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Summary

Malicious software such as botnets are a threat to society and increasingly so through Internet
of Things (loT) devices. The large volume, pervasiveness and high vulnerability of 10T devices
make them low hanging fruit for malicious actors. Currently, the biggest threat for insecure loT
devices is Mirai, a botnet which is deployed for DDoS attacks. Home users often fail to detect
and resolve Mirai on their loT devices. For this reason, Internet Service Providers (ISP)
increasingly take efforts to increase remediation. Sending their infected customers a
notifications containing cleanup instructions is currently the most feasible measure on a large
scale. However, previous studies point out that it is not clear how people process these
notifications, if they comply with it and how this effects the remediation rate and speed.

The central research question of this study is “What is the role of 10T device end users in Mirai-
like bot remediation?’. We have conducted an eight-week experiment at the KPN Abuse Desk
that notifies customers about abuse incidents. 177 Mirai-infected consumers have been
randomly assigned to a walled garden notification (i.e., a quarantined environment), an e-mail
notification, or control group. All subjects within the experiment have been tracked for two
weeks to estimate the infection time and are contacted afterward for interview purposes.

Male consumers and consumers younger than 54 years possess relatively more often a Mirai-
infected device compared to other consumers. Both e-mail and walled garden notifications are
effective in reaching consumers, informing them and encouraging them to take action. The
majority of consumers do not follow the recommendations provided by the notification. In
contrast, the number of actions that are performed while not mentioned in the notifications is
remarkably high. Since many consumers asked for additional help, we conclude that consumers
appear don’t have a full understanding of how to tackle the problem. In the control group,
several consumers remediated Mirai unintentionally. However, these cases do not explain all
observed remediation.

Using two survival analysis modeling techniques, we find that consumers placed in a walled
garden have a 29% to 85% shorter infection time than other consumers. We conclude that
there is a discrepancy between stated behavior and the actual behavior of consumers.
Although we cannot observe all cleanup efforts of consumers, we observed that awareness of
the Mirai-infection and the intention to comply with the recommended actions influence that
unobserved behavior. Gender also influences the unobserved behavior. Women clean up their
device quicker than men while their statements during the interviews contradict this. One
explanation is that women may unintentionally clean up their device. We conclude that age,
consumer market, device type and customer satisfaction have no significant influence on
remediation.

We believe that it is unlikely that all unexplained remediation can be attributed to the
unobserved behavior. We thus cannot explain all observed remediation from the user
perspective. Therefore, we argue that future work must also focus on the attacker perspective.
Since we only observed Mirai-infections, we cannot exclude the possibility that competing
malware confiscated infected devices within our experiment. In addition, novel Mirai variants
may have evolved scanning behavior which obstructed proper detection of infected bots.
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1 Introduction

1.1 Background

1.1.1 Internet connects

The Internet connects beyond people: it increasingly connects ‘things’. We find ourselves at
the start of this new paradigm called the Internet of Things (loT). The term refers to the concept
of interconnected objects which can send data to other objects, systems, and people. There is
no definition of loT that is widely accepted: some definitions focus on the architectural
requirements of an loT environment, whereas others emphasize the ubiquity and autonomy of
loT networks. A unigue characteristic of loT is so-called ‘smartness’ of its networks: each object
is connected to a network (to gain access to the Internet or share data with other devices), is
context-aware (the device perceives information from its environment) and is autonomous
(can perform tasks without the user’s command) (Silverio-Fernandez, Renukappa, & Suresh,
2018). Collectively, these smart things have the capability to ‘collect, process and exchange
data [in a network] in order to adapt dynamically to a context’ (ENISA, 2017).

loT applications are in numerous places. One example is smart homes. A smart thermostat can
be switched on or off from outside the house via an app. A smart smoke detector can check
the functionality of its sensor or can send a warning to your mobile phone when it detects
smoke. These and other |oT devices such as smart lights, fridges, camera’s and faucets can
make daily life activities easier, safer or greener (Essent, 2017). Other loT environments can be
found in transport (smart public transport, smart airports, smart cars), health (eHealth, smart
hospitals) and overarching infrastructures (smart grid, smart cities).

1.1.2 Botnet of things

While the number of Internet-connected devices grows, so does the concern regarding their
security. The European Union Agency for Network and Information Security (ENISA) identifies
twelve generic issues that impede the secure use of loT (ENISA, 2017). We provide three
examples to give an impression of the obstacles:

e Limited device resources: most conventional security controls cannot be adopted by loT
devices due to technical constraints such as low computing power;

e Insecure programming: due to a short ‘time to market” and slow adaption of guidelines and
regulations, vendors give low priority to security and privacy of their devices;

e Absence of user interface: most 10T devices do not have a user interface, which makes it
more complicated for users to perform security measures such as changing the default
password or performing updates.

In short: many loT devices are not secure, or they are used in an insecure manner and thereby
form the risk of being abused by malicious actors. loT devices can be abused in several ways,
but the most urgent threat is that of weaponization through so-called botnets (derived from
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‘robot networks’). A botnet is a coordinated network of compromised hosts! infected with
malware which is controlled by a malicious actor without the owner’s knowledge (International
Telecommunications Union, 2008; Livingood, Mody, & O’Reirdan, 2012). These networks
collectively increase the computing power and bandwidth of a criminal which can be used to
serve different criminal activities such as generating spam e-mails, launching Distributed Denial
of Service (DDoS) attacks, destruction of data, identity theft and click fraud (International
Telecommunications Union, 2008; Livingood et al., 2012). A DDoS attack is an attempt to flood
a target with Internet traffic by means of a magnitude of compromised systems. The target,
often a server or network, can get overwhelmed which results in a disruption of its services.

In 2016, one Mirai botnet compromised more than 600K |oT devices and overwhelmed the
world by DDoS-attacks of high profile targets such as a Domain Name System (DNS)
infrastructure (Antonakakis et al., 2017; Groenewegen, 2016). The Mirai botnet shows the
destabilizing potential of botnets and the danger of poor security of low-end devices. ENISA
(2019) points out that malware authors increasingly target loT devices and that the trend of
botnet attacks is increasing. This trend goes hand in hand with the growing number of loT
devices and the increasing range of their application. Predictions about the number of installed
loT devices in 2020 vary between 20 and 50 billion (ENISA, 2017; Statista, 2019).

1.1.3 Voluntary compliance

Internet end users appear to struggle to detect and clean up Mirai on the loT devices they use
(Orcun Cetin, Altena, Gafian, & Eeten, 2018). Internet Service Providers (ISP) are in the unigue
position to stimulate malware remediation because they have the capabilities to detect
malicious activities in their network and are able to identify and thus notify the infected end
user (Livingood et al., 2012). For this reason, ISPs are often a designated actor to make botnet
mitigation efforts (Orcun Cetin et al., 2018; Livingood et al., 2012). Besides their natural control
position, ISPs also have an incentive to mitigate botnets due to the increasing costs and
reputational damage they suffer from their polluted network. In the last decennium, industrial
collaborations, governments and academics have published best practices, recommendations
and studies about botnet mitigation in ISP networks.

ISPs can thus deploy mitigation measures against Mirai by notifying infected consumers. There
are two typical notification mechanisms. The first is placing an infected customer into a
guarantined environment, a so-called ‘walled garden’, and instructing them what to do to clean
up the infection. This measure prevents the Mirai botnet of extending and draws a customer’s
attention to the recommended actions. The second option is only to warn the customer
without further consequences and provide him or her with cleanup instructions. Both measures
appeal to an end user’s willingness to comply with the instructed remediation advice although
the first (walled garden) is more intrusive due to the disconnection from the Internet. Also,
walled gardens raise major objections from customers and are time- and cost consuming for
an ISP (Orcun Cetin et al., 2019).

1.1.4 Prior research

Although the effectiveness of abuse and vulnerability notifications is broadly studied, the
amount of work focusing on 10T abuse is small. The master thesis research by Lisette Altena
(2018) and the subsequent articles by Cetin et al. (2018, 2019) were ground-breaking and
hitherto the only empirical studies of IoT malware cleanup in the wild.

LA ‘host’ refers to a computing device that is connected to the Internet (Livingood et al., 2012)
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These studies conclude that walled gardens are effective in terms of clean up rate and speed
and that e-mail only notifications do not have more impact on remediation compared to the
control group that did not receive a notification. Striking is the high natural remediation rate of
the control groups, which was 77% after 14 days (Altena, 2018, p.53). The high natural
remediation is partly attributed to the non-persistent character of Mirai, which means the
malware is remediated after a device is switched off (Orcun Cetin et al., 2019). These results
raise questions about what underlying behavior of end users cause these findings. It is unclear
if and why notified users do not comply or whether they fail to perform the recommended
cleanup actions.

1.1.5 A socio-technical domain

The system under study is sociotechnical in nature. The loT paradigm and its negative side
effects such as Mirai emerge from an interaction between the social and technical domain. The
technical aspects in the system lie in the increasing capabilities and applications of loT devices.
At the same time, the sophistication of the abuse of these devices is also a technical component
of the problem. This sophistication will be concretized in the context of Mirai in section 2.2.

The social aspect of the system interacts with this technical domain: due to the increasing
functionalities and better access to loT devices, more people buy and use loT devices. In
addition, the security of an loT device is not solely determined by its design; how a person
configures and uses a device is of great influence for its exposure to potential abuse. The
development within the technical domain thus stimulates the presence of loT in the social
domain and vice verse. The size of the loT paradigm also increases the scale of the negative
consequences of insecurity. The problems of insecure loT devices are tangible on society-level:
for example companies, Internet service providers and governments suffer from the
consequences of insecure loT devices through DDoS attacks.

This interaction between the technical and social domain of 10T devices and their (in)security
create a complex system in which both aspects cannot be considered in isolation. One must
understand both domains and interaction between them to understand the problems that
emerge from this system and how to mitigate them.

1.2 Research objective

1.2.1 Problem statements

Notifications are currently one of the most feasible mitigation measures to fight 10T abuse on
a large scale. Three problems can be identified that hold back good functioning remediation
efforts:

A) Altena’s (2018) research provides the first empirical findings on remediation rates and
speed of different notification mechanisms. There is no empirical explanation yet for the
high remediation rate in the control group. First, we want to find out to what extent
remediation can be explained as a result of notifications. Also, we want to explore what
factors may explain remediation among consumers that are not notified. Then, to improve
the effectiveness of notifications, we must understand why customers (do not) comply and
why they (do not) perform the recommended actions.

B) The current bottleneck for an ISP is workload capacity. The more infected customers are
sent a notification or are placed in a walled garden, the higher the workload for an ISP since
customers regularly e-mail the Abuse Desk with questions (Altena, 2018). Responding and
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providing assistance to customers is a process that requires personal dedication and is
difficult to automate. To decrease questions, we need to understand how customers
perceive the content of a notification, if this aligns with the intended message, and whether
customers understand the intended message.

C) An ISP’s key service is Internet access. Walled gardens are not a preferable solution on a
large scale since it disturbs this key service. Also, putting customers in a quarantined
environment requires computing capacity. However, the other alternative — e-mail only
notifications - have a lower remediation rate and are thus less effective. This creates a
trade-off between inconvenience and effectiveness of a notification. To achieve more
customer-friendly notifications, we must understand when customers are dissatisfied and
how they wish to be approached.

1.2.2 Research questions

The problems discussed in the previous section suggest a need for a better understanding of
what drives remediation. Due to time and technical constraints, this research will particularly
focus on remediation of the Mirai malware by home users (consumer market). As will be
discussed in chapter 2, Mirai is currently the most serious and predominant form of loT abuse.
Home customers —in contrast to business customers — are easier to reach and notify since the
contact details are that of the person of interest. To achieve the defined objectives, the
research question is as follows:

(RQ) What is the role of 10T device end users in Mirai-like bot remediation?

The following five sub-questions (SQ) break down the main research question formulated
above into smaller questions which need to be answered:

(SQ 1) What are the characteristics of 10T device end users who get Mirai-infected?

The first step in exploring the role of end users that are Mirai-infected is examining who these
consumers are. We will explore the age and gender of infected 10T users in a real-life setting
(‘in the wild’). This exploration is executed for two separate populations: consumers of the ISPs
KPN and Telfort. Telfort is a budget subsidiary of KPN.

(SQ 2) What actions do Mirai-infected consumers perform?

Notified consumers are asked to perform a set of recommended actions to clean up their
infected device. It is yet unclear how many consumers that have the intention to comply with
the notification, succeed in doing so correctly. We want to know which actions consumers
perform and to what extent this influences remediation. It is also not empirically explored yet
what actions non-notified customers perform (intentionally or unintentionally) that cause
remediation (Altena, 2018).

(SQ 3) What are the reasons for non-compliance with Mirai notifications?

One can think of different reasons for non-compliance with the recommended cleanup actions.
Notification delivery failure, misunderstanding and a lack of motivation are three examples. To
be able to encourage consumers to take voluntary action, one must know the common
obstacles that stand in the way of compliance. A large body of literature provides models and
empirical findings of these reasons in the context of security and vulnerability notifications
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(Orcun Cetin et al., 2019). There is no study yet that explores this in the case of loT abuse
notifications.

(SQ 4) How do consumers experience Mirai notifications?

To improve future notification effectiveness, we must also consider the notification experience
of notified customers. To this end, we want to explore their opinions and suggestions.

(5SQ 5) How can remediation of Mirai-like bots be explained?

The knowledge gaps that come forward in Altena’s (2018) research are a direct motivation for
the existence of this study. This research will further explore the effect of notifications on
remediation and will do so by replicating the experimental setup of previous research. In
addition, this study will make use of statistical data modeling techniques to explore the effect
of notifications and other factors on remediation.

1.3 Research approach

To answer the research questions, we use a mixed-methods approach. This kind of design
involves ‘collecting, analyzing and interpreting both quantitative and qualitative data’. The core
assumption of this approach is that the combination of both forms of data will provide a ‘more
complete understanding of a research problem than either approach alone’ (Creswell, 2014,
p.4). There are different typologies of mixed methods; this design is convergent and parallel.
Convergent mixed methods are a form in which qualitative and quantitative data is converged
or merged to create a comprehensive view of the research problem (Creswell, 2014). Parallel
refers to the data collection sequence: both forms of data will be collected in parallel and the
results will be integrated during their interpretation (Creswell, 2014).

The study exists of four phases, which will be discussed in the next sections. The research will
be executed in cooperation with the Abuse Desk of KPN, a Dutch ISP. The Abuse Desk mitigates
abuse incidents among KPN and Telfort customers (KPN, n.d.). Telfort is a budget subsidiary of
KPN. Chapter 3 provides more information about KPN and its network abuse mitigation
practices.

1.3.1 Research context

The first phase provides the context in which the research will be executed. A literature review
will explore studies into cybersecurity behavior, notification effectiveness and loT security
challenges. This chapter provides us with a solid background to base the study on.

To set up an experiment and to understand the context in which a customer deals with a
notification, we must understand how KPN detects and notifies infected customers. These
practices by the Abuse Desk are studied by observing the variety of activities and by engaging
with the employees of the Abuse Desk. The reporting of the practices will be validated through
reviews by two Abuse Desk employees.

1.3.2 Experiment
Over eight weeks, a randomized controlled experiment is performed to explore how customers

deal with different notification mechanisms. All loT-infected customers that appear on the
Abuse Desk’s radar within this time frame are included in the experiment. After random
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assignment to a group, each customer is tracked for two weeks to measure the infection time
of the bot. After tracking, the customer will be contacted to perform an interview in a semi-
structured manner. More details about the experiment set up and limitations are presented in
chapter 4.

1.3.3 Data analysis

Quantitive data concerning remediation speed and rate and qualitative data concerning
consumers’ characteristics, behavior and reaction have been collected during the experiment.
This data will be collectively analyzed to answer the six research questions using exploratory
modeling. The methods used for this are supported and described in chapter 4.

1.3.4 Research evaluation

The last phase entails the evaluation of the research. Using the results and conclusions of the
five sub-research questions, the central question will be answered. The research quality will
further be assessed by discussing the limitations of the study and the validity of the results.
Lastly, we will provide several suggestions for future research.

1.4 Academic & societal relevance

1.4.1 Societal relevance

The combat against 10T abuse is not only in the hands of ISPs. Therefore, insights of this study
regarding Mirai and the role of an infected device owner may help to provide a better
understanding for a greater range of stakeholders. Policy decisions regarding botnet mitigation
and loT security in general, may benefit from such insights as well other Mirai botnet mitigation
actors such as other ISPs.

The Dutch government is increasingly more aware of the damaging consequences of poor loT
device security which is reflected in increased budget and measures (Ministerie van
Economische Zaken en Klimaat, 2019; Raad Cyber Security, 2017). One of these measures is an
awareness campaign that will start in October 2019 ‘aimed at changing behavior [of citizens
and enterprises]’ (Ministerie van Economische Zaken en Klimaat, 2019). Findings of this study
will be of added value for such purposes because they A) help to understand the characteristics
of the target audience, and B) provide insight in the troubles that loT end users perceive when
cleaning up an infected loT device. Both findings will increase the effectiveness of an awareness
campaign as proposed.

In addition, there is a need for more certainty regarding remediation. Although the study of
Altena (2018) shows positive results regarding the use of walled gardens, remediation among
unnotified consumers cannot be explained. This is problematic in the context of policymaking
since either we don’t understand the cause of remediation, or our monitoring instrument is
not reliable and give us a distorted picture of Mirai remediation.

The focus of the experiment is on Mirai remediation in the Netherlands since the study
population exists of KPN and Telfort consumers. However, the findings of this study are of
added value across borders. For example at the EU level, the ENISA is increasing its efforts to
address loT safety and security challenges (ENISA, 2017). Raising awareness is one of the
baseline security recommendations which may also benefit from best practices in the
Netherlands, including the findings of this study.
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1.4.2 Academic relevance

As addressed before, notification effectiveness of loT abuse notification is a recent terrain in
academia. Altena’s (2018) research provided novel insights in this area and thereby
simultaneously created new knowledge gaps in how to explain the observed ‘natural’
remediation of Mirai. This research attempts to fill these gaps by looking into the role of loT
users.

1.4.3 Added value KPN / other ISPs

Since the treatments in the experiment are equal to KPN’s common practice, we can obtain
reliable results of how KPN and Telfort customers deal with and perceive Mirai notifications.
This understanding may not only help to improve notification effectiveness, but also customer
satisfaction. Improved notification effectiveness can reflect in time-saving among Abuse Desk
employees in helping customers and overall improved costs efficiency. In addition, other ISPs
may benefit from the best practices of KPN’s Mirai remediation efforts and the insights
provided by this study.

1.5 Thesis organization

The organization of this thesis report is schematically illustrated in figure 1. The research
context will be described in chapter 2 (literature review) and chapter 3 (KPN Abuse Desk). The
experimental setup and statistical tests that will be used, are presented in chapter 4 which
covers the research methodology. Chapter 5 explores the study population and thereby
provides answers to research question 1. Chapter 6 presents the tracking results. This chapter
does not answer a research question but rather provides a general view of the data which
serves as a base for the following chapters. Chapters 7 to 9 each cover results and sub-
conclusions of the research questions 2 to 4. The analysis in these chapters is mainly of
qualitative of nature. Chapter 10 combines all data by modeling and thereby answers research
question 5 (which is already partially answered in chapter 8). In chapter 11, the overall key
findings are recapped and the main conclusions are drawn, which provide an answer to the
main overarching research question. Reflection upon the research design, results and
conclusions are presented in chapter 12.
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RQ What is the role of 10T device end users in Mirai-like bot remediation?

Research
context

Methodology

Results and
sub-conclusions

Research
evaluation

Ch.2 Literature review

Ch.4 Methodology

Ch.5 Study population

Ch.7 Cleanup efforts

Ch.9 Customer
experience

Ch.11 Conslusions and
discussion

Ch.3 KPN Abuse Desk

Ch.6 Tracking results

Ch.8 Compliance and
remediation

Ch.10 Remediation
drivers

Ch.12 Reflection and
future work

SQ 1: What are the characteristics of lIoT device ends users who get Mirai-infected?

SQ 2: What actions do Mirai-infected consumers perform?

SQ 3: What are the reasons for non-compliance with Mirai notifications?

SQ 4: How do consumers epxerience Mirai notifications?

SQ 5: How can remediation of Mirai-like bots be explained?

Figure 1 Thesis organization
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2 Literature review

2.1 Introduction

This chapter provides a summary and evaluation of works that are related to the research
problems in question. We can distinguish three conceptual categories which are of interest to
understand customer behavior after abuse notifications concerning Mirai:

|oT and the emergence of Mirai

The emergent loT paradigm forces a change of security thinking and practices. loT abuse
practices such as the Mirai malware bring up issues on how to overcome the poor security of
devices and insecure consumer behavior. But how is this different to abuse of conventional
devices? Why is Mirai such a threat? And how does Mirai operate?

Notification effectiveness

Within the field of cybersecurity, warning and vulnerability notifications are a broadly studied
topic. These studies often focus on the effectiveness of a notification - to what extent a
notification leads to the desired outcome. How can we define notification effectiveness? And
what are the best practices to achieve effective notifications?

User cybersecurity behavior

The vulnerability of a device — and with that, the risk of abuse - is partly determined by the
behavior of its user. Think of setting safe passwords, regular updates, non-clicking on suspicious
links, etc. Theories and models from a variety of disciplines provide different explanations of
cyber (in)secure behavior of users. Why do users comply to abuse-notifications from the
perspective of these works? What may explain non-compliance?

The literature search is conducted through the framework as proposed by Webster and Watson
(2002) and Levy and Ellis (2006). They propose the following three steps in identifying relevant
literature:

e Keyword search: the initial step using keywords in scholarly databases and leading journals;
e Backward search: reviewing citations of (relevant) articles;

e Forward search: use academic search engines to find articles that have cited the (relevant)
articles.

This initial literature search resulted in 124 articles and books that are structured by concepts
andrelevance (three-point scale). Appendix A provides the details on the literature search, such
as used keywords and search engines. Appendix B provides a table with takeaways from the
relevant studies from the literature search. The findings of the literature review are structured
following the three conceptual categories in sections 2.2 to 2.4.
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2.2 10T and the emergence of Mirai

2.2.1 Low hanging fruit

The Internet of Things is a new kid on the block. A 2011 whitepaper of Cisco argues that while
the World Wide Web knows several evolutionary leaps, loT is the first evolution of the Internet
itself (Evans, 2011). The concept of loT was first used in 1999 in a networked radio frequency
identification (RFID) group in the Massachusetts Institute of Technology (Evans, 2011; Heer,
René, Loong, Sandeep, & Klaus, 2011). Since then, loT technology and applications have
developed and finds itself at the foundation of the new paradigm of interconnectivity.

In 2008, the number of Internet-connected devices exceeded the total world population
(Evans, 2011). The numbers are growing, and prognoses estimate further increase to 20 to 50
billion devices in 2020 (ENISA, 2017; Statista, 2019). This magnitude is an important cause of
the threat that stems from these devices: ‘What they lack in computational capabilities, they
make up in numbers’ write Vlajic and Zhou (2018). This trend, in combination with poor security
and often unbroken connection to the Internet, makes loT devices ‘low hanging fruit for
hackers’ (Kolias, Kambourakis, Stavrou, & Voas, 2017).

Whereas security practices have become common practice in traditional devices (laptops,
smartphones, etc.), security of 10T devices is a complex matter. This makes IoT currently the
‘weakest link in the security chain of computer networks’. The vulnerable character of loT
devices can be explained by an accumulation of reasons:

e |narushto market, vendors minimize or neglect security to keep costs low, time-to-market
short and their devices user-friendly (Kolias et al., 2017; Raad Cyber Security, 2017). On top
of that, the security of loT devices is a difficult task since many of them use lightweight
operation systems on which traditional computer security solutions cannot be run (Batalla,
Mastorakis, Mavromoustakis, & Pallis, 2017).

e Customers often think of 10T as plug and play devices and want to make sure their device
works quickly rather than investigate and taking basic security measures such as setting a
new password (Vlajic & Zhou, 2018). This behavior is often strengthened by the (lack of)
interfaces of 10T devices, which are non- or minimal interactive (Kolias et al., 2017).

e |f security measures are in place, two reasons above contribute to poor maintenance of
security: vendors may not develop security patches and users may not think about/forget
about updating their device regularly (Bertino & Islam, 2017; Kolias et al., 2017; Vlajic &
Zhou, 2018).

e Deployment of global security mechanisms or policy is not possible due to the distributed
control of the Internet and complex governance structure. Each network and country
follow their local rules and many actors are involved (Donno, Dragoni, Giaretta, &
Spognardi, 2018; Raad Cyber Security, 2017). ENISA (2018) concludes that all security
requirements for loT can be met with existing standards, but that a new flexible and holistic
approach is needed to actually achieve effective loT security in a dynamic ecosystem.

2.2.2 Mirai: ‘The Future’

Currently, the biggest threat for insecure 10T devices is Mirai, a botnet which is deployed for
DDoS attacks. DDoS attacks can have severe destabilizing consequences for the direct victims
of an attack as well as for the systems and users that depend on that service. DDoS attacks
illustrate the interdependent nature of Internet security: the vulnerability of a DDoS victim is
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not determined by the security his/her own system, but instead by the security of the entire
Internet (Donno et al., 2018).

Although there are more DDoS-capable IoT malware (Donno et al. identify twelve others), Mirai
stands out because of the damage it has caused and due to its growing technical sophistication
(Donno et al., 2018). The Mirai malware (Japanese for ‘the future’) was first identified by a
whitehat security research group in 2016 (Kolias et al., 2017). In that same year, the Mirai
source code was published open source on the online software development platform GitHub,
which gave birth to a number variety of variants and imitators, often more sophisticated and
with new capabilities (Antonakakis et al., 2017; Donno et al., 2018; Kolias et al., 2017).
Collectively these variants are referred to as ‘Mirai-like’.

A Mirai botnet has the following four components (Donno et al., 2018; Kolias et al., 2017):

e A ‘bot’ can be considered as an infected device. Strictly speaking, the term refers to the
malware that runs on the device;

e A Command and Control (C&C) center is a server that provides the botherder (the malicious
actor that runs a botnet) with an interface to control the botnet;

e The report server receives information about newly infected bots and forwards this to the
loader server;

e The loader server uploads the Mirai malware code to the newly infected devices.

Due to the public availability of the source code, the operations of Mirai have been largely
studied. The following description of Mirai is based on the articles of Antonakakis et al. (2017),
Donno et al. (2018) and Kolias et al. (2017). A Mirai bot functions as follows:

Step 1 The first phase exist of scanning randomly public IPv4 addresses through TCP port 23
and 2323 (Telnet protocol). IP addresses on a hard-coded blacklist that include ones of the U.S.
public services and the Internet Assigned Numbers Authority are excluded from this scanning.

Step 2 When a potential victim is identified, the bot will execute a brute-force? attack the victim
device with ten random username-password combinations from a hard-coded list of 62
credentials.

Step 3 If the brute-force login has succeeded and a Telnet connection is established, Mirai
sends the IP address of the victim and the correct credentials to a report server.

Step 4 The report server forwards the information to a loader server, which logs in on the victim
device, determines the hardware architecture and downloads and executed the Mirai malware
that fits the system.

Step 5 After the successful download and execution of the binary code, the binary code is
deleted. The malware is now active and has four tasks:

e Scanning: searching for new victims, see step 1

e Killing: kills other processes bound to TCP/23 and TCP/2323 and prevents breaking in of
others through other common methods to protect itself from competing malware (and
thereby maximize availability)

e Waiting commands: once in a while, the bot checks-in with the C&C server and waits for
further commands.

2 A brute-force attack is an automated trial-and-error method (i.e., automated ‘guessing’) used by hackers to
obtain encrypted data, often login credentials.
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e (DDoS) attacking: when the C&C server gives an attack command, the bot will attack the
target server with one of the ten available attack variations.

While TCP/23 and TCP/2323 were initially used to lay a connection, new strains also target
other ports. Cetin et al. (2019) observe fourteen target ports, distributed over six protocols.
Devices providing HTTP-related services are most frequently compromised by Mirai
(Antonakakis et al., 2017; Orcun Cetin et al., 2019). By looking into the credentials that are
hard-coded in Mirai, studies by Antinajajus et al. (2017) and Cetin et al. (2019) both find that IP
cameras, DVRs, and consumer routers are the most targeted types of devices.

2.2.3 loT governance

Traditionally, the responsibility of, for example, a DDoS attacks lies with the users of a host:
they have a duty of care with regard to maintaining secure devices (Kolias et al., 2017).
However, due to the different nature of 1oT as covered in section 2.2.1, insecure loT devices
cannot purely be attributed to its end users. In an advisory report to several ministries, the
Dutch Cyber Security Council raises concerns regarding the liability and duty of care of loT
devices (2017). ‘The loT playing field is big, borderless and knows a complex international
composition. [..] Due to the great number of primary international players on the IT-market,
there is a lack of overview’ (Raad Cyber Security, 2017). This chaotic situation complicates the
question of who is responsible for loT security.

In addition to the immaturity of the 10T governance ecosystem, the governance of botnet
mitigation in general is known for its complex character. In the last decade, many initiatives are
taken in so-called stakeholder communities: groups of actors that are related for geographical
reasons (EU, Netherlands, etc.) and/or functional reasons (law enforcement agencies, ISPs,
etc.). Due to the overlap of these initiatives, the landscape of botnet mitigation is diverse and
dispersed (International Telecommunications Union, 2008). Stakeholder communities tend to
operate in their silo while meanwhile, overarching coordination is missing (International
Telecommunications Union, 2008).

Despite the urgency of the loT security and loT botnet mitigation, there is hitherto no
governance structure in place that ‘glues’ all stakeholders and their interest (Almeida & Goh,
2017). Rules, norms and regulation concerning loT security (both cross-bordering and cross-
sectoral) will thus not be implemented in the foreseeable future (Orcun Cetin et al., 2019).
Meanwhile, best efforts are made by different stakeholders to mitigate loT abuse. Notification
efforts by the Abuse Desk of KPN are such an example and are said to play a ‘critical role’ (Orgun
Cetin et al., 2019). More information about KPN’s notification practices is covered in chapter 3.

2.3 Notification effectiveness

Abuse and vulnerability notifications call for end users’ willingness and capability to execute
the recommended action voluntary. The success of these notifications is mainly measured
through infection tracking. Studies into this focus on different potential predictors of
remediation such as user traits, notification content and notification channels. These predictors
are discussed in the following sections. Since most studies are performed under usual
circumstances (real-life), we speak here of ‘effectiveness’ rather than ‘efficacy’ (ideal or
selected circumstances). Note: the following findings come from studies into abuse
notifications as well as studies into vulnerability notifications.
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2.3.1 Notifying pays off

Li et al. (2016) and Cetin et al. (2017) both analyze which aspects of vulnerability notifications
lead to higher remediation rates. Both studies show a higher remediation rate when
notifications are sent but lack clear insights into the incentives that have led to this
remediation. Vasek & Moore (2012) find that sending more than one notification does not
create a higher remediation rate. The most recent studies by Altena (2018) and Cetin et al.
(2018, 2019) show a high natural remediation rate of Mirai and a very low reinfection rate, as
discussed in section 1.1.4. The low reinfection rate creates a discrepancy with earlier lab
results, which is not well understood.

2.3.2 Notification content

Krol et al. (2012) explore whether computer users heed warnings and conclude that the
majority of people ignores security warnings and that the content of the warning does not
matter. In contrast, Vasek & Moore (2012) conclude that for abuse reporting, detailed
descriptions of a compromise lead to a higher remediation rate. This is also supported by an
empirical study of Cetin et al. (2016) into the role of sender reputation. Whereas information
on the compromise must be detailed, Forget et al. (2016) argue that security instructions, on
the other hand, must be very simple. Stock et al. (2018) find a discrepancy between problem
awareness and actual patching efforts and therefore claim that content of notifications is key
to convince the receiver.

2.3.3 Notification channel

The commonly used notification channel to reach end users is e-mail. Cetin et al. (2016)
conclude that sender reputation does not matter. Stock et al. (2018) argue that e-mail as a
communication medium suffers from several shortcomings but that other channels do not
justify their significant financial costs and time overheads. This is contradicted by the studies
by Cetin et al. (2018, 2019) who observed that among consumers placed in a walled garden,
92% of the Mirai infections is remediated after two weeks. Although this measure is highly
effective, fifteen percent of the customers expressed dissatisfaction with this intrusive measure
and the solution is not cost-effective on a large scale. The two articles also conclude that e-mail
notifications did not have an impact on remediation compared with the control group
(respectively 77% and 74% infections were remediated after two weeks).

2.3.4 User traits

Interestingly, Krol et al. (2012) conclude that people with a lack of computer knowledge
revealed saver computer behavior and that participants rely on their own judgment, rather
than a security warning. Forget et al. (2016) compares user engagement (‘desire to control and
manage their computer’s functionality and security’) with the actual security state of their
computer and concludes that user engagement alone is not a good predictor for computer
security. This implies that even with the right motivation, people’s behavior may not result in
the desired outcome.

In conclusion, although notifications in most studies lead to a higher remediation rate, the
results are quite modest. Several articles argue that content is a driving factor, but there is not
yet a universal understanding of the criteria of a successful notification. Besides an incomplete
understanding of the influence of content, differences among end users may also affect the
success rate of notifications. A one-size-fits-all notification is, therefore, an illusion.
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2.4 Cybersecurity behavior

To encourage end users to take voluntary action, one must understand their motives. Studies
on this topic often use a theory or model to illustrate the antecedents or drivers that explain
(in)action. Within the consulted literature, fifteen of these models and theories are identified.
Appendix C presents these behavioral models, their explanatory value and whether or not they
are relevant in light of l1oT abuse remediation. Thirteen of those theories have psychological
fundamentals; one stems from the warning science and one from economics. This section
discusses four theories that proved to be valid in understanding why and when people do not
comply with security measures recommended by notifications.

2.4.1 The Theory of Planned Behaviour

The Theory of Planned Behaviour (TPB) is a psychological model that is often used in explaining
how individual security behavior is influenced. Ajzen (1991) proposes the TPB to predict actions
based on an individual’s intention to perform that behavior. Intentions are ‘indicators of how
hard people are willing to try’ to perform a certain behavior and is influenced by three
‘motivational factors’ (Ajzen, 1991, p.181):

Attitude toward the behavior: the users' positive or negative feeling towards engaging in a
particular behavior (Ifinedo, 2012a; Safa et al., 2015).

Subjective norm: ‘the perceived social pressure to perform or not to perform the behavior.’
(Ajzen, 1991, p.188)

Perceived behavioral control: the ‘perceived ease or difficulty of performing the behavior and
it is assumed to reflect past experience as well as anticipated impediments and obstacles.’
(Ajzen, 1991, p.188). Perceived behavioral control not only predicts intention, but also
influences actual behavior directly (Ajzen, 1991; Howe, Ray, Roberts, Urbanska, & Byrne, 2012).
This variable is recognized by Ajzen (1991) to be congruent with the notion of ‘self-efficacy’ as
introduced by Bandura in 1977.

Attitude

Subjective norm Intention Behavior

Self-efficacy

Figure 2 Theory of Planned Behaviour. From Ajzen (1991)

The relations between the motivational factors are illustrated in the model in figure 2. Although
the model is quite general, it provides several insights that are useful in the context of loT abuse
remediation. Firstly, intention is the most important predictor for behavior, which means that
intention does not always lead to the desired behavior. This intention-behavior discrepancy
also comes forward in other psychological models such as TPB’s predecessor Theory of
Reasoned Action (TRA) and the protection motivation theory (PMT, see section 2.4.3). Sheeran
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(2002) quantified this gap through a meta-analysis. He found that intention explains 28 percent
of the variance in future behavior. A second insight is that self-efficacy is assumed to be of
direct influence on behavior. This has two reasons: someone with more self-confidence in
achieving something is more inclined to make more effort, and perceived control is a good
measure for actual control (Ajzen, 1991). If people thus believe they could perform a certain
action, the probability that they succeed is higher. A last valuable insight is that attitude toward
the behavior appeared in some studies to be influenced by knowledge since knowledge creates
more awareness (Dinev & Hu, 2007; Safa et al., 2015). One can thus assume that better
information provision can lead to more desired behavior.

2.4.2 Rational Choice Theory

The Rational Choice Theory (RCT) is a neo-classical approach to understand behavior and
crossed the boundaries of the economics domain due to its explanatory power. Like the theory
of planned behavior, the RCT focuses on the determents of behavior. The theory assumes that
individuals make rational choices: from a set of alternatives, they choose for the alternative
with the highest utility given that the situation meets the assumptions (such as perfect
information).

An extensive study by Van Eeten & Bauer (2008) argues that malware is an outcome of the
underlying incentive structure in the market. Each actor in the value net makes a rational
decision and thereby weights cybersecurity benefits (the minimization of risks, potential loss)
against the cost (inconvenience, effort) of taking security measures. Similar to other markets,
this results in externalities: home users do not take into account negative effects for other
actors in their decision to behave insecurely. A follow-up study focuses on botnets in particular.
End users’ incentives to clean-up botnet infections are even smaller compared to other
malware since the services of compromised devices are often not disrupted (M. van Eeten &
Bauer, 2009). A study by Fagan et al. (2016) empirically supports this theory. They conclude
that users act rational (since all participants perceived their benefits greater than costs) and
that security behavior is more driven by individual concerns than social considerations (causing
externalities). Herley (2009) also finds that rejection of security advice is a rational decision and
assigns rejection to poor information about the cost/benefit trade-off in security warnings. He,
therefore, concludes that users must be more confronted with the actual harms of non-
compliance so they can make a more realistic trade-off. Bulgurcu et al. (2010) combine the RCT
with the TPB by subdividing each of the three determinants of TPB in an aggregate sum of costs
and benefits. A more recent study by Jhaveri et al. (2017) presents a model of the current abuse
reporting incentive structure and conclude that voluntary action is at the heart of effective
remediation.

Limitations of the RCT also apply for the context of 10T abuse. End users don’t act fully rational.
First of all, they don’t have full information: they are informed about the consequences, but
there is uncertainty about the costs of compliance and non-compliance. Secondly, end users
have limited cognitive ability: they do not have the time or mental capacity to weigh the two
alternatives. Aytes & Connolly (2004) tested this boundedly-rational choice process for risky
computer security behavior and concluded that users don’t make sensible choices at all and
that additional information will thus not improve behavior.

In conclusion: despite the limitations of the RCT, it provides a powerful rationale to understand
non-compliance with loT abuse notifications. Non-compliance is the outcome of
externalizations of the actual costs: an end user does not take into account societal costs in
her/his trade-off. Therefore, the costs of compliance do not weigh up against the benefit of a
clean loT device. Based on this, one could assume that 10T abuse notifications can be more
effective when making an end user aware of the societal benefits of compliance (or cost of non-
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compliance). However, the study by Fagan et al. (2016) shows that people, although aware, are
still likely to neglect societal concerns. Also, Herley (2009) argues that warning should not
confront receivers with worst-case harm since users must be enabled to make a realistic
cost/benefit trade-off based on actual harm.

2.4.3 Protection Motivation Theory

The Protection Motivation Theory (PMT) is grounded in fear appeal theories (Rogers, 1975).
The theory explains how fear-arousing communication influences behavior through
anticipation of a bad outcome and desire for a good outcome. The PMT was often used in
health care studies but proved useful in other domains. Initially, Rogers’ (1975) theory
contained four® cognitive processes that ‘mediate the effects of the components of fear
appeals’ which arouse so-called ‘protection motivation’. In later studies, a fifth component is
added (response costs) and all five processes are structured in two main processes: threat
appraisal and coping appraisal. Threat appraisal is the extent to which a person perceives to be
threatened, which is determined by:

Perceived severity: ‘the size of the potential consequence, should the negative event occur’
(Hanus & Wu, 2016, p.4);

Perceived vulnerability: ‘the probability of occurrence of a negative event’ (Hanus & Wu, 2016,
p.4).

Coping appraisal is the extent to which a person believes s/he can cope with the threat given
the recommended response. Coping appraisal is determined by:

Response efficacy: ‘one’s confidence that certain type of behaviors will allow him or her to
avoid or minimize the risk of a negative event’ (Hanus & Wu, 2016, p.4);

Self-efficacy: ‘the degree that s/he believes it is possible to implement the protective behavior’
(Vance, Siponen, & Pahnila, 2012, p.190);

Response costs: ‘costs to the individual when implementing the protective behavior’ (Vance,
Siponen, & Pahnila, 2012, p.190).

The model is illustrated in figure 3. The core idea behind protection motivation (hence attitude
change) is that one has the desire to minimize the potential harm of perceived threat, and
weights that desire against the perceived coping ability (thus a multiplicative relation) (Rogers,
1975). In Rogers’ initial theory, attitude change refers to the ‘intention to adopt the
recommended response’ (Rogers, 1975). In later studies by others ‘intention’ is often ignored,
and the five components are assumed to have a direct influence on behavior. Because of its
general nature, PMT is applied in many domains among which information security studies. The
consulted literature contains 21 articles that apply and test the PMT in the context of
(information/computer/etc.) security advice. Most studies have tested all five components of
the PMT, often in combination with another theory. The majority of studies show a significant
influence of at least three of the PMT components on behavior. However, which of the five
components have significant explanatory value vary greatly among these studies.

