
Text-based conversational interface
as an alternative to a crowdsensing

mobile application

Master’s Thesis

Neha Sree Thuraka

Text-based conversational interface
as an alternative to a crowdsensing

mobile application

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE
TRACK DATA SCIENCE TECHNOLOGY

by

Neha Sree Thuraka
born in India

Web Information Systems
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
http://wis.ewi.tudelft.nl

http://wis.ewi.tudelft.nl

© 2019 Neha Sree Thuraka

Text-based conversational interface
as an alternative to a crowdsensing

mobile application

Author: Neha Sree Thuraka
Student id: 4743598
Email: nehasreet@gmail.com

Abstract

Crowdsensing is a powerful tool to easily sense diverse physical
environments by collecting data from an undefined network of people. With
advancements in smartphone technology, there has been an increase in the use
of mobile applications to perform crowdsensing tasks. However, previous work
shows that mobile applications have issues with attracting and retaining users,
thus limiting the utility of crowdsensing as a data collection technique. To
mitigate these issues, we propose the use of conversational agents (chatbots) as
an alternative to custom mobile applications for crowdsensing applications. We
hypothesize that the use of commonly used text-based applications (e.g.,
Telegram) enriched with the automated conversational capabilities can increase
the attraction and retention of crowdsensing participants.

In this thesis, we designed and implemented a crowdsensing system that
supports the execution of mobile and chatbot interface. We propose a design of
the text-based conversational interface that provides different elements and
features of a traditional mobile application. To compare these two interfaces for
performing crowdsensing tasks and to understand the differences in terms of
user engagement and usability, we conducted two experiments on the TU Delft
campus with students as the participants. Based on the location of the
experiment, we designed four task domains and three types of tasks.

In the first experiment, we organized a ’between-subjects’ study. We
recruited 80 students to analyze user engagement and usability in a quantitative
fashion. The experiment shows that chatbot has better user engagement and
usability than the mobile application. We conducted a qualitative survey to
understand the underlying reasons behind the participation patterns. Analysis of
the results of this survey shows that the unavailability of the participants and the
assignment of inappropriate tasks are the main reasons behind non-participation
of some students.

To deepen our analysis, we organized the second experiment as a
’within-subjects’ study with 10 participants in a controlled environment. The

nehasreet@gmail.com

experiment shows that all participants unanimously preferred chatbot over the
mobile application to perform crowdsensing tasks.

As a result of both experiments, we conclude that the text-based
conversational interface can be used as an alternative to the mobile application
to execute crowdsensing tasks and the former is more engaging than a mobile
application interface for crowdsensing applications.

Thesis Committee:

Chair: Prof. dr. ir. Alessandro Bozzon, Faculty EEMCS, TUDelft
University supervisor: Prof. dr. ir. Alessandro Bozzon, Faculty EEMCS, TUDelft
Committee Member: Dr. Christoph Lofi, Faculty EEMCS, TUDelft
Committee Member: Dr. Huijuan Wang, Faculty EEMCS, TUDelft

ii

Preface

Before you lies the dissertation ’Text-based conversational interface as an alternative
to a crowdsensing mobile application’, that concludes my MSc at TU Delft. This
document has been written in partial fulfillment of the graduation requirements of the
MSc Computer Science programme, Data Science & Technology Track. This journey
taught me many things and gave me the experience of conducting scientific research.
This thesis would not have been possible without the support and guidance of several
people whom I would like to thank.

I would like to thank Prof. dr. ir. Alessandro Bozzon for giving me this opportunity
and for his immense support at each step. I would also like to thank Sihang Qiu for
always being willing to help me throughout the project and all the members of Sigma
team for their comments and suggestions. I am grateful to other thesis committee
members, Dr. Christoph Lofi and Dr. Huijuan Wang for the taking the time to attend
my thesis defense and Prof. dr. ir. Geert-Jan Houben for the inspiration. Last but
not least I would like to thank my friends, fellow students and parents for their moral
support.

Neha Sree Thuraka
Delft, the Netherlands

August 19, 2019

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Research questions . 2
1.2 Contributions . 3
1.3 Thesis outline . 4

2 Literature study 5
2.1 Types of crowdsensing . 5
2.2 Crowdsensing Applications . 6
2.3 Smartphone as a sensor . 7
2.4 Crowdsourced conversational agent 9
2.5 Summary . 9

3 System design 11
3.1 System requirements . 11
3.2 Crowdsensing system framework . 12
3.3 Design of Text-based conversational interface 13
3.4 Elements and Features of mobile application interface 16
3.5 Workflow of Crowdsensing System 17

4 System implementation 19
4.1 Task description . 19
4.2 Database . 31
4.3 Mobile application . 32
4.4 Text-based conversational interface 36
4.5 Crowd modules API . 41

v

CONTENTS CONTENTS

5 Experiments & Results 45
5.1 Goal . 45
5.2 Independent and Dependent variables 46
5.3 First experiment . 46
5.4 Second experiment . 56
5.5 Discussion . 58

6 Conclusion & Future work 61
6.1 Conclusion . 61
6.2 Future work . 62

Bibliography 65

vi

List of Figures

2.1 Crowdsensing application components 7

3.1 Crowdsensing system framework . 12
3.2 Core elements and components of chatbot 14
3.3 An example of updating database - finding popular restaurants 15
3.4 Workflow of interface . 18

4.1 Food item creation flow . 20
4.2 Food item enrichment flow . 21
4.3 Food item validation flow . 21
4.4 Place item creation flow . 23
4.5 Place item enrichment flow . 24
4.6 Place item validation flow . 25
4.7 Course item creation flow . 27
4.8 Course item enrichment flow . 27
4.9 Course item validation flow . 28
4.10 Trash Bin item creation flow . 29
4.11 Trash Bin item enrichment flow . 30
4.12 Trash Bin item validation flow . 30
4.13 Ionic cards . 33
4.14 Login Page . 34
4.15 Create account page . 34
4.16 Start page . 34
4.17 Task list page . 35
4.18 Item creation . 35
4.19 Item enrichment . 35
4.20 Item validation . 36
4.21 End of task page . 36
4.22 Cards with images . 37
4.23 Inline keyboard and skip command . 37
4.24 Edit answers . 38
4.25 Start message . 39
4.26 Menu message . 39

vii

List of Figures List of Figures

4.27 Validate task message . 40
4.28 Enrich task message . 40
4.29 Task list . 40
4.30 Create task . 40
4.31 Enrich task . 40
4.32 Validate task . 40
4.33 End of task . 41

5.1 Poster . 47
5.2 Google form initial . 48
5.3 Google form UDID . 48
5.4 Instructions to download the app . 49
5.5 UA and AR comparision . 50
5.6 Count of number of tasks completed per participant 51
5.7 Total time spent on executing the tasks per interface 52
5.8 SUS Score comparison . 57

viii

List of Tables

2.1 Crowdsensing applications . 7

3.1 Types of tasks . 17

4.1 Food domain attributes . 22
4.2 Place domain attributes . 25
4.3 Course domain attributes . 28
4.4 Trash bin domain attributes . 30
4.5 User model . 32
4.6 Task assignment strategies . 43

5.1 Total number of tasks completed per interface 51
5.2 FA, PU, AE and RF scores for Mobile application and Chatbot 53
5.3 Acceptability of the interface . 54
5.4 FA, PU, AE and RF scores for Mobile application and Chatbot 57

ix

Chapter 1

Introduction

In recent years, crowdsourcing has shown potential as a technique to ease the access to
knowledge and resources of the crowd. Crowdsourcing uses the collective intelligence
of a large group of people to help solve a problem. This technique helps in gathering
high volumes of data for relatively low cost [13]. This lead to the explosion of its
applications in diverse areas such as bioinformatics [18, 20, 5, 32], zoology [31] and
astronomy [29] to name a few. In this context, one of the most sought after research
areas is mobile crowdsensing.

Crowdsensing refers to the act of collecting data from a possibly undefined
network of people to sense diverse environments. These sensor devices are typically
equipped with wireless capabilities that allow them to produce data and upload it to
the internet. Based on the level of involvement of the user, crowdsensing can be
classified into participatory and opportunistic. While participatory sensing requires
the users to explicitly provide information, opportunistic sensing requires minimal
involvement of the user and is mostly autonomous. For the success of a crowdsensing
application, especially the ones with participatory sensing, it should be able to recruit,
engage and retain the users for a longer duration [8].

To increase the accessibility and thus participation of users, personal smartphones
have been used to implement crowdsensing as a mobile application. But, current
mobile crowdsensing literature that uses mobile applications has mostly ignored the
importance of human factor which is one of the main reasons behind the success of an
application [26]. Though there is some previous research on motivating users by
incentivizing [26] them, there is no research that concentrates on engagement of the
crowdsensing application users. User engagement is important for a mobile
crowdsensing sensing system to maintain adequate user participation, to collect
adequate data and to ensure the desired output quality. But in reality these
applications have inadequate user retainment as users may not be willing to
participate for a longer duration [9].

Moreover, a smartphone user does not use more than 27 apps per month despite the
increase in the number of choices [25]. This number is less considering the availability
of more than 2 billion apps there out in the market. So, there is a need to search for
an alternative way that retains, engages users for a longer duration. We hypothesize
that the use of commonly used text-based applications (e.g., Telegram) enriched with
the automated conversational capabilities can increase the attraction and retention of

1

1.1 Research questions Introduction

crowdsensing participants.
Conversational agents (chatbots) have gained immense popularity in recent years,

especially because of their availability on popular messaging applications such as
Telegram and Facebook Messenger as the user does not have to download an
additional application to execute crowdsensing tasks. This helps in attracting more
users for using the conversational interfaces as these messaging applications already
have millions of users who are very familiar with the interface and other
functionalities [12]. It also retains users by engaging them through mimicking
human-like conversation [2]. Moreover, a recent research shows that the
conversational interface is suitable for microtask crowdsourcing and also chatbot
provides better user satisfaction than a web interface [21]. So, in this research, we
explore the usage of the conversational interface as an alternative to the mobile
application to execute crowdsensing tasks.

1.1 Research questions

The goal of this research is to explore the usage of a text-based conversational interface
as an alternative to a mobile application for performing crowdsensing tasks. Therefore,
the focal point of this research is to answer the following main research question:

How can a text-based conversational interface be used as an alternative to a
mobile application to execute crowdsensing tasks?

To answer this question, we organized the research around the following three sub-
questions:

RSQ 1: What is the state-of-art in mobile crowdsensing?
Before we proceed further to explore the possibility of doing a crowdsensing task
through the text-based conversational interface, it is necessary to look into the
literature related to crowdsensing. We aim to understand how crowdsensing system
works and also how a mobile application interface is currently used to perform these
tasks. We analyze the limitations of current crowdsensing applications that use
mobile application interface and also explore how a text-based conversational agent
can overcome them.

RSQ 2: How can a text-based conversational interface be designed to provide
different elements and features of a traditional mobile application?
To check if a text-based conversational interface can be used as an alternative to a
mobile application for executing crowdsensing tasks, it is important to be able to
perform the same tasks under equivalent circumstances through both interfaces. The
objective here is to study how the user interaction and features that are typical of
mobile crowdsensing interfaces can be mapped to text-based conversational actions.

RSQ 3: How does the conversational interface affect user engagement and
usability in a crowdsensing application?
After designing a chatbot by mapping UI elements and features of a traditional
mobile, we propose a crowdsensing system that supports both mobile application and

2

Introduction 1.2 Contributions

chatbot. We further wish to study the differences that might exist while performing a
crowdsensing task in a text-based conversational interface and the mobile application
under equivalent circumstances - in terms of user engagement and usability.

1.2 Contributions

Realizing the importance of user engagement in mobile crowdsensing applications,
we explore the usage of text-based conversational interfaces. This is one of the most
important factors that will govern the future enhancement of crowdsensing. We
designed and implemented a text-based conversational interface by mapping UI
elements and features of a mobile application. Further, we designed the crowdsensing
system that supports both mobile applications and chatbots. Using this text-based
conversational interface in the crowdsensing system, we conduct experiments to study
the usage of this interface as an alternative to the existing mobile application. We
summarize the contributions of this research as follows:

C1: We conducted a literature study to understand the evolution of crowdsensing
techniques. This study investigates the state-of-the-art techniques of mobile
crowdsensing methods and further explores the shift from usage of add-on sensor
devices to the smartphone as a sensor. Thereafter, we point out that current literature
on crowdsensing through mobile application interface has mostly ignored user
engagement. Furthermore, we analyze the usage of text-based conversational agents
in crowdsourcing and correlate this analysis to improve user engagement in
crowdsensing application.

