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Abstract

The growth of Photovoltaic (PV) industry has been overwhelming for the past few years. PV systems suffer

from losses due to various factors such as soiling, shading, defects in the systems and many others. Hence

continuous monitoring of power generation from PV modules is a necessity to obtain optimal output from

the PV systems. The various irradiance sensors available in the market can be useful for continuous monitor-

ing of PV systems all around the globe.

The Dust IQ sensor from Kipp & Zonen has a Mini-PV module on board. The PV module is used for on-

site calibration of Dust IQ. The Dust IQ can be made multi-functional by developing the mini- PV module as

a PV reference cell. This will help the device to measure soiling and determine performance ratio of the PV

systems. The investigation of the calibration procedure of the Mini PV module in DustIQ showed the need for

a Primary reference cell. The report describes the design of Primary Reference cell housing, calibration and

characterization procedure of PV cell in the Primary reference cell.

There are many sensors available in the market to measure POA irradiance to calculate the performance

ratio of PV systems. The prices of these sensors vary according to the design, calibration procedure and char-

acterization conducted. The CMP21 Thermopile Pyranometer from Kipp & Zonen is considered to be one of

the most accurate irradiance sensors in the market. In this report, various cost-effective sensors are compared

with CMP21 to check the accuracy of the respective sensors. The obtained results showed that cost-effective

sensors deviated from the output of the Pyranometers. The silicon pyranometers (SP1 and SP2) underesti-

mates the irradiance with median error bias by -5 W /m2 (-3%), respectively. For another silicon pyranometer

(RT1), the bias error is -1 W /m2 which is significantly lower. The error range for RT1 is -8 W /m2 to 8 W /m2

(-5% to 5%).

Among all the sensors, the PV reference cell (MT) from Mencke & Tegtmeyer has the highest bias error and

error range. The MT error overestimates the irradiance with error ranging from -8 W /m2 to 22 W /m2(-2% to

6%) with a bias of 6 W /m2. The relative error range is low for Mencke & Tegtmeyer due to a huge number of

outliers in the data. The dataset of the MT sensor reduced after the outliers were removed. The cost-effective

sensors performance with CMP21 as a reference instrument during varying Air mass (AM) was evaluated.

The study exhibited that Silicon Pyranometer performance was close to Pyranometer during varying Air mass

while the PV reference cell displayed huge disparity during high Air mass. The silicon pyranometer (RT1) per-

formance agreed with the CMP21 performance throughout the measurement period.

Finally, an Artificial Intelligence algorithm which improves the irradiance output of the cost-effective sen-

sor with respect to the CMP21 pyranometer output is introduced in this report. The error range as well as the

statistical error for all the sensor has been reduced. The median bias error has also lessened enormously

for all the sensor. The bias and error range of the most inaccurate sensors (MT) decreased with the help of

machine learning algorithm. The bias error is less than 1 W /m2 for all the instruments. The error range has

decreased by more than 7 W /m2 for all the instruments. The statistical error RMSE has decreased by 7 , 3,

4 , and 3 W /m2 for MT, RT1, SP2, and SP1, respectively. The MAE also decreased by 5, 2, 3, and 2 W /m2 for

MT, RT1, SP2, and SP1, respectively.Results showed that including AI in the cost-effective sensors can boost

up their accuracy of sensors.
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1
Introduction

The world is going through an immense transformation from traditional fossil fuels to a reliable and clean

source of energy. The imminent problem of climate change due to extreme carbon emissions has a widespread

negative effect on the life cycle of the world,and leads to the realization of the instant need for renewable and

clean energy. Renewable energy such as solar energy has grown tremendously due to the massive push for

sustainable energy technologies to maintain the global temperature by 1.5°C [1].

The huge amount of investments in the research and production of PV technology has led to enormous

leap to make the technology affordable and economically viable. The downfall of price to 0.024 USD/kWh

during the power purchase agreement in Dubai recently has given more incentive all over the world to shift

to sustainable technologies to relieve the budding energy demand [2]. The PV deployment has grown expo-

nentially with global installed capacity capping 508 GW [3].

Figure 1.1: Global cumulative PV installation by 2018 [3].

However, the loss in a PV module output is a major problem due to various aspects such as soiling, shad-

ing in spite of rapid PV installations. The exhaustive study of system performance to know the amount of

losses and attain the maximum conceivable yield from a PV system. This is possible through the continuous

monitoring of PV systems with the help of different irradiance sensors available in the market.

1



2 1. Introduction

1.1. Irradiance sensors

Irradiance is the measurement of solar power incident per unit area. It is expressed as W /m2. The irradiance

device is the instrument which measure the irradiance. The instrument is vital to know the total solar power

incident in a certain location, analyze the PV system performances and analyze various losses initiated due

to atmospheric condition. The solar spectrum ranges from 150 nm to 4000 nm and the information on the

total amount of useful radiation is important for PV system installation and performance evaluation [4]. The

different types of irradiance sensors which measures the total useful solar radiation available in the market

are described below:

1.1.1. Thermopile Pyranometer

The thermopile pyranometer measures the total useful light incident on the flat earth surface or also known

as global horizontal irradiance (GHI). The device also measures Plane of array (POA). It is the technology that

measures irradiance from all direction with its dome which has 180°field of view (FOV). The thermal gradient

is measured across two areas which are known as hot and cold areas. The temperature difference between

the hot and cold area is proportional to irradiance. The device measures have broadband of solar irradiance

with wavelength measurement which ranges from 280 nm - 2800nm [5].