3 The initial theory existed of three processes, but this theory was in 1983 revised by Rogers. Similar to the
theory of planned behaviour, PMT was then complemented with the self-efficacy theory of Bandura.
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Perceived severity

Perceived vulnerability

Self-efficacy

Response efficacy

Response costs

Figure 3 Protection Motivation Theory. Adapted from Rogers (1985)

In conclusion, the PMT provides a model to understand the underlying motivation to comply
with a security warning. Key in this model is the notion of perception, which implies that not
only the information provided in a notification is important, but also its framing. Another
relevant assumption in the context of loT abuse notification is the presence of self-efficacy and
response efficacy as predictors of intention. End users must thus be convinced of the efficacy
of the recommended remediation guidelines and must also be confident that s/he is capable
of performing those actions.

2.4.4 Communication-Human Information Processing model

Warning science (or: risk communication) aims to understand how warnings are processed by
a receiver. Models in this domain explain why and when a message is (in)effective and often
provide guidelines to design an effective warning. This domain, therefore, provides a helpful
perspective to analyze cybersecurity notifications. The Communication-Human Information
Processing Model (C-HIP) has been used to this end.

The C-HIP model was introduced by Wogalter (2006) to structure warning research by
identifying seven phases between a source that sends a warning and a receiver who will or will
not change his/her behavior due to the warning. Wogalter (2006, p.53-58) describes the nine
stages the following:

Source: ‘the initial transmitter of the warning information’
Channel: the medium and sensory modality (e.g., visual, auditory) in which the warning is sent
Delivery: whether or not the warning has reached its target

Attention switch: the warning must be noticed. It competes with other stimuli from the
environment.
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Attention maintenance: after notice, attention must be maintained until the message is
completely delivered

Comprehension and memory: the receiver must understand the meaning of a message
(comprehension) or relevant knowledge must be activated (memory)

Attitudes and beliefs: warning content must concur with what the receiver believes is true (e.g.,
hazard perception)

Motivation: a warning must energize the receiver to comply
Behavior: whether the receiver carries out the ‘warning-directed safe behavior.’

Environmental stimuli (‘noise’): is not a stage, but captures all aspects other than the warning
that may influence how the warning is processed such as other people, other warnings,
background noise, etc.

The C-HIP model is illustrated in figure 4. Wogalter (2006) describes the model as a stage or
process model, in which information is linearly transferred through each phase. In other words:
each phase is a potential bottleneck that could prevent information from being successfully
processed. Although a warning may not lead to compliance, it could still have been effective in
earlier stages. Although Wogalter emphasizes the linearity of the process, he adds feedback
loops to also include the possibility of non-linearity due to processes such as habituation.

This model is applied for the first time for computer security warnings by Egelman et al. (2008).
They use the structure of the model in their research design and conclude that active warnings
are more effective than passive warnings. Similar to findings discussed in section 2.3.2, Cranor
(2008) attribute the failure of compliance with incomplete communication. He argues that
receivers are often non-experts who need to be provided with clear instructions. Studies by
Felt et al. (2012) and Fagan et al. (2015) focus on the blocking stages of the model. Felt et al.
(2012) conclude that permission requests already fail at the beginning stages of the process,
namely at ‘attention’ and ‘comprehension’. Fagan et al. (2015) find that update notifications
have a negative effect on the ‘attitude/beliefs’ stage due to annoyance, which causes more
non-compliance.

Although the C-HIP model is not a widely used model in the cybersecurity domain, the four
studies above illustrate that the C-HIP model can be helpful as a framework to understand how
the process that leads to (non-)compliance may look like. Due to the structure of sequential
stages, it can be an easy tool to ‘pinpoint” where an end user drops out the process. An
interesting notion within the C-HIP model is that notification effectiveness can also be
measured based on other stages than compliance only. This way, one could measure the
‘extent of effectiveness’ of notifications rather than the binary distinction between compliance
and non-compliance.
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Behavior

Figure 4 C-HIP model. From Wogalter (2006)
2.4.5 A theoretical framework

The studies discussed in previous sections provide different rationales behind end user
compliance with loT abuse notifications. Whereas the TPM and RCT help to explain end users’
incentive to behave safely in general terms, the PMT and C-HIP models acknowledge the
influence of the (content of) a notification.

Figure 5 illustrates the combination of these theories adjusted to the context of this study. This
model is used to understand the behavior of notified consumers and form the basis for the
interviews and subsequent data analysis.

The main structure is derived from the C-HIP model that explains compliance as the outcome
of a process with different stages. Attention switch and maintenance are not included as a
separate stage but included in the delivery stage since the distinction between the two will be
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difficult to make within this study. Since ‘delivery’ now not only refers to the technical aspect
of delivery (e.g., an e-mail is successfully sent) but to the fact the message has reached its target
(the receiver has read the e-mail), we choose to name this stage ‘awareness’ to avoid possible
confusion.

The stage ‘motivation’ is extended by the PMT since Wogalter (2006, p.58) mentions similar
predictors for this stage as the ones in the PMT such as ‘cost of compliance” and ‘severity of
injury’. ‘Perceived vulnerability’ is not included since the notification addresses an actual
infection and is not a vulnerability warning. ‘Attitudes and beliefs’” are included within the
motivation stage. Since motivation and intention are closely linked (someone who is motivated
to take action, has also the intention to do so), the motivation stage is not treated as a separate
stage but as a further specification of the intention stage.

‘Intention’ refers to the intention to comply and is derived from TPB and PMT. Both theories
argue there is a gap between intentions and behavior. The last stage ‘behavior’ is subdivided
into two stages: ‘Compliance’ is the behavior-component that refers to whether the end user
has actually complied to the recommendations in a notification. Since there are other ways to
clean up Mirai than the recommended actions, we add the behavior-component ‘cleanup
actions’ that refers to all other effective cleanup efforts.

Four out of the five variables in TPB are included in this model. ‘Subjective norm’, which is also
recognized as an influencer of the ‘motivation’ stage in the C-HIP model, is excluded since it
addresses social pressure or influence which is not an applicable factor in a home context. Also,
the cost-benefit trade-off that is central in the RCT can be derived from the components of the
theoretical framework: minimizing the perceived severity versus response costs. To reduce
further complexity, the feedback loops between all stages and the loop through the
‘environmental stimuli’ are excluded.

In conclusion, the main factors which will be used in this research to understand consumer
behavior after receiving a notification are:

e Awareness: which entails both the technical delivery of a notification and the
awareness of a consumer of the notification content;

e Comprehension: whether a consumer understands what the problem is and what the
recommended steps are;

e [ntention: whether a consumer intends to comply with the recommended actions in
the notification. Intention can be explained by consumers’ motivation to comply;

e Behavior: whether a consumer has performed the recommended actions correctly or
took other effective cleanup measures.

When a notification has successfully passed all four stages, a Mirai infection is remediated.
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3 KPN Abuse Desk

3.1 Introduction

This chapter describes the processes of the KPN Abuse Desk and thereby provides an overview
of how infected consumers are notified. The Abuse Desk is an eight-man sub-department of
the KPN Security Operation Centre (SOC), which in turn is part of the umbrella department
Chief Information Security Office (CISO). The CISQ’s mission is ‘to keep KPN reliable, secure and
trusted by customers, partners and society’ (internal document CISO, 2019). The Abuse Desk
has as a primary goal to remediate vulnerabilities and abuse of KPN resources. This concerns
the malicious activities of customers as well as unintentional abuse or vulnerabilities. Abuse
Desk employees notify infected customers and mitigate the damage by placing them in a walled
garden. Section 3.2 describes how abuse incidents and vulnerabilities are detected. The
notification practices are described in section 3.3.

3.2 Detection

The Abuse Desk depends on external organizations for data on abuse incidents, vulnerabilities
and other malicious activities. This data is typically provided through so-called abuse feeds. The
data providers can be divided into three categories:

e Non-profit organizations which detect and/or collect abuse incidents and notify the
concerning ISPs;

e Commercial enterprises that collect and sell abuse data as a service;

e Individuals or individual organizations that ‘come across’ abuse incident data and
report this to KPN.

Of all sources available to KPN, Shadowserver and AbuseHUB provide information about Mirai
infections. The Shadowserver Foundation is a non-profit organization that collects a large
amount of threat data and sends daily reports to parties such as network providers,
governments and law enforcement agencies (Shadowserver, n.d.-a). The KPN Abuse Desk
receives every day 41 lists with vulnerabilities and abuse incidents at IP addresses that fall
within the range of KPN’s and Telfort’s networks (Shadowserver, n.d.-b). The ‘Drone/Botnet-
drone Report’ is the only list that contains reports on Mirai infections.

The Abuse Information Exchange is a Dutch Association which represents more than ninety
percent of the Dutch ISPs. Their central system, AbuseHUB, collects and correlates data about
infections from different sources and share this with the joining ISPs (Abuse Information
Exchange, n.d.). In this study, we can only make use of the Shadowserver feed since Mirai
detections provided in the AbuseHUB’s abuse feeds cannot be easily retrieved. Each abuse
incident has to be visually inspected to determine whether the incident concerns Mirai. The
Abuse Desk is currently working on a software system that makes it possible to gain overview
of the abuse incidents reported by AbuseHUB.
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3.3 Notification

The majority of the feeds from Shadowserver are automatically processed. In principle, all
reported abuse incidents among KPN consumers are remediated by placing the consumerin a
walled garden. This is a quarantined environment from which the consumer can still visit a few
whitelisted websites so s/he can perform urgent actions (e.g. financial websites, e-mail hosting
websites) and can perform the recommended actions (e.g. website that provides virus scan
software). Consumers who are placed in a walled garden receive both an e-mail and landing
page in their browser which contain information about the reason for quarantine and
recommended steps to remediate the abuse. The e-mail and landing page of Mirai customers
are improved using the recommendations by Altena (2018) and are shown in appendix D.3. The
recommended steps to remediate Mirai are the following:

Identify the devices that are connected to the Internet;
Reset the device(s);
Change the passwords of the device(s);

Reset the modem/router (back to factory settings);

ok Ny e

Change the password of the modem/router.

Note: this is a concise version of the steps, appendix D.3 shows the complete formulation of
the recommended cleanup actions. Consumers in a walled garden can release themselves by
filling in a contact form on the landing page. This form is also shown in appendix D.3. This
contact form is the same for all abuse incidents and thus contains irrelevant questions for Mirai
remediation (e.g., a customer is asked for virus scan logs). Customers can self-release from a
walled garden two times. After the second time, consumers have to wait for an employee of
the Abuse Desk to release them. When a customer is still in the walled garden after a month,
the blockade is automatically lifted.

As previously mentioned, this procedure only concerns KPN consumers. Telfort consumers and
KPN business and wholesale customers on KPN’s radar are not automatically processed and are
notified on a best-effort basis. The procedure is illustrated and described in more details in
appendix D.2.

All consumers are asked to e-mail the Abuse Desk when one has performed the steps. In reality,
mainly consumers who experience difficulties contact the desk. Consumers cannot call the
Abuse Desk, which is a precaution to prevent work overload. The employees can thus only be
reached per mail during office hours (Monday to Friday, 8 am — 17 pm).
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4 Methodology

4.1 Overview

This research follows an experimental design. It studies the effect of two different notification
mechanisms through a randomized controlled experiment setup. This study will be performed
for both KPN and Telfort customers, which results in two separate experiments due to possible
characteristic differences between these customers.

Sections 4.2 provides information on the experimental setups. The two data collection methods
— infection tracking and interviews - are described in respectively section 4.3 and 4.4. These
sections will also focus on data preparation procedure. The methods used for data analysis are
described in section 4.5. This chapter concludes with an elaboration of the ethical
considerations (4.6) and limitations (4.7) of the methodology. Due to the complexity around
the estimation of infection time in this study, we visualize this at a conceptual level in figures 8
to 10 at the end of this chapter.

4.2 Experimental setup

In an experimental design, a factor or subject is manipulated to explore its effect. In our
experiments, the notification mechanism is the manipulated factor and its effect on customers’
behavior is explored. The experiments are randomized (random assignment to groups) to
minimize selection bias, and thereby increase the validity of the results. The experiments will
be controlled (inclusion of a control group) to be able to study the causal effect of notifications
on consumers’ behavior and remediation.

4.2.1 Intervention
Two interventions will be tested: e-mail only notifications and walled gardens. In e-mail only
notifications, a customer receives an e-mail which:

e notifies the customer about the Mirai infection;

e provides the five steps to remediate the malware and prevent reinfection as described in
section 3.3;

e requests the customer to respond with an e-mail to the Abuse Desk to the notification.

The walled garden notification mechanism consists of the e-mail as mentioned above, but
additionally puts the consumer in a quarantined environment. More information about the
notification process can be found in chapter 3 and appendix D.

loT-infected consumers are assigned to either one of the two treatment groups or the control
group. The control group will not be notified during the experiment period. When the customer
is still detected as Mirai-infected after this period, s/he will receive a notification too.
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4.2.2 Populations of interest

The target population in the experiment exists of consumers that own a Mirai-infected loT
device. This research focuses on two consumer markets: KPN and Telfort consumers.
Customers from the business, the wholesale and mobile markets are excluded for different
reasons:

e Business market: currently, Mirai-infected business customers are notified on best-effort
basis. There is no procedure or database in place to match an IP with corresponding
business or the right person within that business. Infected IP addresses are randomly
selected and attempted to notify (see appendix D). Also, it is not desirable to put a business
customer in a walled garden since this may lead to severe economic or safety
consequences.

e Wholesale market: in this market, other service providers make use of KPN’s infrastructure
and network and sell this service under their own brand. The end users of the Internet
services thus don’t take service directly from KPN. KPN cannot identify nor notify these
users directly.

e Mobile market: following our findings from the literature review, Mirai is not a threat to
mobile devices (smartphones and tablets). Therefore, this market is not in the scope of this
research.

Normally, Mirai infections within the Telfort market are not included in the regular notification
procedures and are also remediated on a best effort basis. However, since the identification
and notification of Telfort customers are possible, this population will be included in the
experiment.

4.2.3 Procedure

On all working days, the Mirai feeds of the previous day are checked for new infections. All
Mirai-infected consumers who have been notified before are excluded from the experiment to
avoid the influence of habituation. Consumers who are only detected on Fridays or Saturdays
are not included because these consumers may not be notified due to the unavailability of the
Abuse Desk during the weekend. This is a limitation of the experiment setup and discussed in
section 4.7. All other consumers are assigned following two premade lists of complete random
assignment. Since KPN and Telfort consumers will be treated as different populations, they are
assigned following a separate random assignment process. The procedure for this assignment
and corresponding replicable code can be found in appendix F. F Randomization protocol

The experiment subjects are tracked for a period of two weeks. After these two weeks, all
consumers will be contacted for an interview by phone. We set this time to two weeks because
we want to obtain as reliable information as possible regarding what actions a consumer took.
Since the memory of consumers may get blurrier over time, we decided to interview consumers
immediately after the experiment period. Section 4.7 on limitations discusses this choice in
more detail.

All consumers are tracked for an additional two weeks after the experiment period to monitor
whether an IP address is still visible in the abuse feed. If so, that would imply that the Mirai-
infection is not remediated during the experiment. Our interviews may have influenced these
observations since we may help remember a consumer to cleanup their device, or may alarm
a consumer in the control group, which could result in cleanup actions within the two weeks of
observation. Also this limitation will be discussed in section 4.7.
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During the total of four weeks (two weeks tracking + two weeks of extra observation), a
consumer is put on a white-list to prevent him/her from getting a notification about another
malware or vulnerability. The experimental procedure is illustrated in figure 6.

staggered entry Mirai
infections

analyse notification
history

otified before
experiment?

randomly assign IP to
experiment group

| ! !

walled garden
& email
notification

e-mail

do nothing notification

Y

2 weeks tracking

interview customer

2 weeks observation

end

Figure 6 Experimental procedure
4.2.4 Experiment duration: an exploration

The observed infections represent the complete population of interest within the experiment
period. In other words: we do not take a sample. Due to the absence of sampling variability,
inference of the data to a larger population is inapplicable (Neal, 2015). However, this research
deals with inferences about the differences between populations due to treatment evaluation
(different notification mechanisms).

The experiment has a maximum duration of ten weeks due to time constraints. To determine
the minimal number of consumers needed in the experiment to reach significance given
sufficient power, we conduct a power analysis. Because of fluctuating numbers of detected
Mirai detections per day, it is unclear yet how many consumers in the experiment are to be
expected in this period. For that reason, a dynamic power analysis is performed to explore the
power level for different population sizes. Since infection time is the most dominant variable,
this variable is used for the power analysis.

The power analysis is computed and visualized using the G*Power software (Faul, Erdfelder,
Lang, & Buchner, 2007). Since Altena’s (2018) study concludes that there is no significant
difference between the control group and e-mail notification group, we use the walled garden
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group to determine the expected effect size. The following input parameters are used for the
power analysis (t-test based):

Input parameter Value Support

Tail One The effect has an expected direction: the walled
garden group has lower mean

Effect size 0,4 We cannot obtain the mean values of prior studies
and therefore not estimate the effect size. We
choose to set the effect size on 0,4, which is a
medium effect size.

Alpha 0,05 The probability of wrongfully rejecting the null
hypothesis (type | error).

Allocation N2/N1 1 Consumers are complete randomly assigned (thus
equal size)

Table 1 Input variables power analysis

The power level is the probability that one does not make a type Il error, in this context: the
probability that we will not detect a difference between two populations while there actually
is. Figure 7 visualizes the relation between population size and power level for this experiment.
Although one wishes to maximize the power of its outcomes, there is no consensus on the
minimal level. The minimal power level for this research is set to 50%. As can be derived from
the figure, the experiment needs more than 105 consumers (70 for two treatment groups, the
experiment has 3: 70/2*3). We wish to reach a power level of 80%, which comes down to 234
consumers (156/2*3). In conclusion: to obtain enough data to be able to detect a difference
between infection time of two groups given the effect size of 0,4, we need a minimum of 105
Mirai infected consumers and wish to approach 234.

Altena’s (2018) experiment contained nine consumers per week average. Her dataset
contained only KPN consumers, and all observations were obtained from one source only
(Shadowserver). In our experiment, we also include Telfort consumers and use data provided
by a second source (Thunderlab, see section 4.3.2). We, therefore, think ten weeks is a long
enough experiment duration to reach a minimum of 105 Mirai-infected consumers. If this
number is not reached after ten weeks, we have to accept an increased risk of not estimating
differences between populations while these exist in reality (type Il error).
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Figure 7 Dynamic power analysis
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4.3 Tracking infections

4.3.1 Estimating infection time

The Mirai infection time is estimated using the daily abuse feed of two sources which will be
described in section 4.3.2. These feeds provide timestamps of when Mirai is detected at an IP
address. In this study, the infection time is estimated by the difference between the time of
notification and the last detection. There are exceptions to this rule:

e The last detection of consumers in a walled garden is set to the bailout timestamp since
Mirai cannot be detected during this quarantined state. If a consumer has not been able to
release him/herself, the timestamp of the first communication with the Abuse Desk is used.
If Mirai is detected again after the bailout, this timestamp is denoted as the last detection.

e Since the control group has no notification timestamp, the notification timestamp is set to
the first day after detection at 11 am. This is the regular time on which the other treatment
groups are notified.

e |f Mirai is not detected after notification, the infection time is set to a random number
between 1 and 12 hours. We choose to do this - instead of setting the infection time to O -
since zero-values may lead to assumption violations during Cox modeling (Cox modeling is
described in 4.5.2). We choose to randomly pick a number because this more realistic than
one specific infection time. Because we want to maintain as much information as possible,
we choose for the range 1 to 12 hours and not longer.

e |f Mirai is detected in the observation period (after the two-week experiment), the
infection time is set to 336 hours (two weeks) and the infection is included in the analysis
as a censored observation (censored observations will be explained in section 4.5)

We choose to set the notification timestamp as start time rather than the first detection
because notifications can speed up remediation. Also, Altena’s (2018) study uses a similar
setup, so replicating this setup permits comparison of the results.

4.3.2 Mirai infection sources

Two sources are at our disposal of this experiment: the Shadowserver Botnet-Drone report and
a darknet infrastructure named ‘Thunderlab’.

Shadowserver

The Shadowserver Foundation is a large repository of security information internationally
(Shadowserver, n.d.-a) and shares this information freely with network owners. Of all current
reports available, Mirai detections are shared in the ‘Botnet-Drone report’. An interview with
Rosie Lovell, personas analyst of Shadowsserver, provides more information about their
detection methods (see appendix E). Currently, the detection of Mirai is done in four ways:

e Anin-house honeypot network of 600 IP addresses;
e Ahoneypot network of 1000 IP addresses funded by the General Cyber Alliance (GCA);
e 169 sinkholes of Mirai variant 14;

e Third-party feeds (e.g. large ISPs) that provide raw data or fingerprinted data.
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Thunderlab

SURF is a Dutch cooperative of educational and research institutions that provides ICT facilities
to its community (Surf.nl, n.d.). A network segment of its network SURFnet is made available
for research purpose (Surfnet.nl, 2018). This darknet infrastructure is called ‘Thunderlab’. This
infrastructure provides access to 131,070 IP addresses.

4.4 Interviews

There is a vast body of literature on how to develop and conduct interviews for research
purposes. The Interview Protocol Refinement Framework (IPR) by Castillo-Montoya (2016)
combines existing resources on conducting research interviews and structures this using a four-
phase process. This framework provides a systematic approach to develop interview protocols
and thereby increase their reliability.

4.4.1 Phase 1: alignment with research questions

The interview questions need to be aligned with the research questions to obtain ‘intentional
and necessary’ questions (Castillo-Montoya, 2016, p. 812). This alignment can be checked using
a matrix that displays what interview question answers which research questions. This matrix
shows what questions are unnecessary (not giving an answer to a research question) and if
there is a gap (research questions that are not covered).

From the literature review, we have gained an understanding of how and why consumers
behave or comply with an abuse notification. The stages of the theoretical framework (section
2.4.5) are used to align the interview questions with.

4.4.2 Phase 2: constructing an inquiry-based conversation

Phase 2 entails the search for balance between conversation and inquiry in an interview. This
goal can be reached by making sure the questions meet common interview rules (Castillo-
Montoya, 2016):

e The questions are accessible and approachable;

e The interview follows ‘social rules that apply to ordinary conversation” (Rubin & Rubin,
2012 p.96 as referred to in Castillo-Montoya, 2016);

e The interview meets its inquiry goals by structuring it by types of questions
(introductory/transition/key/closing);

o Likely follow-up questions and prompts are pre-defined in a script.

The questions from phase 1 are adjusted and complemented to meet these guidelines.
Appendix G presents the matrix that contains the questions, what topic it covers, the type of
guestion and what the follow-up question will be depending on the answer.

4.4.3 Phase 3: Receiving feedback

Gathering feedback on the interview protocol is key to enhance the reliability and
trustworthiness of interviews as a data collection method (Castillo-Montoya, 2016). The
interview protocol is reviewed by two researchers of the research department and two
employees of the KPN Abuse Desk. One Abuse Desk employee provided little points of
improvements. He suggested having the contact details of the Abuse Desk and Help Desk ready
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for when consumers would like to contact the Abuse Desk in the future and for referral when
consumers ask questions regarding their subscription.

4.4.4 Phase 4: Piloting the interview protocol

The last phase of the interview refinement is trying out the research instrument in real life. This
pilot tests A) whether the questions lead to the intended answers, B) whether interviewees
understand the question, and C) how long an interview takes (Castillo-Montoya, 2016).

KPN consumers that were placed in a walled garden due to Mirai have been interviewed to test
the protocol. Of 17 consumers, eight consumers were available for an interview. The following
points are taken into account for the final improvement of the protocols:

e Consumers seem to better understand the problem and the recommended actions than
their answers to the contact form suggest;

e Consumers overestimate their remediation effort (performed some of the five
recommended steps while stating they complied fully);

e Although customers are subscribed to a consumer subscription, some of them use their
Internet subscription for business purposes (50%);

e No consumer could recall the brand of their infected device;

e Some consumers (25%) received no landing page and no e-mail and thus were unaware of
the notification;

e Theinterviews took between 5 and 10 minutes each.

4.4.5 Conducting interviews

Prior to each interview, the communication of a consumer with the Abuse Desk and Help Desk
is studied. This enables us to conduct better-informed interviews. Due to KPN’s wish to not
record interviews with its customers, the interviews cannot be fully transcripted. To capture
the data, the answers are written down in a pre-made form during the interview and directly
entered in a Python script afterwards. This script automatically asks the correct input based on
the treatment of a consumer and his/her previous answers. This makes sure the complete data
is entered and cannot be modified accidentally.

When a customer is not reached, a voice-mail is left to inform the consumer that we will
attempt to reach the consumer another time. A customer was taken off the interview list after
three attempts. We did not communicate the purpose of the call in the voice-mail so
consumers who have not been reached, do not know they are Mirai-infected.

4.5 Data analysis

In this study, we are primarily interested in the Mirai infection time, or: the time between ‘birth’
and ‘death’ of a bot. This kind of data is known as ‘time-to-event’ outcomes and includes
censored observation. Censored observations arise when a lifespan is longer than the period
in which a subject is observed. This is visualized in figure 10 at the end of this chapter. Exclusion
of censored observations would lead to information loss when analyzing lifetime probabilities
(Klein & Moeschberger, 2003). Because of these conditions, survival analysis is the designated
branch of statistics to analyze the data of this study.
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Survival analysis is a set of statistical methods wherein the time to an event is the outcome
variable and includes censored observations (Klein & Moeschberger, 2003). Three models will
be used in this study: the nonparametric Kaplan Meier estimate, the semi-parametric Cox
Hazard model and the parametric Accelerated Failure Time (AFT) model. The first two methods
are commonly used in survival analysis, the latter is less common but may provide extra insight
as will be explained in section 4.5.4.

4.5.1. Kaplan Meier survival curve (nonparametric)

Since malware studies have similar features as clinical trials (treatment groups, infection time),
estimating survival probabilities is a common practice to analyze infections (Orcun Cetin et al.,
2019). At the base of survival analysis lies the survival function and the hazard function (Klein
& Moeschberger, 2003). The survival function provides the probability S that a subject
(malware infection) is still alive after time t (remediation X of the bot has not occurred yet).

S =Pr(X>1t)

The Kaplan Meier product limit estimate can provide this survival curve when dealing with
censored data (Lindsey et al., 2004). The Kaplan-Meier survival curve is a step-wise function of
‘the probability of surviving in a given length of time’ (Goel, Khanna, & Kishore, 2010). $(t) is
the probability a subject still lives before time t, estimated by the number of deaths that
happened during the last event d; and the number of living until that moment n;. This is

formulated as follows:
S(t) = | | 1——
( ni)

i:tjst

In the context of this study, ‘subjects’ refers to Mirai bots and ‘death’ refers to the remediation
of Mirai bots. Key in this estimate is the inclusion of partial information: bots that are not
remediated after the experiment time of two weeks, are also included in the estimate as shown
in figure 10. These cases are referred to as ‘right-censored observations’ (Goel et al., 2010).
The inclusion of right-censored data prevents the underestimation of survival probability.

The Kaplan-Meier estimate has several underlying assumptions of which one is critical to
highlight in light of this study. The survival probabilities are assumed to be the same for all
infections (Goel et al., 2010). We must thus distinguish curves for all groups of which we assume
have different features.

To compare survival behavior, one can compare the survival differences over time (entire
curves) or at specific times. Entire curves can be compared using log-rank tests when the
assumption of proportional hazards is met (Lifelines, 2019b). This assumption is true when all
populations have the same hazard function but with a different ratio (see next section). In case
that curves of different population cross, this assumption is thus violated and comparison of
the curves does not lead to accurate outcomes. However, time-specific log-rank tests can
always be performed (Lifelines, 2019b).

4.5.2 Cox proportional hazard regression (semi-parametric)

The problem of Meier-Kaplan estimates is the exclusion of heterogeneity; in other words: each
curve is independently drawn while groups may be dependent. In the context of this study,
groups can be related (e.g., similar device types or user characteristics). These shared features
can lead to an underestimation of the influence of each variable (O’Quigley, 2018, p.152). In
the presence of other covariates which are not taken into account, we may not detect a
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difference between two survival curves while there actually is. This is the so-called ‘omitted
variable bias’. We can overcome this by using regression models.

There are several techniques to regress covariates. Cox’s proportional hazard regression is a
common semi-parametric method in survival analysis and includes covariates (Z). The
dependent variable in Cox’s model is the hazard rate (HR): the risk of death at the begin of a
small time interval, given that a subject has survived until then (Klein & Moeschberger, 2003).
p(t))
S(tj-1)

HR(tj) = Pr(X = ]-|X > tj) = , j = detections of remediation

The survival function and hazard rate are related by:

S(t) = 1_[[1 — HR(t))]

t]'St

The Cox proportional hazard model assumes that hazard functions of different groups are
proportional to each other: they all have the same baseline hazard function (44) and a partial
hazard exp{BZ} that is dependent by covariates (O’Quigley, 2018, p. 156). This can be
mathematically formulated as:

A(t|Z) = Ao(¢) exp {BZ}
Wherein:
At|Z = 0) = (1)

The parameters (Z) can be estimated by maximizing the partial likelihood of the weights 5. By
estimating a Cox regression model, we can identify the influence of covariates (e.g., treatment,
market) on the survival behavior of Mirai. These covariates (Z) are included in the model as a
vector and can take the form of interaction effects and dummy variables. The exponential of
the coefficient is the multiplying factor of the hazard function. In other words: a covariate with
an estimated coefficient f will have on time t a hazard rate of the mean hazard rate at that
time multiplied by exp(f).

A Cox hazard model can only be created when the aforementioned assumption of proportional
hazard is met. In some cases, this assumption is violated because the baseline hazard functions
of covariates are completely unrelated. Stratification can be applied in these cases so that the
baseline hazard function is estimated for each individual stratum and the explanatory value of
a covariate can be analyzed (Klein & Moeschberger, 2003, p. 308).

4.5.3 Accelerated Failure Time model (parametric)

The Cox hazard model is most commonly used for survival analysis (Klein & Moeschberger,
2003; Saikia & Barman, 2017). This model needs no specification of a probability distribution.
We choose to also include a parametric regression model to analyze survival data, namely the
Accelerate failure time (AFT) model which is a popular approach when modeling failure time in
a parametric way (Klein & Moeschberger, 2003; Saikia & Barman, 2017). The inclusion of this
model A) enables us to be still able to analyze the data when the Cox proportional assumption
is violated, and B) provides us with different information than the Cox model.

The AFT model describes the survival function as the product of a fitted baseline survival
function and an acceleration function. The acceleration factor determines the change of the
time scale of the survival curve compared to the time scale of the baseline and is formulated
as exp {#Z} (Klein & Moeschberger, 2003, p. 394). This is formulated as:

S(x|Z) = Sylexp{BZ}t] forall x
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This model is based on the assumption that the baseline survival function S, follows a particular
probability distribution. A variety of models can be used to represent S,. The Weibull
distribution is a popular distribution due to its flexibility (hazard rate can be increasing,
decreasing or constant) (Klein & Moeschberger, 2003, p. 395). To determine the distribution
which must be chosen for the AFT model, the most common distributions are fit on the data.
These are exponential, Weibull, Lognormal and Log Logistic distributions (Klein &
Moeschberger, 2003).

To determine the best distribution of the baseline survival curve, we use the Akaike Information
Criterion (AIC) with P as the number of parameters and K as the number of coefficients (Saikia
& Barman, 2017; Zare et al., 2015):

AIC = —2(loglikelihood) + (P + K)

The model with the lowest AlC-value fits best. Note: when comparing models with an equal
amount of parameters, we can directly compare the log-likelihood values of the models.

The estimated acceleration factor is the ‘ratio of survival times corresponding to any fixed value
of survival time’ (Saikia & Barman, 2017, p. 413). An estimated covariate thus ‘stretches’ or
‘shrinks” a survival curve by a constant amount, in other words: a covariate with an estimated
coefficient B will have the same survival function on time t as the baseline survival function at
time exp(B). Interpretation of this is quite intuitive: the mean and median survival time is
multiplied by exp(f).

4.5.4 Explorative modeling

The Cox hazard model and AFT model have different qualities and weaknesses. These are
summarised in table 2 (Bradburn, Clark, Love, & Altman, 2003; Klein & Moeschberger, 2003;
Saikia & Barman, 2017).

Cox hazard model AFT model
Main Cox’s proportional assumption is | The survival curve is distributed as
assumption: met the specified probability distribution

Interpretation of | Multiplying factor on hazard rate | Multiplying factor on survival time
estimations: (time-specific)

Strength: No need for distribution | More informative than the Cox
specification.  The  baseline | model and more efficient (smaller
hazard curve is based on actual | standard errors)

hazard rates (more valid model).

Weakness: Provides less information than | A distribution must be specified for
AFT and estimates are less | the survival curve. The model is
intuitive. estimated under the assumption that

the specified distribution is true.

Table 2 Characteristics of survival regression models

Because of the explanatory nature of this study, and lack of understanding of the influence of
covariates, each modeling process starts with the inclusion of all possible covariates. During
backward selection, each step a variable is excluded based on either expert opinion (e.g.
multicollinearity or low variance) or on the highest p-value (least reliable covariate). Each
improvement of the model is tested using the Log-Likelihood ratio test. The last step of each
modeling process is the comparison of the best-fit model with a trivial model (a model without
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covariates). When the Log-Likelihood ratio estimates a significant difference, the model is
accepted. The steps of each model cycle are included in the appendices J,K and L.

The Kaplan-Meier curves, Cox regression models and AFT models are developed using the
Lifelines (v0.21.3) Python package (“Lifelines,” 2019a). This package also enables us to check
the Cox proportional assumption, to include stratification and to fit the AFT baseline survival
function accounting for censored observations.

4.6 Ethical considerations

We wish not to violate any ethical or legal norms. Potential objections are discussed in this
section.

4.6.1 No treatment

During the experiment, one-third of the consumers with an infected I0T device doesn’t receive
any notification (the control group). To mitigate this prejudice, consumers are well-informed
about Mirai and how to remediate it during the interview. This is complemented with an e-mail
notification when Mirai is still detected after two weeks. This extra effort also applies to other
consumers who are not aware of the notification.

4.6.2 Whitelisting

Since customers in the experiment are whitelisted, they will not receive any other notification.
To prevent any damage or harm, customers are removed from the whitelist when a severe
malware is detected. The severity of an abuse case is assessed by a senior Abuse Desk
employee.

4.6.3 Confidentiality

The research is executed in line with the General Data Protection Regulation (GDPR). During
the experiment, we use information from the subscription accounts to contact Mirai-infected
consumers. Contact details are looked up every time prior to an interview and will thus not be
part of the collected data. All other data is stored locally within the KPN network and will not
be used for other purposes. The processed data cannot be traced back to individual persons.

4.7 Limitations

4.7.1 Estimation infection time

One major limitation of this experiment is the reliability level of the infection time estimations.
This limitation is visualized in figure 9. The underlying problem is how Mirai is detected using
honeypot and darknet: a bot is only detected when scanning the IP addresses of these
particular infrastructures (colored red in figure 9). This creates three blindfolds:

e The shorter the scanning activity (e.g., due to high DDoS activity), the smaller the chance
that a bot will scan an IP of one of our sources and thus stays unnoticed;

e The remediation of a Mirai bot cannot be detected. We can only see incidents of when a
bot has been, but are not able to see its ‘birth’ and ‘death’.
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e When a Mirai-infected device is switched-off, Mirai is remediated but the device is likely to
be reinfected when switched on. Although a device is technically ‘clean’, we argue that the
Mirai has not been successfully remediated.

There is no obvious or easy way to overcome this limitation in a real-life setting: one cannot
monitor customer’s outgoing Internet traffic due to legal reasons (Article 8 of the European
Convention on Human Rights). Also, due to the many Mirai variants and their unpredictable
behavior, no studies exist yet that may help us verify how reliable our estimates are.

This limitation is mainly a problem when looking into absolute descriptives such as infection
time and remediation rate. The limitation also prevents us from making future predictions.
However, when comparing survival regressions, this problem is less of an issue: although we
may not perceive the real hazard rates, survival curve and mean infection time, we can assume
that the error term of each estimate is similar for each group (because the limitation applies to
all subjects) which enables us to isolate the influence of covariates.

The problem of identifying the death of a bot is partly overcome by the two additional weeks
of observation (see figure 10). We can conclude that IP addresses that are seen again during
this period are not remediated within the two-week tracking and are consequently censored
observations.

In addition to detection difficulties, we estimate the start of a Mirai infection using the moment
of notification. This choice is made because we want to explore the effect of notifications which
must, therefore, be independent from the moment of the first detection. However, this choice
could imply that infections that are not detected after a notification, have a wrong estimation
of zero hours. The difference with estimations using the first detection has a maximum of 24
hours (since notifications are sent the day after the first detection).

4.7.2 Messy Mirai detection

As discussed in section 2.2, there are many Mirai-like variants. However, we cannot control for
the Mirai variant. There are two reasons for this:

e Detection of Mirai is primarily done using packet fingerprinting. The Mirai scanning code
includes the characteristic that its TCP packets begin with a sequence that is equal to the
IP address of the device it scans. Therefore, other malware that has copied the scanning
code of Mirai is wrongfully tagged as Mirai-like.

e Additional information that may have been collected using Honeypots or sinkholes are not
shared in the Shadowserver feed.

We thus do not control for Mirai variant and all results are be based on the assumption that all
variants have similar behavior.

4.7.3 No enrollment during weekends

In the procedure as described in 4.2.3, we enroll no consumers during the weekend. Since the
Abuse Desk is closed on Saturday and Sunday, consumers cannot receive help and therefore
placing consumers in a walled garden is irresponsible. However, this would imply that Mirai-
infected consumers who are detected for the first time on a Friday or Saturday (note: the feeds
have one day delay), would be excluded from the experiment. This exclusion would lead to a
bias in the dataset since consumers detected for the first time on a Friday or Saturday may be
different than the other Mirai-infected consumers (e.g., are fulltime workers and thus install
an loT device mostly on Friday evenings or Saturdays).
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To compromise this bias, these consumers are still enrolled when they are detected again on a
different day. That day will be treated as the first day of infection. Since we are not able yet to
explain natural remediation among the control group, this solution is not watertight. The
estimated infection time is possibly lower because of potential actions consumers perform
when not (yet) notified. On the other hand, consumers with a short infection time will not be
enrolled since they are not detected anymore after Saturday. In other words: only consumers
detected longer than one or two days (depending on the day of the first detection) will be
enrolled, and the estimated infection time of these cases will be lower. Despite this
inconvenience, believe this is still a better option than excluding these consumers because it
results in less bias and larger population size.

4.7.4 Interview bias

When conducting interviews, we can assume that consumers give answers that may diverge
from reality. Consumers may have forgotten what actions they performed, may formulate it
not precisely or have done things wrongfully (e.g., identified the wrong device). Also,
consumers may give answers they believe are desired (to please the interviewer or because
they have the feeling of being judged). This limitation is taken into account in the interview
protocol design. Most questions are open and in case of vague answers, follow-up questions
are asked to obtain more precise information. Also, the conversation is framed as an effort to
help the consumer, which may encourage consumers to speak more freely about their
difficulties with remediation.

4.7.5 Interviews as a treatment

As explained in section 4.2.3, the interviews may influence the infection time since interviewed
consumers may take action in the two weeks after the interview. In the context of the obtained
data, that would mean we observe a lower number of censored observations than if we
wouldn’t have interviewed consumers after two weeks. We assume interviews may have the
greatest impact in the control group since most of the consumers in other treatment groups
are already alarmed by the notification. Therefore, we will estimate whether there is a
significant difference between interviewed and non-interviewed consumers in the control

group.
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Figure 8 Legend infographics

Figure 9 Actual versus estimated infection time
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Figure 10 Estimation infection time of normal and censored observations
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5 Study population

5.1 Introduction

This chapter describes the enrollment of Mirai-infected consumers in the experiment, the
demographics of these consumers, and characteristics of their infected IoT device. This
information gives us an overview of the obtained data, and provides us with an answer to the
first research question: “What are the characteristics of loT end users who get Mirai-infected?’.
Section 5.2 describes the course of the experiment, including an overview of the distribution
over the two ISP markets and size of the treatment groups. Section 5.3 describes the
demographics of the study population, based on information from subscription accounts.
Section 5.4 presents an overview of the identified 10T devices and assignable causes of
infection. The data of the latter section is obtained through interviews. Section 5.5 presents
the conclusions.