C2: We designed and implemented a crowdsensing system that supports the usage of
both the mobile application and text-based conversational interface. To support the
deployment and comparison of both interfaces, we designed a generic crowdsensing
system containing task generation, task assignment, and result aggregator. We
developed a mobile application according to the state-of-the-art research. We
designed and implemented a text-based conversational interface by mapping various
features and elements of the traditional mobile application.

C3: To compare the two interfaces for deploying a crowdsensing task and understand
the differences in terms of user engagement and usability, we organized two
experiments. The location of these experiments is TU Delft campus and the
participants for the experiments are TU Delft students. Based on this location, we
designed four task domains and three types of tasks. The first experiment is a
between-subjects study and has 80 participants. The second one is a within-subjects
study conducted in a more controlled environment and has 10 participants. We
performed a quantitative analysis in the first experiment to measure user engagement
and usability. Through this analysis, we show that the chatbot has better user
engagement and usability than the mobile application. Further, to understand the
reasons behind these results, we conducted a qualitative survey. Finally, to validate
the results of the first experiment, we conducted the another experiment.

3

1.3 Thesis outline Introduction

1.3 Thesis outline

The rest of the thesis report is structured as follows:

• In Chapter 2, we describe types of crowdsensing and components of
crowdsensing system. We identify the current limitations of a mobile
crowdsensing application and also explore the usage of text-based
conversational agents to overcome them.

• In Chapter 3, we present the proposed crowdsensing system architecture that
supports both the mobile application and chatbot. Further, we study how the
elements and features that are typical of mobile application interfaces be mapped
to text-based conversational actions. Finally, we discuss the workflow design of
the interfaces.

• In Chapter 4, we describe different task domains and task types. We further
discuss the implementation of the crowdsensing system, mobile application, and
text-based conversational interface.

• In Chapter 5, we detail the experimental setup to explore the usage of a
text-based conversational interface as an alternative to the mobile application to
execute crowdsensing tasks. We also discuss and analyze the results of these
experiments.

• In Chapter 6, we conclude the research and explore the possible future work.

4

Chapter 2

Literature study

To answer RQ 1, we conducted a literature survey to study state-of-art in mobile
crowdsensing. In Section 2.1, we study different types of crowdsensing based on the
level of user involvement. Further, to understand the components in a crowdsensing
system and the evolution of crowdsensing applications, we study different
crowdsensing applications that use add-on sensors and interpret their drawbacks in
Section 2.2 and we look into the usage of smartphones as a sensor for mobile
crowdsensing applications and analyze their limitations in Section 2.3. Thereafter, to
overcome the current limitations of mobile crowdsensing that require explicit user
involvement, we investigate previous work to understand the usage of text-based
conversational agents in crowdsourcing in Section 2.4. Finally, we summarize our
findings in Section 2.5.

2.1 Types of crowdsensing

In this section, we study different types of crowdsensing based on the level of
involvement of the user to understand different mobile crowdsensing applications.

Participatory sensing
Participatory sensing requires the explicit involvement of individuals to contribute to
sensor data. In these applications, complex problems can be solved efficiently by
leveraging the intelligence of a large group of users involved. For example,
GarbageWatch [4] recruits people to monitor the content of recycling bins with an
objective to improve recycling. For this, it requires the user to go to the location of
the bin to click the picture.

Opportunistic sensing
Opportunistic sensing requires minimal involvement of the user and is mostly
autonomous. Therefore, they lower the burden placed on the user. For example,
CenceMe [22] is a smartphone application built to infer peopleś presence (e.g.,
dancing at a party with friends). For this, it automatically collects data such as current
location, audio clips and random pictures using the user’s smartphone.

In this research, we are interested in the applications that require the explicit
involvement of the user. Therefore, in the following sections, we discuss the

5

2.2 Crowdsensing Applications Literature study

evolution of crowdsensing in the context of these kinds of applications.

2.2 Crowdsensing Applications

Crowdsensing has a broad spectrum of applications including but not limited to
infrastructural monitoring, environmental monitoring, and investigation of the spread
of disease. In this section, we discuss some participatory crowdsensing applications
in the following areas,

Environmental applications
In environmental crowdsensing applications, the natural environment such as the level
of pollution at a place or even water levels in creeks is monitored. These applications
monitor various elements of the environment by getting data from a large group of
individuals. Ikarus [33] is one such environment sensing application that measures
thermal atmospheric conditions. To sense this, the paraglider pilots were asked to use
a navigation device and record GPS locations, barometric altitude, and timestamps
during their flight. After the flight, all the track logs are uploaded by the pilots to a
common database of the community website.

Common Sense is a prototype that has been deployed to track pollution [7]. It
consists of specialized handheld air quality sensing devices that communicate with
mobile phones Bluetooth to collect data related to various air pollutants such as carbon
dioxide and nitrogen oxides and then the data is saved to a remote database.

Infrastructural applications
These applications monitor elements related to public infrastructure. This includes
surveillance of traffic and road conditions, availability of parking slots, etc., ParkNet
detects available parking spots through ultrasonic sensor devices [19]. The location of
the detected slots is communicated with the server using GPS receivers. The data is
then aggregated at the server which provides a real-time map of parking availability.

Health and wellness applications
These applications collect data to monitor the health and wellness of people. For
example, an individual self monitors their diet routine and physical activity.

Heartphone[28] assesses the cardiovascular function through the
photoplethysmographic sensors that were integrated into wearable earphones. For
further processing, the sensed data is sent to an iPhone via serial communication.

2.2.1 Crowdsensing Components

Analysis of these applications shows that there are mainly three components in a
crowdsensing application: Sensor device, Medium, Server. As depicted in Figure 2.1,
a sensor device is the one that generates data. The server remotely stores data and
also does the processing of the data. Medium transmits the data from the sensor
device to the server. Table 2.1 shows components of some crowdsensing applications.

6

Literature study 2.3 Smartphone as a sensor

Figure 2.1: Crowdsensing application components

Table 2.1: Crowdsensing applications

Publication Sensor device Medium Server
Ikarus[33] GPS-based flight

navigation device
Manually uploaded
to website by pilots

Database of
community
website

Common Sense[7] Handheld air
quality sensing
devices

Bluetooth Remote database

ParkNet[19] Ultrasonic sensor
device and GPS
receiver

Cellular uplink Centralized server

Heartphone[28] Photoplethysmo-
graphic sensors

Serial
communication

iPhone

However, installing extra hardware or another physical sensor may not be an option
for everyone [33, 7, 11, 19, 6]. While some users would be reluctant to use extra
hardware, some may not even find it. Moreover, for some devices, users might have
to learn how to use them [33]. This reduces the accessibility of the application to
a large number of audiences. On the other hand, with advancements in smartphone
technology, there has been an increase in the usage of smartphones as sensors for
crowdsensing. In the following section, we discuss the usage of the smartphone as a
sensor for crowdsensing applications.

2.3 Smartphone as a sensor

Nowadays, smartphones are not limited just as a medium for communication, instead
it has evolved also as a sensor device with high computing capabilities and
connectivity. Their multi-purpose functions made them extremely popular. Moreover,
according to Statista, there are more than 2.7 billion smartphone users in 2019.
Therefore, the smartphone also becomes an important tool for mobile crowdsensing
applications. Most smartphones have embedded sensors like GPS, camera, and
microphone. Smartphones can provide continuous sensing since people carry them all
the time. Moreover, they can also act as a medium to transmit the data and can also

7

2.3 Smartphone as a sensor Literature study

provide coverage in remote places where static sensors are hard to deploy and
maintain [15].

2.3.1 Applications

To understand the implementation of crowdsensing using mobile application interface,
we discuss applications in the following areas,

Environmental applications
CreekWatch developed by IBM Almaden Research Center monitors water levels and
quality in creeks [14]. It gathers data from the users through pictures or text
messages. To collect the data, they have developed an iPhone application. The
information generated from these aggregated reports can be used to track water
pollution or even the location of trash along the creek.

Infrastructural applications
Bikestatic records the condition of the road i.e., presence of bumps and potholes using
the built-in sensors like accelerometer gyroscope through a mobile application. This
data is used to provide a visualized road map that can help in improving the experience
of a cyclist [4]. Similarly, Microsoft Researchâs Nericell utilizes individualsâ phones
to not only determine road conditions but also measure average speed or traffic delays
and honking levels [23].

Personal Environment Impact Report(PEIR) is a crowdsensing system that uses
GPS collected data from users to classify their activities and tracks their transportation
modes [24]. This provides data to assess elements such as their carbon footprint and
fast food exposure.

Health and wellness applications
Another application that uses pictures but in a different domain is DietSense [30].
In this, the users take pictures of what they eat and share it to compare their eating
habits. This can help in watching and understanding what people with similar health
conditions eat which can motivate them to control their diet or even ask suggestions
from others.

2.3.2 Limitations

Most of the current research in crowdsensing using smartphones focus on applications
and system. However, for a mobile crowdsensing application to succeed, it should be
able to recruit, engage and retain the users for a longer duration [8]. But not much work
has been done to increase participant engagement which ensures their participation in
the long run. So, it is also important to analyze the user engagement and usability of
the applications that deploy crowdsensing tasks.

Moreover, because of the availability of an enormous number of mobile
applications, there has been an increase in app fatigue [25]. So, there is a need to
search for an alternative way to reach the users and retain, engage them for a longer
duration.

8

Literature study 2.4 Crowdsourced conversational agent

2.4 Crowdsourced conversational agent

Recently, text-based conversational agents have been extensively used and they are
known for engaging users by mimicking the conversation as a real human [2]. A
text-based conversational agent is an example of the cognitive computing system that
emulates human conversations to provide informational, transactional, and
conversational services. In this section, we discuss Human Aided Chatbots, i.e.
chatbots that rely on humans in the loop to operate. Human Aided Chatbots exploit
human intelligence, brought for instance by crowd workers or full-time employees, to
fill the gaps caused by limitations of fully automated solutions.

Guardian is a crowd-powered web-API-based spoken dialog system that leverages
the wealth of information in web APIs to enlarge the scope of the information that
can be automatically found [10]. The crowd is then employed to bridge the dialogue
system with the web APIs and a user with the dialogue system.

Similarly, Chorus is a crowd-powered conversational assistant that allowed the
end-users to have a conversation with a seemingly single conversational partner, but
in reality a group of crowd workers was involved [16]. To generate the response, they
used the voting process and the highest voted one would be sent to the end-user.

Crowd-Intelligence chatBot(CI-Bot) is another hybrid intelligent chatbot [17].
When a task is requested, CI-Bot first tries to solve it automatically. If the task is
beyond its knowledge, it would be distributed among selected workers. The responses
from the workers would be aggregated and the response generated would be added to
the corpus.

Facebook M is a text-based virtual assistant that involves humans in the loop to
train an artificial intelligence system. When a user asks a question or suggestion, M
would decode the natural language and ask more follow up questions to gain a deeper
understanding of what the user is looking for. If the answer is already available in the
corpus, it replies, otherwise, it would request a group of workers to help.

To conclude this, the above applications exemplify that chatbots can be used in
combination with crowdsourcing. But, there is no research available that explores
the usage of chatbots for executing crowdsensing tasks. Crowdsensing can be seen
as a type of crowdsourcing as both of them are dependent on the participation of the
human crowd to get the job done. But, depending upon the type of task, crowdsensing
may involve more active involvement of users. Further, while crowdsourcing can be
performed using any digital device, crowdsensing expects the device to be mobile.

2.5 Summary

The concept of using smartphones as a sensor instead of tagged physical sensors has
only arisen recently. With many studies being performed on how to incorporate
crowdsensing using the mobile application into real-world applications, other
important factors such as user engagement and user satisfaction are overlooked.
However, for a crowdsensing application to succeed, it is important to pertain users
for a longer duration.

9

2.5 Summary Literature study

On the other hand, chatbots have gained popularity recently for their ability to
engage users by mimicking human-like conversation. Though chatbots have been used
for crowdsourcing which is a similar technique, crowdsensing requires more active
involvement of the users.

