
Creating Energy
System Design

Options Using MGA
and Bio-Inspired
Metaheuristics

Application to a Large European Model

by

J.J.H. van den Berg

Student number: 4683196

To obtain the degree of Master of Science
in the Complex Systems Engineering and Management master’s program

at Delft University of Technology.

First-supervisor: Francesco Lombardi
Second-supervisor and chair: Kateřina Staňková
Project Duration: Sep 2024 - Mar 2025
Faculty: Faculty of Technology, Policy and Management, Delft

Abstract

Planning and decision-making have become increasingly complex, especially in the energy sector. Modeling
to Generate Alternatives (MGA) enables the creation of multiple alternative solutions, enhancing the decision-
making process. However, when applied to large system optimization problems, the MGA method can become
computationally cumbersome. Bio-inspired metaheuristics, a branch of artificial intelligence, have the potential
to overcome these computational limitations by applying metaheuristic methods that can solve multiple model
solutions simultaneously. Currently, a sophisticated integration of such heuristics withMGA, specifically focused
on energy system optimization, has not yet been realized.

This thesis aims to answer the question: How does a combination of MGA and bio-inspired heuristics, aimed at
optimizing energy system design, compare with existing deterministic MGA methods? To address this question,
a metaheuristic-MGA algorithm was developed and compared with existing spatial energy system MGA results.

First, a literature review was conducted to determine the most suitable metaheuristic for this study. The review
confirmed the scarcity of literature on the combination of metaheuristics and MGA in energy systems. However,
relevant studies applying ametaheuristic-MGAapproach to general optimization problemswere identified. Based
on these findings, a genetic algorithm (GA) was selected as the most appropriate method for this thesis. The
mathematical formulation presented in the literature was adapted to fit the spatial optimization problem of energy
systems.

The complete mathematical process of the GA-MGA algorithm was developed in Python. Next, a small energy
system test model was built in Calliope to evaluate the performance of the developed GA-MGA algorithm. The
algorithm’s parameters were further fine-tuned using existing parameter-tuning methods, performance measure-
ments, and assessments of the computational time required to complete the algorithmic process.

Before applying the developed GA-MGA algorithm to a large-scale model, it needed to be scaled to prevent errors
or computational inefficiencies when generating results. It was determined that the desired resolution was not
feasible due to the excessive computational time required for its completion. Instead, a time-masking method was
applied to the resolution, preserving high-resolution characteristics while improving computational efficiency.

The GA-MGA algorithm was then applied to a large European energy system model, and the results were com-
pared to existing MGA results. However, due to differences in resolution, the GA-MGA-generated results did not
meet the standards of the existing MGA results, making direct comparisons less robust and reliable than desired.
The comparison revealed a significant difference in battery capacity deployment, with the GA-MGA solutions
deploying higher quantities of battery capacity. The lack of spatial distribution data for the large model was
solved by comparing the GA-MGA results to a plot of the existing MGA results. While this was not an ideal
comparison, it provided an opportunity to analyze spatial deployment differences between the GA-MGA and the
existing MGA results. The comparison showed that the GA-MGA algorithm favored high-capacity deployment
at specific locations, whereas the existing MGA results exhibited a more diverse capacity distribution.

The limitations of the results primarily stemmed from shortcomings in spatial comparison and differences in
resolution between the two modeling techniques. Another key limitation was the algorithm’s structure, which
presents several opportunities for improvement in optimizing the GA-MGA approach. Despite these challenges,
the theoretical combination of GA-MGA demonstrated promising potential. Future research should focus on
enhancing the algorithm’s performance and conducting more in-depth comparisons with MGA results to fully
evaluate its effectiveness. Further research in this area could expand access to theMGAmethod for tackling large,
complex problems, ultimately contributing to more effective planning and decision-making processes. This, in
turn, would support efforts to address major societal challenges more efficiently.

All the code used for this thesis can be found via the following GitHub links:

• Test model: https://github.com/Jacobvdberg228/energy-system-genetic-MGA
• Large model: https://github.com/Jacobvdberg228/Large-model-MGA-GA

i

https://github.com/Jacobvdberg228/energy-system-genetic-MGA
https://github.com/Jacobvdberg228/Large-model-MGA-GA

Contents

Abstract i

Nomenclature iv

1 Introduction & Background 1
1.1 Introduction . 1

1.1.1 Beyond Pareto-Optimality: MGA . 1
1.1.2 Computational Challenges of MGA in Energy System Models 1
1.1.3 Enhancing MGA with Bio-Inspired Metaheuristics . 2
1.1.4 Research Objective . 2
1.1.5 Research Outline . 2
1.1.6 Link to CoSEM Master Program . 2

1.2 Key concepts . 3
1.2.1 Modeling to generate alternatives (MGA) . 3
1.2.2 Bio-Inspired Metaheuristics . 4
1.2.3 Energy System Models . 5

1.3 Research Question . 6
1.4 Research Approach . 6
1.5 Sub Questions . 7

2 Methods 8
2.1 Methodological Framework . 8

2.1.1 Selection of a Suitable Bio-Inspired Metaheuristic . 8
2.1.2 Algorithm Configuration and Integration . 8
2.1.3 Scalability, Evaluation and Benchmarking . 9

2.2 Systematic Literature Review Methodology . 9
2.3 Algorithm Configuration Methodology . 10

2.3.1 Mathematical Overview: Modeling to Generate Alternative 11
2.3.2 Designing the co-evolutionary MGA-GA for Energy System Optimization 12
2.3.3 Optimization of Algorithmic Parameters and Model Efficiency 14

2.4 Scalability, Evaluation and Benchmarking Methodology . 18
2.4.1 Optimizing Computational Resources . 18
2.4.2 Data Management Adjustments . 18
2.4.3 Algorithm Structural Adjustments . 19
2.4.4 Balancing Resolution and Solve Time in Large-Scale Models 20
2.4.5 Dynamic Slack Adjustment for Resolution Transitions 20
2.4.6 Structuring Data for an Effective GA Benchmarking Analysis 21

3 Results 22
3.1 Results Literature Review . 22
3.2 Results Algorithm Configuration . 25

3.2.1 Parameter Tuning . 25
3.2.2 Number of Niches . 27
3.2.3 Size of the Niches . 28
3.2.4 Resolution Change . 29
3.2.5 Spatial Distribution of Different Solutions . 30

3.3 Results Scalability, Evaluation and Benchmarking . 32
3.3.1 Structural Errors Encountered During Testing . 32
3.3.2 High Resolution Initialization . 32
3.3.3 Dynamic Slack Adjustment in Large-Scale Model . 33

ii

Contents iii

3.3.4 Final Genetic Algorithm Process . 33
3.3.5 Evaluation and Benchmark Results . 34
3.3.6 Capacity Distribution Compared To SPORES . 34
3.3.7 Spatial Capacity Distribution of Niches . 38

4 Discussion 41
4.1 Discussion Literature Review . 41
4.2 Discussion Algorithm Configuration . 41
4.3 Discussion Algorithm Scalability . 43

4.3.1 Selection Operator and ETA . 43
4.3.2 Resolution settings and Initialization . 43
4.3.3 Slack initialization . 44

4.4 Discussion Evaluation And Benchmarking . 45
4.4.1 Battery Capacity Distribution . 45
4.4.2 Wind Capacity Distribution . 45
4.4.3 Algorithm Process Evaluation . 45
4.4.4 Spatial Capacity Distribution . 46

5 Conclusion 49
5.1 Answer Sub-question 1 . 49

5.1.1 Summary of Key Findings . 49
5.1.2 Answering The Sub-question . 49
5.1.3 Limitations . 49
5.1.4 Broader Implications . 50
5.1.5 Future Research . 50

5.2 Answer Sub-question 2 . 51
5.2.1 Summary of Key Findings . 51
5.2.2 Answering The Sub-question . 51
5.2.3 Limitations . 51
5.2.4 Broader Implications . 51
5.2.5 Future Research . 52

5.3 Answer Sub-question 3 . 53
5.3.1 Summary of Key Findings . 53
5.3.2 Answering The Sub-question . 53

5.4 Conclusion Research Question . 54
5.4.1 Answer to the Research Question . 54
5.4.2 Limitations . 55
5.4.3 Future Research . 55
5.4.4 Broader Implications . 55

References 57

Appendix 61

Nomenclature

The first table shows the abbreviations that are used in the thesis. The second table shows the symbols used to
mathematically explain the algorithm.

Abbreviations
Abbreviation Definition

DEAP Distributed Evolutionary Algorithm in Python

EA Evolutionary Algorithm

EAGA Evolutionary Algorithm to Generate Alternatives

EC Evolutionary Computing

ESM Energy System Model

ESOM Energy System Optimisation Model

GA Genetic Algorithm

HSJ Hop-Skip-Jump

MGA Modeling to Generate Alternatives

MOEA Multi-Objective Evolutionary Algorithm

MOGA Multi-Objective Genetic Algorithm

NSGA-II Non-Dominated Sorting Genetic Algorithm II

PSO Partical Swarm Optimisation

RES Renewable Energy Sources

SI Swarm Intelligence

SPORES Spatially Explicit Practically Optimal Results

iv

1
Introduction & Background

1.1. Introduction
The formulation of policies and decision-making processes is inherently challenging, particularly in complex
socio-technical domains such as infrastructure planning for the energy transition [1]. One of the primary sources
of complexity is the involvement of multiple stakeholders at both national and supranational levels, each with
their own priorities, interests, and constraints [2]. These interactions create conflicting objectives, making it
difficult to determine a single optimal course of action. To address these challenges, multi-objective optimization
models are widely used to assist decision-makers by quantifying trade-offs between competing goals [3]. These
models generate a set of non-inferior (Pareto-optimal) solutions, where no objective can be improved without
negatively affecting at least one other. However, while Pareto-optimal solutions provide valuable insights, they
also introduce limitations: they do not account for real-world constraints such as political feasibility, public
acceptance, or long-term adaptability [4, 5].

1.1.1. Beyond Pareto-Optimality: MGA
Relying solely on Pareto-optimal solutions may restrict decision-makers to a narrow subset of mathematically
optimal solutions, potentially overlooking more practical but slightly inferior alternatives. To mitigate this issue,
an alternative modeling approach known as Modeling to Generate Alternatives (MGA) has been developed [6].
Rather than searching for a single best solution, MGA systematically generates multiple diverse solutions that
remain near-optimal but differ significantly in their decision variables.

MGA is particularly valuable for decision-making in energy system planning, where different stakeholders may
prioritize different aspects of the transition, such as cost efficiency, technological diversity, or regional equity. By
presenting multiple viable pathways, MGA allows decision-makers to compare and select strategies that align
best with broader policy objectives and stakeholder preferences. This MGA approach has already been applied in
various fields, including wastewater treatment and energy system optimization, demonstrating its effectiveness
in highly nonlinear decision spaces [7, 8].

1.1.2. Computational Challenges of MGA in Energy System Models
Despite its advantages, MGA becomes computationally demanding when applied to large optimisation prob-
lems such as large-scale energy system models (ESMs). With increasing spatial and temporal resolution and
greater technological detail, the number of variables and constraints grows exponentially [9]. Traditional MGA
approaches compute near-optimal alternatives iteratively, which leads to substantial computational cost, making
it impractical for complex decision problems [10, 11]. A promising solution to this challenge is the integration
of bio-inspired metaheuristics, which have been argued as to be a possibility for significantly improving compu-
tational efficiency and search performance in optimization problems [12].

1

1.1. Introduction 2

1.1.3. Enhancing MGA with Bio-Inspired Metaheuristics
Metaheuristic algorithms, particularly bio-inspired methods such as genetic algorithms (GA) and particle swarm
optimization (PSO) have demonstrated strong performance inmulti-objective optimization [10, 13]. Unlike classi-
cal MGAmethods that rely on iterative perturbations, metaheuristics explore the search space adaptively, making
them more efficient in handling high-dimensional, multi-objective problems.

1.1.4. Research Objective
Although bio-inspired metaheuristics have already been applied to multi-objective energy system models [13],
their integration with MGA remains an under-explored area [12]. Given the computational challenges of tradi-
tional MGA, leveraging metaheuristic-driven alternative generation could significantly enhance both efficiency
and scalability in complex optimization problems. This research aims to bridge that gap by exploring whether
a metaheuristic-driven MGA approach can efficiently generate diverse, near-optimal solutions in energy system
modeling. By integrating bio-inspired metaheuristics with MGA, this research seeks to enhance the practical us-
ability of alternative generation methods in complex energy system planning. If successful, this approach could
provide decision-makers with more computationally feasible and diverse solutions, ultimately supporting more
robust and adaptable policy-making in the energy transition.

1.1.5. Research Outline
The goal of this thesis is to develop ametaheuristic-MGA combination designed to optimize spatial capacity distri-
bution in an energy system. To achieve this, the thesis will first explore the concepts of MGA and metaheuristics
in general, as well as their applications in energy systems. Once a solid understanding of these concepts has
been established, the research question and sub-questions will be discussed in detail. This will be followed by
the methodology section, outlining the steps required to answer each sub-question. The methods will then be
implemented, and the results will be presented, leading into the discussion section, where the findings will be an-
alyzed. Finally, each sub-question will be answered, and a conclusion will be drawn to address the main research
question.

The methodology will consist of a literature review and a model-based approach. The literature review will help
determine the most suitable metaheuristic to combine with the MGA method for this thesis. The model-based
approach will involve designing a small-scale test model to assess whether a metaheuristic-MGA combination
is feasible and, if so, how well it performs. If successful, the developed algorithm will be refined and adapted
for application to an energy system model that already incorporates MGA, as established in previous research.
Finally, the enhanced algorithm will be applied to the larger model, and its results will be compared with existing
MGA outputs to evaluate its effectiveness.

1.1.6. Link to CoSEM Master Program
This research applies mathematical optimization and modeling to analyze and optimize the spatial energy produc-
tion of a complex energy system. As such, it aligns well with the Complex System Engineering and Management
(CoSEM)master’s program, which extensively focuses on complex system analysis and optimization. Expanding
knowledge in energy system optimization can contribute to better managerial decision-making and support the
integration of renewable technologies into complex energy networks.

1.2. Key concepts 3

1.2. Key concepts
1.2.1. Modeling to generate alternatives (MGA)
Modeling to Generate Alternatives (MGA) was first introduced by Brill [4] as a response to the limitations of
traditional optimization methods in addressing complex decision-making problems, particularly those involving
political and societal trade-offs. Unlike conventional optimization, which seeks a single best solution, MGA gen-
erates multiple, diverse solutions that are near-optimal, allowing decision-makers to explore alternative strategies
that reflect different priorities, constraints, or perspectives. As Liebman [14] emphasized, optimization models
should support decision-making by providing insight rather than dictating rigid solutions.

MGA is particularly relevant for problems involving multiple stakeholders with conflicting objectives, where a
single optimal solution may fail to capture the full range of trade-offs necessary for effective decision-making.
To formalize this approach, Brill developed the Hop, Skip, and Jump (HSJ) method, which systematically gener-
ates alternative solutions that remain close to optimal but vary significantly in their decision variables [6]. The
HSJ method begins by computing an initial near-optimal solution, after which it generates a maximally different
alternative while ensuring that the new solution remains within acceptable bounds. This process is iterated until
a diverse set of alternatives is obtained.

Over time, MGA has been widely applied in various fields, including environmental management [15] and energy
system planning [8], where flexibility in decision-making is essential. Unlike multi-objective optimization, which
primarily focuses on exploring the Pareto front, MGA emphasizes generating solutions that are as distinct as
possible within the decision space, providing decision-makers with broader options beyond strict mathematical
optimality.

In real-world decision-making, numerical optimization alone is often insufficient, as many practical considera-
tions extend beyond what can be captured in a mathematical model. Decision-makers must take into account
qualitative aspects such as political feasibility, social acceptance, and environmental justice [16]. A key illustra-
tion of this is provided by Zechman [17], who demonstrated that a model optimizing only a single objective, such
as cost efficiency, may produce an optimal mathematical solution. However, when additional real-world criteria
such as social feasibility are introduced, the preferred decision may shift to a different alternative.

This is illustrated in Figure 1.1, where a model is maximizing a single objective Z1, leading to the optimal
mathematical solution Z∗. However, when considering a second, qualitative objective Z2, such as political or
societal feasibility, the best choice shifts to XC . While ZC might seem like an inferior solution when viewed
through the lens of Z1 alone, it may in fact be the optimal decision in practice. This observation highlights
the importance of generating multiple solutions, as focusing solely on the mathematically optimal outcome can
overlook alternative solutions that better align with real-world considerations.

Figure 1.1: Objective space of Z1 and Z2. Source: Zechman [17].

1.2. Key concepts 4

Bymoving beyond a purely optimization-driven approach,MGA enhances decision-making by highlighting trade-
offs and increasing solution diversity, ensuring that potential constraints and shifting priorities are not overlooked.

Despite its advantages, MGA faces significant computational challenges when applied to large-scale energy sys-
tem models. Traditional MGA approaches require solving multiple optimization problems, systematically mod-
ifying constraints to generate alternative solutions. As spatial and temporal resolution in energy system models
increases, this process becomes computationally costly [9, 10, 11].

To address these computational limitations, Lombardi et al. [12] propose a fundamental shift in approach by
integrating bio-inspired metaheuristics with MGA. Unlike traditional MGA methods that recompute solutions
from scratch, metaheuristic algorithms can efficiently generate multiple alternatives in a single computational run
[18]. By altering selection mechanisms and search operators in response to the performance landscape, adaptive
search techniques enable efficient exploration of the decision space

This integration allows for a more balanced trade-off between computational feasibility and solution diversity.
Instead of relying on repeated full-scale optimizations, metaheuristics can iteratively refine existing solutions,
uncovering diverse alternatives without excessive computational overhead. By merging MGA with bio-inspired
algorithms, decision-makers can generate alternative solutions more efficiently, enabling the application of MGA
to large-scale energy system models in ways that were previously computationally impractical. This approach
represents a significant advancement in the way alternative solutions are generated and evaluated in complex
optimization problems.

1.2.2. Bio-Inspired Metaheuristics
Nature has long demonstrated intelligence through self-learning, resilience, and efficiency, allowing organisms
and natural processes to navigate and solve complex challenges. These principles have inspired metaheuristic
algorithms, which use advanced search techniques to solve optimization problems beyond traditional methods
like linearization [19, 20]. Advancements in computational power have enabled exploration of multi-modal and
multi-objective optimization, where metaheuristics have proven competitive with classical methods [21, 22]. One
major category is Evolutionary Computation (EC), encompassing algorithms such as Genetic Algorithms and
Evolutionary Programming [23, 24]. These algorithms follow a common computational process:

• Generate a population of feasible solutions
• Evaluate their properties
• Select the best candidates
• Apply genetic operators to create a new generations
• Repeat until an optimal solution is found

Another significant offshoot is Swarm Intelligence (SI), which models collective behaviors observed in nature,
such as ant colonies or bird flocks [25]. Unlike individual agents, swarms exhibit intelligence through cooperation,
making them adaptable, robust, and efficient [26]. SI has a lot of resemblance with EC such as population
initialization and fitness, but does not incorporate mutation and crossover.

Metaheuristics, including EC and SI, have found widespread application in solving complex optimization prob-
lems. Their ability to efficiently explore vast solution spaces makes them particularly valuable in stochastic opti-
mization and multi-objective optimization. Stochastic optimization involves solving problems under uncertainty.
Unlike deterministic methods, stochastic optimization integrates randomness into the search process, enabling
solvers to handle dynamic and uncertain environments. Bio-inspired heuristics excel in this domain by adapt-
ing to fluctuations in the fitness landscape, allowing them to continuously generate optimal solutions even as
conditions change [27, 28]. Another critical research area is multi-objective optimization, where bio-inspired
metaheuristics are particularly effective in generating Pareto-optimal solutions.

Many of these algorithms take an evolutionary approach based on EC, forming for example a multi-objective
evolutionary algorithm (MOEA) [29]. They incorporate elitism, ensuring that top-performing solutions are pre-
served across generations [30]. The goal is to find a Pareto front, a set of solutions where no improvement in one
objective can be made without sacrificing performance in another. Many types of MOEAs exist, which are exten-
sively discussed by Bechikh et al. [31]. Two of the most popular methods are the Pareto-based approach, which

1.2. Key concepts 5

includes the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), and the decomposition-based approach,
which consists of the MOEA/D algorithm.

But there are also SI algorithms that are focused on multi-objective optimisation. The most well known is the
particle swarm optimisation (PSO) technique. Simply put, PSO mimics swarm intelligence principles. By lever-
aging personal and global best positions, it efficiently finds optimal solutions in complex search spaces [32]. By
adapting PSO for multi-objective optimization, the algorithm can efficiently handle conflicting objectives and
identify Pareto-optimal fronts.

Despite the success of metaheuristics, research often emphasizes developing new and innovative algorithms over
conducting thorough theoretical analysis to justify their effectiveness. As a result, many algorithms are introduced
without deep theoretical validation, making it difficult to distinguish genuinely impactful advancements from
those that are simply novel [33, 34]. While nature offers countless heuristic mechanisms, their adaptation must
be grounded in solid theoretical foundations to ensure effective and justified design choices.

Bio-inspired metaheuristics are increasingly being applied to energy systems modeling (ESM) to address chal-
lenges such as electricity demand, energy storage, and transmission limitations. Given the multiple objectives
involved in ESM, algorithms like NSGA-II have already proven successful in this field [13]. Despite these suc-
cesses, the use of metaheuristics in combination with ESM remains a promising research direction with significant
potential for impact [35].

1.2.3. Energy System Models
Energy system models (ESMs) provide different perspectives and approaches to understanding the evolution of
energy systems, guiding decisions in areas such as policy, infrastructure, and market dynamics. These models
can be broadly categorized into four paradigms: (1) energy system optimization models (ESOMs), (2) energy
system simulation models, (3) electricity and market power systemmodels, and (4) qualitative and mixed-method
scenarios [36]. Each paradigm serves a distinct role in addressing complex energy system challenges. Among
them, ESOMs are the most widely used, employed by major organizations at all levels of the energy system [37].

ESOMs are generally multi-objective, as they must balance competing goals such as cost, emissions, system
reliability, and policy constraints. Due to this complex characteristic, metaheuristic algorithms and MGA have
already been applied to multi-objective energy optimization problems [38, 13]. MGA enables the exploration of
near-optimal solutions, revealing trade-offs and uncertainties in energy planning, while metaheuristics efficiently
navigate large and complex optimization spaces.

