
Towards Diffusion Weighted MR for Evaluation
of Rectal Tumours on an MR-Linac

Thomas Weststrate

In partial fulfilment of the requirements for the degree of
Master of Science

at Delft University of Technology,
to be defended publicly on 31 October 2022

Faculty: Mechanical, Maritime and Materials Engineering
Department: Biomedical Engineering
Programme: Medical Physics

Mentors / Supervisors: Casper Beijst, UMC Utrecht
Tim Schakel, UMC Utrecht
Marco van Vulpen, TU Delft

Graduation committee: Marco van Vulpen, TU Delft
Marlies Goorden, TU Delft
Sebastian Weingärtner, TU Delft
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Abstract—Purpose: Pre- and post-treatment MRI based Diffusion Weighted Imaging (DWI) has shown to be an effective predictor and
indicator of treatment response in cancer. However, clinical applications of the Apparent Diffusion Coefficient (ADC) requires sufficient
precision; this can be assessed with repeatability studies. Therefore, the purpose of this study was to assess the repeatability of ADC
measurements on an MR-Linac for patients with locally advanced rectal cancer (LARC). Additionally, the relative change in ADC during
treatment was compared against the repeatability.

Methods: For 17 patients, DWI was performed once on 3T MRI during pre-treatment, and twice on an 1.5T MR-Linac during each
treatment fraction. Manual delineations of the Gross Tumour Volume (GTV) were created by the author. In addition two semi-automatic
delineation methods were implemented, which used; a registration pipeline to propagate T2 delineations; a geometric distortion
correction algorithm to correct for DWI susceptibility artefacts. Based on visual inspection the most accurate and consistent delineations
were used to calculate the ADC; Bland-Altman repeatability coefficient (RC), within subject coefficient of variation (wCV), and the
intraclass correlation coefficient (ICC). Lastly, the relative change in mean and median tumour ADC was compared against the RC.

Results: Manual delineations were determined to have the highest agreement with ADC tumour location and were used in subsequent
calculations. The mean and median tumour ADC wCV was 7.6% (CI95:5.5-9.2%) and 8.2% (CI95:5.9-9.9%) respectively, which
corresponds with a RC of 21.0% (CI95:15.1-25.6%) and 22.7% (CI95:16.3-27.4%). The reliability of the measured data was good, with
an ICC of 0.81 (CI95:0.72-0.87). In 6 out of 17 patients the relative change in ADC exceeded the RC at some point during treatment,
which suggest a potential for future clinical applications.

Conclusion: Despite the low precision of rectal cancer ADC measurements, daily DWI imaging on MR-Linac has been shown to be
viable for clinical applications in a subset of patients whom show significant ADC changes during treatment. Further studies are
required to determine whether the measured ADC repeatability allows for clinically relevant observations.

Keywords—Diffusion weighted imaging, repeatability, rectum, MR-Linac

✦

1 INTRODUCTION

COLORECTAL cancer (CRC) is the colloquial term for
the combination of colon, rectum and anal cancers.

It is the third most commonly diagnosed form of cancer
globally with an estimated 1.9 million cases in 2020, and
is expected to grow to 3.2 million by 2040 [1]. CRC cases
are divided into approximately 62% Colon, 38% rectum and
<1% anal cancers [2]. CRC is the second leading cause of
cancer related deaths in 2020 with 935.000 deaths [3] and
has an overall 5-year survival rate of 65%. [4] Rectal cancer
specifically is the 10th cause of cancer deaths [1] and has a
overall 5-year survival rate of 67% [4].

Current standard treatment of locally advanced rectal
cancer (LARC) consists of neoadjuvant chemoradiotherapy
(NCRT), performed using cone-beam CT (CBCT) image
guidance, followed by total mesorectal excision surgery
[5]. In order to reduce the mortality rate and/or improve
the quality of life for rectal cancer patients organ-sparing
adaptive treatment is becoming increasingly common. The
current NCRT adaptive treatment method typically uses
CBCT image-guided RT prior to treatment combined with
a library of plans strategy to reduce PTV margins by on
average 15% [6].

In order to increase the survival rate and/or the quality
of life of LARC patients, development of new treatment
techniques has been gaining increasing interest in recent
years. Particularly the integration of adaptive treatment
plans, in which the treatment will be adapted to the specific
patient and their response to the received treatment.

One promising method of improving the treatment of
LARC patients is to adapt, or postpone, the surgery de-
pending on the individual responses of the patients to the

NCRT. Previous research by Sanghera et al. has shown
that NCRT treatment response differs per patients, ranging
from no response to a clinically complete response in 10
to 20 % of patients [7]. Adapting the treatment based on
the NCRT treatment response could result in an organ
sparing treatment for patients who respond well, e.g. Maas
et al. showed that adapting a wait-and-see strategy with
strict selection criteria for patients with a complete response
resulted in equal results compared to patients with complete
pathological response following total mesorectal excision
surgery [8].

In order to use this method, first an accurate, and ideally
non-invasive, method of determining patient response must
be created. One method which seems to be able to fit these
criteria is through the use of Diffusion Weighted Imaging
(DWI) on MRI scanners. DWI is a functional MRI sequence
which is used to measure the diffusion of hydrogen atoms.
DWI allows for the acquisition of high-contrast images be-
tween the dense cellular cancerous tissue and surrounding
healthy tissue, which are beneficial in tumour delineation
[9]. In addition, by combining multiple DWI scans taken
at different levels of diffusion sensitivity, a semi-quantized
diffusion parameter can be calculated, which allows for
more accurate assessment of diffusion properties. The most
commonly used DWI diffusion parameter is the apparent
diffusion coefficient (ADC).

Studies have found that pre-operative ADC tumour val-
ues and their change as a result of NCRT can be used as
an early predictor of NCRT treatment response [10], and
are a more accurate indicator of pathological response as
compared to volumetric changes. [11] With the use of these
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early predictions, not just the post-NCRT treatment can be
adapted, but similarly the dosage during NCRT can be
either decreased in order to spare tissue in bad responders
or increased in moderate responders to increase the chance
of a clinically complete response [12].

Another method which is used to improve cancer treat-
ment makes use of the recently developed MR-Linac sys-
tems to perform online MRI-guided radiotherapy (MRgRT).
The MR-Linac is a combined imaging and treatment system
which consists of a MRI and a linear accelerator. With MR-
gRT, the anatomy can be visualised daily with high quality
MR images directly prior to treatment. These can be used
to adapt the treatment plan based on anatomical changes
such as bowel and bladder filling. Because of the higher soft
tissue contrast of MRI compared to CBCT, MRgRT allows
for better visualisation of the tumour and lymph nodes, thus
improving dose margins, lowering radiation toxicity in the
surrounding healthy tissue [13]. Furthermore, with MRgRT
on MR-Linac allows for imaging to be performed while
the dose is being delivered by the linear accelerator. As a
result the system can be used to account for motion during
treatment and similarly allows for smaller target volumes,
again sparing more of the surrounding healthy tissues.

With the MR component of the MR-Linac it is possible
to perform DWI scanning during treatment. With this func-
tionality, treatment on MR-Linac would enable the acquisi-
tion of daily DWI scans, which could potentially provide
information on treatment response on a daily basis. Yet,
because of the structure of the MR-Linac, it is not known
if the DWI measurement will provide proficiently accurate
readings in order to use them for said objectives.

Any measurements taken on a MRI will include an
amount of error, for example from noise, which causes the
measured value to differ from the true value. An umbrella
term which can be used to quantify the effects of measure-
ment errors is the repeatability. Specifically Bland-Altman
repeatability which is defined as the maximum error from
the mean value in 95% of measurements [14]. In order for
the DWI derived values to be used as a quantitative imaging
biomarker for evaluation and prediction, it is imperative for
the repeatability to be less than the variance of the values
on which said conclusions are made [15]. If this would not
be the case, any conclusion drawn from the data could be
caused by the measurement error and not the actual patient
response.

In order for the MR-Linac to integrate the linear acceler-
ator with the MR scanner, the design of both systems had to
be altered. For the MR scanner this means creating a gap for
the radiation beam generated by the Linac to pass through.
This results in a split gradient design, which impacts the
gradient performance and can negatively impact image
quality [16]. As the quality of DWI acquisitions benefit
from state of the art hardware, e.g. high fidelity magnetic
field gradients, the quality of DWI on MR-Linac systems
is worse compared to clinical MRI systems. As a result the
repeatability error on the MR-Linac is expected to exceed
those measured on clinical MRI systems.