With more research being done in developing applications in a crowdsensing
framework, we recognize that to our knowledge the idea of using the text-based
conversational interface as an alternative to a mobile application for the deploying a
crowdsensing task remains to be explored.

10

Chapter 3

System design

Before moving into the System implementation in Chapter 4, in this chapter, we
elaborate and justify all the decisions impacting the design of the text-based
conversational interface. In Section 3.1, we discuss the requirements of the system
and in Section 3.2, we describe the crowdsensing framework used in this research.
Thereafter, in Section 3.3 we elaborate the design of a text-based conversational agent
that can be used to deploy crowdsensing tasks. And to answer RQ 2, we study UI
elements and features of a traditional mobile application interface that would be
mapped to the actions in implemented text-based conversational interface in Section
3.4. Further, in Section 3.5, we discuss the workflow of both the interfaces
implemented in Chapter 4.

3.1 System requirements

Before designing the crowdsensing system in the subsequent section, we describe the
requirements of the system in this section.

• As we are exploring the usage of a text-based conversational interface as an
alternative to mobile application for performing crowdsensing tasks, the system
should have both the mobile application and text-based conversational interface

• The system should support both interfaces simultaneously

• The system should have a database that stores all the data related to participants
and tasks. Moreover, both interfaces should be connected with the same
database as participants of both the interfaces should be provided with
equivalent tasks

• It should have a Task generation module that generates the designed tasks

• It should also have a Task assignment module that assigns the generated tasks to
appropriate participants

• Finally, it should have a Result aggregator module that aggregates all the
responses from the participants and calculates the final result

11

3.2 Crowdsensing system framework System design

3.2 Crowdsensing system framework

In this section, we discuss the framework that has been designed based on the
requirements described in the previous section. It has four major components: User
interfaces, Task Compiler, Database and Crowd modules which are briefly explained
in the sub-sections 3.2.1 to 3.2.4

Figure 3.1: Crowdsensing system framework

3.2.1 User Interfaces

As the intent of this research is to check if the chatbot can be used as an alternative to
a mobile application for executing crowdsensing tasks, the system has two interfaces:
mobile application and chatbot. And, the users are grouped into two categories:
mobile application users and chatbot users. Both groups would be presented with the
equivalent environment which means that they would be performing the same tasks
but with a different interface.

3.2.2 Task Compiler

The Task Compiler gets information from the database and compiles the task. This
module ensures that the task is presented in an appropriate format for the
corresponding application. For example, while a microtask is presented as a message
to a chatbot user, it is displayed in a form for the mobile application user.

3.2.3 Database

Both applications are connected to a common DB which stores all the information
related to the tasks and responses. As soon as a task is generated and assigned to the
users, the details are stored in the database. After completion of a task, the answers
submitted by the user are also saved here.

3.2.4 Crowd modules

Crowd modules contain Task generation, Task assignment, and Result aggregation.
These Crowd modules work together to aggregate the responses from the users,
generate and assign the tasks, which would be stored in the Database.

12

System design 3.3 Design of Text-based conversational interface

Task generation
Task generation module is responsible for scheduling and generating tasks. This is the
initial module of that activates the other components i.e., the tasks need to be generated
first before task assignment and result aggregation. Task dependency should also be
taken into account while generating new tasks. For example, âFind the most popular
restaurant in a neighborhoodâ, can be divided into two tasks: Finding restaurants in
that neighborhood, and Voting for the most popular one. But, before generating the
second task, we need to have at least a specified number of responses from the first
one. To schedule a task, expiration should also be taken into account. For instance, a
task like finding the cleanliness of a place may need to be scheduled very often. We
describe the Task generation strategy used in the experiments of this research in the
next chapter.

Task assignment
The number of responses required can be mentioned within the task itself, which can
be used to assign the generated task accordingly to the specific number of users. This
module is responsible for selecting suitable users and assigning them a particular
task. The strategy can be as simple as assigning it to all users or randomly selecting
some. While this can work for some tasks, it can also jeopardize the quality of results
in some cases as inappropriate workers may either not complete tasks or introduce
false answers. For example, crowdsensing tasks may require the users to be at the
location, so it is better to select the users around the task location. We discuss the task
assignment strategy used in this research in Chapter 4.

Result aggregator
As same task is assigned to multiple users, all their responses must be aggregated into
a single value to get the final result. If a task contains n microtasks each assigned to k
users, the input to the Result aggregator would be,

Response =

r11 r12 ... r1k
r21 r22 ... r2k
.
.

rn1 rn2 ... rnk

 (3.1)

where ri j is the response of the user j for the microtask i. After applying aggregation
technique, the output is a set R= R1,R2,...,Rn where Ra represents the final result of the
microtask a. It is important to choose an appropriate strategy as the final result depends
not only on the user’s response but also on how it is integrated. The aggregation
strategy can be customized based on the need. We describe the Result aggregation
strategy used in this research in Chapter 4.

3.3 Design of Text-based conversational interface

Crowdsensing system framework discussed in the previous section has two interfaces.
This research explores the usage of a chatbot which is a text-based conversational
interface for executing crowdsensing tasks.

13

3.3 Design of Text-based conversational interface System design

To get a deeper understanding of chatbot design, in this section, we detail the
main elements and components in the chatbot system that is implemented in Chapter
4. As depicted in Figure 3.2, after the system receives an input from the user, it is
sequentially processed by four core components namely: Action interpreter, Action
executor, Database and Response generator. These components work coherently in
generating the response which enables the chatbot system to interact with the user.
Other chatbot elements like User input, State, Context, Response and functionality of
all the components are succinctly discussed below.

Figure 3.2: Core elements and components of chatbot

User input
The primary way of communication between the user and the chatbot is through
messages. User input which can be a query or an answer is a message from the user to
a chatbot. While some messages may simply consist of plain text, others may contain
richer content such as attachments and buttons. Free text, Attachments, Commands,
and Choice are different message types which are briefly explained below.

• Free text: Text is the most flexible and unrestricted type of message for
communication with a chatbot. To give an outlook, if the chatbot asks, "How
are you?", the user may answer with the word âFineâ, or with a sentence, "I am
fine"

• Attachment: Attachments represent images, videos, audios, and files exchanged
between the user and chatbot. The user can upload a photo to support a query or
a document to store for future use

• Choice: To simplify the interaction for users special keyboards can be used
predominantly for close-ended questions or a formal input. When chatbot
intends to send a message, it can pass along a keyboard with predefined reply
options. And, users can convey their choice by clicking on any of these buttons

• Command: Specific commands help to simplify the chatbot and better
understand the user intent. A command is a string with predefined syntax to
perform a particular action rather invariably following the pre-established
process. A chatbot can be designed to use /start to create a start a process and
/quit to stop it. These commands provide better user experience as they are
easy to interpret and the outcome is expected

14

System design 3.3 Design of Text-based conversational interface

Action interpreter
During a conversation, the user must receive an appropriate response from a chatbot as
the failure of this may lead to dissatisfaction of the user. To achieve this, the chatbot
should be able to map the user’s input with apt intent. Intents are purposes or goals
that are expressed in a userâs input, for example, in a food ordering bot, the intent of a
user can be "finding popular restaurants near me" or "rating the restaurant".

Once user input is received, it is passed on to the Action interpreter which
comprehends the user input and finds the intent. The further flow of conversation
would be based on this interpretation.

Database
This is the same Database mentioned in the crowdsensing system framework. It stores,
organizes and retrieves data related to the users, tasks and user’s answers. If there is
new data, the database is updated based on the existing data. As illustrated in Figure
3.3, if the task is to find popular restaurants, initially the database would contain only
the query, but as the users start answering and voting for popular ones, it is updated
with the names of restaurants and upvotes/downvotes accordingly.

Figure 3.3: An example of updating database - finding popular restaurants

Context
For good communication, the participants need to know what they are talking about.
Similarly, while the chatbot is interacting with the user, it should know the context.
Knowing the current context helps in better perceiving the user intent. For instance, in
a bot that collects reviews about restaurants and movies, if the user input is ’I give this
a 4-star rating’, the chatbot should be able to understand the context and identify if the
user is talking about restaurant or movie.

State
State refers to the previous messages in a conversation with the user. The information
about the current state is required to better understand the context and generate an
appropriate response. To give an example, in a bot that collects reviews about
restaurants and movies, if the user input is ’I like this’, the context can be identified
using the previous messages and this information can be used to generate chatbotâs
response.

15

3.4 Elements and Features of mobile application interface System design

Action executioner
Action executioner queries the database considering the current context to get the
information required to proceed further with the conversation. For example, if the
user input is ’What are some popular restaurants near me?’, after the Action
interpreter comprehends the intent of ’finding popular restaurants’, this module
queries the knowledgebase and returns a list of popular restaurants.

Response generator
The Response generator module assimilates the query result as input and the
information about the user’s previous message from the database to generate a
response. For the user input ’What are some popular restaurants near me?’ ensuing
the list of popular restaurants returned by the Action executioner, this module checks
the previous messages from the user to find the location and filters the restaurants by
that location to generate the response.

Response
Response is the message from chatbot to the user which is the final output generated
after the user's input has been processed through all the components. It can be a
predefined text, a question or an answer retrieved from the database, or an attachment.

3.4 Elements and Features of mobile application interface

To compare the user engagement between the mobile application and the
conversational interface, it is important to make sure that they have the equivalent
experimental environments and settings. So, in this section, we discuss different
elements and features of the mobile application that are mapped into the text-based
conversational agent implemented in Chapter 4.

3.4.1 Mobile application UI elements

In this section, we describe the basic UI elements that are needed to build a mobile
application. These elements are into the text-based conversational interface
implemented in Chapter 4.

• Cards: Cards serve as an entry point to more detailed information. It shows a
preview or gives hints on how further navigation may look like. A card often
contains an image, title, description/content and a button.

• Free text: Free text is a representation of characters that controls simple
arrangement of text which includes alphabets, numbers and special characters.
It does not have any graphical representations or executable expressions.

• Buttons: Button is a clickable element that is associated with some action. They
allow users to make their choices just by a single tap.

• Single/Multiple selection: Selects are form controls where users can select one
or multiple options from a given set of options. The user would be presented

16

System design 3.5 Workflow of Crowdsensing System

with a list of all options from which they can select. In a single selection, the
user can just select one option from the provided list. But, in a multiple selection,
the user can choose multiple options at the same time.

3.4.2 Features

In this section, we describe some of the features in the mobile application that are not
readily available in a text-based conversational interface. Further, in chapter 4, we
explain the methods used to provide these features in the chatbot.

• Handling interruption: Users are not always ready to follow the defined flow.
They may start a task and in the middle of the process, they might want to stop
it instead of completing it. The mobile application users can do this by simply
quitting from the current page. But, for chatbot users, it is difficult as they are
already in the middle of a conversation.

• Reviewing and editing answers: Users may want to review their answers after
they fill it in. While mobile application users can just scroll up, review and
edit their previous answers, chatbot users can inspect their answers skimming
through their conversation but cannot edit it.

• Skipping a question: Users may not want to answer all the questions in a task
but still want to continue with it. The mobile application users can do this by
simply ignoring the current question and moving onto the next one. So, chatbot
users should also be able to skip a question if they would like to.

3.5 Workflow of Crowdsensing System

Before implementing the interaction in both interfaces, in this section, we describe
the workflow design in Figure 3.4. To further discuss the flow, it is also important to
understand the types of tasks considered. Based on the objective of the task, tasks are
grouped into the following three types explained in Table 3.1.

Table 3.1: Types of tasks

Task type Objective
Creation Create a new item with predefined attributes

Enrichment Add more content based on given content
Validation Assess the given content

Figure 3.4 illustrates the workflow design of the interfaces implemented in Chapter
4. After the user starts the app(either the mobile application or chatbot), the app sends
them a menu that contains a list of task domains. The user can pick the domain in
which they want to perform a task. The app then sends them a list of tasks: Create,
Enrich, Validate and also an option to refresh the task list. If the user selects refresh,
the app sends them a new list of tasks. Else, if the user selects a task type, the app

17

3.5 Workflow of Crowdsensing System System design

sends them the appropriate task. After the user completes the task, the app notifies
them that the task has been successfully completed.