5.2 Course of experiment

The experiment took place from week 19 to week 27, 2019 (eight weeks in total). Newly
detected Mirai-infections were included in the experiment within the first six weeks. The last
two weeks were used to track the infection time of the latest entries. Figure 11 illustrates the
entries of all infections. The green bars illustrate the Mirai infections which are newly detected.
The yellow bar represents the infections that have already been detected earlier during the
experiment. The numbers of infections are low during the beginning of the experiment, except
for the peak on June 1%. From June 10", there is a peak in the number of new infections which
continues the three consecutive days.

We did not receive a Mirai feed from Shadowserver on May 15" and June 2". We also didn’t
receive feeds from the darknet at the start of the experiment (until May 19", and on June
16™, 17" and from June 19" to 24™. The graph shows zero infections between June 20" and
June 25" because the Shadowserver feed didn’t contain any Mirai infections (in the consumer
markets).

Figure 12 shows the accumulative number of Mirai-infected consumer during the experiment
period. Not all Mirai-infected consumers are included in the experiment. Four people were
reinfected with Mirai. Five consumers received a notification before the experiment
concerning a different abuse incident. One person terminated her KPN contract during the
experiment and four consumers were only detected during the weekend. This results in 188
Mirai-infected consumers. During the analysis of the demographics (see section 5.3), eleven
consumers appeared to have a business subscription instead of consumer subscription. This
leads to 177 Mirai-infected consumers in the experiment.
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Figure 12 Accumulative Mirai-infected consumers during the experiment

During interviews, it became apparent that none of the consumers of the e-mail notification
group had received an e-mail. KPN normally doesn’t notify a customer by e-mail only and the
mechanism to do this appeared to be malfunctioning since the migration to a new mail server.
The consequence of this malfunction is that there is no e-mail group and the control group
has doubled in size. The e-mail notification to Telfort consumers did function so that
population still has an e-mail treatment group.

In addition, the landing page of the Telfort quarantined environment didn’t work properly
during the experiment. Many consumers were not able to see the landing page due to a
technical problem. The majority of these consumers made a link between the denied Internet
access and the received e-mail notification. Therefore, we still treat this population as walled
warden group instead of the e-mail group since consumers were incentivized by an Internet
disconnect to take action.

Of the total, 72% of the consumers are from the KPN consumer market and 28% from the
Telfort consumer market. Of all consumers in the experiment, 57% have been interviewed.
The interviewed consumers are quite evenly divided over the different groups (see table 3).
One person didn’t want to partake in the interview, the rest of the consumers were called
three times without success. Table 3 summarizes the distribution of consumers over the two
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ISP markets and three treatments. The numbers after the slash refer to the number of
consumers interviewed within each group.

Control E-mail Walled garden | Total
KPN 85 /35 (41%) - 43 /28 (65%) 128
Telfort 17 / 10 (59%) 16 /12 (75%) 16 /11 (69%) | 49
Total 102 16 59 177

Table 3 Consumers in the experiment (/consumers interviewed)

5.3 Demographics of Mirai-infected subscribers

The subscription accounts contain information on the demographics of the Internet
subscribers. We obtained the gender and birth year for each consumer. Of the KPN consumers
in the experiment, 69% are male, 15% female and 7% had a shared account. Eleven consumers
(9%) have a business subscription and are therefore excluded from further analysis. The
distinction between the different markets is not accurate for some IP ranges, which explains
these eleven cases. When looking at the gender distribution of Mirai-infected Telfort
consumers, we find that the majority is male (88%), followed by female subscribers (10%). The
gender of 2% is unknown.

Figure 13 compares these percentages with the distribution of all Internet subscribers in both
markets. The share of male subscribers is in both markets higher than in the overall population.
This difference is largest in the Telfort market (30%), and a bit smaller in the KPN market (10%).
Using the N-1 Chi-squared test, we find a significant difference between the share of male
subscribers among Mirai-infected consumers and the total population (p=0,0002, Cl:15-35% in
Telfort market, p=0,019, Cl:2-20% in KPN market). We don’t estimate a significant difference
between the shares of female subscribers.
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The distribution of Mirai-infected consumers over birth years is visualized using boxplots and
histograms in figure 14 in the left column. This distribution is wide-spread (between 1932 and
1993), which means that Mirai-infected consumers have greatly varying ages. Ages within the
Telfort population are a bit more densely distributed but still show great variety. The median
birth year for KPN and Telfort is respectively 1971 and 1972, and all Mirai-infected consumers
are older than 25 years.

When comparing these distributions with the birth year distributions of all Internet subscribers
(right column of figure 14), we observe that the Mirai-infected KPN consumers have a positively
shifted distribution compared with the distribution of all KPN subscribers. The group of Mirai-
infected consumers is thus relatively young. The mean age of Mirai-infected consumers is seven
years younger (mean age of 48) than the mean age in the total population of KPN Internet
subscribers (mean age of 55). Welch’s unequal variance t-test estimates a significant difference
(p<0,001)*. This shift is not present in the distribution of Mirai-infected Telfort consumers.
There is no difference between the mean age of infected Telfort subscribers and the total
population (both 49 years). However, relatively more consumers between 1965 and 1985 are
infected.

Distribution birth year KPN consumers [infected & all]
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Figure 14 Distribution of birth year per consumer market (left: Mirai-infected consumers, right: comparison with
all Internet subscribers)

The subscriber of an Internet service does not per se have to be the owner of the infected loT
device. However, none of the 99 interviewed consumers indicated that the device in question

4 The Welch'’s t-test is performed under the assumption that the influence of the Mirai-infected consumers is
negligible because of the small number compared with the total population. This population can therefore be
regarded as the non-infected population, resulting in two independent groups (infected and non-infected
consumers).
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was owned or used by another user of the home network. Therefore, the demographic data
we obtain from the subscription accounts are a reliable representation of the demographics of
the infected loT device users.

5.4 |dentified devices and cause of infection

Using the information obtained from the interviews, we can review the device types that Mirai-
infected consumers own and whether they can identify an assignable cause for the infection.
Figure 15 displays the percentages of how often a device type is mentioned as possibly infected.
The majority (72%) of consumers own an IP camera or Raspberry Pi, followed by NAS (7%) and
DVR (6%) devices. 5% of the interviewed consumers could not recall having any loT devices.
The number of Raspberry Pi devices is striking since the recent study by Cetin et al. (2019)
identified no Rasberry Piamong 88 infected devices. Also, the identification of a heat pump has
never been reported before as far as we’re aware.

The high number of Mirai-infected Rasberry Pi devices can be explained by a Domoticz software
vulnerability. Normally, Mirai infects loT devices through brute-force attacks using default or
common credentials. Mirai-infections can thus not be attributed to a vulnerability. However,
this is different in case of infected devices running on Domoticz software. The Mirai variant on
these devices exploits the ‘Unauthenticated Remote Command Execution’ vulnerability so that
it can bypass authentication (Carretto, 2019). This vulnerability was already detected at the end
of April 2019 in Domoticz software older than version 4.10577 (Exploit Database, 2019). A new
version without the vulnerability is released on the 9™ of May (“Download,” 2019). Domoticz
software runs on home automation devices, often Raspberry Pi and NAS devices. This
‘Domoticz-variant’ of Mirai explains the high peak on June 10™" and the following days.

Since we don’t have information about the Mirai-variant of the infected devices, we can only
study the outbreak of the Domoticz-variant using the date of the outbreak. Table 4 shows the
number of infected consumers per market before and during the outbreak. The period after
June 9™ (during the outbreak) accounts for two-thirds of the number of infections in the
experiment. The number of Telfort consumers that is detected even quadrupled after the
Domoticz-variant outbreak.

Before June 9th | After June 9th | Total

KPN 49 83 132
Telfort | 9 40 49
Total 58 123

Table 4 Consumers per market before and after June 9th

Figure 16 presents the proportion of assignable causes. 45% of the interviewed consumer knew
they had a device running on outdated Domoticz software. Except for this group, most
consumers could not point out an assignable cause for the infection (42%). 6% of the
interviewees had installed a new device. 3% had installed a new Experiabox (a KPN
router+modem), 2% connected their device to the Internet, and 2% reinstalled a device that
had been temporarily not in use. The installation of a new Experiabox is not an obvious cause
for infection. We provide two possible explanations: A) A consumer needs to reconfigure
his/her network and does so less secure than before (e.g. using a demilitarized zone (DMZ) or
Universal Plug and Play (UPnP) ). B) A consumer is assigned to a new IP address and now falls
within the observed IP ranges (a few KPN IP ranges are not well categorized). Employees of the
Abuse Desk explain that his latter situation occurs rarely.
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Figure 16 Assignable causes for Mirai infections

5.5 Sub-conclusions on the study population

This chapter describes the study population by looking into the enroliment of the Mirai
infections, the demographics of the device users, the identified loT devices and assignable
causes of infection. The goal was to answer the research question: 'What are the characteristics
of 10T device end users who get Mirai-infected?’. The data used to answers this question is
obtained through subscription accounts and interviews. As addressed in section 5.3, we can
assume that the demographics of the subscribers are a reliable representation of the
demographics of the Mirai-infected device users.

The population of Mirai infected consumers contains relatively many male consumers when
compared with the total population of Internet subscribers. Men are thus more exposed to loT
abuse for which we provide two possible explanations:

e More loT devices per capita: men are more often in possession of an loT device compared
to women which increase the chance that the owner of an infected device is male;
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e More Mirai infections per device: men use their 10T device differently than women (e.g.,
they use it for more technically advanced applications, or use a device in a less secure
manner), which increases the chance on abuse among male consumers.

The birth years of Mirai-infected consumers vary from 1932 to 1993, and the distribution of is
widely spread. This is remarkable in two ways: the eldest Mirai-infected consumer is 87, which
is quite a high age for someone using something novel as an loT device. On the other side: the
youngest consumer with a Mirai-infected device is 26 years old, which is older than one might
expect for the youngest infected 10T users. These findings can be explained when comparing
the distribution of Mirai-infected consumers with the distribution of the complete population
of Internet subscribers. We observe a great overlap between those distributions. In terms of
spread, this implies that the population of infected consumers is a moderately good
representation of the complete population. We observe two major deviations:

We conclude that Mirai-infected KPN consumers are relatively younger. The mean age of this
group is seven years younger than the mean age among all KPN Internet subscribers.
Consumers within the ages of 29 and 54 years are typically more infected than consumers of
other ages. Consumers older than 54 are typically less infected.

Telfort consumers within between the ages of 34 and 54 are relatively more infected than
others. In contrast to the consumers in the KPN market, there is no difference in the mean age
between infected and non-infected Telfort consumers.

During the experiment, we encountered an outbreak of a specific Mirai variant targeting
software that runs on outdated Domoticz software. Different than conventional Mirai, this
variant doesn’t access the device through a brute-force attack but rather bypasses
authentication by exploiting a vulnerability on the outdated versions of Domoticz. This
outbreak explains the high amount of Rasberry Pi devices among the infected devices. Telfort
consumers have relatively fallen more victim of this variant, which means these consumers are
more exposed to Mirai (i.e., are more often in possession of devices running on Domoticz
software or using it differently than KPN consumers).

42% of the consumers could not assign the infection to a cause, which is strikingly high because
we have no reason to believe that these devices are left out before in scanning activities of
other bots. We provide two theories which can explain the unobserved causes:

e Theinformation provided by the consumer is incorrect. A consumer can have misidentified
the device or forgot events that explain the cause of infection;

e Recent Mirai-variants use new sets of credentials for their brute-force attack or exploit
new/other vulnerabilities which explains why a device is suddenly ‘exposed’ to Mirai. The
outbreak of the Domoticz-variant supports this theory.

All'in all, these findings provide a general understanding of the context of the problem and are
the first exploratory step in identifying patterns that may be of interest for further analysis.
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6 Tracking results

6.1 Introduction

This chapter reports on the results of the experiment so we can analyze the survival behavior
of different populations. The goal of this analysis is two-fold: we want to obtain an
understanding of the data before analyzing it in-depth in the next chapter, and we want to
check whether natural remediation - as found in Altena’s (2018) study - is also observed in our
data (since this is one of the primary motivations for this study). Section 6.2 describes the
distribution of infection time per treatment group and ISP market. Section 6.3 further analyses
these results by providing remediation rates and survival curves. Section 6.4 explores the effect
of the Domoticz variant outbreak on survival behavior. Section 6.5 presents the conclusions.

6.2 Infection time per treatment and market

Before performing survival analysis, we take a look at the data distributions. These plots
visualize the center and spread of the distribution of infection time structured by the two
markets (figure 17) and three treatment groups (figure 18).

KPN and Telfort consumers show similarities in the distribution of infection time in figure 17:
the majority of Mirai bots survive less than four days with a peak of remediation within the first
day. Quite a substantial share of consumers is still infected after the experiment period,
resulting in the peak at 336 hours (these are censored observations). The low number of
remediation after four days is remarkable since it shows that Mirai is typically remediated
either within four days or not at all. The boxplots illustrate that the infection times of KPN
consumers is wider spread than of Telfort consumers. Due to the higher density at the
beginning of the Telfort distribution, the censored observations are considered outliers. Since
these are of importance in survival analysis, these will not be excluded.
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Figure 17 Distribution of infection time per market
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Figure 18 displays three plots that show the spread of the distribution of infection time per
treatment group. Please note that the e-mail treatment group only exist of Telfort consumers
due to the failed KPN notification mechanism.

The control group has the widest spread in infection time and a very high peak at 336 hours,
which means that the control group has many censored observations. The e-mail group also
has a wide-spread distribution but has a lower median than the control group. The observation
in the walled garden groups is very dense compared to the other treatment groups. The
number of censored observation is low, thus most of the Mirai-infections are remediated
during the experiment. As observed in figure 17, remediation rarely occurs after four days. In
figure 18 we see that these cases of remediation can be assigned to observations in the control

group.
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Figure 18 Distribution of infection time per treatment group
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6.3 Remediation speed and rate

The density plots in section 6.2 provide information on the spread of infection time per
treatment and ISP market separately. This information combined is presented in graph 19 using
survival curves. The numbers between brackets in the legend refer to the population size.
Please note that the first 12 hours of the survival curve is manipulated: we changed zero-values
into a random number between 1 and 12 hours. Section 4.3.1 of the methodology describes
this choice.

Figure 19 shows that Mirai infections in the walled garden groups have a higher remediation
rate than the other treatment groups. The two survival curves of the KPN consumer market are
most divergent; the curves of the Telfort consumer market differ less and are more moderate
when compared with the KPN curves: the remediation rate is higher in the control group and
lower in the walled garden group. The survival curve of the e-mail group (Telfort only) lies in
the middle of the two other treatment groups.

After further visual inspection of the survival curves in figure 19, one can notice a drop after 81
hours. This is reflected in all curves, in some more than others. This drop implies that the chance
of survival decreases greatly from one moment to the other, regardless of the market or
treatment.
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Figure 19 Kaplan Meier survival curves per population and treatment

Tables 5 and 6 contain the remediation rates at three specific times (1, 5 and 14 days) and
measures of central tendency. Within the KPN market, the walled garden group has a higher
remediation rate than the control group on all three moments. The median infection time is
shorter than 12 hours and three days shorter than the median infection time of the control
group. The proportional hazard assumption is met for the treatment variable which allows us
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to do a log-rank test that compares the complete curves. The difference between the two
curves is highly significant (p<0,005). The grey values in table 5 are the results obtained from
Altena’s (2018) study. Almost all remediation rates from that study are higher than the rates
found in this experiment. The high remediation rate of the walled garden (97% remediation
after two weeks) is not reached in this study (11% lower). However, when comparing the
proportions using a chi-square test, none of these differences are significant (see p-values in
grey). Striking is the relatively low median infection time in Altena’s (2018) study, which is half
the median infection time of this experiment’s KPN control group (40 versus 81 hours).

The remediation rates and speed of the Telfort consumer market in table 6 show a remarkably
low remediation rate in the walled garden group after one day (31%) compared to the other
treatment groups and the walled garden group of KPN consumers. Also, the median infection
time (40 hours) is higher than that of the other groups. On the longer term, the walled garden
group performs better in terms of remediation: more consumers have remediated after two
weeks. The turning points are at one and half day (with the control group) and two and a half
day (with the e-mail group). The proportional hazard assumption is met for both curves, so we
can estimate log-rank tests for the three curves. All the differences between the three curves
are insignificant.

#customers | >1 day >5 days >14 days | median Mean +
(std.error)

Control 85 40 % 60 % 65 % 81 145 (149)
Control from | 33 46 % 58 % 79 % 40 -
Altena (2018) 0=0,55 0=0,84 0=0,14
Walled garden | 43 60 % 86 % 86 % 11 66 (112)
Walled garden | 30 60 % 90 % 97 % 17 -
from  Altena 0=1,0 0=0,61 0=0,12
(2018)
Log-rank test control vs | Proportional hazard assumption is met. Log-rank test estimates
walled garden survival curve | a t-value of 9.18 (p<0,005).

Table 5 KPN remediation rates

#customers | >1 day >5 days >14 days | median Mean +
(std.error)
Control 17 35% 65 % 71 % 39 124 (141)
E-mail 16 50% 75 % 75 % 24 104 (137)
notification
Walled garden | 16 31% 82 % 81 % 40 89 (121)
Log-rank test control vs e-mail | Proportional hazard assumption is met. Log-rank test

survival curve

estimates a t-value of 0.11 (p=0,74).

Log-rank test control vs walled
garden survival curve

Proportional hazard assumption is met. Log-rank test
estimates a t-value of 0.58 (p=0,45).

Log-rank test e-mail vs walled
garden survival curve

Proportional hazard assumption is met. Log-rank test
estimates a t-value of 0,09 (p=0,76).

Table 6 Telfort remediation rates
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6.4 Exploration Domoticz-variant outbreak

The previous section shows a drop in all survival curves around 81 hours. When combining this
observation with the information provided in chapter 5 about the outbreak of the Domoticz-
variant, we can isolate the cause of the drop. Figure 20 shows the survival curves of Mirai bots
before the outbreak (June 9") and during (after June 9™). As described in chapter 5, we
separate the data based on the date of the first detection because we cannot distinguish
different Mirai variants.

The two curves show that the drop around 81 hours can be assigned to the Domoticz-variant.
This curve (orange) shows a decrease in survival probability of 12%. In other words: 12% of the
bots are last detected after 81 hours. This sudden decrease in survival probability is too big to
be coincidental. When exploring the individual observations, it appears that the last detection
of these and four other observations (19 in total) is on June 14" between 4 pm and 7 pm UTC.
Eleven other observations that are censored also show a disruption from that moment. When
adding up these observations, a total of 30 bots (25%) are under the radar (completely or
temporarily) at the same time, indicating that they simultaneously stopped their scanning
activity.
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Figure 20 Kaplan Meier survival curves before and after June 9th

6.5 Sub-conclusions on tracking results

The goals of this chapter are to obtain an understanding of the data and to compare the
remediation behavior with findings of the previous experiment by Altena (2018).

The results of our experiment are in line with Altena’s (2018) findings. Although remediation
among our experiment subjects is lower, the remediation rates do not significantly differ with
that of Altena’s (2018) results. In addition, we find a significant difference between remediation
within the KPN control group and KPN walled garden group and a substantial natural
remediation rate within the control group (more than 65% is remediated after two weeks).

The infected devices that are remediated have an infection time of typically less than four days.
The majority of Mirai-infections are thus remediated within four days, or not at all.

The remediation rate among consumers in the walled group is higher than the other treatment
groups. One exception is the first forty hours after notification in the Telfort market: the
remediation rate is lower for the walled garden. In hindsight, we know that the Telfort landing
page malfunctioned. This obstructed self-release and may have confused consumers, leading
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to a longer period before the consumer knows s/he must contact the Abuse Desk for the
release from the walled garden.

The control and walled garden group of the KPN population are most divergent and significantly
differ. Remediation among Telfort consumers is less influenced by notifications than among
KPN consumers. Although the survival probabilities of the Telfort treatment groups are
divergent, their difference is insignificant. However, we cannot conclude that notifications in
the Telfort market are ineffective. The presented survival curves only take the treatment into
account, while other variables may have explanatory value. If that is the case, the effect of
these omitted variables is attributed to the treatment only, leading to a bias in our estimates
(known as the so-called ‘omitted variables bias’). To obtain reliable results on the effect of the
treatments, we make use of modeling techniques that include more variables. This is presented
in chapter 10.

From the analysis of the Domoticz-variant outbreak, we can conclude that a quarter of the bots
during this outbreak were given a command by the same botnet herder on June 14™. Nineteen
of these infected devices (63%) are not detected anymore after this day, which implies that
they are cleaned up but we do not know when (the moment of ceased scanning activity is not
the moment of cleanup). The other 37% is detected again after the experiment period and thus
are censored observations. It is unlikely that this event is a major obstruction for further
analysis because A) it concerns 15% of all infected devices, and B) due to the inclusion of
censored observation, we still know how many infections are remediated between June 14™
and the end of the experiment.

The occurrence of this event on June 14" gives us an interesting insight into the influence of
the attacker on bot behavior. Firstly, it seems that not all bots in the botnet of the Domoticz-
variant are deployed for an activity at the same time (since we only identify 30 bots that have
ceased scanning activity). Secondly, the censored observations have a remarkably long period
of non-scanning (at least ten days). This suggests that either the bots are deployed for long-
term activities (e.g. crypto mining), or that they are put on-hold between the execution of short
activities.
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7/ Cleanup efforts

7.1 Introduction

In this chapter, we focus on consumers’ behavior. We want to understand what consumers do
after receiving a notification, and what unnotified consumers do that may explain the observed
natural remediation. The central research question in this chapter is: "What actions do Mirai-
infected consumers perform?’. The answer to this can both help to understand how people
remediate, what may cause remediation in the control group, and what difficulties consumers
perceive.

7.2 Unnotified consumers

In total, 45 consumers within the control group are interviewed. None of these consumers were
aware that they owned an IoT device infected with Mirai. However, there were a number of
consumers who experienced troubles with their device and/or Wifi-connection. Four of these
consumers contacted the Help Desk. The Help Desk didn’t make a link with a possible malware
infection and helped the consumers differently: one consumer was told to update his DVR
(which was effective), one consumer received a new Experiabox (which was effective only for
a few hours), one consumer was sent a KPN technician who inactivated three of the four
surveillance cameras (which was effective) and one consumer was not helped at all. Two
consumers experienced problems with their Raspberry Pi and decided to reinstall the newest
version. One of these two consumers asked during the interview whether ‘Mirai could also have
caused the bad WiFi connection he experienced’ around that same time.

In addition to these two consumers who experienced problems with their Raspberry Pi, six
other consumers with either a Rasberry Pi or NAS running on Domoticz software updated their
device between the first detection and the moment of the interview. For them, this was just
normal routine, not motivated by perceived troubles. Three of them explained that their device
is automatically updated whenever a new version is released. However, this statement is
questionable since a successfully updated device after the release would not have been
vulnerable to infection (see section 5.4: the patched version was released on May 9'™).

Strikingly, 41 of the 45 interviewed consumers in the control group were able to identify loT
devices in their home during the phone call. Only three consumers couldn’t name any loT
device in their possession and could not recall any visitors who brought any device temporarily.

The majority of consumers in the control group (71%), did not recall doing anything with their
loT device which could explain remediation. This contradicts with the findings of Alterna (2018)
and the findings in this study (see chapter 6): we found that 65% of the KPN consumers and
71% of Telfort consumers in the control group had remediated Mirai after two weeks. The
remediation rate of the interviewed consumers in the control groups is only 62% after two
weeks. We now know that we cannot explain this remediation entirely by the actions of the
control group. Only ten of the 45 consumers took correct measures, which explains a
remediation rate of 22%. This still leaves a gap of 40% in remediation we cannot explain.

However, one must note that the interviews took place after the experiment period, but still
during the observation period. This could have alarmed consumers and thereby stimulated
them to take action within the observation period. In other words: the interview is a form of
treatment which could have led to less censored observations and thereby a higher
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remediation rate (see section 4.7 for research limitations). Figure 21 illustrates the survival
curves of the interviewed and not interviewed consumers in the control group. The non-
interviewed consumers were sent an e-mail only when they were detected again during the
observation period (and thus received only treatment when they were already censored). The
interviewed group has a slightly lower remediation rate and speed. There is no significant
difference between the two groups (Log-rank test estimates a p-value of 0.37). This invalidates
the assumption that the interviews have a significant influence on remediation.
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Figure 21 Survival curves for interviewed versus not interviewed control group

7.3 Consumers who received an e-mail

Twelve consumers of the e-mail group were interviewed of whom two did not see the
notification since it was sent to an old e-mail address. One of these two consumers cleaned up
his infected NAS because ‘it worked very slowly’. Of the eight consumers who were aware of
the e-mail, five e-mailed the Abuse Desk back for additional questions. All questions asked in
the e-mails show a basic technical understanding of the problem (‘Do you have the Mac address
of the device in question’, ‘is it possible that this infection is in my Raspberry Pi?) and some e-
mails all expressed the wish to keep their devices clean (‘Can you warn me again if it happens
again?’, ‘Can | scan for Mirai myself?’). One consumer in particular stands out for his
commitment to clean up the infected device. This consumer possesses thirty loT devices and
e-mailed te Abuse Desk regularly to give an update of his cleanup activities. He reinstalled all
his devices, performed several virus scans (which is not effective for Mirai), disabled
forwarding, and then individually disconnected each device to find the infected devices. The
DVR appeared to be the source of the problem.

Two consumers (17%) contacted the Help Desk regarding the notification but were not helped
adequately. Both consumers were explained where to download a virus scan and how to clean
their computer. One of these consumers knew these actions were incorrect and decided to
disconnect his DVR. Another consumer contacted the Help Desk even before receiving the
notification because of malfunctioning WiFi. There is only one consumer that did receive the e-
mail but did not do anything; he intended to comply but forgot to do so.

The actions of consumers in the e-mail group vary greatly. Only a minority follows all steps that
are recommended (16%). The majority performed only some of the recommended measures
(22%) or other measures than were mentioned in the notification (22%); or both (33%). Of the
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recommended measures, a reset of the modem is the least performed action (41%). Some
consumers indicate that they don’t want to lose their configurations and therefore try to clean
up their device without a modem reset. However, it is likely that in many cases, the
configuration of the modem is part of the problem. Several e-mailed consumers took more
rigorous measures such as disconnecting the device from the Internet or discarding the device
completely.

7.4 Consumers placed in a walled garden

Thirty-nine consumers of the walled garden group are interviewed. More than a third (41%) of
these consumers called the Help Desk. Nine of these consumers called the Help Desk
immediately after noticing the walled garden to ask what to do (‘I seem to have a Mirai virus
and want to be in contact with the Abuse Team’), three consumers performed the actions and
wondered when their Internet connection would be restored, and two consumers were not
aware of the notification and asked if there was an Internet outage at KPN. Only one consumer
inquired about the authenticity of the notification; she was afraid it might be a phishing e-mail.

All consumers sent a reaction to the Abuse Desk except for one. This one particular consumer
was not aware of the fact that she was placed in quarantine: ‘we haven’t used the computer
for months, but indeed, the surveillance camera is malfunctioning already for quite some time’.
Only eight consumers managed to release themselves from the walled garden using the contact
form. The rest sent an e-mail to the Abuse Desk.

Remarkably many consumers placed in the walled garden choose to disconnect their device
from the Internet or to not use the device at all any more, instead of following the steps. Among
these consumers, some do this to give themselves some time to take the actions (‘my wive has
disconnected all devices, | will change the passwords when I’'m home’), some because they
already doubted the security of the device (‘I disconnected the Chinese IP camera and brought
it straight to the recycling dump’).

Several consumers have difficulties performing the actions. The troubles vary between
identifying the right device (‘There are no other laptops connected, what do | forget?’), to
executing the actions (‘How can | know how to change the passwords on my printer?’) to fear
for the consequences (‘l use a lot of home automation but I’'m not capable myself to open the
ports again after a reset’). Similar to the communication within the e-mail group, many
consumers show commitment to remediate Mirai. However, many of these consumers are
driven by the disconnect from the Internet rather than concern. Some consumers explain why
they need the Internet connection back. One consumer has a security system that doesn’t
function without Internet access. Another consumer didn’t understand what happened so his
son took care of the issue. The son expressed his concern and dissatisfaction about the Internet
disconnect (‘Can you imagine what happens if my parents need the emergency button!?’).

23% of the interviewed consumers in the walled garden group followed all recommendations
of the notification. The majority of some of these steps in combination with other actions such
as a Domoticz software update (17%) and disabling of port forwarding (10%). Consumers in the
walled garden can release themselves by filling in a standard contact form which also asks for
a virus scan log. This is contradicting the recommended steps and also not an applicable
remediation action. Despite this misleading contact form, only 10% of the interviewed
consumers indicate specifically to have performed a virus scan. Half of those did that in
combination with other actions. Only two consumers performed a virus scan without having
seen the contact form and thus made this cleanup effort on their own initiative. However, both
consumers seemed to be aware that a virus scan is not effective for Mirai (‘It is not possible to
install a virus scanner on my webcam’), but did it just to be sure in case it would be effective.
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Percentage %

7.5 Performed actions

Figure 22 presents the actions that interviewed consumers have performed to remediate Mirai
per treatment group. The first five actions are the recommendations that are provided in the
notifications. When looking at the percentages of these bars, we see that these steps are only
performed by around half (40-70%) of consumers who received a notification. The consumers
in the walled garden do not seem to perform more recommended actions than those who only
received an e-mail. Although consumers in the control group were able to identify the loT
devices they own, these are not included in the graph since they didn’t identify the infected
device during the experiment as being Mirai-infected.

Several consumers decide to take other or additional measures: they disable port forwarding
(cannot use the device from outside their home network), they disconnect the device
completely from the Internet or decide to not use the infected device anymore. Relatively
many consumers placed in walled garden decide to perform these ‘other’ steps than
recommended. Two consumers explicitly tell that they have brought the infected device to a
recycling dump.

The last bar contains the percentage of consumers who did not perform any remediation step.
This is lowest for the walled warden group (2%), followed by the mail group (8%). Within the
control group, 71% of the consumers did make any cleanup efforts.
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Figure 22 Performed actions per treatment (* is a recommended action in the notification)
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Figure 22 provides information per action but does not account for combinations of
remediation steps. Figure 23 provides more insight by structuring the remediation efforts in
three categories:

e All: consumers who performed all five recommended steps. This category can be
described as the consumers who have strictly complied with the notification;

e Some: consumers who performed some of the five recommended steps;

e Other: consumers who have performed other steps than were recommended in
the notification.

The left side of figure 23 shows that the majority of consumers who received an e-mail (and
did something) has performed some and other steps (33%). Only 22% have complied to all steps
in the notification. 11% of all consumers only perform steps other than recommended. The
walled garden group (right-hand side of figure 23) also has a majority that executes some of
the recommended steps in combination with other actions (40%). A quarter complies
completely with the notification and more than three-quarters perform other actions.

Some steps Some steps

20%
All steps 1% All steps °

1% 1% | 33% 22% 8% 17% 40% 14%

Other steps
Other steps

Figure 23 Overview performed actions in e-mail (left) and walled garden (right) group

7.6 Sub-conclusions on cleanup efforts

‘What actions do Mirai-infected consumers perform?’ is the central question in this chapter.
We conclude that the majority of consumers do not follow the recommendations in the
notification. When looking purely to compliance with all remediation steps as recommended
in the notifications, we can conclude that consumers who actively perform actions score badly:
respectively 22% and 25% of consumers with an e-mail and in walled garden performed all
steps. Striking in these findings is the high percentage of active and complying consumers in
the e-mail group. Since the incentive is less than for consumers in the walled garden, one could
have expected lower rates. The disconnection from the Internet is thus not the only motivation
to comply with a notification.

Another peculiarity is the number of actions that are performed that were not mentioned in
the notifications. Consumers in the walled garden particularly take more drastic measures such
as disconnecting the device from the Internet (23%), or discarding the infected device
completely (20%). Despite the non-compliance among consumers who received a notification,
some of them have performed actions that remediate Mirai. For example, the disconnection

67



of devices and update of Domoticz software lead to successful remediation. This means that
we cannot purely determine remediation based on compliance, but rather on the specific
actions a consumer took.

In the control group, we find no clear explanation for remediation. Ten of the 45 interviewed
consumers cleaned up Mirai unintentionally by updating outdated software; one consumer by
the disconnection of devices. Although some of these consumers experienced troubles with
their device, none of them was aware of the fact that his/her device was infected with Mirai.
One must note that the consumers in the control group who unintentionally cleaned up their
device mainly exist of consumers with a device running on outdated Domoticz software. Only
two consumers cleaned up different device types. Without the outbreak of the Domoticz-
variant, the share of consumers who cleaned up their device would have been lower. Despite
these cleanup efforts, there is still a difference of 40% difference in remediation after two
weeks which we cannot explain. Although the interviews may have stimulated remediation, we
don’t detect such influence when comparing the interviewed control group with the non-
interviewed control group.

Remarkably, almost all consumers —including those in the control group —were able to identify
loT devices in their home. The ease in identifying the infected device varied among consumers.
Many consumers who received a notification needed additional help to find out which of the
devices would be infected. Their requests differed from specific inquiries (‘which Mac address’)
to general questions (‘how do | find the device if | cannot install a virus scan on it?’). However,
some consumers already had a gut feeling of which device was infected (‘that Chinese cheap
camera’, ‘that DVR that was already malfunctioning’).

In conclusion, the appeal to consumers to remediate Mirai seems effective when looking at the
numbers of performed actions: 98 % of the walled garden performed at least one action,
versus 92 % in the e-mail group. In contrast, 88% of the consumers among the control group
didn’t perform any cleanup actions. The 22% who did perform actions are mainly consumers
who own a device running on Domoticz who updated their software.

These sub-conclusions are illustrated in figure 24. The described cleanup efforts are part of the
‘behavior’ phase of the theoretical framework. We can now further specify this phase by
distinguishing intentional and intentional cleanup efforts. One out of five consumers in the
control group unintentionally cleaned up Mirai. Notified consumers intentionally performed
cleanup actions but most of these didn’t comply fully to the recommended actions. We cannot
point out the exact reason for this. One explanation is the lack of good comprehension. Since
many consumers asked for additional help, we conclude that consumers appear don’t have a
full understanding of how to tackle the problem. This may obstruct compliance. Another
explanation is the lack of motivation to comply with all recommendations. We observed no
pronounced cases in which consumers didn’t intend to comply due to a lack of faith in their
capabilities (‘self-efficacy’) or the effectiveness of the recommended actions (‘response-
efficacy’). However, the high rate of full compliance indicates that either consumers may not
fully rely on the advice and prefer to solve the problem in their own way, or consumers believe
they are not capable of performing the actions and thus take rigorous actions.
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Figure 24 Theoretical framework adjusted to sub-conclusions on cleanup efforts
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3 Compliance and

remediation

8.1 Introduction

The first goal of this chapter is to understand what obstructs compliance with the
recommended cleanup actions among notified consumers. This is formulated in the research
guestion ‘What are the reasons for non-compliance with Mirai notifications?’. In the previous
chapter, we concluded that the majority of consumers does not comply with the recommended
cleanup actions, but that still many consumers took other measures that are effective for Mirai
cleanup. Therefore, we not exclusively look to ‘strict’ compliance, but rather to performance
of right cleanup measures (a looser notion of compliance). In section 8.2, we analyze the
reasons for compliance and non-compliance (both in loose sense), using the theoretical
framework.

Secondly, we use the information we have about consumers’ behavior to make the first step in
exploring its effect on remediation. This helps in partly answering the research question ‘How
can remediation of Mirai-like bots be explained?’. Section 8.3 presents an exploration of the
effect of performing right cleanup actions on survival behavior. Section 8.4 presents the drawn
conclusions.

8.2 Dissection of reasons for (non-)compliance

The theoretical framework, as presented in section 2.4.5, describes five phases that lie between
notification and desired behavior. Each stage is a potential obstruction in the way of achieving
remediation. For both e-mail and walled garden notifications, we mapped the paths between
these phases. Each node presents one stage of the theoretical framework. Since we are
interested in the loose notion of compliance (whether a consumer has cleaned up Mirai), we
exclude compliance in a strict sense. This results in the following four mapped stages:

e Awareness: whether a consumer has received a notification. This is not only technical
delivery (correct e-mail address) but also includes awareness of the consumer about the
notification (e.g. not regarded as a spam e-mail);

e Comprehension: whether the content of the notification was clear to the recipient;

e [ntention: whether a consumer had the intention to comply with the notification. In other
words: was s/he motivated?;

e Correct measures: based on the findings in the previous chapter, we choose here to
distinguish compliance from right behavior. Whether a consumer has performed right
cleanup measures is determined by the following rules:

o The consumer has restarted the infected device and changed the password. Or:



o The consumer has disconnected the device from the Internet. Or:
o The consumer has discarded the device. Or:
o The consumer has updated/reinstalled Domoticz software.

The tree with reasons of (non-) compliance is visualized in figure 25 for the consumers who are
placed in the walled garden. These consumers in a walled garden were almost all aware of the
notification. For 68% of these consumers, the content was clear and intention to comply was
present. Despite the unclarity for the 32% other consumers, the majority (92%) still intended
to try to comply with the remediation steps. 31 of the 39 (79%) consumers in walled garden
succeeded in performing correct cleanup actions.

79% performed right
cleanup actions

Aware?

21% performed no
right cleanup actions

Understood?
yes no
68% 32%
Intended? Intended?
yes yes no
100% 92% 8%
Right cleanup Right cleanup Right cleanup Right cleanup
actions? actions? actions? actions?
yes no yes no no no
89% 11% 82% 18% 100% 100%
56% 8% 23% 5% 3% 5%

Figure 25 Reasons for (non-)compliance with walled garden notification

Figure 26 shows the tree for consumers who only received an e-mail notification. In
comparison, these consumers were less aware of the notification: only 75% of the consumers
read the notifications. Not all consumers who understood the message were motivated to
comply. Of all people who did understand the content and intended to comply, seven
succeeded in performing correct actions (58% of total). Of all consumers who didn’t read the
notification, still one of the three remediated Mirai.

Both figures 25 and 26 show that the majority of notified consumers stated the notification
was clear to them. However, the findings of chapter 7 contradict this: many consumers needed
additional help.
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66% performed right
cleanup actions

Aware?

34% performed no
right cleanup actions

Understood?
yes no
89% 1%
Intended? Intended?
yes no yes
88% 12% 100%
Right cleanup Right cleanup Right cleanup Right cleanup
actions? actions? actions? actions?
yes no no yes no
100% 100% ' 100% 33% 67%
58% 8% 8% 8% 16%

Figure 26 Reasons of (non-)compliance with e-mail notification

Table 7 explores the intention-behavior gap of notified consumers. Behavior is defined in two
ways: strict compliance with the notification (performing all recommended steps), and loose
compliance (performing correct cleanup actions, can also be others than mentioned in the
notification). Concerning strict compliance, only 25% of the consumers who intended to comply
did actually do so. When looking purely at performing correct cleanup actions, the gap is
smaller: only 14% of the motivated consumers did not succeed in taking the right cleanup
measures.

Number of | Of who intended | Of who complied | Of who performed
consumers  who | to comply: to all actions in the | right cleanup
were aware of the notification: actions:
notification

51 44 (86%) 11 (21%) 38 (75%)

Table 7 Exploration intention-behavior gap

Although the majority of consumers who are aware of the notification have the intention to
comply, the underlying motivation differs per notification mechanism. The bar plot in figure 27
shows that the disconnect from the Internet in the walled garden is the primary reason to
comply, while intention in the e-mail group is mainly driven by the wish for a secure network
and Internet. Among the consumers driven by security concerns, the motivations have nuance
differences. Some consumers wanted to comply because of concern for the security of their
own network and privacy (‘I’'m afraid for theft of my personal files on my computer’), other
consumers expressed concern for the threat to society in general (‘I don’t want to spread all
kinds of viruses to others’, ‘I don’t want to contribute to a DDoS attack’). Other reasons to
comply to the recommendations vary from encountered issues (‘my devices were already
malfunctioning and my internet was getting slowly’), to one consumer who wanted to avoid a
potential walled garden placement KPN. Three consumers express disgust towards the Mirai-
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infected device (‘what a source of misery!’, ‘I already doubted the device, | brought it straight
to the recycling dump’,’l want to lose that thing, have it off my network!’).

Motivation
100

Walled garden
90 A I E-mail

80 A
70 A
60

50 A

Percentage %

40

30 A

20

10 A

Disconnect -
Security
Other

Figure 27 Motivation to comply with notification per notification mechanism

8.3 Exploring the effect of behavior

Figure 28 shows - per treatment group - the survival curves of consumers who performed the
right cleanup actions and of those who didn’t. The control group has the lowest remediation
rate (78%) among consumers still infected after two weeks while having performed the right
actions. As described in chapter 7, these actions mainly encompassed the update of outdated
Domoticz software. It is remarkable that still two of the nine consumers appear on our radar
after the experiment period. When looking at the consumers who didn’t clean up their device,
58% is not seen again after the experiment period. Although this rate is 20% lower than the
other group, the difference between the curves is non-significant (Log-rank test estimates a p-
value of 0,31)°.

