 55
Advantages and disadvantagesof method 1 68
Advantages and disadvantages of method 2 (STM) 69
Advantages and disadvantagesof method3 o L. 70
Advantages and disadvantagesof method4 71
Advantages and disadvantages of method5 o L. 73
Advantages and disadvantages of method6 73

81

EXAMPLES

A.l1. EXAMPLE: REINFORCEMENT OPTIMISATION WITH GRASSHOPPER AND GSA

It is possible, but computationally very intensive, to use the developed truss modelling tools to generate
a Strut-and-Tie Model (STM) and test this model in Oasys GSA. An exemplary solution to such problem is
shown in Figure A.1.

Figure A.1: Reinforcement optimisation with Grasshopper and Oasys GSA, linked by Geometry Gym.

=

83

84

A. EXAMPLES

A.2. EXAMPLE: BEHAVIOUR OF PARTICLE SWARM OPTIMISATION (PSO)

The information in this example is based on the examination of properties in Section 3.6.3. The goal of the
experiment is to gain some insight in the behavioural properties of PSO algorithms. Specifically the influence

of the amount of particles, and the impact of constants c¢; and ¢, are interesting. Figures A.2, A.3 and A.4 show

the results of the behavioural study. The Excel sheets used to compute output are shown on the following
pages. These sheets contain results for the situation ¢; = ¢, = 0.1, using the standard PSO formulas and the
given objective function.

160,000
140,000
120,000
100,000
80,000
60,000
40,000
20,000

0,000

Progress

40

50

20,00

10,00

Values of particles over iterations

Figure A.2: Particle progress for c1=c2=0.1. A low value for c1 and c1 can result in accuracy, but slow convergence.

160,000
140,000
120,000
100,000
80,000
60,000
40,000
20,000

0,000

Progress

40

50

Values of particles over iterations

Figure A.3: Particle progress for cl1=c2=1. A normal value for c1 and c1 should result in reasonable accuracy and convergence.

160,000
140,000
120,000
100,000
80,000
60,000
40,000
20,000

0,000

Progress

40

50

Figure A.4: Particle progress for c1=c2=2. A high value for c1 and c1 can result in low accuracy and divergence of parameters. Note that

Values of particles over iterations

particles tend to behave much more random in this situation.

A.2. EXAMPLE: BEHAVIOUR OF PARTICLE SWARM OPTIMISATION (PSO)