Figure 3.4: Workflow of interface

18

Chapter 4

System implementation

In this chapter, we elaborate on the implementation of the crowdsensing system
designed in Chapter 3. We begin by describing different task domains and task types
in each domain in Section 4.1. We further discuss the implementation and
deployment of the database in Section 4.2, the mobile application in Section 4.3, a
text-based conversational interface in Section 4.4 and the crowd system in Section
4.5. To answer RQ2, we implement the text-based conversational interface by
mapping the UI elements and features of the mobile application defined in Section
3.4.

4.1 Task description

Before discussing the implementation of interaction flow in both interfaces, we
describe the task domains and task types in this section. We designed the tasks
considering the participants and the location of the experiments which are discussed
in detail in Chapter 5. We conducted the experiments in the TU Delft campus and the
participants are TU Delft students. Taking this into account, We chose the following
task domains,

• Food: Rate food on campus

• Place: Add details about the different types of places on campus such as a
Building, Study space, Education room or Parking space

• Course: Ask and answer questions related to courses taught at TU Delft

• Trash Bin: Find locations of the trash bins on campus and report the trash level

Types of sensors
All the three types of tasks: Create, Enrich and Validate of these four domains include
one or more sensing tasks. We used the following sensors for these tasks.

• Camera: Camera is used to upload pictures and sense the appearance

• GPS: GPS is used to share location coordinates and sense the location

19

4.1 Task description System implementation

• User as a sensor: For subjective attributes, the user is used as a sensor. For
example, to know the opinion on the price of food or cleanliness level of a place,
the user has been used as a sensor.

We discuss different task types from each domain in detail in the following
subsections.

4.1.1 Food
Creation

Figure 4.1: Food item creation flow

Figure 4.1 illustrates the flow of item creation in Food. To create an item in food
domain, user needs to upload the picture of food (imageUrl*), lists the items in it
(foodItems*) and mention if the food is bought from the campus (isCampus*). If it is
bought from the campus, user needs to provide more details such as the price of the
food (foodPrice*), name of the building from which it is bought (building*), rating for
food (foodRating) and GPS coordinates (geoLocation).

Enrichment

Figure 4.2 illustrates the flow of item enrichment in Food. In the food enrichment task,
the user needs to categorize each food item in the given picture as appetizer/snack,

20

System implementation 4.1 Task description

main course, beverage or dessert (itemCategory). If the price of food is available, then
the user is requested for an opinion on the price.

Figure 4.2: Food item enrichment flow

Validation

Figure 4.3 illustrates the flow of item validation in Food. In the food validation task,
the user will be asked to confirm if it is a picture of food (isFood*). If the user responds
with yes, then they would be asked to check if the given items are present in the picture
(foodItemsCheck) and if the category the item is appropriate (itemCategoryCheck).
Table 4.1 tabulates all the attributes involved in the food domain and their descriptions.

Figure 4.3: Food item validation flow

21

4.1 Task description System implementation

Table 4.1: Food domain attributes

Attribute name Description
imageUrl* Upload a picture of food
foodItems* List food items in the picture
isCampus* Mention if food is bought from campus
foodPrice* Price of food
building* Name of the building from which food is bought

• Aula
• Library
• EWI
• Not in a building
• Other

If user picks ’Other’, they can input the building
name

foodRating Rate food on a scale of 1 to 5
geoLocation Coordinates of location from where food is bought
itemCategory Select category of each item in the picture

• Appetizer/Snack
• Main course
• Beverage
• Dessert/Fruit

priceOpinion Mention your opinion on the price of the food
• Cheap
• Appropriate
• Expensive

isFood* Check if picture contains food
foodItemsCheck Check if the given list of food items are in the picture

itemCategoryCheck Check if the given category of food item is correct

4.1.2 Place

Creation

Figure 4.4 illustrates the flow of item creation in Place. In the place item creation, the
user needs to upload a picture of the place from the TU delft campus (photo*), add
the name of the place (name), select category of place (category) and share
geo-coordinates of the place (geoLocation). If the place is of type building then the
user is asked to add a number of the building (buildingNumber) else they would be
asked for building name in which the place is located (building). If the place is inside
a building, then the floor number of the place is asked (floorNumber). Further, other
information related to the place such as route to the place (route), presence of
electricity outlets (electricityOutlet) and the capacity of the place (seatCapacity) are
asked. And, if the user is at location (isUserAtPlace), then dynamic attributes of the
place such as currently available number of seats (availableSeats) and the cleanliness
level (cleanLevel) are requested.

22

System implementation 4.1 Task description

Figure 4.4: Place item creation flow

Enrichment

Figure 4.5 illustrates the flow of item enrichment in Place. For place item enrichment,
if the type of the given place is building, then the user is asked to add number of the
building (buildingNumber) else they would be asked for building name in which the
place is located (building). If the place is inside a building, then floor number of place
is asked (floorNumber). Further, other information related to the place such as route

23

4.1 Task description System implementation

Figure 4.5: Place item enrichment flow

to the place (route), presence of electricity outlets (electricityOutlet) and the capacity
of the place (seatCapacity) are asked. And, if the user is at location (isUserAtPlace),
then dynamic attributes of the place such as currently available number of seats
(availableSeats) and the cleanliness level (cleanLevel) are requested.

Validation

Figure 4.6 illustrates the flow of item validation in Place. For validation task in place
domain, the user is asked to check if the photo contains a place from campus (isPlace)
and if they respond with yes, they are asked to check if the given category is correct
(isCategoryValid). If the type of the given place is building, then the user is asked to

24

System implementation 4.1 Task description

Figure 4.6: Place item validation flow

check if the given building number (isBuildingNumberValid) is correct else they would
be asked to validate the given building name (isBuildingValid). If the place is inside a
building, then floor number of place also needs to be validated (isFloorNumberValid).
Further, the user is asked to check other given information related to the place such
as route to the place (isRoute), presence of electricity outlets (isElectricityOutletValid)
and the capacity of the place (isSeatCapacityValid). Table 4.2 summarizes all the
attributes in the place domain and their descriptions.

Table 4.2: Place domain attributes

Property Name Description
photo* Upload a photo of any place from campus
name* Name of the place

geolocation* Coordinates of the place

25

4.1 Task description System implementation

category* Category of the place
• Building
• Study Space
• Project Room
• Lecture Room
• Parking Space
• Food & Beverage

buildingNumber The number of the building
building Name of the building in which the place is located

in
• Aula
• Library
• EWI
• Not in a building
• Other

If user picks other, they can input the building name
floorNumber The floor number of the building in which the place

is located
route Short description on how to reach to the place

hasElectricityOutlet Mention if the place has availability of electricity
outlets

seatCapacity Capacity of place/ number of people the place can
accommodate

isUserAtPlace* Mention if the user is at the place
availableSeats Number of currently available seats at the place

cleanLevel Rate the level of cleanliness
(1:very dirty - 5:very clean)

isPlace Check if the photo contains a place from campus
isCategoryValid Check if the given category of place is correct

isBuildingNumberValid Check if the given building number of place is
correct

isBuildingValid Check if the given building name of place is correct
isFloorNumberValid Check if the given floor number of place is correct

isRouteValid Check if the given route to the place is correct
hasElectricityOutlet Check if the given place has electricity outlet
isSeatCapacityValid Check if the given seat capacity of place is correct

4.1.3 Course

Creation

Figure 4.7 illustrates the flow of item creation in Place. For creation task in course
domain, user can add a question related to any course (question) and also upload a
picture to support the description (imageUrl). Further, the user is asked for the name
of the course that the question is related to (courseName), if the course does not exist
in the database, the user is also asked for code of the course (courseCode).

26

System implementation 4.1 Task description

Figure 4.7: Course item creation flow

Enrichment

Figure 4.8 illustrates the flow of item enrichment in Course. For enrichment task in
course domain, user can add an answer (answer) for the given question.

Figure 4.8: Course item enrichment flow

27

4.1 Task description System implementation

Validation

Figure 4.9: Course item validation flow

Figure 4.9 illustrates the flow of item validation in Course. Through validation task in
course domain, user can approve or disapprove (upVote) the answers provided for the
given question. Table 4.3 summarizes the attributes and their corresponding
descriptions for course domain.

Table 4.3: Course domain attributes

Property Name Description
question* Question related to any course from TU Delft
imageUrl Picture to support/ describe the question in detail

courseName* Name of the course the question is related to
courseCode Code of the course the question is related to

answer* Answer to the given question
upVote* Approve/Disapprove the provided answer to given question

4.1.4 Trash bin

Creation

Figure 4.10 illustrates the flow of item creation in Trash. For task creation in trash
domain, the user can add a photo of the trash bin (photo), categorize the type of waste
in the bin as general/paper/other (wasteType), share GPS coordinates of the bin
(geoLocation) and select the building in which the trash bin is located (building). If
the bin is located inside a building then floor number is also requested (floorNumber).
Further, other information related to the trash bin such as route to the bin
(locationDescription) and size of bin (size) are asked. And, if the user is at location
(isUserAtPlace), then dynamic attributes of the bin such as current trash level in the
bin (isFull) is requested.

Enrichment

Figure 4.11 illustrates the flow of item enrichment in Trash. For enrichment task in
trash domain, user needs to categorize the type of waste in the given bin as

28

System implementation 4.1 Task description

Figure 4.10: Trash Bin item creation flow

general/paper/other (wasteType) and add information such as size (size) and color
(color) of the bin. If the user is at location (isUserAtPlace), then dynamic attributes of
the bin such as current trash level in the bin (isFull) is requested.

Validation

Figure 4.12 illustrates the flow of item validation in Trash. In validation of trash
domain, the user is asked to check if the photo contains a trash bin from campus
(isTrashBin) and if they respond with yes, they are asked to check if the given waste

29

4.1 Task description System implementation

Figure 4.11: Trash Bin item enrichment flow

type (isWasteTypeValid) and color (isColorValid) are valid. Table 4.4 describes the
attributes in Trash Bin domain.

Figure 4.12: Trash Bin item validation flow

Table 4.4: Trash bin domain attributes

Property Name Description
imageUrl* Upload photo of a trash bin from the campus

30

System implementation 4.2 Database

wasteType Type of waste in the trash bin
• General Waste
• Paper Cups
• Others

geolocation Coordinates of the location of the trash bin
building* Name of the building from which food is bought

• Aula
• Library
• EWI
• Not in a building
• Other

If user picks ’Other’, they can input the building
name

floorNumber* Floor number of the building in which the trash bin
is located

locationDescription* Short description on how to reach this trash bin
size The size of the trash bin

• Small
• Medium
• Big
• Not sure

isUserAtPlace* Mention if the user is at the place
isFull Mention if the trash bin is full
color The color of the trash bin

isTrashBin Check if the photo contains a trash bin
isWasteTypeValid Check if the given waste type of the trash bin is

correct
isColorValid Check if the given color of the trash bin is correct

4.2 Database

We used the database to store two types of data

• Experimental data: User model, Tasks generated by Crowd system and
Responses from users

• Dialogues/Responses for text-based conversational interface

To store and sync the data, we used a NoSQL and document-oriented database Cloud
Firestore1. This stores the data as documents which are grouped together as a
collection. To read data from the database, there are two options: get a collection of
items, get a specific document from the database. And, while writing the data to the
database, there are also two options to push the data: specify the ID of the document,
auto-generate the ID.

1https://firebase.google.com/docs/firestore

31

4.3 Mobile application System implementation

4.2.1 User model

Table 4.5 displays different attributes of the user model and their description. Once
user registers and launches the app, if it is a mobile application, their email address
will be added to the data model and on the other hand for chatbot, ID of the platform
in which it has been developed would be saved. Initially, preferedLocationNames
and preferredCourses are empty, but as the user completes tasks, the corresponding
location names for Place, Trash bin task domains and course name of the Course
domain would also be added to the list. totalTasksCompleted contains count of number
of tasks done by the user in each domain and tasksCompleted has the list of timestamps
at which the user has completed a task.

Table 4.5: User model

Attribute Description
email/id Email address/ Telegram ID

preferredLocationNames Preferred location names
preferredCourses Preferred courses

totalTasksCompleted Count of number of tasks
tasksCompleted Timestamp of task completion

4.3 Mobile application

To build cross-platform mobile application for native iOS and android, we used ionic
framework 2 version 4.0.0 and capacitor 3 version 1.0.0-beta.19. We discuss below the
implementation of UI elements defined in Section 3.3.1 and also the usage of sensors
in ionic using different APIs.

