<u>Bibliotheek van de</u>

16 UKT. 1972 ARCHIEF

Onderaideling de Scheepsbouwkunde Icennische Hogeschool, Delle DOCUMENTATIE : K38-4 DATUM:

Lab. v. Scheepsbouwkunde Technische Hogeschool Delft 1

Bibliotheek van de Onderafdeling der Scheepsbouwkunde Fechnische Hogeschool, Delit DUCUMENTATIE : K38-4/72 DATUM:

Committee 2, ISSC (24 April 1972, Lyngby)

Calculations of Motions and Hydrodynamic Pressures UNENTATIE Statican for a Ship in Waves 02810 prestinal These

by J. Fukuda and H. Fujii

This note summarizes briefly the results of theoretical calculations on the motions and hydrodynamic pressures induced on a ship in regular waves, which have been carried out as a part of the research works of the research committee "SR 131" by the cooperation with Kyushu University and Mitsubishi Nagasaki Technical Institute.

The calculation method is based upon the strip theory described in Refs. [1] and [2]. In the first place, the ship motions in regular waves from different directions are solved . by assuming the coupled equations of heaving and pitching motions and those of swaying, yawing and rolling motions. The non-linear roll damping is introduced into the latter coupled equations of motion. Secondly the hydrodynamic pressures induced on the hull surface are evaluated by using the solutions of heave, pitch, sway, yaw and roll.

A series of calculations has been made for the ore carrier "KASAGISAN-MARU" in full loaded condition. Particulars of the ship are given in Tables 1 - 3, and the main results of calculations are shown in Figs. 2 - 20. Large pressures are found on the hull surface at the weather side in beam waves and in bow waves. Next to those cases, considerable pressures are found in head waves. Pressures obtained in following waves and in quartering waves are not large.

Comparisons between the calculations and model experiments have been performed by Nakamura at Osaka University for the case in head waves, where the practically good agreements are found for both motions and pressures. Model experiments in oblique waves have been continued at the seakeeping model basins of Tokyo University and of Ship Research Institute, but corparisons between the calculations and experiments are not yet accomplished.

References

- [1] J. Fukuda: "Theoretical Evaluations of Transverse Wave Loads" Discussion to the Report of Committee 2, Proceeding of 4th ISSC, Tokyo, 1970.
- [2] J. Fukuda, R. Nagamoto, M. Konuma and M. Takahashi: "Theoretical Calculations on the Motions, Hull Surface Pressures and Transverse Strength of a Ship in Waves" Journal of the Society of Naval Architects of Japan, Vol. 129, June 1971.

Nomenclature

h_o: wave amplitude
H_w(=2h_o): wave height

 λ : wave length

k (= $2\pi/\lambda$): wave number

 χ : heading angle

L : ship length

Fn.: Froude number

ζ.: heaving amplitude

 θ_{o} : rolling amplitude

Z_{ro}: amplitude of ralative motion to the undisturbed wave surfase

P_: amplitude of hydrodynamic pressure

ρg : specific weight of sea water

t : time

T₂: wave encountered period

2

Table 1 Main Particulars

Length between Perpendiculars (L)	. 247.000 m
Breadth Moulded (B _O)	40.600 m
Depth Moulded (D)	23.000 m
Draught Moulded (d _o)	16.000 m
Displacement (W)	135,666 t
Block Coefficient (Cb)	0.8249
Midship Coefficient (C _m)	0.9975
Water Plane Area Coefficient (Cw)	0.8817
Centre of Gravity from Midship (x _G)	7.301 m
Center of Gravity below Water Line (z _G)	. 3.720 m
Metacentric Radius (G _O M)	4.130 m
Longitudinal Gyradius (K ₁)	0.2362L
Transverse Gyradius (K _t)	0.2200B
Rolling Period (T _R)	11.04 sec

Table 2 Estimation of Rolling Period

Density of Ore	1.77	2.20*	2.70
Occupied Ratio of Hold	100 %	80.5%	65.6%
KG	14.28 m	12.23 m	10.99 m
GM	2.18 m	4.18 m	5.42 m
GG (Free Surface Effect)	0.05 m	0.05 m	0.05 m
G_M	2.13 m	4.13 m	5.42 m
к ₊ /в	0.2369	0.2200	0.2102
K¦/B	0.1659	0.1659	0.1659
TR	16.16 s	11.04 s	9.41 s