The curves within the e-mail group differ most of all treatment groups. The remediation rate
among consumers who didn’t perform right clean up actions is the lowest in this group with a
rate of 50%. One of the eight consumers who remediated is still infected after two weeks.
Although the remediation rate of the two groups differs with 37% after two weeks, the Log-
rank test estimates no significant difference (p=0,18)>.

The walled garden group contains the lowest remediation rate for both the consumers who
performed the right actions and the consumers who did not. Six of the eight consumers who
did not perform any right cleanup action are not detected after three days. Only 10% of the
consumers who did perform the right actions are still infected after the experiment period.
Similar to the other treatment groups, there is no estimated difference between the two
survival curves (p=0,27)°.

5> As explained in section 4.5.1, due to omitted-variable bias we may not estimate a significant difference
between survival curves while the influence of behavior variable could be significant.
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Kaplan Meier Estimates [control group]
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Figure 28 Survival curves - the influence of behavior per treatment group



8.4 Sub-conclusions on compliance and remediation

The first research question focused on in this chapter is ‘What are the reasons for non-
compliance with loT abuse notifications?’. Both e-mail and walled garden notifications are
effective in reaching the consumer, informing them and encouraging them to take action. Most
consumers who are placed in a walled garden have as a primary incentive to get back Internet
access while people who received an e-mail are motivated by the severity of the threat. Note
that the e-mail notifications were only sent to Telfort consumers and that the findings on the
effect of e-mail only apply to this market. When reviewing these findings in light of the
theoretical framework, the identified motivations are covered by two motivation components
of the theoretical framework. The disconnect from Internet access can be considered a
reversed ‘response cost’: instead of the costs to clean up a device, it is the costs of not doing
so. The other common motivation - the whish for a secure network — can be traced back to the
motivation component ‘perceived severity’. People are motivated because they believe a Mirai
infection is a severe problem for themselves and/or society.

Although notifications are effective in reaching, informing and activating consumers, we
identify a large intention-behavior gap. Only 25% of the consumers who state to be motivated
to comply, succeed in doing so completely. On the other hand, looking at compliance in loose
sense (taking effective measures), the intention-behavior gap is smaller: 14% of the consumers
did not manage to clean up their infected device. In addition to the intention-behavior gap, we
observed a discrepancy between the stated comprehension and observed comprehension.
Although the majority of consumers stated that they understood the content of the notification
completely, many consumers were not able to clean up their infected device without additional
help.

The second goal of this chapter was to make a start with answering the research questions
‘How can remediation of Mirai-like bots be explained?’. Despite our attempt to explain natural
remediation by looking at user behavior, we are (still) not able to do so. We observe a
substantial remediation rate among consumers who didn’t clean up their device. The
unexplained remediation is highest among consumers in the walled garden group: 75% of the
consumer who didn’t clean up their device is observed as remediated during the experiment.
The lowest remediation rate is among the e-mail group: half of the Mirai infections are
observed as remediated. Since a Mirai infection cannot disappear without reason, we must
look for other explanations for the observed remediation. The first explanation is that we have
not observed all behavior. We provide four possible scenarios:

e Consumers forgot what clean up actions they performed or forgot to mention them during
the interviews;

e Consumers clean up their device unintentionally;

e The device is cleaned up by someone else in the household without the consumer’s
knowledge;

e The consumer cleaned up the device after the interview: between the end of the
experiment period and the end of the two-week additional observation.

The second explanation concerns the area we focus on. This study studies remediation from
the user perspective. Since the unexplained natural remediation rates are so high, one can
argue that unobserved behavior is not able to explain that complete gap. That would imply that
more than half of all consumers cleaned up their device while stating otherwise during the
interviews. Since we believe this is unlikely, we must look for answers on the attacker side. We
provide the following two unexplored explanations:
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e Other malware takes over Mirai-infected devices. This study focuses on Mirai and only
included abuse feeds on this malware. Therefore, a device may be compromised by other
malware without our knowledge. That would explain why an IP address doesn’t appear on
our radar and the bot is wrongly considered to be cleaned up.

e The majority of Mirai infections are detected when a bot is in a scanning phase.
Conventional Mirai bots are scanning unless they get commands from the botnet herder.
With the increasing number of Mirai-variants, bots may have evolved scanning behavior.
They might for example only scan when commanded to, or have built-in behavior that
determines that a bot only scans in the first hours of its life.

The findings of this chapter are illustrated in figure 29. Although we didn’t estimate a significant
difference between the survival curves of consumers who said to have cleaned up their device
and those who didn’t, we cannot conclude yet that the observed behavior has no influence on
the estimated infection time. This has to do with the omitted-variable bias as explained in
section 4.5.1 and 6.5. Especially now we know that we didn’t observe all behavior of consumers
and potential influences from the attacker side, the univariate Kaplan-Meier survival cannot
provide us with a definitive conclusion on the effect of stated behavior. The models in chapter
10 include more variables and thus provide us with more reliable estimates.
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Awareness

Observed comprehension Stated comprehension

Intention

loT user behavior Stated cleanup Unobserverd cleanup

Observed infection time

Competing malware Scanning behavior

Figure 29 Theoretical framework adjusted to sub-conclusions on compliance and remediation

77



9 Customer

experience

9.1 Introduction

The previous two chapters focused on consumers’ behavior after receiving a notification, what
obstructed them in complying and what motivated them to clean up their Mirai-infected
device. This chapter covers customer experience with as central research question: ‘How do
consumers experience Mirai notifications?’. Section 9.2 presents the result on customer
satisfaction. The obtained suggestions are described in section 9.3. Section 9.4 presents the
conclusions.

9.2 Customer satisfaction

All interviewed consumers who received notification were asked about their experience. Figure
30 displays two pie charts of consumer satisfaction of consumers who were placed in a walled
garden (left) versus consumers who received an e-mail (right). 61% of the interviewed
consumers in the walled garden group were satisfied versus 100 % in the e-mail group. Almost
a quarter of the consumers placed in a walled garden were dissatisfied. These results are
contradictory to Altena’s (2018) study in which 8% of all notified consumers expresses
satisfaction. The only explanation we can find is the difference in the interview protocol. In
Altena’s (2018) study, consumers are not asked specifically about their opinion, only about their
suggestions (‘How could the communication to customers be improved when KPN sees
problems like this?’). In our study, we asked specifically about a consumer’s opinion (“What do
you think of KPN’s service to reach out to infected customers?’). Apparently, consumers only
express their satisfaction when asked about. This is also reflected in the communication with
the Abuse Desks: the contact forms and e-mails are often framed negatively (‘I want my
Internet back soon!’) while most of these consumers are actually grateful for KPN’s service.

Dissatisfied

61%

Satisfied
Neutral

100%

Satisfied

Figure 30 Consumer satisfaction for walled garden (left) and e-mail (right) notifications
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Table 8 contains measures of central tendency and figure 31 present the survival curves of
consumers with a different experience. Satisfied consumers in our experiment have a ‘typical’
infection time of 12 hours, which is half the infection time of dissatisfied consumers and 30
hours less than consumers without a clear opinion about the notification service. In contrast to
these differences, we observe no notable differences in survival behavior in figure 31 (log-rank
test estimates p-value higher than 0,31 for comparison of all curves).

mean std median
Satisfied 50,53 95,46 11,80
Neutral 88,52 124,80 42,04
Dissatisfied 61,33 107,06 24,92

Table 8 Descriptives on infection time (in hours) based on consumer satisfaction

Kaplan Meier Estimates for customer satisfaction
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Figure 31 Survival curves - customer satisfaction

9.3 Customer suggestions

Consumers who have fallen victim to a Mirai infection may possess valuable information to
improve notification. They may point us to blind spots and may have creative ideas for
improvement. Of all notified consumers, 27 (69%) of the walled warden group and six (54%) of
the e-mail group had suggestions on how to improve notifications concerning Mirai. These
suggestions can be divided into two categories: notification content, and notification
procedure.

9.3.1 Notification content

Eight consumers declare that they questioned the authenticity of the notification and
suggested this may be improved. Most of these people suggest a more personalized content.
One person specifically says it would be helpful if he could have verified the authenticity of the
message. Two customers wonder why they have never heard of the Abuse Desk before and
suggest better publicity of this service.

Five consumers believe that the measures are not easy to follow for technical lay(wo)men. For
example, one consumer had difficulties in regaining Internet again after resetting his modem.
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It took him long to realize the default password is written underneath the modem and he
suggested to include such little tips. Eight people specifically suggested more help or advice on
how to detect the infected machine (‘isn’t there any tool available?’). The people asking for this
differed from technical experts (who asked for a MAC address) to people who did not manage
to identify one single Internet-connected device and wanted a list of device types to
understand what kind of device he was looking for.

9.3.2 Notification procedure

The suggestions about the notification procedure only come from customers who were placed
in a walled garden. All consumers who were only e-mailed were satisfied with how they were
approached.

Twelve of the consumers in the walled garden group would have liked to receive a notification
before being placed in quarantine. Many of those consumers encountered the problem that
they were not aware of the quarantine until very late (because they did not receive a landing
page in their browser or because they did not go to their inbox because they believed their
Internet was down). Five consumers suggested an additional call for notification purposes.

Quite many people did not manage to release themselves (44 consumers in total) due to the
absence of a landing page. Six consumers suggest clear information on how to get released
after taking remediation actions. Five people express their concern about the disconnect from
the Internet. Two of those were sons (both adults) of consumers and were worried about the
Internet disconnect of their parents. One of them mentioned that the emergency button would
not function. The other explained that his parents were very worried because the surveillance
camera did not function anymore. One consumer has been robbed during the disconnect from
the Internet since he had no functioning surveillance camera.

Seven consumers wanted to have been able to call the Abuse Desk for additional help. Three
consumers mention that the Help Desk has not been able to help them. Two consumers
expressed their dissatisfaction with the limited availability of the Abuse Desk. Both men could
not release themselves and had to wait until the following day before they were manually
released by an Abuse Desk employee.

9.4 Sub-conclusions on customer experience

The central research question of this chapter was ‘How do consumers experience Mirai
notifications?’. In general, notified consumers are satisfied with KPN’s effort to notify them
about Mirai while in most cases this was not reflected in the communication with the Abuse
Desk. A quarter of consumers placed in a walled garden are dissatisfied which can be explained
by the disruptive nature of the measure. All consumers who received an e-mail are satisfied
with this service. Customer satisfaction does not seem to have a significant effect on the
estimated infection time.

The suggestions of consumers vary greatly but three things stand out:

e People wish to be better informed. This is the case for both consumers who have difficulty
with following the steps, as for more tech-savvy consumers who wish to have more details
on the information that KPN possesses about the abuse incident. This finding is in line with
the findings of chapter 7 in which we observed that many consumers requested additional
help from the Help Desk and Abuse Desk.

e |n addition to the first point, consumers would like to have additional help from KPN
employees. The Abuse Desk cannot be called and employees of the Help Desk often know
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little about the abuse incident or are not able to help a consumer. People wish to be able
to call someone for help on the problem or for a release from the walled garden. In
addition, consumers wish to ask for additional help outside office hours so they do not have
to wait a night or weekend without access to the Internet.

On top of the disruptive nature of a quarantine environment, three factors aggravate the
disconnection: A) consumers are not aware of the walled garden up until they come home
in the evening when the Abuse Desk is already closed and not able to help. B) The majority
of consumers is not able to release themselves because they have not received a landing
page, accidentally clicked it away or are not aware of the existence of this page. C)
Consumers think that because their Internet is down, they cannot enter their e-mail inbox.
This prevents them from retrieving the information that tells them they are put in a walled
garden and explains them how to self-release. Therefore, it takes a long time for some
consumers to find out they have to take action. A warning prior to an Internet
disconnection is, therefore, a frequently mentioned suggestion.
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10 Remediation drivers

10.1 Introduction

Previous chapters have reported the results and conclusions on user characteristics (chapter
5), Mirai remediation among different populations (chapter 6), cleanup efforts (chapter 7),
reasons of non-compliance (chapter 8) and customer experience (chapter 9). This chapter
combines these aspects to explore what factors influence remediation. The results give an
answer to the research question: ‘How can remediation of Mirai-like bots be explained?’. The
data is analyzed using the Cox and AFT modeling techniques which are both described in
chapter 4. The modeling is done in three steps as illustrated in figure 32 - from generic to
specific. Each step is reported in a separate section:

e Step1 (section 10.2): includes the observations of all consumers, using only
information from subscription accounts (e.g., gender) and variables as set by the
experiment (e.g., treatment);

e Step 2 (section 10.3): includes observations of only interviewed consumers, using
additional variables obtained from interviews (e.g., device type and cleanup efforts)

e Step 3 (section 10.4): includes observations of only interviewed consumers who have
received a notification, using additional variables obtained from the interviews (e.g.,
comprehension of the content and intention to comply).

Section 7.5 draws conclusion using the findings from the models. Appendices J, K and L contain
the detailed modeling process of respectively section 7.2, 7.3 and 7.4.

Step 1 Step 2 Step 3

Interviewed,
notified

(T
[TTT1
[TTT]

consumers

Interviewed

All observations

consumers

O Variable

. Sample size

Figure 32 Three modeling steps
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10.2 General exploration remediation drivers

10.2.1 Variables of interest

To be able to include all observations in the modeling process, we can only use variables which
are known for all observations. In this first modeling step, all the variables that are addressed
in chapter 5 on study population are included, in addition to the variable ‘time-splits” which
refers to the division of observations before and after the Domoticz-variant outbreak. Table 9
provides an overview of these variables, including the dependent variables. Appendix J provides
more details on how the dummy variables are coded. The dataset contains 177 observations,
of which 28 censored (15%). We test whether the independent variables are covariates for
infection time. In other words: we explore what variables have a significant influence on
remediation and what these relations look like.

Variable Explanation Coded
Infection Infection time of a Mirai bot Between 0 and 336 hours
time
E o Death Censored observations: all the bots | Censored = 0 (still infected)
E’_E that were still infected after two Not censored = 1 (last detection is
A § weeks. within two weeks after notification)
Sex Male Two dummy variables
Female
Business
Age 2019 minus birth year Continuous variable
Market Telfort or KPN consumer Dummy variable
0=KPN 1 =Telfort
% Treatment | E-mail notification Two dummy variables
E Walled garden
E No notification (control group)
E‘;’_ Time splits | Whether the infection took place | Dummy variable
E before or after June 9" 0= before 1 = after

Table 9 Variables included in the first modeling step

10.2.2 Modeling 177 observations and 5 variables

Modeling a Cox hazard model (see appendix J.3) based on the data and variables as described
in the previous section leads to a bivariate model wherein the variables ‘female’ and ‘walled
garden’ have a significant effect on the infection time. The dummy variable ‘female’ refers to
the distinction between female consumers (coded as 1) and the rest of the consumers (male +
unknown gender, coded as 0). The coefficient of this variable in the partial hazard is 0,52°

6 Exp(0,52)=1,68

83



(CI:0,03-1,00, p=0,04), which indicates a factor 68% increase of baseline hazard. In other words:
female consumers have about 70% more chance on remediation compared to consumers who
are not known to be female. The ‘walled garden’ variable distinguishes consumers who are
placed in a walled garden versus the other consumers (control and e-mail group). The
coefficient of this variable in the partial hazard is 0,577 (Cl:0,19-0,95, p<0,005), which implies a
77% increase of baseline hazard. Combined, the estimated regression equation is:

( group hazard
g

baseline hazard) = 0v52xfemale + 0,57Xwatted garden

Wherein X¢emqieis an indicator for gender (1=female, O=rest) and Xyqiieq garden 1S an indicator
for notification mechanism (1=walled garden notification, O=no notification or e-mail). Female
consumers placed in the walled garden have the highest relative increase in hazard rate. This
group has three times® higher remediation rate compared to the baseline hazard.

When modeling an AFT model (see appendix J.4) with the same variables and observation, the
LogNormal distribution has the best fit. The AFT LogNormal model that is estimated also results
in a bivariate model with ‘female’ and ‘walled garden’ as significant covariates. The coefficient
of ‘female’ is -1,03 (Cl:-2,07- -0,01, p=0,052) and the coefficient of ‘walled garden” is-1,13 (Cl:-
1,92- -0,34, p=0,005). This means that female consumers have a 68%° decrease in mean and
median Mirai-infection time and consumers placed in a walled garden a 64%'° decrease. The
influence of these two covariates combined can be described by the accelerated failure rate A:

Alx) = exp (_1103xfemale — 1,13%wattea garden)

Female consumers placed in a walled garden have an acceleration rate of 0,12!: their mean
infection time is 88% shorter than consumers not placed in a walled garden and who are not
known to be female.

The influence on remediation of the two estimated covariates are shown in appendices J.3 (Cox
model) and J.4 (AFT model). Figure 33 visualizes the observed - not modeled - survival curves
based on these two variables to gain a better picture of the data from which the models are
derived. Since we have not controlled for demographics, consumers of each gender are not
equally distributed over the treatment groups. Only four female consumers were placed in a
walled garden. These four women have remediated Mirai within three days and stand out
compared to the other survival curves. Consumers who are not known to be female and are
not in walled harden have te lowest remediation rate.

7 Exp(0,57)=1,77

& Exp(0,52+0,57) = 2,97

S Exp(-1,13) = 0,32 // 1-0,32 = 0,68
10 £xp(-1,03) = 0,36 // 1-0,36 = 0,64
1 Exp(-2,16) = 0,12
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Kaplan Meier Estimates [gender & notification mechanism]
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Figure 33 Survival curves - covariates gender and notification mechanism

10.3 Exploration interviewed consumers

10.3.1 Variables of interest

We can use information obtained from the interviews to further specify the drivers of
remediation. We include two qualitative variables concerning the stages of the theoretical
framework: awareness and behavior. ‘Aware of notification” is a variable that distinguishes
whether the consumer received a notification and is aware of its content. ‘Right measures’ is a
variable that refers to whether consumers have performed effective remediation measures.
‘Compliance’” and ‘Intention” are not included since this only concerns notified consumers.
These stages will be explored in section 10.4.

In addition to awareness and behavior, device types are also included in the modeling
sequence. The pie chart in figure 15 (chapter 5) visualizes the ratios of device types. However,
these pie charts do not take into account that some consumers have identified several devices
as possible infected. Since we don’t know the precise device, we collect these devices under
the variable ‘multiple’. The NAS and Rasberry Pi devices are collected under the variable ‘home
automation’ (modeled as ‘home’).

In total, the dataset of interviewed consumers contains 39 observations of home automation
devices, 23 cameras, 11 instances of multiple identified devices, 11 unknown devices, 3
printers, and 2 routers. Due to their low occurrence, printers and routers are not modeled as
separate variables but as a residual category. The five device categories are modeled using four
dummy variables (see appendix K.1 for the coding schemes).

The six discussed variables are summarized in table 10 and are added to the five variables that
are described in section 10.2. From the observations, we exclude consumers who are
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reinfected and who are not interviewed. The remaining dataset contains 89 observations, of
which 22 are censored (25%).

Variable Explanation Coded

Awareness | Whether the consumer received and read a | Dummy variable

notification 0 = not aware (incl. control

group) 1=aware

Behavior Whether the consumer performed right cleanup | Dummy variable

actions (can be other actions than recommended) 0 = incorrect actions (indl

inaction) 1 = correct actions

‘home’:  Consumers who have identified a NAS or | Four dummy variables
Rasberry Pi as the infected device

‘camera’:  Consumers who have identified an IP
camera as the infected device

‘multiple’:  Consumers who have identified multiple
loT devices as possibly infected

‘unknown’: Consumers who were not able to identify
an loT device in their network

Consumers who have identified a printer or router as
the infected device (residual category)

Table 10 Additional variables included in the second modeling step

When plotting the observations against infection time (see appendix K.2), we detect that the
majority of censored observations are among consumers who have not performed effective
measures and among consumers who are not aware of the notification. Appendix K.2 presents
a correlation matrix of all variables, which shows that the correlation between these two
variablesis 0,6. This value indicates that there is a moderate/strong linear relationship between
awareness and cleanup actions. Both variables are also correlated with the walled garden
variable; awareness (coefficient of 0,75) more than behavior (coefficient of 0,45).

When plotting the observations in the context of device categories, there are no observable
trends. The time-splits variable relates to categories of home automation (coefficient of 0,74)
and camera (coefficient of -0,6), which is expected. The home automation variable has a
moderate positive relationship with behavior (coefficient of 0,45).

10.3.2 Modeling 89 observations and 11 variables

The Cox modeling steps are reported in appendix K.3. This results in a model with three
significant covariates: ‘female’ with a coefficient of 1,35 (Cl:0,52-2,17, p<0,005), ‘aware fo
notification” with a coefficient of 0,64 (Cl:0,01-1,27, p=0,05), and ‘right measures’ with a
coefficient of 0,63 (Cl:-0,01- 1,28, p=0,05). This leads to the following equation:

1 ( group hazard

baseline hazard) = 1»35xfemale + 0164xaware + 0v63xright measures
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Individually, these variables have an increase of the baseline hazard of 280%? (female), 90%*2
(aware of notification) and 89%™* (right measures). Remarkably, awareness of the Mirai
infection and right behavior have individually significant explanatory value. Since the ‘walled
garden’ variable showed a moderate positive relationship with both variables, we also
estimated a model substituting ‘right measures’ and ‘aware of notification” with ‘walled
garden’. Although this leads to an accepted model, the model is of less quality (the Akaike
information criterion is higher, see appendix K.3).

Fitting an AFT model leads to a bivariate model based on the LogNormal distribution. The
modeling steps are reported in appendix K.4. ‘Aware of notification” and ‘female’ are the
variables with explanatory value and have a coefficient of respectively -1,78 (Cl:-2,78— -0,78,
p<0,0005) and -1,96 (Cl:-3,565- -0,36, p=0,017). This means that female consumers have a
86%* shorter infection time than consumers who are not known to be female. Consumers who
have read a notification regarding Mirai have an 83%° shorter mean infection time. This
variable can be substituted with the variable ‘right measures’ or ‘walled garden’ which both
lead to an accepted model but with less goodness of fit. The combined acceleration factor can
be estimated using the following equation:

Alx) = exXp (_1:96xfemale — 1,78xaware)

Female consumers who have received a notification and are aware of it have thus the shortest
infection time. The mean infection time of this group is 98%"/ shorter than consumers that are
not to be known to be female and are not aware of a notification.

In contrast to the Cox model, the LogNormal AFT model does not estimate the ‘right measures’
variable as a significant covariate (appendix K.4 shows that exclusion of this variable results in
a slightly better model). To explore the survival behavior in the experiment, we therefore first
look to the combined effect of gender and awareness. The survival curves are illustrated in
figure 34. All female consumers within this dataset have remediated their device within four
days, while a substantial share of non-female consumers are still infected after two weeks.
However, also the non-female consumers who are aware of the notification have either
remediated within four days or not at all (the survival curve is horizontal after four days). It is
remarkable that the subscribers who have not received a Mirai notification, still show a high
rate of remediation: 100% among female consumers, and 58% among non-female consumers.
This is in line with the unexplained natural remediation within the control group.

12 Exp(1,35) = 3,84
3 Exp(0,64) = 1,90

(
(
(
(
(
(

4 Exp(0,63) = 1,89
5 Exp(-19,61) = 0,141 // 1-0,141 = 0,86
6 Exp(-1,780=0,17 // 1-0,17 = 0,83

7 Exp(-1,96-1,78) = 0,02 // 1-0,02 = 0,98
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Figure 34 Survival curves - covariates gender and awareness of notification

Of all observations in the experiment, 36% of the female consumers are interviewed (versus
56% of the rest). Since we found in section 10.2 that gender explains remediation, the low
amount of interviewed female consumers can obstruct reliable estimates. There are only nine
observations of female subscribers, of whom only one is aware of a Mirai notification. Due to
the small size of this group, our estimates are not highly reliable.

In figure 35, one can inspect the observations of consumers who performed (in)correct
behavior and were (non-)aware of Mirai. The consumers who were either not aware or did not
perform the correct behavior are the minority of the observations: both groups cover 20% of
all interviewed consumers.
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Figure 35 Survival curves - covariates awareness of notification and taking right cleanup measures
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None of the device type categories variables are estimated covariates. The survival curves of
the four categories are illustrated in figure 36. The behavior of the device categories are quite
similar until four days and diverge from there. Infections among consumers with multiple loT
devices identified as possibly infected, have the highest remediation rate. Consumers with an
infected IP camera have the lowest remediation rate.
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Figure 36 Survival curves — device type categories

10.4 Exploration notified consumers

10.4.1 Variables of interest

In the last step in exploring remediation drivers, we use detailed information that is obtained
from the notified consumers who are interviewed. We add four variables to the variables
explored before: the two stages of the theoretical framework which were excluded before
(comprehension and intention) and two dummy variables regarding customer satisfaction.
These variables are explained in table 11. The dummy coding is described in more depth in
appendix L.1. These four variables are added to the ten variables that are described in the
modeling process of section 7.3 (eleven minus the variable ‘e-mail’* since we exclude the
control group). In total, the dataset in this modeling sequence contains 49 observations, of
which nine censored (18%). Of these 49 interviewed, notified consumers, 37 consumers were
placed in a walled garden and twelve received an e-mail only.
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Variable Explanation Coded

Comprehension Whether the consumer understood the content of | Dummy variable

the notification 0 = not understood

1 = understood

Intention Whether the consumer intended to comply with the | Dummy variable

recommended actions . .
0 = no intention 1 =

intention
Consumer Satisfied with the service Two dummy variables
satisfaction Neutral regarding service
Dissatisfied with the service
Treatment* Walled garden Dummy variable
E-mail notification 0 = e-mail 1 = walled
garden

Table 11 Additional variables included in the third modeling step

When reviewing the correlation matrix (appendix L.3), several correlation coefficients stand
out. Firstly, the correlations between all stages of the theoretical framework are in line with
our expectations. They all have a positive relationship with each other, with a minimum
correlation coefficient of 0,38 (between comprehension and behavior). The intention to
comply is strongly (positive) related to awareness (correlation coefficient is 0,83). In a lesser
extent, intention also relates to behavior (coefficient is 0,58). Secondly, female subscribers
seem to have more trouble with understanding a notification (negative correlation of -0,61)
than male subscribes (positive correlation of 0,46). Thirdly, the device type category ‘unknown’
is negatively related to all stages in the theoretical framework. Lastly, consumers who received
an e-mail notification are typically more satisfied with the notification service (coefficient of
0,34), than consumers placed in a walled garden.

10.4.2 Modeling 49 observations and 14 variables

Appendix L.3 reports all modeling steps for the estimated Cox model. The accepted model is a
bivariate model with ‘male’ and ‘intended to comply’ as significant covariates. ‘Male’ has a
coefficient of -1,22 (Cl:-2,21- -0,22, p=0,02) and ‘intended to comply’ a coefficient of 1,13
(CI:0,07-2,20, p=0,04). Combined the lead to the following equation of the proportional hazard:

group hazard
: (baseline hazard) = ~1.22%Xmate + L13Xintention

The male variable has an individual influence of the baseline hazard of -70%'8. In other words:
male consumers have a 70% decrease in the baseline hazard. Note: a decrease in hazard rate
implicates a longer infection time. The intention to comply increases the baseline hazard with
211%%.

18 Exp(-1,22) = 0,30
19 Exp(1,13) = 3,11
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The variables ‘right measures’ and ‘aware of notification” can individually substitute the
variable ‘intention to comply’. Both substitutes lead to an accepted model, but with decreased
goodness of fit and less reliable explanatory value (p=0,06).

When fitting the AFT model, again the LogNormal distribution results in the best fit. All the
steps are reported in appendix L.4. The estimated LogNormal AFT model results in a univariate
model with ‘intended to comply’ as the only significant covariate with a coefficient of -1,923
(Cl:-3,570--0,276, p=0,22). The failure acceleration factor is:

/1(36) = €xp (_ngxintention)

Consumers who have the intention to comply with the recommended steps in the notification
thus have an 84 %?° shorter mean infection time. There is no other variable that can substitute
this variable for an accepted model.

The LogNormal AFT model does not include the variable ‘male’. Inclusion of this variable results
in an insignificant explanatory value (p=0,055) and a model with a less goodness of fit. The
observed survival curves of the combined covariates (intention and gender) are illustrated in
figure 37.
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Figure 37 Survival curves — gender & intention Figure 38 Survival curves - intention

Only five observations in this dataset are of consumers that are not known to be male. Of these
five consumers, two are women and three have a shared account. Because of the consequent
low reliability of our estimate of the gender variable, we inspect the survival curves with
intention as the only variable, which is illustrated in figure 38. The remediation rates after two
weeks differ more than 30% between consumers who had the intention to remediate and those
who did not.

10.5 Sub-conclusions on remediation drivers

This chapter has provided the results and analysis to answer the research question ‘How can
remediation of Mirai-like bots be explained?’. We use three steps of analysis, which enabled us
to include all observations in the analysis, as well as all obtained information from the
interviews. We used two modeling techniques to analyze the data and thereby identify
variables that influence Mirai infection time. Whereas the Cox models are more close to the
data (they estimate the relation of a covariate to the observed hazard rates), the AFT models

20 Exp(-19,23) = 0,146 // 1-0,146 = 0,854
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provide a more generic view on the influence of a covariate (the failure acceleration factor of
a covariate, which implies the relation to the mean infection time).

When including all observations and only the variables known for all observations, we find that
gender and walled garden notifications explain remediation. At any given time within the two
first weeks of infection, female subscribers have a 68% (Cl: 3%-170%) more chance on
remediation compared to male subscribers and subscribers of unknown gender, and a 1% to
87% shorter mean infection time. This is a conservative estimate: the other modeling steps
estimate a higher influence on remediation but are less reliable due to the small number of
female consumers in the datasets.

Consumers placed in a walled garden have 77% (Cl:21%-260%) increased chance on
remediation compared to consumers in the control and e-mail group, and a 29% to 85% shorter
mean infection time. When including the data obtained from interviews, we find that we can
further specify the role of walled garden notifications. The Cox model estimates that awareness
of a notification (a consumer has received and read the content) and behavior (consumers has
performed correct cleanup actions) are of influence. Both variables show a moderate to strong
relationship with the walled garden variable. From this relationship, in combination with the
finding that awareness and right measures have combined more explanatory value than the
variable walled garden alone, we can conclude two things:

e Walled garden notifications are effective because these notification raise awareness and
stimulate right cleanup efforts;

e Since awareness of a notification has individual explanatory power - on top of the
explanatory power of right behavior - we can conclude we do not observe all cleanup
efforts. The reason behind this is the following: the fact that a consumer is aware that
his/her 10T device is Mirai-infected, doesn’t explain remediation of the device directly.
Apparently, the consumer has done something with the device that caused cleanup of the
Mirai infection. Since we included behavior in our model and estimated it as a covariate as
well, consumers who are aware of the notification thus performed actions which are not
included in our data. In other words: there is a discrepancy between stated behavior and
actual behavior.

This finding matches our explanations for natural remediation as described in section 8.4. In
the AFT model, exclusion of the behavior variable results in a slightly better model. We can
therefore not say that behavior has an effect on the mean infection time (only on baseline
hazard).

When modeling the data obtained from notified consumers who are interviewed only, we find
that the intention to comply has the best explanatory value. Consumers with the intention to
comply with the recommended actions in a notification have 211% increased chance on
remediation compared to the baseline hazard, and 84% shorter mean infection time. Since
intention has more explanatory power than behavior, the same logic as before applies here:
there is unobserved behavior which is influenced by the intention to comply.

In addition to the estimated covariates concerning the stages of the theoretical framework,
gender explains remediation as well. The remediation rate among women is higher than among
men. Following the logic as applied above, we cannot assume that infected devices are cleaned
up just because its user is female. Instead, we conclude that there is unobserved behavior that
is not included in the model. In addition to that conclusion: female users are performing this
unobserved behavior more than male consumers. Remarkably, female consumers have a
negative relation to the stages of the theoretical framework, which implies a negative effect on
remediation (lower remediation rate). Since the models estimate the opposite effect, the gap
between stated and actual behavior must be substantial.
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Our findings are illustrated in figure 39. Awareness, comprehension, intention and behavior are
positively correlated and thus form a good backbone to understand how notifications lead to
remediation. Some cleanup behavior is unobserved which results in the explanatory value of
the variables awareness, intention and female. This latter covariate is remarkable since it has a
negative relation to the stages, which indicates that women have cleaned up Mirai substantially
more (intentionally or unintentionally) than they communicated during the interviews.

Notification

Awareness

Stated comprehension Gender

Behavior Stated behavior Onobserved behavior

Observed infection time

Figure 39 Theoretical framework adjusted to sub-conclusion on remediation drivers
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171 conclusions and

discussion

11.1 Introduction

The objective of this research was to explore the role of 10T end users in Mirai-like bot
remediation. To analyze this question, five sub-questions are formulated which have been
answered in previous chapters. Section 11.2 will recap the main findings and provides the main
conclusions. Section 11.3 elaborates on the implications of these conclusions for KPN and
policy-making in general regarding Mirai remediation.

11.2 Main conclusions

To answer the question ‘what is the role of loT device end users in Mirai-like bot remediation?’,
we have conducted an eight-week experiment at the KPN Abuse Desk that notifies KPN and
Telfort customers about abuse incidents. Mirai-infected consumers of these two markets have
been randomly assigned (during staggered entry) to a walled garden, e-mail notification or
control group. All 177 subjects within the experiment have been tracked for two weeks to
estimate the infection time and are contacted afterward for interview purposes. Using different
behavioral theories, we made a framework that serves as a backbone to understand how
notifications influence remediation.

We conclude that male consumers were more exposed to Mirai infections during the
experiment compared to female consumers. We can conclude the same for KPN consumers
between the ages of 29 and 54 and Telfort consumers between the ages of 34 and 54.
Consumers with this demographic background were relatively more in possession of a Mirai-
infected device. One explanation is that consumers with this profile are more often in
possession of an loT device in general. Another explanation is that these consumers use their
device differently (e.g., use it for more technically advanced applications, or use a device in a
less secure manner), which increases the chance of Mirai-infection on these devices. In addition
to these deviations, we observe a shifted age distribution of KPN Mirai-infected consumers in
general. The mean age of this group is seven years younger than the mean age among all KPN
Internet subscribers.

The majority of consumers do not follow the recommendations in the notification. In contrast,
the number of actions that are performed that were not mentioned in the notifications is
remarkably high. Consumers in the walled garden particularly take more drastic (but effective)
measures such as disconnecting the device from the Internet, or discarding the infected device
completely. We cannot point out the exact reason for this. One explanation is the lack of good
comprehension. Since many consumers asked for additional help, we conclude that consumers
appear don’t have a full understanding of how to tackle the problem. This may obstruct
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compliance. Another explanation is the lack of motivation to comply to all recommendations:
consumers may not fully rely on the advice and prefer to solve the problem in their own way,
or consumers may believe that they are not capable of performing the actions and thus take
rigorous actions. In the control group, we find no clear explanation for remediation. One out of
five consumers cleaned up Mirai unintentionally by updating outdated software; one consumer
by the disconnection of devices. None of these consumers was aware of the fact that his/her
device was infected with Mirai. Without the outbreak of a Mirai-variant exploiting a
vulnerability of outdated software on home automation devices, the share of consumers who
cleaned up their device would have been lower.

Both e-mail and walled garden notifications are effective in reaching the consumer, informing
them, and encouraging them to take action. Consumers who are placed in a walled garden have
as a primary incentive to get back Internet access while people who received an e-mail were
motivated by the severity of the threat. There is a discrepancy between the stated
comprehension of consumers and the observed comprehension. Although the majority of
consumers stated that they understood the content of the notification completely, many
consumers were not able to clean up their infected device without additional help. We also
identified a gap between intention and behavior. Only 25% of the consumers who stated to be
motivated to comply, succeeded in doing so completely. On the other hand, looking at
compliance in loose sense (taking effective measures), the intention-behavior gap is smaller:
14% of the consumers did not manage to clean up their infected device.

In general, notified consumers are satisfied with KPN’s effort to notify them about Mirai
although this is not reflected in the communication with the Abuse Desk. A quarter of
consumers placed in a walled garden are dissatisfied which can be explained by the disruptive
nature of the measure. All customers who received an e-mail are satisfied with this service. The
suggestions of consumers vary greatly but three recurring suggestions are a better information
provision, availability of additional help and a better functioning walled garden notification
process.

We find that gender and walled garden notifications have an influence on remediation.
Consumers placed in a walled garden have a 29% to 85% shorter mean infection time. We can
further specify the role of walled garden notifications: the covariates awareness (a consumer
has received and read the content) and behavior (consumers has performed correct cleanup
actions) explain remediation better than walled garden notifications alone. Since awareness of
a notification has individual explanatory power - on top of the explanatory power of right
behavior - we can conclude we do not observe all cleanup efforts. In other words: there is a
discrepancy between stated behavior and actual behavior. Among notified consumers,
intention explains remediation best. Since intention has more explanatory power than
behavior, the same logic as before applies here: there is unobserved behavior which is
influenced by the intention to comply.

Gender also influences remediation but the conservative estimates are not highly reliable:
female consumers have a 1% to 87% shorter mean infection time than male consumers and
subscribers of unknown gender. Following the logic as applied above, we cannot assume that
Mirai-infected devices are cleaned up just because its user is female. Devices of female
consumers are thus cleaned up more than the women in question stated. We conclude that
age, consumer market, device type and customer satisfaction have no significant influence on
remediation.

We provide four possible scenarios for the identified gap between the stated and unobserved
behavior:

e Consumers forgot what clean up actions they performed or forgot to mention them during
the interviews;
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Consumers clean up their device unintentionally;

The device is cleaned up by someone else in the household without the consumer’s
knowledge;

The consumer cleaned up the device after the interview: between the end of the
experiment period and the end of the two-week additional observation.

Since the unexplained remediation rates are so high, one can argue that unobserved behavior
is not able to explain that complete gap. That would imply that more than half of all consumers
cleaned up their device while stating otherwise during the interviews. Since we believe this is
unlikely, we must look for answers on the attacker side. We provide the following two
unexplored explanations:

Other malware takes over Mirai-infected devices. This study focuses on Mirai and only
included abuse feeds on this malware. Therefore, a device may be compromised by other
malware without our knowledge. That would explain why an IP address doesn’t appear on
our radar and the bot is wrongly considered as cleaned up.

The majority of Mirai infections are detected when a bot is in a scanning phase.
Conventional Mirai bots are scanning unless they get commands from the botnet herder.
With the increasing number of Mirai-variants, bots may have evolved scanning behavior.
They might for example only scan when commanded to, or have built-in behavior that
determines that a bot only scans in the first hours of its life.

The findings are aligned with the theoretical framework and illustrated in figure 40.
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Figure 40 Theoretical framework adjusted to main conclusions
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11.3 Implication of findings

11.3.1 Recommendations Abuse Desk

People wish to gain more information about the problem and how to resolve it. Due to the
differences in technical knowledge, KPN could consider establishing an online information page
with basic information, more elaboration on how to perform the steps and FAQs. Reference to
such trusted website may also take away suspicion (since it enables consumers to fact-check).

A warning prior to placing consumers into a walled garden will prevent much confusion and
improve customer satisfaction. The self-release option can be improved and needs to be
mentioned in the e-mail notification to avoid unnecessary waiting and confusion among
consumers, and saves extra work for the Abuse Desk. Although the contact form cannot be
easily changed into a dynamic form, there can be made improvements in the static version.
Currently, the introduction of the contact form refers to the ‘problems on your
computer/laptops’, this can be changed to ‘problems on your network’. In addition, the
guestions that are not applicable to all abuse incidents must explicitly state so. For example:
the question about which virus scanner a consumer uses, can be complemented with the note
that the consumer doesn’t need to provide this information in case of a Mirai infection.

KPN could consider to better expose the activities of the Abuse Desk. Since this is a first-line
service (direct contact with customers), consumers find it odd to have never heard of it before.
This unfamiliarity, in combination with the notion ‘abuse’, creates distrust towards the
notification. Awareness of the Abuse Desk’s existence may improve consumer’s co-operation
and can also be marketed as a unique selling point in KPN’s service. The content of notifications
could be further personalized to prevent suspicion (e.g. inclusion of KPN account number). If
the filing system of KPN permits, abuse incidents could even be included in the online logs of a
consumer’s account (MijnKPN) so that customers can verify the authenticity of the notification.

We would recommend the consideration of other means of communication that would
complement the current notification practices. Sending an SMS is potentially very effective in
A) making the consumer timely aware of the walled garden placement so there is no confusion
about the cause of the disconnect and consumers are given the opportunity to solve the
problem inside office hours, and B) increasing the trustworthiness of the other notification
mechanisms because of the use of two channels.