Sensors
As mentioned in the Task description section, the tasks have been designed to use two
in-built sensors from the smartphones namely: Camera, Geolocation.

• getCurrentPosition method of the Geolocation API gets the current location of
userâs smartphone

• getPhoto method of the Camera API prompts the user to pick a photo from an
album, or take a new photo with their smartphoneâs camera

Cards
To build the cards, we used ion-card which is an ionic component. Each card can
contain a title, header and content. The content of cards can contain images, buttons
or text. To implement the card in Figure 4.13, ion-thumbnail can be used to wrap the
image in the list which can be made clickable using the tappable property of ion-list.

2https://ionicframework.com/
3https://capacitor.ionicframework.com/docs/

32

System implementation 4.3 Mobile application

Figure 4.13: Ionic cards

Buttons
To insert a button in the page, we used ion-button. As illustrated in Figure 4.13, we can
have two types of buttons: Buttons with text (Add Photo) and Buttons with just icon
(). ion-icon gives the choice to insert an icon from the provided list of ionicons4.

Free-text
ion-input is the input component in ionic that is meant for text type inputs only, such
as text, password, email and number. It is also possible to set properties such as read
only, required, minimum/maximum length and default value.

Single/Multiple selection
To implement this, we used ion-select which is an ionic component. Each ion-select
is associated with multiple ion-select-option where each of it declares a value from
the list of options. AlertController API has been used to display these options in an
alert which has two buttons: Cancel and OK. By default, it ion-select provides single
selection option, but it can be changed to multiple selection by setting the property
multiple to true. If it a single select then the select component receives the value of
the selected option else if it multi-select then it receives an array of all of the selected
option values.

Notification
We used Cordova Local-Notification plugin to display the local notifications on the
smartphone. schedule method sets properties of the notification such as the title, text
and the time to display.

4 https://ionicframework.com/docs/v3/ionicons/

33

4.3 Mobile application System implementation

Reading and writing to database
The app interacts with the firestore using the firebase5 package. A reference pointing
to the document/ collection from the database, is used to read it. add method adds new
data to the created document and update method updates the data in the document.

Android and iOS apps
After we built the application using the ionic framework, we added the android and
iOS platforms to the project. We generated the apk file using the Android studio 3.4.1
and distributed this app through an app-hosting website appho.st and we shared this
link (https://appho.st/d/#/07x87HeR) with the participants.

For iOS application, we requested UDID of their device in the google form. We
added this UDID to the provisioning profile before building the .ipa file using XCode
10.1. We used App box6 to deploy the app and shared the link https://tiny.app.link/
u5C70GbsmW with the participants.

4.3.1 Interaction flow

After user installs the mobile application and launches it, they would be presented with
the page in Figure 4.14. To login to the app, user will need a registered account and
password

Figure 4.14: Login Page
Figure 4.15: Create

account page
Figure 4.16: Start page

Create an account
To create an account, user should click on Create a new account button on login page
illustrated in Figure 4.14. It redirects them to the page in Figure 4.15 where the user
should register by entering their email address and password. After this, a verification

5https://www.npmjs.com/package/firebase
6https://getappbox.com/

34

appho.st
https://appho.st/d/#/07x87HeR
https://tiny.app.link/u5C70GbsmW
https://tiny.app.link/u5C70GbsmW

System implementation 4.3 Mobile application

mail would be sent to registered email address. Once user verifies, they can enter their
registered email address and password and click on LOGIN button to get started. This
redirects them to Start flow. If the user wants to reset the password, they can click on
I FORGOT MY PASSWORD button on the Login page (Figure 4.14). An email with a
reset link would be sent to their registered email address.

Start flow
If the login is successful, it will redirect to Start page in Figure 4.16 where the user
would be provided with four cards each describing a task domain. Clicking on the i
button provides a detailed description of the four task domains and task types. User
can pick a domain to perform tasks by clicking on the button in the corresponding card.
This would forward it to the Task selection flow.

Figure 4.17: Task list
page

Figure 4.18: Item
creation

Figure 4.19: Item
enrichment

Task selection
After the user clicks on the button corresponding to task domain, they would be
redirected to Task list page illustrated in Figure 4.17. Here, they would be provided
with a list of 5 tasks each in a different card depicted in Figure 4.17. Each of these
cards are clickable and contain few hints about the task and also type of task (+:
Enrich, X: Validate). The page also has a refresh button () and another card for
Create task. If the user clicks 	 on Task list page (Fig 4.17), they would be presented
with a new list of 5 tasks. Clicking on the Add Photo button in task create card would
forward it to Create task flow. User can select a task by clicking on the card. If it is a
validate task, then it would be redirected to Validate task flow, else if it is a enrich
task, it would be redirected to Enrich task.

Create task

35

4.4 Text-based conversational interface System implementation

While performing Task Creation, as illustrated in Figure 4.18, the user would be
asked to provide information about different attributes corresponding to the task
domain designed in the section task description. After the user successfully answers
all of them, they would be redirected to End of task page (Fig 4.21).

Enrich task
In Task Enrichment (Figure 4.19), the user would be given details that are already
available such as picture of item, and asked to provide more information based on this.
After the user successfully answers all of them, they would be redirected to End of task
page (Fig 4.21).

Figure 4.20: Item
validation

Figure 4.21: End of task
page

Validate task flow
In Task Validation (Figure 4.20), the user would be asked to assess the given
information. After the user successfully answers all of them, they would be redirected
to End of task page (Figure 4.21).

End of task flow
After completing the task, the user would be redirected to a success page which
provides a glimpse of task that they just completed. This page also contains a link to a
web page (CampusBot Web) where they could see answers from their fellow users.

4.4 Text-based conversational interface

We implemented the text-based conversational interface using Python 2.7 and the
python-telegram-bot framework which provides a pure python interface to the

36

System implementation 4.4 Text-based conversational interface

Telegram Bot API. In this section, we describe the mapping of different elements and
features of a mobile application into text-based conversational interface. Further, we
also discuss the conversational flow in this interface.

Message with task preview
Currently, Telegram does not directly support to send a message that maps the card
with image content from mobile application. To implement this as in Figure 4.22,
Rich link Preview feature of Telegram has been used.

Figure 4.22: Cards with images

Commands
A command in telegram must always start with the ’/’ symbol and should not be
longer than 32 characters. Commands have been used instead of buttons in mobile
application. For example, to display the menu in chatbot we used commands with the
domain names : /food, /place, /courses and /trashbin.

Figure 4.23: Inline keyboard and skip command

Inline keyboard
To integrate the keyboard directly into the message as depicted in Figure 4.23, inline
keyboards in telegram have been used. This has been used instead of single/multiple
select in mobile application.

37

4.4 Text-based conversational interface System implementation

Skipping a question
As shown in Figure 4.23, the feature to skip answering to a question in the text-based
conversational interface is provided using a command. User can use /skip command if
they do not want to answer a question or if they are not sure about the answer.

Handling interruptions
In text-based conversational interface, the feature to interrupt the task has been made
possible using a command. /quit command can be used by the user at any point of time
while performing a task to quit that task.

Reviewing and editing answers
By default, text-based conversational interface does not have the feature to review and

Figure 4.24: Edit answers

edit submitted answers. For this, chatbot sends a summary of answers provided by the
participant to all the questions in the current task and provides an inline keyboard with
options to Submit Answers, Start Over or Quit task as illustrated in Figure 4.24. User
can review their answers from here and if they want to edit something they can start
the task (Start Over).

Deployment
We deployed the text-based conversational interface on a virtual machine running
with Ubuntu 18.04 operating system and using Gunicorn as the Web Server Gateway
Interface (WSGI). To expose it to the public network, we used Ngrok which generates
an url that acts a webhook which can be automatically called once there is any
update. To read and write from text-based conversational interface to the database, we
used Python client for Firestore. We shared the link to telegram
telegram.me/v1_campusbot with the participants and to uniquely identify the
participant to track their chatbot usage, we appended a unique id for /start parameter
to the end of the link (telegram.me/v1_campusbot?start=19)

38

telegram.me/v1_campusbot
telegram.me/v1_campusbot?start=19

System implementation 4.4 Text-based conversational interface

4.4.1 Conversation flow

After the user launches the chatbot, they would be presented with the start message
represented in 4.25. The conversational flow after this is described below.

Start
When the user launches the text-based conversational interface for the first time, they

Figure 4.25: Start message Figure 4.26: Menu message

can see the message illustrated in Figure 4.25 which has a brief introduction of the
chatbot and contact details in case they have any queries or suggestions. They can
start the bot by clicking on the START button. After clicking on this start button, as
depicted in Figure 4.26, the chatbot sends a welcome message and another message
that has commands for each task domain and also for help. Clicking on the /help
command provides a detailed description of the chatbot and different domains of task.
User can pick a domain by clicking on the corresponding command. This would lead
to the Task selection flow.

Task selection flow
After the user sends a selected task domain command (For e.g. food), the chatbot
would respond with a list of 5 tasks each in a different message (Figure 4.27 and 4.28)
with task type. In another message, bot sends description of Enrich, Validate tasks,
commands to refresh tasks and Create task (Fig 4.29).

As depicted in Figure 4.27 and 4.28, the message corresponding to a task consists
of a command with task domain and task number (/food5, /food10), food items in the
picture, picture of the food and also a task type label: Enrich/Validate. User can select
the command with task number (/food5, /food10) to perform that task and depending
upon selected task type: Validate or Enrich task, remaining flow would be

39

4.4 Text-based conversational interface System implementation

implemented. If the user clicks on /refresh command, they would be provided with a
new message list of 5 tasks and clicking on /create would lead to Create task flow .

Figure 4.27: Validate task
message

Figure 4.28: Enrich task
message Figure 4.29: Task list

Create task
For Task Creation, as illustrated in Figure 4.30, the user would be asked to provide
information about different attributes corresponding to the task domain designed in
the section task description. After the user successfully answers all of them, the bot
will execute End of task flow.

Figure 4.30: Create task Figure 4.31: Enrich task Figure 4.32: Validate task

40

System implementation 4.5 Crowd modules API

Enrich task
In Task Enrichment, the user would be given details that are already available such
as picture of item as depicted in Figure 4.31, and asked to provide more information
based on that. After the user successfully answers all of them, the bot will execute End
of task flow.

Validate task flow
As shown in Figure 4.32, in Task Validation the user would be asked to assess the given
information. After the user successfully answers all of them, the bot will execute End
of task flow.

End of task flow
After completing the task, the user would be provided with an overview of all their
answers for current task and as illustrated in Figure 4.33, they would be asked if they
want to submit these answers, edit answers or quit the current task. Also, they would
be provided with a link to a web page (CampusBot Web) where they could see answers
from their fellow users.

Figure 4.33: End of task

4.5 Crowd modules API

The API endpoints used to execute the task generation and assignment strategies, are
implemented using Flask API. These endpoints that have been used by both mobile
application and text-based conversational interface to trigger the tasks are described
below in detail.

Generating an enrichment task:
POST /api/[food|place|question|trashbin]/generate-enrichment-task/<itemId>

This endpoint is hit through both the application after a new task has been created.

41

4.5 Crowd modules API System implementation

Generating a validation task:

POST /api/[food|place|question|trashbin]/generate-validationtask/<userId>/
<enrichmentTaskInstanceId>

This point is hit every time the user completes an enrichment task. The API
checks if there are required number of answers (numberOfAnswersRequired) for the
task. If the condition is satisfied, the API aggregates all the answers and generates the
validation tasks.

Assigning tasks:

POST /api/[food|place|question|trashbin]/assign-task/<taskId>

This endpoint is hit after the tasks are generated. API reads the list of users and
assigns the tasks to the users selected through the task assignment strategy
corresponding to the domain.

New user:

POST /api/[food|place|question|trashbin]/assign-task-to-user/<userId>

This endpoint is hit when the user registers/launches the application for the first
time. It assigns the generated tasks to this user.