The aim of this paper is therefore to determine whether
DWI repeatability performance on the MR-Linac during
short-term NCRT of LARC patients is sufficient to use ADC
values as a quantitative imaging biomarker for treatment

evaluation and prediction. To achieve this aim, first two
semi-automatic delineation methods, which rely on a reg-
istration and geometric correction workflow respectively,
will be implemented in addition to standard manual de-
lineations. The goal of these being, to determine whether
these could improve the repeatability by removing human
errors while also reducing treatment workload. Next, the
ADC repeatability of rectal tumours on the MR-Linac will
be calculated and compared against the change in ADC as
a result of treatment in order to determine the effectiveness
of the ADC values as a quantitative imaging biomarker. In
addition a literature review about the effects of scan param-
eters on DWI repeatability will be performed. Based on the
findings of the review several recommended alterations to
the scanning sequence, which have been shown to improve
repeatability performance, will be suggested.

2 THEORY

2.1 Diffusion Weighted Imaging
MRI sequences are typically divided into two different
categories. These are, anatomical sequences which create
an image of the structures in the measured subject, and
functional sequences which sensitize the measured signal
to a physiological process. Diffusion Weighted Imaging
(DWI) is a functional sequence which is used to sensitize
the scan towards the diffusion of hydrogen atoms in the
subject. DWI performs well in the detection and evaluation
of tumorous tissue. This is because the rapid cell division
typical in tumorous tissues lead to an increased level of
diffusion restriction in the inter and intra cellular spaces, an
anisotropic diffusion, and is often associated with increased
vasculature, each of which increases the contrast with the
surrounding tissues in DWI.

DWI sensitizes the MRI signal to the diffusion in the
subject through the use of a pair of identical gradients,
symmetrically placed around a 180◦ refocusing pulse, a
schematic illustration of and DWI sequence is shown in
figure 1. Considering an example in which no diffusion
took place the DWI sequence would first cause the atoms
within a voxel to precess depending on the strength of
the gradient in the voxel. Next, the atoms would flip 180◦

from the RF pulse, and finally experience a second gradient
field, identical to the first, which would precess the atoms
depending on the gradient strength in the voxel. In this
example, without diffusion, the second gradient cancels out
the phase drift created during the first gradient. As such
the phase of the atoms will be re-aligned, subsequently
increasing the signal strength. By introducing diffusion into
the system the precession of the atoms during the second
gradient will no longer be identical to that in the first,
as a result the phase alignment between the atoms in not
maintained, resulting in an attenuated signal strength [17],
[18].

The DWI sequence can be adapted to be more or less
sensitive to the diffusion by changing the gradient strength
G, the interval between the gradients ∆ and the duration
of the gradients δ. The diffusion sensitivity is given by the
b-value and is calculated with the previously mentioned
variables, and the gyro-magnetic ratio γ (for hydrogen γ
= 42.58 MHz/T), the equation for a square gradient pulse is:
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Fig. 1: Schematic representation of a DWI sequence. The
sequence start with a 90◦ pulse, then is followed by diffusion
gradients shown on the bottom line applied on around a
180◦ pulse, and end with a signal acquisition block (Acq).
In the figure TE is the echo time, G is the amplitude of the
diffusion gradients, δ is their duration and ∆ is the delay
time between them [19].

b = γ2G2δ2
(
∆− δ

3

)
(1)

2.2 Apparent Diffusion Coefficient
The signal which is obtained from a DWI scan is in principle
that of an adapted T2 scan in which the signal strength has
been attenuated as a result of diffusion. For this reason the
DWI signal is not solely dependent on the diffusion, and can
therefor not be used in comparing diffusion across multiple
scans. By combining multiple DWI scans at different levels
of diffusion sensitivity it is possible to quantify the diffusion.
The most common method of quantifying the DWI signal is
through the use of the Apparent Diffusion Coefficient (ADC)
which is calculated by fitting the data from measurements
taken at multiple b-values to the following equation:

S(b) = S0 · e−ADC·b (2)

It should be noted that the processes of diffusion which
take place in the human body are far more complex than
those expressed in the function which is used to calculate the
ADC. As such the ADC which is calculated with equation
2 does not reflect the true diffusivity, but is also influenced
by other factors, e.g. the perfusion of fluids in the blood
vessels.

2.3 Geometric Correction Algorithms
The most commonly used readout methods used for DWI
is single-shot echo planar imaging (SS-EPI) as it allows for
fast acquisition and low sensitivity to motion artefacts. [21]
However, one large drawback of this method is that it is
highly sensitive to geometric distortions in the phase en-
coding direction, caused by magnetic susceptibility artefacts
mainly found on tissue and air boundaries. [22]

In order to correct for these errors Jezzard et al. proposed
a geometric correction algorithm which measures the field
imhomogeneities from a B0 field map and uses it to unwrap
the distorted MRI images [20].

In short, the method uses a double-echo gradient re-
called echo phase map, to calculate the field inhomo-
geneities using equation 3, in which ∆B0 denotes the field
homogeneity, γ the gyromagnetic ratio, ∆ϕ the phase evo-
lution, and ∆TE the echo time difference.

∆B0(x, y, z) =
1

2πγ ·∆Te
· ϕ(x, y, z) (3)

Next, a third order 2D polynomial fit is applied onto the
field inhomogeneities ∆B0, with the fitted field map set to
approach zero outside of the subject. Finally this deforma-
tion field map is converted into a pixel shift map which can
be applied to correct for the geometric distortions. The pixel
shift map is calculated using the equation below, with N
pixels in the phase encoding direction, DW the dwell time,
and τramp the ramp time of the switched gradients [20].

∆r = γ∆B0(x, y, z) ·N(2τramp +N ·DW ) (4)

In figure 2 an example of the geometric distortion correc-
tion algorithm applied on a EPI imaged phantom is shown.

2.4 Registration
In the medical field images taken at either different mo-
ments and or systems are often used together. One problem
that arises when combining these images is that often the
subject on the images are not aligned, making direct com-
parison difficult. A popular solution to this problem is the
use of image registration algorithms to realign the images,
an example of registration between an CT and MRI scan is
shown in figure 3.

Image registration algorithms consist of three main com-
ponents which together allow them to determine an optimal
transformation which aligns a moving image towards a
fixed target image. The first part of these algorithms are the
transformation models which are used to deform the mov-
ing image, depending on the model used the deformation

Fig. 2: The correct structure of the subject (a) is distorted
because of EPI imaging. By applying the correct pixel shift
map, which is based on the calculated field inhomogeneity
(c), to the distorted image the original structure can be
recovered (d) [20].
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Fig. 3: Image registration example between a CT (red) and
MRI scan (green) shown on the left prior to registration,
and on the right post registration. After registration the two
scans are aligned [23].

can range from using a combination of translation, scaling
and rotation matrix’s to full non-rigid deformations which
can locally rerasterize the pixels. The second component of
the algorithm is the evaluation function which gives a score
to the current alignment. These functions are commonly
known as loss functions. Two of the most popular loss
functions are the least squares, which calculates the squared
difference between all pixel values in the image, and the
mutual information function which calculates the amount
of joint information between the two images, i.e. how much
information does knowing the fixed image give about the
moving image. The final component of the registration
algorithm is the optimisation function, which is responsi-
ble for speeding up the calculation by iteratively moving
towards a better solution instead of attempting all possible
deformations and selecting the best result.

3 LITERATURE STUDY

With the increased interest in the application of DWI
derived diffusion parameters as quantitative imaging
biomarkers for the prediction and evaluation of treatment
response of cancer patients, more studies have been per-
formed on the repeatability of said parameters so as to de-
termine their validity as a biomarker. This research has been
focused on both measuring the repeatability within different
structures across the human body, as well as gaining a better
understanding of how the repeatability changes depending
on different scanning parameters.

In order to achieve a better understanding of how the
DWI repeatability is influenced an overview of repeatability
metrics across different structures was created, as well as an
analysis of how several MRI procedures affect the repeata-
bility.

3.1 Paper selection
The papers used in this study were acquired by scanning the
MEDLINE database. Two different queries were performed
with the search terms, ”DWI, ADC, repeatability” and ”DWI,
ADC, repeatability, rectal”, these resulted in 129 and 8 papers
respectively. Of these papers the title and abstract were
examined to confirm they measured the DWI repeatability,
those which did not were excluded from the study. After the

papers were filtered for relevancy 48 and 4 papers remained
from the two queries for a total of 52 papers.

3.2 Overview
In recent years research on DWI has become increasingly
popular, and has been shown to be beneficial in applications
such as the early prediction and evaluation of treatment
response of cancers [12], [24], [25], [26]. These methods
rely on using the derived diffusion parameters from the
DWI measurement as a quantitative imaging biomarker.
However, before DWI can be used as a biomarker for clinical
applications the repeatability and reproducibility of DWI
measurements need to be validated [27]. The repeatability
and reproducibility represent the short and long term error
from repeated measurement respectively, and are vital to de-
termine whether a change in the measured value should be
considered as significant. Research on these metric is limited
with only a small portion of publications on DWI focus on
the measurement and improvement on repeatability [27].