Although both approaches have been independently applied to energy system models, a combined application of
MGA and metaheuristics within an ESM has not yet been explored. As discussed earlier, studies suggest that
such an integration could improve the computational efficiency and flexibility of energy system optimization
[imanrad, 12, 18].

1.3. Research Question 6

1.3. Research Question
Energy system designers must navigate complex decision-making processes, balancing multiple objectives such
as cost, emissions, and geopolitical factors. One of the key challenges they face is deploying specific technolo-
gies at optimal locations, a task complicated by the need to balance economic constraints with technological
feasibility, regulatory policies, and evolving public sentiment. Additionally, the rapid evolution of technology
and shifting public policies introduce further uncertainty, making the range of possible decisions vast and dynamic.
Geographical constraints and specific technological requirements further complicate system design choices.

Traditional optimization methods often struggle to accommodate the vast uncertainties and conflicting objectives
present in energy systems. To address this, MGA have emerged as a powerful approach for generating diverse
and practical solutions. MGA has been successfully applied to energy system optimization [39, 40] and has also
proven effective for problems involving the spatial distribution of technologies [38, 12].

Unlike fields where mathematical models can precisely predict outcomes, energy systems involve numerous un-
modeled uncertainties, making absolute optimization impractical. Instead, decision-makers benefit more from
a diverse set of near-optimal solutions that capture different trade-offs. Which is precisely what MGA offers.
By generating multiple feasible alternatives rather than a single “best” solution, MGA provides policymakers
and engineers with greater flexibility in long-term energy planning. However, MGA is not without its limita-
tions, particularly in terms of high computational costs, which can make large-scale optimization impractical.
Additionally, efficiently exploring the solution space remains a challenge, as choice of MGA methods can lead
to premature convergence or excessive runtime. Future research should focus on enhancing computational effi-
ciency and adaptive exploration mechanisms to makeMGA amore scalable and accessible tool for energy system
optimization.

Metaheuristics present a promising approach to addressing computational complexity while maintaining the abil-
ity to generate valuable MGA solutions. But the combination of MGA and metaheuristics applied to ESMs stays
an unexplored field of research. MGA methods trying to optimize spatial distribution of energy could highly
benefit from a successful integration with metaheuristics. This thesis will therefor try to answer the following
research question:

How does a combination of modeling to generate alternatives (MGA) and bio-inspired metaheuristics, aimed at
the optimisation of spatial energy distribution, compare with existing deterministic MGA methods?

1.4. Research Approach
This research follows a two-phase approach: a systematic literature review to establish a foundation and a model-
based methodology to develop and test a metaheuristic MGA algorithm.

First, a literature reviewwill identify current advancements in combiningMGAs with bio-inspired metaheuristics,
particularly in energy system optimization. The reviewwill not only clarify ongoing research efforts and available
resources but also determine which type of algorithm is most suitable for this study. This insight will directly
shape the algorithm’s design, ensuring its relevance and effectiveness.

Second, a modeling approach will be employed to develop, test, and validate the algorithm. Initially, a prototype
combining an MGA with bio-inspired heuristics will be created using Python and the energy system will be build
with Calliope. Calliope is an open-source modeling framework making it easy to build energy system models at
varying scales. This algorithm prototype will be applied to a small-scale energy system to assess its feasibility
and refine its parameters. Subsequently, the optimized algorithm will be integrated into a large-scale Calliope
model, evaluating its scalability and effectiveness in complex energy systems. Finally, simulation results will be
compared against existing benchmarks using Python and Excel to assess performance and reliability.

This structured approach ensures a strong theoretical foundation and rigorous model validation, addressing the
research question systematically.

1.5. Sub Questions 7

1.5. Sub Questions
To systematically address the research question, the following sub-questions guide the study. These questions
break down the research into key focus areas, ensuring a structured investigation of algorithm selection, configu-
ration, scalability, evaluation, and practical applicability.

1. Which bio-inspired metaheuristic algorithm is best suited for the method being used?
2. How can the tuning of algorithmic parameters optimize the performance of the selected metaheuristic for

implementing a successful MGA optimization technique?
3. How will metrics be used to evaluate the algorithm’s performance, and how do these comparisons with

existing methods inform its applicability?

2
Methods

This section outlines the methods used to answer the sub-questions. It begins with a discussion of the methodolog-
ical framework, providing a brief explanation of the chosen methods and their relevance to the research question.
Following this, each proposed method is explained in detail, including how it will be implemented.

2.1. Methodological Framework
To address the research question, ”How does a combination of MGA and bio-inspired metaheuristics, aimed at
optimizing energy system design, compare with existing deterministic MGA methods?”, a new algorithm that
integrates an MGA approach with a metaheuristic must be developed. Several sub-questions guide this process:

2.1.1. Selection of a Suitable Bio-Inspired Metaheuristic
The first step in designing the algorithm is to identify the most suitable metaheuristic for integration with MGA in
this study. Given the variety of available metaheuristics it is essential to determine which approach is best suited
for the specific requirements of this thesis. To achieve this, a systematic literature review will be conducted to
examine studies on the combination of MGA and metaheuristics, with a particular focus on their applications in
optimization problems, especially in energy system optimization. The objective is to select the most relevant and
practically applicable method based on existing research, acknowledging that while other potentially superior
methods may exist, the choice will be guided by the best available knowledge at the time of study.

This step directly addresses Sub-Question 1: ”Which bio-inspired metaheuristic algorithm is best suited for the
method being used?”

By systematically reviewing the existing literature and selecting the most applicable metaheuristic within the
scope of this research, this step ensures a well-founded basis for the algorithm’s development.

2.1.2. Algorithm Configuration and Integration
Once a metaheuristic is selected, an algorithm must be developed that effectively integrates the MGA process
with the chosen metaheuristic, ensuring its successful application to energy system spatial optimization.. This
requires defining key algorithmic configurations, such as recombination operators, mutation strategies, selection
mechanisms, and parameter tuning for both the heuristic and MGA. A development approach will be adopted,
where different configurations are tested to determine their impact on the solution. Initially, a small energy system
will created to test and evaluate the created algorithm. The refinement process will ensure that the algorithm
produces a diverse set of solutions.

This methodology provides the necessary insights to answer Sub-Question 2: ”How can the tuning of algorithmic
parameters optimize the performance of the selected heuristic for implementing a successful MGA optimization
technique?

8

2.2. Systematic Literature Review Methodology 9

2.1.3. Scalability, Evaluation and Benchmarking
Finally, the developed algorithm’s effectiveness will be assessed by comparing its performance against an existing
MGA approach. Key performance metrics will include:

• Computational efficiency: How long does the algorithm take to find near-optimal solutions?
• Solution diversity: How well does the algorithm explore the solution space?
• Accuracy and robustness: How do the generated solutions compare with deterministic MGA methods in
terms of quality and feasibility?

A crucial aspect of this evaluation is determining whether the algorithm remains efficient and reliable as the scale
of the energy system increases. Before the final results are created, iterative testing will be done to check if the
algorithm operates as it should. This approach will assess whether the method can handle greater complexity
without excessive computational burden or just failing to generate solutions in general.

This evaluation phase is essential for addressing Sub-Question 3: ”How will metrics be used to evaluate the
algorithm’s performance, and how do these comparisons with existing methods inform its applicability?”

2.2. Systematic Literature Review Methodology
A systematic literature review is conducted to identify relevant research on the integration of MGA and bio-
inspired heuristics in energy system optimization. The review begins by searching for studies that combine MGA
with bio-inspired metaheuristics, assessing whether such approaches have been previously explored and iden-
tifying the types of metaheuristics applied. If no directly relevant studies are found, the search scope will be
expanded to more general applications of MGA, as insights from other contexts may still inform its applicability
with bio-inspired heuristics.

Once relevant literature is identified, the applied metaheuristics will be classified to determine which types have
been used in similar optimization problems. This process will provide insight into existing research on MGA and
metaheuristic combinations and the specific metaheuristics employed. Ultimately, this will help in selecting the
most suitable algorithm for the thesis.

The literature review is conducted using Scopus and Google Scholar as primary databases. To ensure comprehen-
sive coverage, predefined search strings incorporating multiple synonyms are used (see Appendix A). The search
strategy first targets studies integrating MGA with bio-inspired heuristics in energy system optimization. If nec-
essary, it expands to more general applications of MGA while maintaining a focus on its use with metaheuristics.

To refine the search results and exclude irrelevant papers, several measures are applied. ”Modeling to Generate
Alternatives” is explicitly searched instead of the acronym ”MGA,” which is commonly used in unrelated fields.
Multi-objective optimization is included in the search criteria, as it often intersects with bio-inspired heuristics
and MGA-related approaches, potentially offering relevant insights even if not the primary focus of this research.
Results are also filtered based on relevance, citation count, and recency to ensure that only the most impactful
studies are reviewed.

The screening process follows the PreferredReporting Items for Systematic Reviews andMeta-Analyses (PRISMA)
framework. A PRISMA flow diagram will document the search process, providing a transparent overview of the
number of initial search results, the filtering and exclusion process, and the final selection of relevant studies.
This structured review ensures that the study builds upon existing research while addressing gaps in knowledge.

The results indicate that most relevant studies employed Genetic Algorithms when integrating a metaheuristic
with an MGA approach. A detailed overview of these findings, along with a clear justification for using GA in
this thesis, is provided in Section 3.1. Accordingly, the following methodology section will proceed under the
assumption that GA is the chosen metaheuristic for this thesis.

2.3. Algorithm Configuration Methodology 10

2.3. Algorithm Configuration Methodology
Evolutionary Computing serves as the basis for various optimization algorithms such as the well known multi-
objective approaches NSGA-II [33, 41]. These type of algorithms operate on the principle of iterative improve-
ment: a population of candidate solutions is evaluated, and the best-performing individuals are selected to gen-
erate new solutions through crossover and mutation. This process continues until a stopping condition, such as
convergence or iteration limits, is met. Figure 2.1 provides a visual representation of this evolutionary process.

Figure 2.1: Flowchart of a General Genetic Algorithm.

GA is a specific type of evolutionary algorithm (EA) that encodes solutions as binary or non-binary strings and
applies evolutionary principles to search for optimal solutions [42]. GAs typically rely on selection, crossover,
and mutation, with modifications tailored to problem-specific requirements. For example, NSGA-II employs non-
dominated sorting and crowding distance to maintain diversity, making it particularly effective for multi-objective
optimization [43]. Designing an effective GA requires aligning its operators with the problem’s objectives, a
principle that applies when integrating MGA with a bio-inspired heuristic.

Previous studies, including Caicedo & Yun[10], Zechman[17], and Loughlin et al. [44], provide insights into
combining MGA with evolutionary algorithms. Understanding these approaches is essential for adapting them
to energy system spatial optimisation. The following section presents the mathematical foundation of MGA,
followed by an analysis of Zechmans [17] MGA-GA combination. Finally, this thesis proposes a refined MGA-
GA approach tailored for spatial energy system optimisation.

2.3. Algorithm Configuration Methodology 11

2.3.1. Mathematical Overview: Modeling to Generate Alternative
A brief overview of the MGA process is provided to facilitate a better understanding of the underlying mathemat-
ical framework. The modeled optimization problem in this case is defined as:

minZ = f(xij) (1)

Subject to:
gk(xij) ≤ bk ∀k = 1, . . . ,M (2)

In function (1), f(xij) represents the objective function where (xij) are the system design variables across tech-
nology (i) and nodes (j). Function (2) includes all the constraints to which the modeled objective is subject, with
M representing the number of constraints.

Suppose the optimal solution to equation (1) is denoted as x0
ij , with the optimal value of the objective function

being Z0. The goal of the MGA process is to generate a second solution that is maximally different from the
initial solution Z0. Equation (3) expresses this in the most intuitive formulation.

maxD =
∑
ij

|xij − x0
ij| (3)

The goal is to maximize the differenceD, which represents difference between the optimal objective value (x0
ij)

and the new design expressed by (xIij). The maximum distance must be achieved while still being subject to
the constraints of equation (2). But a new constraint gets introduced that also needs to be adhered to. This is the
‘slack constrain’ which makes sure the results remain in a determined relaxation of the optimal objective function
value. The slack T thus to this relaxation. A slack of 10% means that solutions are allowed to deviate by up to
10% from the optimal objective function value.

f(X) ≤ T (Z0) (4)

The procedure can be repeated if more alternative solutions are sought. If this is the case, equation (3) can be
updated to become equation (5).

maxD =
∑
a

∑
ij

|xij − xa
ij| (5)

Here (xa
ij) represents the values in any a-th previously found alternative solutions, also including the optimal

objective value. The generation of new alternatives stops when no new alternatives can be found, the difference
between found alternatives is too small, or the desired amount of alternatives have been generated.

2.3. Algorithm Configuration Methodology 12

2.3.2. Designing the co-evolutionary MGA-GA for Energy System Optimization
The process described in equations 3, 4, 5, and 6 can be integrated into a genetic algorithm by iteratively solving
for D, thereby generating multiple solutions that are maximally distinct within the solution space.

A method for combining MGA with GA is formulated by [17] where subpopulations, or niches, collectively
search for different alternative solutions. This method can be further adjusted so that the GA-MGA combination
can be applied to spatial explicit energy systems. The following method to create such an algorithm is as follows:

multiple subpopulation/niches, p are created. Each niche correspond to the an alternative solution being sought.
The subpopulations consists of n individuals, where each individual represents the capacities of the technologies
i at location j in the energy system.

Initially, the problem is solved in a standard way using Calliope to determine the optimal system cost. The costs
of newly generated individuals are then restricted by the slack value T . If the cost of a solution exceeds this slack,
the solution is deemed infeasible and assigned a fitness value of zero. Solutions that fall within the allowed cost
range proceed to the next step.

Next the fitness of an individual is calculated. The fitness reflects the objective of generating maximally different
design options. This is the minimal distance between the capacity value of an individual n in niche q and the
centroid value cpij of niches p, as seen in equation (7). Equation (6) represents the calculation of the centroid
value. The centroid value is c is calculated for each technology i at location j in each niche p.

cpij = 1/N
∑

xn,p
ij (6)

Dn,q
min = minp(minij|xn,q

ij − cpij| ∀p ̸= q) (7)

The distance represents how close a variable of an individual is to the mean value of the same variable across
other subpopulations. This distance will serve as the fitness of the individual, provided the individual was pre-
viously labeled as feasible. As explained before, if the individual was deemed infeasible it will keep its zero
value for its fitness. An individual can represent multiple variables xij , such as when multiple technologies are
deployed across multiple locations. In this case, the lowest distance value will be used as its fitness score, which
is represented byminij in equation (7).

At this stage the genetic algorithm operators need to be implemented. First, all subpopulations undergo a selection
operator. A predefined percentage of individuals are marked as elite solutions and carried over to the next step.
The remaining individuals are selected through tournament selection: two random individuals are chosen from
the subpopulation, their fitness values are compared, and the one with the higher fitness is selected to undergo the
crossover andmutation process. If both the individuals have a fitness value of zero because theywere both deemed
infeasible, the one with the lowest system cost will be selected. Once selection is completed, the individuals will
undergo the crossover operator. Two random individuals are chosen, and a percentage of their variables are
swapped to produce new offspring. This percentage is adjustable and differs for each situation that is being
optimized. Finally, mutation is applied: each variable in the individual is iterated through, and a small random
change is applied to allow for mutation. Figure 2.2 shows a visual representation of the operators process. The
values in the bar represent the capacity for a technology and f represents the fitness of the individual. After the
new subpopulations are formed, the feasibility of all individuals modified by crossover or mutation needs to be
recalculated, as their variable changes affect their associated costs, and thus their feasibility. Next, the centroids
and fitness for all the individuals are recalculated, and the process repeats. The algorithm stops when the stopping
criteria are met or when the desired number of generations has been reached.

2.3. Algorithm Configuration Methodology 13

The theoretical foundation of the GA works. But because it must be applied to energy systems in general, cer-
tain algorithm design options need to be implemented to ensure that the process does not crash. In any given
generation, it is possible for a large number of infeasible solutions to emerge. This may occur due to mutation
and crossover operators creating many infeasible solutions simultaneously, or as a result of the selection process,
where multiple pairs of infeasible solutions are compared and subsequently selected. When this happens, the
population may eventually consist entirely of infeasible solutions, resulting in fitness no longer being part of the
selection process.

To address this issue, a limit is imposed on the number of infeasible solutions that can be selected within the
population. If the population reaches a specified threshold of infeasible solutions, and two infeasible solutions
are selected for a tournament, the algorithm will instead choose a random feasible solution from the population.
Allowing some infeasible solutions to pass is intentional, as they may contain high-performing values within their
genes that could contribute positively to the evolutionary process. However, the limit ensures that the subpopu-
lation remains viable and avoids becoming dominated by infeasible solutions. Moreover, when an individual is
labeled as infeasible, it has a chance to be replaced with an individual previously selected by the elitism operator.
This mechanism prevents populations from starting with only infeasible individuals, a scenario that could hinder
the population’s ability to mutate and evolve toward an optimum solution effectively.

Figure 2.2: Energy system genetic algorithm operators

2.3. Algorithm Configuration Methodology 14

2.3.3. Optimization of Algorithmic Parameters and Model Efficiency

Test Model and Computational Considerations
The algorithm’s initial structure has been developed but requires refinements to align with the energy system
spatial optimization problem. A simplified test model is created to evaluate the GA performance before scaling it
to a full energy system. The model consists of two nodes connected by a single transmission line, each equipped
with demand, battery storage, and solar-PV technology. One node includes a combined heat and gas cycle, which,
while costly, ensures demand is met. The test model validates the algorithm’s ability to optimize spatial energy
distribution while maintaining solution diversity.

Despite GA’s efficiency in optimization, prior studies highlight its computational intensity, particularly when
handling large populations and multiple attributes such as cost and fitness [10, 17]. To mitigate this, the following
efficiency-enhancing techniques are implemented:

• Skipping redundant cost calculations for individuals unaffected by crossover or mutation.
• Optimizing solver settings within Calliope.
• Utilizing high-performance computing resources.

When recombination occurs and an individual remains unaffected, it does not need to be processed through the
backend again; instead, it retains its previously associated costs. Gurobi is chosen as the solver due to its superior
performance over CBC and CPLEX for large-scale mixed-integer programming problems [45]. To improve
efficiency, the barrier method without crossover is used, reducing solving time by up to threefold [46]. While
crossover can enhance solution quality, computational constraints favor a trade-off prioritizing speed, with small
optimality and feasibility tolerances implemented to balance precision and efficiency. Given the computational
intensity of multiple runs, DelftBlue, the TU Delft supercomputer, is utilized to significantly reduce solving time.
DelftBlue’s computing capabilities allow for rapid execution of optimization runs, making large-scale testing
feasible [47].

Resolution
To manage computational demand, the model dynamically adjusts temporal resolution during optimization. Ini-
tially, the algorithm operates at a lower temporal resolution (e.g., monthly), increasing to daily or hourly as
promising solutions emerge. An approach proven by Trondle et al. to be effective in reducing computational
demand while also maintaining aspects of high resolution [48]. By intelligently adjusting the model’s resolution,
it is possible to reduce unnecessary solving time. Once the subpopulations converge, the resolution should then
be increased so that the solution space identified at the lower resolution can be further refined and explored by
the algorithm. Calliope provides two primary resolution adjustment methods:

• Time Clustering: Groups similar days to create representative clusters, reducing computational require-
ments while maintaining temporal diversity.

• Time Masking: Selects or excludes specific time periods, allowing focused analysis on critical energy
system fluctuations (e.g., peak PV production).

The full-scale model operates at a six-hour resolution, as studies indicate that maintaining accuracy beyond this
threshold provides diminishing returns [49]. The algorithm will initialize all resolutions at the beginning of the
algorithm process, ensuring seamless transitions between temporal scales.

Population Initialization
At the beginning of the algorithm process populations with individuals need to be created. First the system will be
solved to find the optimal solution. The corresponding technology capacities will be used to base the capacities of
the individuals on. The initial individuals capacities are slightly adjusted to encourage exploration while ensuring
feasibility. Next part explains exactly what is meant with the technology capacities from the optimal solution.

Capacity Initialization and Mutation
The model is solved to determine the optimal solution and extract the corresponding optimal capacities. Calliope
categorizes technologies into several types: supply, demand, storage, transmission, and conversion technologies.
However, demand and transmission technologies are excluded from the set of technologies that make up the
individuals in the population. The capacity values included in each individual will be subject to mutation and
crossover.

2.3. Algorithm Configuration Methodology 15

The algorithm restricts capacity mutation to predefined lower and upper bounds, ensuring that the mutation op-
erator functions within an appropriate range. The mutation range is determined by the energy_cap_min and
energy_cap_max values of the technology, which define the lower and upper bounds. These values can be
extracted from the backend of the model. In some cases, energy_cap_max may be set to infinite for certain
technologies. When this occurs, the value is replaced with the highest maximum capacity observed in another
technology.

The DEAP mutation operator MutPolynomialBounded is used to mutate values within the specified bounds.
The degree of variation between mutations is determined by the ETA value which is a variable build in the
MutPolynomialBounded operator. The higher the ETA value, the smaller the difference between each mutation.

Exploration vs Exploitation in Genetic Algorithms
When designing a GA, a fundamental challenge is maintaining the right balance between exploration and exploita-
tion, as these two mechanisms directly influence the algorithm’s effectiveness. Exploration refers to the ability
of the algorithm to search new areas within the solution space, preventing premature convergence to local optima.
Exploitation, on the other hand, focuses on refining existing solutions by searching their immediate neighborhood,
improving overall solution quality [50].

These two components are often in opposition. Excessive exploitation can lead to premature convergence, while
excessive exploration may prevent convergence altogether [51]. The balance between these forces is primarily
determined by the mutation rate, crossover rate, and selection pressure. Adjusting these parameters is essential,
as even minor modifications can significantly impact performance. Since no universal parameter configuration
guarantees optimal results, various parameter tuning techniques are required to find an effective balance [52].

Parameter Tuning vs Parameter Control
The design and performance of a GA are strongly influenced by parameter selection, requiring careful tuning to
enhance efficiency. There are two fundamental approaches to parameter optimization, namely parameter tuning
and parameter control. Parameter tuning means that the values are set before the execution of the algorithm and
remain fixed throughout the run. While with parameter control the values are dynamically adjusted during the
execution of the algorithm, adapting to problem-specific characteristics [53].

A well-tuned genetic algorithm performs significantly better than one with default or randomly assigned param-
eters [53]. While existing literature provides general parameter recommendations, fine-tuning is often problem-
specific, requiring empirical testing. For complex optimization tasks, surrogate models, such as the designed test
model, can assist in efficiently estimating optimal parameter values [54].