85

generation: 0 1 2 3 4 5 6 7
x1,i 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
X2,i 2,00 1,98 1,87 1,75 1,59 1,42 1,25 1,07
x3,i 3,00 2,93 2,79 2,49 2,15 1,80 1,42 1,02
x4,i 4,00 3,73 3,31 2,75 2,05 1,33 0,60 -0,14
x5,i 5,00 4,83 4,52 3,96 3,26 2,49 1,71 0,88
x6,i 6,00 5,60 4,79 3,71 2,57 1,32 0,05 -1,21
X7,i 7,00 6,81 6,47 6,02 5,54 4,70 3,56 2,41
x8,i 8,00 7,67 7,22 6,56 5,90 5,21 4,44 3,44
x9,i 9,00 8,53 7,36 6,07 4,74 3,17 1,54 -0,16
x10,i 10,00 9,83 9,60 8,83 7,55 5,76 3,95 2,08
f1,i 11,000 11,000 11,000 11,000 11,000 11,000 11,000 10,326
f2,i 25,745 25,566 24,511 23,449 22,280 21,273 20,290 17,817
3,i 40,873 39,502 36,868 31,961 27,369 23,872 21,261 13,394
fa,i 65,915 58,233 47,642 36,119 26,306 20,766 2,446 7,695
5,i 100,936 94,117 82,742 64,599 46,335 31,980 23,161 3,119
f6,i 145,949 126,616 92,776 57,547 33,145 20,724 5,800 25,574
7,i 200,958 189,866 170,738 146,776 123,990 89,293 53,664 30,711
8,i 265,964 243,687 214,223 175,745 140,895 109,734 80,222 50,737
f9,i 340,968 304,463 223,432 149,349 90,896 44,534 21,991 7,920
f10,i 425,972 410,703 390,537 327,879 235,275 134,062 64,540 26,641
xpri,i 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
Xpr2,i 2,00 1,98 1,87 1,75 1,59 1,42 1,25 1,07
xpr3,i 3,00 2,93 2,79 2,49 2,15 1,80 1,42 1,02
xpra,i 4,00 3,73 3,31 2,75 2,05 1,33 0,60 0,60
Xpr5,i 5,00 4,83 4,52 3,96 3,26 2,49 1,71 0,88
Xpré,i 6,00 5,60 4,79 3,71 2,57 1,32 0,05 0,05
Xpr7,i 7,00 6,81 6,47 6,02 5,54 4,70 3,56 2,41
Xpr8,i 8,00 7,67 7,22 6,56 5,90 5,21 4,44 3,44
Xpro,i 9,00 8,53 7,36 6,07 4,74 3,17 1,54 -0,16
xprl0,i 10,00 9,83 9,60 8,83 7,55 5,76 3,95 2,08
Fprl,i 11,000 11,000 11,000 11,000 11,000 11,000 11,000 10,326
Fpr2,i 25,745 25,566 24,511 23,449 22,280 21,273 20,290 17,817
Fpr3,i 40,873 39,502 36,868 31,961 27,369 23,872 21,261 13,394
Fpra,i 65,915 58,233 47,642 36,119 26,306 20,766 2,446 2,446
Fpr5,i 100,936 94,117 82,742 64,599 46,335 31,980 23,161 3,119
Fpr6,i 145,949 126,616 92,776 57,547 33,145 20,724 5,800 5,800
Fpr7,i 200,958 189,866 170,738 146,776 123,990 89,293 53,664 30,711
Fpr8,i 265,964 243,687 214,223 175,745 140,895 109,734 80,222 50,737
Fpr9,i 340,968 304,463 223,432 149,349 90,896 44,534 21,991 7,920
Fpr10,i 425,972 410,703 390,537 327,879 235,275 134,062 64,540 26,641
Xwr,i 1,00 1,00 1,00 1,00 1,00 1,00 0,60 0,60
Fwr,i 11,000 11,000 11,000 11,000 11,000 11,000 2,446 2,446
vl,i 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
v2,i 0,00 -0,02 -0,11 -0,13 -0,16 -0,17 -0,17 -0,18
v3,i 0,00 -0,07 -0,14 -0,30 -0,34 -0,35 -0,38 -0,40
va,i 0,00 -0,27 -0,42 -0,57 -0,69 -0,73 -0,73 -0,73
V5,i 0,00 -0,17 -0,31 -0,56 -0,70 -0,76 -0,78 -0,83
v6,i 0,00 -0,40 -0,81 -1,08 -1,14 -1,25 -1,27 -1,26
v3,i 0,00 -0,19 -0,34 -0,46 -0,48 -0,84 -1,14 -1,15
va,i 0,00 -0,33 -0,46 -0,65 -0,67 -0,68 -0,77 -1,00
V5,i 0,00 -0,47 -1,17 -1,30 -1,33 -1,57 -1,63 -1,70
v6,i 0,00 -0,17 -0,23 -0,76 -1,29 -1,79 -1,80 -1,87
cl 0,1 0,10 0,10 0,10 0,09 0,09 0,09 0,09
c2 0,1 0,10 0,10 0,10 0,09 0,09 0,09 0,09
40