In table 1 an overview of the measured repeatability of
the studies included in this review are given. The statis-
tics which are used to represent the repeatability across
these studies vary, but can be separated into two different
categories. The first group of statistics which are used are
from Bland-Altman repeatability analysis and consist of, the
Coefficient of Variation (CV), the within-subject Coefficient
of Variation (wCV), the Repeatability Coefficient (RC) and
the Limits of Agreement (LoA). The CV and wCV are used
to express the relative variation in the measurements on
the mean of all measurements, the difference being that
the wCV is based on the assumed variation within a single
set of measurements as opposed to the CV which uses the
variation of the whole data set. When two measurements
sets are used to calculate the CV and wCV they are related
as such, CV =

√
2 · wCV . The RC and LoA denote the

relative and absolute deviation from the mean measurement
within which 95%1 of all measurements are expected to
lie. These values are calculated on the assumption that
the errors are normally distributed around the true value.
The RC is calculated with RC = CV · 1.96. The second
group of statistics are reliability metrics, and are used to
ascertain the reliability of a dataset, i.e. in how much is
the variance found in the dataset likely caused by real
data. The metrics which have been used in the included
papers are the Cohen’s kappa (κ), the Agreement Index
(AI), the Concordance Correlation Coefficient (CCC), and
most commonly the Intraclass Correlation Coefficient (ICC).
The ICC can be used to calculate both the intra-rater and
inter-rater reliability, which represent the reliability from
a single rater across exams and the reliability of multiple
raters within the same exam. The ICC which was reported in
table 1 is the inter-rater reliability. Following the guidelines
of Koo et al. The ICC results can be interpreted as poor,
moderate, good and excellent for the values 0-0.5, 0.5-0.75,
0.75-0.9, and >0.9 respectively [74].

In order to better compare the results across the papers
the repeatability metrics were, where possible, converted to
the wCV and summarised in table 2, showing the minimum

1. 95% is the most commonly used threshold for the repeatability,
however other threshold can similarly be used
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and maximum wCV within different structures of the hu-
man body.

From the results shown in table 2 it is clear that both
across as well as within the different structures of the human
body there exist large variances of reported repeatability
levels, e.g. the repeatability for ADC measurements in the
brain varied between 1.1% to 4.2%, while those in the
pancreas were between 6.0% and 16.6%.

Similarly of note is the large variance in measured re-
peatability not just across but also within certain studied. In
said studies the repeatability metric showed large variations
based on certain changes applied on the DWI sequence,
suggesting a high sensitivity of DWI performance towards
certain operating conditions.

3.3 Factors affecting repeatability

From the selected papers nine different influences on DWI
repeatability were explored. These can be divided into two

categories, namely those associated with the measurement
process and those related to the post-processing. The in-
fluences related to the measurement process which were
found are; Selection of b-values used to determine quantized
diffusion value, type of readout sequence used, magnetic
field strength, inclusion of forms of (cardio)respiratory trig-
gering, fat suppression methods and lastly DWI on an MR-
Linac. The influences related to the post-processing are;
Region of Interest type and size, DWI Diffusion parameters,
and finally diffusion fitting methods.

3.3.1 b-values

To calculate the diffusion parameters which are used to
quantify the diffusion in the body a combination of mea-
surements, taken at different b-values need to be fitted to
the equation associated to the diffusion parameter, such as
the mono-exponentially descending equation used for ADC
calculations, given in equation 2.

TABLE 1: DWI repeatability studies

Author Date patients Repeatability metrics

Brain

Bisdas et al. [28] 2013 22 ADC: CV=5.9%, D: CV=7.5% κ = 0.70

Zakariak et al. [29] 2014 12 ADC: LoA≈ ±0.09-0.12**
Jerome et al. [30] 2017 17 ADC: CV=2.4-4.4%, D: CV=2.0-3.0%, DDC: CV=3.1-5.0%, Dk :

CV=4.9-7.0%
Lawrence et al. [31] 2021 59 ADC: wCV=0.9-1.1%
Michoux et al. [32] 2021 24* ADC: RC=7.5%

Breast

Aliu et al. [33] 2014 19 ADC: CV=11%
Mürtz et al. [34] 2014 25 ADC: CV=2.2-9.9%
Spick et al. [35] 2016 40 ADC: CV=3.2-8.3%, ICC = 0.92-0.99
Newitt et al. [36] 2019 89 ADC: wCV=4.8%, ICC=0.97, AI=0.83
Jerome et al. [37] 2021 20 ADC: CV=9.4%, D: CV=4.7-7.3%, DDC: CV=9.5%
Granzier et al. [38] 2021 11* ADC: CCC > 0.9 for 80% of radiomic features

Eyes
Lecler et al. [39] 2017 11* ADC: CV=12-33%, ICC=0.54-0.96, D: CV=14-29%, ICC=0.59-0.94
Zhou et al. [40] 2022 11* ADC: RC=21.0-48.7%, ICC=0.38-0.92

Head & Neck

Hoang et al. [41] 2014 16 ADC: CV=7.4%, ICC=0.86
Yonggang et al. [42] 2015 10* ADC: wCV=4.9-17.3%, ICC=0.52-0.98
Song et al. [43] 2020 43* ADC: LoA=[-0.60-0.40]-[-0.26-0.26]
Koopman et al. [44] 2021 10* ADC: wCV≈10%**, D: wCV≈10-25%**

Intestines Alyami et al. [45] 2021 10* ADC: CV=5%, ICC=0.76, D: CV=10%, ICC=0.86

Kidney
M.Y.K. Bilgili [46] 2012 11* ADC: CV=10.4-14.7%
Michoux et al. [32] 2021 24* ADC: RC=14-17%

liver

M.Y.K. Bilgili [46] 2012 11* ADC: CV=7.3-10.6%
Larsen et al. [47] 2013 12+10* ADC: LoA=±0.1−±0.25

Lee et al. [48] 2015 12* ADC: wCV=2.3-7.0%, D: wCV=3.2-16.2%
Li et al. [49] 2017 12* ADC: CV=7.2-14.9%, D: CV=6.5-13.7%
Xiang et al. [50] 2028 18* ADC: RC=10.1-10.3% D: RC=16.5-19.8%
Pieper et al. [51] 2019 24 ADC: CV=6.9-8.1%, CCC=0.85-0.91, D: CV=7.5-9.5%, CCC=0.77-

0.92
Pathak et al. [52] 2019 8 ADC: CV=3.2-9.8%
Pei et al. [53] 2020 23* ADC: LoA=±0.010−±0.035, ICC = 0.74− 0.91

Xie et al. [54] 2020 22* ADC: LoA=±17.3−±40.3, ICC = 0.74− 0.92

Michoux et al. [32] 2021 24* ADC: RC=24%
Sedlaczek et al. [55] 2022 21 ADC: RC=17%

Continue on the next page
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TABLE 1: DWI repeatability studies (cont.)

Author Date patients Repeatability metrics

Lung

Weller et al. [56] 2017 23 ADC: wCV=3.9-9.6%, ICC=0.90-0.98
Jiang et al. [57] 2017 18 ADC: RC=15.2-20.2%, ICC=0.72-0.99
Swerkersson et al. [58] 2018 50 ADC: wCV=8.3-16.5%, D: wCV=7.8-14.8
Wan et al. [59] 2019 15 ADC: CV=4.8-16.6%, ICC=0.95-0.98, D: CV=6.1-19.5%, ICC=0.92-

0.98

Pancreas
Ma et al. [60] 2017 64 ADC: CV=10.1-15.9%, ICC=0.59-0.84
Klaassen et al. [61] 2018 14 ADC: wCV=7.7%, D: wCV=6.7-10.0%, DDC: wCV=8.0%
Chen et al. [62] 2021 26* ADC: CV=6-9%, ICC=0.52-0.81

Phantom

Malyarenko et al. [63] 2013 - ADC: 2-STD=2.8-11.3%
Yonggang et al. [42] 2015 - ADC: wCV=0.51-0.54%, ICC=0.89-0.99
Belli et al. [64] 2016 - ADC: max deviation=<5%
Weiss et al. [65] 2017 - ADC: CV=0.4-6.6%
Michoux et al. [32] 2021 - ADC: CV=0.2-1.2%