In this study, the following parameters are categorized under parameter tuning:

• Crossover rate
• Population size
• Solution amount
• Mutation rate

Additionally, mutation distribution index ETA (η) and resolution change fall under parameter control, as they
dynamically adjust during the algorithm’s execution [55]. Despite the conceptual difference between these two
approaches, this study applies the same tuning method for all parameters for simplicity and efficiency.

Performance Metrics for Parameter Evaluation
Since GAs involve stochastic processes, evaluating their performance requires statistical validation. The fitness
value of a GA is deterministic, as it is based on the optimization problem being solved, but the parameters and
results are stochastic, requiring multiple runs to assess performance reliably [56]. To systematically measure GA
performance, three key performance metrics are used [57]:

1. MBF (Mean Best Fitness) – Evaluates the highest fitness achieved across multiple generations.
2. AES (Average Evaluations to Solution) – Measures computational efficiency by assessing the number of

function evaluations required.
3. SR (Success Rate) – Assesses the algorithm’s reliability in consistently finding high-quality solutions.

2.3. Algorithm Configuration Methodology 16

Not all of these metrics are necessary for every study. Their relevance depends on the specific design goals of the
algorithm. However, they provide a solid foundation for evaluating different parameter configurations.

F-Race Method for Parameter Optimization
To identify the optimal combination of parameter values, this study employs the F-race method, an iterative
brute-force approach designed for tuning stochastic search algorithms [58, 59]. The F-race method evaluates
multiple parameter combinations and ranks their performance, progressively eliminating the worst-performing
configurations in each iteration. This process continues until either one optimal combination remains or there is
no statistically significant difference among the remaining configurations. To assess statistical significance, the
Friedman test is applied. This non-parametric test compares multiple parameter configurations across several
independent runs, determining whether performance differences are statistically meaningful. The null hypothesis
assumes no significant difference between parameter combinations. If the test rejects this hypothesis, pairwise
comparisons are conducted using a post hoc test to determine which configurations perform significantly better.
An indepth explanation of the F-race and corresponding mathematical formulations are given by Montero et al.
[58].

Implementation of Parameter Tuning
To define the initial set of control parameters, this study focuses on tuning parameters independent of solving
time, as these adjustments do not significantly impact computational runtime. Fitness evaluation will be based
on Mean Best Fitness (MBF), summing the highest-performing individuals’ fitness values across all generations.

Each experiment will be run five times, and the mean performance across these runs will determine the fitness
score used for the Friedman test. While ETA, crossover rate, and mutation rate are varied, other parameters
remain constant:

• Number of generations: 100
• Subpopulation size: 10
• Number of subpopulations/niches: 3

The resolution change schedule is also fixed. These variables and parameters are set at a constant to make sure
they do not interfere with the results of the F-race method. Table 2.1 summarizes the initial control parameters
selected for tuning:

Control parameter Values

ETA [(0.5, 2, 4), (1, 4, 7), (3, 8, 15)]
Probability of Crossover [0.4, 0.5, 0.7]
Probability of Mutation [0.05, 0.1, 0.2]

Table 2.1: Genetic algorithm control parameter sets.

A crossover rate of 1 means that each value of an individual has a 100% chance to get swapped with the value of a
different individual. A mutation rate of 1 means that a single value of an individual has a 100% to mutate. While
there is a lot of literature stating diverse parameter values, the values from 2.1 are based on what is generally
considered average used rates. The crossover rate is normally half, which is why the ranges 0.4 - 0.7 are chosen.
For mutation 0.05 is considered normal but sometimes it can be higher. Therefor a mutation rate of 0.2 is also
incorporated to see how the algorithm behaves with a generally high mutation rate [60, 61].

Finalizing the Optimal Parameter Configuration
After completing the designated F-race iterations, or if no significant differences are found, the tuning process is
finalized. If multiple parameter combinations yield equally strong results, the best configuration is selected based
on highest fitness and speed of convergence, determined by the generation in which the solution was achieved.

The best-performing parameter set will then be used to assess the impact of resolution changes, population size,
and subpopulation count. Other high-performing configurations with structural differences will also be analyzed
for comparison. Alongside fitness evaluation, the solving time will be considered, as adjusting population size
or resolution changes at different time steps can significantly affect computational efficiency.

2.3. Algorithm Configuration Methodology 17

No statistical methods will be applied when evaluating population size and subpopulation count. Instead, the
time to solve and fitness results will be compared. The best parameter configuration from the statistical tuning
process will serve as the baseline for thesemeasurements. When analyzing population size, key factors include the
generation in which the best solution is found, the solving time, and fitness quality. While increasing population
size may enhance solution robustness, it also extends solving time. This trade-off will be evaluated to optimize
the algorithm for larger energy system models.

Resolution change is the final parameter under investigation and represents a distinctive feature of this algorithm.
Once other parameters are optimized, multiple runs will be conducted with different resolution transition points.
The primary objective is to determine whether switching to a higher resolution affects population stability or
causes divergence from previously converged values. Adjustments, such as accelerating the transition to the
highest resolution or extending high-resolution runs, may yield further insights into algorithm performance.

Figure 2.3 provides a high-level summary of the GA process described in this section. It outlines the key steps,
including initialization, selection, crossover, mutation, feasibility checks, and fitness calculations. Specific imple-
mentation details, such as the fitness function calculation or customized tournament operator, have been omitted
for simplicity. The next section will expand on this framework, ensuring the algorithm is effectively adapted for
large-scale energy system optimization.

Figure 2.3: Test Model GA Flowchart.

2.4. Scalability, Evaluation and Benchmarking Methodology 18

2.4. Scalability, Evaluation and Benchmarking Methodology
The behavior and interaction of parameters have been clarified through their application to a simple energy system.
The next step is to determine whether the designed algorithm can produce insightful results when scaled up and
applied to larger, more detailed models. The findings from the previous section provide a foundation for adjusting
the algorithm to fit a larger model. However, scaling up introduces new questions and challenges that must be
addressed to ensure successful integration.

This section focuses on the adjustments required for the algorithm to function effectively with a large-scale model.
The selected model is the one presented by Lombardi et al. [12], with its code available in the associated Zenodo
repository [62]. This model serves as an ideal test case due to its complexity and relevance to real-world energy
system problems. Its structure captures diverse technologies, spatial variations, and dynamic constraints, mak-
ing it a robust environment for testing scalability. Moreover, as the model is built in Calliope, it remains fully
compatible with the genetic algorithm developed in this study.

The algorithm has been intentionally designed without hard-coded structures, allowing it to be easily applied to
other models built in Calliope. This flexibility ensures seamless integration with the model by [12]. With the
test model there were just a few technologies present in the system. The European model on the other hand im-
plements over a thousand technologies dispersed over many locations. As a results, the number of technologies
involved in mutation and crossover operations is significantly higher, raising the question of whether the algo-
rithm will still perform as intended with this increased number of technologies, locations, and links. For instance,
the mutation process may face increased combinatorial complexity as the number of technologies grows, while
crossover operations might encounter structural mismatches when dealing with diverse locations and link config-
urations. Additionally, the computational load increases substantially due to the system’s greater complexity and
higher memory requirements for operation. The following sections will address these challenges by examining
adjustments in data management, computational optimization, algorithmic efficiency, and evaluation strategies.

2.4.1. Optimizing Computational Resources
To evaluate the small model algorithm, the DelftBlue cluster was utilized to perform multiple runs in parallel.
Leveraging its substantial computational resources, a large dataset was generated to analyze the algorithm’s be-
havior. As the focus shifts toward modeling the European energy system, the necessity of DelftBlue has become
even more evident. While running numerous simulations is no longer the primary requirement, the supercom-
puter’s extensive memory capacity remains crucial.

To configure the execution of the Python script, a SLURM job submission script is used to define the required
computational settings. The exact SLURM file format is provided inAppendix F. Due to themodel’s highmemory
demands, the high-memory partition is employed, as it is specifically designed for CPU-intensive jobs requiring
substantial RAM [47]. To ensure optimal performance, several test runs will be conducted to determine the most
suitable configuration for the model.

2.4.2. Data Management Adjustments
The algorithm currently retrieves all technologies and their corresponding capacities from the backend, exclud-
ing transmission and demand technologies, and stores them in a structured table. In the mock-up model, which
included only five technologies, such data did not require intricate structuring. However, the larger model, featur-
ing over a thousand technologies distributed across multiple locations, demands a more thoughtful and efficient
approach to data organization. Proper structuring is essential not only for creating clear tables and insightful visu-
alizations but also for enabling a deeper understanding of how the algorithm performs when applied to complex
large-scale models.

Instead of creating visual figures to represent the data, the algorithm’s output will be saved in an Excel file. This
approach makes it easier to modify and analyze the data, providing greater flexibility when emphasizing different
aspects of the results. To ensure the data can be utilized in various ways, it is important to incorporate the core
aspects of the algorithm. In this case, it is of importance to know the capacities of the technologies the total
system cost and the assigned fitness when storing generated individuals in external files.

An extra feature of the algorithm is to identify combination of individuals that form the best performing combi-
nation of solutions. The best individual from the complete run is identified by examining the highest cumulative
fitness of the best-performing individual from each population across all generations. However, it is equally valu-

2.4. Scalability, Evaluation and Benchmarking Methodology 19

able to gain insight into how the algorithm behaves throughout the process. To facilitate this, the Excel file will
include snapshots of the populations at specific generation intervals. This approach allows for a detailed analysis
of population evolution over time, by looking at how the individuals in the populations evolve over time.

The old algorithm worked by storing the best-performing technology combination in an allocated variable. Each
time a new best-performing combination of individuals was identified, the algorithm would overwrite the pre-
viously stored data in the variable. For the larger model, a new feature was added. Instead of overwriting the
previous data, each new best-performing combination is now stored in a separate sheet within the Excel file.
This approach provides a more structured overview of how the best-performing capacity combinations behaved
throughout the algorithm’s run.

2.4.3. Algorithm Structural Adjustments
The fitness of an individual is determined by calculating the distance between the individual’s capacity values
and the centroid values of all other subpopulations for capacity i. Specifically:

1. For each capacity value i in individual k of subpopulation q, compute the difference between the capacity
value and the centroid values of subpopulation p capacity value i, where p ̸= q.

2. Repeat this calculation for all capacity values of the individual.
3. The lowest value becomes the fitness of the individual.

The issue with the large model is that many technologies have both a maximum and minimum capacity value of
zero. Currently, this means that these technologies will be included in the individual but cannot undergo mutation.
Consequently, the centroids for these capacity values and their distances from the centroid will always be zero.
As a result, the fitness of the individual is determined under this assumption, which causes a problem in the
algorithm, as the fitness will always be zero and cannot evolve away from this value. Technologies with both
lower and upper capacity bounds of zero will therefore be eliminated from the algorithmic process. Since their
capacities are always zero, their presence in the algorithm is redundant. Removing them ensures the algorithm
functions as intended.

Due to the way population creation and randomization work in Python and DEAP, multiple duplicates can arise in
the created subpopulations. This can result in values that differ by zero, causing the fitness of an individual to be
zero from the start. To solve this, a check is implemented to detect identical values in the initial subpopulation. If
duplicates are found, a small random adjustment is applied to the values. Making sure there are only non-identical
individuals in the initial populations. As a result, this ensures that the all initial individuals start off with a fitness
value, albeit a low one.

In the large model, when seeking the optimal solution, some technologies may be assigned extremely low capac-
ities as part of the final solution. For instance, capacities as low as 1 × 10−6 (1 MW) may appear. Compared
to the scale of the model, where some technologies represent tens or hundreds of GW, such small values are
almost negligible. These small capacities can slow down the model, as they require the solver to process minor
adjustments that have little to no impact on the overall system. To address this, any technology capacity below
1 × 10−5 will be automatically set to 0 during initialization. This adjustment reduces computational overhead,
improves solving efficiency, and streamlines the optimization process.

In the test model algorithm, a custom tournament function and a standard elite function were introduced. The
goal of these operators is to ensure that better-performing individuals were more likely to advance to the next
generation. When individuals were mutated and selected, and their fitness is deemed infeasible, a small fraction
would be replaced with previous unaltered elite individuals. This mechanism prevented scenarios where an entire
generation had zero feasible individuals, ensuring that some feasible individuals were always present to continue
the algorithm’s process. Infeasible individuals were retained with the hope that their genetic information could
eventually mutate into a feasible solution. This approach ensured that no genetic data is lost and that the algorithm
would not crash due to a lack of feasible individuals.

However, given the understanding of how the algorithm operates and the structure of the large model, it is antici-
pated that maintaining the same settings will lead to problems when applied to the larger model. Due to the high
dimensionality of the individuals’ values, the likelihood of an infeasible individual being created is extremely
high. In addition, the probability of this individual mutating back to a feasible state is minimal due to the vast
number of variables. Keeping such infeasible individuals in the population disrupts the algorithm’s optimization
process.

2.4. Scalability, Evaluation and Benchmarking Methodology 20

To address this issue, a new mechanism is introduced. Before the mutation and crossover steps, a list of all indi-
viduals is created. After crossover and mutation, if an individual is found to be infeasible, it is replaced with a
random individual from this pre-generated list. If the individual remained feasible, it continued as normal. This
updated process ensures that the algorithm does not carry infeasible solutions forward, allowing it to operate
exclusively with feasible individuals and thereby maintaining the algorithm’s effectiveness and stability. While
stabilizing the algorithm it can still be argued that such a mechanism eliminates potentially valuable genetic ma-
terial and maintaining more homogeneous solutions in the populations. such structures could cause the algorithm
to prematurely converge to an optimal solution.

2.4.4. Balancing Resolution and Solve Time in Large-Scale Models
Due to the large size of the European model, it is expected that the time to solve will take a while. The results
of the European model have a resolution of 3 hours, so the aim is to do produce final results which also have
a resolution of 3 hours. The resolution change that was proposed in the previous method help reduce the time
needed to solve all the individuals of each generation. The approach on how to structure these resolution changes
can differ a lot. The following methods will be tested:

• Initialize a low resolution and end at the desired resolution
• Apply the masking technique as initial low resolution
• Apply the clustering technique as initial low resolution

Test runs are needed to determine the time required for each approach. By measuring the time taken to solve
an individual in each scenario, it will be possible to calculate the total runtime using the initialized resolution
method.

2.4.5. Dynamic Slack Adjustment for Resolution Transitions
One of the primary concerns in the algorithm’s design is ensuring stability when switching between resolutions.
A key challenge arises from the fact that costs are calculated differently at each resolution level. A low resolution
generally produces lower cost, compared to solutions generated at a higher cost. The reason for this can lie with
how costs are calculated when different time steps are involved. For example, a low resolution maybe does not
take the discharge of batteries into account as well with higher resolutions. This variation can cause the algorithm
to crash or become non-functional when transitioning from lower to higher resolutions. To mitigate this issue, a
dynamic slack adjustment approach is implemented.

The core idea behind this approach is to gradually adjust the slack value as the resolution increases. Instead
of maintaining a fixed slack threshold throughout the optimization process, the slack value starts at a lower
percentage (e.g., 5%) and is progressively increased with each resolution transition. When the final resolution is
introduced, the desired slack value is also initialized. This method ensures that individuals in the population can
gradually evolve towards the final cost constraint rather than being abruptly classified as infeasible.

This adaptive slack approach helps to ensure that individuals remain cost-feasible across different resolution
levels, preventing the algorithm from being pushed towards unrealistic or impractical solutions. Moreover, it
reduces the likelihood of algorithm crashes, as the gradual tightening of constraints allows solutions to naturally
adapt rather than being suddenly deemed infeasible.

To validate this approach, multiple test runswill be conducted. While themodel’s size and computational demands
limit the number of tests, these runswill provide crucial insights intowhether gradual slack adjustments effectively
prevent crashes, ensure solution feasibility, and maintain computational efficiency. By integrating this strategy,
the algorithm can transition smoothly across resolutions, maintaining stability while optimizing energy system
configurations.

2.4. Scalability, Evaluation and Benchmarking Methodology 21

2.4.6. Structuring Data for an Effective GA Benchmarking Analysis
The algorithm that was applied to the small model iteratively stored generations in an Excel file. Whenever a new
highest-performing individual combination was identified, the results were saved in a separate sheet. Each stored
individual includes the following data: the generation in which it was created, the subpopulation it belongs to, its
index within the subpopulation, its associated cost, its fitness, and the capacity values for each technology.

Lombardi et al. [12] employed the SPORES method, generating 210 SPORES solutions for four different weight-
ing methods, resulting in a total of 840 solutions. All results and corresponding data are publicly available in
the Zenodo repository [62]. These results are stored as CSV files, providing structured access to all 840 solu-
tions and their respective capacities. The first 50 runs of each weighting method, referred to as the ”main batch,”
focus on identifying spatially distinct energy deployment configurations by adjusting weights assigned to high-
and low-performing technologies. The remaining 160 runs (the ”parallel batch”) involve systematic exploration,
including minimizing or maximizing specific technologies such as wind, solar, or nuclear energy.

For benchmarking, only the first 50 runs will be used, as these results best align with the search objectives of the
developed GA. The GA’s performance will be compared against each of these 50 runs across the four weighting
methods: integer, relative deployment, random, and evolving average. A detailed explanation of these weighting
methods is provided in [12].

SPORES results are visualized in a three-dimensional scatter plot, where capacities are normalized and expressed
in terms of transmission capacity utilization, renewable capacity utilization, and electricity storage capacity utiliza-
tion. The normalization is based on the maximum deployment potential of each technology, which corresponds
to the maximum allowed capacity. In Calliope, this is represented as max_cap_value.

Since the developedGA does not adjust transmission capacities, a direct benchmark against the exact technologies
from the SPORESmodel is not feasible. However, given the availability of raw SPORES data, the GA can still be
bench-marked against renewable and storage technologies. Renewable capacity will be further categorized into
solar and wind technologies, as they form the majority of renewable capacity deployment. A three-dimensional
comparison will be made using the capacities of solar PV, wind, and battery technologies. While transmission is
omitted, this structure still enables a comprehensive comparative analysis.

Instead of normalizing data using max_cap_value, capacities from the optimal solution in the existing CSV
files will serve as a reference. The PV capacity consists of open-field PV (open_field_pv) and roof-mounted
PV (roof_mounted_pv). Wind capacity is divided into offshore wind (wind_offshore), competing onshore
wind (wind_onshore_competing), and monopoly onshore wind (wind_onshore_monopoly). Finally, storage
capacity includes both battery storage (battery) and hydrogen electricity storage (hydrogen_storage). The
corresponding capacity values are:

• PV capacity = 4,774.1 GW
• Wind capacity = 7,317.7 GW
• Storage capacity = 703.8 GW

Beyond benchmarking against the large model, the algorithm’s evolution over generations will also be visualized.
Every ten generations, the total battery, PV, and wind capacities of all individuals in the population will be plotted,
tracking their progression until the final generation. This will provide insights into how the GA converges over
time, highlighting trends that might not be apparent in the final results alone.

First, all 50 initial spore runs for each method (integer, relative deployment, random, and evolving average) are
compared alongside the results of the GA niches. Due to the limited number of results generated by the GA, an
equal number of results will be selected from the SPORES outcomes to ensure a fair comparison. Doing so creates
consistency in the sample size. If not done, the large sample size could skew the comparison. For this reason, a
second plot is created that just takes the first three SPORES answers for each method. The SPORES is an MGA
method which identifies answers iteratively. The first three answers should be answers that already thoroughly
explored the solution space. Using just three SPORES solutions should still create a reasonable comparison.

The plots are generated using Python. The x-axis represents the PV energy deployment as a percentage, meaning
the values on this axis can be multiplied by the total PV energy deployment in the optimal solution. The y-axis
represents wind energy deployment. The color axis indicates the deployment of electricity storage technologies,
with dark blue representing lower deployment and lighter yellow indicating higher deployment. Both figures are
presented on the next page.

3
Results

The results chapter presents the findings from the literature review, algorithm configuration, and algorithm scaling,
benchmarking, and evaluation. A discussion of these results will be provided in Chapter 4.

3.1. Results Literature Review
First, the literature on energy system optimization, MGA, and bio-inspired heuristics was searched and reviewed.
Figure 3.1 shows that fifty-three relevant papers were identified. An initial screening excluded literature that did
not involve energy system optimization and bio-inspired heuristics. Subsequently, research not focused on the
spatial optimization of energy systems using bio-inspired heuristics were further excluded. Only one paper, by
Prina et al. [13], addressed spatial optimization. It uses a multi-objective optimization approach combined with a
bio-inspired heuristic, making it the closest resemblance to the proposed research in this thesis when considering
energy system optimization. Some papers focused on regional optimization for example of a country [63] but did
not include spatial deployment of technologies, while other papers looked at spatial optimization of just a certain
technology [64].

Figure 3.1: Systematic literature review focused on MGA, bio-inspired heuristics and energy system optimization

22

3.1. Results Literature Review 23

Figure 3.1 and the reviewed literature highlight a gap in knowledge within the specific field of this thesis. While
MGA is widely applied to energy optimization problems, the method that incorporates a bio-inspired heuristic is
relatively novel [40].

Due to the Limited research literature, the search expanded its scope to include studies discussing MGA and
bio-inspired heuristics, applied to optimization problems in general. The literature review was conducted using
the second search string provided in appendix A. This search string was applied to both Scopus and Google
Scholar to identify relevant studies. Initially, the Scopus search yielded a structured overview of several papers
that combined MGA with bio-inspired heuristics. Applying the same search string in Google Scholar resulted in
additional sources; however, after screening the Google Scholar results, only two papers were considered unique
compared to the Scopus findings. In total, twenty sources were identified that integrate MGA and bio-inspired
heuristics, all applied within the context of an optimization problems (figure 3.2).

Figure 3.2: Systematic literature review focused on MGA, bio-inspired heuristics and a general optimization problem

The first screening excluded papers that did not apply a bio-heuristic to find alternative solutions, meaning that
these papers only discussed or reviewed the concept without applying it to solve an optimization problem. While
useful, this part of the literature review tries to identify examples on which the further algorithm design can
be based on. Meaning example of implementation is of interest. The second screening excluded all scientific
papers that applied both concepts to specific optimization problems. With specific it is meant that the literature
solved an exact problem. Meaning the theory used was not useful based on general optimization problem theorem.
Although this literature may hold value for the thesis, as the methods could potentially be adapted to the thesis
case, the final selection focused solely on research that applied both concepts to general optimization problems.
Ultimately, four papers were identified that met the established criteria (table 3.1).