Lastly, consumers will be helped greatly if the Abuse Desk and Help Desk are better integrated.
A minimal requirement is that the Help Desk must be able to check the abuse incidents and
notifications sent to a customer. Technically this requirement is met but in practice, Help Desk
officers lack awareness and do not check automatically the Abuse Desk tickets. This can be
solved by integrating the systems so that the Help Desk can monitor the Abuse Desk within the
CRM. However, due to the complexity and multitude of Abuse Desk systemes, this is easier said
than done. In addition, the Help Desk must be better equipped with knowledge and access to
tools so that can help customers who are placed in a walled garden. Although the Abuse Desk
steers customers to only communicate per mail, customers often call the Help Desk in reality.
This, in combination with unavailability outside office hours of the Abuse Desk, makes it worth
to extend the capabilities of the Help Desk to help these customers.

11.3.2 Policy implications
Due to the exploratory nature of this research, the findings cannot be used for specific policy

recommendations. Instead, the outcomes may be applied as background information to
understand the problem at stake and to make better-informed policy decisions concerning loT-
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botnet remediation. During the course of this study, the Dutch government has announced to
increase its efforts to increase loT security and mitigate loT abuse (Ministerie van Economische
Zaken en Klimaat, 2019). This study can be of added value within two parts of that roadmap:
the development of an awareness campaign and the stimulation of l1oT abuse mitigation by
ISPs. These efforts can be enriched by the following takeaways:

Firstly, performing the correct remediation efforts is effective and walled garden notifications
stimulate this behavior. This seems a trivial conclusion but it is important because it supports
the decision to give ISPs a dominant role in loT abuse mitigation. In addition to that, not all
notified consumers succeed in performing effective remediation actions. This is because A) the
remediation measures may differ per Mirai variant (as the Domoticz exploit illustrated) and B)
consumers believe they have remediated but in reality have not (intention-behavior gap). Since
we may expect more sophisticated and varying Mirai variants, there is no singular set of actions
which will remediate all Mirai infections. This implies that instructions for Mirai remediation
must be dynamic and case-specific.

Secondly, Mirai-victims cannot be captured in a few personas. The variety and increasing size
of loT devices cause a wide variety of victims: young, old, tech-savvy or not, etc. Informing
potential victims may thus be challenging because different persons need different
information.

The last suggestion is a follow-up on the idea of an online information page mentioned in the
previous section. It would be helpful to develop such platform nation-wide in collaboration with
all relevant stakeholders. In addition to basic information, this platform can be extended with
dynamic updates on for example newly found exploits or detected outbreaks.
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12 Reflection and

future work

12.1 Introduction

This chapter reflects upon the research and conclusions. Section 12.2 discusses the research
quality by addressing the limitations and their effect on the validity of the results. Section 12.3
provides ideas for future research.

12.2 Research quality

12.2.1 Limitations

One main limitation is the inaccurate measurement of infection time of Mirai bots. This
limitation prevents us from making statements about exact remediation speed and rates.
However, due to the modeling approach, we have been able to retrieve valuable information
about the relative influence of factors.

Secondly, the experiment has not controlled for the Mirai variants. This is not possible due to
the magnitude of variation and the absence of this information. Due to the Domoticz exploit,
we tested whether that Mirai variant (and its inherent victims) plays a role. Although we could
not control for Mirai-variant, we have included a dummy variable that distinguishes detections
before and during the Domoticz-variant outbreak in the modeling steps. Since this variable is
not estimated to have a significant influence, we conclude that this variant has no influence on
observed remediation.

Thirdly, due to malfunctioning of the KPN mail server, we have not been able to obtain data
from KPN customers who are only notified through e-mail. The e-mail treatment group in this
study thus only exist of Telfort consumers which makes the results about e-mail notifications
only valid for this population. In addition, the landing page of Telfort has been malfunctioning
which prevented Telfort consumers from self-release. This is visible in the survival curves in
chapter 6, but the influence is not big enough to obstruct proper analysis. However, one must
realize the estimated infection time of this group would have been shorter within the first few
days of infection if the landing page wouldn’t malfunction.

Fourthly, we interviewed the control group after two weeks which can be regarded as a
treatment. In theory, this might have decreased the number of censored observations, leading
to an overestimated remediation speed and rate. However, the comparison of the survival
curves of interviewed and non-interviewed consumers in the control group in section 7.2 shows
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that there is no significant difference in survival behavior (the non-interviewed consumers even
perform better in terms of remediation).

Fifthly, we find that gender is of influence for remediation. However, since this has not been
found before in other studies, we didn’t control for gender. As a consequence, women were
relatively often assigned to the control group. In addition, the number of interviewed female
consumers is low, making the estimates of the modeling steps 2 and 3 less reliable. We
therefore only mention the conservative estimates of the first modeling steps in the
conclusions.

Lastly, we miss one of the two daily feeds on sixteen days. This creates a blind spot in the
detection of Mirai bots which may result in underestimated infection times. However, at least
one feed was available each day so very active bots are likely to be detected.

12.2.2 Internal validity

We assume that all Mirai bots within the KPN and Telfort markets are included in the
experiment. However, there is no possibility to cross-check these numbers. We can therefore
not be completely certain that we have included the total Mirai-infected population.

The last limitation is the validity of the data obtained from the interviews. There are three
things to take into account:

e Consumers may unknowingly give wrong answers. They may have forgotten what
action they have performed or have identified the wrong device.

e Consumers may knowingly give wrong answers. Consumers may give answers they
believe are desired because they have the feeling of being checked by KPN or they
want to please the interviewer.

e Of all consumers in the experiment, 99 consumers are interviewed. Although this is a
relatively high attendance, information about device type, actions, reasons for non-
compliance and experience are not obtained from 78 consumers.

Due to the unobserved behavior we identified during modeling, we can conclude that what
consumers have shared in the interviews does indeed not always match with reality. However,
the data still provides a powerful first step in the exploration of consumers’ role in Mirai
remediation.

12.2.3 External validity

We cannot infer the results to Mirai infection times in future populations due to the dynamic
character of Mirai’s evolution and unpredictable behavior. In addition, users may also alter
their behavior regarding loT devices over time. However, we find no significant differences
between the results of the same experiment in 2018, which implies that the behavior of Mirai
and infected-device users have not substantially altered during the past year.

The research is culture and market-specific. KPN and Telfort have other target groups due to
price differences and have other demographical compositions (Telfort consumers are younger
as illustrated in section 5.3). Despite these differences, we have identified no significant
difference between Telfort and KPN which is a promising result for the generalizability of the
results to other Dutch ISPs. However, we cannot make the claim that our results also apply to
other Dutch ISPs for two reasons: A) the number of Telfort consumers in the experiment is
relatively low which causes an increased chance of Type Il error, and B) more ISPs must be
researched to support such claim.
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In addition, the research only consists of Dutch ISPs. We cannot assume that |oT users in other
countries have similar device types, user characteristics, and coping mechanisms.

12.3 Future work

The conclusions and limitations create respectively new knowledge gaps and room for
improvement.

An important gap which needs to be covered is the lack of understanding of natural
remediation as identified by Alterna (2018). This study has attempted to shine more light on
this by exploring the role of infected users. We have concluded that the actions of consumers
have a significant effect on remediation, but cannot explain all observed remediation. This
means future research must focus more on the attacker side. We provide two scenarios which
can both be explored:

The first scenario is that a Mirai-infected device is taken over by another malware. This would
explain why Mirai is remediated without intervention from the user. This theory can be tested
by analyzing abuse feeds: if an IP address is still detected while not being fingerprinted as Mirai,
we know the theory is correct for that particular IP address. Preferably, only raw data from
honeypots and darknet infrastructures are used since processed abuse feeds (as provided by
Shadowserver) exclude detections that are not labeled. Even if we don’t know the precise
malware type, we still are interested in knowing whether a device is compromised by another
malware than Mirai. Hajime is an example of an emerging malware that is known to compete
with Mirai for 10T devices.

The second scenario is that some Mirai variants have different scanning behavior than we
assumed. Remember: we detect the majority of Mirai-infected devices when they are in a
scanning phase. Conventional Mirai bots scan the Internet in search of vulnerable devices
unless they are given commands by the botnet herder. Hitherto we assume that Mirai bots are
not constantly executing commands, and thus appear on our radar sooner or later. However,
it is possible that certain variants have deviating built-in scanning behavior (e.g., only scan the
first few hours of its lifecycle). That means we only detect a bot at the start of its life. Another
explanation is that bots are given more commands than we expected so that a bot only scans
for really short periods of time. This reduces the chance we detect a bot. Both explanations can
be explored by collecting Mirai variants through honeypots and execute the malware code in a
secured environment. However, this exploration will take much time due to the vast amount
of Mirai variants.

Many consumers have not complied with the recommendations in the notification. Also, a
number of interviewed consumers suggested a better information provision in the notification.
These two findings indicate that the current notifications can be improved or that an external
information source may be helpful. Future research could focus on how consumers react to
different notification contents and what information is essential to reach more compliance.

We also observed a large intention-behavior gap and a gap between stated and actual behavior.
These gaps can be further studied in a lab setting to observe what loT users do in reality versus
what they think/say they have done. In future research, it is recommended to control for
gender since we conclude that gender influences the observed remediation. We have no
explanation yet for the big difference in remediation between male and female loT users.
Possibly, women are more forgetful about their actions, or are unaware of other actions
performed by others in a household. This needs further attention.
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The last recommendation for future work is research in the behavior and demographics of loT
users in general. We observe that men and ‘younger’ (age 26-49) loT users have relatively fallen
more victim to a Mirai infection. However, we have no explanation yet for these findings. These

groups may possess more loT devices, deal differently with their device, or a combination of
both.
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A Literature search

The literature search is conducted through the framework as proposed by Webster and Watson
(2002) and Levy and Ellis (2006). They propose the following three steps in identifying relevant
literature:

1. Keyword search: the initial step using key words in scholarly databases and leading
journals;

2. Backward search: reviewing citations of (relevant) articles;

3. Forward search: use academic search engines to find articles that has cited the
(relevant) articles.

Details on the keyword search are presented in table 11. Three searches are executed in two
journals (Computer & Security and Journal of Cybersecurity) and one database (IEEE Explore).
The search terms were:

e security AND (perception* OR behaviour*);
e security AND (loT OR ‘Internet of Things’);

e (malware OR ‘malicious software* OR ‘botnet’) AND (warning* OR
notification®).

The Journal of Cybersecurity sometimes gave very few hits thus two search terms were altered
for this journal. After these searches, the following steps were taken:

1. All hits were sorted by relevance by the search engine;

2. Depending on the actual relevance, 50 or 100 hits were studied (less if there were
not many hits);

3. Therelevant hits were added a list and structured

Table 12 indicates the outcomes of each search in terms of hits, studied articles (abstract), the
number of relevant articles (added to the list) and how many of those were new to the list.

Journal/source Search term Hits/studied/relevant/(new) | Date

1.1

1.2

13

Computer & security AND (perception* OR 1487/50/19 28/02/19
Security behaviour*)

security AND (loT OR 'Internet of 611/50/10/4 28/02/19
Things')

malware OR 'malicious software*' OR 377/100/2/2 01/03/19
'botnet') AND (warning* OR

notification*)

2.1

2.2

2.3

IEEE Explore security AND (perception* OR 3575/50/11 28/02/19
behaviour*)

security AND (loT OR 'Internet of 7354/50/16 28/02/19
Things')

(malware OR 'malicious software*' OR 95/50/2/2 01/03/19
'botnet') AND (warning* OR
notification*)
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3.1 | Journal of security AND behaviour 45/45/5/5 28/02/19
Cybersecurity
3.2 (security AND loT OR 'Internet of 3/3/0/0 28/02/19
things')
3.3 (malware AND notification) 11/11/3/1 01/03/19
Table 12 Keyword search
For the back- and forward search, six most relevant articles from the list were reviewed. Table
13 contains similar information as table 12, only the ‘number of hits’ is replaced by the number
of citations. The forward searches were conducted through the academic search engines
Semantic Scholar and researchgate.net.
# Backward search | Forward Date
Article o ) Citations/studied/
Citations/studied/
relevant/(new)
relevant/(new)
1 | Cetin, O., Jhaveri, M. H., Gafian, C., van Eeten, 16/16/2/2 18/18/7/7 04/03/19
M., & Moore, T. (2016)
2 | Thompson, N., McGill, T. J., & Wang, X. (2017) 96/96/23/21 6/6/2/1 04/03/19
3 | Torten, R., Reaiche, C., & Boyle, S. (2018) 44/44/12/6 0/0/0/0 04/03/19
4 | Pijpker, J., & Vranken, H. (2016) 25/25/9/9 2/2/0/0 04/03/19
5 | Cetin, O., Altena, L., Gafian, C., & Eeten, M. Van. |31/31/12/6 1/1/1/1 04/03/19
(2018)
6 | Forget, A., Pearman, S., Thomas, J., Acquisti, A., | 40/40/8/7 0/0/0/0 04/03/19

Christin, N., Cranor, L. F., ... Telang, R. (2016)

Table 13 Back- and forward search
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B Consulted literature

Reference

Aim Relevant methodology

Relevant results/conclusions

Knowledge gaps

Efficacy of (loT abuse) notifications

Don't Work — Can't
Work: Why It's Time
to Rethink Security
Warnings

(Krol, Moroz, & Sasse,
2012)

Do Malware Reports
Expedite Cleanup? An
Experimental Study

(Vasek & Moore,
2012)

Combatting Botnets
Through User
Notification Across
the Ecosystem: a view
of emerging practices

(Online Trust Alliance,
2012)

One of the first studies e
into security warning
effectiveness

(download warning)

during interviews

This paper °
describes assesses
‘whether sending

[abuse] reports to

affected parties makes

a measurable

difference in cleaning

up malware.’

A relevant study design

This paper present the
botnet notification
best practices from a
multi-actor perspective

Use of folk models (Wash)

Security warnings are largely
ineffective

Content does not matter.
Those with a lack of computer
experience perform better.
Participants rely on their own
judgment, rather than a
security warning.

‘including details describing
the compromise is essential [..]
—sending reports with minimal
descriptions of the malware is
ineffective’

Sending multiple notices does
not make an impact
(compared to one notice)

Tips to Improve the Delivery
and Design of User
Notifications

Preliminary List of Best
Practices

e Impact of sender
reputation (see Cetin,
Jhaveri, Gafidn, van
Eeten, & Moore, 2016)

e Reasons for re-
infections are (see
Orcun Cetin et al.,
2019)
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Do or Do Not, There Is
No Try: User
Engagement May Not
Improve Security
Outcomes (Forget et
al., 2016)

You've Got
Vulnerability:
Exploring Effective
Vulnerability
Notifications

(Li et al., 2016)

Understanding the
role of sender
reputation in abuse
reporting and cleanup

(Orgun Cetin et al,,
2016)

Make Notifications
Great Again: Learning
How to Notify in the
Age of Large-Scale
Vulnerability Scanning

‘This paper presents a
qualitative study
comparing users’
attitudes, [behaviors],
and understanding of
computer security to
the actual states of
their computers.’

This paper illuminates
which aspects of
vulnerability
notifications (to non-
end users) have the
greatest impact on
efficacy.

This study researches
whether sender
reputation is a driver
of response to abuse
notification

This paper analyzed
‘the aspects and
factors that drive
vulnerability
remediation rates and

A relevant research design

Use of survival probabilities
to visualize remediation
rate

‘User engagement alone may
not be predictive of computer
security.’

Need for ‘concise, precise,
simple, and easy-to-perform
security instruction, [..] once
applied, will remain effective
without any user effort’

Notifications improved
remediation behavior
(additional 11%) but most
organizations did not patch
their host

‘detailed abuse reports
significantly increase cleanup
rates.’

There is ‘no evidence that
sender reputation improves
cleanup’

While notifications did lead to
more remediation than in the
control groups, the overall
remediation rates were low.’

‘A need for a more
critical evaluation of
the content,
presentation, and
functionality of
security interventions’
More research needed
into security
interventions tailored
to users with different
levels of expertise

No understanding of
why these results are
so modest

[no focus on abuse
notification or loT
abuse]

‘Remarkably little
research has been
undertaken into what
factors drive the
chances of a recipient
acting upon an abuse
report’

The incentive structure
for remediation are
not

well understood
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(Orcun Cetin, Gaian,
Korczyski, & Van
Eeten, 2017)

Didn't You Hear Me? -
Towards More
Successful Web
Vulnerability
Notifications

(Stock, Pellegrino, Li,
Backes, & Rossow,
2018)

Let Me Out !
Evaluating the
Effectiveness of
Quarantining
Compromised Users in
Walled Gardens

(Orgun Cetin et al.,
2018)

Cleaning Up the
Internet of Evil Things:
Real-World Evidence
on ISP and Consumer

how recipients feel
about various types of
notifications.’

This paper analyses the
technical and human
aspects that affect the
success of vulnerability
notifications.

This paper user
behavior and
remediation
effectiveness of walled
gardens as a
notification
mechanism

The first ‘empirical
study of loT malware
cleanup [..] — more
specifically, of
removing Mirai

e Variable: ‘aware-to-fix
rate represents the chance
that an issue is fixed after
the report was viewed’

e Arelevant study design

e Arelevant study design

The content of a notification is
important in convincing
operators to take action
(discrepancy between problem
awareness and addressing it)
E-mail as a communication
medium suffers from several
shortcomings but other
channels do not justify their
significant financial costs and
time overheads.

loT malware remediation
methods will differ from
traditional clean-up strategy.
‘Substantial support for the
effectiveness of walled
gardens’ for ISPs in the fight
against botnets

Walled gardens may create a
prisoners’ dilemma in ISP’s
remediation efforts

E-mail only notifications did
not have impact compared
with the control group

High natural remediation rate
of 58-74 %

Incentives for
remediation not well
understood

Not well understood
what customers did
after receiving a
notification
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Notification processing

Efforts to Remove
Mirai

(Orgun Cetin et al,,
2019)

infections in the
network of a medium-
sized ISP’

A very low reinfection rate
Walled gardens are effective
but are not a large-scale
solution

e Adiscrepancy between
lab results and
empirical results of
reinfection

Handbook of warnings

(Wogalter, 2006)

You've Been Warned :
An Empirical Study of
the Effectiveness of
Web Browser Phishing
Warnings

(Egelman, Cranor, &
Hong, 2008)

A Framework for
Reasoning About the

Human in the Loop

(Cranor, 2008)

Android permissions:
User attention,

This book describes
warning design
standards and
guidelines.

This study compared
the effectiveness of
active and passive
phishing warnings by
analyzing them using
the C-HIP model.

This article proposes a
framework, largely
based on the C-HIP
model, to explain
potential reasons for
human failure in a
cybersecurity context.

This study examines
whether Android
permission system is

e The Communication-
Human Information
Processing Model (C-HIP)
for structuring warning
research

e A warning analysis
methodology: the C-HIP
model.

e ‘Each step [within C-HIP
model] is critical: a failure
of usability at any step will

Active warnings (disturbing in
user’s activity) are more
effective than passive.

Security actions are often to be
performed by non-experts who
are instructed in what to do
(warnings, notification, etc.)
Therefore, failure of such
action can also be seen as a
problem of incomplete
communication.

‘Most users fail to pass the
attention and comprehension
steps’

e Hypothesis that
different users have
different types of
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loT abuse remediation (RCT)

comprehension, and
behaviour

(Felt, Ha, Egelman, &
Haney, 2012)

A study of users'
experiences and
beliefs about software
update messages

(Fagan, Khan, & Buck,
2015)

Computer security
and risky computing
practices: A rational
choice perspective

(Aytes & Connolly,
2004)

effective at warning
users.

This study explores the
relation between
beliefs in different
software updates and
the effectiveness of
those.

Why people who are
aware of of the risks,
still expose insecure
behavior, as an
outcome of a
boundedly-rational
choice process

render all subsequent steps
irrelevant.’

Survey questions based on
C-HIP

Based on conditions
founded in TRA and TAM

Most users are annoyed by
software warning and update
messages, which affects the
attitude/belief stage in the C-
HIP model which causes more
non-compliance.

People don’t make sensible
action decisions and therefore
it is unlikely that additional
information on risks improves
behavior

privacy and security
concerns and that
addressing those in a
warning will make the
warning more effective

Further understanding
of factors that
influence decision
process is needed.

Economics of
malware: security
decisions, incentives
and externalities

(M. J. van Eeten &
Bauer, 2008)
Emerging Threats to
Internet Security:
Incentives,
Externalities and
Policy Implications

This working paper
reports on qualitative
empirical research into
the incentives of
market players when
dealing with malware.

This study explains the
causes of the rise in
botnets by the
incentive structure of
market players.

‘Many of the problems of
information security can be
explained more clearly and
convincingly using the
language of
microeconomics’

A multi-actor perspective
RCT as explanation for both
behavior as well as the
aggregate outcome to
society

The development of a 'culture
of security' is very sensitive to
economic incentive structures
Overview of externalities

Machine owners have little
incentive to remediate a
botnet

End users’ behavior enables
the growth of botnets, which
impose costs on every other
actor in the network.
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(M. van Eeten &
Bauer, 2009)

Cybersecurity:
Stakeholder
incentives,
externalities, and
policy options
(Bauer & van Eeten,
2009)

So Long, and No
Thanks for the
Externalities: The
Rational Rejection of
Security Advice by
Users

(Herley, 2009)
Information Security
Policy Compliance: An
Empirical Study of
Rationality-Based
Beliefs and
Information Security
Awareness

(Bulgurcu et al., 2010)

‘The paper develops a
framework for
studying the co-
evolution of the
markets for cybercrime
and cybersecurity.’

This article argues that
‘users’ rejection of the
security advice they
receive is entirely
rational from an
economic perspective.’

This research identifies
rationality based
factors that drive an
employee to comply
with information
security policy of an
organization.

Working security advice

when: d(benefit) > d(costs)

Combines rational choice

theory with theory of
planned behavior

Use of structural model
testing (PLS approach)

Benefits in cost/benefit trade-
offs are rather ‘potential costs
to society of attacks that have
not yet occurred.’

‘Market and non-market
relations in the information
infrastructure generate many
security-enhancing incentives.
However, pervasive
externalities remain that can
only be corrected by voluntary
or government-led collective
measures.’

Benefits are overestimated
whole costs of user effort is
often ignored.

Users are rational, they ‘only’
need a better understanding of
the harms they face

‘along with normative belief
and self-efficacy, an
employee's attitude toward
compliance determines
intention to comply.

We posit that an employee's
attitude is influenced by the
benefit of compliance, cost of
compliance, and cost of
noncompliance’
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Why Do They Do
What They Do?: A
Study of What
Motivates Users to
(Not) Follow
Computer Security
Advice

(Fagan, Maifi, & Khan,
2016)

Abuse Reporting and
the Fight Against
Cybercrime

(Jhaveri et al., 2017)

This paper investigates
user motivation to
follow-up on computer
security advice.

This paper presents a
model of the abuse
reporting
infrastructure to
improve the
understanding of
voluntary actions
against cyber crime

Table 14 Consulted literature

Cost/benefit framework
can be used to investigate
motivation of users to
follow computer security
advice.

Choices in the experiment
provided more perceived

benefit than costs (compliant
and in noncompliant decisions)

‘Social considerations are
trumped by individualized
rationales.’

‘Because no single entity is
responsible for reporting,
maintaining, and acting on
abuse data, incentives
determine why participants
take action’

There is a gap between
perceived and actual
costs and benefits.

‘For the immediate
future, it seems more
promising to increase
the effectiveness of
the abuse reporting
infrastructure within
the existing incentive
structure.’
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C Behavioral models

Abbr. Theory/model Explains: Relevant? (+ or -) Named in: Developed by:
AR/ | Affect-Reason- How users can be convinced to - difficult variables to make tangible (Fagan et al., 2015) Buck, 1994
Involvement model  comply with a message in three - underrepresented in security
ways (rational appeal, emotional studies
appeal or both)
BH | Health belief model  Healthcare behavior based on + has been widely applied to many  (Ng et al., 2009) Rosenstock, 1966
expectancy-value principles (Ng, domains (Ng et al., 2009) (Hanus & Wu, 2016)
Kankanhalli, & Xu, 2009) - similar construct as PMT but PMT
is more applicable in this domain as
argued by (Hanus & Wu, 2016)
e8I/l Communication- How communication to an + framework to understand See four articles under ~ Wogalter, 2006

CET

FM

GDT

Human Information
Processing model

Cognitive Evaluation
Theory

individual triggers his/her
behavior and to identify reasons

why notifications may be
ineffective

detrimental effects of rewards on
intrinsic motivation, especially
when rewards were tangible
(Siponen, Adam Mahmood, &
Pahnila, 2014, p.219)

notification processing by end users
+ is used as a backbone in four
earlier studies to systematically
analyse failure of the desired
behavior

- rewards not relevant in this
research

‘Notification
processing’ in table 14

(Siponen et al., 2014)

Folk models

Conceptualizations of home
computer security threats (Forget
et al., 2016)

+ focus particular on botnets
- not a comprehensive or validated
theory

(Krol et al., 2012)
(Forget et al., 2016)
(Orgun Cetin et al.,
2019)

Wash, 2010

General Deterrence
Theory

“the effect of deterrent factors on
security policy compliance.’
(Herath & Rao, 2009, p.109)

- The theory proposes that non-
compliance can be deterred with
severe punishment. Punishment is
not desired in this research.

- Rajab & Eydgahi (2019) find little
support for GDT to explain variance

(Herath & Rao, 2009)
(Rajab & Eydgahi,
2019)

Williams & Hawkins,
1986
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GEMS

KAP

NT

PMT

RCT

in information security policy
compliance

Generic-Error ‘human security failures’ and + addresses the gap between (Cranor, 2008) Reason, 1990
Modeling System distinguishes three types of intention and actual behavior which
human errors (Cranor, 2008) is not covered by other models
- ignores many aspects of
behaviour
Theory of effectiveness of traininginterms - no training in notification (Torten et al., 2018)

Knowledge, Attitude
and Practice

of change in attitudes and
behavior (Torten, Reaiche, &
Boyle, 2018)

processes

Neutralization
theory

Protection
Motivation Theory

Rational Choice
Theory

Behavior as an outcome of a
‘rationale to justify actions and
neutralize guilt’ (Torten et al,,
2018, p.69)

Has evolved greatly from the
theory of fear appeal to model
that is used to explain risky
behavior.

Behavior as the outcome of a
cost-benefit trade-off. Often
combined or complemented with
another model (TPB, TRA, TAM)

- It studies behaviour after action
(post hoc) and does not help
explaining how behaviour can be
modified

+ many studies show the
explanatory value of the model

+ based on TPB and TRA (Boss,
Moody, Polak, Lowry, & Galletta,

+ is complementary to other
models

+ powerful rationale to explain the
rise of botnets (as the outcome of
incentive structure)

- actors are not fully rational (no
complete information on benefits
and costs, perception and beliefs
play a major role)

(Torten et al., 2018)

21 studies using PMT
for explaining
cybersecurity
behaviour

See eight articles under
‘loT abuse remediation’
in table 14

Matza & Sykes, 1964

Rogers, 1975

(Hanus & Wu, 2016
modified the model
for security
behavior)

A neo-classical
economic approach
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Technology
Acceptance Model

TAM

Theory of Planned
Behavior

TPB

Theory of Reasoned
Action

TRA

‘Attitude and its antecedents
(behavioral beliefs)’ as the
outcome of ‘objective
information concerning
information technologies and
their design’ (Bulgurcu et al.,
2010)

Explores ‘intentions prior to
actions, which is driven by the
values of the individuals to
behave’ (Torten et al., 2018, p.69)

TRA predicts behavior by a
person’s intention to take actions,
which is influenced by a person’s
attitude and subjective norms

+ |oT can be considered a new
technology and therefore TAM may
explain the influence of its adaption
on behavior

- TAM does not explain user
behavior well of protective
technologies (Dinev & Hu, 2007)

- Same foundation as TPB (both an
extension of TRA) (Dinev & Hu,
2007) but TPB more applicable

+ more general version of the PMT
(Thompson et al. 2017)

+ multiple times used in studies
into information security policy
compliance

- requires a large qualitative study
to interpret behavior (Torten et al.
2018)

+ intention is not similar to actual
action (intention-behavior gap)

- the predecessor of TPB (Bulgurcu
et al.,, 2010; Sommestad & Hallberg,
2013)

(Ng et al., 2009)
(Mocrii, Chen, &
Musilek, 2018)
(Howe et al., 2012)
(Dinev & Hu, 2007)

(Thompson, McGill, &
Wang, 2017)

(Ifinedo, 2012b)
(Bulgurcu et al., 2010)
(Rajab & Eydgahi,
2019)

(Gundu & Flowerday,
2012)

(Sommestad &
Hallberg, 2013)
(Bulgurcu et al., 2010)

Davis, 1989

Ajzen, 1985

Fishbein and Ajzen
1975

Technology Threat
Avoidance Theory

TTAT

Table 15 Behavioral models

‘why and how individuals avoid IT
threats in voluntary settings’
(Liang & Xue, 2018)

- quite similar as PMT as
constructed by Hanus and Wu
(2016) but only one study identified
that uses this model

(Liang & Xue, 2018)

Liang & Xue, 2018
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D Abuse Team procedures

D.1&D.2

CONFIDENTIAL

D.3 Naotification e-mails, landing page and contact form

«@ kpn

Misbruik van uw

internetverbinding

Geachte heer/mevrouw s

Een veilig internet is in ieders belang. Wij maken ons als KPN sterk om
internetverbindingen veilig te houden. Hiervoor vragen wij uw medewerking.
Wij verzoeken u onderstaande stappen vandaag nog uit te voeren en ons
hierover een bericht te sturen.

Waarom is mijn medewerking nodig?

Wij hebben een beveiligingsprobleem aangetroffen op uw internetverbinding.
Hier merkt u zelf meestal niets van. Toch is het belangrijk om hier iets aan te
doen.

Wat is er aan de hand?

Een of meer apparaten die zijn aangesloten op uw internetverbinding zijn
geinfecteerd met het Mirai virus. We kunnen niet met zekerheid zeggen welk
apparaat geinfecteerd is. Waarschijnlijk is het een digitale video recorder
(DVR), beveiligingscamera of printer die op het internet is aangesloten en dus
geen computer, laptop, tablet of mobiele telefoon.

Hoe kunt u het Mirai virus verwijderen en een infectie in de toekomst
voorkomen?

Volg onderstaande stappen. Mocht het niet lukken een stap uit te voeren, ga
dan verder naar de volgende.

1. Bepaal welke apparaten zijn aangesloten op uw internetverbinding.
Het Mirai virus infecteert met name op het internet aangesloten apparaten
zoals een DVR, beveiligingscamera of printer.

2. Verander het wachtwoord van de op het internet aangesloten apparaten.
Kies een wachtwoord dat moeilijk te raden is. Als u het huidige wachtwoord
niet weet, raadpleeg dan de handleiding.

Door het uitvoeren van deze stappen heeft u toekomstige infecties voorkomen.

3. Herstart de op het internet aangesloten apparaten door deze uit en opnieuw
aan te zetten.
Hierna is het Mirai virus verwijderd uit het geheugen van de apparaten.
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Nu uw op het internet aangesloten apparaten veilig zijn, zijn de laatste stappen
om uw router/modem te beschermen.

4. Reset uw modem/router naar de fabrieksinstellingen. Op kpn.com/reset-
kpn-experiabox is beschreven hoe u dit kunt doen voor een Experia Box.

°Ga naar hoe reset ik de KPN Experia Box

5. Stel het wachtwoord van uw modem/router in. Op https://www.kpn.com/fag/16176
is beschreven hoe u dit kunt doen voor een Experia Box.
°Ga naar WiFi naam en beveiliging wijzigen

Let op: Als toegang op afstand voor een apparaat absoluut noodzakelijk is, stel dan
handmatig port forwards in op uw router voor het betreffende apparaat. Op
https://forum.kpn.com/internet-9/port-forwarding-upnp-wat-waarom-en-hoe-322560
is beschreven hoe u dit kunt doen voor een Experia Box.

°Ga naar Port-forwarding

Wat gebeurt er als ik niets doe?

Het beveiligingsprobleem op uw internetaansluiting vormt een gevaar. Daarom
hebben wij uw internetaansluiting in een veilige omgeving (quarantaine)
geplaatst. U kunt tijdelijk beperkt gebruikmaken van uw internetaansluiting.
Daarom is het van belang om bovenstaande stappen vandaag nog uit te
voeren en te reageren door een e-mail terug te sturen naar abuse@kpn.com.

De afdeling Abuse
De afdeling Abuse van KPN handelt veiligheidsincidenten af voor KPN.

o Meer informatie

Hebt u nog vragen?
U kunt uw vragen stellen via e-mail op abuse@kpn.com.

Met vriendelijke groet,

KPN Abuse Team

Wat vindt u van deze e-mail?

( Heelgoed | Kanbeter )

o n
«)kpn KPN B.V. - Postbus 30000 - 2500 GA Den Haag - KvK nr. 27124701 PRnACY

Figure 41 Mirai e-mail notification KPN
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@ kpn

KPN Quarantainenet

Veilige omgeving
Een veilig internet is in ieders belang. Wij maken ons als KPN sterk om uw (vertrouwelijke) informatie te beschermen.

Van één van onze partners hebben wij informatie ontvangen dat er op uw internetaansluiting een beveiligingsprobleem is waargenomen.
Waarschijnlijk heeft u daar zelf nog niets van gemerkt.

Wees gerust. Om de veiligheidsrisico's weg te nemen hebben wij uw internetaansluiting in onze veilige omgeving geplaatst. In deze omgeving kunt u
zelf op een veilige manier de problemen oplossen. Wij willen u daar graag bij helpen.

Een of meer apparaten die zijn aangesloten op uw internetverbinding zijn geinfecteerd met het Mirai virus. We kunnen niet met zekerheid zeggen welk
apparaat geinfecteerd is. Waarschijnlijk is het een digitale video recorder (DVR), beveiligingscamera of printer die op het internet is aangesloten en
dus geen computer, laptop, tablet of mobiele telefoon.

Hoe kunt u het Mirai virus verwijderen en een infectie in de toekomst voorkomen?
Volg onderstaande stappen. Mocht het niet lukken een stap uit te voeren, ga dan verder naar de volgende.

1. Bepaal welke apparaten zijn aangesloten op uw internetverbinding.
Herinnering: Het Mirai virus infecteert met name op het internet aangesloten apparaten zoals een DVR, beveiligingscamera of printer.

2. Verander het wachtwoord van de op het internet aangesloten apparaten. Kies een wachtwoord dat moeilijk te raden is. Als u het huidige
wachtwoord niet weet, raadpleeg dan de handleiding.
Door het uitvoeren van deze stappen heeft u toekomstige infecties voorkomen.

3. Herstart de op het internet aangesloten apparaten door deze uit en opnieuw aan te zetten.
Hiema is het Mirai virus verwijderd uit het geheugen van de apparaten.

Nu uw op het internet aangesloten apparaten veilig zijn, zijn de laatste stappen om uw router/modem te beschermen.

4. Reset uw modem/router naar de fabrieksinstellingen. Op hitps://forum kpn.com/intemet-9/reset-de-kpn-experia-box-modem-97446#M8199 is
beschreven hoe u dit kunt doen voor een Experia Box.

5. Stel het wachtwoord van uw modem/router in. Op https://www.kpn.comifag/16176 is beschreven hoe u dit kunt doen voor een Experia Box.

Let op: Als toegang op afstand voor een apparaat absoluut noodzakelijk is, stel dan handmatig port forwards in op uw router voor het betreffende
apparaat. Op https://forum kpn.com/internet-9/port-forwarding-upnp-wat-waarom-en-hoe-322560 is beschreven hoe u dit kunt doen voor een Experia
Box.

Noodzakelijke stappen
1. Voer de bovenstaande maatregelen uit.
2. Vul ons contactformulier in (en herstel uw internetaansluiting).

Algemene beveiligingstips

* Gebruik een up-to-date virusscanner. Zo houdt u gevaren buiten de deur.

* Houd computersoftware, zoals uw besturingssysteem, up-to-date.

* Open geen berichten en onbekende bestanden die u niet verwacht of vertrouwt.

* Beveilig uw draadloze verbinding met een moeilijk te achterhalen / sterk wachtwoord.

Figure 42 Mirai landing page KPN - NL
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@' kpn

KPN Quarantainenet

Met het invullen van dit formulier bevestigt u dat de problemen op uw computersilaptops zijn opgelost.

Meer informatie over uw specifieke probleem kunt u vinden op de indexpagina van de beveiligde omgeving onder kopje: "Wat is er aan de hand en
hoe kan u dat oplossen?’.

Geregistreerd Emailadres: abuse@kpnmail.nl
IP Address:

Wat is uw e-mailadres?
Wat is uw naam?

1 |

Hoeveel computers/laptops zijn er aangesloten?

Zendt uw modem een draadloos signaal uit? Zo ja, hoe is deze beveiligd?
Nee © Uitgezet © Onbeveiligd © WEP © WPA © WPA2 ©

Gevonden virussen
Plaats hier het complete logbestand van de door u uitgevoerde scans.
Indien er meerdere computers/laptops aanwezig zijn verzoeken wij u alle logbestanden te vermelden. :

‘ 2,

Van welke virusscanner maakt u gebruik?

| :

Welke maatregelen heeft u genomen om de infectie te verwijderen?
Tevens vernemen wij graag welke maatregelen er zijn genomen om toekomstige problemen te voorkomen.

| |

Heeft u verder nog vragen/opmerkingen?

‘ 4

Selecteer deze optie om de tijdelijke blokkade op te heffen ¥

Bevestigingscode: | | [Nieuwe afbeelding]

Verzenden

Figure 43 Mirai static contact form KPN - NL
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@ kpn

KPN Quarantainenet

Secure environment
A safe Internet is in everyone’s interest. We, KPN, strongly care about protecting your (confidential) information.

We have received information from one of our partners that a security issue has been detected on your Internet connection. You probably have not
noticed anything yet.

Don't worry. To protect you against the security risks we have placed your Internet connection in our secure environment. In this environment you can
safely solve the security issues. We are willing to help you to do so.

What is the problem and how can you solve it?

One or more Internet connected devices in your home have been infected with the Mirai virus. We cannot detect which Internet connected device has
been infected. Most likely it is a digital video recorder (DVR). security camera or printer connected to the Internet rather than a computer, laptop, tablet
or mobile phone.

What should you do to remove the Mirai virus and prevent future infections?
Please follow the steps below. If you cannot complete a step, please proceed to the next one.

1. Determine which devices are connected to your Internet connection.
Reminder: The Mirai virus mainly infects Internet connected devices such as a DVR, security camera or printer connected to the Internet.

2. Change the password of the Internet connected devices. Choose a password that is hard to guess. If you do not know the current password, please
refer to the manual.
By following these steps, you have prevented future infections.

3. Restart the Internet connected devices by turning it off and on again.
Hereafter, the Mirai virus has been removed from the memory of the devices.

Now that your Internet connected devices are safe, the last steps are to protect your router/modem.

4. Reset your modem/router to the factory settings. On https://forum kpn.com/internet-9/reset-de-kpn-experia-box-modem-97446#M8199 it is
described how you do this for an Experia Box.

5. Set the password of your modem/router. On https:/fwwnw.kpn.com/fag/16176 it is described how you do this for an Experia Box.

Warning! If remote access to a certain device is absolutely necessary, manually define port forwards in your router for this device. On
https:/fforum kpn.com/internet-9/port-forwarding-upnp-wat-waarom-en-hoe-322560 it is described how you do this for an Experia Box.

Necessary steps
1. Take the measures stated above.
2. Fill in our form (and restore your Internet Connection).

General security tips

* Use an up-to-date virus scanner to keep out potential hazards.

* Keep computer software, like your operating system, up to date.

* Do not open messages and unknown files that you do not expect or trust.
* Secure your wireless connection with a unique and strong password

Figure 44 Mirai landing page KPN - EN
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@“ kpn

KPN Quarantainenet

By filling in this form you confirm that the problems on your computers/laptops are solved.

You can find more information on your specific problem on the indexpage of the secured environment.

Registered Email address: abuse@kpnmail.nl
IP Address:

What is your e-mailaddress?

What is your name? '
How many computers/laptops are connected? ‘

Is your modem transmitting a wireless signal? If so, how is this connection secured?
No © Off © Unsecured © WEP © WPA © WPA2 ©

Found viruses
Place the complete logfile of the executed scans here.
In case multiple computers/laptops are connected, please include all logfiles.

‘ .

Which anti-virus software do you use?

|

Which measures have been taken to remove the infection?
Also please inform us which measures have been taken to avoid future problems.

Do you have any further questions/remarks?

|

Check to BailOut automaticly: #

Confirmation code: | \ [New image]

Figure 45 Mirai static contact form - EN
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2 Reply E2Reply All & Forward GiSiIM
Tue 30/07/2019 13:56

TA  Telfort Abuse Team <abuse@telfort.com>
Re: [Abuse#38188903] Misbruik van uw internetverbinding [1.1.1.1]

To © Verstegen, Susanne A

Geachte heer, mevrouw,

Een veilig internet is in ieders belang. Wij maken ons als Telfort sterk om uw (vertrouwelijke) informatie te beschermen.