Task generation strategy
We designed the Task generation strategy on the basis of types of tasks and their
expiration. After Creation task, Enrichment task is generated. But, as Place and Trash
bin contain dynamic attributes, like current occupancy of the place or trash level of
the bin, an expiration date has been set to the enrichment tasks in these domains. For
place enrichment tasks, the expiration has been set to 1 day and for trash bins it has
been set to 3 days. This has been set considering the dynamic attributes of these
domains. Enrichment tasks created in these domains expire in this set time and new
tasks for the same object are recreated.

After there are a sufficient number of answers in the enrichment task, Validation
task is generated with the consolidated answers. The reason behind this strategy is:
To add more information to an object (Enrichment), first the task needs to be created
(Creation). And, as Validation task assesses the information, it needs data from both
enrichment and creation tasks.

Task assignment strategy
We designed the Task assignment strategy based on the task domain. Table 4.6
summarizes the task assignment strategy for each domain. In all the domains, the task
is not assigned to the user that created the task (author). In Food, the task is assigned
to the first few users retrieved from the list of participants that is sorted in ascending
order of number of tasks completed. In Courses, before sorting the list, the users are

42

System implementation 4.5 Crowd modules API

filtering based on the course related to current task (Preferred courses). In Place and
Trash bin, before sorting the list, the users are filtering based on the building name in
current task (Preferred locations). The reason behind this is: for a Course task, the
user is expected to have some knowledge about the course to complete the task and
for Place and Trash bin task, the user is expected to be at the location or have an
understanding about the location to complete the task.

Table 4.6: Task assignment strategies

Task domain Task assignment strategy
Food Sort users in ascending order of number of tasks completed -

Author
Courses Filter users by Preferred courses and sort in ascending order of

number of tasks completed - Author
Place Filter users by Preferred locations and sort in ascending order of

number of tasks completed - Author
Trash bins Filter users by Preferred locations and sort in ascending order of

number of tasks completed - Author

Result aggregation strategy
Depending on the attribute, we used two result aggregation strategies. If it is a close
ended question where list of options are already given to the user, the number of users
who have picked an option also called as count is calculated. The final answer would
be the option with majority count. If it is an open ended question, then all the answers
from the user are saved. So the final answer in this case would contain a list of answers
from the users.

Deployment
We deployed the Crowd system API on a virtual machine with Ubuntu 18.04 operating
system and using Gunicorn as the Web Server Gateway Interface (WSGI). To expose
it to the public network, we used Nginx as a reverse proxy with an already set up
domain address. To read and write from API to the database, we used Python client
for Firestore.

43

Chapter 5

Experiments & Results

In this chapter, we discuss in detail on how we evaluated the implemented
Crowdsensing system which includes both text-based conversational interface and the
mobile application. We conducted two experiments. In the first experiment, we
conducted a naturalistic study where the participants were asked to use the
application in their everyday life and we analyzed the system based on the usage of
the interface. We would then discuss the results obtained from this experiment and
also study the limitations. Further, to investigate the effect of these limitations on the
results, we organized another experiment. In this, we experimented in a controlled
environment where we would be monitoring the participants while they use the
interface. For both the experiments, the location of the experiments is TU Delft
campus and participants are bachelor and master students from TU Delft. We will
explain these two experiments in detail in the following sections.

5.1 Goal

To answer RQ3, we conducted two experiments. Through these experiments we
would like to investigate if the text-based conversational interface can be used as an
alternative to a traditional mobile application for performing crowdsensing tasks and
also investigate the differences in User engagement and Usability of these interfaces.
Which means we use the independent variable Interface type: Mobile application and
text-based conversational interface to measure the dependent variables User
engagement and Usability.

The first experiment is a between-subjects study that includes both interfaces
implemented in the previous chapter. The goal of this experiment is to find out if there
is any significant difference between the User engagement and Usability of these two
interfaces for performing crowdsensing tasks. To do this, we performed a quantitative
analysis based on the usage of the app and a questionnaire and, to get a better
perception of these results and understand the limitations, we conducted qualitative
analysis. The second experiment is a within-subjects study whose objective is to study
the effect of the limitations found on the results and also to validate the results.

45

5.2 Independent and Dependent variables Experiments & Results

5.2 Independent and Dependent variables

For a crowdsensing application to be successful, it has to be able to retain and engage
the participants for a longer duration. So, in these experiments we intend to measure
the variables User engagement and Usability with Interface type as the independent
variable.

5.2.1 Interface type

As the main objective of this thesis is to explore the usage of the text-based
conversational interface as an alternative to the traditional mobile application for
performing crowdsensing tasks, we have two types of interfaces: Mobile App and
Chatbot. For this experiment, we would be using the crowdsensing system
implemented in the previous chapter.

5.2.2 User engagement

User engagement is used to measure whether the user is interested in the application.
If a user chooses to use an application, this means that they are signaling that they
found value in it. A highly engaged user generally uses the application for a longer
duration thus contributing more data. For the current research, we would be using the
app usage statistics and UES scale [27] to study different metrics that measure user
engagement. All these metrics are discussed in the following section.

5.2.3 Usability

Usability is defined as "the extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency, and satisfaction in a specified
context of use". It used to measure the User experience in terms of ease of use and
ease of access to the application. If the application has good usability, the user would
be able to easily become familiar with it and complete the tasks. In these experiments,
we study the Usability of the applications using the SUS scale[3].

5.3 First experiment

This is a between-subjects study which means each participant would be using any
one of the interfaces. We advertised the experiments in various bachelor and master
courses held at TU Delft in Quarter 4 (May-July), 2019. Further, we also displayed
digital and printed posters illustrated in Figure 5.1 all over the TU Delft campus and
distributed flyers of the same posters among the students.

46

Experiments & Results 5.3 First experiment

Figure 5.1: Poster

5.3.1 Participant Recruitment

We asked the participants to register through the google form which can be accessed
through the QR code on the poster or by going to the link given:
tinyurl.com/tudelftmanager. After the participant scans the QR code/ accesses the
link, they would be redirected to a google form illustrated in Figure 5.2. This form
contains a detailed description of the experiments and two questions regarding
participant's email address and platform of the smartphone they use (iOS/ Android).
If the participant is an android user they can submit the form else, before submitting
the form, they would be redirected to another page depicted in Figure 5.3 where the
device UDID is requested and the steps to get the UDID is mentioned.

After the participant successfully submits the form, we used Stream quota
sampling to assign them to one of the two groups: Mobile app users and text-based
conversational interface users. To implement this, we used a Google script that
assigns the participants to one of these groups on a rotational basis as soon as they
submit the form, so the first participant would be assigned to the mobile app interface
and the second one to the text-based conversational interface and so on.

47

tinyurl.com/tudelftmanager

5.3 First experiment Experiments & Results

Figure 5.2: Google form initial Figure 5.3: Google form UDID

After the participant is assigned to a group, we send an email to their registered
address. This email has information about the assigned interface (chatbot/mobile app)
as depicted in Figure 5.4 and also the instructions to download the corresponding
application. After the participant downloads and launches the app, they can get
started. Further, to make sure that the participants do not find an empty list of tasks
when they first start the application, we pre-populated some tasks.

5.3.2 Quantitative analysis

To perform the quantitative analysis on user engagement and usability of both
interfaces, we used the app usage statistics and also a questionnaire to measure
different metrics which are discussed below.

Based on App usage

To understand the difference between the mobile app and text-based conversational
interface in terms of user engagement, we used metrics such as User acquisition,
Activation rate, Total number of tasks completed and Total time spent on performing
tasks which are discussed below.

User acquisition:
User acquisition (UA) refers to the act of gaining new users. This measures the
percentage of participants that have installed the application.

UA =
Number of participants that installed the application
Number of participants assigned to the application

(5.1)

48

Experiments & Results 5.3 First experiment

Figure 5.4: Instructions to download the app

After registration through the google form, there were 44 participants assigned to
the mobile application and 36 to the text-based conversational interface. Among the
44 participants of the mobile application, 16 of them installed the app and out of 36
participants for the text-based conversational interface, 24 launched the chatbot. So,
in these experiments, while the UA rate for the mobile app is 36.36%, for the text-
based conversational interface it is 66.67%. This shows that the participants are more
convinced to install/launch the text-based conversational interface than the mobile app.

Activation rate
Activation rate (AR) refers to the act of gaining active users from acquired users. This
measures the percentage of participants that have used the application after installing
it.

AR =
Number of participants that used the application

Number of participants that installed the application
(5.2)

Among the 16 participants who have installed the mobile application, 7 of them used
the app and completed at least one task. On the other hand, out of 24 participants that
launched the chatbot through telegram, 14 used it to complete at least one task. So,
in these experiments, while the AR for the mobile application is 43.75%, for the text-
based conversational interface it is 58.33%. This implies that the participants are more
convinced to use the text-based conversational interface than the mobile application.

49

5.3 First experiment Experiments & Results

Figure 5.5: UA and AR comparision

Figure 5.5 illustrates the difference between the two interfaces in terms of User
acquisition and Activation Rate.

Total number of tasks completed
Table 5.1 shows the total number of tasks completed by the participants per each task
type in each domain for both the mobile application and text-based conversational
interface. While participants using chatbot have completed a total of 71 tasks,
participants using the mobile application completed only 24 tasks. This can imply
that the participants using the text-based conversational interface are more engaged
and motivated to complete the tasks than the participants using the mobile app.
Figure 5.6 depicts the count of number of participants on y-axis and number of tasks
completed on x-axis. It shows that out of 16 mobile application users, 15 of them
completed less than 5 tasks and only one is in the range of 5-10 tasks. On the other
hand, the text-based conversational interface has 3 users than have completed more
than 10 tasks individually.

50

Experiments & Results 5.3 First experiment

Table 5.1: Total number of tasks completed per interface

Domain Task type Mobile App Chatbot
Food Create 1 1
Food Enrich 12 12
Food Validate 2 1
Place Create 7 9
Place Enrich 0 34
Place Validate 1 4

Course Create 0 3
Course Enrich 0 4
Course Validate 1 2

Trash bin Create 0 0
Trash bin Enrich 0 1
Trash bin Validate 0 0

Total 24 71

Figure 5.6: Count of number of tasks completed per participant

Total time spent on executing the tasks
The time spent (TS) on performing a task is calculated by measuring the difference in
time in seconds between the start of a task and the submission of that task. The total
time spent by a participant on an interface is the summation of TS of all the tasks
completed by that participant. While the chatbot users spent a total of 7547.439
seconds on performing the tasks, participants using the mobile app spent 536.826
seconds. Figure 5.7 depicts a boxplot for each interface which illustrates the average
time spent on executing the tasks by a participant.

51

5.3 First experiment Experiments & Results

Figure 5.7: Total time spent on executing the tasks per interface

Output quality

We used accuracy as a metric and checked the output quality of the data provided by
the participants. To measure this, we calculated the accuracy of the data by measuring
the percentage of the number of correct answers to the number of answers provided.
As we do not have the ground truth, we manually annotated and inspected the data.
For subjective attributes such as route description to a place, we considered the answer
as correct if it is meaningful. In this experiment, the accuracy of the data submitted
by participants through the mobile application is 92% and through chatbot is 93.33%.
This shows that the conversational interface can provide similar output quality as the
mobile application.

Based on questionnaire

We also sent a questionnaire to the participants that have used the application. The
questionnaire consists of a total of 18 Likert scale questions with 5 responses
option(1:Strongly Agree, 5:Strongly Disagree). Out of these, 10 are to measure
Usability and the remaining 8 measure different components of User engagement.
The 8 User engagement questions are from User Engagement Scale(UES)[27] and are
used to measure User engagement in terms of Focused Attention, Perceived Usability,
Aesthetic Appeal, Reward Factor. These components are discussed in detail below.

Out of the 21 participants that have used the system(14: chatbot and 7: mobile
application), 7 have completed the questionnaire out of which 5 used the text-based
conversational interface and 2 used the mobile application. But, to ensure the quality
of the output of the questionnaire, we only considered the participants that have spent
at least 300 seconds in completing the tasks or completed more than 2 tasks using
the interface. This resulted in 2 chatbot users and 1 mobile application user from the

52

Experiments & Results 5.3 First experiment

participants that have completed the questionnaire.