There was minimal diversity in application, with most studies focusing on specific problems such as engineering
[65] [66], waste management [7] [67], and microgrid optimization [68]. However, beyond the MGA-heuristic
combinations applied to specific fields of research, the final selected papers concentrated on more general appli-
cations of the MGA and bio-inspired heuristic concepts. These four papers primarily explain the mathematical
processes and evaluate the performance of the MGA-heuristic combination. Table 3.1 presents the articles that
provide a broader view of the application of MGA combined with bio-inspired heuristics for general optimization
problems. The table also specifies the type of bio-inspired heuristic used in each study.

3.1. Results Literature Review 24

Author Year Article Title
Imanirad et al. 2013 A concurrent modelling to generate alterna-

tives approach using the firefly algorithm
Caicedo & GunJin Yun 2011 A novel evolutionary algorithm for iden-

tifying multiple alternative solutions in
model updating

Zechman & Ranjithan 2004 An evolutionary algorithm to generate al-
ternatives (EAGA) for engineering opti-
mization problems

Loughlin et al. 2001 Genetic algorithm approaches for address-
ing unmodeled objectives in optimization
problems

Table 3.1: Summary of research on bio-inspired heuristics used in Multi-Objective Genetic Algorithm (MGA) approaches.

The literature review shows that there is currently no research incorporating an MGA approach combined with
bio-inspired heuristics focused on the optimization of an energy system. Prina et al. [13] closely resembles what
this thesis aims to achieve but does not incorporate an MGA approach. When searching for an MGA-heuristic
combination applied to general optimization table 3.1 showed all the relevant literature found. Noticeable is that
three methods used an EC approach with just one using an SI method [69].

The literature in table 3.1 will provide foundational knowledge for the algorithm that needs to be developed in
this research. To ensure comprehensive coverage of relevant literature, a snowball method will be implemented
to identify any significant research that has used one of the studies in table 3.1 as its basis. To achieve this, the
identified literature will be searched in Google Scholar, where citations of the research can be reviewed. Google
Scholar is used for this step because it includes a broader range of sources. For instance, the paper by Imanrad
et al. [69] shows three citations in Scopus, whereas Google Scholar lists seventeen. The method developed by
Zechman [17] serves as the foundational basis for this body of research, with some studies representing further
work by Zechman themselves [70, 71, 72], while others apply Zechman’s concept to new approaches [73, 74].
These articles are particularly valuable when designing the algorithm, as they each provide detailed explanations
of how the algorithm functions.

Additional research has been identified that applies genetic algorithms to urban planning [75] and transportation
networks [76]. Both studies demonstrate the necessity of tailoring genetic algorithms to fit specific applications.
This literature provides valuable examples of how such adaptations are implemented, offering insights into the
process that can inform the integration of these techniques in the context of this thesis.

3.2. Results Algorithm Configuration 25

3.2. Results Algorithm Configuration
3.2.1. Parameter Tuning
The results derived from the algorithm configuration method are primarily related to parameter tuning. For the
initial stage of parameter tuning, the F-race method was employed to systematically evaluate and optimize the
parameters. Using the different parameter values for mutation, crossover, and ETA, a total of twenty-seven
combinations were generated. Each of these twenty-seven combinations were run five times, and the fitness and
the generation at which the best solution was found were recorded. All the results can be found in appendix B.

The fitness metric was then applied in the F-race test, which identified significant differences among nineteen
of the twenty-seven parameter combinations, while the remaining eight showed no significant difference. These
eight combinations were allowed to go to the next step of the the F-race method. This process repeated until no
significant differences were found between the parameter combinations.

In the final iteration of the F-race test, no significant differences were found among seven remaining combina-
tions, marking the conclusion of the method. Table 3.2 presents the remaining combinations along with their
corresponding parameters.

Combination ETA Mutation Rate Crossover Rate

6 (0.5, 2, 4) 0.2 0.5
12 (1, 4, 7) 0.2 0.4
15 (1, 4, 7) 0.2 0.5
18 (1, 4, 7) 0.2 0.7
21 (3, 8, 15) 0.2 0.4
24 (3, 8, 15) 0.2 0.5
27 (3, 8, 15) 0.2 0.7

Table 3.2: Remaining combinations after F-race and their specific parameters

There are still many combinations remaining that can be used as parameter settings for the algorithm. In addition
to fitness, the generation in which the best solution was found was also recorded, allowing for the calculation of
the average fitness and average generation for each combination. The F-race method is useful for comparing a
single metric, such as fitness, across combinations. It helps identify and exclude significantly worse-performing
combinations from the results. However, this method does not support the simultaneous comparison of multiple
metrics, such as fitness and generation.

After excluding combinations using the F-race method, the remaining combinations can be analyzed further by
comparing their performance on the generation metric. By standardizing both metrics (fitness and generation)
and plotting them against each other, it becomes possible to evaluate the trade-offs between these metrics for each
combination. This comparison provides insights into how the remaining combinations perform relative to one
another. The resulting plot is shown in Figure 3.3.

3.2. Results Algorithm Configuration 26

Figure 3.3: F-race final results generation and fitness plotted

Figure 3.3 showswhich combinations perform overall the best. Combinations that have a lower value and a higher
fitness value are deemed better performing. This is because a high fitness value is preferred, while a lower gen-
eration value, which indicates an earlier discovery of the optimal solution, is also desirable. The top-performing
combinations based on fitness are 21, 24, and 27. The key attributes these combinations share are their mutation
rate and ETA value. Additionally, for all combinations, the optimal mutation rate is 2%. While combinations
21 and 27 achieve high fitness values, they do not perform as well as combination 24 on the generation metric.
Combination 24 not only performed the best on the generation metric but also achieved strong performance on
the fitness metric. For this reason, parameter combination 24 will be used as the base parameter combination in
future testing.

The next step involves testing the parameters that are expected to have a significant impact on the time required
to solve the problem. For this analysis, the F-race method will not be applied. Instead, a new metric will be
introduced: the time taken to complete a single run of the algorithm.

The first parameter tested, with time measured, is the number of niches that can be initialized in the algorithm. For
this parameter, it is important to understand the effect of increasing the number of niches on both the fitness and
the time required to complete a run of the algorithm. All results are detailed in Appendix C.The number of niches
tested ranged from three to five, with each configuration run multiple times. The size of each niche was fixed
at ten, while the mutation, crossover, and ETA parameters were set according to the values from combination
twenty-four.

3.2. Results Algorithm Configuration 27

3.2.2. Number of Niches

Figure 3.4: Effect of increasing niches on time and fitness

Figure 3.4 shows the correlation between the fitness and time to solve when increasing the fitness. From three
niches to five niches there is an decrease in overall fitness of 13% while the time to solve the run increases with
60%. Full percentage comparison of the difference between the number of niches can be found in appendix
C. The results indicate that increasing the number of niches causes a slight decrease in the overall quality of the
algorithm’s performance, while the time required to solve increases significantly. It is important to note that these
differences specifically apply to the model used for testing. However, the findings can still be considered when
applying the algorithm to larger models. No ”best-performing value” can be determined from the tests conducted,
as the number of solutions sought depends entirely on the preferences and requirements of the specific situation
that the algorithm is being used for. Understanding the trade-off between increased solve time and the quality of
fitness solutions is valuable for determining whether the additional time required is justified by the potential for
generating more solutions.

3.2. Results Algorithm Configuration 28

3.2.3. Size of the Niches
To fully understand how the algorithm behaves un-
der different circumstances, it is important to consider
changes in the size of the population. Figure 3.5
presents three distinct plots (fitness, generation, and
time). These plots illustrate the size of the niches on
the x-axis, and the different numbers of individuals
tested for varying niches sizes, which are represented
as p3 and p4. The fitness plot clearly demonstrates a
linear improvement in fitness quality as the number of
individuals in a population increases. This trend is also
observed when increasing the number of niches; how-
ever, the overall fitness quality for p4 is lower com-
pared p3. Increasing the number of niches results in
a more crowded solution space, with multiple niches
competing to find diverse optima. A more crowded
solution space reduces the overall fitness value of all
niches, as it becomes more challenging to identify an
optimum that is sufficiently distinct from other solu-
tions. This crowding effect limits the ability of the
algorithm to refine solutions effectively, leading to a
decrease in overall fitness.

The generation in which the optimal solution is found
is shown in Figure 3.5. Unlike fitness, which demon-
strated a linear increase with the number of individ-
uals, no such trend is observed for the generation in
which the solution is found. For both p3 and p4, there
is a clear performance improvement when the popula-
tion size reaches twenty-five. However, a consistent
increase in performance with each iterative increase
in population size cannot be concluded from the plot.
Therefore, it can be stated that increasing the popula-
tion size helps speed up the process of finding the best
individual, but it does not guarantee improvement with
every incremental increase.

The linear increase in solving timewith both the size of
the population and the amount of niches is clearly vis-
ible. Using this plot and the associated data, it is pos-
sible to predict the solving time of the algorithm, even
for different models. This allows for solving a model
with a small amount of niches and a small population
size, and then predicting the solving time when these
parameters are increased. Such predictions can help
determine the computational requirements needed for
different scenarios. All the data for the runs that were
completed can be found in D.

Figure 3.5: Effect of increasing niche size and number of niches on
fitness (a), best generation (b) and time to solve (c).

3.2. Results Algorithm Configuration 29

3.2.4. Resolution Change
Multiple runs were conducted to observe the behavior of the resolution when it was switched. To do so the total
generations that were doing were increased to hundred-fifty and two-hundred. The sum of the highest fitness
values in each generation was plotted, as shown in Appendix E. For these runs, the following parameters were
used: the amount of niches was set to three, the population size was set to ten, and parameter combination twenty-
four was chosen. The switch to high resolution happened at generation ninety-five. An example of such a plot is
presented in Figure 3.6.

Figure 3.6: plot of sum highest fitness for each generation

Each plot exhibits a similar characteristic: at a certain point, the fitness reaches a barrier where it appears that
the maximum sum fitness has been achieved. Even when switching to a higher resolution, the sum of the fitness
does not increase, indicating that the optimal solution has already been found before the resolution change. It
is important to note that while the plot can decrease in sum fitness when switching to the highest resolution, it
never exceeds the found fitness optimum by a large amount. If it does and it finds the best fitness after the highest
resolution has been initialized, the new found optimum increased by a very small margin. For example in figure
3.6 the best solution was found in generation hundred-twenty-eight. which is hard to conclude from the figure
itself. But eventually it is of interest how the capacity distribution behaves in such a situation.

We will therefor look at another run which plot can be found in appendix E, figure E.1b. In this case the high-
est performing individuals right before the resolution change were taken, and compared to the eventual highest
performing individuals which were found after the highest resolution. Table 3.3 shows individuals from before
(generation 95) and table 3.4 shows the individuals after (generation 132) the highest resolution change. The
tables shows the capacity and the fitness of the individuals. Table 3.5 shows the percentage difference between
the capacities before and after the resolution change.

Population Solar PV 1 Solar PV 2 CCGT Battery 1 Battery 2 Fit (Before)

Niche 1 2325 12869 5000 6175 3419 305
Niche 2 7165 12430 4710 3768 7373 237
Niche 3 10850 14977 4413 9301 1921 280

Table 3.3: Capacity and fitness values before resolution change. Appendix E, figure E.1b

3.2. Results Algorithm Configuration 30

Population Solar PV 1 Solar PV 2 CCGT Battery 1 Battery 2 Fit (After)

Niche 1 2938 12339 5000 5720 4980 299
Niche 2 9155 11796 4697 4542 7166 284
Niche 3 9880 14988 4413 9709 2007 287

Table 3.4: Capacity and fitness values after resolution change. Appendix E, figure E.1b

Technology Niche 1 (%) Niche 2 (%) Niche 3 (%)

Solar PV 1 26.4 27.8 -8.9
Solar PV 2 -4.1 -5.1 -0.1
CCGT 0.0 -0.3 0.0
Battery 1 -7.4 20.5 4.4
Battery 2 45.7 -2.8 4.5

Table 3.5: Percentage difference in system design variables in each niche before and after the resolution change

Table 3.3, 3.4 and 3.5 show that while the fitness values are generally the same or very close to each other,
there is still a significant percentage difference for some technologies. The resolution change indicates that the
largest capacity adjustments occur for battery and solar PV technologies, as these are particularly sensitive to the
initialization of a higher time-of-day resolution. But the low percentage change in other technologies indicate that
some optimal values have ben found for other technologies even before the high resolution is initialized. When
the highest resolution is applied, some technologies have already reached their optimum and do not undergo
significant adjustments. However, certain technologies, particularly those sensitive to a higher resolution, tend to
change, though this does not greatly affect the sum of the fitness. Therefore, in this model at least, it is necessary
to allow the model to run for some time after initializing the highest resolution.

In some cases, the lines show a steep decline, as observed in Figure 3.6. This behavior occurs when the niches
explore alternative solutions, which are often close to the defined slack value. During mutation or crossover, these
solutions are highly likely to cross the slack threshold, causing their fitness to reset to zero. The steep declines
indicate that the algorithm attempts to mutate the values but fails to produce a better solution.

3.2.5. Spatial Distribution of Different Solutions
Figure 3.7 illustrates the values of the technologies for each niche. To compare the algorithm’s performance
against the optimal solution, the capacities of the cost-optimal solution are also included. Overall, the solutions
vary significantly. In Niche 1, more solar power is used in Region 2, while battery storage is distributed between
Regions 1 and 2. Niche 2 relies on solar power from both regions and battery availability in Region 2, whereas
Niche 3 takes the opposite approach.

None of the solutions were able to significantly reduce the CCGT capacity, indicating that this technology is
essential for system operation. However, the differences in CCGT capacity across Niches 1, 2, and 3 appear
to follow a linear trend. This pattern is not only observed in CCGT but is also present, to some extent, in all
technologies. This suggests that the algorithm performed as intended, successfully identifying maximally distinct
solutions for each niche.

3.2. Results Algorithm Configuration 31

Figure 3.7: Bar graph comparing three different solutions and their technological capacities

3.3. Results Scalability, Evaluation and Benchmarking 32

3.3. Results Scalability, Evaluation and Benchmarking
Test runs were conducted iteratively until the algorithm reached a point where it was sufficient for generating
data for the large model. During this process, several obstacles were encountered which required adjustments to
ensure the algorithm would function as intended.

3.3.1. Structural Errors Encountered During Testing
The first structural issue identified was the ETA value. In the test model, the ETA value was set between 1 and
15, which was sufficient for the algorithm to function as intended. However, when applied to the large model,
the smaller capacity values caused the ETA to behave unexpectedly. The ratio of the ETA value to the capacity
values was significantly smaller compared to the mock-up model. As a result, individuals with capacities from
the large model became stuck after only fifteen generations. To address this issue, a much higher ETA value was
required. The revised ETA values now start at 1,000, are increased to 5,000 around generation 20, and reach as
high as 10,000 by generation 60. This adjustment ensures that the algorithm maintains progress throughout the
evolutionary process.

The test runs also showed that although the increase in memory usage was anticipated and accounted for in the
SLURM file, the allocated memory still proved insufficient. Consequently, the memory allocation was increased
from 128GB to 150GB. It was also observed that the job did not require 16 CPUs, so this was reduced to 5 CPUs,
each with 30GB of memory. Finally, the time limit for solving the problem was initially set at 9 hours. However,
it became apparent that 9 hours was insufficient. The time limit was subsequently increased to 24 hours, which
is the maximum allowable time. The new SLURM file that was used can be found in appendix F.

3.3.2. High Resolution Initialization
The different resolution methods were evaluated to observe their influence on the total time required to solve the
model. The time clustering andmaskingmethod run in some problemswhen applied to the largemodel. Normally,
the process of initializing the model is time-consuming, but updating the model via the backend should not take
long to solve. However, when clustering and masking are introduced, the process gets stuck for an extended time
while creating the constraints. Additionally, when the model is sent to the solver, the solver struggles to generate
an optimal solution in reasonable time. A process that should take no more than a second suddenly requires
significantly more time.

The GA continuously updates the capacities and feeds them back through the backend of the model. This process
occurs dozens of times per generation. With the time clustering and masking method the total solve time would
exceed the 48-hour limit mandated by DelftBlue. Additionally. using a full resolution of 3 or even 6 hours
would take an excessive amount of time to solve. Therefore, an alternative approach is necessary to ensure that
high-resolution data still accurately reflects hourly intervals.

Table 3.6 presents the various options tested for full-resolution runs. Each final resolution is initialized at genera-
tion 95, and the total time represents the time required for the algorithm to complete generations 95 through 100.
Moreover, the population size and number are set at 10 and 3 respectively. As shown, the masking and clustering
methods perform significantly better in terms of time efficiency. However, a drawback is that these resolutions
do not provide the same level of detail as the 3- or 6-hour resolutions.

Resolution Time / Individual Time / Generation Total Time

3 hours 30 minutes 15 hours 75 hours
6 hours 15 minutes 5 hours 25 hours
1 month masking 2 minutes 1 hour 5 hours
k = 1 cluster 1 minute 0.5 hour 2.5 hours

Table 3.6: Time to solve an individual, generation, and total time for different resolutions

As a solution, the high-resolution runs will employ the masking method. While masking is not a viable options
for low-resolution initialization, they are manageable at high resolutions. This approach ensures that the run
can be completed within a reasonable time-frame while still incorporating hourly resolution for two of the most
extreme wind events in a year. Initially, the resolution will start at 14 days and transition to the highest resolution
at generation 95. The final 5 generations will be executed using the highest resolution.

3.3. Results Scalability, Evaluation and Benchmarking 33

3.3.3. Dynamic Slack Adjustment in Large-Scale Model
Gradually increasing the slack cost appeared to be an effective approach to prevent the algorithm from crashing
when switching resolutions. The crash caused by the resolution changewas no longer encountered. The difference
in optimal cost was calculated between the initial resolution and the highest resolution. This difference came out
to be 17%. when the cost would increase with 2% when switched to the highest resolution instead of introducing
a slack of 17%, we subtracted the 2% plus a bit extra. So, the initial slack cost at the start of the GA run was set
at 14%, and after the resolution switch this was set to 17%.

3.3.4. Final Genetic Algorithm Process
The final GA design after all the design changes is displayed in figure 3.8 as a flowchart. The process of the
large model algorithm resembles the process of the small model algorithm, but the design changes discussed in
the method are highlighted.

Figure 3.8: GA for Large Model Flowchart

3.3. Results Scalability, Evaluation and Benchmarking 34

3.3.5. Evaluation and Benchmark Results
Complete runs of the algorithm have been conducted. Based on prior runs and testing, the following parameters
have been selected for use in the algorithm:

• Generations = 100
• Number of populations = 3
• Population size = 10
• Crossover rate = 0.5
• Mutation rate = 0.2
• ETA1, ETA2, ETA3 = 1000, 5000, 10.000
• ETA change generation = 21, 60
• Resolution change generation = 95
• slack start = 0.05
• slack after res change = 0.1

In total, the results of one complete algorithm run will be used for comparison. The results of the algorithm have
been saved in an XLSX file. Each technology with its corresponding capacity value representing a column. The
data has been restructured by extracting all offshore wind, onshore wind, PV, battery, and hydrogen technologies
from the raw XLSX file. This is accomplished using Python, with the code provided in appendix G. A new XLSX
file is created, where the capacities of these technologies are stored. Moreover, the code sums all the technology
types together so it can be compared with the existing large model results. The raw XLSX file contains multiple
sheets corresponding to different generations and the best-found individuals at the end. In the new file, the results
are also stored across different sheets, with each sheet retaining the same name as in the original file.

3.3.6. Capacity Distribution Compared To SPORES
First the plots have been created as explained in the methodology section. Figure ?? show the three niches and
the 50 SPORES results for each SPORES method. The GA niches results have been marked with a red circle.
Because there are just 3 results generated by the GA, for each method the first three SPORES results have been
plotted for a more fair comparison 3.10.

Table 3.7 presents the capacity values of the technologies for each niche. These values are derived from the
optimal solution obtained after initializing the highest resolution. In this case, the final solution was determined
at generation 100.

Niche Total Wind (GW) Total PV (GW) Total Storage (GW)
Niche 1 4766.4 3983.6 3860.0
Niche 2 3786.3 5027.2 3750.4
Niche 3 4782.1 3233.5 3532.0

Table 3.7: Total capacity deployment for wind, PV, and storage across different niches.

3.3. Results Scalability, Evaluation and Benchmarking 35

Figure 3.9: Algorithm result compared to SPORES

Figure 3.10: Algorithm result compared to first 3 SPORES results

3.3. Results Scalability, Evaluation and Benchmarking 36

The figures represent the four alternative weight methods. The relative deployment method is a method with a
focus on spatial dissimilarity. The integer method is the simplest method, but due to its simplicity it has some
drawbacks. With the random integer method, random numbers are assigned to the weights. And lastly, the
evolving average method tries to retain more memory of the past iterations. More information about the method
can be found in the original literature [12].

At first glance, the results appear relatively similar in terms of PV and wind deployment across the three GA
solutions. Two solutions share the same wind deployment, while another two share the same PV deployment.
However, the most notable differences between the GA solutions are observed in storage capacity, as illustrated
in Figure 3.9. The GA identified three distinct storage capacities, with a general difference of 1.5 in normalized
values.

Figure 3.9 shows that PV capacity performs similarly overall when compared to the SPORES results, with the
three GA solutions being fairly close to other SPORES outputs, except for those generated using the relative
deployment method. Wind energy deployment, however, is where the GA consistently identifies solutions with
lower capacities compared to the optimal solution. The lowest capacity identified by the GA uses only half the
wind energy deployed in the optimal result. As previously noted, the largest differences are observed in storage
technology, where the highest capacity found by the GA is seven times greater than the optimal value identified
by the SPORES model. Figure 3.10 compares the GA results with the first three SPORES results from each
method. This comparison reinforces the previous findings: the electricity storage capacity is significantly higher
in the GA results, while wind energy deployment is notably lower.

All the niches have been compared to the optimal values. Table 3.8 shows the comparison between the niches
and the optimal values.

Comparison Diff Wind % Diff PV % Diff Storage % Euclidean Distance

Niche 1 vs Optimum 63.12 19.82 -81.82 432.08
Niche 2 vs Optimum 68.54 -4.26 -81.16 425.42
Niche 3 vs Optimum 52.60 46.66 -80.17 409.44

Total Difference Optimum 61.42 20.74 -81.05 422.31

Table 3.8: Pairwise Percentage Differences and Euclidean Distance between Niches and Optimum

The percentage difference is calculated by dividing the optimal value by the niche value and then subtracting 1.
This shows how much the optimal value deviates proportionally from the niche value.