Wij hebben een beveiligi obleem waar op uw inter Meestal merkt u hier zelf niets van, omdat het om processen gaat die op de achtergrond draaien.

Wat is er aan de hand en hoe kunt u dit oplossen?
Een of meer apparaten die zijn aangesloten op uw internetverbinding zijn geinfecteerd met het Mirai virus. We kunnen niet met zekerheid zeggen welk apparaat geinfecteerd is. Waarschijnlijk is
het een digitale video recorder (DVR), beveiligingscamera of printer die op het internet is aangesloten en dus geen computer, laptop, tablet of mobiele telefoon.

Hoe kunt u het Mirai virus verwijderen en een infectie in de toekomst voorkomen?
Volg onderstaande stappen. Mocht het niet lukken een stap uit te voeren, ga dan verder naar de volgende.

1. Bepaal welke apparaten zijn aangesloten op uw internetverbinding.
Herinnering: Het Mirai virus infecteert met name op het internet aangesloten apparaten zoals een DVR, beveiligingscamera of printer.

2. Verander het wachtwoord van de op het internet aangesloten apparaten. Kies een wachtwoord dat moeilijk te raden is. Als u het huidige wachtwoord niet weet, raadpleeg dan de handleiding.
Door het uitvoeren van deze stappen heeft u toekomstige infecties voorkomen.

3. Herstart de op het internet aangesloten apparaten door deze uit en opnieuw aan te zetten.
Hierna is het Mirai virus verwijderd uit het geheugen van de apparaten.

Nu uw op het internet aangesloten apparaten veilig zijn, zijn de laatste stappen om uw router/modem te beschermen.

4. Reset uw modem/router naar de fabrieksi i Op https://www.telfort.nl/persoonlijk/service/modem-resetten.htm is beschreven hoe u dit kunt doen voor een Experia Box.

'service/wifi-wachtwoord-wiizigen-2.htm is beschreven hoe u dit kunt doen voor een Experia Box.

5. Stel het wachtwoord van uw modem/router in. Op https:

Let op: Als toegang op afstand voor een apparaat absoluut noodzakelijk is, stel dan handmatig port forwards in op uw router voor het betreffende apparaat. Wij ondersteunen het instellen van
portforwards niet. Voor meer informatie hierover verwijzen wij u naar ons forum: https://forum.telfort.nl/

Wij vragen u de bovenstaande stappen binnen een dag uit te voeren en te reageren op dit bericht.
Ook aanvullende vragen kunt u stellen in een antwoord op deze mail.

LET OP: Het onderwerp van dit bericht bevat een ticketnummer: 38188903. Indien u vanaf een ander e-mailadres contact met ons wilt opnemen, vermeld dan altijd het volgende in het
onderwerp: 38188903.

Met vriendelijke groet,

Virgil
Abuse Specialist

Telfort
Abuse Team

Het Telfort Abuse Team handelt veiligheidsincidenten af voor Telfort. Meer informatie over de afdeling vindt u op: telfort.nl/abuse

Figure 46 Mirai e-mail notification Telfort - NL
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F Randomization protocol

This appendix describes the randomization protocol that is deployed to allocate detected IPs
to a treatment or control group. The following conditions are considered while setting up the
protocol:

e The exact sample size (N) is not known in advance;
e We strive for an equal number of IPs in each group;

e Telfort and KPN customers will be treated as two populations. Therefore, both
markets have their own protocol.

To assign detected IPs to a group, a list is made for both markets (Telfort and KPN) which
determines the sequence of assighment. We choose for a complete random assignment which
is a procedure in which each treatment condition contains an equal number of units. The
difficulty in creating the assignment lists lies in estimating beforehand how many IPs will have
to be assigned: when a list is larger than the number of actual IPs detected, there is still the
chance of unequal distribution over the treatment conditions. For that reason, the lists are
dynamic: a new list will be added when the previous list is completely used. The new lists will
be created with another seed. The complete random assignment is done in R using the package
randomizr. The following two sections show the used code.

KPN assignment list

> install.packages("randomizr")
> set.seed(24)

> Z <- complete_ra(99, num_arms = 3, conditions = c("control","e-m

ail only","loose wg"), check_inputs = TRUE)

#initial Tlist of 99 assignments
#equally distributed over three treatment conditions

> write.table(z, file="KPN_1list.csv",sep=",", row.names=F)

> set.seed(25)

> Z <- complete_ra(33, num_arms = 3, conditions = c("control","e-m

ail only","loose wg"), check_inputs = TRUE)

#second 1ist of 33 assignments
#equally distributed over three treatment conditions

> write.table(z, file="KPN_1list.csv",sep=",", row.names=F)
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Telfort assignment list

> set.seed(48)

> Z <- complete_ra(60, num_arms = 3, conditions = c("contro

1","e-mail only","Toose wg"), check_inputs = TRUE)

#initial Tist of 60 assignments
#equally distributed over three treatment conditions

> write.table(z, file="Telfort_list.csv",sep=",",row.names=

F)
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G Interview protocol

5 |® | |5 |© o o S
# question category stage 3 @ Q 2, ) § 2 =]
2 1S |3 |8 |3 > i S
=, @] — o - = o
o - > ] - < o
> 3 S > a
o S = Q o
S |18 |8 S 5
wn _?_) g o
T v
>
(@)
D
yes | no | yes | no |yes |no
1.1 | Do you have time? introductory X 21 1121(91 (1212112
1.2 | What moment would suit you better? Closing X
2.1 | Do you recall receiving the notification? Transition Delivery X 31122 - - -
2.2 | Is [e-mail address] your correct e-mail | Closing X 24 123 - - - -
address?
2.3 | What is your correct e-mail address? Closing X X - - - -
2.4 | Do you know the possible reason(s) for not | Transition X 8.1 | - - - - -
receiving or noticing the e-mail?
3.1 | Have you had the chance to read the | Transition Attention X X 41|32 - - - -
notification?
3.2 | What contributed to not reading the e- | key X X 8.1 - - - -
mail?
4.1 | At that moment, did you understand the | Transition Comprehension X 51142 |- - - -

content of the e-mail?
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4.2 | Do you remember what was not clear to | Key 5.1 5.1 - -
you?

51 | Have you tried to perform the | Key Intention 7116171 |7.1]- -
recommended actions?

6.1 | What demotivated you or hold you back? | Key Motivation 8.1 8.1 - -

/Beliefs

7.1 | Did you succeed in performing the | Transition 7317273 |7.2]- -
recommended actions?

7.2 | What have you tried? Key Behavior 7.4 7.4 - -

7.3 | How did you do that? Key 7.4 7.4 - -

7.4 | Which device(s) have you identified as | Key 8.1 8.1 - -
possibly infected?

8.1 | What doyou think of KPN’s service to reach | Key 8.2 8.2 - -
out to infected customers?

8.2 | How can this service be improved? Key 13.1 13.1 - -

9.1 | Doyou recall being placed into quarantine? | transition Delivery - - 10.1 (9.2 | - -

9.2 | Is there a chance another user of your | transition - - 93 |- - -
Internet connection has solved the
problem?

9.3 | Could I speak to this person? transition - - 1.1 |- - -

10.1 | At that moment, did you understand the | Key Comprehension - - 51 |4.2]- -
content of the message that was placed
into you browser and/or e-mailed to you?

12.1 | Do you recall having installed a new device | Key - - - - 122 124
or switched on a device?

12.2 | Which kind of device was that? Key - - - - 12.3
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12.3 | What have you done with that device after | Key Behavior 13.1
use?

12.4 | Do you have any devices that are | Key 125 ] 12.6
connected to the Internet?

12.5 | What devices? Key 12.6

12.6 | Could you think of another reason that one | Key Behavior 13.1
of these devices are infected?

13.1 | Is there anything you like to add or ask? Closing -
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H Age distribution KPN and Telfort infected consumers

Distribution birth year [KPN and Telfort]

0.035 4 w0 Mirai infected Telfort consumers
Mirai infected KPN consumers
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Birth year
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Estimated infection time

| Data exploration
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Figure 47 Pairplot all observations, division in market
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Estimated infection time

350 1
00 o0 e o o0 o oo 00 00 00 oo (1]
300 +
L]
250 4
L]
200 1
. .
1501
L]
100 1 °
L]
° ° e ° oo ° %0 0 0 o
L] L]
o ° ° . .
50 4 L4 °
LJ e o
° e ° oo .
¢ . . . . ° '. .
L]
. . . ace _o °
0 H ® e 35 % 5°..008
19|30 19|40 19|50 19|60 19I70 19l80 19‘90
Birth year
Figure 49 Pairplot all observations, division in treatment
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J Modeling step 1 [all observations]

J.1 Introduction

The complete dataset contains 177 consumers, of which 48 censored (remediation happened
after the experiment period). Both female and male are included as variables since there are
nine cases in which the gender of the subscriber is unknown. The dummy variables are coded
the following:

Variable ‘female’ Variable ‘male’
Female subscriber 1 0
Male subscriber 0 1
Unknown gender 0 0

Variable ‘walled garden’ Variable ‘e-mail

Walled garden notification 1 0
E-mail notification 0 1
No notification (control group) 0 0

Variable ‘market

KPN consumer

Telfort consumer

Variable ‘time_splits’

First detected before June 9th

0

First detected after June 9th

1

J.2 Overview data

Figure 53 shows the correlation of all variables. ‘infection time’ and ‘censored’ are the
dependent variables. The other seven variables are independent (possible covariates). The
variables market and e-mail are closely linked since the e-mail treatment group only exist of
Telfort consumers due to malfunctioning KPN mail server. The correlation between male and
female is high (only eleven cases of unknown gender). To avoid multicollinearity, only one of
these two variables is chosen. The variables are separately modeled to check which more
reliable in step O (cannot be modeled as one dummy variable due to the unknown gender

cases).
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dur -0.2 -0.067  0.081 -0.11 -0.036
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Figure 51 Correlation potential remediation drivers (all observations)
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J.3 Cox modeling steps

Step O | First, we check if female’ or ‘male’ is a better covariate.

Including female:

<lifelines.CoxPHFitter: fitted with 166 observations, 44 censored>
duration col = 'infection time’
event col = 'censored’
number of subjects = 166
number of events = 122
partial log-likelihood = -554.76
time fit was run = 2019-87-22 09:47:35 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
market -9.05 0.95 9.24 -0.21 0.83 0.27 -9.52 0.41
walled garden ©.63 1.87 9.21 3.03 <0.0e5 8.68 9.22 1.3
email 9.42 1.52 9.39 1.e8 0.28 1.84 -0.34 1.18
age 9.00 1.00 9.1 0.53 9.59 0.75 -0.01 0.02
female 9.58 1.78 0.25 2.27 9.02 5.43 9.08 1.7

Concordance = 0.58
Log-likelihood ratio test = 11.97 on 5 df, -log2(p)=4.83
Proportional hazard assumption looks okay.

Including male:

<lifelines.CoxPHFitter: fitted with 166 observations, 44 censored>
duration col = 'infection time’
event col = "censored’
number of subjects = 166
number of events = 122
partial log-likelihood = -556.00
time fit was run = 2019-07-22 ©9:47:44 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
market -0.02 0.98 09.24 -0.09 0.93 0.11 -9.49 0.44
walled garden ©.56 1.76 0.20 2.81 @.01 7.64 0.17 0.96
email 9.35 1.41 9.38 0.91 0.36 1.46 -0.40 1.09
age 0.00 1.00 0.01 ©0.40 0.69 0.53 -0.01 0.02
male -0.35 0.71 09.23 -1.52 0.13 2.96 -0.79 0.10

Concordance = 0.58
Log-likelihood ratio test = 9.50 on 5 df, -log2(p)=3.46
Proportional hazard assumption looks okay.

The model including ‘female’ has higher reliable parameters and a better overall fit ( the
partial log-likelihood is higher for equal degrees of freedom).

In the next steps, the variable ‘male’ is excluded due to the high covariance between this
variable and ‘female’. Due to this exclusion, the coding of the dummy variable ‘female’ is
changed. 1 = female subscriber, and 0 = male subscriber and subscribers of unknown
gender.

Step 1 | The market variable is the least reliable and excluded

Modeling the Cox model for [age, female, walled garden, e-mail]
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<lifelines.CoxPHFitter: fitted with 166 observations, 44 censored>

duration col = "infection time’
event col = 'censored’
number of subjects = 166
number of events = 122

partial log-likelihood = -554.79
time fit was run = 2019-07-22 10:10:48 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
walled garden ©.62 1.86 9.20 3.04 <0.005 8.72 9.22 1.02
email 0.37 1.45 9.33 1.15 9.25 1.99 -0.27 1.02
age 0.00 1.00 9.091 0.50 0.61 0.70 -0.01 9.02
female 0.58 1.78 9.25 2.28 0.02 5.47 0.08 1.7
Concordance = 0.58
Log-likelihood ratio test = 11.92 on 4 df, -log2(p)=5.80
Proportional hazard assumption looks okay.
The difference in partial log-likelihood (LL) =-0,03
Log-Likelihood Ratio Statistic (LRS) = 0,06
Consulting the chi-square distribution for 0,06 on 1 df: p>0,75
Model 1 is better than model O
Step 2 | The age variable is the least reliable and excluded
Modeling the Cox model for [female, walled garden, e-mail]
<lif;lines.CokPHFitter: fitted with 166 observations, 44 censored>
duration col = "infection time’
event col = ‘censored’
number of subjects = 166
number of events = 122
partial log-likelihood = -554.91
time fit was run = 2019-87-22 11:37:39 UTC
o coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
walled garden ©.63 1.88 9.20 3.12 <0.005 9.13 0.24 1.03
email 9.35 1.42 ©.32 1.09 0.28 1.85 -0.28 0.99
female 0.57 1.78 9.25 2.26 0.02 5.40 0.08 1.07
é;;cordance = 0.58
Log-likelihood ratio test = 11.67 on 3 df, -log2(p)=6.86
Proportional hazard assumption looks okay.
The difference in partial log-likelihood (LL) =-0,12
Log-Likelihood Ratio Statistic (LRS) = 0,24
Consulting the chi-square distribution for 0,24 on 1 df: p>0,50
Model 2 is better than model 1
Step 3 | The e-mail variable is the least reliable and excluded
Modeling the Cox model for [female, walled garden]
<lifelines.CoxPHFitter: fitted with 166 observations, 44 censored>
duration col = ‘infection time’
event col = 'censored’
number of subjects = 166
number of events = 122
partial log-likelihood = -555.46
time fit was run = 2019-07-22 11:40:43 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
walled garden ©.57 1.77 9.19 2.97 <0.005 8.39 0.19 9.95
female 9.52 1.68 9.25 2.10 0.04 4.80 0.03 1.00

Concordance = 0.57
Log-likelihood ratio test = 10.57 on 2 df, -log2(p)=7.62
Proportional hazard assumption looks okay.

The difference in partial log-likelihood (LL) = -0,55
Log-Likelihood Ratio Statistic (LRS) = 1,1
Consulting the chi-square distribution for 1,1 on 1 df: p>0,25
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Model 3 is better than model 2

Step 4 | The female variable is the least reliable and excluded
Modeling the Cox model for [walled garden]
<lifelines.CoxPHFitter: fitted with 166 observations, 44 censored>
duration col = "infection time’
event col = 'censored’
number of subjects = 166
number of events = 122
partial log-likelihood = -557.45
time fit was run = 2019-07-22 11:44:11 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
walled garden ©.49 1.64 9.19 2.63 6.01 6.86 0.12 0.86
Concordance = 0.56
Log-likelihood ratio test = 6.60 on 1 df, -log2(p)=6.61
Proportional hazard assumption looks okay.
The difference in partial log-likelihood (LL) =-1,99
Log-Likelihood Ratio Statistic (LRS) = 3,98
Consulting the chi-square distribution for 3,98 on 1 df: p<0,05
Model 3 is better than model 4
Step 5 | Model 3 is best of all models.
When comparing model 3 with a trivial model, the LRS is 10,57 for 2 degrees of freedom:
p<0,01
Model 3 is better than a model without covariates.
Model 3 is accepted
Step 6 Proportional Cox model [walled garden vs control+email] Proportional Cox model [female vs male+unknow]
—— walled garden=0 0.0 4 —— female=0
—— walled garden=1 B — female=1
----- baseline survival 0.8 4 ===+ baseline survival
2z 207
E E 0.6
g gos
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J.4 AFT modeling steps

Step O | Priorto estimating a model, we must find the best fitting distribution for the survival curve.
Figure 54 shows the distribution fits and the Log-Likelihood (LL) of that function compared
to the null distributions. Since the data and the number of parameters are for all these five
distributions the same, except for the exponential distribution, we can directly compare
the LL estimates of these five. The difference in one degree of freedom does not
compromise for the low LL of the exponential distribution. When comparing the rest, we
can conclude the LogNormal distribution has the best goodness of fit.

1.0 1.0 A
= Weibull -661 - LogNormal -640 - PiecewiseExp -664
0.8 0.8 1
0.6 - 0.6 1
0.4+ 0.4+
0.2 1 0.2 1
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1.0 —— KaplanMeier —— LogLogistic -648 107 —— Exponental -736
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0.2 1 . . i i i . i i .
0 100 200 300 100 200 300 100 200 300
Figure 52 Distribution fits for the survival curve of all observations
Figure 55 shows the quantile-quantile (Q-Q) plot to compare the fitted LogNormal
distribution with the empirical distribution. The Q-Q-plot shows that until 81 hours, the
data has quite the same shape as the fitted LogNormal distribution. The empirical
distribution is a bit more concentrated than the fitted distribution. Then there is a spike
of identical values of 81/82 hours (horizontal line of dots). This can also be seen in the
Kaplan-Meier plot in section 6.3, which shows a drop around this time. After this spike,
the dots form a steep vertical line, which indicates there is a gap in values.
250 4
P 200 +
g 150 A R
50 1 s
SIO 160 15;0 ZSIO
fitted lognormal quantiles
Figure 53 Q-Q plot LogNormal distribution
Step 1 | Similarto the Cox modeling in the previous section, we first estimate two models (including

female and including male) so we can decide which variable to continue with.
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Including female:

<lifelines.LogNormalAFTFitter: fitted with 166 observations, 44 censored>

event col = 'censored’
number of subjects = 166
number of events = 122
log-likelihood = -639.923

time fit was run

2019-07-22 12:27:28 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
mu_ market 0.19% 1.209 9.484 ©.392 0.695 0.524 -0.759 1.138
walled garden -1.249 0.287 9.422 -2.962 ©.003 8.352 -2.976 -0.422
email -0.863 0.422 9.782 -1.103 0.270 1.888 -2.396 0.671
age -0.005 0.995 0.014 -0.397 0.691 0.533 -0.033 0.022
female -1.145 0.318 9.539 -2.124 0.034 4.894 -2.201 -0.089
_intercept 4.715 111.618 0.725 6.507 <0.0005 33.603 3.295 6.135
sigma_ _intercept 9.856 2.354 9.069 12.447 <06.0005 115.725 0.721 0.991
Concordance = 0.584
Log-likelihood ratio test = 11.231 on 5 df, -log2(p)=4.412
Including male:
<lifelines.LogNormalAFTFitter: fitted with 166 observations, 44 censored>
event col = 'censored’
number of subjects = 166
number of events = 122
log-likelihood = -640.974
time fit was run = 2019-07-22 12:27:21 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
mu_ market 9.149 1.161 0.487 0.3066 ©0.759 0.397 -0.805 1.104
walled garden -1.151 0.316 0.419 -2.750 ©.006 7.391 -1.972 -0.331
email -0.760 0.468 0.784 -0.969 9.332 1.589 -2.297 0.777
age -0.004 0.996 0.014 -0.273 0.785 0.349 -0.031 0.023
male 0.739 2.094 0.478 1.545 9.122 3.032 -0.198 1.676
_intercept 3.842 46.601 ©.792 4.853 <0.0005 19.646 2.290 5.393
sigma_ _intercept 9.863 2.369 9.069 12.533 <0.0005 117.287 0.728 0.997
Concordance = 0.581
Log-likelihood ratio test = 9.131 on 5 df, -log2(p)=3.266

The model including ‘female’ has higher reliable parameters and a better overall fit (the
log-likelihood is higher for equal degrees of freedom). Similar to the Cox model, the next
steps will include ‘female’. (Dummy coding: 1 = female subscriber, and 0 = male subscriber

and subscribers of unknown gender)

Step 2

The market variable is the least reliable and excluded

Modeling the AFT LogNormal model for [age, female, walled garden, e-mail]

<lifelines.LogNormalAFTFitter: fitted with 166 observations, 44 censored>
event col = 'censored’
number of subjects = 166

number of events
log-likelihood
time fit was run =

122
-640.000
2019-07-22 12:39:13 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95

mu_ walled garden -1.231 0.292 0.419 -2.935 ©.003 8.227 -2.053
email -9.705 0.494 0.671 -1.051 ©.293 1.769 -2.021

age -9.005 0.995 0.014 -0.363 0.717 0.480 -0.032

female -1.142 0.319 9.539 -2.118 9.034 4.872 -2.199
_intercept 4.726 112.819 0.725 6.521 <0.0005 33.740 3.305
sigma_ _intercept 0.857 2.356 0.069 12.458 <0.0005 115.921 0.722

Concordance = 0.582

Log-likelihood ratio test = 11.078 on 4 df, -log2(p)=5.282

The difference in partial log-likelihood (LL) = -0,077
Log-Likelihood Ratio Statistic (LRS) = 0,154
Consulting the chi-square distribution for 0,154 on 1 df: p>0,50

Model 2 is better than model 1

upper ©.95
-0.409
0.610
0.022
-0.085
6.146
0.992
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Step 3 | The age variable is the least reliable and excluded
Modeling the AFT LogNormal model for [female, walled garden, e-mail]
<lifelines.LogNormalAFTFitter: fitted with 166 observations, 44 censored>
event col = 'censored’
number of subjects = 166
number of events = 122
log-likelihood = -640.066
time fit was run = 2019-87-22 12:42:28 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
mu_ valled garden -1.242 0.289 0.418 -2.970 ©.003 8.393 -2.062 -0.423
email -0.685 0.504 0.669 -1.024 ©.306 1.710 -1.996 0.626
female -1.132 0.322 ©.539 -2.103 9.036 4.816 -2.188 -0.077
_intercept 4.485 88.679 ©.288 15.582 <0.0005 179.440 3.921 5.049
sigma_ _intercept 0.857 2.356 ©.069 12.461 <0.0005 115.975 0.722 0.992
Concordance = ©.580
Log-likelihood ratio test = 10.946 on 3 df, -log2(p)=6.379
The difference in partial log-likelihood (LL) = -0,066
Log-Likelihood Ratio Statistic (LRS) = 0,132
Consulting the chi-square distribution for 0,132 on 1 df: p>0,50
Model 3 is better than model 2
Step 4 | The e-mail variable is the least reliable and excluded
Modeling the AFT LogNormal model for [female, walled garden]
<lifelines.LoghNormalAFTFitter: fitted with 166 observations, 44 censored>
event col = ‘censored’
number of subjects = 166
number of events = 122
log-likelihood = -640.589
time fit was run = 2019-87-22 12:43:50 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
mu_ walled garden -1.129 0.323 ©.404 -2.795 0.005 7.592 -1.920 -0.337
female -1.030 0.357 ©9.530 -1.942 9.052 4.262 -2.070 0.009
_intercept 4.365 78.629 ©.262 16.682 <0.0005  205.127 3.852 4.878
sigma_ _intercept ©.860 2.364 ©9.069 12.502 <0.0005 116.719 9.725 0.995
Eé;cordance = 0.574
Log-likelihood ratio test = 9.900 on 2 df, -log2(p)=7.141
The difference in partial log-likelihood (LL) = -0,523
Log-Likelihood Ratio Statistic (LRS) = 1,046
Consulting the chi-square distribution for 1,046 on 1 df: p>0,525
Model 4 is better than model 3
Step 5 | The female variable is the least reliable and excluded
Modeling the AFT LogNormal model for [walled garden]
<lifelines.LogNormalAFTFitter: fitted with 166 observations, 44 censored>
event col = 'censored’
number of subjects = 166
number of events = 122
log-likelihood = -642.460
time fit was run = 2019-87-22 12:45:41 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
mu_ walled garden -1.004 0.366 ©0.403 -2.4%4 0.013 6.307 -1.794 -0.215
_intercept 4.168 64.580 ©.241 17.283 <0.6005 219.898 3.695 4.641
sigma_ _intercept 0.872 2.392 0.069 12.667 <0.6005 119.733 0.737 1.007

Concordance = 0.556

Log-likelihood ratio test = 6.158 on 1 df, -log2(p)=6.256

The difference in partial log-likelihood (LL) = -1,871
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Log-Likelihood Ratio Statistic (LRS) = 3,742
Consulting the chi-square distribution for 3,742 on 1 df: p=0,053

Model 4 is better than model 5 under the significance level of 5,3%

Step 6 Model 4 is best of all models.
When comparing model 4 with a trivial model, the LRS is 9,9 for 2 degrees of freedom:
p<0,05 (p=0,002)
Model 4 is better than a model without covariates.
Model 4 is accepted
Step 7 LogNormal AFT model [walled garden vs control+email] LogNormal AFT model [female vs male+unknown]
—— walled garden=0 —— female=0
0.9 —— walled garden=1 0.9 1 — female=1
o84\ T baseline survival o8y e baseline survival
E 0.7 4
E 0.6
iELOAS b
,g 0.4 4
E 0.3 1
0.2 4
0.14
0.0 T T T T T T T T T T T T T 0.0
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K Modeling step 2 [interviewed consumers]

K.1 Introduction

Of all the subjects in the experiment, 99 consumers were interviewed. Seven of these
consumers had a business account, two consumers were reinfected and one customer had a
business account and was reinfected. We exclude these customers from the dataset, resulting
in a dataset of 89 entries, of which 22 are censored.

Through the interviews, we obtained more information that may have explanatory value for
infection time. This information is translated into several dummy variables. Two dummy
variables concern two stages of the theoretical framework: awareness and behavior.
Comprehension, intention and compliance are not included since these stages are only of
interest in the e-mail and walled garden group. This appendix, therefore, excludes these stages.
Appendix L models the process excluding the control group so that the other stages can be
included.

The two dummy variables are defined and coded as the following:

Aware of notification (awareness): whether the interviewed consumer has received a
notification and is aware of the content.

Variable ‘aware of
notification’:

Consumers in the control group; consumers in the e-mail and | O
walled group who have not seen or read the notification

Consumers in the e-mail and walled group who have seen andread | 1
the notification

Right measures (behavior): whether the interviewed consumer has performed effective
remediation measures. These actions may differ from the recommended actions in the
notification. Section 8.1 presents the rules that determine whether remediation actions are
considered ‘effective’.

Variable ‘Right measures’:

Consumers  who haven’'t performed | O
effective measures to remediate Mirai

Consumers who have performed effective | 1
measures to remediate Mirai

Other data obtained through the interviews is the device types that consumers have identified
as infected. The pie charts in chapter 5 visualize the ratios of device types. However, these pie
charts do not take into that some consumers have identified several devices as possible
infected. Since we don’t know the precise device, we collect these devices under the variable
‘multiple’. The NAS and Rasberry Pi devices are collected under the variable ‘home automation’
(modeled as ‘home’). This data exists of 39 home automation devices, 23 camera’s, 11
instances of multiple possibly infected devices, 11 unknown device types, 3 printers and 2
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routers. Due to their low occurrence, printers and routers are not modeled asa variable. All
other device types are modeled as dummy variables:

Variable Variable Variable Variable
‘home’ ‘camera ‘multiple’ ‘unknown’
Consumers who have identifieda NASor | 1 0 0 0
Rasberry Pi as the infected device
Consumers who have identified an IP | O 1 0 0
camera as the infected device
Consumers who have identified multiple | O 0 1 0
loT devices as possibly infected
Consumers who were not able to |0 0 0 1
identify an loT device in their network
Consumers who have identified a printer | O 0 0 0
or router as the infected device (rest
group)
K.2 Overview data
350 1
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é Performed effective measures
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Estimated infection time

Estimated infection time
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K.3 Cox modeling steps

Step O | For the same reasons as addressed in appendix J.2, we first check if female’ or ‘male’ is a
better covariate to determine which of the two to include.

Including female:

<lifelines.CoxPHFitter: fitted with 89 observations, 22 censored>
duration col 'Estimated infection time'
event col ‘censored’
number of subjects = 89
number of events = 67
partial log-likelihood = -253.46
time fit was run = 2019-07-25 12:53:28 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper @.95
market -0.28 .75 9.35 -0.80 9.42 1.24 -0.97 .41
email -0.37 .69 9.76 -0.49 9.62 9.68 -1.86 1.11
walled garden -0.33 8.72 9.69 -0.48 9.63 0.67 -1.68 1.01
age 0.01 1.01 9.21 0.62 9.54 9.90 -0.01 .03
female 1.32 3.73 9.43 3.04 <0.005 8.70 0.47 2.17
aware of notification? .93 2.53 9.71 1.31 @.19 2.40 -0.46 2.32
right measures 9.89 2.45 9.39 2.3@ 9.82 5.56 9.13 1.66
home -0.20 ©.82 9.58 -0.35 9.72 9.46 -1.34 .93
camera -0.34 e.71 9.57 -0.60 @.55 9.86 -1.46 .78
multiple 9.13 1.14 9.62 0.21 9.83 9.27 -1.08 1.34
unknown 0.38 1.46 9.69 ©.55 09.58 9.78 -0.97 1.72
Concordance = 0.66
Log-likelihood ratio test = 23.45 on 11 df, -log2(p)=6.03
Proportional hazard assumption looks okay.
Including male:
<lifelines.CoxPHFitter: fitted with 89 observations, 22 censored>

duration col = 'Estimated infection time’
event col = 'censored’
number of subjects = 89
number of events = 67
partial log-likelihood = -253.94
time fit was run = 2819-07-25 12:53:59 UTC

coef exp(coef) se(coef) z p -log2(p) lower @.95 upper @.95
market -0.29 .75 9.35 -0.85 0.49 1.34 -9.97 8.38
email -0.27 .76 9.75 -0.36 0.72 .48 -1.74 1.20
walled garden -0.15 9.86 9.68 -0.22 0.83 9.27 -1.48 1.19
age 0.090 1.00 9.91 ©.48 0.63 .67 -8.02 9.02
male -1.e3 .36 9.37 -2.76 0.01 7.43 -1.76 -9.30
aware of notification? .85 2.35 9.70 1.22 0.22 2.18 -8.51 2.22
right measures 0.67 1.95 9.36 1.85 0.906 3.96 -9.04 1.37
home -0.10 .90 9.57 -0.18 0.86 .22 -1.23 1.2
camera -0.58 .56 9.59 -0.98 0.33 1.62 -1.74 8.58
multiple 0.21 1.23 9.61 ©0.34 0.74 .44 -0.99 1.41
unknown 0.39 1.48 9.68 0.58 0.56 9.83 -9.94 1.73

Concordance = 9.66

Log-likelihood ratio test = 22.49 on 11 df, -log2(p)=5.592
Proportional hazard assumption looks okay.

The model including ‘female’ has higher reliable parameters and a better overall fit ( the
partial log-likelihood is higher for equal degrees of freedom).

In the next steps, the variable ‘male’ is excluded due to the high covariance between this
variable and ‘female’. Due to this exclusion, the coding of the dummy variable ‘female’ is
changed. 1 = female subscriber, and 0 = male subscriber and subscribers of unknown
gender.

Step 1 | The ‘multiple’ variable is the least reliable and excluded

Modeling the Cox model for [market, e-mail, walled garden, age, female, aware of
notification, right measures, camera, home, unknown]
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<lifelines.CoxPHFitter: fitted with 89 observations, 22 censored>
duration col = 'Estimated infection time'
event col ‘censored’
number of subjects = 89
number of events = 67
partial log-likelihood = -253.48
time fit was run = 2019-07-25 13:13:44 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper .95
market -9.28 .76 9.35 -0.79 9.43 1.22 -0.97 .41
email -8.37 ©.69 9.76 -0.49 0.62 .69 -1.86 1.11
walled garden -90.34 e.71 9.68 -0.50 0.62 8.70 -1.68 1.00
age 0.01 1.01 9.21 .67 0.50 1.00 -9.01 .03
female 1.33 3.79 9.43 3.10 <0@.ee5 9.02 .49 2.17
aware of notification? 0.94 2.56 9.71 1.33 0.18 2.44 -0.45 2.33
right measures 0.90 2.45 9.39 2.31 0@.92 5.58 0.14 1.66
home -9.29 .75 9.38 -0.77 0.44 1.17 -1.085 .46
camera -0.43 .65 9.38 -1.12 0.26 1.94 -1.18 .32
unknown 0.28 1.32 9.51 .55 9.59 0.77 -0.72 1.28

Concordance = @.66
Log-likelihood ratio test = 23.41 on 10 df, -log2(p)=6.74
Proportional hazard assumption looks okay.

The difference in partial log-likelihood (LL) = -0,02
Log-Likelihood Ratio Statistic (LRS) = 0,04

Consulting the chi-square distribution for 0,04 on 1 df: p>0,75
Model 1 is better than model O

Step 2 | The e-mail and walled garden variable are the least reliable. E-mail is excluded because the
model of the complete dataset (appendix J.3) has shown that walled garden is a significant
covariate and B)

Modeling the Cox model for [market, walled garden, age, female, aware of notification,
right measures, home, camera, unknown]
<1if;1ines.Co;(PHFitter: fitted with 89 observations, 22 censored>
duration col = 'Estimated infection time’
event col = 'censored’
number of subjects = 89
number of events = 67
partial log-likelihood = -253.61
time fit was run = 2019-07-25 13:89:48 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper .95
market -0.35 2.71 9.33 -1.e5 0.29 1.77 -0.99 .30
walled garden -0.97 9.93 9.39 -0.19 9.85 9.23 -0.84 0.69
age 9.01 1.01 9.21 0.68 0.5@ 1.01 -9.01 2.03
female 1.33 3.76 9.43 3.8 <0.0e5 8.93 9.48 2.17
aware of notification? ©.68 1.96 9.44 1.54 9.12 3.01 -9.19 1.54
right measures 0.90 2.47 9.39 2.32 0@.02 5.60 0.14 1.67
home -0.29 8.75 9.38 -0.75 9.45 1.15 -1.04 .46
camera -0.44 9.64 9.38 -1.16 9.25 2.01 -1.19 2.31
unknown 9.22 1.25 9.51 0.44 9.66 9.61 -0.77 1.22
Concordance = .65
Log-likelihood ratio test = 23.15 on 9 df, -log2(p)=7.41
Proportional hazard assumption looks okay.
The difference in partial log-likelihood (LL) = -0,13
Log-Likelihood Ratio Statistic (LRS) = 0,26
Consulting the chi-square distribution for 0,26 on 1 df: p>0,50
Model 2 is better than model 1
Step 3 | The ‘walled garden’ variable is the least reliable and excluded

Modeling the Cox model for [market, age, female, aware of notification, right measures,
camera, home, unknown]
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<lifelines.CoxPHFitter: fitted with 89 observations, 22 censored>
duration col 'Estimated infection time’

event col = 'censored’
number of subjects = 89
number of events = 67

partial log-likelihood = -253.62
time fit was run = 2019-07-25 13:09:48 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
market -9.33 .72 9.31 -1.e4 0.30 1.76 -0.94 0.29
age 0.01 1.01 9.1 0.65 9.51 9.96 -9.01 0.02
female 1.31 3.71 9.42 3.09 <@.ees5 8.97 0.48 2.14
aware of notification? 0.62 1.86 9.34 1.84 0.07 3.94 -0.04 1.28
right measures .89 2.43 9.38 2.33 0.02 5.64 0.14 1.64
home -0.29 .75 9.38 -0.75 0.45 1.14 -1.04 0.46
camera -9.45 .64 ©.38 -1.18 9.24 2.06 -1.19 0.30
unknown 0.21 1.23 0.50 0.42 0.67 0.57 -0.77 1.19

Concordance = @.66
Log-likelihood ratio test = 23.11 on 8 df, -log2(p)=8.28
Proportional hazard assumption looks okay.

The difference in partial log-likelihood (LL) = -0,01
Log-Likelihood Ratio Statistic (LRS) = 0,02
Consulting the chi-square distribution for 0,02 on 1 df: p>0,75

Model 3 is better than model 2

Step 4 | The ‘unknown’ variable is the least reliable and excluded
Modeling the Cox model for [market, age, female, aware of notification, right measures,
camera, home]
<lifelines.CoxPHFitter: fitted with 89 observations, 22 censored>
duration col = 'Estimated infection time'
event col = 'censored’
number of subjects = 89
number of events = 67
partial log-likelihood = -253.71
time fit was run = 2019-07-25 13:89:49 UTC
coef exp(coef) se(coef) z p -log2(p) Ilower ©.95 upper @.95
market -0.28 8.76 9.29 -0.95 0.34 1.55 -0.85 .30
age 0.01 1.01 0.91 0.68 0.49 1.02 -0.01 .02
female 1.32 3.73 9.42 3.10 <0.0e5 9.03 0.49 2.15
aware of notification? .61 1.85 9.34 1.82 0.07 3.87 -0.05 1.27
right measures 0.86 2.36 9.37 2.3¢ 0.2 5.53 0.13 1.59
home -0.35 e.70 9.35 -1.82 0.31 1.71 -1.e3 .32
camera -0.49 .61 9.36 -1.39 0.17 2.60 -1.19 .20
E;;cordance = 9.66
Log-likelihood ratio test = 22.94 on 7 df, -log2(p)=9.16
Proportional hazard assumption looks okay.
The difference in partial log-likelihood (LL) = -0,09
Log-Likelihood Ratio Statistic (LRS) = 0,18
Consulting the chi-square distribution for 0,18 on 1 df: p>0,50
Model 4 is better than model 3
Step 5 | The ‘age’ variable is the least reliable and excluded

Modeling the Cox model for [market, female, aware of notification, right measures, camera,
home]
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<lifelines.CoxPHFitter: fitted with 89 observations, 22 censored>
duration col 'Estimated infection time'
event col ‘censored”’
number of subjects = 89
number of events = 67
partial log-likelihood = -253.94
time fit was run = 2019-07-25 13:09:49 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
market -0.26 .77 9.29 -0.9@ 9.37 1.45 -0.84 2.31
female 1.34 3.82 9.42 3.17 <@.ees5 9.37 2.51 2.17
aware of notification? 0.61 1.84 9.34 1.81 0.97 3.83 -0.05 1.27
right measures 0.86 2.36 9.37 2.29 9.02 5.51 2.12 1.59
home -90.43 .65 9.33 -1.3@ 0.19 2.36 -1.07 ©.22
camera -9.53 .59 9.35 -1.52 0.13 2.96 -1.22 .15

Concordance = 9.65
Log-likelihood ratio test = 22.48 on 6 df, -log2(p)=9.98
Proportional hazard assumption looks okay.

The difference in partial log-likelihood (LL) = -0,23
Log-Likelihood Ratio Statistic (LRS) = 0,46

Consulting the chi-square distribution for 0,46 on 1 df: p>0,25
Model 5 is better than model 4

Step 6 | The ‘market’ variable is the least reliable and excluded
Modeling the Cox model for [female, aware of notification, right measures, camera, home]
<lifelines.CoxPHFitter: fitted with 89 observations, 22 censored>
duration col = 'Estimated infection time'
event col = 'censored’
number of subjects = 89
number of events = 67
partial log-likelihood = -254.35
time fit was run = 2019-07-25 13:09:49 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
female 1.33 3.79 9.42 3.15 <@.0es5 9.25 9.50 2.16
aware of notification? 0.60 1.82 9.33 1.83 0.7 3.90 -0.04 1.24
right measures 0.85 2.34 9.37 2.31 @.02 5.58 09.13 1.57
home -0.51 .60 9.32 -1.58 9.11 3.13 -1.14 .12
camera -0.45 .63 9.34 -1.32 9.19 2.43 -1.13 .22
Concordance = @.64
Log-likelihood ratio test = 21.67 on 5 df, -log2(p)=1@.69
Proportional hazard assumption looks okay.
The difference in partial log-likelihood (LL) = -0,41
Log-Likelihood Ratio Statistic (LRS) = 0,82
Consulting the chi-square distribution for 0,82 on 1 df: p>0,25
Model 6 is better than model 5
Step 7 | The ‘camera’ variable is the least reliable and excluded

Modeling the Cox model for [female, aware of notification, right measures, home]

<lifelines.CoxPHFitter: fitted with 89 observations, 22 censored>

duration col = 'Estimated infection time'
event col = 'censored’
number of subjects = 89
number of events = 67

partial log-likelihood = -255.24
time fit was run = 2019-07-25 13:09:50 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
female 1.35 3.86 9.42 3.21 <0@.005 9.55 9.53 2.17
aware of notification? .61 1.85 ©.33 1.89 0.06 4.08 -0.02 1.25
right measures 0.78 2.17 9.36 2.15 0.3 4.99 0.07 1.48
home -0.27 .76 9.28 -0.98 9.33 1.61 -0.81 .27

Concordance = 9.64
Log-likelihood ratio test = 19.88 on 4 df, -log2(p)=10.89
Proportional hazard assumption looks okay.
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The difference in partial log-likelihood (LL) = -0,89
Log-Likelihood Ratio Statistic (LRS) = 1,78

Consulting the chi-square distribution for 1,78on 1 df: p>0,10
Model 7 is better than model 6

Step 8

The ‘home’ variable is the least reliable and excluded

Modeling the Cox model for [female, aware of notification, right measures]

<lifelines.CoxPHFitter: fitted with 89 observations, 22 censored>
duration col = 'Estimated infection time'
event col = 'censored’
number of subjects = 89
number of events = 67
partial log-likelihood = -255.72
time fit was run = 2019-07-25 13:89:50 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper .95
female 1.35 3.84 9.42 3.19 <0.085 9.45 ©.52 2.17
aware of notification? ©.64 1.90 9.32 1.99 0.85 4.41 2.01 1.27

right measures 0.63 1.89 9.33 1.93 0.05 4.21 -e.01 1.28

Concordance = @.62
Log-likelihood ratio test = 18.92 on 3 df, -log2(p)=11.78
Proportional hazard assumption looks okay.