Prostate

Intven et al. [66] 2013 18 ADC: RC=5.4%
Weiss et al. [65] 2015 16+10* ADC: CV=11.7-14.0%
Tamada et al. [67] 2016 56 ADC: RC=17.1-22.2%
Michoux et al. [32] 2017 24 ADC: RC=17%
Tsurata et al. [68] 2017 44 ADC: SD=11-21.6%, ICC=0.75-0.87
Boss et al. [69] 2021 29 ADC: wCV=3.3-14.8%, ICC=0.76-0.94

Rectum

Intven et al. [66] 2013 18 ADC: RC=9.8%
Chen et al. [62] 2018 32 ADC: CV=1.5-5.6%, ICC=0.92-0.99
Sun et al. [70] 2018 66 ADC: LoA=±0.12−±0.19, ICC = 0.66−0.83, Dk : LoA=±0.24−

±0.43, ICC = 0.62− 0.86

Bisgaard et al. [71] 2022 30 ADC: LoA (15.9-84.2th percentile)=±0.04−±0.06

Spleen
M.Y.K. Bilgili [46] 2012 11* ADC: CV=8.2-13.4%
Michoux et al. [32] 2021 24* ADC: RC=30%

Uterus
Onodera et al. [72] 2018 33 ADC: wCV=3.3-8.9%
Zhang et al. [73] 2020 84 ADC: CCC=0.91, D: CCC=0.89, DDC: CCC=0.92%

* Healthy volunteers
** Values were approximated from available figures

A previous study found that higher numbers of b-values
used for fitting the diffusion parameter resulted in a de-
creased RC. However, these results are highly dependent
on the range and distribution of b-values included in these
calculations [62].

As the b-value changes so too does the level of diffusion
sensitivity, as a result the main contributor to the signal can
similarly change. For low b-value measurements (0 − 200
s/mm2) the signal consists mainly on the effects of capillary
perfusion, at higher sensitivity (> 500 s/mm2) the effects of
perfusion are mostly attenuated and signal now originates
mainly from lesion related diffusion, finally at very high
sensitivity (> 1000 s/mm2) the signal from extracellular
fluid diffusion is attenuated, resulting in signal mostly orig-
ination from intracellular diffusion [62].

In multiple studies the greatest influence on repeatability
was correlated to the highest b-value measurement used in
the diffusion parameter fitting. Inclusion of high b-value
measurements (> 1500 s/mm2) were not found to increase
repeatability [62], and was shown to decrease repeatability
when measured on lower field strength scanner as the effect
of Rician noise on the signal increases [64]. Similarly a
decrease in the maximum b-value (< 1000 s/mm2) was

also observed to have a markedly detrimental effect on
repeatability, with Larsen et al. reporting an approximate
factor two increase in RC when using (0, 500) instead of (0,
1000) as b-values for ADC calculations, suspectedly caused
by the higher sensitivity in perfusion changes [47]. This is
further supported by research from Bilgili which showed a
significant increase in coefficient of variation for scans which
used a lower maximum b-value [46].

3.3.2 Readout
Part of the DWI sequence is dedicated to the readout of
the diffusion sensitised signal. Currently the default read-
out method for DWI is Single Slice Echo Planar Imaging
[65]. Across the papers four alternative readout suggestions
were compared to SS-EPI to determine their benefits and
disadvantages.

Simultaneous multi-slice EPI (SMS-EPI) operates simi-
larly to SS-EPI, however during each repetition time, mul-
tiple slices are obtained instead of just one, consequently
decreasing scan duration, while preserving image quality.
Weiss et al. compared the repeatability of ADC in prostate
using both SS-EPI and SMS-EPI and found a comparable
CV in patients using both readout sequences, while Simul-
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taneous multi-slice EPI allowed for a 50% reduction in scan
time [65]. Pei et al. compared the impact of the two different
readout methods in combination with several breathing
schemes on the ADC repeatability in the liver. According
to their findings, the scans obtained using a breath-hold
scheme similarly resulted in comparable repeatability per-
formance between SS-EPI and SMS-EPI. However, when the
breathing scheme was set to either respiratory triggering
or free breathing, SS-EPI gave improved results compared
to SMS-EPI [53]. One explanation of these findings could
be that SMS-EPI for DWI is more sensitive to motion arte-
facts. Under these conditions the repeatability is expected
to perform better in low motion sensitive organs such as
the prostate, or under a breath-hold breathing scheme in
which respiratory motion is limited, particularly in healthy
volunteers with excellent breath hold capability such as in
the study from Pei et al..

Readout-segmented EPI (RS-EPI) is again similar to SS-
EPI, and can be considered the counter part to SMS-EPI,

as in RS-EPI each slice is separated into smaller segments
along the readout direction. As a result the RS-EPI sequence
requires a much shorter echo-spacing which results in a
significant reduction of susceptibility and T2

∗ blurring arte-
facts, especially on higher field strength scanners [75]. When
comparing SS-EPI repeatability to readout-segmented EPI,
Zhou et al. found a decrease in the RC likely caused by
reduction of artefacts and blurring [40]. Contradictory, a
similar study of the liver by Xie et al. found an increase in
the RC when using readout-segmented EPI, which is likely
caused by the increase in motion sensitivity of readout-
segmented EPI caused by the increased scan time [54].

Reduced Field of View (rFOV) EPI, reduces the FOV
from the conventional full FOV containing the whole
anatomy to a reduced FOV containing only the region of
interest. This is achieved by using two-dimensional spatially
selective excitations. By reducing the FOV, only part of the
subject needs to be spatially encoded in the phase encoding
direction. Correspondingly the readout time of the scan

TABLE 2: Overview of minimum and maximum repeatability measured in different structures of the body

Author Date patients Repeatability**

Brain

Bisdas et al. [28] 2013 22 ADC:
wCV: 1.1% - 4.2%

D:
wCV: 1.4% - 5.3%

DDC:
wCV: 3.5%

Dk :
wCV: 5.4%

Zakariak et al. [29] 2014 12
Jerome et al. [30] 2017 17
Lawrence et al. [31] 2021 59
Michoux et al. [32] 2021 24*

Breast

Aliu et al. [33] 2014 19 ADC:
wCV: 2.6% - 11%

D:
wCV: 4.7% - 7.3%

DDC:
wCV: 9.45%

Dk :
wCV: -

Mürtz et al. [34] 2014 25
Spick et al. [35] 2016 40
Newitt et al. [35] 2019 89
Jerome et al. [37] 2021 20
Granzier et al. [38] 2021 11*

eyes

Lecler et al. [39] 2017 11* ADC:
wCV: 7.6% - 17.6%

D:
wCV: 14%

DDC:
wCV: -

Dk :
wCV: -

Zhou et al. [40] 2022 11*

Head & Neck

Hoang et al. [41] 2014 16 ADC:
wCV: 4.9% - 17.3%

D:
wCV: 9.4% - 23.4%

DDC:
wCV: -

Dk :
wCV: -

Yonggang et al. [42] 2015 10*
Song et al. [43] 2020 43
Koopman et al. [44] 2021 10*

intestines

Alyami et al. [45] 2021 10* ADC:
wCV: 5%

D:
wCV: 10%

DDC:
wCV: -

Dk :
wCV: -

Kidney

M.Y.K. Bilgili [46] 2012 11* ADC:
wCV: 5.1% - 14.7%

D:
wCV: -

DDC:
wCV: -

Dk :
wCV: -

Michoux et al. [32] 2021 24*

Liver

M.Y.K. Bilgili [46] 2012 11* ADC:
wCV: 2.3% - 14.5%

D:
wCV: 4.5% - 9.8%

DDC:
wCV: -

Dk :
wCV: -

Larsen et al. [47] 2013 12 + 10*
Lee et al. [48] 2015 12*
Li et al. [49] 2017 12*
Xiang et al. [50] 2018 18*
Pieper et al. [51] 2019 24
Pathak et al. [52] 2019 8
Pei et al. [53] 2020 23*
Xie et al. [54] 2020 22*
Michoux et al. [32] 2021 24*
Sedlaczek et al. [55] 2022 21

Continue on the next page



8

TABLE 2: Overview of minimum and maximum repeatability measured in different structures of the body (cont.)