The Euclidean distance is calculated using the following formula:

√
(x1 − x2)2 + (y1 − y2)2 + (u1 − u2)2

where:

• x represents the total wind capacity,
• y represents the total PV capacity,
• u represents the total storage capacity,
• 1 denotes the niche values,
• 2 denotes the optimal/SPORES values.

This distance measures the overall difference between the niche and optimal configurations in terms of capacity.
Table 3.8 shows that the differences are smallest in some cases, with the lowest being a 4% difference. However,
when examining wind and storage, it becomes evident that the niche configurations do not closely compare to
the optimum. The smallest difference in wind capacity is 52%, while for storage, it is 80%. The Euclidean
distance was used to compare the differences across all three technologies, but they all appear to be roughly at
equal distance from the optimum, with only minor variations.

3.3. Results Scalability, Evaluation and Benchmarking 37

The same measurements were conducted for all the SPORES solutions. Appendix H contains all the tables with
detailed comparisons. Table 3.9 summarizes these findings by presenting the highest value, lowest value, and the
value closest to zero for all comparisons. This provides an overview of the range of percentage differences and
Euclidean distances while also identifying the closest match to one of the niche configurations. Once again, it can
be concluded that while PV exhibited a wide range of variation, some solutions had very similar PV capacities.
The smallest difference in wind capacity between two SPORES methods was 30%, while for storage, the closest
match was 54%.

Wind % PV% Storage % Euclidean Distance

Highest value 83.56 96.39 -54.18 978.04
Lowest value 30.70 -83.26 -91.13 223.29
Closest to 0 30.70 3.47 -54.18 223.29

Table 3.9: Summary of Wind, PV, Storage, and Euclidean Distance Values

To come to a better conclusion on how the algorithm arrived at these findings, we will take a closer look at
the results generated by the algorithm. Figure 3.11 illustrates the total deployed RES plotted against the total
deployed storage technologies across each generation. Generation 1 starts with many individuals clustered in
the same region of the plot, as their capacities are all based on the same optimal solution values. By generation
20 it is noticeable that all the niches are evolving in the same direction. This indicates that both their RES and
storage technology deployments are progressing in a similar manner. It appears that increased RES deployment
is accompanied by a proportional degree of storage technology deployment. Eventually the mutation value rate is
lowered and the maximum barrier is being reached. This results in the niches slowly converging into one similar
answer.

Figure 3.11: Evolution of Storage and RES Technology Deployment Across Generations

3.3. Results Scalability, Evaluation and Benchmarking 38

To provide amore comprehensive overview of the algorithm’s behavior, it is essential to examine the development
of both the cost and the fitness of the individuals within the subpopulations. Figure 3.12 illustrates the mean cost
and mean fitness of the individuals. The left plot represents the average cost, with the cost values shown on the
y-axis. The right plot represents the average fitness, with fitness values also plotted on the y-axis. In both figures,
the x-axis represents the generation in which the corresponding results were generated.

Figure 3.12: Mean Cost and Fitness of Each Niche Across Generations

The cost graph indicates that each niche is gradually evolving toward the set slack. This can be seen in the
average cost of each niche stabilizing after around 60 generations. However, when the slack bound is loosened
at the resolution change occurring in generation 95, a rise in cost becomes noticeable again.

After the start of the algorithm process, the fitness of each niche decreases to its lowest value throughout the entire
process. It is only after 20 generations that the fitness across the niches begins to increase gradually. Significant
improvements in the average fitness of the niches are observed around generation 60, with a more noticeable rise
occurring by generation 80.

3.3.7. Spatial Capacity Distribution of Niches
The objective of the algorithm was to generate diverse capacity deployment solutions for a spatial energy system.
To better understand the algorithm’s behavior concerning the spatial distribution within the country, the following
approach was undertaken. The model subdivides the country into multiple regions, each representing a distinct
spatial unit. To enhance the comprehensibility of the data, the results from all regions within a country were
aggregated, allowing for the visualization of the total capacity deployment at the national level. Figures 3.13,
3.14, and 3.15 illustrate the deployment of wind, photovoltaic (PV), and battery storage capacity across each
country, respectively. The different niches are plotted adjacent to one another to emphasize the variations in
deployment across the different solutions.

The algorithm successfully generated distinct capacity deployment solutions for each niche. When analyzing the
deployment of a specific technology, it becomes evident that the capacity distributions across different countries
are rarely identical. Moreover, the algorithm demonstrated the ability to produce highly divergent solutions.

3.3. Results Scalability, Evaluation and Benchmarking 39

Figure 3.13: Spatial wind capacity deployment per country in GW for each niche

Figure 3.14: Spatial PV capacity deployment per country in GW for each niche

3.3. Results Scalability, Evaluation and Benchmarking 40

Figure 3.15: Spatial battery capacity deployment per country in GW for each niche

Figure 3.13 presents the wind capacity deployment across European countries for the three different niches. The
distribution varies significantly among niches, illustrating the diversity of solutions generated by the GA. In some
cases, such as Italy, France, and the Latvia, niche 1 exhibits a dominant allocation of wind capacity, while niche 2
and niche 3 allocate capacity more evenly across multiple countries, such as Belgium and Hungary and Albania.
These differences highlight how the GA is able to produce alternative spatial strategies.

The deployment of PV capacity, shown in Figure 3.14, follows a different spatial pattern compared to wind. The
algorithm has assigned significant PV capacity to Finland and Croatia in niche 1, while niche 2 has concentrated
higher allocations in Luxembourg and Norway, with also smaller deployments across Europe. Niche 3, on the
other hand, distributes PV capacity more broadly, with notable allocations in Luxembourg and Norway. The
variation between niches indicates that different deployment strategies were created, favoring large-scale concen-
tration in a few countries but also deploying smaller amounts in different countries.

Figure 3.15 illustrates the spatial allocation of battery storage capacity across European countries. The results
show a strong differentiation between niches, with niche 1 concentrating storage in Austria, Spain, and France,
whereas niche 2 prioritizes Lithuania and Italy and a more widespread allocation. Niche 3 deploys the storage in
France, Germany, Norway and the UK.

4
Discussion

The discussion section will take a closer look at the results presented in Chapter 3, providing a more detailed
analysis. It will explain the significance of the results and their implications. This analysis will help in drawing
conclusions for each sub-question and the main research question, which will be addressed in Chapter 5.

4.1. Discussion Literature Review
Both the SI and EC approaches have their advantages and disadvantages, which vary depending on the context of
their application. To determine which method is the best option for answering the research question, a more in-
depth analysis is needed, incorporating additional characteristics of both methods. However, based on the existing
literature, ECs combined with MGA approaches are more commonly discussed. The literature is transparent and
understandable and can help informing the development of an algorithm aimed at addressing the main research
question of this thesis. The literature describes the use of adjusted evolutionary algorithms, their application
to case studies, and argues for further application as the results have been promising [10] [17].Existing research
already utilizes a Python EC framework called DEAP, which provides an easy way to build custom EC algorithms,
such as GA [13]. Given the wider availability of examples and detailed explanations for EC methods in the
reviewed literature, this thesis will adopt an EC algorithm to integrate bio-inspired heuristics with the MGA
approach. Using an EC method provides a solid foundation for developing and tailoring an algorithm that can
effectively address the research question.

4.2. Discussion Algorithm Configuration
The analysis of crossover, mutation, and ETA identified seven effective parameter combinations that yielded
results with no statistically significant differences. All the combinations utilized a mutation rate of 20%. A high
mutation rate allows the algorithm to explore the solution space more thoroughly. For the scope of this model,
a 20% mutation rate was highly favored, ultimately producing better results. In contrast, the ETA value and
crossover rate did not exhibit such consistency in their effects, making it more challenging to select the best
combination solely based on fitness values. However, when the combinations were also evaluated based on the
generation in which the best individuals were found, combination 24 outperformed the others on both criteria.

A mutation rate of 20% is generally considered a high mutation rate. For this reason, it was selected as the highest
mutation rate used for the test runs. However, since all non-significant results were associated with a mutation
rate of 20%, it is difficult to conclude with certainty that this is the optimal mutation rate. It is possible that a
higher mutation rate could be more effective, but this has not been tested.

For the number of niches and the size of the population, an increase in the number of niches resulted in a linear
increase in computation time. This is because more individuals need to be evaluated, which is the most time-
consuming part of the algorithm. Additionally, an increase in niches caused greater crowding in the solution
space, reducing the algorithm’s ability to find diverse and optimal solutions compared to scenarios with fewer
niches.

41

4.2. Discussion Algorithm Configuration 42

Increasing the population size demonstrated a positive linear effect on fitness quality. This outcome is logical, as
a larger population increases the likelihood of discovering better solutions within the solution space. However,
increasing the population size also led to longer computation times. Similar to increasing the number of niches,
this increase in time is due to the higher number of individuals that need to be evaluated.

The resolution change parameter proved effective in reducing computation time. Although not flawless, resolu-
tion masking successfully generated individuals that better accounted for time-sensitive technologies, which are
more prominent at higher resolutions. However, using the resolution change sometimes caused the algorithm to
crash. This occurred because some individual solutions found at a low resolution became infeasible when their
capacities were evaluated for feasibility at full-scale resolution.

This method provided valuable insights into the interaction between algorithm parameters and their influence on
both performance and computational efficiency. By introducing a structured approach to parameter selection,
the method enhances the scientific rigor of algorithm design optimization. This approach not only reduces struc-
tural complexity but also facilitates a more systematic and efficient tuning process. Additionally, the dynamic
resolution adjustment technique demonstrated its potential to improve computational efficiency, highlighting its
applicability in optimization problems.

Building on prior research that explored the combination of GA and MGA in small-scale optimization problems
[71], this study extends these concepts to a new domain. The successful integration of GA-MGA into energy
system optimization underscores its adaptability and effectiveness in generating diverse yet feasible capacity
configurations. The results indicate that this method can uncover alternative solutions within the solution space,
demonstrating its capacity to balance exploration and exploitation.

4.3. Discussion Algorithm Scalability 43

4.3. Discussion Algorithm Scalability
The structural design choices that have been made seemed to operate as intended. But there were some problems
with the implementation of the algorithm to on a larger scale. Test runs were conducted to identify the components
that caused errors, which were then fixed. The choices made were effective to some extent but may not necessarily
be the optimal solutions. This section will reflect on the most important design choices, their performance, their
limitations, and potential alternatives that could have been implemented.

4.3.1. Selection Operator and ETA
Changes were made to the selection operator and the ETA value, which is a part of the mutation operator. The
selection operator was modified to play a more prominent role, ensuring that if all individuals in a generation
mutated into infeasible solutions, they would not be used for mutation in the next generation. Instead, they were
replaced by previously feasible solutions. The ETA value that worked for the small model did not performwell for
the large model due to differences in capacity values. As a result, ETA values were adjusted to better suit the large
model’s capacities. Both operators functioned as intended, with the selection operator preventing the algorithm
from crashing and the ETA value successfully mutating individuals and generating new solutions. However, due
to the stochastic nature of the algorithm, the exact impact of these adjustments on performance remains uncertain.
This is primarily due to a lack of extensive testing. To better understand the effects of these operator changes,
multiple runs should be conducted under different conditions to evaluate their performance more thoroughly.

4.3.2. Resolution settings and Initialization
The test runs with the large model also showed that the initial resolution options were not feasible. The desired
solutions were as followed:

• Start resolution: 14 days with the min/max masking of wind for two weeks
• End resolution: 3-hours

The reason for these resolution not being feasible is that it took to much time for the solver to solve an individual.
Even overwriting the allowed time to run file on the DelftBlue cluster. The next part explain what the reasons is
for the high solving time of an individual.

When a model is created via Calliope, several unseen steps take place behind the code. During initialization, a
model_run dictionary is created using the provided YAML and CSV files. At this stage, any specified overrides,
whether from scenarios or location/link-specific adjustments, are applied. The model_run dictionary is then
reformulated into multidimensional arrays and collated into a dataset called model_data, which is managed using
xarray. At this point, the model initialization is complete, allowing the user to access and, if necessary, edit the
model inputs.

When the model.run() command is executed, only the model_data is sent to the backend, where a Pyomo con-
cretemodel is created. The Pyomo model’s parameters and are created using data from model_data. Additionally,
decision variables , constraints , and the objective function are initialized. The model is then sent to the solver.

After the problem is solved, the backend Pyomo model is attached to the main Model object, and the results are
added to model_data. Post-processing is performed to clean up the results and calculate various indicators, such
as the capacity factor of technologies. At this stage, the model run is complete, and the results are accessible
for saving, analysis, or further use [77]. Figure 4.1 shows a visualization of the internal workflow previously
described.

4.3. Discussion Algorithm Scalability 44

Figure 4.1: Representation of Calliope internal implementation workflow [77]

The root of the problem could have multiple causes. It can be that it just takes a long time to solve the problem,
which is the case for higher resolutions. But previous testing with the time-clustering and masking methods in
Calliope have proven to be bugged at times.

When resampling the masking method, index errors occurred. This misalignment could result in the creation of
more complex constraints that the model must satisfy, making it even more challenging for the solver to find
an optimal solution. The problem could also originate from the solver itself. During the model setup, certain
solver options need to be specified. Options such as feasibility tolerance, mode, and threads can significantly
influence how the solver handles the model optimization problem. If the problem occurs under a broader range
of circumstances, it may indicate an issue that needs further attention. Solving such a problem could lead to a
significant increase in time. Time masking and clustering, in particular, offer unique design options that can be
effectively integrated into energy system models.

As a result, a different approach was taken that would still incorporate a resolution switch, but mitigated the time
required to solve for a full resolution. The current resolution would be as followed:

• Begin resolution: 1-month
• End resolution: 14 days while min/max masking wind for two weeks

With these resolutions, the algorithm can be solved for 100 generations within a reasonable time. Moreover, the
highest resolution still retains an aspect of full-scale resolution. In this case, instead of a 3-hour time-frame, it
spans two weeks—capturing the minimum and maximum extremes of wind—at a 1-hour resolution.

Although the high-resolution model incorporates hourly data and can be solved within a manageable time, a 3-
hour resolution is still highly preferred. This aligns with the resolution of the large-scale model and has also
been shown to be well-suited for energy system models [49]. Optimisation of the resolution switch, but also the
performance of the algorithm in general could realize the desired 3-hour resolution.

4.3.3. Slack initialization
During the resolution switch, the cost of individuals would slightly increase. To address this, a slow slack adjust-
ment was implemented, which gradually increased the slack when the resolution changed. This feature worked
as intended; however, the full impact of this adjustment should be further tested and researched. Such tests could
help determine the optimal slack values for the best results. Ideally, the switch would not be necessary. Investigat-
ing why the cost changes during resolution switching and exploring ways to mitigate this increase could eliminate
the need for slack adjustment altogether.

4.4. Discussion Evaluation And Benchmarking 45

4.4. Discussion Evaluation And Benchmarking
4.4.1. Battery Capacity Distribution
The significant difference in storage capacity can be attributed to the variation in resolution between the SPORES
results and the GA. The SPORES results are based on a 3-hour resolution, whereas the GA employs a masking
approach with a 2-week period at an hourly resolution. This difference in resolution appears to facilitate the
deployment of storage technologies in substantially larger quantities.

The initial capacities of the individuals in the subpopulations are determined based on the full-scale resolution
used by the model. They are then randomly modified by a small amount to introduce divergence while ensuring
all individuals remain feasible.

In this case, the full-scale resolution spans 14 days, with min/max masking applied to wind data over a two-
week period. When solved at this resolution, the storage capacity is already significantly higher compared to the
SPORES results. Since all individuals have storage capacities around these values and this high storage capacity
is already optimal, the algorithm may struggle to find solutions with lower storage capacities.

The reason for this could be as follows:

First, a storage capacity must be selected for mutation by a significant amount, with the mutation amount not
increasing, but decreasing the capacity. If this occurs, the mutation must ensure that the individual remains
feasible. This must take place several times to decrease the storage, as multiple technologies make up the total
storage capacity.

4.4.2. Wind Capacity Distribution
Another conclusion that could be drawn is that the GA structurally deployed less wind energy compared to the
SPORES results. Several factors could explain this. For instance, the availability of substantial storage capacity
reduces the need for RES deployment, as sufficient energy can be retrieved from the batteries whenever needed.
As a result, theGA tends to explore solutionswith reduced reliance onRES. This outcomemay again be influenced
by the initialized population values, but the low resolution used in the GA model could also play a significant
role in the lower deployment of wind energy compared to the SPORES results.

4.4.3. Algorithm Process Evaluation
Some observations can be made by examining Figures 3.11 and 3.12. We discuss the fitness behavior in relation
to the cost. It appears that the algorithm is unable to improve the fitness of individuals while they are still able
to increase system costs, as seen in 3.12. Only when system costs can no longer rise does the fitness increase
significantly. Ideally, however, fitness would gradually improve with each generation.

This issue is also evident when examining the capacity deployment of storage and RES technologies across gen-
erations, as seen in 3.11. Instead of improving fitness over time, the niches evolve collectively in the same
direction. This behavior prevents the algorithm from optimally exploring the solution space. Feasible solutions
exist at lower costs, but the algorithm forces itself to prioritize higher-cost solutions. Only when this potential
limit is reached does the algorithm begin to explore the solution space more effectively, allowing the individuals
to converge.

Generally, the issue could stem from how the parameters are configured or how the operational process is struc-
tured. While it is possible that the problem is caused by the parameters and could be resolved by identifying
better-suited parameter combinations. Or it could even be how Python handles the build in operators designed by
DEAP library. But for simplicity, we assume that this behavior originates from the algorithm’s process itself.

It must be noted that this algorithm heavily emphasizes the use of the elite and selection operators. Their function
has been enhanced to reduce the likelihood of getting stuck in a cycle of only producing infeasible individuals.
which was a substantial problem during the designing and testing of the algorithm. Especially with the introduc-
tion of resolution change.

At the start of the algorithm, individuals with higher costs are easier to produce, and these individuals are favored
by the algorithm. This process works as follows: Higher-cost individuals are the result of larger capacity mu-
tations. These large mutations are possible due to the cost slack not yet being reached. These larger capacity
mutations lead to the individual having a high fitness value. So, due to the strong elitism and selection mecha-
nisms, individuals with higher costs are heavily favored because of their associated higher fitness.

4.4. Discussion Evaluation And Benchmarking 46

However, this selection process is applied to all the individuals in each subpopulation. While the RES and storage
capacities are increasing for all the individuals, their fitness stays relatively close to each other due to them
growing together. As a result, the algorithm can only begin identifying individuals with higher fitness once they
can no longer drastically increase their cost.

One could argue that by around generation 20, when the individuals are clustered in the middle of the plot, they
have an equal opportunity to move away from high-cost solutions and begin exploring lower-cost solutions more
thoroughly. It needs to be explain therefor what causes them to still favor higher cost individuals over time.

The system that the algorithm tries to optimize is fairly complex. An individual consist out of more than a 1000
technology capacity values, with the technology also being bound to a specific location in the system. some main
structures of the algorithm need to be explicitly mentioned again here:

• The algorithm uses the optimal capacity values for initializing the individuals
• mutation range is based on the minimum and maximum allowed capacity of the technology

It is possible that, because the capacities are based on the optimal value, reducing these values renders the system
infeasible by creating unmet demand. On the other hand, increasing the capacity is almost always feasible, pro-
vided it remains within the system’s cost range and the technology’s minimum-maximum bounds. Furthermore,
when a capacity mutates to a higher value, the likelihood of it mutating back to its exact original lower value is
very low due to the large number of technologies in the system. Additionally, if technologies are near their lower
capacity bounds, the likelihood of their capacity mutating to a higher value becomes more pronounced.

Another factor that could significantly impact the quality of results is the resolution change. The sudden increase
in cost observed in the last 10 generations is due to individuals mutating to higher costs than before the resolution
change. This is a consequence of the slack mechanism introduced in Section 4.3.3. Given the limited number of
generations after the resolution change, it is possible that the individuals did not reach their sub-optimal location.
While it appears that they have converged, the large ETA value may have prevented the individuals frommutating
away from the optimal solution found before the resolution change. This again highlights that while resolution
change is a powerful tool for reducing computational cost, it introduces considerable uncertainty regarding the
quality of the results.

Lastly, when analyzing Figure 3.11, it appears that the algorithm is functioning as intended. Initially, individuals
are relatively scattered, but over time, the solutions begin to converge. By the final stages, all solutions overlap,
and the centers of the niches form a triangle, with each point approximately equally distant from the others.

4.4.4. Spatial Capacity Distribution
As highlighted in the results, the algorithm successfully generated distinct spatial distribution patterns for energy
system solutions. The following section of this thesis will first explore the potential factors contributing to these
outcomes. Subsequently, the results will be compared with those obtained by Lombardi et al. [38] to assess
similarities between results.

The algorithm was successful to find deployment for all technologies in all countries. Even in countries when
the deployment of a technology was extremely close, the algorithm succeeded in generating a small difference
between the capacities. The large difference between the capacity deployments make the solutions extremely
interested to be used for future decision making.

Some of the previously discussed shortcomings also apply to this section of the results. While the findings are
insightful, the transition to a higher resolution, which could not be run for many generations, introduces additional
complexity and makes the results more confounded. Over time, the algorithm converges to a local optimum.
However, when the resolution is increased, the niches are suddenly able to escape this convergence, allowing
them to explore the newly expanded solution space once again. As a result, it is impossible to determine with
certainty whether the identified solutions are truly optimal within the high-resolution solution space.

The results of the algorithm can also be compared to the previously generated SPORES results. The study by
Lombardi et al.[12] presented a summarized overview, displaying only the total deployed capacity for each tech-
nology. As a result, a quantitative comparison between the algorithm’s outcomes and the SPORES results is
possible.

However, the study by Lombardi et al. also included figures illustrating the spatial deployment of wind, PV,
and storage technologies across Europe. These figures specifically depict the SPORES solution with the lowest

4.4. Discussion Evaluation And Benchmarking 47

concentration of onshorewind capacity while simultaneouslyminimizing bio-energy capacity. Figure 4.2 presents
the spatial distribution of wind and PV deployment, while Figure 4.3 illustrates the storage discharge capacity
of hydrogen and batteries. In the results generated by the algorithm, this storage discharge capacity of these two
technologies is represented as total storage.