86

A. EXAMPLES

generation: 8 9 10 11 12 13 14 15
x1,i 0,95 0,91 0,87 0,82 0,77 0,72 0,66 0,61
X2,i 0,50 0,26 0,05 -0,13 -0,26 -0,33 -0,33 -0,25
x3,i 0,51 0,10 -0,29 -0,64 -0,90 -1,02 -1,01 -0,85
x4,i 0,01 -0,60 -1,17 -1,63 -1,94 -2,02 -1,90 -1,54
x5,i 1,24 0,53 -0,19 -0,85 -1,47 -1,86 -2,05 -2,12
x6,i -0,25 -1,18 -2,04 -2,77 -3,08 -3,03 -2,54 -1,78
X7,i -1,36 -2,51 -3,56 -4,23 -4,44 -4,12 -3,31 -2,44
x8,i -3,10 -4,51 -5,71 -6,82 -7,06 -6,57 -5,69 -4,39
x9,i 2,12 0,56 -0,98 -2,31 -3,52 -4,19 -4,56 -4,56
x10,i 1,14 -0,56 -2,21 -3,71 -5,09 -5,83 -5,94 -5,64
fl,i 5,342 3,768 2,981 2,565 2,361 2,294 2,321 2,405
f2,i 2,764 4,052 5,818 7,620 9,096 10,096 10,062 9,078
3,i 2,717 5,320 9,469 14,634 19,275 21,468 21,392 18,197
fa,i 6,167 13,906 24,711 35,596 44,179 46,593 43,267 33,454
5,i 20,243 2,660 8,249 18,266 31,603 41,893 47,698 49,885
f6,i 9,019 24,936 47,318 72,126 84,313 82,345 63,725 39,680
7,i 28,991 62,596 105,110 137,648 149,126 132,013 93,985 60,107
8,i 85,122 152,623 226,053 306,932 325,781 287,762 224,539 146,300
f9,i 27,028 2,530 20,772 55,893 103,100 135,831 155,883 155,828
f10,i 19,382 13,379 52,672 111,875 186,296 234,338 241,720 221,422
xpri,i 0,95 0,91 0,87 0,82 0,77 0,72 0,72 0,72
Xpr2,i 0,76 0,76 0,76 0,76 0,76 0,76 0,76 0,76
xpr3,i 0,51 0,51 0,51 0,51 0,51 0,51 0,51 0,51
xpra,i 0,68 0,68 0,68 0,68 0,68 0,68 0,68 0,68
Xpr5,i 1,24 0,53 0,53 0,53 0,53 0,53 0,53 0,53
Xpré,i 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72
Xpr7,i -0,09 -0,09 -0,09 -0,09 -0,09 -0,09 -0,09 -0,09
Xpr8,i 0,58 0,58 0,58 0,58 0,58 0,58 0,58 0,58
Xpro,i 2,12 0,56 0,56 0,56 0,56 0,56 0,56 0,56
xprl0,i 1,14 -0,56 -0,56 -0,56 -0,56 -0,56 -0,56 -0,56
Fprl,i 5,342 3,768 2,981 2,565 2,361 2,294 2,294 2,294
Fpr2,i 2,341 2,341 2,341 2,341 2,341 2,341 2,341 2,341
Fpr3,i 2,717 2,717 2,717 2,717 2,717 2,717 2,717 2,717
Fpr4,i 2,303 2,303 2,303 2,303 2,303 2,303 2,303 2,303
Fpr5,i 20,243 2,660 2,660 2,660 2,660 2,660 2,660 2,660
Fpr6,i 2,294 2,294 2,294 2,294 2,294 2,294 2,294 2,294
Fpr7,i 7,160 7,160 7,160 7,160 7,160 7,160 7,160 7,160
Fpr8,i 2,494 2,494 2,494 2,494 2,494 2,494 2,494 2,494
Fpr9,i 27,028 2,530 2,530 2,530 2,530 2,530 2,530 2,530
Fpr10,i 19,382 13,379 13,379 13,379 13,379 13,379 13,379 13,379
Xwr,i 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72
Fwr,i 2,294 2,294 2,294 2,294 2,294 2,294 2,294 2,294
vi,i -0,03 -0,04 -0,04 -0,05 -0,05 -0,05 -0,05 -0,05
v2,i -0,26 -0,23 -0,22 -0,18 -0,13 -0,08 0,00 0,08
v3,i -0,42 -0,41 -0,39 -0,36 -0,26 -0,11 0,00 0,17
va,i -0,67 -0,61 -0,58 -0,45 -0,31 -0,08 0,11 0,36
V5,i -0,70 -0,71 -0,71 -0,66 -0,62 -0,39 -0,20 -0,07
v6,i -0,97 -0,93 -0,86 -0,73 -0,31 0,05 0,49 0,76
v3,i -1,27 -1,15 -1,05 -0,66 -0,22 0,32 0,81 0,87
va,i -1,76 -1,41 -1,20 -1,11 -0,24 0,49 0,89 1,30
V5,i -1,47 -1,55 -1,55 -1,33 -1,21 -0,67 -0,37 0,00
v6,i -1,69 -1,71 -1,65 -1,50 -1,38 -0,74 -0,11 0,30
cl 0,0825 0,08 0,08 0,08 0,07 0,07 0,07 0,07
c2 0,0825 0,08 0,08 0,08 0,07 0,07 0,07 0,07