The difference in partial log-likelihood (LL) = -0,48
Log-Likelihood Ratio Statistic (LRS) = 0,96

Consulting the chi-square distribution for 0,96 on 1 df: p>0,25
Model 8 is better than model 7

Step 9

All variables are significant. Exclusion of ‘aware of notification” or ‘right measures’ lead to a
partial Log-Likelihood of respectively -257,66 and -257,78.

The difference in partial log-likelihood (LL) =-2,06 / -1,94
Log-Likelihood Ratio Statistic (LRS) = 4,12 / 3,88
Consulting the chi-square distribution 4,12 / 3,88 on 1 df, both models: p<0,05

Model 8 is better than a model with less covariates.

Model 8 is best of all models.

When comparing model 8 with a trivial model, the LRS is 18,92 for 3 degrees of freedom:
p<0,01

Model 8 is better than a model without covariates.

Model 8 is accepted

Survival probabilit:
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Proportional Cox model [female vs male+unknow]

—— female=0
—— female=1
---- baseline survival
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Infection time
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Proportional Cox model [aware vs not aware]

—— aware of notification?=0
—— aware of notification?=1
o84l e baseline survival
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Proportional Cox model [right measures vs no/incorrect measures]

—— right measures=0
—— right measures=1
o84k e baseline survival
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Iteration 5: norm_delta = ©.0000@, step_size = 1.0@e0, 11 = -259.81548,

nvergence completed after 5 iterations.

<lifelines.CoxPHFitter: fitted with 89 observations, 22 censored>

duration col = 'Estimated infection time’
event col = 'censored’
number of subjects = 82
number of events = 67
partial log-likelihood = -259.82
time fit was run = 2019-87-26 ©8:26:35 UTC

coef exp(coef) se(coef) z p -log2(p)
female 0.78 2.18 ©.37 2.13 0.e3 4.90
walled garden ©.73 2.07 9.25 2.90 <0.005 8.08

Concordance = .60
Log-likelihood ratio test = 10.73 on 2 df, -log2(p)=7.74
Proportional hazard assumption looks okay.

AIC model 8: -2 *(-255,72) + (3+3) = 517,44

newton_decrement = 0.80000, seconds_since_start = @.0Co

lower ©.95
2.06
.24

upper ©.95

1.50
1.22

AIC model with walled garden as substitute: -2 * (-259,82) + (2+2) = 521,84

Model 8 has a lower AIC estimate and is thus better than model wherein tha variables awareness

and right measures are substituted with the variable walled garden.
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K.4 AFT modeling steps

Step O | Following the similar line of reasoning of appendix J.4, the fitted distributions in figure 57
show that the LogNormal distribution has the best goodness of fit.

1.0 A 1.04
—— Weibull -361 —— LogNormal -353 —— PiecewiseExp -364
0.8 0.8
0.6 0.6 4
0.4 1 0.4
0.2 0.2
100 200 300 100 200 300 100 200 300
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——— KaplanMeier -~ LogLogistic -354 -~ Exponental -400
0.8 0.8 0.8
0.6 061 061
1 0.4 4
0.4 1 0.4
0.2 1
021 0.2
T T T T T T 0.0 T T T
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timeline

Figure 55 Distribution fits for the survival curve of all observations

Figure 58 shows the quantile-quantile (Q-Q) plot to compare the fitted LogNormal
distribution with the empirical distribution. This Q-Q plot has the similar shape as the Q-
Q plot in appendix J.4, but with less dots because the dataset contains less entries.

The Q-Q-plot shows that until 81 hours, the data has quite the same shape as the fitted
LogNormal distribution. The empirical distribution is a bit more concentrated than the
fitted distribution. Then there is a spike of identical values of 81/82 hours (horizontal line
of dots). This can also be seen in the Kaplan-Meier plot in chapter 6, which shows a drop
around this time. After this spike, the dots form a steep vertical line, which indicates
there is a gap in values.
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o

empirical quantiles

6600000 0

50 ...___,-(-jooo
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50 100 150 200 250
fitted lognormal quantiles

Figure 56 Q-Q plot LogNormal distribution

Step1 | Similartothe Cox modeling in the previous section, we first estimate two models (including
female and including male) so we can decide which variable to continue with.
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Including female:

<lifelines.lLogNormalAFTFitter: fitted with 89 observations, 22 censored>
event col = 'censored’
number of subjects = 89
number of events = 67
log-likelihood = -342.552
time fit was run = 2019-07-25 14:42:59 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 9.95

mu_ market 0.526 1.692 9.631 0.832 ©.405 1.3e3 -0.712 1.763
email 0.840 2.317 1.267 ©.663 .507 9.979 -1.644 3.324
walled garden 0.486 1.625 1.247 @.390 ©.697 9.521 -1.958 2.930

age -0.916 2.985 9.019 -0.832 ©.405 1.303 -9.952 9.021
female -2.1e4 9.122 @.817 -2.575 ©.010 6.640 -3.7e6 -0.502

aware of notification? -1.671 ©.188 1.233 -1.355 @.175 2.511 -4.e87 9.746

right measures -1.355 ©.258 9.673 -2.013 2.044 4.503 -2.675 -9.936

home -0.265 ©.767 1.117 -0.237 ©.812 9.300 -2.453 1.923

camera 0.186 1.204 1.099 ©.169 ©.866 9.208 -1.968 2.339
multiple -0.867 ©.420 1.2e3 -e.720 ©.471 1.e85 -3.225 1.492
unknown -0.956 2.384 1.316 -8.726 2.468 1.e97 -3.536 1.624
_intercept 6.061 428.878 1.362 4.450 <0.0005 16.827 3.391 8.731
sigma_ _intercept 0.754 2.126 9.892 8.220 <@.0005 52.131 9.574 0.934

Concordance = 9.658
Log-likelihood ratio test = 21.718 on 11 df, -log2(p)=5.23@

ncluding male:

<lifelines.LogNormalAFTFitter: fitted with 89 observations, 22 censored>
event col = 'censored’
number of subjects = 89
number of events = 67
log-likelihood = -342.75@
time fit was run = 2019-07-25 14:43:07 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 9.95

mu_ market 0.610 1.849 9.636 ©.959 ©.338 1.567 -9.636 1.856
email 0.751 2.120 1.274 ©.590 @.555 9.849 -1.745 3.248
valled garden 0.367 1.444 1.252 @.293 0.769 9.378 -2.086 2.821

age -0.012 ©.988 9.019 -8.650 ©.515 9.956 -0.049 9.025

male 1.758 5.800 9.705 2.494 ©.013 6.306 9.376 3.140

avare of notification? -1.558 9.211 1.235 -1.261 e.207 2.270 -3.979 9.864

right measures -1.203 ©.300 9.669 -1.800 0.072 3.799 -2.514 0.107

home -0.381 ©.683 1.116 -0.342 8.733 9.449 -2.569 1.8e6

camera 0.532 1.702 1.125 0.472 0.637 9.652 -1.673 2.736
multiple -0.937 9.392 1.2e4 -0.778 ©.436 1.196 -3.297 1.423
unknown -1.972 ©.342 1.313 -2.816 0.414 1.271 -3.645 1.5e1
_intercept 4.081 59.222 1.522 2.682 ©.007 7.094 1.099 7.064
sigma_ _intercept 0.756 2.131 9.892 8.242 <0.0005 52.392 9.577 9.936

Concordance = 0.655
Log-likelihood ratio test = 21.323 on 11 df, -log2(p)=5.051

The model including ‘female’ has a better overall fit (the log-likelihood is higher for equal
degrees of freedom). Similar to the Cox model, the next steps will include ‘female’.
(Dummy coding: 1 = female subscriber, and 0 = male subscriber and subscribers of
unknown gender)

Step 2

The camera variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, e-mail, walled garden, age, female, aware
of notification, right measures, home, multiple, unknown]

<lifelines.LogNormalAFTFitter: fitted with 89 observations, 22 censored>
event col = 'censored’
number of subjects = 89
number of events = 67
log-likelihood = -342.566
time fit was run = 2019-07-26 ©7:20:12 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95

mu_ market ©.528 1.695 ©.631 ©.836 9.403 1.310 -e.710 1.765
email .845 2.327 1.266 ©.667 0.5e5 0.986 -1.8637 3.327
walled garden ©.487 1.628 1.246 ©0.391 0.696 09.523 -1.955 2.929

age -9.015 9.985 9.019 -0.826 0.409 1.299 -9.052 0.021
female -2.09%0 9.124 ©.813 -2.572 0.010 6.629 -3.683 -0.497

aware of notification? -1.678 9.187 1.231 -1.363 0.173 2.532 -4.092 e.735

right measures -1.349 9.259 ©.672 -2.008 0.045 4.485 -2.666 -0.032

home -0.418 9.658 ©.653 -0.641 9.522 ©.938 -1.697 2.861
multiple -1.019 9.361 ©.799 -1.275 0.202 2.304 -2.585 9.548
unknown -1.113 9.329 ©.932 -1.194 0.232 2.106 -2.940 0.714
_intercept 6.204  494.709 1.969 5.802 <0.0005 27.182 4.108 8.300
sigma_ _intercept @.754 2.126 9.092 8.220 <0.0005 52.126 0.574 0.934

Concordance = @.658
Log-likelihood ratio test = 21.689 on 1@ df, -log2(p)=5.898
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The difference in partial log-likelihood (LL) = -0,014
Log-Likelihood Ratio Statistic (LRS) = 0,028
Consulting the chi-square distribution for 0,028 on 1 df: p>0,75

Model 2 is better than model 1

Step3 The walled garden variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, e-mail, age, female, aware of notification,

right measures, home, multiple, unknown]

<lifelines.LogNormalAFTFitter: fitted with 89 observations, 22 censored>

event col = "censored’
number of subjects = 89
number of events = 67
log-likelihood = -342.643
time fit was run = 2019-87-26 07:26:50 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper .95

mu_ market 9.543 1.721 ©.631 ©0.861 9.389 1.361 -0.693 1.779
email 9.472 1.604 9.834 0.567 9.571 ©.808 -1.162 2.107
age -0.015 9.986 ©.019 -0.785 9.432 1.210 -0.051 9.022
female -2.083 9.125 9.813 -2.563 9.010 6.588 -3.677 -9.490
aware of notification? -1.261 9.283 ©.609 -2.071 9.838 4.704 -2.454 -0.067
l‘ight measures -1.326 9.266 ©.670 -1.979 9.048 4,387 -2.638 -9.013
home -0.450 9.638 ©.648 -0.694 9.488 1.036 -1.720 2.821
multiple -1.054 9.349 ©.795 -1.325 9.185 2.433 -2.612 9.505
unknown -1.062 0.346 ©.923 -1.151 9.250 2.001 -2.872 ©.747
_intercept 6.201 493,351 1.07@ 5.794 <0.0005 27.115 4.103 8.299

sigma_ _intercept 9.755 2.127 ©.092 8.229 <0.0005 52.229 8.575 ©.935

Concordance = ©.655

Log-likelihood ratio test = 21.536 on 9 df, -log2(p)=6.577

The difference in partial log-likelihood (LL) = -0,077

Log-Likelihood Ratio Statistic (LRS) = 0,154

Consulting the chi-square distribution for 0,154 on 1 df: p>0,50

Model 3 is better than model 2

Step 4 | The e-mail variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, age, female, aware of notification, right
measures, home, multiple, unknown]

<lifelines.LogNormalAFTFitter: fitted with 89 observations, 22 censored>

event col = ‘censored’
number of subjects = 89
number of events = 67
log-likelihood = -342.803

time fit was run = 2019-07-26 ©7:28:34 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95

mu_ market 0.697 2.007 ©.572 1.219 0.223 2.167 -9.423 1.817
age -9.016 9.984 ©.018 -0.904 0.366 1.449 -9.052 0.019

female -2.145 9.117 ©.808 -2.655 0.0e8 6.976 -3.729 -2.561

aware of notification? -1.193 9.3e3 ©.598 -1.995 0.046 4.448 -2.366 -9.021

right measures -1.372 9.254 ©.667 -2.059 0.040 4.661 -2.678 -9.066

home -9.432 9.649 ©.649 -0.665 0.506 0.983 -1.704 0.849
multiple -1.e39 9.354 ©.797 -1.304 9.192 2.380 -2.601 ©.522
unknown -1.ee1 9.367 ©.919 -1.090 0.276 1.858 -2.802 0.800
_intercept 6.285 536.466 1.063 5.91@ <0.0ees 28.126 4.201 8.369

sigma_ _intercept 8.758 2.133 ©.092 8.257 <0@.90e5 52.575 ©.578 ©.937

Concordance = 0.651
Log-likelihood ratio test = 21.215 on 8 df, -log2(p)=7.244

The difference in partial log-likelihood (LL) = -0,16
Log-Likelihood Ratio Statistic (LRS) = 0,32
Consulting the chi-square distribution for 0,32 on 1 df: p>0,50

Model 4 is better than model 3
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Step5 | The home variable is the least reliable and excluded
Modeling the AFT LogNormal model for [market, age, female, aware of notification, right
measures, multiple, unknown]
<lifelines.LogNormalAFTFitter: fitted with 89 observations, 22 censored>
event col = 'censored’
number of subjects = 89
number of events = 67
log-likelihood = -343.824
time fit was run = 2019-07-26 ©7:49:33 UTC
o coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
mu_ market 9.544 1.723 ©.525 1.e37 9.300 1.737 -2.485 1.573
age -0.016 9.984 ©.018 -0.865 9.387 1.370 -0.052 2.020
female -2.132 9.119 ©.810 -2.632 9.008 6.882 -3.719 -0.545
aware of notification? -1.126 9.324 ©.591 -1.9@5 0.057 4.149 -2.285 9.032
right measures -1.493 9.225 0.644 -2.317 9.020 5.61@ -2.756 -0.230
multiple -0.824 9.439 ©.729 -1.131 9.258 1.954 -2.252 9.604
unknown -0.747 9.474 ©.838 -0.892 9.372 1.426 -2.389 2.894
_intercept 6.089 440.890 1.021 5.961 <0.00e5 28.57@ 4.087 8.091
sigma_ _intercept ©.760 2.139 ©.092 8.285 <0.00e5 52.911 ©.580 ©.940
‘;t_:r-lcordance = 0.653
Log-likelihood ratio test = 20.774 on 7 df, -log2(p)=7.923
The difference in partial log-likelihood (LL) = -0,221
Log-Likelihood Ratio Statistic (LRS) = 0,442
Consulting the chi-square distribution for 0,442 on 1 df: p>0,50
Model 5 is better than model 4
Step 6 | The age variable is the least reliable and excluded
Modeling the AFT LogNormal model for [market, female, aware of notification, right
measures, multiple, unknown]
<lifelines.LogNormalAFTFitter: fitted with 89 observations, 22 censored>
event col = "censored’
number of subjects = 89
number of events = 67
log-likelihood = -343.397
time fit was run = 2019-87-26 ©7:51:22 UTC
o coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
mu_ market ©.584 1.794 9.526 1.111 9.266 1.908 -0.446 1.615
female -2.141 9.118 ©.815 -2.628 9.909 6.863 -3.737 -2.544
aware of notification? -1.175 9.309 ©9.592 -1.985 0.047 4.407 -2.335 -2.015
right measures -1.442 9.236 9.644 -2.238 9.025 5.310 -2.705 -8.179
multiple -2.912 9.402 ©.726 -1.256 9.209 2.257 -2.334 9.511
unknown -0.896 9.408 ©.825 -1.086 9.277 1.85@ -2.513 9.721
_intercept 5.319 04.134 ©.489 10.879 <0.0005 89.155 4.361 6.277
sigma_ _intercept ©.766 2.151 ©.092 8.348 <0.0005 53.681 ©.586 ©.946
é;;cordance = 0.650
Log-likelihood ratio test = 20.829 on 6 df, -log2(p)=8.513
The difference in partial log-likelihood (LL) = -0,373
Log-Likelihood Ratio Statistic (LRS) = 0,746
Consulting the chi-square distribution for 0,746 on 1 df: p>0,25
Model 6 is better than model 5
Step 7 | The unknown variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, female, aware of notification, right
measures, multiple]
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<lifelines.LogNormalAFTFitter: fitted with 89 observations,

event col

number of subjects
number of events
log-likelihood
time fit was run

market
female

mu_

aware of notification?
right measures

multiple
_intercept
sigma_ _intercept

Concordance = 0.644

Log-likelihood ratio test =

‘censored’
89

67
-343.982

2019-07-26 07:54:56 UTC

coef exp(coef)

e.
-2.

409
254
-1.159
-1.234
-0.768

5.151

8.773

17

=

.505
1es
314
291
464
644

Q.
Q.
Q.
Q.
2.
2.166

se(coef)

©.503
815
595
616
718
463
092

P00

-2.
-1.
-2.
-1.
11.

©0

18.858 on 5 df, -log2(p)=8.935

22 censored>

The difference in partial log-likelihood (LL) = -0,585

Log-Likelihood Ratio Statistic (LRS) = 1,17

Consulting the chi-square distribution for 1,17 on 1 df:

Model 7 is better than model 6

z p -log2(p)
.813 9.416 1.264
767 9.006 7.464
248 9.851 4,280
002 @.045 4.464
071 0.284 1.814
133 <0.00e5 93.224
.418 <0.0ees5 54.537

p>0,25

lower .95

-0.

577

-3.850

-2.

325

-2.442

-2.

175
244
593

a.
0.

upper .95
395
657
0a7
026
638
058
953

|
D00 00 O M

Step 8 | The market variable is the least reliable and excluded
Modeling the AFT LogNormal model for [female, aware of notification, right measures,
multiple]
<lifelines.LogNormalAFTFitter: fitted with 89 observations, 22 censored>
event col = 'censored’
number of subjects = 89
number of events = 67
log-likelihood = -344.312
time fit was run = 2019-07-26 ©7:56:16 UTC
o coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
mu_ female -2.238 9.107 ©.818 -2.735 9.906 7.325 -3.841 -0.634
aware of notification? -1.166 9.312 ©.597 -1.952 9.051 4.296 -2.337 2.005
right measures -1.148 9.317 ©.609 -1.885 9.059 4.072 -2.341 0.046
multiple -0.798 9.450 ©.720 -1.108 9.268 1.901 -2.210 0.614
_intercept 5.266 193.627 ©.446 11.815 <0.0005 104.600 4.392 6.139
sigma_ _intercept 0.777 2.176 ©.092 8.468 <0.0005 55.156 9.597 0.957
;;;cordance = 0.636
Log-likelihood ratio test = 18.199 on 4 df, -log2(p)=9.792
The difference in partial log-likelihood (LL) = -0,33
Log-Likelihood Ratio Statistic (LRS) = 0,66
Consulting the chi-square distribution for 0,66 on 1 df: p>0,25
Model 8 is better than model 7
Step 9 | The multiple variable is the least reliable and excluded

Modeling the AFT LogNormal model for [female, aware of notification, right measures]

<lifelines.LogNormalAFTFitter: fitted with 89 observations, 22 censored>

event col =

number of subjects
number of events
log-likelihood
time fit was run

mu_ female

aware of notification?

right measure
_intercept
sigma_ _intercept

Concordance = ©.632

Log-likelihood ratio test =

s

‘censored’
89

67
-344.926

2019-07-26 ©7:57:54 UTC

coef exp(coef)
9.112

-2.192
-1.194
-1.056
5.125
©.782

Q.
Q.
168.
2.

3es3
348
156
185

se(coef) z p -log2(p)
0.820 -2.674 0.007 7.060
©.599 -1.992 0.046 4.431
©.605 -1.747 9.081 3.632
©.425 12.058 <0.0005 18.801
0.092 8.512 <0.0005 55.699

16.97@ on 3 df, -log2(p)=10.446

The difference in partial log-likelihood (LL) = -0,614

lower ©.95

-3.
-2.

-2
4

0.

799
368
.242
.292
602

upper ©.95
-2.585
-2.019
©.129
5.958
©.962
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Log-Likelihood Ratio Statistic (LRS) = 1,228
Consulting the chi-square distribution for 1,228 on 1 df: p>0,25

Model 9 is better than model 8

Step 10 | The female measures variable is the least reliable and excluded
Modeling the AFT LogNormal model for [aware of notification]
<lifelines.LogNormalAFTFitter: fitted with 89 observations, 22 censored>
event col = "censored’
number of subjects = 89
number of events = 67
log-likelihood = -346.448
time fit was run = 2019-07-26 ©7:59:23 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
mu_ female -1.961 9.141 ©.818 -2.396 0.e17 5.913 -3.565 -0.357
aware of notification? -1.781 9.168 ©.509 -3.500 <0.908e5 11.068 -2.779 -0.784
_intercept 4.841 126.601 ©.391 12.373 <0.008e5 114.396 4.074 5.608
sigma_ _intercept 0.797 2.218 9.092 8.660 <0.0005 57.551 9.616 e.977
é;;cordance = 0.605
Log-likelihood ratio test = 13.925 on 2 df, -log2(p)=10.845
The difference in partial log-likelihood (LL) = -1,522
Log-Likelihood Ratio Statistic (LRS) = 3,044
Consulting the chi-square distribution for 3,044 on 1 df: p=0,08
Model 10 is better than model 9
Step 11 | All variables are significant. Exclusion of ‘female’ leads to a Log-Likelihood of -349,290
The difference in partial log-likelihood (LL) = -2,842
Log-Likelihood Ratio Statistic (LRS) = 5,684
Consulting the chi-square distribution 5,684 on 1 df: p<0,05
<lifelines.LogNormalAFTFitter: fitted with 89 observations, 22 censored>
event col = ‘censored’
number of subjects = 89
number of events = 67
log-likelihood = -349.290
time fit was run = 2019-07-26 ©8:13:25 UTC
o coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
mu_ aware of notification? -1.455 9.233 0.501 -2.906 0.004 8.095 -2.437 -0.474
_intercept 4.476 87.895 ©.363 12.345 <0.0005 113.893 3.765 5.187
sigma_ _intercept 0.826 2.284 0.092 8.956 <0.0005 61.360 ©.645 1.007
E;;cordance = 0.588
Log-likelihood ratio test = 8.243 on 1 df, -log2(p)=7.933
Model 10 is better than model 11
Step 12 | Model 10 is best of all models.

When comparing model 10 with a trivial model, the LRS is 13,925 for 2 degrees of freedom:
p<0,01

Model 10 is better than a model without covariates.

Model 10 is accepted
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LogNormal AFT model [female vs male+unknown gender]
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LogNormal AFT model [aware vs not aware]
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120 144 168 192 216 240 264 288 312 336
Infection time

0 24 48 72 96

<lifelines.LogNormalAFTFitter: fitted with 89 observations, 22 censored>

event col =

number of subjects =
number of events =
log-likelihood =
time fit was run =

‘censored’
89

67
-346.882

2019-08-02 14:10:50 UTC

coef exp(coef) se(coef) z p

mu_ right measures -1.737 8.176 ©9.519 -3.349 9.eel
female -1.992 9.136 0.831 -2.397 9.e17
_intercept 4.867 129.989 0.408 11.927 <0.0005
sigma_ _intercept 0.806 2.239 0.092 8.761 <0.0ee5

Concordance = 9.601

Log-likelihood ratio test =

13.059

on 2 df, -log2(p)=9.420

<lifelines.lLogNormalAFTFitter: fitted with 89 observations, 22

event col =

number of subjects =
number of events =
log-likelihood =
time fit was run =

mu_ walled garden
female
_intercept
sigma_ _intercept
Concordance = ©.605
Log-likelihood ratio

‘censored”’
89

67
-347.899

2019-08-082 14:10:50 UTC

coef exp(coef) se(coef) z p
-1.532 9.216 ©.503 -3.044 0.002
-1.525 0.218 ©.804 -1.897 0.058

4.548 94.471 ©.353 12.898 <0@.00e5
@.810 2.249 ©.092 8.795 <@.eees

test = 11.025 on 2 df,

-log2(p)=7.953

-log2(p) lower ©.95 upper 0.95
10.266 -2.754 -0.720
5.918 -3.621 -0.363
106.532 4.068 5.667
58.848 0.626 0.986
censored>
-log2(p) lower ©.95 upper 0.95
8.745 -2.519 -0.546
4.112 -3.1e1 9.051
124.017 3.857 5.239
59.273 0.630 0.991

Model 10 has a Log-Likelihood of -346,448, which is higher than these models with substituted
variables for awareness. Model 10 is thus the best model.
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L Modeling step 3 [interviewed, notified consumers]

L.1 Introduction

Of the 89 interviewed consumers that are included in the modeling process (as described in
appendix K), 49 consumers were notified. 37 consumers of these were placed in a walled
garden and 12 consumers were sent only an e-mail. 9 entries of the 49 are censored.

Using this dataset enables us to use more information obtained from the interviews that
concern only notified consumers. In addition to the variables addressed in appendix K.1, this
modeling process includes four more dummy variables. Two variables are two stages of the
theoretical framework: comprehension and intention. (Strict) compliance not included because
we want to know the influence of effective remediation measures, which is already covered by
the variable ‘right measures’. The two dummy variables are defined and coded as the following:

Understood notification (comprehension): whether the interviewed consumer understood the

content of the notification

Variable ‘understood notification?’:

The notification was unclear / had some | O
unclear parts
The notification was clear to the consumer 1

Intended to comply (intention): whether the interviewed consumer had the intention to take

comply with the recommended actions.

Variable ‘intended to comply?:

No intention to comply

0

Intention to comply

1

Consumers were also asked about their experience with the notification. The information about
their satisfaction is included using two dummy variables, coded as follows:

Variable ‘satisfied with service’

Variable ‘dissatisfied with service’

Satisfied 1 0
Dissatisfied | O 1
Neutral 0 0

Due to the absence of the control group, the dummy variables for the notification mechanisms
is changed. The variable ‘e-mail’ is excluded and the zero-value of ‘walled garden’ now refers

to e-mail notified consumers only.

164



L.2 Overview data

Estimated infection time 0.16 -0.16 -0.18 0.17 -0.087 0.093 -0.25 -0.075 -0.31 -0.27 -0.016 -0.061 0.011 0.099 -0.13 0.07

censored 0.18 -0.15 0.091 -0.054 0.22 0.026 0.29 0.26 0.007 0.067 -0.009 -0.13 0.15 -0.034
market - 0.15 -0.017 0.047 0.013 0.27 -0.22 -0.088 -0.2 -0.13 0.038 -0.13 0.31 -0.44 -0.047 0.36

email - 0.16 -0.24 019 -0.12 0.17 -0.28 0.016 -0.31 -0.12 0.34 -0.27 0.2 -0.32 -0.035 0.28

walled garden - -0.16 -0.19 012 -0.17 0.28 -0.016 031 0.12 -0.34 0.27 -0.2 032 0.035 -0.28

-0.4

age - -0.18 0.18 -0.017 0.16 -0.22 -0.12 -0.071-0.035 -0.3 -0.37 0.18 -0.34 0.077 0.28 0.17

male - 0.17 -0.15 0.047 0.19 -0.19 0.11 | 046 0055 0.12 0.16 -0.014 033 -0.44 0.11 -0.11

female --0.087 0.091 0.013 -0.12 0.12 0.16 -0.27 -0.28 -0.21 -0.12 -0.27 0.17 -0.2 0.12 -0.07 0.27

0.069 0.17 -0.018 0.24 0.23 -0.028oiciNeleil -0.21 0.078

0.44 0023 016 02 0035 011 E -0.0

time splits - 0.093 -0.054 0.27 0.17 -0.17 -0.22

aware of notification? - -0.25 0.22 -0.22 -0.28 028 -0.12 0.11
understood notification? --0.075 0.026 -0.088 0.016 -0.016 -0.071 0.46 -0.28 0.17 0.12 0.29 -0.083 0.1 -0.32
intended to comply? - -0.31 029 -0.2 -0.31 0.31 -0.035 0.055 -0.21 -0.018 X ). -8 -0.069 0.19 0.17 0.097 0.14 -0.44
right measures - -0.27 0.26 -0.13 -0.12 0.12 0.3 0.12 -0.12 0.24

0.46 -0.12 0.035

satisfied with service --0.016 0.007 0.038 0.34 -0.34 -0.37 0.16 -0.27 0.23 0.023 0.067 -0.069 0.16 0.24 -0.058 -0.023 -0.16

--0.4
dissatisfied with service --0.061 0.067 -0.13 -0.27 0.27 0.18 -0.014 0.17 -0.028 0.16 0.12 0.19 0.025 ol -0.15 0.098 0.014 0.014
home -0.011 -0.009 0.31 0.2 -0.2 -0.34 033 -0.2 W& 02 029 017 046 0.24 -0.15 LOT) -0.33 -0.33
camera -0.099 -0.13 -0.44 -0.32 0.32 0.077 -0.44 0.12 | oieEH 0.035 -0.083 0.097 -0.12 -0.058 0.098
multiple - -0.13 0.15 -0.047 -0.035 0.035 0.28 0.11 -0.07 -0.21 011 0.1 0.14 0.035 -0.023 0.014
unknown - 0.07 -0.034 0.36 028 -0.28 0.17 -0.11 0.27 0A07BE -0.32 -0.44E -0.16 0.014
-0.8
l ' { | ' '
> o N N @ R 3 .
& 2 @ © &
é@{(— & Q'o*b 2
\?'b
&

Figure 57 Correlation potential remediation drivers (interviewed, notified consumers)

L.3 Cox modeling steps

Step 0 For the same reasons as addressed in appendix J.2, we first check if ‘female’ or ‘male’ is
a better covariate to determine which of the two to include. Including ‘male’ leads to a
violation of the proportional hazard assumption of the ‘understood notification?’
variable. Complimentary to the statistical test, we can review this violation in this figure
(lines should be constant):
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Scaled Schoenfeld residuals of 'understood notification?"

4
2
0
-2
-4
_6
0 10 20 30 20 02 04 06 08
rank-transformed time km-transformed time
(p=0.0432) (p=0.0453)

To compare the model including ‘female’ with a model including ‘male’, we delete the
variable in question.

Including female:

<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col = 'Estimated infection time’
event col = 'censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -126.36
time fit was run = 2019-87-26 12:04:52 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
market 0.02 1.02 0.54 0.4 0.97 0.05 -1.04 1.08
walled garden 0.46 1.58 0.58 0.78 0.43 1.20 -0.69 1.60
age 0.03 1.3 0.01 1.74 0.08 3.61 -0.00 0.0e5
female 2.24 9.37 1.26 1.77 0.08 3.71 -0.24 4.71
aware of notification? 0.45 1.57 1.51 ©.30 0.76 0.39 -2.50 3.40
intended to comply? 1.18 3.26 1.40 0.84 0.40 1.32 -1.56 3.93
right measures 0.41 1.51 0.75 ©.55 0.58 0.78 -1.06 1.89
satisfied with service 1.33 3.77 0.67 1.99 0.65 4.43 0.02 2.63
dissatisfied with service 0.45 1.57 0.63 ©0.71 0.48 1.07 -8.79 1.68
home -1.23 9.29 0.83 -1.48 0.14 2.85 -2.85 0.40
camera -1.36 0.26 09.84 -1.62 0.10 3.26 -3.01 0.28
multiple -1.04 0.35 09.89 -1.17 0.24 2.05 -2.78 .70
unknown -1.17 0.31 1.31 -0.89 0.37 1.43 -3.73 1.39
Concordance = 0.69
Log-likelihood ratio test = 15.20 on 13 df, -log2(p)=1.76
Proportional hazard assumption looks okay.
Including male:
<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col = 'Estimated infection time’
event col = 'censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -123.98
time fit was run = 2019-07-26 12:00:16 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
market -0.21 9.81 0.50 -0.42 0.67 0.57 -1.18 0.76
walled garden 0.33 1.39 0.56 ©.58 0.56 0.84 -0.78 1.44
age 6.e3 1.03 0.2 1.76 ©.08 3.67 -0.00 0.06
male -2.13 0.12 0.73 -2.91 <0.005 8.10 -3.56 -0.69
aware of notification? 0.03 1.e3 1.47 ©.02 0.98 0.03 -2.84 2.91
intended to comply? 1.35 3.84 1.35 1.0 0.32 1.65 -1.30 3.99
right measures 0.24 1.27 0.73 ©.32 0.75 9.42 -1.20 1.67
satisfied with service 1.47 4.34 0.60 2.46 ©.01 6.17 0.30 2.64
dissatisfied with service .77 2.17 0.63 1.23 0.22 2.20 -0.46 2.01
home -1.16 0.31 0.80 -1.45 0.15 2.78 -2.72 0.40
camera -1.91 .15 0.86 -2.21 ©.e3 5.20 -3.60 -0.22
multiple -1.12 9.33 0.86 -1.31 0.19 2.39 -2.80 0.56
unknown -1.27 0.28 1.26 -1.86 0.29 1.79 -3.63 1.09
Concordance = .68
Log-likelihood ratio test = 19.97 on 13 df, -log2(p)=3.38

Proportional hazard assumption looks okay.

The model including ‘male’ has higher reliable parameters and a better overall fit ( the
partial log-likelihood is higher for equal degrees of freedom).
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In the next steps, the variable ‘female’ is excluded. Due to this exclusion, the coding of
the dummy variable ‘male’ is changed. 1 = male subscriber, and 0 = female subscriber and
subscribers of unknown gender.

Step 1 Due to the violation of the proportional hazard assumption, we can either stratify or
exclude the ‘understood notification’ variable. We choose for the latter option due to A)
the low reliability of the variable when including ‘female’ instead of ‘male’ and B) the high
covariance with other variables which may indicate an overlap with the other variables.
In the last step of this modeling process, we will include this variable again to check
whether we made a misjudgment.

We continue with model 0. The ‘aware of notification’ variable is the least reliable and
excluded
Modeling the Cox model for [market, walled garden, age, male, intended to comply, right
measures, satisfied with service, dissatisfied with service, home, camera, multiple,
unknown]
<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col = 'Estimated infection time'
event col = 'censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -123.98
time fit was run = 2019-87-26 13:32:83 UTC
o coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
market -0.21 .81 0.50 -0.42 0.67 0.57 -1.18 0.76
walled garden 9.33 1.39 0.56 ©.58 0.56 0.84 -0.78 1.44
age 9.03 1.3 6.1 1.78 0.08 3.73 -0.00 0.06
male -2.13 9.12 0.73 -2.91 <0.005 8.13 -3.56 -8.70
intended to comply? 1.37 3.94 0.73 1.87 0.06 4.04 -0.06 2.80
right measures 0.23 1.26 0.68 ©.34 0.74 0.44 -1.10 1.56
satisfied with service 1.47 4.35 0.59 2.50 ©.01 6.34 9.32 2.62
dissatisfied with service 0.78 2.18 9.62 1.25 0.21 2.25 -0.44 1.99
home -1.16 9.31 0.76 -1.53 9.13 2.99 -2.65 9.33
camera -1.91 9.15 0.81 -2.37 0.02 5.82 -3.49 -0.33
multiple -1.13 9.32 0.82 -1.37 0.17 2.54 -2.74 9.49
unknown -1.29 9.28 1.3 -1.25 0.21 2.25 -3.30 0.73
Concordance = 0.68
Log-likelihood ratio test = 19.97 on 12 df, -log2(p)=3.89
Proportional hazard assumption looks okay.
The difference in partial log-likelihood (LL) = -0,00
Log-Likelihood Ratio Statistic (LRS) = 0,00
Consulting the chi-square distribution for 0,00 on 1 df: p>0,99
Model 1 is better than model 0
Step 2 The ‘right measures’ variable is the least reliable and excluded

Modeling the Cox model for [market, walled garden, age, male, intended to comply,
satisfied with service, dissatisfied with service, home, camera, multiple, unknown]
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<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col 'Estimated infection time'

event col = 'censored’
number of subjects = 49
number of events = 41

partial log-likelihood = -124.03
time fit was run = 2019-07-26 13:35:24 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
market -0.23 9.79 0.49 -0.48 0.63 0.66 -1.20 0.73
walled garden 0.31 1.37 0.56 ©.56 0.58 8.79 -0.79 1.41
age 0.03 1.e3 0.1 1.75 ©.e8 3.65 -0.00 0.085
male -2.20 0.11 0.70 -3.16 <0.005 9.29 -3.57 -0.83
intended to comply? 1.48 4.41 0.65 2.29 0.02 5.52 0.22 2.75
satisfied with service 1.47 4.37 0.59 2.52 @.01 6.40 0.33 2.62
dissatisfied with service 0.81 2.25 0.61 1.33 0.18 2.45 -0.38 2.00
home -1.12 0.33 0.75 -1.56 0.13 2.9 -2.59 0.35
camera -1.94 0.14 0.80 -2.43 0.02 6.085 -3.51 -9.38
multiple -1.13 9.32 0.83 -1.37 0.17 2.56 -2.76 0.49
unknown -1.43 0.24 0.93 -1.53 0.13 2.99 -3.26 0.40

Concordance = 0.67
Log-likelihood ratio test = 19.85 on 11 df, -log2(p)=4.40
Proportional hazard assumption looks okay.

The difference in partial log-likelihood (LL) = -0,05
Log-Likelihood Ratio Statistic (LRS) = 0,1

Consulting the chi-square distribution for 0,1 on 1 df: p>0,75
Model 2 is better than model 1

Step 3 The ‘market’ variable is the least reliable and excluded
Modeling the Cox model for [walled garden, age, male, intended to comply, satisfied with
service, dissatisfied with service, home, camera, multiple, unknown]
<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col = "Estimated infection time'
event col = 'censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -124.15
time fit was run = 2019-07-26 13:37:55 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95

walled garden 0.47 1.60 0.45 1.03 0.30 1.73 -0.42 1.36
age 0.02 1.02 0.01 1.67 0.09 3.41 -0.00 0.05
male -2.14 0.12 0.68 -3.14 <0.005 9.21 -3.48 -0.80
intended to comply? 1.47 4.37 0.64 2.29 0.02 5.51 .21 2.74
satisfied with service 1.53 4.64 0.57 2.69 ©.01 7.14 .42 2.65
dissatisfied with service 0.86 2.37 0.59 1.46 ©0.14 2.80 -0.30 2.02
home -1.23 9.29 0.71 -1.73 0.08 3.58 -2.63 0.16
camera -1.97 0.14 0.80 -2.47 0.01 6.21 -3.54 -0.41
multiple -1.19 0.30 0.82 -1.46 0.15 2.78 -2.80 0.41
unknown -1.56 0.21 0.89 -1.76 0.08 3.68 -3.30 0.17
Concordance = 0.69

Log-likelihood ratio test = 19.62 on 10 df, -log2(p)=4.92

Proportional hazard assumption looks okay.
The difference in partial log-likelihood (LL) =-0,12

Log-Likelihood Ratio Statistic (LRS) = 0,24

Consulting the chi-square distribution for 0,24 on 1 df: p>0,50

Model 3 is better than model 2

Step 4 The ‘walled garden’ variable is the least reliable and excluded

Modeling the Cox model for [age, male, intended to comply, satisfied with service,
dissatisfied with service, home, camera, multiple, unknown]
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<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>

duration col = "Estimated infection time’
event col = ‘censored’
number of subjects = 49
number of events = 41

partial log-likelihood = -124.7@
time fit was run = 2019-07-26 13:53:39 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
age 0.02 1.02 0.1 1.62 0.11 3.24 -0.00 0.05
male -2.20 0.11 0.68 -3.23 <0.005 9.65 -3.54 -0.87
intended to comply? 1.44 4.20 0.62 2.33 0.02 5.64 9.23 2.65
satisfied with service 1.34 3.80 0.53 2.50 0.01 6.34 09.29 2.38
dissatisfied with service 0.85 2.35 0.59 1.44 0.15 2.75 -0.31 2.02
home -1.30 0.27 0.71 -1.83 .07 3.89 -2.68 0.09
camera -1.92 .15 0.79 -2.42 ©.02 6.01 -3.48 -0.37
multiple -1.22 9.29 9.81 -1.51 .13 2.93 -2.81 0.37
unknown -1.75 0.17 0.87 -2.02 ©0.04 4.52 -3.45 -9.05

Concordance = 0.68
Log-likelihood ratio test = 18.52 on 9 df, -log2(p)=5.08
Proportional hazard assumption looks okay.