Figure 4.2: SPORES solutions with minimal onshore wind and bioenergy capacity in the random (left) and relative-deployment (right, grey
background) solution spaces. Panels (a–b) show the deployment of rooftop and open-field PV alongside onshore and offshore wind across

97 model locations, where capacity exceeds 10 GW. [12]

Figure 4.3: Panels (c–d) illustrate the spatial deployment of battery and hydrogen storage (discharge) capacity in regions where the locally
deployed capacity exceeds 1.5 GW. [12]

When comparing Figures 3.14 and 3.13 to the spatial deployment presented by Lombardi et al. (4.2), it becomes

4.4. Discussion Evaluation And Benchmarking 48

evident that the SPORES results depict a more dispersed deployment of wind and PV across multiple countries,
whereas the GA results exhibit a more concentrated allocation in specific regions. The SPORES method achieves
moderate wind and PV deployment, resulting in a more balanced and optimized spatial distribution. In contrast,
the GA approach creates larger disparities between countries, with France, Italy, Finland, Latvia, and Luxembourg
experiencing significantly higher deployment levels than others.

Similarly, when comparing Figure 3.15 to the European storage map (4.3), it is again apparent that SPORES
results demonstrate a wider geographic distribution of storage across Europe. The GA method, on the other hand,
leads to a highly concentrated deployment in a few key countries while also allocating significantly more total
storage compared to the SPORES results.

A major distinction between the two methods lies in their treatment of transmission capacity. The GA algorithm
does not include transmission when mutating and crossing over the individuals value. SPORES does explicitly
integrates transmission capacities into the optimization process. As a result, the GA does not fully account for
transmission constraints and cross-border energy flows, unlike the SPORES approach, which optimizes the energy
system holistically.

Consequently, the GA prioritizes economic efficiency, placing capacity in locations where it is most cost-effective.
In contrast, the SPORES method emphasizes spatial diversity, thereby reducing risks associated with local grid
constraints and transmission limitations.

The comparison between GA and SPORES results reveals that, while the GA can generate distinct solutions, the
variation between niches is less pronounced than in SPORES. This is evident from the high-capacity deployment
at specific locations in the GA results, whereas SPORES distributes deployment more evenly.

The observed behavior of the GA is not necessarily indicative of a malfunction. Similar to the SPORES approach,
the results are expected to exhibit variations, though not to extreme degrees. This aligns with previous studies
that have combined GAwith MGA [17]. The significant differences in technology deployment observed between
SPORES and the GA-MGA approach may stem from the initial structural differences in the models or algorithms
rather than from the optimization method itself.

As demonstrated during the scaling process, even small modifications in algorithm components or decision-
making processes can have a considerable impact on performance. Due to the stochastic nature of GAs, assessing
their performance requires multiple test runs to ensure reliable conclusions. Structural changes in the algorithm
can lead to substantial variations in outcomes, a well-documented phenomenon in GA design [58].

Beyond optimizing the structure of the algorithm, it is also crucial to align its design with the methodological
approach used to achieve SPORES. Differences in fundamental modeling choices, such as the inclusion or ex-
clusion of transmission technologies from the GA-MGA process or variations in resolution, can result in distinct
solution spaces. Without systematic testing of the algorithm’s structural components and design choices, drawing
definitive conclusions about its overall effectiveness remains challenging. But the algorithm has been success-
fully applied to a large-scale energy system model, producing results that can be benchmarked against existing
data. This demonstrates its feasibility in real-world applications and highlights its potential for further validation.

5
Conclusion

5.1. Answer Sub-question 1
5.1.1. Summary of Key Findings
The literature review revealed a significant gap in research combining MGAmethods with bio-inspired heuristics
for spatial energy system optimization. While MGA is widely applied in energy optimization, no existing studies
integrate it with bio-inspired heuristics in this context. The closest work, Prina et al. [13], utilizes amulti-objective
optimization approach but does not incorporate MGA. Among the studies that do explore MGAwith bio-inspired
heuristics, Evolutionary Computation (EC) methods, especially GA, dominate the field. The extensive use of GA-
based MGA frameworks suggests that EC approaches are more established and widely accepted in the literature.
Given the strong theoretical foundation and broader availability of research on EC-based MGA approaches, this
thesis will adopt an Evolutionary Computation method. The choice is further reinforced by the existence of well-
documented implementations, such as DEAP, which have been successfully applied in scientific research. This
ensures a robust, adaptable, and reproducible algorithm development process within the context of energy system
optimization.

5.1.2. Answering The Sub-question
Sub-question: Which bio-inspired metaheuristic algorithm is best suited for the method being used?

The most suitable bio-inspired heuristic algorithm for the method being used is Genetic Algorithms (GA). Not
only has GA been previously applied to energy system optimization problems, but there is also existing literature
that explains in detail the theory and mathematical approach for combining GA and MGA in a broader optimiza-
tion context. Furthermore, tools such as DEAP provide accessible frameworks for programming a GA-MGA
algorithm, making its implementation more straightforward. Therefore, while GA may not necessarily be the
best metaheuristic in absolute terms, it is the most suitable for the specific circumstances of this thesis.

5.1.3. Limitations
Some limitations of this literature review include the restricted scope of database searches, as only two platforms
were used to identify relevant literature. As a result, additional valuable research may exist but was not found
due to the limited number of databases searched. Another challenge is the inconsistent terminology used in the
field. Bio-inspired metaheuristics are sometimes referred to simply as metaheuristics or are mentioned by their
specific names, such as GA or EC, without explicitly categorizing them as bio-inspired metaheuristic methods.
This lack of standardized terminology may have led to relevant literature being overlooked if it did not include
the specific keywords used in the search strings.

49

5.1. Answer Sub-question 1 50

5.1.4. Broader Implications
The field of metaheuristics suffers from convoluted and inconsistent terminology, making it challenging to search
for and classify existing literature. This lack of standardization hampers the development and accessibility of
research, as relevant studies may be difficult to identify due to inconsistent categorization. Additionally, scientific
research often focuses on developing new algorithms with unique names, further contributing to the terminology
inconsistency and making it harder to systematically compare and evaluate different approaches within the field.

5.1.5. Future Research
To address these issues, future research should focus on structuring the theoretical framework of metaheuristics.
Key areas of interest include categorizing different types of metaheuristics, defining their distinguishing charac-
teristics, and establishing a structured classification system. A well-organized framework would improve clarity,
facilitate better comparisons between algorithms, and enhance the efficiency of future research in the field.

5.2. Answer Sub-question 2 51

5.2. Answer Sub-question 2
5.2.1. Summary of Key Findings
When designing a GA, several critical decisions—including mutation rate, crossover rate, ETA value, number
of niches, population size, and resolution change—must be carefully tuned to optimize performance. This study
explored these parameters within a MGA framework, employing the F-race method to identify configurations
that yield the most effective results in exploring the solution space. The findings demonstrated that the chosen
parameter settings successfully helped identify diverse capacity combinations, all within feasible regions of the
solution space. Notably, however, parameter tuning results from a small-scale model may not generalize directly
to larger or more complex systems, underscoring the context-dependent nature of these optimizations.

5.2.2. Answering The Sub-question
Sub-question: How can the tuning of algorithmic parameters optimize the performance of the selected heuristic
for implementing a successful MGA optimization technique?

The results show that systematically tuning parameters through quantitative methods, such as F-race, can signifi-
cantly enhanceMGA performance by refining exploration and exploitation within the solution space. An efficient
combination of mutation, crossover, and ETA values was identified for the developed test model. Further test-
ing highlighted the delicate balance between population size, the number of populations/niches, and resolution in
managing computational cost versus solution accuracy. Consequently, informed parameter tuning is instrumental
in achieving a successful GA–MGA optimisation technique.

5.2.3. Limitations
Despite its contributions, this study has several limitations. First, the conclusions stem from experiments on a
single system model, limiting their direct applicability to other models. Second, due to time constraints, not
all tests were exhaustively or statistically validated. Although the F-race approach provides a good foundation
for parameter tuning, alternative methods might prove more effective for certain types of parameters or different
modeling scenarios. Moreover, the reliability of resolution adjustments remains uncertain: the possibility of algo-
rithmic crashes and unverified behavior in other models restricts the generalizability of this feature. Lastly, while
the DEAP library offers numerous operators, only a subset was explored here. Different crossover mechanisms
or other bio-inspired operators might further optimize performance. For example, the uniform crossover can be
replaced with the cxSimulatedBinaryBounded, which is the same crossover that the NSGA-II algorithm uses.
By doing so, the algorithm will resemble the NSGA-II operators, which are already widely popular in genetic
algorithms and commonly used by many other researchers.

5.2.4. Broader Implications
The promising results obtained from combining GA and MGA in an energy system context suggest that meta-
heuristic approaches can address some of the current challenges in optimization, including escalating computa-
tional demands and the need to handle ever more complex models. By providing diverse solution sets rather than
a single “best” outcome, MGA-based methods can encourage more informed, human-centric decision-making.
Beyond energy system modeling, this line of research can extend to other large-scale optimization problems
where computational overhead and model complexity continue to grow. The study thereby contributes practi-
cal guidelines for parameter tuning in evolutionary algorithms, particularly in balancing solution quality with
computational efficiency.

5.2. Answer Sub-question 2 52

5.2.5. Future Research
To build on these findings, future work should expand testing, refine resolution adjustments, explore alternative
operators, conduct comprehensive benchmarking, and adopt adaptive parameter control. Expanding testing in-
volves applying the optimized parameter settings to different and more complex models, thereby assessing their
broader effectiveness and ensuring external validity. Refining resolution adjustments requires investigating more
robust resolution-changing methods and verifying their reliability and efficiency across various system models.
Exploring alternative operators includes experimenting with different crossover (e.g., simulated binary bounded)
and mutation operators to determine the most suitable combination for diverse problem settings. Comprehensive
benchmarking, particularly through comparative studies against established methods such as NSGA-II, will help
solidify the MGA framework’s competitiveness and general applicability. Finally, adopting adaptive parameter
control entails examining dynamic parameter tuning—adjusting rates or operator choices during runtime—which
may further enhance performance while reducing manual trial-and-error. By addressing these directions, future
research can deepen our understanding of how best to implement and scale MGA-based algorithms, ultimately
reinforcing their potential to tackle increasingly complex optimization tasks across various domains.

5.3. Answer Sub-question 3 53

5.3. Answer Sub-question 3
5.3.1. Summary of Key Findings
The research focused on evaluating and refining the MGA-GA algorithm to ensure its applicability to large-scale
energy system models. Through multiple test runs, adjustments were identified to improve the algorithm’s func-
tionality and efficiency. One major challenge was the long computational time, which made the initially intended
high-resolution approach infeasible. Instead, time-masking was introduced as an alternative high-resolution
method, preserving some high-resolution characteristics while maintaining computational feasibility. Addition-
ally, modifications to the slack value were implemented to prevent crashes during resolution switches, ensuring
the algorithm remained stable.

To evaluate the algorithm’s performance, its results were benchmarked against SPORES outputs by comparing
the capacity deployment at different locations and comparing the total deployment of RES technologies such as
batteries, PV and wind. The comparison revealed notable differences, particularly in the deployment of storage
technologies, where the GA-MGA algorithm allocated significantly more storage than SPORES. The large model
data did not have any information about capacity deployment at specific locations. It was therefor compared to
a plot given in the article by Lombardi et al. [12]. When compared with this plot it was seen that the GA-MGA
algorithm also deployed large quantities of capacity at certain locations, while the SPORES result diversified its
capacity deployment more spatially.

To better understand the algorithm performance the algorithm process was also researched using predefined met-
rics. These metrics such as RES-battery capacity deployment, fitness and cost over time showed some curious
behavior of the GA-MGA algorithm. While the reason for this behavior could not be explained with certainty, it
showed that the generated solutions bear some qualitative uncertainty.

5.3.2. Answering The Sub-question
Sub-question: how were metrics used to evaluate the algorithm’s performance, and how do these evaluations and
comparisons with existing methods inform its applicability?

The algorithm’s performance was evaluated by analyzing the algorithm process and comparing its results to
SPORES results. The metrics used to assess the algorithm process included storage and RES capacity deployment
over time, average cost over time, and average fitness over time. These metrics provided a better understanding of
how the solutions were generated. While the algorithm theoretically functioned as intended, resolution changes
and the overall algorithm structure introduced uncertainties in the generated solutions.

The impact of different resolution settings was also evident when comparing the algorithm’s battery and RES
capacity with SPORES results, as the capacities differed significantly between the two approaches. Due to the
lack of resemblance between the algorithm’s outputs and the SPORES results, the generated algorithm results are
not of sufficient quality to be used for consideration when looking at diverse solutions for the European energy
system storage and RES capacity placement.

The limitations, broader implications and future research of sub-question 3 would resemble what would be written
for the research question. They are therefor discussed after the research question is answered.

5.4. Conclusion Research Question 54

5.4. Conclusion Research Question
Societal problems are becoming increasingly complex, presenting policymakers with the challenging task of
finding effective solutions. One field that has grown particularly intricate is the energy transition. It now involves
not only ensuring the optimal provision of energy but also addressing the mitigation of carbon emissions. As a
result of this increasing complexity, the acknowledgment and use of models have grown over time. While these
models can aid in optimizing system designs, their outcomes are often inaccurate due to their inability to fully
capture all relevant variables and dynamics.

In response to the known shortcomings of traditional optimization modeling, alternatives like MGA have become
increasingly popular. MGA provides the ability to generate distinctive, feasible solutions while still preserving
the human decision-making capabilities essential for addressing complex societal problems.

MGA has already been applied to solve spatially explicit optimization problems related to energy systems. De-
spite its success, the iterative process of MGA can quickly become computationally burdensome when applied to
larger models. To overcome such challenges, alternative algorithmic approaches could be explored. One promis-
ing option is the adoption of a bio-inspired heuristic combined with MGA, which could potentially reduce the
computational time required.

The lack of literature on combiningMGA and bio-inspired heuristics, particularly in the context of energy systems,
has led to the formulation of the following research question: How does a combination of MGA and bio-inspired
metaheuristics, aimed at optimizing energy system design, compare to existing deterministic MGA methods?

To address this research question, it was essential to first identify the type of metaheuristic best suited for the task.
A review of the literature revealed that the most appropriate algorithm would be a genetic algorithm, a method
within the broader field of evolutionary computing.

A small test model was created in Calliope to test the combination of the GA-MGAmethod. Drawing on insights
from the literature review, an integrated algorithm was successfully designed and further subjected to parameter
tuning to evaluate its performance under different conditions. These tests provided valuable insights into the
algorithm’s design and its optimal operating parameters, which would be carried forward to the next phase of
development.

The next step involved incorporating the findings and refining the algorithm to ensure its applicability to a larger,
more sophisticated model. For this purpose, the model developed by Lombardi et al. [12] was selected as the
basis, serving as the framework within which the algorithm would need to function effectively. A few structural
adjustments were made to the algorithm, after which it was prepared for benchmarking against the MGA results
already generated by the larger model.

The SPORES method, an MGA approach, was used to generate multiple solutions for the large energy system
optimization problem. When comparing the results of the GA to those of SPORES, it was observed that while the
GA was able to identify some alternative solutions, these differed to a certain extent from the SPORES results.
Something that was caused by the structural design of the algorithm, but also by how a lower resolution was
used for the GA-MGA. An analysis of the algorithm process also revealed that there are still some structural
inefficiencies that do influence the reliability and robustness of the solutions generated by the algorithm.

5.4.1. Answer to the Research Question
In conclusion, the combination of MGA and bio-inspired metaheuristic concepts into an algorithm was success-
fully achieved and applied to a spatial optimization problem in an energy system. Scaling the algorithm to a larger,
more detailed model was also feasible; however, the inefficient structure of the code meant that the computational
burden was a problem when applying the GA-MGA at such a large scale. Meaning that a lower, less resembling
resolution needed to be used to run the algorithm.

The results comparison revealed that storage technologies were handled differently at lower resolutions, leading to
more generous deployments. Wind and solar technologies showed some variations in results but demonstrated a
degree of alignment with the outcomes from the SPORES method. Regarding spatial allocation, which was only
partially analyzed due to limited data, SPORES favored a more distributed capacity deployment, whereas the
GA relied more on large capacity deployments in specific locations. However, due to resolution limitations and
structural shortcomings in the algorithm, the results lacked reliability, making a direct comparison with SPORES
results uncertain.

5.4. Conclusion Research Question 55

The research further explored the combination of MGA and GA, demonstrating that an algorithm integrating
these concepts can be successfully developed. While previous literature on the topic primarily discussed possible
design options, this thesis fully developed and applied such an algorithm. Although the GAwas not yet successful
in replicating or outperforming other MGA results, it highlighted promising possibilities that warrant further
investigation.

5.4.2. Limitations
One of the key limitations identified is the computational time required for the algorithm to run, which made
the originally intended high-resolution approach infeasible. As a workaround, time-masking was introduced to
maintain some high-resolution characteristics while keeping the computation time manageable. But as seen in
the results, this difference in resolution created extremely different solutions compared to the SPORES results.
Additionally, the modification of the slack value to prevent crashes during resolution switches, while effective,
is not a perfect solution, as it introduces uncertainty regarding how closely the algorithm adheres to the original
slack constraints.

Another limitation is the comparison with the SPORES results. Only the total capacity deployment by the large
model were available. This means that a in-depth comparison between spatial capacity deployment was not
possible. instead a image given in the article was given and was used to compare the data generated by two
SPORES results and the GA-MGA results.

More limitations lie with how the algorithm is structured and operates. For example, the algorithm currently
operates sequentially, which increases runtime significantly. Although parallelization was identified as a potential
solution, its implementation was beyond the scope of this thesis due to time constraints. Furthermore, a lot of
design choices have been made to solve certain problems that were encountered when developing the algorithm.
Operators were tailored, a slack adjustment was introduced and a not so efficient individual initialization was
created. These decisions make sure that results can be created, they also are structured that create a ”black-box”
when looking at the operation of the algorithm. It is unclear to what extent they affect the operation and quality
of the algorithm.

5.4.3. Future Research
The study highlights the importance of benchmarking optimization algorithms against established models like
SPORES. However, discrepancies in resolution, constraints, and assumptions show that direct comparisons can
be misleading if methodological differences are not carefully accounted for. This suggests that future research
should develop standardized evaluation metrics for comparing alternative energy system optimization approaches.

Other research areas should focus on optimizing the algorithm process. Especially the resolution change is some-
thing that made the results less reliable. By optimizing the algorithm less computational time is required and
higher resolutions can be used during the process, eventually creating more reliable and robust solutions.

To optimize the algorithm, future research should also try to enhance the structure of the developed GA-MGA. It
currently has a lot of design options integrated which can easily be replaced by different design choices that are
better suited for the algorithm. One important aspect that could be changed is the population initialization. The
initialization could make it so that the individuals are all more scattered throughout the solution space before the
algorithm process even starts.

Another highly beneficial optimization could be the parallelization of the algorithm process. Currently, each
individual is solved iteratively, but multiple individuals could be processed simultaneously. If implemented, this
could significantly reduce the time required to complete an algorithm run.

5.4.4. Broader Implications
The findings of this research emphasize the challenges of applying bio-inspired heuristics to large-scale energy
system models. While a GA combined with a MGAmethod can effectively generate diverse solutions, the results
indicate that algorithmic inefficiencies, resolution settings, and computational constraints can significantly impact
outcomes. This underscores the need for further methodological refinement before such approaches can be widely
applied in real-world energy system planning.

5.4. Conclusion Research Question 56

As with the smaller model, this part of the thesis demonstrated that the theoretical principle of GA-MGA does
indeed work. While it is not yet fully optimized, this novel GA-MGA algorithm has shown potential not only for
optimizing complex energy system problems but also for broader applications. More complex disciplines could
potentially implement metaheuristics, such as GA, in their fields to tackle optimization problems more effectively.

Further research is needed to determine the exact benefits of integrating metaheuristics with MGA. If computa-
tional costs can be reduced through a well-developed GA-MGA algorithm, the need for high-powered computing
resources could be minimized. Consequently, this could broaden access to MGA, enabling more people to use it
for large-scale complex optimization problems.

The goal of MGA is to provide multiple diverse solutions for policymakers and decision-makers, giving them
a broader perspective when tackling complex problems. Unlike traditional models, which typically generate a
single optimal solution, MGA presents a range of viable alternatives, allowing for greater flexibility and creativ-
ity in decision-making. By doing so, MGA enhances the imaginative capacity of humans, helping policymakers
explore different trade-offs and potential outcomes rather than being constrained by a single-model-driven per-
spective. Traditional models, while useful, are not absolute guides for policy design in complex environments,
as they inherently fail to fully capture the complexity and unpredictability of reality. A more widely adoption of
the MGA method could help to make better understand the problem at hand and make better suited decisions to
solve them.

References

[1] E. Ruffing and V. Brendler. “The Game of Energy Transition: A Game Theoretical Perspective on Public
Participation Procedures in Infrastructure Planning”. In: European Policy Analysis 10.1 (2023), pp. 39–60.
DOI: 10.1002/epa2.1199.

[2] T. S. Nguyen, S. Mohamed, and K. Panuwatwanich. “Stakeholder Management in Complex Project: Re-
view of Contemporary Literature”. In: Journal of Engineering, Project, and Production Management 8
(2018). DOI: 10.32738/JEPPM.201807.0003.

[3] B. Neumayr, M. Schrefl, and B. Thalheim. “Modeling Techniques for Multi-level Abstraction”. In: The
Evolution of Conceptual Modeling: From a Historical Perspective towards the Future of Conceptual Mod-
eling. Springer, 2011, pp. 68–92. DOI: 10.1007/978-3-642-17505-3_4.

[4] E. D. Brill. “The Use of Optimization Models in Public-Sector Planning”. In: Management Science 25.5
(1979), pp. 413–422. DOI: 10.1287/mnsc.25.5.413.

[5] Z. Yang et al. “The improved multi-criteria decision-making model for multi-objective operation in a com-
plex reservoir system”. In: Journal of Hydroinformatics 21.5 (2019), pp. 851–874. DOI: 10.2166/hydro.
2019.150.

[6] E. D. Brill, S.-Y. Chang, and L. D. Hopkins. “Modeling to Generate Alternatives: The HSJ Approach
and an Illustration Using a Problem in Land Use Planning”. In: Management Science 28.3 (Mar. 1982),
pp. 221–235. DOI: 10.1287/mnsc.28.3.221.

[7] J. Kao, E. D. Brill, and J. T. Pfeffer. “Generation of Alternative Optima for Nonlinear Programming Prob-
lems”. In: Engineering Optimization 15.3 (1990), pp. 233–251. DOI: 10.1080/03052159008941155.