A.2. EXAMPLE: BEHAVIOUR OF PARTICLE SWARM OPTIMISATION (PSO)

87

generation: 16 17 18 19 20 21 22 23
x1,i 0,59 0,55 0,51 0,49 0,47 0,47 0,48 0,50
X2,i 0,48 0,65 0,82 0,99 1,15 1,30 1,42 1,51
x3,i -0,61 -0,44 -0,23 0,05 0,40 0,78 1,16 1,51
x4,i -0,34 0,40 1,15 1,88 2,55 3,12 3,53 3,79
x5,i -2,93 -2,30 -1,56 -0,68 0,25 1,19 2,11 2,97
x6,i -1,69 -0,84 0,13 1,14 2,10 2,99 3,71 4,36
X7,i -1,89 -0,87 0,20 1,27 2,34 3,30 4,03 4,69
x8,i -2,88 -1,66 -0,27 1,17 2,57 3,87 5,02 5,94
x9,i -4,52 -3,65 -2,52 -1,26 0,02 1,32 2,58 3,74
x10,i -2,63 -0,98 0,76 2,50 4,18 5,64 6,87 7,86
f1,i 2,458 2,583 2,706 2,805 2,872 2,871 2,859 2,769
f2,i 2,847 2,344 2,538 9,028 19,494 20,617 21,259 21,808
3,i 14,113 11,536 8,798 5,765 3,207 2,391 19,518 21,820
fa,i 10,167 3,235 19,444 24,552 32,850 43,334 52,824 59,912
5,i 78,203 55,664 33,835 15,228 4,163 19,881 26,938 40,296
f6,i 37,141 18,040 5,081 19,328 26,831 40,622 57,721 77,465
7,i 42,715 18,583 4,520 20,453 29,781 47,283 66,856 88,927
8,i 76,295 36,414 9,247 19,639 33,104 62,150 101,758 143,172
f9,i 153,272 109,025 62,895 26,731 6,056 20,708 33,271 58,408
f10,i 66,838 20,655 2,342 32,022 71,616 128,704 193,044 256,389
xpri,i 0,69 0,69 0,69 0,69 0,69 0,69 0,69 0,69
Xpr2,i 0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73
xpr3,i 0,74 0,74 0,74 0,74 0,74 0,74 0,74 0,74
xpra,i 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86
Xpr5,i 0,58 0,58 0,58 0,58 0,58 0,58 0,58 0,58
Xpré,i 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49
Xpr7,i 0,02 0,02 0,20 0,20 0,20 0,20 0,20 0,20
Xpr8,i -0,37 -0,37 -0,27 -0,27 -0,27 -0,27 -0,27 -0,27
Xpro,i 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08
xprl0,i -0,28 -0,28 0,76 0,76 0,76 0,76 0,76 0,76
Fprl,i 2,296 2,296 2,296 2,296 2,296 2,296 2,296 2,296
Fpr2,i 2,303 2,303 2,303 2,303 2,303 2,303 2,303 2,303
Fpr3,i 2,313 2,313 2,313 2,313 2,313 2,313 2,313 2,313
Fpr4,i 2,905 2,905 2,905 2,905 2,905 2,905 2,905 2,905
Fpr5,i 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500
Fpr6,i 2,818 2,818 2,818 2,818 2,818 2,818 2,818 2,818
Fpr7,i 6,104 6,104 4,520 4,520 4,520 4,520 4,520 4,520
Fpr8,i 10,515 10,515 9,247 9,247 9,247 9,247 9,247 9,247
Fpr9,i 5,489 5,489 5,489 5,489 5,489 5,489 5,489 5,489
Fpr10,i 9,389 9,389 2,342 2,342 2,342 2,342 2,342 2,342
Xwr,i 0,69 0,69 0,69 0,69 0,69 0,69 0,69 0,69
Fwr,i 2,296 2,296 2,296 2,296 2,296 2,296 2,296 2,296
vl,i -0,05 -0,04 -0,03 -0,02 -0,02 0,00 0,00 0,02
v2,i 0,16 0,17 0,17 0,17 0,17 0,15 0,11 0,09
v3,i 0,09 0,17 0,21 0,28 0,35 0,38 0,37 0,36
va,i 0,64 0,74 0,75 0,73 0,67 0,57 0,41 0,27
V5,i 0,48 0,62 0,75 0,88 0,93 0,94 0,92 0,86
v6,i 0,76 0,85 0,97 1,01 0,96 0,89 0,73 0,65
v3,i 0,90 1,02 1,07 1,07 1,07 0,96 0,73 0,66
va,i 1,03 1,22 1,39 1,44 1,40 1,31 1,15 0,92
V5,i 0,45 0,87 1,13 1,25 1,28 1,30 1,26 1,16
v6,i 1,57 1,65 1,74 1,73 1,69 1,46 1,22 1,00
cl 0,0625 0,06 0,06 0,06 0,05 0,05 0,05 0,05
c2 0,0625 0,06 0,06 0,06 0,05 0,05 0,05 0,05