Author Date patients Repeatability**

Lung

Weller et al. [56] 2017 23 ADC:
wCV: 4.8% - 16.6%

D:
wCV: 6.1% - 19.5%

DDC:
wCV: -

Dk :
wCV: -

Swerkersson et al. [58] 2018 18
Jiang et al. [57] 2017 50
Wan et al. [59] 2019 15

Pancreas

Ma et al. [60] 2017 64 ADC:
wCV: 6.0% - 15.9%

D:
wCV: 6.7% - 10.0%

DDC:
wCV: 8.0%

Dk :
wCV: -

Klaassen et al. [61] 2018 14
Chen et al. [62] 2021 26*

Phantom

Malyarenko et al. [63] 2013 - ADC:
wCV: 0.5% - 11.3%

D:
wCV: -

DDC:
wCV: -

Dk :
wCV: -

yonggang et al. [42] 2015 10*
Belli et al. [64] 2016 -
Michoux et al. [32] 2021 24*
Weiss et al. [65] 2017 16 + 10*

Prostate

Intven et al. [66] 2013 18 ADC:
wCV: 1.4% - 15.0%

D:
wCV: -

DDC:
wCV:

Dk :
wCV: -

Weiss et al. [65] 2017 16 + 10*
Tamada et al. [67] 2018 56
Michoux et al. [32] 2021 24*
Tsurata et al. [68] 2022 44
Boss et al. [69] 2022 29

Rectum

Intven et al. 2013 18 ADC:
wCV: 1.4% - 5.6%

D:
wCV: -

DDC:
wCV: -

Dk :
wCV: -

Chen et al. [62] 2018 32
Sun et al. [70] 2018 66
Bisgaard et al. [71] 2021 30

Spleen

M.Y.K. Bilgili [46] 2012 11* ADC:
wCV: 8.2% - 13.4%

D:
wCV: -

DDC:
wCV: -

Dk :
wCV: -

Michoux et al. [32] 2021 24*

Uterus

Onodera et al. [72] 2018 33 ADC:
wCV: 4.4% - 8.1%

D:
wCV: -

DDC:
wCV: -

Dk :
wCV: -

Zhang et al. [73] 2020 84

* Healthy volunteers
** minimum and maximum repeatability in structure, which could be converted to wCV%

shortens which makes the scan less susceptible to motion
and susceptibility artefacts [42]. In measurements by both
Zhou et al. and lu et al. the implementation of reduced
FOV EPI allowed for a significant decrease in the RC, for
measurements of optic nerve and thyroid gland respectively
[40], [42].

Finally, single shot Turbo spin echo (SS-TSE) is an alter-
native readout method which uses multiple 180◦ refocusing
pulses per excitation to accelerate the readout process com-
pared to conventional spin echo [76]. The benefit of SS-TSE
over SS-EPI is its lack of sensitivity to susceptibility artefacts
and deformations. For DWI measurements of the lung a
clear decrease in the RC was observed when comparing
the two methods, with a 55-65% reduction in CV for TSE
measurements [59].

3.3.3 Scanner field strength

The field strength of an MRI scanner can have a large
influence on the quality of the images generated. Current
clinical scanners are often either 1.5T or 3T, with higher
field strength 3T scanner becoming increasingly common in
recent years [75]. In general higher field strength scanners
can leverage the increased signal to create higher quality
images by for example, increasing the image resolution or

increasing the SNR. However, higher field strengths suffer
from increased levels of susceptibility artefacts [75].

Several multi-centre studies have been performed which
use 1.5T as well as 3T scanner, in both phantoms and
patients. In three of the four selected studies the measured
repeatability was not affected by the field strength [36], [63],
[72]. The remaining paper from Belli et al. conducted a
multi-center study using a cylindrical doped water phantom
and calculated the ADC using two different combinations of
b-values with ranges (ADCL: 0-1000 s/mm2) and (ADCH :
0-3000 s/mm2). The repeatability of the ADCL calculated
with the low range was not effected by the scanner field
strength, similar to the other studies. However, for the
ADCH scans the repeatability was Superior on the 3T
scanner, this is likely a result of high Rician noise at high
b-value on the 1.5T scanners [64]. Although field strength
itself does not appear to influence the repeatability, higher
field strength scanners are able to influence the maximum
b-value scan that can reliably be measured, which in turn
could affect the repeatability.

3.3.4 Triggered scanning

During measurements the structure of interest might be sub-
ject to motion as a result of respiratory or cardiac movement.
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As a result of this motion the image is blurred and/or shows
motion related artefacts, reducing its clinical applicability.
In order to minimise the effect of motion on the image
quality, in motion sensitive structures, different triggering
strategies have been developed. These triggering strategies
ensure that image acquisition is only performed while the
triggering condition is met. As a result these methods are
able to limit the effect of motion by, e.g. only scanning
during breath-hold instead of during the whole respiratory
cycle. Across the papers included in this study, all but one
were related to DWI of the liver, which is highly sensitive
to motion because of its proximity to the diaphragm. The
studies compared five different triggering strategies, as well
as free-breathing scans which can be considered as the
baseline. The last remaining paper compared the use of
respiratory triggering with free breathing for lung patients.
The repeatability of DWI measurements of the liver was
highest overall in measurements involving cardiac based
triggering, these methods include respiratory-cardiac dou-
ble triggering [49] and electrocardiography triggering [48],
[50]. From the remaining strategies navigator triggering,
which monitors the diaphragmatic movement as result of
breathing, performed superior to regular respiratory trig-
gering [54]. The effectiveness of respiratory triggering when
compared to free breathing is inconclusive with studies
finding either similar [47], [48], or improved performance
[47], [53], [54]. Of note both studies from Pei et al. and Xie
et al. found good performance for breath hold scanning,
superior to respiratory triggering, however these studies
were performed with healthy volunteers who were selected
for excellent breath hold capability [53], [54]. For the lung
Swerkersson et al. found similar repeatability performance
in both respiratory triggering and free breathing [58].

3.3.5 Fat suppression

In order to improve the quality and clinical usefulness of
MR imaging fat suppression is commonly applied. With fat
suppression the strong signal from normal adipose tissue
can be reduced to obtain better contrast with lesion tissue
while also reducing chemical shift artefacts [77]. One paper
by Mürtz et al. compared the influence of using either
spectral presaturation by inversion recovery (SPIR) and
short T1 inversion recovery (STIR) on ADC repeatability
performance. According to their findings use of short T1
inversion recovery resulted in a significant decrease in the
RC by over 50% in breast lesions [34].

3.3.6 MR-Linac

Because of the alternative design of the MR-Linac there
are multiple differences as compared to a diagnostic 1.5T
scanner that are detrimental to the imaging performance
of the MR-Linac. Only one paper has performed a direct
comparison between the repeatability performance of an
MR-Linac and a MRI. In order to compare the performance
of DW imaging of the brain Lawrence et al. measured the
repeatability between a 1.5T MR-Linac and a 1.5T clinical
MRI unit. Their results indicated similar repeatability for
CSF, NAWM and NAGM ROIs on the MR-Linac as found
on a clinical MRI system [31].

3.3.7 Region of Interest
There are multiple strategies that can be used to create the
ROI such as, single slice, three slices and whole tumour.
The single slice method uses delineations created in a single
slice, typically the largest. For the three slice method the
slices adjacent to that from the single slice method are also
included. Lastly with the whole tumour method all slices
which include the ROI are used [43], [67], [70]. Typically the
slice delineations are drawn onto the whole tumour, how-
ever other methods such as partial ROIs inside the tumour
are also used [60], [70]. In general repeatability performs
best with whole lesion ROIs [43], [70], likely caused by the
increased consistency on ROI delineations, and increases
for larger tumours, likely caused by the increased number
of pixels [57], [60]. However, this is not conclusive as re-
search by Tamada et al. found a decrease in interobserver
repeatability for the pancreas in whole tumour delineation
as opposed to single slice ROIs [67].

3.3.8 Diffusion models
Most commonly the diffusion for DWI measurements is
quantized with the ADC parameter which uses a mono-
exponential model, however other methods do exist. The
most common alternative method of quantisation found
in the literature overview was the intravoxel incoherent
motion (IVIM) followed by stretched exponential models
(SEM) and Kurtosis.

The IVIM makes use of an bi-exponential function to
separate the effects of diffusion into two components, the
first component is the the molecular diffusion caused by the
Gaussian diffusion of water molecules, and the second is
the diffusion as a result of effects of perfusion. In the IVIM
method the measured data across multiple b-values is fitted
to equation 5, which includes the perfusion fraction f , the
pure molecular diffusion parameter D, and D∗ the pseudo-
diffusion from incoherent micro-circulation [59].

S(b)

S0
= f · e−bD∗

+ (1− f) · e−bD (5)

The SEM functions similarly to the MEM which is used
to calculate the ADC,

The SEM functions similarly to the MEM in that the
effects of diffusion are fitted with an mono-exponentially
descending function. In SEM however, the exponents con-
tains an additional factor α which reflects the intravoxel
diffusion character spreading. The formula which is used
for SEM modelling is given in equation 6, in which DDC
(distributed diffusion coefficient) is the diffusion parameter
[37].

S(b) = S0 · e−(b·DDC)α (6)

Lastly Kurtosis modelling introduces a factor K which
is used to model the effects of non-Gaussian diffusion at
high b values. In the literature overview two papers used a
Kurtosis model using different functions, Jerome et al. [30]
used equation 7 and Sun et al. [70] used equation 8.