Focused Attention
Focused Attention (FA) measures the feeling of absorbed in the interaction and losing
track of time. We measured FA of the participants towards the interface through the
questions: The time I spent using the app just slipped away and, The experience of
using the app was interesting

Perceived Usability
Perceived usability (PU) measures the negative affect experienced by the participant
as a result of the interaction with the application. To measure this, we asked the
participants to express their opinion on the questions: The app is confusing to use
and, I felt frustrated while using the app.

Aesthetic Appeal
Aesthetic appeal (AE) measures the attractiveness and visual appeal of the interface.
To study this metric, we investigated the view of the participants on the questions:The
app is attractive and, The app appealed to my senses

Reward Factor
If the participants feel that their time spent on the app is fruitful, they would use the
application for a longer duration. Reward factor (RF) measures this. To analyze RF,
we asked the participants if they think the time they spent on the app is worth it and if
their experience with the app is rewarding.

Table 5.2 tabulates the score of four metrics discussed above for each interface. To
calculate this score, we considered the average of the score given by the participants for
questions corresponding to the metric. It can be interpreted from these numbers that
the text-based conversational interface has better User engagement than the mobile
application in terms of FA, PU, AE, and RF.

Table 5.2: FA, PU, AE and RF scores for Mobile application and Chatbot

Metric Mobile Application Chatbot
Focused Attention 2 4
Perceived Usability 3 1.5
Aesthetic Appeal 1 4.5

Reward Factor 2 3.75

Usability
We used the following 10 questions from the System Usability Scale (SUS)[3] to
measure Usability of the interfaces.

• I would use the app frequently

• The app was easy to use

53

5.3 First experiment Experiments & Results

• I found the various features in the app were well-integrated

• I would imagine that most people would learn to use the app very quickly

• I felt very confident when I use the app

• I found the app unnecessarily complex

• I would need the support of a technical person to be able to use the app

• There is too much inconsistency in the app

• I found the app very awkward to use

• I needed to learn a lot of things before I could get going with the app

To find the final SUS score given by the participant to the interface they used, we
calculated the sum of the score contributions from each question which ranges from
0 to 4. For the first five questions, the score contribution is the scale position(1-5)
minus 1 and for the next five, the contribution is 5 minus the scale position. Finally,
we multiply the sum of the scores by 2.5 to obtain the overall value[3]. We referred [1]
to find the acceptability of the interface for the given SUS score range which is shown
in Table 5.3.

Table 5.3: Acceptability of the interface

Score Acceptability
<50 Not acceptable

50-70 Marginal
>70 Acceptable

As we only have the opinion of one participant that used the mobile application,
we consider it as it is and for the chatbot, we calculated the average score given by two
participants. In this survey, participants gave the mobile application a score of 62.5 and
90 to the chatbot. This implies that the acceptability level of the mobile application is
marginal and that of a text-based conversational interface is acceptable.

5.3.3 Qualitative analysis

To understand the reasons behind the participation pattern of the students, we also
conducted a qualitative analysis. Our main focus here is to understand Why
participants did not use/download the application?. To study this, we divided the
participants into two groups based on their participation level and asked them the
following questions.

• Participants who have not downloaded/launched the application

– What was the reason you did not download the app?

– What would have convinced you to download the app?

54

Experiments & Results 5.3 First experiment

• Participants who have downloaded/launched the application but not completed
any task

– What was the reason you did not use the app?

– What would have convinced you to use the app?

The reasons found from this survey are categorized as follows,

Unavailability of the participants

The participants of this experiment who are students from TU Delft mentioned that
they were busy with their courses and exams during the period of execution of the
experiments. Some of them stated that they were momentarily occupied when they
got the email invitation to participate in the experiment and forgot about it afterward.
Moreover, some participants also referred that their absence on the TU Delft campus
is the reason behind their inactivity.

Unsuitable tasks assigned to the participants

Some of the participants reported that they did not complete location-specific tasks
related to the Place and Trashbin domains as they were provided with tasks from the
locations they are not aware of or from the places that they do not visit often. This is
because the user model is initially empty and does not have the preferred locations of
the user. Moreover, participants who have completed a task from a particular location
stated that they were provided with the task from the same location every day which
deteriorated their interest in using the application.

5.3.4 Discussion

Through analysis of the results from the first experiment, we infer that a text-based
conversational interface could indeed be an alternative to the traditional mobile
application for performing crowdsensing tasks. The quantitative analysis of the app
usage statistics shows that the chatbot has better User Acquisition and Activation rate
than that of the mobile application. Moreover, the number of tasks performed and
time spent on executing the tasks is more for the text-based conversational interface
when compared to the mobile application. However, we observed that more than half
of the tasks completed through the chatbot are performed by three participants.

Through a quantitative analysis on the questionnaire, we also showed that the
chatbot is more desirable in terms of FA, PU, AE, RF, and Usability. But, out of 21
participants that used the system, only 7 responded to the questionnaire. To ensure
the quality, we only considered the responses from 3 of them. However, we did not
get a response from the three participants that have completed most of the tasks
through the chatbot. As we sent the questionnaire in the holiday period, we suspect
this as the reason behind less participation in the questionnaire.

We conducted a qualitative survey to study the reasons behind the participation
patterns of the participants. Results from this analysis show the unavailability of the
participants during the experiment period and assignment of unsuitable tasks to the
participants are the reasons behind the non-involvement of the participants in the

55

5.4 Second experiment Experiments & Results

experiment. However, these are experimental flaws and do not shed light on the
comparison of the interfaces in the crowdsensing system. Moreover, because of the
momentary failure of Google script that assigns the participants to an interface, we
have an imbalance in the number of participants initially assigned to the mobile
application (44) and the chatbot (36).

To understand if these limitations have influenced the results and also validate the
results from this experiment, we organized another experiment.

5.4 Second experiment

This is a within-subjects study which means each participant would try both
interfaces. To avoid any bias, we requested 10 TU Delft students who did not
participate in the first experiment to participate in the second one. We also explained
to them beforehand what is expected of them. We conducted this experiment in a
more controlled environment where in each session we interviewed a participant in
person. We provided all the participants with the same smartphone which has both
applications needed for the experiment. Each interview lasts for an hour and the
schedule is as follows:

1. 20 min: One interface

2. 8 min: Questionnaire related to that interface

3. 20 min: Another interface

4. 8 min: Questionnaire related to that interface

5. 4 min: Questionnaire comparing interfaces

We further divided these participants into two groups where one group uses the
mobile application first and the other one uses chatbot first. We asked the participants
to use the interface for 20 minutes and then asked questions regarding that interface.
This questionnaire for FA, PU, AE, RF, and usability is the same as the one used
in the first experiment. Following this, we asked them to use other interface for 20
minutes and asked them to fill in the same questionnaire for current interface. After
the participant uses both the interfaces, we gave them a questionnaire in which we ask
them to choose one of the given two interfaces to use in real life and also provide a
reason behind the choice. Further, we also asked them suggestions on what more they
expect from the selected interface.

5.4.1 Analysis

In this experiment we measured user engagement, usability of both interfaces and also
made a comparative analysis.

User engagement

To measure this, we used the same 8 UES questions from the first experiment that are
used to measure user engagement in terms of Focused Attention, Perceived Usability,

56

Experiments & Results 5.4 Second experiment

Aesthetic Appeal, and Reward Factor. Table 5.4 summarizes the average score and
standard deviation of FA, PU, AE and RF of both interfaces. For all the metrics, the
chatbot has a better score than the mobile application which confirms the analysis from
the first experiment.

Table 5.4: FA, PU, AE and RF scores for Mobile application and Chatbot

Metric Mobile Application Chatbot
Focused Attention 2.45 ±0.71 4.13 ±0.83
Perceived Usability 1.95 ±1.02 1.25 ±0.45
Aesthetic Appeal 3.6 ±0.97 4.25±0.62

Reward Factor 3.55 ±1.08 4.335 ±0.51

Usability

We used the same 10 questions from the first experiment which are referred from SUS
[3] to measure Usability of the interfaces. Figure 5.8 illustrates the SUS score given
by each participant for both interfaces. To find the average SUS score of a interface,
we calculated the mean of SUS score given by all participants. In this experiment, the
mobile application got a score of 61 and the text-based conversational interface has 85.
Which means the acceptability level of the mobile application is ’marginal’ and that of
chatbot is ’acceptable’. This validates the acceptability of usability of both interfaces
found in the first experiment.

Figure 5.8: SUS Score comparison

57

5.5 Discussion Experiments & Results

Mobile Application vs Chatbot

We also asked the participants to mention with the reason the interface they would
choose if they have it use it in everyday life. While all the 10 participants chose a text-
based conversational interface over a mobile application, one of them (P3) mentioned
he would prefer chatbot but he would not mind using the mobile application as well.
The SUS score given by this participant also supports his statement. The reasons given
by the participants are as follows,

• I have a lot of apps on my phone and do not want to download another one. I
already have Telegram installed so I prefer Chatbot.

• Chatbot is more easy to use than mobile app.

• I like the UI of chatbot

• Chatbot is simple to use

• I like chatting

• In the mobile app, I had to navigate through a number of menu options to explore
and perform tasks. But in chatbot it was really easy through messages

• I think chatbot is cool and trendy

• I am fond of trying new things so my first preference even before using them
was chatbot. Even after using them i like the way chatbot works and would not
mind using it on my phone.

• I like both of them but if I had to pick only one then I will go with chatbot

• Chatbot is more user friendly

5.4.2 Discussion

Results of this experiment show that the text-based conversational interface has better
user engagement and usability than mobile application. Moreover, participants are
more interested in chatbot and prefer it over the latter. By analysing this we found
out that the ease of use, availability on social messaging platform and human like
conversation are the main reasons behind their choice.

5.5 Discussion

The analysis of the results from the first experiment shows that the text-based
conversational interface has better user engagement than the mobile application in
terms of FA, PU, AE, and RF. Moreover, the acceptability level of the mobile
application was marginal and chatbot was acceptable. Results from the second
experiments validated and confirmed this.

As a result of both experiments, we conclude that the text-based conversational
interface can be used as an alternative to the mobile application to execute
crowdsensing tasks. A crowdsensing application with the chatbot interface has better

58

Experiments & Results 5.5 Discussion

user engagement and usability than the mobile application. However, we state the
following potential threats to the validity of our results:

Version issues: After the experiments started, we made some changes in both
applications based on the bugs reported by the participants. While the chatbot
launched through Telegram is automatically updated, we had to notify the mobile
application users about the updated version. This makes us unsure if the participants
were using the latest version of the mobile application. Moreover, we acknowledge
that despite our best effort, the quality of the mobile application interface may not
resemble the look and feel of the latest mobile applications.

Other sensors: In this experiment we designed tasks to use the Camera, GPS, and
participant as a sensor. However, we acknowledge the potential to explore tasks
involving other sensors such as accelerometer and gyroscope.

Representative sample: The participants of the experiment are students in the age
group of 18-26. This does represent the whole population. Thus, the result may not
pertain to the people in other age groups.

Input type in Chatbot: The chatbot we implemented in the crowdsensing system is a
button-based chatbot. But there is also a possibility to use other types of input such as
speech.

59

Chapter 6

Conclusion & Future work

In this chapter we conclude the research and provide an answer to our main research
question: How can a text-based conversational interface be used as an alternative to
a mobile application to execute crowdsensing tasks? in Section 6.1 and then we
discuss the future opportunities in progressing usage of text-based conversational
interfaces for crowdsensing applications in Section 6.2.

6.1 Conclusion

Recently there has been lots of research done in the field of crowdsensing especially
on incorporating crowdsensing into the real-world applications through a mobile
application. However, most of these applications are not as successful as expected.
We observed that app fatigue and non-consideration of the human factor are some of
the main reasons behind this. On the other hand, we are witnessing widespread
interest in text-based conversational agents especially because of their ability to
engage the users and their availability on popular messaging platforms. Thus, we
raised the question of the applicability of the text-based conversational interface as an
alternative to a mobile application to execute crowdsensing tasks. To answer this
question, we organized the research around the following three sub-questions:

RSQ 1: What is the state-of-art in mobile crowdsensing?
From the literature, we studied different components of crowdsensing and also the
evolution of crowdsensing techniques from the usage of an add-on sensor device to
the smartphone as a sensor. However, previous works have not considered User
engagement, thus limiting the capability of the crowdsensing application to attract
and retain users. We propose the usage of a text-based conversational agent to
overcome the current limitations of crowdsensing applications. Inspired by this study,
we designed a crowdsensing system that supports both the mobile application and
text-based conversational interface. In this thesis, our primary focus is towards the
exploration of the usage of a conversational interface to execute crowdsensing tasks.
We implemented, deployed this crowdsensing system and used it for the experiments
we designed.