88

A. EXAMPLES

generation: 24 25 26 27 28 29 30 31
x1,i 0,57 0,63 0,68 0,75 0,81 0,86 0,92 0,97
X2,i 1,23 1,36 1,48 1,57 1,64 1,67 1,68 1,66
x3,i 1,78 2,01 2,17 2,32 2,42 2,46 2,46 2,42
x4,i 1,16 1,73 2,25 2,71 3,13 3,51 3,83 4,04
x5,i 2,86 3,43 3,91 4,28 4,49 4,62 4,69 4,61
x6,i 3,99 4,31 4,54 4,65 4,65 4,54 4,35 4,05
X7,i 511 5,56 5,83 5,93 5,96 5,82 5,46 4,98
x8,i 5,20 5,42 5,53 5,39 5,15 4,85 4,51 4,03
x9,i 7,34 8,02 8,49 8,86 8,80 8,48 8,04 7,45
x10,i 9,06 9,18 8,85 8,29 7,42 6,38 5,32 4,16
fl,i 2,516 2,378 2,300 2,316 2,481 2,911 3,935 6,709
f2,i 20,200 20,960 21,631 22,189 22,625 22,878 22,937 22,794
3,i 23,707 25,824 27,684 29,564 30,921 31,548 31,415 30,885
fa,i 19,570 23,304 28,639 35,398 43,604 52,361 60,845 67,045
5,i 38,070 50,421 63,138 74,621 81,948 86,501 89,029 86,178
f6,i 65,533 75,641 83,647 87,597 87,689 83,631 77,019 67,551
7,i 105,514 124,838 137,412 142,450 143,832 137,209 120,543 100,099
8,i 109,204 118,743 123,451 117,471 107,185 95,017 82,540 66,936
f9,i 221,797 267,107 301,205 329,534 325,327 300,443 268,661 229,123
f10,i 345,909 355,294 329,271 286,725 227,010 165,652 114,331 70,732
xpri,i 0,71 0,71 0,71 0,71 0,71 0,71 0,71 0,71
Xpr2,i 0,64 0,64 0,64 0,64 0,64 0,64 0,64 0,64
xpr3,i 0,64 0,64 0,64 0,64 0,64 0,64 0,64 0,64
xpra,i 0,58 0,58 0,58 0,58 0,58 0,58 0,58 0,58
Xpr5,i 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85
Xpré,i 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22
Xpr7,i 0,17 0,17 0,17 0,17 0,17 0,17 0,17 0,17
Xpr8,i 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45
Xpro,i 0,83 0,83 0,83 0,83 0,83 0,83 0,83 0,83
xprl0,i -0,68 -0,68 -0,68 -0,68 -0,68 -0,68 -0,68 -0,68
Fprl,i 2,294 2,294 2,294 2,294 2,294 2,294 2,294 2,294
Fpr2,i 2,359 2,359 2,359 2,359 2,359 2,359 2,359 2,359
Fpr3,i 2,344 2,344 2,344 2,344 2,344 2,344 2,344 2,344
Fpr4,i 2,491 2,491 2,491 2,491 2,491 2,491 2,491 2,491
Fpr5,i 2,814 2,814 2,814 2,814 2,814 2,814 2,814 2,814
Fpr6,i 4,391 4,391 4,391 4,391 4,391 4,391 4,391 4,391
Fpr7,i 4,739 4,739 4,739 4,739 4,739 4,739 4,739 4,739
Fpr8,i 2,991 2,991 2,991 2,991 2,991 2,991 2,991 2,991
Fpr9,i 2,645 2,645 2,645 2,645 2,645 2,645 2,645 2,645
Fpr10,i 15,286 15,286 15,286 15,286 15,286 15,286 15,286 15,286
Xwr,i 0,71 0,71 0,71 0,71 0,71 0,71 0,71 0,71
Fwr,i 2,294 2,294 2,294 2,294 2,294 2,294 2,294 2,294
vi,i 0,05 0,06 0,06 0,06 0,06 0,06 0,05 0,05
v2,i 0,14 0,13 0,12 0,09 0,06 0,04 0,01 -0,02
v3,i 0,26 0,23 0,17 0,15 0,10 0,04 -0,01 -0,04
va,i 0,58 0,57 0,52 0,45 0,43 0,38 0,32 0,21
V5,i 0,63 0,57 0,48 0,37 0,22 0,13 0,07 -0,08
v6,i 0,50 0,32 0,23 0,11 0,00 -0,11 -0,19 -0,30
v3,i 0,52 0,45 0,27 0,10 0,03 -0,14 -0,36 -0,48
va,i 0,53 0,22 0,11 -0,13 -0,24 -0,30 -0,34 -0,48
V5,i 0,74 0,68 0,47 0,37 -0,05 -0,33 -0,44 -0,59
v6,i 0,64 0,12 -0,32 -0,56 -0,87 -1,04 -1,06 -1,17
cl 0,0425 0,04 0,04 0,04 0,03 0,03 0,03 0,03
c2 0,0425 0,04 0,04 0,04 0,03 0,03 0,03 0,03