S(b) = S0 · e−(b·Dk+K2·b2/6) (7)

S(b) = S0 · e−(b·Dk+D2
k·b

2·K/6) (8)
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Fig. 4: Schematic overview of measured data
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From these three methods the diffusion parameters are
ADC (MEM), D (IVIM), DDC (SEM), and Dk (Kurtosis).
Across our findings no significant difference in repeatability
between the four diffusion parameters was observed [28],
[30], [37], [39], [45], [48], [49], [51], [57], [59], [61], [70]. The
high correlation between the diffusion parameters implies
that the signal is representative of the same diffusion source,
further corroborating previous findings [30], [61].

Besides the diffusion parameters the other parameters
which are used in the IVIM SEM and Kurtosis models
(D∗, f, α,K) also are able to be used as biomarkers. The
repeatability of these parameters, especially D∗ and K , are
often higher than those of the diffusion parameters, as such
the resulting change needs to be significant for them to be
useful.

3.3.9 Model fitting
To calculate the semi-quantized parameters from the diffu-
sion models, the measured signal intensity across multiple
b value scans are fitted. In order to determine the best fit
for the provided data a loss function is introduced which
is to be minimised. The most common loss function which
is used for data fitting is the least-squared method, in this
method the difference between the measured data points
and the value which results from the fitted function are
squared and summed. however other methods of determin-
ing the best fit could also be considered.

One study compared the use of nonlinear least-squares,
Bayesian probability and a novel neural network for IVIM
fitting. Koopman et al. found the worst performance with
the simple nonlinear least-squares model, and significantly
reduced wCV% for the other two methods. The neural
network performed on average similarly to the Bayesian
probability methods, however lacks consistency which lim-
its it current applicability [44].

4 METHODS

To achieve to goal of the project the tasks were divided into
three sub-groups. First, three different methods of creating
tumour delineations were compared, secondly, the most
accurate and consistent delineations from the previous task
were used to calculate the ADC repeatability metrics, and
finally the longitudinal ADC changes during treatment were
compared against the repeatability to determine whether
they can be used as a potential NCRT treatment response
evaluation bio-marker.

4.1 Patient Cohort

Seventeen patients with locally advanced rectal cancer,
which showed indication of treatment on the MR-Linac,
were enrolled in the study and underwent DWI imaging
on a 3T MRI scanner (Ingenia, Philips Healthcare, Best,
The Netherlands) as part of their pre-treatment workflow.
The patients received five daily fractions of 5 Gy of which
six received three additional booster fractions of 5 Gy
each. Treatment was performed using a 1.5T MR-Linac unit
(Elekta AB, Stockholm, Sweden). Prior to the delivery of
dose during each fraction two DWI sequences were per-
formed, see figure 4 for a schematic overview.

4.2 MR Protocol
Two different systems were used to perform imaging in the
study; a 3T MRI unit was used for pre-treatments scans,
and a 1.5T MR-Linac during NCRT treatment fractions. A
schematic overview of the data is shown in figure 4 and a
table 3 provides an overview of DWI sequence parameters.

4.2.1 MR protocol
The MR protocol consisted of a transverse T2-, transverse
B0- and a transverse DWI SPIR scan in addition to the
default scans used for treatment planning. The Diffusion
weighted scan was performed using a single shot spin-EPI
readout scheme, SPIR fat suppression and free breathing.
The DWI sequence consisted of 4 different diffusion scans
with b values of 0, 200, 700, and 1000 s/mm2. The resolution
of the scans was 1.46 x 1.46 mm2 and a slice thickness of 4
mm. The ADC map was calculated using the Philips Ingenia
software, which uses a mono-descending exponential fit and
a manual threshold to remove background pixels.

4.2.2 MR-Linac protocol
The MRL protocol consisted of two transverse T2-, one
transverse B0-, and two DWI sequences. The Diffusion
weighted scan was performed using DWI with a single
shot spin EPI readout scheme and SPIR fat suppression. The
DWI sequence consisted of 4 different diffusion scans with
b values of 0, 30, 150, and 500 s/mm2. The resolution of
the scans was 1.92 x 1.92 mm2 and a slice thickness of 5
mm. The ADC map on MRL was calculated with the same
Philips algorithm as that on the MR protocol.

4.3 Delineation methods comparison
To calculate the ADC repeatability in the tumorous tissue
the correct data must first be obtained from the measure-
ment scans. To achieve this goal, delineations are created
of the structure of interest. In order to correctly calculate the
repeatability metrics it is imperative that the same structures
accurately obtained from both the test and retest scans.

The goal of this experiment is to compare three dif-
ferent methods of acquiring gross tumour volume (GTV)
delineations and determining which method is best suited
for repeatability calculations. Three factors which are taken
into consideration are the time spent on creating the delin-
eations, their accuracy, and the consistency of the method.

TABLE 3: MRI and MR-Linac DWI sequence parameters

Parameters MR DWI sequence MR-Linac DWI sequence

Reading sequence SS-EPI SS-EPI
EPI-factor 97 53
FOV (mm) 420 x 420 x 160 430 x 430 x 100
Voxel size (mm) 1.46 x 1.46 x 4.0 1.92 x 1.92 x 5.0
TR (ms) 3366 3521
TE (ms) 83 66
Fat suppression SPIR SPIR
b-values (averages) 0(1), 200(2), 700(4), 0(2), 30(2), 150(4),

1000(5) s/mm2 500(16) s/mm2

∆/δ (ms) 41.6 / 18.7 33.0 / 23.4
Bandwidth (Hz/px) 1421 2532
Scan time 4:02 4:03
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Fig. 5: Data pair overview, patients groups are shown in yellow, fraction groups in blue, and data pairs in green

Of these the last two factors are the main consideration, as
these relate to the quality of the delineations and the intra-
reader repeatability.

During standard clinical workflow of LARC, delin-
eations of the tumour are manually drawn by a trained
physician, based on pre-treatment scans, including ADC
maps. These delineations are necessary as input for the dose
calculations of the treatment plan. As these delineations are
already available their production time will be excluded
from consideration.

In the first method an attempt was made to propagate
the pre-treatment GTV delineations to the ADC maps ac-
quired during the treatment fraction on the MR-Linac. In or-
der to achieve this a rigid registration pipeline was applied
between the ADC map of the first fraction (1F) and the pre-
treatment scan. To propagate the delineations multiple steps
are required; first the 1F and pre-treatment T2 scans are
registered, next the pre-treatment and 1F ADC scans were
resampled to their corresponding T2 scan, and finally the
registration transformation between the two T2 scans was
applied on the ADC scans. The registration process can be
guided by supplying masks on which to evaluate the result.
This process was performed using; No mask, GTV, GTV
+ femur, CTV, and CTV + femur masks. The registration
between the two T2 scans was calculated using elastix [78],
[79]. The registration parameters which were used are; the
Euler transform with an adaptive stochastic gradient de-
scend optimiser, Mattes mutual information metric, random
sample size of 2048 pixels, and 4 resolution levels with each
1000 iterations.

For the second method, manual T2 based GTV delin-
eations were created by a trained physician for each scan
sequence, and the ADC maps were resampled to their cor-
responding T2 scan. Next, in order to correct for geometric
distortions caused by susceptibility artefacts an in-house
developed geometric distortion correction algorithm was
applied on the ADC maps. The T2 based delineations were
then subsequently added onto the corrected ADC maps.

In the last method GTV delineations were drawn manu-
ally by the author for each DWI scan sequence. The delin-

eations were created based on the highest b-value scan in
the sequence, while having T2 based delineations drawn by
the experienced physician available for reference.

4.4 Repeatability analysis

Repeatability is a key component in determining whether
DWI can be used in treatment response evaluation as it
determines the expected maximum variation in a measure-
ment from its true value.

First, manually delineated ADC volumes were used to
determine the parameters for which the repeatability will be
calculated. These include the mean ADC value and the ADC
histogram percentiles in steps of 2%. These values were
subsequently paired up, such that each pair corresponds
to the first and second DWI scan in a given measurement.
Finally, the data pairs were separated into eight different
groups, one for each MRL fraction, containing 17, 17, 17, 16,
15, 6, 6, & 5 data pairs respectively. A schematic overview
of the data pairs and the groups is shown in figure 5.