[8] J. F. DeCarolis. “Usingmodeling to generate alternatives (MGA) to expand our thinking on energy futures”.
In: Energy Economics 33.2 (2011), pp. 145–152. DOI: 10.1016/j.eneco.2010.05.002.

[9] L. Nolting and A. Praktiknjo. “The complexity dilemma – Insights from security of electricity supply
assessments”. In: Energy 241 (2022), p. 122522. DOI: 10.1016/j.energy.2021.122522.

[10] J. M. Caicedo and GunJin Yun. “A novel evolutionary algorithm for identifying multiple alternative so-
lutions in model updating”. In: Structural Health Monitoring 10.5 (2010), pp. 491–501. DOI: 10.1177/
1475921710381775.

[11] J. Price and I. Keppo. “Modelling to generate alternatives: A technique to explore uncertainty in energy-
environment-economy models”. In: Applied Energy 195 (2017), pp. 356–369. DOI: 10.1016/j.apener
gy.2017.03.065.

[12] F. Lombardi, B. Pickering, and S. Pfenninger. “What is redundant and what is not? Computational trade-
offs in modelling to generate alternatives for energy infrastructure deployment”. In: Applied Energy 339
(2023), p. 121002. DOI: 10.1016/j.apenergy.2023.121002.

[13] M. G. Prina et al. “Multi-objective investment optimization for energy system models in high temporal
and spatial resolution”. In: Applied Energy 264 (2020), p. 114728. DOI: 10.1016/j.apenergy.2020.
114728.

[14] J. C. Liebman. “Some Simple-MindedObservations on the Role ofOptimization in Public SystemsDecision-
Making”. In: Interfaces 6.4 (1976), pp. 102–108. DOI: 10.1287/inte.6.4.102.

[15] W. L. Sprouse and G. A. Mendoza. “Modeling to Generate Alternatives: A Shawnee National Forest Ex-
ample”. In: Computers, Environment and Urban Systems 14.3 (1990), pp. 203–211. DOI: 10.1016/0198-
9715(90)90009-i.

[16] A.Goicoechea.MultiobjectiveDecision Analysis with Engineering and Business Applications. en. Nashville,
TN: John Wiley and Sons, 1982.

[17] E. M. Zechman and S. R. Ranjithan. “An evolutionary algorithm to generate alternatives (EAGA) for
engineering optimization problems”. In: Engineering Optimization 36.5 (2004), pp. 539–553. DOI: 10.
1080/03052150410001704863.

57

https://doi.org/10.1002/epa2.1199
https://doi.org/10.32738/JEPPM.201807.0003
https://doi.org/10.1007/978-3-642-17505-3_4
https://doi.org/10.1287/mnsc.25.5.413
https://doi.org/10.2166/hydro.2019.150
https://doi.org/10.2166/hydro.2019.150
https://doi.org/10.1287/mnsc.28.3.221
https://doi.org/10.1080/03052159008941155
https://doi.org/10.1016/j.eneco.2010.05.002
https://doi.org/10.1016/j.energy.2021.122522
https://doi.org/10.1177/1475921710381775
https://doi.org/10.1177/1475921710381775
https://doi.org/10.1016/j.apenergy.2017.03.065
https://doi.org/10.1016/j.apenergy.2017.03.065
https://doi.org/10.1016/j.apenergy.2023.121002
https://doi.org/10.1016/j.apenergy.2020.114728
https://doi.org/10.1016/j.apenergy.2020.114728
https://doi.org/10.1287/inte.6.4.102
https://doi.org/10.1016/0198-9715(90)90009-i
https://doi.org/10.1016/0198-9715(90)90009-i
https://doi.org/10.1080/03052150410001704863
https://doi.org/10.1080/03052150410001704863

References 58

[18] J. S. Yeomans. “ASimulation-OptimizationAlgorithm forGenerating Sets of AlternativesUsing Population-
Based Metaheuristic Procedures”. In: Journal of Software Engineering and Simulation 5.2 (2019), pp. 01–
06. DOI: 10.35629/9795-05020101.

[19] H. T. Sadeeq and A. M. Abdulazeez. “Metaheuristics: A Review of Algorithms”. In: International Journal
of Online Engineering 19.9 (2023), pp. 142–164.

[20] V. Tomar, M. Bansal, and P. Singh. “Metaheuristic Algorithms for Optimization: A Brief Review”. In:
RAiSE-2023. Basel, Switzerland: MDPI, 2024.

[21] R. Thomsen. “Multimodal Optimization Using Crowding-Based Differential Evolution”. In: Proceedings
of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753). CEC-04. IEEE, 2004,
pp. 1382–1389. DOI: 10.1109/cec.2004.1331058.

[22] T. Stützle et al. “A Comparison of Nature Inspired Heuristics on the Traveling Salesman Problem”. In:
Parallel Problem Solving from Nature PPSN VI. Springer Berlin Heidelberg, 2000, pp. 661–670. ISBN:
9783540453567. DOI: 10.1007/3-540-45356-3_65.

[23] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. 1st. IOP Publishing
Ltd., 1997. DOI: 10.1201/9780367802486.

[24] W. Gao. “A comprehensive review on identification of the geomaterial constitutive model using the com-
putational intelligence method”. In: Advanced Engineering Informatics 38 (2018), pp. 420–440. DOI: 10.
1016/j.aei.2018.08.021.

[25] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems. Ox-
ford Academic, 1999. DOI: 10.1093/oso/9780195131581.001.0001.

[26] Y. Tan and Z. Zheng. “Research advance in swarm robotics”. In:Defence Technology 9.1 (2013), pp. 18–39.
DOI: 10.1016/j.dt.2013.03.001.

[27] S. Maroufpoor, R. Azadnia, and M. Bozorg-Haddad. “Stochastic Optimization”. In: Handbook of Prob-
abilistic Models. Elsevier, 2020, pp. 437–448. ISBN: 9780128165140. DOI: 10.1016/b978- 0- 12-
816514-0.00017-5.

[28] D. V. Arnold and H. Beyer. “Random Dynamics Optimum Tracking with Evolution Strategies”. In: Paral-
lel Problem Solving fromNature—PPSNVII. Springer BerlinHeidelberg, 2002, pp. 3–12. ISBN: 9783540457121.
DOI: 10.1007/3-540-45712-7_1.

[29] A. Zhou et al. “Multiobjective evolutionary algorithms: A survey of the state of the art”. In: Swarm and
Evolutionary Computation 1.1 (2011), pp. 32–49. DOI: 10.1016/j.swevo.2011.03.001.

[30] G. B. Lamont and D. A. Van Veldhuizen. Evolutionary Algorithms for Solving Multi-Objective Problems.
Springer eBooks, 2007. DOI: 10.1007/978-0-387-36797-2.

[31] S. Bechikh, R. Datta, andA.Gupta.Recent Advances in EvolutionaryMulti-objectiveOptimization. Springer
International Publishing, 2017. ISBN: 9783319429786. DOI: 10.1007/978-3-319-42978-6.

[32] X. Zhang, H. Liu, and L. Tu. “A Modified Particle Swarm Optimization for Multimodal Multi-Objective
Optimization”. en. In: Engineering Applications of Artificial Intelligence 95.103905 (2020), p. 103905.

[33] J. Del Ser et al. “Bio-inspired computation: Where we stand and what’s next”. In: Swarm and Evolutionary
Computation 48 (2019), pp. 220–250. DOI: 10.1016/j.swevo.2019.04.008.

[34] K. Sörensen. “Metaheuristics—the metaphor exposed”. In: International Transactions in Operational Re-
search 22.1 (2013), pp. 3–18. DOI: 10.1111/itor.12001.

[35] A. Mallégol et al. “Handling Non-Linearities in Modelling the Optimal Design and Operation of a Multi-
Energy System”. In: Mathematics 11.23 (2023), p. 4855. DOI: 10.3390/math11234855.

[36] S. Pfenninger, A. Hawkes, and J. Keirstead. “Energy systems modeling for twenty-first century energy
challenges”. In: Renewable and Sustainable Energy Reviews 33 (2014), pp. 74–86. DOI: 10.1016/j.
rser.2014.02.003.

[37] N. Spittler et al. “Understanding the Current Energy Paradigm and Energy System Models for More Sus-
tainable Energy System Development”. en. In: Energies 12.8 (2019), p. 1584.

[38] F. Lombardi et al. “Policy Decision Support for Renewables Deployment through Spatially Explicit Prac-
tically Optimal Alternatives”. In: Joule 4.10 (2020), pp. 2185–2207. DOI: 10.1016/j.joule.2020.08.
002.

https://doi.org/10.35629/9795-05020101
https://doi.org/10.1109/cec.2004.1331058
https://doi.org/10.1007/3-540-45356-3_65
https://doi.org/10.1201/9780367802486
https://doi.org/10.1016/j.aei.2018.08.021
https://doi.org/10.1016/j.aei.2018.08.021
https://doi.org/10.1093/oso/9780195131581.001.0001
https://doi.org/10.1016/j.dt.2013.03.001
https://doi.org/10.1016/b978-0-12-816514-0.00017-5
https://doi.org/10.1016/b978-0-12-816514-0.00017-5
https://doi.org/10.1007/3-540-45712-7_1
https://doi.org/10.1016/j.swevo.2011.03.001
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-3-319-42978-6
https://doi.org/10.1016/j.swevo.2019.04.008
https://doi.org/10.1111/itor.12001
https://doi.org/10.3390/math11234855
https://doi.org/10.1016/j.rser.2014.02.003
https://doi.org/10.1016/j.rser.2014.02.003
https://doi.org/10.1016/j.joule.2020.08.002
https://doi.org/10.1016/j.joule.2020.08.002

References 59

[39] J. DeCarolis et al. “Modelling to generate alternatives with an energy system optimization model”. In:
Environmental Modelling and Software 79 (2016), pp. 300–310. DOI: 10.1016/j.envsoft.2015.11.
019.

[40] M. Hoffmann et al. “A review of mixed-integer linear formulations for framework-based energy system
models”. In: Advances in Applied Energy 16 (2024), p. 100190. DOI: 10.1016/j.adapen.2024.100190.

[41] J. K. Mandal, S. Mukhopadhyay, and P. Dutta. Multi-Objective Optimization: Evolutionary to Hybrid
Framework. Springer Singapore, 2018. DOI: 10.1007/978-981-13-1471-1.

[42] G. Jones. “Genetic and Evolutionary Algorithms”. In: Encyclopedia of Computational Chemistry. Chich-
ester, UK: John Wiley and Sons, Ltd, 2002.

[43] K. Deb et al. “A fast and elitist multiobjective genetic algorithm: NSGA-II”. In: IEEE Transactions on
Evolutionary Computation 6.2 (2002), pp. 182–197. DOI: 10.1109/4235.996017.

[44] D. H. Loughlin et al. “Genetic Algorithm Approaches for Addressing Unmodeled Objectives in Optimiza-
tion Problems”. In: Engineering Optimization 33.5 (2001), pp. 549–569. DOI: 10.1080/030521501089
40933.

[45] J. Jablonský. “Benchmarks for Current Linear and Mixed Integer Optimization Solvers”. In: Acta Univer-
sitatis Agriculturae et Silviculturae Mendelianae Brunensis 63.6 (2016), pp. 1923–1928. DOI: 10.11118/
actaun201563061923.

[46] M. Bröchin et al. “Harder, Better, Faster, Stronger: Understanding and Improving the Tractability of Large
Energy System Models”. In: Energy, Sustainability and Society 14.1 (2024). DOI: 10.1186/s13705-
024-00458-z.

[47] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase 2). https://www.
tudelft.nl/dhpc/ark:/44463/DelftBluePhase2. 2024.

[48] T. Tröndle et al. “Trade-Offs between Geographic Scale, Cost, and Infrastructure Requirements for Fully
Renewable Electricity in Europe”. In: Joule 4.9 (2020), pp. 1929–1948. DOI: 10.1016/j.joule.2020.
07.018.

[49] S. Pfenninger. “Dealing with Multiple Decades of Hourly Wind and PV Time Series in Energy Models:
A Comparison of Methods to Reduce Time Resolution and the Planning Implications of Inter-Annual
Variability”. In: Applied Energy 197 (2017), pp. 1–13. DOI: 10.1016/j.apenergy.2017.03.051.

[50] F. Vafaee et al. “Balancing the Exploration and Exploitation in an Adaptive Diversity Guided Genetic
Algorithm”. In: 2014 IEEE Congress on Evolutionary Computation (CEC). 2014, pp. 2570–2577. DOI:
10.1109/CEC.2014.6900257.

[51] S. Tsutsui and N. Fujimoto. “An Analytical Study of Parallel GA with Independent Runs on GPUs”. In:
Massively Parallel Evolutionary Computation on GPGPUs. Springer Berlin Heidelberg, 2013, pp. 105–
120. ISBN: 9783642379598. DOI: 10.1007/978-3-642-37959-8_6.

[52] C. Li et al. “Exploitation Versus Exploration”. In: Intelligent Optimization. Springer Nature Singapore,
2024, pp. 161–170. ISBN: 9789819732869. DOI: 10.1007/978-981-97-3286-9_7.

[53] A. E. Eiben, R. Hinterding, and Z.Michalewicz. “Parameter Control in EvolutionaryAlgorithms”. In: IEEE
Transactions on Evolutionary Computation 3.2 (1999), pp. 124–141. DOI: 10.1109/4235.771166.

[54] M. Preuss, G. Rudolph, and S. Wessing. “Tuning Optimization Algorithms for Real-World Problems by
Means of Surrogate Modeling”. In: Proceedings of the 12th Annual Conference on Genetic and Evolu-
tionary Computation. GECCO ’10. New York, NY, USA: Association for Computing Machinery, 2010,
pp. 401–408. ISBN: 978-1-4503-0072-8. DOI: 10.1145/1830483.1830558.

[55] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. en. 1st ed. Natural Computing Series.
Berlin, Germany: Springer, 2003.

[56] A. E. Eiben and S. K. Smit. “Parameter Tuning for Configuring and Analyzing Evolutionary Algorithms”.
In: Swarm and Evolutionary Computation 1.1 (Mar. 2011), pp. 19–31. DOI: 10.1016/j.swevo.2011.
02.001.

[57] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Natural Computing Series. Springer
Berlin Heidelberg, 2015. ISBN: 9783662448748. DOI: 10.1007/978-3-662-44874-8.

https://doi.org/10.1016/j.envsoft.2015.11.019
https://doi.org/10.1016/j.envsoft.2015.11.019
https://doi.org/10.1016/j.adapen.2024.100190
https://doi.org/10.1007/978-981-13-1471-1
https://doi.org/10.1109/4235.996017
https://doi.org/10.1080/03052150108940933
https://doi.org/10.1080/03052150108940933
https://doi.org/10.11118/actaun201563061923
https://doi.org/10.11118/actaun201563061923
https://doi.org/10.1186/s13705-024-00458-z
https://doi.org/10.1186/s13705-024-00458-z
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://doi.org/10.1016/j.joule.2020.07.018
https://doi.org/10.1016/j.joule.2020.07.018
https://doi.org/10.1016/j.apenergy.2017.03.051
https://doi.org/10.1109/CEC.2014.6900257
https://doi.org/10.1007/978-3-642-37959-8_6
https://doi.org/10.1007/978-981-97-3286-9_7
https://doi.org/10.1109/4235.771166
https://doi.org/10.1145/1830483.1830558
https://doi.org/10.1016/j.swevo.2011.02.001
https://doi.org/10.1016/j.swevo.2011.02.001
https://doi.org/10.1007/978-3-662-44874-8

References 60

[58] E. Montero, M.-C. Riff, and B. Neveu. “A Beginner’s Guide to Tuning Methods”. In: Applied Soft Com-
puting 17 (2014), pp. 39–51. DOI: 10.1016/j.asoc.2013.12.017.

[59] M. Birattari et al. “A Racing Algorithm for ConfiguringMetaheuristics”. In: Proceedings of the 4th Annual
Conference on Genetic and Evolutionary Computation. New York City, New York: Morgan Kaufmann
Publishers Inc., 2002, pp. 11–18. ISBN: 1558608788.

[60] Y.Widhiyasana et al. “Genetic Algorithm for Artificial Neural Networks in Real-Time StrategyGames”. In:
International Journal on Informatics Visualization 6.2 (2022), p. 298. DOI: 10.30630/joiv.6.2.832.

[61] A. Hassanat et al. “Choosing Mutation and Crossover Ratios for Genetic Algorithms—A Review with a
New Dynamic Approach”. In: Information 10.12 (2019), p. 390. DOI: 10.3390/info10120390.

[62] F. Lombardi. Customised Pre-Built Sector-Coupled Euro-Calliope Model - Focus on the Power Sector and
Additional SPORES Options. en. 2022. DOI: 10.5281/ZENODO.6655600.

[63] K. Deveci and Ö. Güler. “A CMOPSO-Based Multi-Objective Optimization of Renewable Energy Plan-
ning: Case of Turkey”. In: Renewable Energy 155 (2020), pp. 578–590. DOI: 10.1016/j.renene.2020.
03.033.

[64] R. Vanitha and J. Baskaran. “A Fuzzy-Based Evolutionary Algorithm for Solving Multiobjective Optimal
Power Flow with FACTSDevices”. In:Mathematical Problems in Engineering 2015 (2015), pp. 1–8. DOI:
10.1155/2015/275129.

[65] B. H. Choi. “Computational Approaches for Good Alternative Solutions Based Load Resistance Capac-
ity in Design of Steel Moment-Resisting Frames”. In: Damage Assessment of Structures VII. Trans Tech
Publications Ltd., 2007, pp. 563–568. DOI: 10.4028/0-87849-444-8.563.

[66] P. Kripakaran, B. Hall, andA.Gupta. “AGenetic Algorithm forDesign ofMoment-Resisting Steel Frames”.
In: Structural andMultidisciplinary Optimization 44.4 (2011), pp. 559–574. DOI: 10.1007/s00158-011-
0654-7.

[67] G. H. Huang et al. “Policy Planning Under Uncertainty: Efficient Starting Populations for Simulation-
Optimization Methods Applied to Municipal Solid Waste Management”. In: Journal of Environmental
Management 77.1 (2005), pp. 22–34. DOI: 10.1016/j.jenvman.2005.02.008.

[68] D. Fioriti et al. “Multiple Design Options for Sizing Off-Grid Microgrids: A Novel Single-Objective Ap-
proach to SupportMulti-Criteria DecisionMaking”. In: Sustainable Energy, Grids and Networks 30 (2022),
p. 100644. DOI: 10.1016/j.segan.2022.100644.

[69] R. Imanirad, X.-S. Yang, and J. S. Yeomans. “A Concurrent Modelling to Generate Alternatives Approach
Using the Firefly Algorithm”. In: International Journal of Decision Support System Technology 5.2 (2013),
pp. 33–45. DOI: 10.4018/jdsst.2013040103.

[70] E. M. Zechman and S. R. Ranjithan. “Multipopulation cooperative coevolutionary programming (MCCP)
to enhance design innovation”. en. In: Proceedings of the 7th Annual Conference on Genetic and Evo-
lutionary Computation. Washington DC, USA: ACM, 2005, pp. 1641–1648. ISBN: 978-1-59593-010-1.
DOI: 10.1145/1068009.1068286.

[71] Emily M. Zechman. “Niched Co-Evolution Strategies to Address Non-uniqueness in Engineering Design”.
In: (2006). URL: https://api.semanticscholar.org/CorpusID:7512895.

[72] E. M. Zechman, M. H. Giacomoni, and M. E. Shafiee. “An evolutionary algorithm approach to generate
distinct sets of non-dominated solutions for wicked problems”. In: Engineering Applications of Artificial
Intelligence 26.5 (2013), pp. 1442–1457. DOI: 10.1016/j.engappai.2013.03.004.

[73] L. Liu and S. Ranji Ranjithan. “An adaptive optimization technique for dynamic environments”. In: En-
gineering Applications of Artificial Intelligence. Advances in Metaheuristics for Hard Optimization: New
Trends and Case Studies 23.5 (2010), pp. 772–779. DOI: 10.1016/j.engappai.2010.01.007.

[74] H. E. Raoui, M. Cabrera-Cuevas, and D. A. Pelta. “The Role of Metaheuristics as Solutions Generators”.
In: Symmetry 13.11 (Oct. 2021), p. 2034. DOI: 10.3390/sym13112034.

[75] C. Feng and J. Lin. “Using a genetic algorithm to generate alternative sketch maps for urban planning”. In:
Computers, Environment and Urban Systems 23.2 (1999), pp. 91–108. DOI: 10.1016/S0198-9715(99)
00004-6.