A.2. EXAMPLE: BEHAVIOUR OF PARTICLE SWARM OPTIMISATION (PSO)

89

generation: 32 33 34 35 36 37 38 39
x1,i 0,79 0,83 0,86 0,90 0,93 0,95 0,98 1,00
X2,i 1,40 1,33 1,24 1,15 1,06 0,96 0,86 0,76
x3,i 1,50 1,13 0,76 0,39 0,01 -0,35 -0,69 -1,04
x4,i 4,24 4,09 3,85 3,56 3,26 2,91 2,56 2,19
x5,i 3,29 3,00 2,65 2,28 1,89 1,48 1,07 0,65
x6,i 5,32 5,23 5,08 4,84 4,51 4,14 3,76 3,37
X7,i 2,21 1,13 0,04 -1,06 -2,14 -3,19 -4,25 -5,28
x8,i 6,12 5,13 4,13 3,10 2,06 1,00 -0,07 -1,13
x9,i 9,24 9,07 8,75 8,39 7,87 7,23 6,56 5,83
x10,i 2,06 0,36 -1,34 -3,01 -4,63 -6,19 -7,70 -9,18
f1,i 2,409 2,591 2,898 3,383 4,171 5,506 7,825 11,152
f2,i 21,179 20,750 20,232 19,473 17,155 5,925 2,848 2,333
3,i 21,734 19,221 2,339 3,297 6,114 10,236 15,512 21,875
fa,i 73,424 68,696 61,429 53,776 46,330 39,141 32,935 27,918
5,i 47,198 40,843 34,534 28,985 24,643 21,618 17,614 2,334
f6,i 114,444 110,444 104,033 94,607 82,533 70,074 58,868 48,906
7,i 28,123 19,216 5,898 22,269 50,402 89,047 138,780 198,543
8,i 152,085 106,187 70,020 42,915 26,337 10,348 6,929 23,704
f9,i 360,654 346,293 321,443 293,996 257,008 215,124 175,459 137,704
f10,i 26,404 3,450 28,548 81,309 159,511 259,633 379,553 519,310
xpri,i 0,71 0,71 0,71 0,71 0,71 0,71 0,71 0,71
Xpr2,i 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70
xpr3,i 0,61 0,61 0,76 0,76 0,76 0,76 0,76 0,76
xpra,i 0,56 0,56 0,56 0,56 0,56 0,56 0,56 0,56
Xpr5,i 0,58 0,58 0,58 0,58 0,58 0,58 0,58 0,65
Xpré,i 0,77 0,77 0,77 0,77 0,77 0,77 0,77 0,77
Xpr7,i -0,33 -0,33 0,04 0,04 0,04 0,04 0,04 0,04
Xpr8,i 0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,88
Xpro,i 0,64 0,64 0,64 0,64 0,64 0,64 0,64 0,64
xprl0,i 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Fprl,i 2,293 2,293 2,293 2,293 2,293 2,293 2,293 2,293
Fpr2,i 2,293 2,293 2,293 2,293 2,293 2,293 2,293 2,293
Fpr3,i 2,422 2,422 2,339 2,339 2,339 2,339 2,339 2,339
Fpr4,i 2,549 2,549 2,549 2,549 2,549 2,549 2,549 2,549
Fpr5,i 2,477 2,477 2,477 2,477 2,477 2,477 2,477 2,334
Fpr6,i 2,359 2,359 2,359 2,359 2,359 2,359 2,359 2,359
Fpr7,i 10,048 10,048 5,898 5,898 5,898 5,898 5,898 5,898