The difference in partial log-likelihood (LL) = -0,55
Log-Likelihood Ratio Statistic (LRS) = 1,1

Consulting the chi-square distribution for 1,1 on 1 df: p>0,25
Model 4 is better than model 3

Step 5 The ‘multiple’ variable is the least reliable and excluded

Modeling the Cox model for [age, male, intended to comply, satisfied with service,
dissatisfied with service, home, camera, unknown]

<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>

duration col = "Estimated infection time’
event col = 'censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -125.73
time fit was run = 2019-87-26 13:55:86 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95

age 0.02 1.02 0.1 1.24 0.22 2.21 -0.01 0.04
male -2.11 0.12 0.67 -3.13 <0.005 9.17 -3.44 -0.79
intended to comply? 1.24 3.47 0.60 2.07 ©0.04 4.68 0.06 2.42
satisfied with service 1.20 3.31 09.53 2.25 ©0.02 5.36 0.15 2.24
dissatisfied with service ©0.79 2.20 0.59 1.33 0.18 2.45 -0.37 1.95
home -0.44 0.64 0.51 -0.86 0.39 1.35 -1.44 0.56
camera -1.01 .37 8.58 -1.75 ©.e8 3.64 -2.13 0.12
unknown -0.87 9.42 0.70 -1.24 0.22 2.21 -2.24 9.51
Concordance = 0.67

Log-likelihood ratio test = 16.46 on 8 df, -log2(p)=4.78

Proportional hazard assumption looks okay.
The difference in partial log-likelihood (LL) = -1,03

Log-Likelihood Ratio Statistic (LRS) = 2,06

Consulting the chi-square distribution for 2,06 on 1 df: p>0,10

Model 5 is better than model 4

Step 6 The ‘home’ variable is the least reliable and excluded

Modeling the Cox model for [age, male, intended to comply, satisfied with service,
dissatisfied with service, camera, unknown]
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<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col = 'Estimated infection time'
event col "censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -126.09
time fit was run = 2019-87-26 13:57:24 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
age 0.02 1.02 0.01 1.57 0.12 3.10 -0.01 0.05
male -2.09 0.12 0.68 -3.08 <0.005 8.92 -3.43 -0.76
intended to comply? 1.24 3.45 0.61 2.3 0.04 4.56 0.04 2.43
satisfied with service 1.14 3.11 0.52 2.17 0.3 5.06 0.11 2.16
dissatisfied with service 0.86 2.37 0.59 1.45 0.15 2.77 -8.30 2.03
camera -0.71 0.49 0.47 -1.52 9.13 2.96 -1.63 0.21
unknown -0.59 0.55 0.64 -0.92 0.36 1.49 -1.84 0.66

Concordance = 0.67
Log-likelihood ratio test = 15.74 on 7 df, -log2(p)=5.18
Proportional hazard assumption looks okay.

The difference in partial log-likelihood (LL) = -0,36
Log-Likelihood Ratio Statistic (LRS) = 0,72

Consulting the chi-square distribution for 0,72 on 1 df: p>0,25
Model 6 is better than model 5

Step 7 The ‘unknown’ variable is the least reliable and excluded
Modeling the Cox model for [age, male, intended to comply, satisfied with service,
dissatisfied with service, camera]
<lifglines.Co§PHFitter: fitted with 49 observations, 8 censored>
duration col = 'Estimated infection time’
event col = 'censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -126.57
time fit was run = 2019-07-26 13:59:03 UTC
coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
age 0.02 1.02 0.01 1.38 0.17 2.58 -0.01 0.04
male -1.92 0.15 0.66 -2.91 <0.005 8.13 -3.21 -9.63
intended to comply? 1.43 4.19 0.59 2.43 0.02 6.05 0.28 2.59
satisfied with service 1.09 2.97 0.53 2.07 0.04 4.69 0.06 2.12
dissatisfied with service .80 2.22 0.60 1.34 0.18 2.46 -0.37 1.97
camera -0.57 0.57 0.44 -1.29 0.20 2.34 -1.43 0.30
Concordance = 0.65
Log-likelihood ratio test = 14.78 on 6 df, -log2(p)=5.5@
Proportional hazard assumption looks okay.
The difference in partial log-likelihood (LL) = -0,48
Log-Likelihood Ratio Statistic (LRS) = 0,96
Consulting the chi-square distribution for 0,96 on 1 df: p>0,25
Model 7 is better than model 6
Step 8 The ‘camera’ variable is the least reliable and excluded

Modeling the Cox model for [age, male, intended to comply, satisfied with service,
dissatisfied with service]
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<lif;1ines‘Co%PHFitter: fitted with 49 observations, 8 censored>
duration col 'Estimated infection time’

event col = 'censored’
number of subjects = 49
number of events = 41

partial log-likelihood = -127.48
time fit was run = 2019-07-26 14:00:32 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
age 0.02 1.02 0.1 1.39 0.16 2.62 -0.01 0.04
male -1.52 0.22 0.56 -2.70 0.01 7.19 -2.62 -0.42
intended to comply? 1.33 3.78 0.57 2.34 0.02 5.68 0.21 2.45
satisfied with service 0.97 2.63 0.50 1.92 0.06 4.17 -0.02 1.95
dissatisfied with service 0.56 1.75 0.57 ©.99 0.32 1.62 -0.55 1.67

Concordance = 0.65
Log-likelihood ratio test = 12.96 on 5 df, -log2(p)=5.4@
Proportional hazard assumption looks okay.

The difference in partial log-likelihood (LL) = -0,91
Log-Likelihood Ratio Statistic (LRS) = 1,82

Consulting the chi-square distribution for 1,82 on 1 df: p>0,10
Model 8 is better than model 7

Step 9 The ‘dissatisfied with service’ variable is the least reliable and excluded
Modeling the Cox model for [age, male, intended to comply, satisfied with service]
<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>

duration col = "Estimated infection time’
event col = 'censored’

number of subjects = 49

number of events = 41
partial log-likelihood = -127.97

time fit was run = 2019-87-26 14:01:51 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
age 09.02 1.02 ©.01 1.50 0.13 2.91 -0.01 0.04
male -1.34 0.26 ©.53 -2.53 0.01 6.44 -2.38 -0.30
intended to comply? 1.40 4.04 9.57 2.46 0.01 6.16 9.28 2.51
satisfied with service ©.69 1.99 0.40 1.74 0.e8 3.62 -9.09 1.47
Concordance = 0.64
Log-likelihood ratio test = 11.98 on 4 df, -log2(p)=5.83
Proportional hazard assumption looks okay.
The difference in partial log-likelihood (LL) =-0,49
Log-Likelihood Ratio Statistic (LRS) = 0,98
Consulting the chi-square distribution for 0,98 on 1 df: p>0,25
Model 9 is better than model 8
Step 10 | The ‘age’ variable is the least reliable and excluded

Modeling the Cox model for [male, intended to comply, satisfied with service]

<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col = 'Estimated infection time'
event col = 'censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -129.07
time fit was run = 2019-07-26 14:03:19 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper 0.95
male -1.40 0.25 9.53 -2.65 0.01 6.96 -2.43 -0.36
intended to comply? 1.21 3.37 9.54 2.23 9.03 5.29 9.15 2.28
satisfied with service ©.40 1.49 0.34 1.17 0.24 2.06 -0.27 1.07

Concordance = 0.63
Log-likelihood ratio test = 9.78 on 3 df, -log2(p)=5.61
Proportional hazard assumption looks okay.
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The difference in partial log-likelihood (LL) =-1,1
Log-Likelihood Ratio Statistic (LRS) = 2,2

Consulting the chi-square distribution for 2,2 on 1 df: p>0,10
Model 10 is better than model 9

Step 11

The ‘satisfied with service’ variable is the least reliable and excluded

Modeling the Cox model for [male, intended to comply]

<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col = 'Estimated infection time’
event col "censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -129.78
time fit was run = 2019-07-26 14:04:57 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
male -1.22 9.30 0.51 -2.40 0.02 5.95 -2.21 -0.22
intended to comply? 1.13 3.11 0.54 2.08 0.04 4.75 0.07 2.20

Concordance = 0.59
Log-likelihood ratio test = 8.36 on 2 df, -log2(p)=6.03
Proportional hazard assumption looks okay.

The difference in partial log-likelihood (LL) = -0,71
Log-Likelihood Ratio Statistic (LRS) = 1,42

Consulting the chi-square distribution for 1,42 on 1 df: p>0,10
Model 11 is better than model 10

Step 12

All variables are significant. Exclusion of ‘intended to comply’ leads to a Log-Likelihood of
-132,61

The difference in partial log-likelihood (LL) = -2,83
Log-Likelihood Ratio Statistic (LRS) = 5,66

Consulting the chi-square distribution 5,66 on 1 df: p<0,05
Model 11 is best of all models.

When comparing model 11 with a trivial model, the LRS is 8,36 for 2 degrees of freedom:
p<0,05

Model 11 is better than a model without covariates.

Model 11 is accepted

Proportional Cox model [male vs female and unknown gender] Proportional Cox model [intention vs no intention]

—— male=0
—— male=1
----- baseline survival

~—— intended to comply?=0
—— intended to comply?=1
----- baseline survival

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 0 24 48 72 96 120 144 168 192 216 240 264 288 312 336
Infection time Infection time
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<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col = 'Estimated infection time’
event col = 'censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -131.82
time fit was run = 2019-07-28 11:46:41 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
male -1.13 .32 9.52 -2.17 0.03 5.05 -2.15 -9.11
unknown -0.66 .52 9.56 -1.17 0.24 2.05 -1.76 9.44

Concordance = .56
Log-likelihood ratio test = 4.28 on 2 df, -log2(p)=3.08
Proportional hazard assumption looks okay.

<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col = 'Estimated infection time’
event col = 'censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -130.53
time fit was run = 2019-07-28 11:46:42 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper .95
male -1.e8 .34 9.50 -2.17 ©9.03 5.05 -2.85 -8.10
right measures 0.77 2.16 9.40 1.91 0.06 4.15 -0.02 1.56

Concordance = .60
Log-likelihood ratio test = 6.87 on 2 df, -log2(p)=4.95
Proportional hazard assumption looks okay.

<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col = 'Estimated infection time’
event col = 'censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -130.31
time fit was run = 2019-87-28 11:46:42 UTC

coef exp(coef) se(coef) z p -log2(p) lower ©.95 upper ©.95
male -1.27 0.28 2.51 -2.46 @.e1 6.18 -2.27 -0.26
aware of notification? 1.17 3.24 ©.63 1.86 ©.06 4.01 -0.06 2.41

Concordance = .57
Log-likelihood ratio test = 7.31 on 2 df, -log2(p)=5.27
Proportional hazard assumption looks okay.

<lifelines.CoxPHFitter: fitted with 49 observations, 8 censored>
duration col = "Estimated infection time’
event col = 'censored’
number of subjects = 49
number of events = 41
partial log-likelihood = -131.5@
time fit was run = 2019-07-28 11:46:42 UTC

coef exp(coef) se(coef) z p -log2(p) lower @.95 upper 0.95
male -1.28 9.28 ©.57 -2.25 ©.02 5.35 -2.39 -9.16
understood notification? ©.55 1.74 0.39 1.43 @.15 2.72 -9.20 1.31

Concordance = 0.61
Log-likelihood ratio test = 4.92 on 2 df, -log2(p)=3.55
Proportional hazard assumption looks okay.

Model 11 has a Log-Likelihood of -129,78, which is higher than these models with
substituted variables for the variable intention. Model 11 is thus the best model.
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L.4 AFT modeling steps

Step O | Following the similar line of reasoning of appendix J.4, the fitted distributions in figure 60
show that both the LogNormal and Loglogistic distributions have the best fit. The
Lognormal distribution has a slightly little better fit (LL = 198,61) than the Loglogistic
distribution (-198,63). We, therefore, use the LogNormal distribution for the AFT model.

1.0 1.0 1.0
—— Weibull -204 - LogNormal -198 ——— PiecewiseExp -203
0.8 4 0.8 4
0.6 0.6 4
0.4 A 0.4
0.2 1 0.2 4
00 L T T T 00 = T T T T T T
100 200 300 100 200 300 100 200 300
1.0 § B 1.0 1 - 1.0 4
—— KaplanMeier - LogLogistic -198 - Exponental -225
0.8 0.8 1 0.8
061 0.6 - 0.6 -
0.4 - 0.4 1 047
4 0.2 A
0.2 1 0.2
0.0 0.0 1
0 100 200 300 100 200 300 100 200 300
timeline

Figure 58 Distribution fits for the survival curve of all observations

Figure 61 shows the quantile-quantile (Q-Q) plot to compare the fitted LogNormal
distribution with the empirical distribution. The empirical distribution more concentrated
than the fitted distribution and thus has a larger tail than the fitted LogNormal
distribution. This is also visible through the data range: almost all data points lie between
zero and eighty hours.

80
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(o]
o

7 000
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Figure 59 Q-Q plot LogNormal distribution

Step1 | Similarto the Cox modeling in the previous section, we first estimate two models (including
female and including male) so we can decide which variable to continue with.

Including female:
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<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored’

number of subjects = 49
number of events = 41
log-likelihood = -191.540

time fit was run = 2019-87-28 12:33:20 UTC

coef exp(coef) se(coef) z p -log2(p) lower .95 upper .95

mu_ market 9.563 1.755 9.78@ @.722 9.471 1.e88 -@.965 2.e91
walled garden -6.344 9.709 9.896 -9.334 9.701 @.512 -2.101 1.413
age -9.029 9.971 9.923 -1.263 9.206 2.276 -2.874 @.e16
female -2.311 9.099 1.517 -1.524 @.128 2.971 -5.284 @.5661
aware of notification? -9.110 9.896 2.245 -0.049 9.961 @.e57 -4.511 4.291
understood notification? -6.833 9.920 9.693 -0.120 ©0.905 @.145 -1.441 1.275
intended to comply? -1.680 9.186 2.044 -8.822 9.411 1.282 -5.686 2.326
right measures -8.859 9.423 1.119 -8.768 9.442 1.177 -3.852 1.333
satisfied with service -1.250 9.286 9.822 -1.521 @.128 2.963 -2.862 @.361
dissatisfied with service -8.454 9.635 9.902 -8.503 @.615 @.701 -2.222 1.315
home 1.153 3.168 1.393 9.828 9.4@8 1.294 -1.577 3.883
camera 1.368 3.928 1.415 9.967 @.334 1.584 -1.485 4.141
multiple 1.044 2.840 1.553 9.672 0.582 9.996 -2.800 4.e88
unknown 6.324 1.382 2.925 ©.160 9.873 9.196 -3.5646 4.293
_intercept 6.795 893.814 2.370 2.868 0.004 7.919 2.151 11.440

sigma_ _intercept 9.577 1.786 9.115 5.000 <0.00085 28.737 @.351 @.8e3

Concordance = 8.655

Log-likelihood ratio test = 14.140 on 14 df, -log2(p)=1.187

Including male:

<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>

event col = 'censored’
number of subjects = 49
number of events = 41
log-likelihood = -189.198
time fit was run = 2619-67-28 13:33:5@ UTC
coef exp(coef) se(coef) z p -log2(p) lower @.95 upper 2.95

mu_ market 9.752 2.122 9.744 1.012 9.312 1.682 -2.7es 2.210
walled garden -8.335 8.715 9.848 -0.395 9.693 @.529 -1.996 1.327
age -0.017 9.983 9.822 -0.771 9.441 1.182 -2.e61 2.e26
male 3.099 22.184 1.139 2.722 9.0086 7.269 2.8568 5.331
aware of notification? 9.839 2.314 2.155 9.389 9.697 @.521 -3.385 5.864
understood notification? -6.913 9.401 9.743 -1.221 0.222 2.17@ -2.378 @.553
intended to comply? -1.895 9.150 1.901 -0.997 9.319 1.649 -5.622 1.831
right measures -0.426 9.653 1.871 -9.398 9.691 @.533 -2.526 1.674
satisfied with service -1.348 9.260 9.782 -1.725 9.085 3.564 -2.881 @.184
dissatisfied with service -0.796 9.451 ©9.863 -0.922 0.356 1.438 -2.487 @.895
home 1.409 4.092 1.321 1.e67 9.286 1.8e5 -1.13¢ 3.993
camera 2.515 12.371 1.440 1.747 9.081 3.633 -2.3e6 5.337
multiple 1.219 3.385 1.469 0.830 9.406 1.299 -1.659 4,898
unknown 9.841 2.318 1.913 09.439 9.660 @.599 -2.9e9 4.59@
_intercept 2.425 11.308 2.802 0.866 9.387 1.371 -3.866 7.917

sigma_ _intercept 9.523 1.688 9.115 4.540 <0.0005 17.439 8.297 @.7439

concordance = 6.714
Log-likelihood ratio test = 18.824 on 14 df, -log2(p)=2.541

The model including ‘male’ has higher reliable parameters and a better overall fit ( the
partial log-likelihood is higher for equal degrees of freedom).

In the next steps, the variable ‘female’ is excluded. Due to this exclusion, the coding of the
dummy variable ‘male’ is changed. 1 = male subscriber, and 0 = female subscriber and
subscribers of unknown gender.

Step 2

The ‘aware of notification’ variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, walled garden, age, male, understood
notification, intended to comply, right measures, sastisfied with service, dissastisfied with
service, home, camera, multiple, unknown]
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<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored»

event col = 'censored’
number of subjects = 49
number of events = 41
log-likelihood = -189.274

time fit was run = 2019-87-28 13:48:08 UTC

coef exp(coef) se(coef) z p -log2(p) lower @.95 upper @.95

mu_ market 9.773 2.166 9.743 1.0480 0.298 1.745 -8.683 2.229
walled garden -0.303 9.738 @.845 -0.3359 9.720 @.474 -1.96@ 1.354

age -0.019 9.981 9.022 -0.862 9.389 1.364 -2.862 @.e24

male 3.006 20.207 1.115 2.696 ©.007 7.156 @.821 5.191
understood notification? -@.826 9.438 9.715 -1.156 0.243 2.014 -2.227 @.574
intended to comply? -1.272 9.280 1.014 -1.255 9.210 2.254 -3.26@ @.715

right measures -8.639 9.528 9.925 -8.691 0.490 1.e3e -2.452 1.174
satisfied with service -1.265 9.282 9.753 -1.680 0.093 3.429 -2.741 e.21e
dissatisfied with service -0.735 9.479 9.850 -8.865 9.387 1.369 -2.482 @.931

home 1.201 3.324 1.209 ©.994 0.320 1.642 -1.168 3.57e

camera 2.231 9.309 1.241 1.798 9.072 3.792 -2.201 4.663
multiple 1.003 2.726 1.360 9.737 9.461 1.117 -1.663 3.669
unknown 9.374 1.453 1.497 ©.250 0.803 8.317 -2.559 3.3e7
_intercept 3.061 21.359 2.283 1.341 9.180 2.475 -1.413 7.536
sigma_ _intercept 9.525 1.691 @.115 4.556 <0.0005 17.548 @.299 @.751

Concordance = ©.709
Log-likelihood ratio test = 18.672 on 13 df, -log2(p)=2.904

The difference in partial log-likelihood (LL) = -0,076
Log-Likelihood Ratio Statistic (LRS) = 0,152
Consulting the chi-square distribution for 0,152 on 1 df: p>0,50

Model 2 is better than model 1

Step3 The ‘unknown’ variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, walled garden, age, male, understood

notification, intended to comply, right measures, sastisfied with service, dissastisfied with

service, home, camera, multiple]

<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>

event col = 'censored’
number of subjects = 49
number of events = 41
log-likelihood = -189.365
time fit was run = 2019-67-28 13:48:23 UTC

- coef exp(coef) se(coef) z p -log2(p) lower @.95 upper @.95

mu_ market 9.823 2.278 @.716 1.149 9.251 1.997 -@.581 2,227
walled garden -9.318 0.727 9.844 -0.377 9.706 2.58e2 -1.973 1.336
age -9.019 9.981 9.022 -0.360 @.390 1.359 -2.862 2.e24
male 2.962 19.329 1.102 2.688 @.007 7.121 2.802 5.121
understood notification? -8.866 9.447 9.711 -1.134 0.257 1.968 -2.200 @.588
intended to comply? -1.264 0.282 1.015 -1.246 9.213 2.232 -3.254 @.725
right measures -0.714 8.490 @.3877 -0.814 9.415 1.267 -2.433 1.e24
satisfied with service -1.260 @.284 @.753 -1.672 9.895 3.403 -2.737 0.217
dissatisfied with service -0.729 0.4382 @.851 -0.857 9.391 1.353 -2.397 2.938
home 1.017 2.765 @.959 1.061 9.289 1.732 -28.862 2.896
camera 2.0846 7.737 @.996 2.055 9.040 4,648 2.e35 3.998
multiple 9.818 2.265 1.141 0.717 9.474 1.878 -1.419 3.e55
_intercept 3,313 27.473 2.853 1.5614 @.107 3.23@ -2.711 7.337

sigma_ _intercept 9.526 1.693 @.115 4,566 <0.0005 17.618 2.3ee @.752

E;;cordance = 0.760

Log-likelihood ratio test = 18.616 on 12 df, -log2(p)=3.345

The difference in partial log-likelihood (LL) = -0,031

Log-Likelihood Ratio Statistic (LRS) = 0,062

Consulting the chi-square distribution for 0,062 on 1 df: p>0,75

Model 3 is better than model 2

Step4 | The ‘walled garden’ variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, age, male, understood notification,
intended to comply, right measures, sastisfied with service, dissastisfied with service,
home, camera, multiple]
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<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored'
number of subjects = 49
number of events = 41
log-likelihood = -189.376
time fit was run = 2019-67-28 13:49:42 UTC

coef exp(coef) se(coef) z p -log2(p) lower @.95 upper @.95

mu_ market 9.982 2.669 9.582 1.685 9.092 3.443 -2.16@ 2.123
age -0.020 9.980 9.022 -0.951 8.342 1.549 -2.863 @.e22

male 2.993 19.944 1.182 2.716 ©.007 7.242 @.833 5.153
understood notification? -@.768 9.464 9.706 -1.088 0.277 1.853 -2.151 @.616
intended to comply? -1.347 9.260 9.995 -1.354 0.176 2.5e8 -3.296 2.683

right measures -0.712 0.491 9.879 -0.811 9.418 1.26@ -2.434 1.e1e
satisfied with service -1.196 9.302 9.736 -1.624 0.104 3.259 -2.639 2.248
dissatisfied with service -0.737 9.479 9.853 -0.863 9.388 1.366 -2.489 2.936

home 9.973 2.647 9.954 1.021 @.307 1.7e1 -2.896 2.843

camera 2.025 7.575 9.997 2.031 9.042 4.566 @.e71 3.979
multiple 9.810 2.248 1.144 0.708 0.479 1.063 -1.432 3.e52
_intercept 3.885 21.859 1.965 1.569 0.117 3.1e1 -2.768 6.937
sigma_ _intercept 8.529 1.697 @.115 4.589 <0.0005 17.776 @.3e3 2.754

concordance = 6.695
Log-likelihood ratio test = 18.468 on 11 df, -log2(p)=3.809

The difference in partial log-likelihood (LL) = -0,071
Log-Likelihood Ratio Statistic (LRS) = 0,142
Consulting the chi-square distribution for 0,142 on 1 df: p>0,50

Model 4 is better than model 3

Step 5 | The ‘multiple’ variable is the least reliable and excluded
Modeling the AFT LogNormal model for [market, age, male, understood notification,
intended to comply, right measures, sastisfied with service, dissastisfied with service,
home, camera]
<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored’'
number of subjects = 49
number of events = 41
log-likelihood = -189.627
time fit was run = 2019-67-28 13:54:40 UTC
o coef exp(coef) se(coef) z p -log2(p) lower @8.95 upper e.95
mu_ market 9.984 2.675 9.585 1.683 9.992 3.437 -2.162 2.13e
age -0.017 9.983 @.021 -90.811 9.417 1.261 -2.e58 e.e24
male 3.030 20.701 1.104 2.746 9.006 7.372 2.867 5.193
understood notification? -0.713 9.490 9.703 -1.015 9.310 1.69@ -2.892 2.6564
intended to comply? -1.215 9.297 9.978 -1.243 9.214 2.224 -3.131 e.7e1
right measures -0.564 9.569 9.854 -0.661 9.509 2.974 -2.238 1.11e
satisfied with service -1.122 9.326 9.731 -1.535 @.125 3.2 -2.554 @.311
dissatisfied with service -0.771 9.463 @.855 -90.902 9.367 1.446 -2.445 2.9e4
home 8.548 1.730 @.741 0.740 9.459 1.122 -2.904 2.ee1
camera 1.661 5.264 @.852 1.948 9.851 4,283 -2.01e 3.332
_intercept 2.957 19.238 1.960 1.509 9.131 2.928 -2.885 6.799
sigma_ _intercept @.532 1.703 @.115 4.620 <0.0005 17.988 2.3e7 e.758
E;;cordance = 8.692
Log-likelihood ratio test = 17.966 on 1@ df, -log2(p)=4.170@
The difference in partial log-likelihood (LL) = -0,251
Log-Likelihood Ratio Statistic (LRS) = 0,502
Consulting the chi-square distribution for 0,502 on 1 df: p>0,25
Model 5 is better than model 4
Step 6 | The ‘right measure’ variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, age, male, understood notification,
intended to comply, sastisfied with service, dissastisfied with service, home, camera]
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<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored'
number of subjects = 49
number of events = 41
log-likelihood = -189.845
time fit was run = 2019-87-28 13:57:89 UTC

coef exp(coef) se(coef) z p -log2(p) lower @.95 upper @.95

mu_ market 1.063 2.894 8.574 1.850 ©.0564 3.960 -8.963 2.189
age -0.014 9.986 9.021 -0.688 0.491 1.826 -@.855 @.e26

male 3.151 23.248 1.892 2.884 0.004 7.994 1.e1e 5.291
understood notification? -8.782 0.458 9.696 -1.123  0.262 1.935 -2.146 @.583
intended to comply? -1.506 9.222 9.876 -1.719 ©.0386 3.547 -3.222 8.211
satisfied with service -1.176 9.3209 9.729 -1.612 0.107 3.226 -2.6@5 @.254
dissatisfied with service -0.816 9.442 9.854 -0.956 ©.339 1.559 -2.491 9.858

home 9.386 1.471 9.761 ©.551 @.581 @.782 -8.987 1.759

camera 1.706 5.585 9.852 2.801 9.045 4.4562 @.e35 3.376
_intercept 2.647 4.110 1.985 1.389 0.165 2.602 -1.087 6.381
sigma_ _intercept 9.535 1.708 9.115 4.643 <0.0005 18.155 @.3e3 @.761

Concordance = 08.696
Log-likelihood ratio test = 17.529 on 9 df, -log2(p)=4.606

The difference in partial log-likelihood (LL) = -0,218
Log-Likelihood Ratio Statistic (LRS) = 0,436

Consulting the chi-square distribution for 0,436 on 1 df: p>0,50
Model 6 is better than model 5

Step 7 | The ‘home’ variable is the least reliable and excluded
Modeling the AFT LogNormal model for [market, age, male, understood notification,
intended to comply, sastisfied with service, dissastisfied with service, camera]
<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored'
number of subjects = 49
number of events = 41
log-likelihood = -189.997
time fit was run = 2019-87-28 13:58:26 UTC
o coef exp(coef) se(coef) z p -log2(p) 1lower .95 upper @.95
mu_ market 1.111 3.837 @.569 1.952 @.051 4,294 -@.ee5 2.226
age -9.018 9.982 9.020 -0.910 @.363 1.4562 -2.856 e.e21
male 3.103 22.275 1.090 2.848 9.004 7.826 2.967 5.242
understood notification? -@.703 9.495 9.682 -1.030 @.303 1.723 -2.242 2.634
intended to comply? -1.415 9.243 9.860 -1.645 @.100 3.324 -3.101 2.271
satisfied with service -1.120 9.323 @.725 -1.559 8.119 3.871 -2.551 e.291
dissatisfied with service -0.824 9.439 @.856 -0.963 @.335 1.576 -2.5e1 2.853
camera 1.476 4,375 @.742 1.9389 9.047 4.421 2.822 2.93e
_intercept 2.924 18.801 1.837 1.597 @.110 3.182 -2.666 6.534
sigma_ _intercept 9.538 1.712 8.115 4.662 <0.0005 18.238 2.312 e.764
é;;cordance = 0.689
Log-likelihood ratio test = 17.225 on 8 df, -log2(p)=5.166
The difference in partial log-likelihood (LL) = -0,152
Log-Likelihood Ratio Statistic (LRS) = 0,304
Consulting the chi-square distribution for 0,304 on 1 df: p>0,50
Model 7 is better than model 6
Step 8 | The ‘dissatisfied with service’ variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, age, male, understood notification,
intended to comply, sastisfied with service, camera]

178



<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored’

number of subjects = 49
number of events = 41
log-likelihood = -198.458

time fit was run = 2019-87-28 14:64:11 UTC

coef exp(coef) se(coef) z p -log2(p) lower @.95 upper @.95

mu_ market 1.139 3.124 9.574 1.984 9.047 4.403 2.e14 2.264
age -0.017 9.983 9.020 -0.854 9.393 1.347 -8.856 @.e22

male 3.040 20.912 1.099 2.766 9.006 7.461 8.886 5.195
understood notification? -0.760 9.467 9.686 -1.189 0.268 1.9e2 -2.185 2.584
intended to comply? -1.521 9.218 9.864 -1.760 9.978 3.674 -3.216 @.173
satisfied with service -8.696 9.498 9.571 -1.220 0.223 2.168 -1.815 @.422

camera 1.439 4,215 9.749 1.920 9.055 4,188 -e.e3e 2.9e7
_intercept 2.644 14,065 1.831 1.444 9.149 2.749 -8.945 6.232
sigma_ _intercept 9.543 1.730 9.115 4.751 <9.0005 18.917 8.322 e.774

Concordance = 0.676
Log-likelihood ratio test = 16.304 on 7 df, -log2(p)=5.475

The difference in partial log-likelihood (LL) = -0,461
Log-Likelihood Ratio Statistic (LRS) = 0,922

Consulting the chi-square distribution for 0,922 on 1 df: p>0,25
Model 8 is better than model 7

Step 9 | The ‘age’ variable is the least reliable and excluded
Modeling the AFT LogNormal model for [market, male, understood notification, intended
to comply, sastisfied with service, camera]
<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored»
event col = 'censored’
number of subjects = 49
number of events = 41
log-likelihood = -196.822
time fit was run = 2019-87-28 14:06:13 UTC
o coef exp(coef) se(coef) z p -log2(p) lower @.95 upper @.95
mu_ market 1.135 3.112 @.577 1.968 9.049 4,348 2.ee4 2.266
male 3.204 24.620 1.091 2.936 @.003 8.234 1.865 5.342
understood notification? -©.865 9.447 9.637 -1.173 9.241 2.853 -2.151 2.541
intended to comply? -1.476 9.229 9.866 -1.704 9.088 3.5ee -3.173 e.222
satisfied with service -9.517 9.596 @.533 -0.970 @.332 1.59@ -1.561 e.528
camera 1.463 4,317 @.755 1.937 @.053 4,246 -@.e17 2.942
_intercept 1.534 4,635 1.296 1.184 9.237 2.082 -1.006 4.873
sigma_ _intercept 9.554 1.739 9.115 4.793 <0.0005 19.249 @.327 e.78e
Ec;r-\cordance = 0.679
Log-likelihood ratio test = 15.575 on 6 df, -log2(p)=5.946
The difference in partial log-likelihood (LL) = -0,364
Log-Likelihood Ratio Statistic (LRS) = 0,728
Consulting the chi-square distribution for 0,728 on 1 df: p>0,25
Model 9 is better than model 8
Step 10 | The ‘satisfied with service’ variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, male, understood notification, intended
to comply, camera]
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<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored'
number of subjects = 49
number of events = 41
log-likelihood = -191.288
time fit was run = 2019-87-28 14:16:27 UTC

coef exp(coef) se(coef) z p -log2(p) 1lower @.95 upper @.95

mu_ market 1.117 3.857 9.583 1.917 @.055 4.178 -2.825 2.26@
male 3.872 21.578 1.894 2.808 @.0@5 7.648 8.928 5.216
understood notification? -9.818 9.441 9.694 -1.179 0.238 2.068 -2.178 @.542
intended to comply? -1.444 9.236 9.877 -1.646 0.100 3.324 -3.163 9.276

camera 1.447 4.250 9.764 1.895 0.058 4.185 -8.05@ 2.944
_intercept 1.321 3.747 1.292 1.823 9.307 1.7@6 -1.211 3.853
sigma_ _intercept 9.565 1.759 9.115 4.895 <0.0085 19.954 8.339 8.791

Concordance = 8.676
Log-likelihood ratio test = 14.644 on 5 df, -log2(p)=6.381

The difference in partial log-likelihood (LL) = -0,466
Log-Likelihood Ratio Statistic (LRS) = 0,932

Consulting the chi-square distribution for 0,932 on 1 df: p>0,25
Model 10 is better than model 9

Step 11 | The ‘understood notification’ variable is the least reliable and excluded
Modeling the AFT LogNormal model for [market, male, intended to comply, camera]
<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>

event col = 'censored’
number of subjects = 49
number of events = 41
log-likelihood = -191.969
time fit was run = 2019-87-28 14:12:23 UTC
o coef exp(coef) se(coef) z p -log2(p) lower @.95 upper @.95
mu_ market 1.115 3.050 9.594 1.879 9.060 4,852 -2.2438 2.279
male 2.462 11.724 9.975 2.525 @.012 5.432 @.551 4.373
intended to comply? -1.966 9.149 9.805 -2.367 9.018 5.8e@ -3.485 -2.328
camera 1.368 3.926 9.773 1.769 @.977 3.701 -@.148 2.883
_intercept 1.755 5.785 1.262 1.391 9.164 2.606 -8.718 4,228
sigma_ _intercept 6.583 1.791 9.115 5.056 <@.0005 21.157 @.357 @.8e9
é;;cordance = 0.640
Log-likelihood ratio test = 13.2806 on 4 df, -log2(p)=6.545
The difference in partial log-likelihood (LL) = -0,681
Log-Likelihood Ratio Statistic (LRS) = 1,362
Consulting the chi-square distribution for 1,362 on 1 df: p>0,10
Model 11 is better than model 10
Step 12 | The ‘camera’ variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, male, intended to comply]

<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored’
number of subjects = 49
number of events = 41
log-likelihood = -193.529
time fit was run = 2019-87-28 14:13:57 UTC

coef exp(coef) se(coef) z p -log2(p) lower .95 upper @.95

mu_ market 9.657 1.929 9.547 1.201 @.230 2.121 -2.415 1.73@
male 1.638 5.142 9.874 1.875 0.061 4,039 -2.274 3.35@
intended to comply? -1.865 9.164 9.815 -2.215 @.027 5.223 -3.483 -e.2e8
_intercept 2.952 19.142 1.098 2.689 0.007 7.124 @.80e@ 5.1e4
sigma_ _intercept 9.609 1.838 9.116 5.269 <0.0005 22.796 @.382 @.835

Concordance = 9.630
Log-likelihood ratio test = 16.162 on 3 df, -log2(p)=5.858

The difference in partial log-likelihood (LL) = -1,56

Log-Likelihood Ratio Statistic (LRS) = 3,12
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Consulting the chi-square distribution for 3,12 on 1 df: p>0,05
Model 12 is better than model 11

Step 13

The ‘market’ variable is the least reliable and excluded

Modeling the AFT LogNormal model for [market, male, intended to comply]

<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored»
event col = 'censored’
number of subjects = 49
number of events = 41
log-likelihood = -194.239
time fit was run = 2019-67-28 14:18:06 UTC

coef exp(coef) se(coef) z p -log2(p) lower .95 upper 2.95

mu_ male 1.764 5.497 9.887 1.921 ©.055 4,193 -2.834 3.443
intended to comply? -2.011 9.134 9.814 -2.472 9.013 6.219 -3.606 -e.417
_intercept 3.380 29.359 1.060 3.190 ©.001 9.456 1.303 5.456
sigma_ _intercept 0.626 1.869 6.116 5.415 <0.0005 23.957 @.399 @.852

Concordance = ©.600
Log-likelihood ratio test = 8.741 on 2 df, -log2(p)=6.305

The difference in partial log-likelihood (LL) = -0,71
Log-Likelihood Ratio Statistic (LRS) = 1,42

Consulting the chi-square distribution for 1,42 on 1 df: p>0,10
Model 13 is better than model 12

Step 14

The ‘male’ variable is the least reliable and excluded
Modeling the AFT LogNormal model for [market, male, intended to comply]

<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored’
number of subjects = 49
number of events = 41
log-likelihood = -196.028
time fit was run = 2019-67-28 14:19:19 UTC

coef exp(coef) se(coef) z p -log2(p) lower @.95 upper 2.95

mu_ intended to comply? -1.923 9.146 0.840 -2.288 0.022 5.497 -3.57@ -2.276
_intercept 4,836 125.963 9.786 6.155 <0.0005 30.3e9 3.296 6.376
sigma_ _intercept 0.665 1.945 0.116 5.749 <0.08005 26.734 2.433 @.892

Concordance = ©.559
Log-likelihood ratio test = 5.163 on 1 df, -log2(p)=5.437

The difference in partial log-likelihood (LL) = -1,789
Log-Likelihood Ratio Statistic (LRS) = 3,578

Consulting the chi-square distribution for 3,578 on 1 df: p>0,10
Model 14 is better than model 13

Step 15

Model 14 is best of all models.

When comparing model 14 with a trivial model, the LRS is 5,163 for 1 degree of freedom:
p<0,05

Model 14 is better than a model without covariates.

Model 14 is accepted
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LogNormal AFT model [intention vs no intention]
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<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored'
number of subjects = 49
number of events = 41
log-likelihood = -198.878
time fit was run = 2019-07-28 14:24:47 UTC

coef exp(coef) se(coef) z p -log2(p) lower .95 upper @.95

mu_ unknown 1.608 2.739 9.973 1.036 0.300 1.735 -8.899 2.914
_intercept 2.077 21.699 9.309 9.943 <0.0005 75.042 2.471 3.634

sigma_ _intercept 0.762 2.018 9.116 6.050 <0.0005 29.366 @.475 @.93e

Concordance = 9.528
Log-likelihood ratio test = 1.863 on 1 df, -log2(p)=1.725

<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored’

number of subjects = 49
number of events = 41
log-likelihood = -196.857

time fit was run = 2019-87-28 14:24:56 UTC

coef exp(coef) se(coef) z p -log2(p) lower .95 upper @.95

mu_ right measures -1.2806 9.278 9.679 -1.886 9.059 4.076 -2.610@ 2.e5e
_intercept 4.152 63.565 0.596 6.968 <08.0085 38.179 2.934 5.328
sigma_ _intercept 6.682 1.977 9.116 5.886 <08.0085 27.989 @.455 @.9e9

Concordance = 9.563
Log-likelihood ratio test = 3.584 on 1 df, -log2(p)=4.930

<lifelines.LogNormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored’

number of subjects = 49
number of events = 41
log-likelihood = -196.750

time fit was run = 2619-67-28 14:25:11 UTC

coef exp(coef) se(coef) z p -log2(p) lower @.95 upper .95

mu_ aware of notification? -1.901 9.149 9.982 -1.937 9.053 4,244 -3.826 2.923
_intercept 4.892 133.237 9.936 5.225 <0.0005 22.45@ 3.857 6.727
sigma_ _intercept 8.677 1.969 9.116 5.850 <0.0005 27.599 8.45@ 2.9e4

Concordance = 6.545
Log-likelihood ratio test = 3.719 on 1 df, -log2(p)=4.216

<lifelines.LoghormalAFTFitter: fitted with 49 observations, 8 censored>
event col = 'censored’
number of subjects = 49
number of events = 41
log-likelihood = -198.221
time fit was run = 2619-87-28 14:25:24 UTC

coef exp(coef) se(coef) z p -log2(p) lower .95 upper @.95

mu_ understood notification? -6.546 9.579 9.617 -98.886 ©.376 1.412 -1.756 @.663
_intercept 3.537 34.376 9.500 7.079 <0.0005 39.235 2.557 4.518
sigma_ _intercept 09.706 2.025 9.116 6.080 <0.0005 29.633 2.478 @.933

Concordance = 6.544
Log-likelihood ratio test = ©.778 on 1 df, -log2(p)=1.404

All models with a substitution for the variable intention are not accepted because the LRS
for 1 degree of freedom is for all lower than 3,841 (critical value for p-value of 0,05).

Model 14 is thus the best model.
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