From this data the within-subject coefficient of variation
(wCV) and bias was calculated using all data points. The
wCV for the mean and the percentile with the lowest wCV
was subsequently converted to the repeatability coefficient
(RC), which uses a 95% agreement limit as proposed by
Bland-Altman. With this limit the RC gives the expected
maximal variation which can be expected in 95% of all
measurements. Finally, the 95% confidence interval (CI95)
of the RC was calculated. The resulting upper and lower
bound denote the 2.5% and 97.5% confidence limits within
which 95% of the population lies [80]. The results of each
of these calculations were shown using Bland-Altman plots.
As the measurements are performed on the same subject
under similar conditions the expected bias should be zero.
This was verified with a Wilcoxon signed-rank test. To verify
the integrity of the calculations the reliability of the mea-
surement method was assessed by calculating the Intraclass
Correlation Coefficient (ICC) type (2,1).
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Fig. 6: Left column shows manual delineations (red) created on T2 scan, middle and right column show delineations created
based on highest b-value scan (b1000 for MR (Blue) and b500 for MR-Linac (Green)).
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4.5 Treatment response analysis
To determine whether daily ADC changes can be used to
evaluate the response to treatment the measured change
must exceed the repeatability error margin.

To verify whether this is the case, for each patient the
mean and median ADC from the first DWI scan in each
fraction was calculated using the manual delineations.

Next, for each patient the relative difference of the
mean and median ADC (in %) from the first fraction DWI
measurement, which is used as the base measurement,
was plotted. In the same graph the previously calculated
repeatability error threshold was plotted to determine which
measurements showed sufficient change from baseline.

5 RESULTS

5.1 Delineation methods comparison
In the current paragraph, we investigate three methods for
obtaining delineations of the target volume over the course
of the treatment fractions; A) use registration to propagate
pre-treatment GTV delineations, B) apply a geometric cor-
rection algorithm on the distorted ADC maps, C) create
manual delineations.

5.1.1 Registration assisted delineations

To calculate the repeatability, accurate delineations of the
structure of interest (the GTV) are of great importance.
The first methods which was performed was by the use
of registration. The registrations which were performed
with a mask showed large visual discrepancies between the
two registered images, as can be seen in the example in
figure 9 which used a GTV mask to evaluate registration
performance. The registrations created without the use of
a mask showed far superior performance, with an average
mutual information score of 0.70 (±0.13). An example of said
registration is shown in figure 10. As can be seen in the
figure, the registration shows an overall good performance
following the contours for the majority of the major struc-
tures. However, near the edges of the rectal cavity, which is
most important for our objective, signs of misalignment can
be observed.

The resulting registration transforms were applied onto
the resampled ADC maps to transfer the GTV delineation.
The resulting propagated delineations for three patients are
shown in figure 7.

Fig. 7: Registered 1F ADC maps with delineation contours in red

Fig. 8: Delineation contours (red) on the T2 scan (left, the original ADC scan (middle), and on the corrected ADC map
(right)
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Fig. 9: Registration between pre-treatment (green) and 1F
(Red) T2 scans using a GTV mask for evaluation. Mutual
information metric = 0.06.

Fig. 10: Registration between pre-treatment (green) and 1F
(Red) T2 scans without mask. Mutual information metric =
0.80. At the boundary of the rectum the registered images
do not match, this is clearly visible in the enlarged cutout.

Fig. 11: Bland-Altman style plot for mean ADC repeatabil-
ity. Mean value indicated by solid black line, repeatability
coefficient by black dashed line, and upper and lower 95%
CI shown in red and green respectively

These results show that registration has insufficient ac-

curacy and consistency for repeatability calculations. Al-
though the method can achieve good delineations in certain
patients, as seen in figure 7.A, the same method also results
in misaligned delineations in other patients as can be seen
on figure 7.C.

5.1.2 Geometric correction assisted delineations
In the second method new GTV delineations were created
by a trained physician for each T2 scan. Next, the ADC
maps were resampled to their respective T2 scan, and were
subsequently subjected to an geometric distortion correction
algorithm. In figure 8 an example of the results is shown.
The centre image illustrates the distortion of the DWI scan
by the mismatch between the delineation propagated from
the T2 scan and the tumour. The right image shows the
same, but with the corrected DWI scan. From this image it
is clear that the algorithm has over-corrected for geometric
distortions.

5.1.3 Manual delineations
In the final method manual GTV delineations were created
by the author on both the test and retest scans. The delin-
eations were drawn onto the highest b-value scan (b-1000 for
MRI and b-500 for MRL) by adapting on existing T2 delin-
eations. In figure 6 the delineations for one patient is shown.
Visual assessment of the delineations shows that of the three
methods that were evaluated, the delineations based on the
highest b-value image showed the best agreement with the
ADC maps.

5.2 Repeatability analysis

First the wCV repeatability metric was calculated for the
mean ADC value using all available data. The wCV was
calculated to be 7.59% with a CI95 of 5.46 – 9.24%, this
corresponds to a RC of 21.0% and CI95 of 15.1 – 25.6%. The
bias for the mean ADC data pairs was -0.81%, a Wilcoxon
signed-rank test was performed between the data pairs and
indicated insufficient proof to reject the null hypothesis of
identical means between distributions (p = 0.95), therefore
the bias can be assumed as null. The Results of the calcula-
tion can be found in figure 11. This means that for 95% of all
measurements the value lies within 21% of the true value.

Next, the wCV was calculated for the ADC histogram
percentiles in steps of 2%. The results, shown in figure 12,
show that performance is lowest between the 50th (median)
and the 90th percentile.

In Further calculations the 50th percentile is used. The
wCV of the median ADC was 8.2% with CI95 of 5.9 – 9.9%.
This corresponds to a RC of 22.7% with CI95 of 16.4 –
27.4%. The resulting bland-altman plot is shown in figure
13. Similar to the mean ADC repeatability calculation the
Wilcoxon test showed insufficient proof to reject the null
hypothesis (p = 0.59), as such the bias is considered null.

5.3 Treatment response analysis

For each patient the percent change in ADC mean and
median at each fraction compared to start of treatment
was plotted, the results are shown in figure 14 and figure
respectively 15.
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Fig. 12: The wCV as function of histogram percentile (Black)
and the 95% confidence interval (red)

Fig. 13: Bland-Altman style plot for median ADC repeata-
bility. Mean value indicated by solid black line, repeatability
coefficient by black dashed line, and upper and lower 95%
CI shown in red and green respectively

The ADC changes which occur during treatment are
mainly within the repeatability error of the first base mea-
surements. In five patients the mean ADC change exceeded
the repeatability at some point during the treatment, all
but the final fraction of patient 14 being at an increased
ADC value as would be expected. For the median data the
results were mostly similar, with the main differences being
a decrease in ADC exceeding the repeatability in patient 17
during fraction 3, and a lower change in ADC for patient 13
fraction 7, and patient 14 fraction 3 which bring these point
below the repeatability threshold.

6 DISCUSSION

In this paper the ADC repeatability of rectal tumours on an
MR-Linac was measured and compared against the change
in ADC as a result of treatment. In addition two semi-
automatic delineation methods, that use registration and a
geometric correction algorithm, were tested and compared
against standard manual delineation procedures.

6.1 Delineation method comparison

Based on visual inspection the registration and geometric
correction algorithms had inferior accuracy and consistency
as compared to the manual delineations.

In the registration algorithm method the T2 based reg-
istration showed good performance overall with a mutual
information score of 0.70(±0.13) without use of a mask,
yet based on visual observation the performance of the
registration in the rectum specifically was not sufficient
with misalignment’s in the rectal walls which could have
negatively impacted the resulting delineations. The biggest
limitation for creating delineations with rigid registration
methods were, however, not the small misalignment’s previ-
ously mentioned. Instead, as the rectum contains air, the SS-
EPI sequence results in large susceptibility artefacts in the
rectum, which causes the ADC map to be locally distorted
at the air-tissue boundaries. I.e. the tumour on the ADC map
is distorted comparatively to the location found on the T2
scan. As these distortion artefacts are non-linear they can not
be corrected for using rigid registration. A possible solution
would be to implement non-rigid registration between the
T2 and ADC map which could compensate for the artefacts,
however these methods also run the risk of over-fitting to
the desired output which could corrupt the data, in addition

Fig. 14: The relative change in ADC mean during treatment,
repeatability limits are given by the black dashed lines

Fig. 15: The relative change in ADC median during treat-
ment, repeatability limits are given by the black dashed lines
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these methods need regularisation which is often hand-
tuned by the user [81].

Another method used to compensate for the effects of
susceptibility artefacts caused by the EPI readout is to im-
plement a geometric distortion correction algorithms which
through the use of a B0 map calculates the deformation
caused by said artefacts and corrects for them. In our results
the correction algorithm over-corrected the susceptibility
artefacts found in the ADC map. The geometric distortion
correction algorithm requires information on the local mag-
netic field as input. This is provided from a additional B0
field map acquisition. A likely reason for the over-correction
is a mismatch between the applied magnetic field shimming
settings during acquisition between the DWI and B0 field
map scan. This results in the magnetic field measured with
the B0 field map acquisition not representing the magnetic
field during the DWI acquisition. In retrospect the current
B0 field map was not suited for this purpose. However,
when acquired properly, this approach could still potentially
provide a means to use the clinical GTV delineation.