Fpr8,i 3,117 3,117 3,117 3,117 3,117 3,117 3,117 3,117
Fpr9,i 2,361 2,361 2,361 2,361 2,361 2,361 2,361 2,361
Fpr10,i 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335
Xwr,i 0,71 0,71 0,71 0,71 0,71 0,71 0,71 0,71
Fwr,i 2,293 2,293 2,293 2,293 2,293 2,293 2,293 2,293
vl,i 0,04 0,04 0,04 0,03 0,03 0,03 0,03 0,02
v2,i -0,06 -0,08 -0,09 -0,09 -0,09 -0,10 -0,10 -0,10
v3,i -0,34 -0,37 -0,37 -0,37 -0,37 -0,36 -0,35 -0,34
va,i -0,10 -0,15 -0,24 -0,28 -0,31 -0,34 -0,36 -0,36
V5,i -0,21 -0,30 -0,34 -0,38 -0,39 -0,41 -0,41 -0,42
v6,i -0,02 -0,09 -0,15 -0,24 -0,33 -0,37 -0,38 -0,39
v3,i -1,03 -1,08 -1,09 -1,09 -1,08 -1,05 -1,05 -1,04
va,i -0,83 -0,99 -1,00 -1,03 -1,04 -1,06 -1,06 -1,06
V5,i -0,05 -0,18 -0,31 -0,36 -0,52 -0,64 -0,67 -0,73
v6,i -1,68 -1,70 -1,70 -1,66 -1,62 -1,56 -1,51 -1,48
cl 0,0225 0,02 0,02 0,02 0,01 0,01 0,01 0,01
c2 0,0225 0,02 0,02 0,02 0,01 0,01 0,01 0,01

	Acronyms
	Introduction
	Structural optimisation
	A short history of optimisation in general
	What is optimisation?
	Structural optimisation terminology
	Structural optimisation classifications
	Basic types of optimisation algorithms

	Optimisation Algorithms
	Brute force algorithms
	Simulated Annealing
	Cyclic coordinate search
	Nelder-Mead simplex method
	Genetic Algorithm (GA)
	Particle Swarm Optimisation (PSO)
	Ant Colony Optimisation (ACO)
	Gradient based first order methods
	Gradient (Hessian) based second order methods
	Comparing algorithms

	Object Function
	Types of solution spaces
	Score function
	Penalty functions and constraints

	Geometry Design
	Method 1: Triangulation
	Method 2: Building blocks (Lego's)

	Reinforced Concrete Costs Analysis
	Process
	Concrete costs
	Reinforcement costs
	Formwork costs
	Costs analysis model

	Reinforced Concrete Structural Analysis
	Design of reinforced concrete elements
	Structural behaviour of elements
	Detailing
	Structural design methods
	Comparing methods

	Bibliography
	List of Figures
	List of Tables
	Examples
	Example: Reinforcement optimisation with Grasshopper and GSA
	Example: Behaviour of Particle Swarm Optimisation (PSO)