[76] Y. Xiong and J. B. Schneider. “Transportation planning, programming, land use, and applications of geo-
graphic information systems”. en-US. In:Transportation Research Record 1364 (1992). ISBN: 9780309054034.

https://doi.org/10.1016/j.asoc.2013.12.017
https://doi.org/10.30630/joiv.6.2.832
https://doi.org/10.3390/info10120390
https://doi.org/10.5281/ZENODO.6655600
https://doi.org/10.1016/j.renene.2020.03.033
https://doi.org/10.1016/j.renene.2020.03.033
https://doi.org/10.1155/2015/275129
https://doi.org/10.4028/0-87849-444-8.563
https://doi.org/10.1007/s00158-011-0654-7
https://doi.org/10.1007/s00158-011-0654-7
https://doi.org/10.1016/j.jenvman.2005.02.008
https://doi.org/10.1016/j.segan.2022.100644
https://doi.org/10.4018/jdsst.2013040103
https://doi.org/10.1145/1068009.1068286
https://api.semanticscholar.org/CorpusID:7512895
https://doi.org/10.1016/j.engappai.2013.03.004
https://doi.org/10.1016/j.engappai.2010.01.007
https://doi.org/10.3390/sym13112034
https://doi.org/10.1016/S0198-9715(99)00004-6
https://doi.org/10.1016/S0198-9715(99)00004-6

References 61

[77] S. Pfenninger and B. Pickering. “Calliope: A Multi-Scale Energy Systems Modelling Framework”. In:
Journal of Open Source Software 3.29 (2018), p. 825. DOI: 10.21105/joss.00825.

https://doi.org/10.21105/joss.00825

Appendix

62

Appendix A

First search string:

(”bio-inspired” OR ”nature-inspired” OR ”evolutionary algorithm” OR ”genetic algorithm” OR ”swarm
intelligence” OR ”particle swarm optimization” OR ”ant colony optimization” OR ”simulated annealing” OR

”genetic programming” OR ”neural networks” OR ”heuristics” OR ”meta-heuristics”)

AND

(”modeling to generate alternatives” OR MGA OR ”alternative generation” OR ”near-optimal solutions” OR
”multi-objective optimization” OR ”sensitivity analysis”)

AND

(”energy system optimization” OR ”energy system planning” OR ”power system optimization” OR ”renewable
energy optimization” OR ”energy modeling optimization” OR ”energy transition optimization” OR ”renewable

energy planning” OR “energy system modelling”)

Second search string:

(”bio-inspired” OR ”nature-inspired” OR ”evolutionary algorithm” OR ”genetic algorithm” OR ”swarm
intelligence” OR ”particle swarm optimization” OR ”ant colony optimization” OR ”simulated annealing” OR

”genetic programming” OR ”neural networks” OR ”heuristics” OR ”metaheuristics”)

AND

(”modeling to generate alternatives”)

63

Appendix B

Table B.1: First Friedman Test Fitness

Run 1 Run 2 Run 3 Run 4 Run 5

Fitness Test 1 460.69 286.93 432.20 640.15 358.23
Fitness Test 2 628.85 562.56 620.23 640.96 484.25
Fitness Test 3 628.85 562.56 620.23 640.96 484.25
Fitness Test 4 472.61 487.41 416.97 627.32 605.93
Fitness Test 5 674.71 368.76 496.36 680.29 702.19
Fitness Test 6 751.47 890.31 774.03 661.80 636.42
Fitness Test 7 407.74 366.60 306.43 163.61 531.18
Fitness Test 8 659.63 594.49 703.49 695.70 563.24
Fitness Test 9 601.54 665.50 573.49 785.39 648.37
Fitness Test 10 348.50 380.76 565.69 341.15 709.95
Fitness Test 11 615.06 748.38 723.70 755.33 607.80
Fitness Test 12 829.84 741.63 810.45 436.15 680.65
Fitness Test 13 309.44 610.03 382.36 662.34 359.77
Fitness Test 14 646.04 535.23 584.95 436.90 470.81
Fitness Test 15 723.41 456.53 846.10 675.87 748.29
Fitness Test 16 764.07 382.15 403.33 506.95 770.93
Fitness Test 17 536.71 745.66 719.06 606.98 516.62
Fitness Test 18 662.67 622.42 807.53 775.57 809.22
Fitness Test 19 459.10 352.94 521.83 463.31 644.89
Fitness Test 20 449.88 735.31 640.48 691.01 739.56
Fitness Test 21 816.51 738.19 871.69 821.84 686.77
Fitness Test 22 409.81 386.54 606.37 326.98 507.24
Fitness Test 23 613.69 436.55 558.48 608.28 650.45
Fitness Test 24 842.30 665.52 903.68 910.33 850.35
Fitness Test 25 454.88 386.49 426.04 585.09 802.11
Fitness Test 26 667.79 564.74 437.24 473.12 661.40
Fitness Test 27 746.47 714.59 830.35 887.42 656.21

64

65

Table B.2: Second Friedman Test Fitness

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Fitness Test 6 739.89 548.05 606.53 741.15 783.82 751.47 890.31 774.03 661.80 636.42
Fitness Test 12 613.18 767.19 739.82 797.24 731.30 829.84 741.63 810.45 436.15 680.65
Fitness Test 15 774.09 620.60 644.07 857.51 727.68 723.41 456.53 846.10 675.87 748.29
Fitness Test 18 681.79 759.92 616.17 897.01 758.31 662.67 622.42 807.53 775.57 809.22
Fitness Test 21 658.26 793.13 686.35 951.46 826.26 816.51 738.19 871.69 821.84 686.77
Fitness Test 24 720.52 801.86 718.70 859.57 748.11 842.30 665.52 903.68 910.33 850.35
Fitness Test 27 811.45 706.63 909.40 747.26 679.27 746.47 714.59 830.35 887.42 656.21

Table B.3: Third Friedman Test Fitness

Fit 6 Fit 12 Fit 15 Fit 18 Fit 21 Fit 24 Fit 27

Run 1 739.89 613.18 774.09 681.79 658.26 720.52 811.45
Run 2 548.05 767.19 620.60 759.92 793.13 801.86 706.63
Run 3 606.53 739.82 644.07 616.17 686.35 718.70 909.40
Run 4 741.15 797.24 857.51 897.01 951.46 859.57 747.26
Run 5 783.82 731.30 727.68 758.31 826.26 748.11 679.27
Run 6 751.47 829.84 723.41 662.67 816.51 842.30 746.47
Run 7 890.31 741.63 456.53 622.42 738.19 665.52 714.59
Run 8 774.03 810.45 846.10 807.53 871.69 903.68 830.35
Run 9 661.80 436.15 675.87 775.57 821.84 910.33 887.42
Run 10 636.42 680.65 748.29 809.22 686.77 850.35 656.21
Run 11 660.96 645.01 698.62 754.22 827.11 688.38 799.11
Run 12 764.10 799.61 672.38 668.78 738.14 827.19 843.03
Run 13 851.54 722.84 645.10 697.34 814.20 582.45 859.56
Run 14 662.14 745.92 794.83 698.43 854.79 853.16 874.47
Run 15 706.26 569.07 844.30 812.71 777.55 712.20 669.64

66

Table B.4: First Friedman Test Generation

Run 1 Run 2 Run 3 Run 4 Run 5

Gen Test 1 93 95 91 85 100
Gen Test 2 97 54 96 100 100
Gen Test 3 97 54 96 100 100
Gen Test 4 97 94 96 97 97
Gen Test 5 98 81 60 88 100
Gen Test 6 95 88 91 97 97
Gen Test 7 97 84 62 93 77
Gen Test 8 100 93 97 100 93
Gen Test 9 97 86 100 97 94
Gen Test 10 80 100 81 100 88
Gen Test 11 41 97 91 81 88
Gen Test 12 74 83 88 92 78
Gen Test 13 98 100 99 96 97
Gen Test 14 76 70 82 100 98
Gen Test 15 96 59 87 88 95
Gen Test 16 100 95 99 83 100
Gen Test 17 82 90 100 100 97
Gen Test 18 97 69 98 100 97
Gen Test 19 96 93 91 100 88
Gen Test 20 99 100 100 96 97
Gen Test 21 99 76 99 94 73
Gen Test 22 95 91 100 100 97
Gen Test 23 99 96 80 86 99
Gen Test 24 46 83 95 75 96
Gen Test 25 86 96 96 100 82
Gen Test 26 99 98 97 93 95
Gen Test 27 96 91 94 100 85

Table B.5: Second Friedman Test Generation

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Gen Test 6 97 100 87 89 68 95 88 91 97 97
Gen Test 12 100 89 95 88 95 74 83 88 92 78
Gen Test 15 93 86 92 83 84 96 59 87 88 95
Gen Test 18 93 97 89 81 76 97 69 98 100 97
Gen Test 21 93 79 96 86 96 99 76 99 94 73
Gen Test 24 92 81 68 95 100 46 83 95 75 96
Gen Test 25 79 91 95 100 100 86 96 96 100 82
Gen Test 27 99 92 80 80 92 96 91 94 100 85

67

Table B.6: Third Friedman Test Generation

Gen 6 Gen 12 Gen 15 Gen 18 Gen 21 Gen 24 Gen 27

Run 1 76 92 92 97 84 95 94
Run 2 87 97 69 97 96 73 92
Run 3 99 95 94 85 96 87 55
Run 4 91 95 94 99 100 91 95
Run 5 78 93 90 83 94 81 94
Run 6 97 100 93 93 93 92 99
Run 7 100 89 86 97 79 81 92
Run 8 87 95 92 89 96 68 80
Run 9 89 88 83 81 86 95 80
Run 10 68 95 84 76 96 100 92
Run 11 95 74 96 97 99 46 96
Run 12 88 83 59 69 76 83 91
Run 13 91 88 87 98 99 95 94
Run 14 97 92 88 100 94 75 100
Run 15 97 78 95 97 73 96 85

Appendix C

Table C.1: Number of Populations Changed with Fitness and Time Measured

Fitness p3 Time p3 Fitness p4 Time p4 Fitness p5 Time p5

753.16 3968.91 751.61 5478.28 699.86 6551.62
721.23 3990.21 734.43 5456.86 643.32 6501.29
718.90 3980.31 660.84 5732.87 518.17 6340.10
824.51 3916.57 790.99 5536.29 707.64 6119.97
889.89 4066.14 497.78 5928.56 723.43 5983.57
921.11 4002.55 706.39 5946.22 791.49 6460.68
918.21 3922.68 720.83 6070.26 732.18 6430.08
731.74 3483.21 769.09 5970.59 553.82 6275.93
790.09 4115.34 791.08 5917.65 665.35 5889.99
748.54 4041.16 717.97 5914.03 697.10 5841.68
729.50 4206.35 735.72 5968.24 690.71 7528.51
872.22 3774.95 880.69 4581.17 761.02 5977.44
685.25 3635.11 704.35 4574.69 835.01 6000.52
767.57 3457.68 642.32 4653.19 507.48 6111.53
820.70 3738.50 617.09 5242.14 668.34 6453.61
778.15 3670.98 743.56 5246.33 721.16 6418.65
550.32 3854.25 660.53 5471.09 729.14 7119.84
874.64 3917.58 810.08 5229.35 705.01 6554.87
796.89 3942.57 779.07 5241.09 771.86 6497.72
760.26 3931.56 761.62 5163.19 624.50 6362.36
851.85 3830.21 644.47 4999.00 698.85 6113.66
816.96 4021.01 792.99 4929.43 617.21 5987.13
718.60 3971.05 588.12 4678.93 678.73 6012.80
812.73 3956.38 736.21 4486.82 638.92 5822.18
684.94 3924.05 635.17 4532.82 671.51 5677.03
739.14 4365.34 505.25 4501.37 664.77 5653.13
732.45 4322.24 696.80 5964.46 679.04 6697.49
845.68 4290.76 712.52 5045.75 696.43 6772.48

Sum fitness Sum Sum fitness Sum Sum fitness Sum
780.54 3939.20 706.70 5302.17 681.86 6291.28

Table C.2: Percental Difference Between Number of Subpopulations

Subpopulation Comparison % Difference Fitness % Difference Time

p3 - p4 -9.5 34.6
p4 - p5 -3.5 18.7
p3 - p5 -13.0 59.7

68

Appendix D

Table D.1: Results of Population Size Test (s10_p3 & s10_p4)

s10_p3 s10_p4
Fitness Generation Time Fitness Generation Time

753.16 88 3968.91 751.61 88 5478.28
721.23 100 3990.21 734.43 95 5456.86
718.90 92 3980.31 660.84 88 5732.87
824.51 81 3916.57 790.99 93 5536.29
889.89 94 4066.14 497.78 85 5928.56
921.11 84 4002.55 706.39 99 5946.22
918.21 88 3922.68 720.83 98 6070.26
731.74 83 3483.21 769.09 97 5970.59
790.09 86 4115.34 717.97 98 5914.03
748.54 86 4041.16 735.72 85 5968.24
729.50 97 4206.35 767.33 83 6346.92
872.22 95 3774.95 880.69 97 4581.17
767.57 98 3457.68 704.35 86 4574.69
820.70 97 3738.50 642.32 99 4653.19
778.15 74 3670.98 617.09 87 5242.14
550.32 95 3854.25 743.56 86 5246.33
874.64 98 3917.58 660.53 98 5471.09
796.89 95 3942.57 810.08 94 5229.35
760.26 97 3931.56 779.07 81 5241.09
851.85 97 3830.21 761.62 98 5163.19
816.96 84 4021.01 644.47 98 4999.00
718.60 97 3971.05 588.12 98 4678.93
812.73 97 3956.38 635.17 95 4532.82

69

70

Table D.2: Results of Population Size Test (s15_p3 & s15_p4)

s15_p3 s15_p4
Fitness Generation Time Fitness Generation Time

736.31 96 98.00 738.89 83 7740.85
800.31 95 96.91 827.55 89 7950.91
861.32 91 102.09 708.49 97 8504.69
941.37 92 7066.14 666.83 79 9350.70
837.35 77 6511.16 824.07 82 7585.77
774.09 95 6281.73 786.18 98 7416.75
650.19 97 6264.96 850.57 100 7378.65
805.13 94 6231.93 660.42 76 8289.68
790.58 93 5690.57 844.35 100 8312.40
837.68 97 5538.10 710.57 99 8122.83
766.57 100 5426.88 845.88 99 7434.34
818.46 97 5421.46 796.65 81 7269.05
934.60 83 5351.27 734.02 95 7147.66
812.97 74 5956.82 667.76 82 7285.59
941.41 91 6211.89 765.40 87 7961.92
863.16 87 5950.98 785.83 96 8269.43
798.24 97 6218.82 794.60 96 8366.56
671.33 96 6240.22 609.54 98 8517.07
770.33 94 6562.74 615.57 93 8671.87
688.98 90 6647.82 617.09 71 8759.09
812.92 95 6554.38 884.22 100 7708.10
808.54 90 5507.61 783.56 92 7318.52
808.20 99 5487.10 812.26 98 7432.50

Table D.3: Results of Population Size Test (s20_p3 & s20_p4)

s20_p3 s20_p4
Fitness Generation Time Fitness Generation Time

990.32 82 7744.76 630.16 97 9978.21
915.32 83 7953.12 835.45 100 10314.45
824.48 96 8166.71 778.58 85 10223.53
887.61 98 9588.59 798.73 100 12087.66
970.09 84 8402.36 822.28 99 9924.13
950.51 68 8349.78 726.98 97 9923.12
1012.95 67 7543.49 740.69 99 10688.84
943.15 76 7476.32 769.50 100 10723.94
881.46 96 7269.47 775.35 100 9690.58
786.16 81 7210.31 807.48 74 10138.31
847.18 83 7303.88 668.45 100 10675.30
921.84 77 7832.94 844.74 86 10947.28
797.86 96 8140.03 733.80 84 10784.95
865.11 81 8348.78 750.86 99 10870.30
671.56 91 7889.24 780.52 79 11329.98
871.43 98 8310.32 818.14 81 10782.91
922.65 80 8732.57 807.75 89 12281.42
776.50 94 8769.08 753.35 98 14347.00
755.05 95 7544.00 900.49 99 11750.98
794.30 78 7560.88 742.46 89 11637.55
840.93 100 7587.62 821.83 74 12289.33
755.96 94 7614.73 711.74 99 11584.95
903.65 99 7316.05 618.99 96 11196.26

71

Table D.4: Results of Population Size Test (s25_p3 & s25_p4)

s25_p3 s25_p4
Fitness Generation Time Fitness Generation Time

873.76 75 9594.54 861.84 99 13060.44
816.57 97 10073.90 729.26 83 13940.37
979.81 84 10597.29 780.90 99 13568.76
909.68 87 11823.26 871.02 93 14836.68
938.08 81 10505.40 719.74 77 12388.61
902.23 85 9685.77 729.50 82 12924.47
887.17 57 9736.50 669.60 91 13259.15
870.81 97 8956.24 822.08 81 13341.16
907.91 82 9271.70 842.19 100 13676.42
880.82 83 9047.56 779.51 98 14853.95
914.05 84 9096.42 750.51 88 14340.73
798.83 95 10226.32 797.71 83 12840.75
840.80 93 10486.80 748.77 95 12695.96
909.94 89 10416.87 601.51 80 12749.68
865.66 97 9249.11 835.31 83 12341.02
992.90 85 8725.11 842.02 82 12496.07
993.97 85 8463.67 903.78 100 11896.25
822.73 82 8452.00 780.80 97 15192.44
890.50 96 9186.61 678.20 83 14096.40
775.25 95 9184.21 889.21 72 14134.18
810.03 91 9151.69 791.99 100 14703.29
848.39 70 9463.80 846.59 81 14005.68
798.89 75 8899.49 759.10 77 12898.60

Appendix E

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

Figure E.1: multiple runs with high resolution and 150 generations

(a) Run 1 (b) Run 2

Figure E.2: Two runs with high resolution and 200 generations

72

Appendix F

F.1. SLURM file before results
#!/bin/sh
#
#SBATCH --job-name="Large model run"
#SBATCH --partition=memory
#SBATCH --time=09:00:00
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=16
#SBATCH --mem-per-cpu=8G
#SBATCH --account=education-tpm-msc-cosem
#SBATCH --output=Largemodelrun.%j.out

module load gurobi/10.0.3

srun ../python/large_model_run.py

F.2. SLURM file after results
#!/bin/sh
#
#SBATCH --job-name="Large model run"
#SBATCH --partition=memory
#SBATCH --time=24:00:00
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=5
#SBATCH --mem-per-cpu=30G
#SBATCH --account=education-tpm-msc-cosem
#SBATCH --output=Largemodelrun2.%j.out

module load gurobi/10.0.3

srun ../python/large_model_run_2.py

73

Appendix G

Listing G.1: Data extraction and cleaning code

1 import pandas as pd
2

3 # Load the dataset (update the file path as necessary)
4 input_file = 'individual_generation_interval.xlsx' # Replace with the actual filename
5 output_file = 'output_with_sums.xlsx'
6

7 # Read all sheets from the Excel file
8 sheets = pd.read_excel(input_file, sheet_name=None)
9

10 # Define the technology categories
11 technology_categories = {
12 'wind_offshore': ['wind_offshore'],
13 'wind_onshore': ['wind_onshore_competing', 'wind_onshore_monopoly'],
14 'pv': ['open_field_pv', 'roof_mounted_pv'],
15 'battery': ['battery'],
16 'hydrogen_electricity_storage': ['hydrogen_electricity_storage']
17 }
18

19 # Create a new Excel writer
20 with pd.ExcelWriter(output_file, engine='openpyxl') as writer:
21 for sheet_name, data in sheets.items():
22 # Create sum columns for each technology category
23 for category, keywords in technology_categories.items():
24 technology_columns = [col for col in data.columns if any(keyword in col for

keyword in keywords)]
25 data[f'sum_{category}'] = data[technology_columns].sum(axis=1) * 100
26

27 # Keep only the required columns and the new sum columns
28 required_columns = ['generation', 'subpopulation', 'individual', 'fitness', 'cost']
29 sum_columns = [f'sum_{category}' for category in technology_categories.keys()]
30 data = data[required_columns + sum_columns]
31

32 # Write the updated sheet to the output file
33 data.to_excel(writer, sheet_name=sheet_name, index=False)

74

Appendix H

Category Total Wind Total PV Total Storage

Niche 1 448.60 398.45 387.04
Niche 2 434.19 498.64 373.66
Niche 3 479.52 325.52 354.87

SPORES Evolve 1 782.72 615.29 129.25
SPORES Evolve 2 626.71 83.46 34.34
SPORES Evolve 3 658.16 108.76 45.98

SPORES Integer 1 796.99 620.07 128.41
SPORES Integer 2 702.15 196.57 58.34
SPORES Integer 3 752.31 219.91 49.93

SPORES Random 1 790.91 636.51 162.61
SPORES Random 2 787.24 572.57 94.70
SPORES Random 3 770.83 412.27 97.00

SPORES Relative 1 790.57 639.27 133.84
SPORES Relative 2 627.60 517.38 98.08
SPORES Relative 3 660.19 470.35 68.07

Optimum 731.77 477.41 70.38

Table H.1: Comparison of Niche, SPORES, and Optimum Solutions in Energy Deployment

Comparison Diff Wind % Diff PV % Diff Storage % Euclidean Distance

Niche 1 vs Evolve 1 74.48 54.42 -66.61 474.46
Niche 1 vs Evolve 2 39.70 -79.05 -91.13 569.72
Niche 1 vs Evolve 3 46.71 -72.71 -88.12 417.51

Niche 2 vs Evolve 1 80.27 23.39 -65.41 441.38
Niche 2 vs Evolve 2 44.34 -83.26 -90.81 427.79
Niche 2 vs Evolve 3 51.58 -78.19 -87.70 668.67

Niche 3 vs Evolve 1 63.23 89.02 -63.58 476.24
Niche 3 vs Evolve 2 30.70 -74.36 -90.32 633.18
Niche 3 vs Evolve 3 37.25 -66.59 -87.04 528.23

Total Diff Niche 1 - Evolve 53.63 -32.45 -81.95 487.23
Total Diff Niche 2 - Evolve 58.73 -46.02 -81.30 512.61
Total Diff Niche 3 - Evolve 43.73 -17.31 -80.32 545.88

Table H.2: Pairwise Percentage Differences and Euclidean Distance between Niches and SPORES Evolve

75

76

Comparison Diff Wind % Diff PV % Diff Storage % Euclidean Distance

Niche 1 vs Integer 1 77.66 55.62 -66.82 487.21
Niche 1 vs Integer 2 56.52 -50.67 -84.93 512.32
Niche 1 vs Integer 3 67.70 -44.81 -87.10 422.57

Niche 2 vs Integer 1 83.56 24.35 -65.63 454.44
Niche 2 vs Integer 2 61.72 -60.58 -84.39 392.58
Niche 2 vs Integer 3 73.27 -55.90 -86.64 785.39

Niche 3 vs Integer 1 66.21 90.49 -63.81 488.70
Niche 3 vs Integer 2 46.43 -39.61 -83.56 731.47
Niche 3 vs Integer 3 56.89 -32.44 -85.93 410.22

Total Diff Niche 1 - Integer 67.29 -13.28 -79.62 474.03
Total Diff Niche 2 - Integer 72.85 -30.71 -78.89 544.14
Total Diff Niche 3 - Integer 56.51 6.14 -77.77 543.47

Table H.3: Pairwise Percentage Differences and Euclidean Distance between Niches and Integer Solutions

Comparison Diff Wind % Diff PV % Diff Storage % Euclidean Distance

Niche 1 vs Random 1 76.31 59.75 -57.99 473.52
Niche 1 vs Random 2 75.49 43.70 -75.53 455.99
Niche 1 vs Random 3 71.83 3.47 -74.94 398.61

Niche 2 vs Random 1 82.16 27.65 -56.48 436.81
Niche 2 vs Random 2 81.31 14.83 -74.66 472.67
Niche 2 vs Random 3 77.54 -17.32 -74.04 879.52

Niche 3 vs Random 1 64.94 95.54 -54.18 480.25
Niche 3 vs Random 2 64.17 75.90 -73.31 978.04
Niche 3 vs Random 3 60.75 26.65 -72.67 234.50

Total Diff Niche 1 - Random 74.54 35.64 -69.49 442.71
Total Diff Niche 2 - Random 80.34 8.38 -68.39 596.33
Total Diff Niche 3 - Random 63.29 66.03 -66.72 564.26

Table H.4: Pairwise Percentage Differences and Euclidean Distance between Niches and Random Solutions

	Abstract