61

6.2 Future work Conclusion & Future work

RSQ 2: How can a text-based conversational interface be designed to provide
different elements and features of a traditional mobile application?
To study the comparison between the usage of Mobile and Chatbot interface to
execute crowdsensing tasks, we designed and implemented the crowdsensing system
that supports both interfaces. To be able to perform similar tasks in both interfaces,
we developed a mobile application according to the state-of-the-art research and
designed and implemented a text-based conversational interface by mapping various
features and elements of the traditional mobile application.

RSQ 3: How does the conversational interface affect user engagement and
usability in a crowdsensing application?
To study the differences between the two interfaces in terms of user engagement and
usability, we conducted two experiments in the TU Delft campus with the students as
participants.

In the first experiment, we organized a between-subjects study with 80
participants. We measured user engagement and usability of both the interfaces based
on the application usage statistics and a questionnaire in a quantitative fashion. The
results show that the text-based conversational interface has better user engagement
than the mobile application in terms of user acquisition, activation rate, total time
spent on performing tasks, the total number of tasks executed, focused attention,
perceived usability, aesthetic appeal, and reward factor. Moreover, while the mobile
application received system usability (SUS) score of 62.5, chatbot got 90. This
implies that the acceptability level of the mobile application is marginal and that of
the text-based conversational interface is acceptable. Further, to understand the
reasons behind the participation patterns, we conducted a qualitative survey. Analysis
of these results revealed that the main reasons behind the non-participation are the
unavailability of the students and the assignment of inappropriate tasks. But these are
experimental flaws and do not unveil much about the two interfaces in the
crowdsensing system.

To deepen our analysis and validate the results of the first experiment, we
organized a second experiment in a controlled environment with 10 participants.
Results from this experiment show that all the participants unanimously expressed
their preference in using chatbot over the mobile application to perform crowdsensing
tasks. In this experiment, the mobile application received a SUS score of 61 and the
text-based conversational interface got 85, which means the acceptability level of the
mobile application is ’marginal’ and that of the chatbot is ’acceptable’.

As a result of both experiments, we conclude that the text-based conversational
interface can be used as an alternative to the mobile application to execute
crowdsensing tasks and a crowdsensing application with the chatbot interface is more
engaging than the one with the mobile application.

6.2 Future work

In this research, we have shown that the conversational interface can be used as an
alternative to the mobile application to execute crowdsensing tasks and that it has
better user engagement and usability than the latter. Moreover, the participants

62

Conclusion & Future work 6.2 Future work

preferred chatbot over the mobile application. The following list outlines potential
future directions for this research,

• Chatbot with NLP: To implement the text-based conversational interface, we
used response buttons for the users to interact with the chatbot. However, this
decreases the user freedom as the conversation is more guided. A chatbot with
NLP gives the user more freedom and makes the conversation look more natural.

• More tasks: We designed simple tasks in this research based on the location
and participants of the experiment. To further enhance the application, other
task types can also be explored.

• Input type for the conversational agent: In this research, we implemented a
button-based chatbot. However, we see the opportunity to use other types of
input as well. For example, it can be a voice-enabled chatbot where the users
can interact with the application through speech.

• Other complex sensors: For the tasks designed in this experiment, we used
Camera, GPS, and participant as a sensor. Current smartphones are also
equipped with other sensors such as Accelerometer, Gyroscope, Barometer,
Magnetometer, etc.,

63

Bibliography

[1] Aaron Bangor, Philip Kortum, and James Miller. Determining what individual
sus scores mean: Adding an adjective rating scale. Journal of usability studies,
4(3):114–123, 2009.

[2] Petter Bae Brandtzaeg and Asbjørn Følstad. Why people use chatbots. In
International Conference on Internet Science, pages 377–392. Springer, 2017.

[3] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in
industry, 189(194):4–7, 1996.

[4] CENS/UCLA. Participatory sensing / urban sensing projects.

[5] Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee,
Michael Beenen, Andrew Leaver-Fay, David Baker, Zoran Popović, et al.
Predicting protein structures with a multiplayer online game. Nature,
466(7307):756, 2010.

[6] Rodrigo De Oliveira and Nuria Oliver. Triplebeat: enhancing exercise
performance with persuasion. In Proceedings of the 10th international
conference on Human computer interaction with mobile devices and services,
pages 255–264. ACM, 2008.

[7] Prabal Dutta, Paul M Aoki, Neil Kumar, Alan Mainwaring, Chris Myers, Wesley
Willett, and Allison Woodruff. Common sense: participatory urban sensing using
a network of handheld air quality monitors. In Proceedings of the 7th ACM
conference on embedded networked sensor systems, pages 349–350. ACM, 2009.

[8] Raghu K Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: current state and
future challenges. IEEE Communications Magazine, 49(11):32–39, 2011.

[9] Lin Gao, Fen Hou, and Jianwei Huang. Providing long-term participation
incentive in participatory sensing. In 2015 IEEE Conference on Computer
Communications (INFOCOM), pages 2803–2811. IEEE, 2015.

[10] Ting-Hao Kenneth Huang, Walter S Lasecki, and Jeffrey P Bigham. Guardian:
A crowd-powered spoken dialog system for web apis. In Third AAAI conference
on human computation and crowdsourcing, 2015.

65

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko,
Allen Miu, Eugene Shih, Hari Balakrishnan, and Samuel Madden. Cartel:
a distributed mobile sensor computing system. In Proceedings of the 4th
international conference on Embedded networked sensor systems, pages 125–
138. ACM, 2006.

[12] Business Insider intelligence. Messaging apps are now bigger than social
networks, 2015.

[13] Howe. J. The rise of crowdsourcing, 2006.

[14] Sunyoung Kim, Christine Robson, Thomas Zimmerman, Jeffrey Pierce, and
Eben M Haber. Creek watch: pairing usefulness and usability for successful
citizen science. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 2125–2134. ACM, 2011.

[15] Nicholas D Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem
Choudhury, and Andrew T Campbell. A survey of mobile phone sensing. IEEE
Communications magazine, 48(9):140–150, 2010.

[16] Walter S Lasecki, Rachel Wesley, Jeffrey Nichols, Anand Kulkarni, James F
Allen, and Jeffrey P Bigham. Chorus: a crowd-powered conversational assistant.
In Proceedings of the 26th annual ACM symposium on User interface software
and technology, pages 151–162. ACM, 2013.

[17] Xulei Liang, Rong Ding, Mengxiang Lin, Lei Li, Xingchi Li, and Song Lu. Ci-
bot: A hybrid chatbot enhanced by crowdsourcing. In Asia-Pacific Web (APWeb)
and Web-Age Information Management (WAIM) Joint Conference on Web and
Big Data, pages 195–203. Springer, 2017.

[18] Miguel Angel Luengo-Oroz, Asier Arranz, and John Frean. Crowdsourcing
malaria parasite quantification: an online game for analyzing images of infected
thick blood smears. Journal of medical Internet research, 14(6):e167, 2012.

[19] Suhas Mathur, Tong Jin, Nikhil Kasturirangan, Janani Chandrasekaran, Wenzhi
Xue, Marco Gruteser, and Wade Trappe. Parknet: drive-by sensing of road-side
parking statistics. In Proceedings of the 8th international conference on Mobile
systems, applications, and services, pages 123–136. ACM, 2010.

[20] Sam Mavandadi, Stoyan Dimitrov, Steve Feng, Frank Yu, Uzair Sikora, Oguzhan
Yaglidere, Swati Padmanabhan, Karin Nielsen, and Aydogan Ozcan. Distributed
medical image analysis and diagnosis through crowd-sourced games: a malaria
case study. PloS one, 7(5):e37245, 2012.

[21] Panagiotis Mavridis, Owen Huang, Sihang Qiu, Ujwal Gadiraju, and Alessandro
Bozzon. Chatterbox: Conversational interfaces for microtask crowdsourcing. In
Proceedings of the 27th ACM Conference on User Modeling, Adaptation and
Personalization, pages 243–251. ACM, 2019.

66

BIBLIOGRAPHY BIBLIOGRAPHY

[22] Emiliano Miluzzo, Nicholas D Lane, Kristóf Fodor, Ronald Peterson, Hong Lu,
Mirco Musolesi, Shane B Eisenman, Xiao Zheng, and Andrew T Campbell.
Sensing meets mobile social networks: the design, implementation and
evaluation of the cenceme application. In Proceedings of the 6th ACM conference
on Embedded network sensor systems, pages 337–350. ACM, 2008.

[23] Prashanth Mohan, Venkata N Padmanabhan, and Ramachandran Ramjee.
Nericell: rich monitoring of road and traffic conditions using mobile
smartphones. In Proceedings of the 6th ACM conference on Embedded network
sensor systems, pages 323–336. ACM, 2008.

[24] Min Mun, Sasank Reddy, Katie Shilton, Nathan Yau, Jeff Burke, Deborah Estrin,
Mark Hansen, Eric Howard, Ruth West, and Péter Boda. Peir, the personal
environmental impact report, as a platform for participatory sensing systems
research. In Proceedings of the 7th international conference on Mobile systems,
applications, and services, pages 55–68. ACM, 2009.

[25] Nielsen. So many apps, so much more time for entertainment, 2015.

[26] Robert Ighodaro Ogie. Adopting incentive mechanisms for large-scale
participation in mobile crowdsensing: from literature review to a conceptual
framework. Human-centric Computing and Information Sciences, 6(1):24, 2016.

[27] Heather L OâBrien, Paul Cairns, and Mark Hall. A practical approach to
measuring user engagement with the refined user engagement scale (ues) and
new ues short form. International Journal of Human-Computer Studies, 112:28–
39, 2018.

[28] Ming-Zher Poh, Kyunghee Kim, Andrew D Goessling, Nicholas C Swenson, and
Rosalind W Picard. Heartphones: Sensor earphones and mobile application for
non-obtrusive health monitoring. In 2009 International Symposium on Wearable
Computers, pages 153–154. Citeseer, 2009.

[29] M Jordan Raddick, Georgia Bracey, Pamela L Gay, Chris J Lintott, Phil
Murray, Kevin Schawinski, Alexander S Szalay, and Jan Vandenberg. Galaxy
zoo: Exploring the motivations of citizen science volunteers. arXiv preprint
arXiv:0909.2925, 2009.

[30] Sasank Reddy, Andrew Parker, Josh Hyman, Jeff Burke, Deborah Estrin, and
Mark Hansen. Image browsing, processing, and clustering for participatory
sensing: lessons from a dietsense prototype. In Proceedings of the 4th workshop
on Embedded networked sensors, pages 13–17. ACM, 2007.

[31] Jonathan Silvertown. A new dawn for citizen science. Trends in ecology &
evolution, 24(9):467–471, 2009.

[32] Akash Singh, Faizy Ahsan, Mathieu Blanchette, and Jérôme Waldispühl. Lessons
from an online massive genomics computer game. In Fifth AAAI Conference on
Human Computation and Crowdsourcing, 2017.

67

BIBLIOGRAPHY BIBLIOGRAPHY

[33] Michael Von Kaenel, Philipp Sommer, and Roger Wattenhofer. Ikarus: large-
scale participatory sensing at high altitudes. In Proceedings of the 12th Workshop
on Mobile Computing Systems and Applications, pages 63–68. ACM, 2011.

68

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Research questions
	Contributions
	Thesis outline

	Literature study
	Types of crowdsensing
	Crowdsensing Applications
	Smartphone as a sensor
	Crowdsourced conversational agent
	Summary

	System design
	System requirements
	Crowdsensing system framework
	Design of Text-based conversational interface
	Elements and Features of mobile application interface
	Workflow of Crowdsensing System

	System implementation
	Task description
	Database
	Mobile application
	Text-based conversational interface
	Crowd modules API

	Experiments & Results
	Goal
	Independent and Dependent variables
	First experiment
	Second experiment
	Discussion

	Conclusion & Future work
	Conclusion
	Future work

	Bibliography