Although both semi-automatic delineations propagation
methods attempted in this paper allowed for the fast ac-
quisition of ADC delineations with minimal workload, the
resulting delineations were of insufficient accuracy and
consistency for use in repeatability calculations. As such
manual delineations were created by the author. The created
delineations were drawn by adapting existing T2 delin-
eations to the bright area’s in the highest b-value scan which
correlate to the regions with high diffusion restriction. The
created delineations were validated by a trained physician
to be of sufficient quality for repeatability calculations.

6.2 Repeatability analysis

In our calculations a RC of 21% (CI95: 15.1 - 25.6%) was mea-
sured for mean rectum tumour ADC values, as measured
with an MR-Linac.

Because of time limitations a second set of delineations
could not be created, as such the intra-rater repeatability
could not be calculated. Therefore, the effect of the non-
experienced rater on the repeatability could not be deter-
mined.

In our dataset one entry was identified as being a pos-
sible outlier as the difference between the first and second
ADC scan significantly exceeded those of all previous en-
tries. However, as no concrete evidence, such as patient
movement in-between b-scans in the sequence, was found
it was not removed from the dataset. The RC without
the suspected outlier would have been 18.8% (CI95: 15.1 -
21.9%), 2.2% lower.

There have been four previous studies which have
measured the ADC repeatability in rectal tumours. Their
repeatability results were; a RC of 9.8% by Intven et al. [66];
A CV from 1.47 to 5.57% (converted to RC=2.8-10.9%) by
Chen et al. [62]; a LoA of ±0.12 with a mean ADC of 0.687
(Converted to RC=17.5%) by Sun et al. [70]; and a 68.3%
LoA from ±0.04 to ±0.06 by Bisgaard et al. [71]. Except for
the results from Bisgaard et al. which can not be converted
to RC, the result of al other studies which measured with a
MRI outperform the results found with the MR-Linac in this
study.

The two most likely sources for the increased repeatabil-
ity with the MR-Linac as compared to the previous studies
with MRI scanners are the lower SNR and the limitation
on the maximum b-value which can realistically be used.
The limited gradient field strength of the MR-Linac results
in a lower maximum b-value used on the MR-Linac of B
= 500 s/mm2, which in previous studies on MRI systems
has been found to lead to decidedly reduced repeatability
as compared to sequences which use a maximum B value
between 1000 and 1500 s/mm2. [46], [47], [62]

The maximum b-value which was used in this study (b
= 500 s/mm2), is already the highest recommended b-value
by the Elekta Unity MR-Linac consortium. This threshold
was determined because of limitations on the decreasing
SNR at higher b-values, higher sensitivity scans above the
threshold were determined as unreliable. [82] However, a
previous study by Lawrence et al. which compared the
ADC repeatability of central nervous system tumours on
a MRI and MR-Linac found similar results on both systems
while using a maximum b-value of B = 800 s/mm2, exceed-
ing previously mentioned recommendations. [31] Therefore,
further study on inclusion of a higher maximum b-value
could also be considered on the MR-Linac for DWI of LARC,
as it might lead to a noticeable improvement in repeatability.
Besides increasing the maximum b-value, there are also
multiple other methods identified in the literature study
which could improve DWI performance.

The first adaptation which could be considered based on
findings by Chen et al. is to increase the amount of b-values,
between b=0-500 s/mm2, in the sequence. In their study
they found a significant decrease in CV for sequences which
used more b-values. [62] Another modification which might
lead to an improved repeatability is to switch the readout
sequence to either a readout-segmented EPI, a Turbo Spin
Echo sequence or a reduced field of view. Especially the use
of a turbo spin echo sequence in lung cancer patients [59],
and a reduced field of view sequence for the optic nerve [40]
and thyroid glands [42] have been shown to significantly
improve repeatability metrics as compared to conventional
SS-EPI sequences. For readout-segmented EPI the results
are contradictory, with the method seeming to improve
the repeatability but only in the absence of motion [40],
[54]. The improvement in repeatability by TSE is further
corroborated by a recent study which found an increased
repeatability for TSE over conventional EPI imaging [83].
One last modification which could have positive effects on
the repeatability is to change the fat suppression from a
SPIR to a STIR sequence. According to research by Mürtz
et al. which compared these two methods for breast lesions,
the adaptation of STIR resulted in a significantly improved
repeatability [34].

One limitation in these improvements is that both the
increase in the number of b-scans and the adaptation of the
turbo spin echo and readout-segmented readout sequence
will result in a noticeably longer scan duration, which might
not to wanted and or possible. Under these circumstances a
possible alternative could be to adapt the readout sequence
to a simultaneous multi-slice EPI sequence. For organs that
have a low motion sensitivity this sequence has been found
to result in a significant decrease in scan duration while
having minimal impact on repeatability [53], [65]. The time
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which has been saved by the SMS-EPI sequence could
then be invested into adaptations which could improve the
repeatability, e.g. including more b-value scans.

Using these methods might result in a significant im-
provement in the repeatability of DWI measurements on
an MR-Linac, further studies are required to determine the
actual impact of said changes for rectal cancer patients.

6.3 Treatment response analysis
Numerous previous studies have shown that treatment pre-
diction based on analysis of pre and post NCRT ADC values
is viable with MRI systems, a summary of previous studies
is given in a paper by Schurink et al. [84].

One major difference between these previous studies and
this one is the time span in which the change in ADC is
measured. To our knowledge this is the first study which
tracked daily ADC changes in a low fractionated treatment
plan. As a result the duration between the first and last
DWI measurement on the MR-Linac never exceeded two
weeks. In comparison, e.g. a previous study by Intven
et al. which assessed the predictive potential of DWI for
selecting good responders with LARC used MRI scans 1-2
weeks before NCRT, which lasted five weeks, and 1-2 weeks
before surgery, which was 6-10 weeks post NCRT, totalling
between 12-19 weeks between the two measurements.

The finding in this study indicated that the majority
of measurements taken with an MR-Linac did not show a
change in mean or median ADC, from start of treatment,
exceeding the repeatability error. In total only 6 out of the 17
patients included in this study showed a change exceeding
the repeatability error at some point during treatment, in
4 patients exceeding the upper bound, in one patients the
lower bound, and in one patient both the upper and lower
bound. Further study on the significance of these results are
needed to determine their clinical relevancy.

Besides improving the repeatability the number of sig-
nificant measurement could also possibly be increased by
performing an additional scan post-treatment. Based on
previous studies the parameter which is mainly used for
treatment evaluation is the relative change in ADC between
pre-treatment ADC scans and scans taken 6-8 weeks post
treatment [85]. As the results in this study only include data
measured during short-term NCRT, lasting at most 2 weeks,
it is possible for the effects of treatment on ADC to manifest
post treatment. Further studies are required to determine
whether this is indeed the case.

7 CONCLUSION

The repeatability study of rectal cancer ADC measurements
on an MR-Linac indicated a significant measurement error,
exceeding previous findings on MRI systems. As a result
only a limited amount of ADC measurements resulted in
significant differences. However, despite the low precision
of ADC measurements, the inclusion of significant measure-
ments indicates that daily DWI imaging on MR-Linac could
conceivably be used for clinical applications such as the
prediction and evaluation of treatment response.

Further studies are required to determine whether the
measured ADC repeatability allows for clinically relevant
observations.
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I. S. Kim, S. H. Park, S. Y. Kim, and et al., “Intravoxel incoherent
motion diffusion-weighted mr imaging of the liver: Effect of trig-
gering methods on regional variability and measurement repeata-
bility of quantitative parameters,” Radiology, vol. 274, p. 405–415,
Feb 2015.

[49] J. Li, C. Zhang, Y. Cui, H. Liu, W. Chen, G. Wang, and D. Wang,
“Intravoxel incoherent motion diffusion-weighted mr imaging of
the liver using respiratory-cardiac double triggering,” Oncotarget,
vol. 8, p. 94959–94968, Oct 2017.

[50] Z. Xiang, Z. Ai, J. Liang, G. Li, X. Zhu, and X. Yan, “Evaluation of
regional variability and measurement reproducibility of intravoxel



20

incoherent motion diffusion weighted imaging using a cardiac
stationary phase based ecg trigger method,” BioMed Research In-
ternational, vol. 2018, p. 1–11, Apr 2018.

[51] C. Pieper, A. Sprinkart, G. Kukuk, and P. Mürtz, “Short-term mea-
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