* In this report the density of ore is assumed to be 2.2

0

0

S.S.	B/B _o	d/d	s/s _o
A.P.	0.1732	0.2324	0.0210
1/2	0.4823	1.0000	0.2190
1	0.7077	1.0000	0.4699
1-1/2	0.8671	1.0000	0.6774
2	0.9627	1.0000	0.8319
2-1/2	0.9991	1.0000	0.9322
3	1.0000	1.0000	0.9833
3-1/2	1.0000	1.0000	0.9985
4	1.0000	1.0000	. 1.0000
4-1/2	1.0000	1.0000	1.0000
5	1.0000	1.0000	1.0000
5-1/2	1.0000	1.0000	1.0000
6	1.0000	1.0000	1.0000
6-1/2	1.0000	1.0000	1.0000
7	1.0000	1.0000	1:0000
7-1/2	1.0000	1.0000	1.0000
8	1.0000	1.0000	0.9971
8-1/2 '	0.9721	1.0000	0.9511
9	0.8487	1.0000	0.8097
9-1/2	0.5818	1.0000	0.5422
F.P.	0.0796 (0.1317)	1.0000	0.1320

Table 3 Breadth, Draught and Sectional Area

Fig. 2 Heaving Amplitudes in Regular Beam Waves

Fig. 3 Pitching Amplitudes in Regular Beam Waves

Fig. 4 Heaving Amplitudes in Regular Bow Waves

Fig. 5 Pitching Amplitudes in Regular Bow Waves

Fig. 6 Heaving Amplitudes in Regular Head Waves

Fig. 7 Pitching Amplitudes in Regular Head Waves

Fig. 8 Rolling Amplitudes in Regular Beam Waves

Fig. 9 Rolling Amplitudes in Regular Bow Waves

Γ

SECTION	WEATHER SIDE	LEEWARD SIDE
$s.s.2\frac{1}{2}$		
MIDSHIP		
$S.S.8\frac{1}{2}$		

HEADING	90°
WAVE HEIGHT	10m
FROUDE NO.	0.10

5.5. $8\frac{1}{2}$	SECTION
---------------------	---------

	POSITION	
KEEL C	ENTRE LINE	
DITCE	WEATHER SIDE	
DTTGE	LEEWARD SIDE	
WATER	WEATHER SIDE	
LINE	LEEWARD SIDE	

HEADING	90°
WAVE HEIGHT	10m
FROUDE NO.	0.10

Fig. 11 Amplitudes of Hydrodynamic Pressure in Regular Beam Waves

	SECTION	WEATHER SIDE	LEEWARD SIDE	HEADING	135°
•••••	$s.s.2\frac{1}{2}$			WAVE HEIGHT	10m
•	MIDSHIP	· · · · · · · · · · · · · · · · · · ·		FROUDE NO.	0.10
	$s.s.8\frac{1}{2}$			•	:

Fig. 12 Amplitudes of Relative Motion in Regular Bow Waves

	·
HEADING	135°
WAVE HEIGHT	10m
FROUDE NO.	0.10

Fig. 13 Amplitudes of Hydrodynamic Pressure in Regular Bow Waves

Zro/ho

S.S. $8\frac{1}{2}$ SECTION

·]	POSITION	
KEEL C	ENTRE LINE	
	WEATHER SIDE	
BILGE	LEEWARD SIDE	
WATER	WEATHER SIDE	
LINE	LEEWARD SIDE	

HEADING	180°
WAVE HEIGHT	10m
FROUDE NO.	0.10

Fig. 15 Amplitudes of Hydrodynamic Pressure in Regular Head Waves

in Regular Beam Waves of Different Lengths

Fig. 17 Amplitudes of Hydrodynamic Pressure on the Hull Section

in Regular Bow Waves of Different Lengths

.

in Regular Head Waves of Different Lengths

in Regular Bow Waves of Different Heights

SHIP SECTION	8 <u>1</u>	
. VI/n	1.0	
χ.	135°	
Fn	0.10 10.689 ^{sec}	
J, e		

		······	
	MOTION	AMP.	PHA
	WAVE	5 ^m	
	HEAVE	4.895 ^m	-33
1	' PITCH	4.168 [°]	51
	ROLL	7.732°	1'75