1.1.2. Silicon Diode Pyranometer

The Silicon diode pyranometer consists of silicon semiconductor embedded behind the diffuser. The photo-

current produced from this semiconductor is proportional to the amount of irradiance. The device only

measures the narrow wavelength which ranges from 300 nm- 1100 nm which means the device only measures

limited range of solar irradiance [6]. The device measures both GHI and POA.

1.1.3. PV Reference cell

The cell is used to measure the irradiance which can be converted into electricity rather than broadband

irradiance. The device resembles the properties of a PV module. The photon incident on the PV reference

cell leads to the generation of current which can later be measured as an irradiance. The reference cell an-

gular response, construction and materials used can be same as a PV module which helps in accurate yield

prediction of PV module.

(a) Pyranometer

(b)Silicon Pyranometer (b)PV Reference cell

Figure 1.2: Different types of Irradiance sensors [5][7]
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1.2. Importance of Irradiance sensors
The irradiance sensors are important devices to evaluate the amount of solar irradiance in certain locations,

and it also helps to check the useful irradiance in certain location that can be converted into electricity. The

performance ratio which can be evaluated using irradiance sensors is discussed below.

1.2.1. Factors influencing performance of PV systems
Performance ratio is the important parameter that can be evaluated with the help of Irradiance sensors. The

PV systems operate under different environmental conditions and performance changes with the changes in

outdoor conditions. The performance ratio is important to determine the performance of PV systems and the

factors effecting the performance. The performance ratio has increased from 70 % in 1990 to 90% to this date

according to the study conducted by Fraunhofer [8]. The various factors which influences the Performance

ratio are discussed below.

1.2.2. Temperature loss
The power output of the PV cell deviates with the variations in the temperature. The changes in P-V and I-V

curve due to the increment of temperature is well documented. The maximum power and efficiency of the

PV cell decrease linearly as the temperature increases. The influence of temperature on PV cell performance

is represented by the temperature coefficient for maximum power γ [%/ °C].

The I-V and P-V curve gives insight into the temperature dependence of the power output of the PV as shown

in cell 1.3.

(a) I-V curve

(b) P-V curve

Figure 1.3: Influence of temperature on the characteristic curves of a PV cell [9].



4 1. Introduction

The voltage, current and fill factor are influenced by temperature as the maximum power decreases lin-

early with increasing temperature. The maximum power can be calculated by [10],

PMPP =VMPP × IMPP = F F ×VOC × ISC (1.1)

Here the subscripts SC, OC, and MPP signify short circuit current, open circuit voltage, and Maximum power

point respectively. The VOC of the PV cell is dependent on temperature as it decreases when the temperature

increases. The saturation current density JO increases as the VOC decreases [10]. This is represented by the

following equation [10].

VOC =

kT

q
ln

(

JSC

J0

)

(1.2)

where k is the Boltzmann constant i.e. 1.381×10−23 J/K and q is equal to one elementary charge i.e. 1.602×

10−19 C. As the temperature increases the bandgap of semiconductor device increases resulting in more pho-

togenerated current. Thus it can be inferred that short circuit current density increases slightly as the tem-

perature increases. The slight increase of (JSC) is outdone by the drop in open circuit voltage causing the

drop in maximum power output of the cell. The efficiency and fill factor of the cell also declines with drop in

maximum power output [11].

1.2.3. Effects of Irradiance on PV cell
Irradiance is the amount of power received by earth surface per unit area expressed as Watt per metre square.

The irradiance incident on PV cell directly influence the power output of the solar cell. The lack of parameters

at different irradiance by manufacturers makes it difficult to determine influence of irradiance on PV cell [10].

The impact of irradiance on PV cell is tricky to analyze than the effect of Temperature. The PV cell power is

higher when the irradiance level is more which is illustrated by following equation [10].

η=
ISC ×VOC ×F F

GC × AC
(1.3)

Where η is the efficiency of the solar cell, AC is the area of the solar cell, GC is the irradiance incident on

PV cell. The efficiency of the cell decreases with the higher irradiance level.

1.2.4. Transmission loss due to soiling
The soiling of the PV module is one of the major issues leading to lower performance ratio (PR). The location

of PV modules installations and environmental conditions at specific regions are the major factors contribut-

ing to the soiling of the PV module. The places like Middle east, Asia Pacific, south America were the yield

from PV systems is high due to abundant sunlight also sees decrements on yield due to soiling [12]. The soil,

dust, smog , snow, pollution due to construction works and industries as well as the growth of micro organ-

isms contributes towards soiling in PV module [13]. The orientation of the PV modules also causes soiling in

PV modules. The tilt angle of the PV modules increases as the location shifts away from the equator leading

to accumulation of dust at the edges of PV modules [14].

The transmittance of photons declines due to the occurrence of foreign elements on PV module surface which

results in lower power output from PV modules [13]. This reduction in transmission of photons due to soiling

is referred to as Transmission loss calculated using the following equation [14],

Tl oss = 1−SR = 1−
GS

GC
×100% = 1−

ISC ,S

ISC ,C
×100% (1.4)

Here, (GS) and (GC) are the irradiance of soiled and cleaned module respectively whereas (ISC,S) and (ISC,C)

are current of soiled and cleaned module respectively. The ratio of irradiance of the soiled module to cleaned

module or ratio of short circuit current of the soiled and cleaned module is known as soiling ratio [14]. The

Transmission loss is an accurate parameter to determine power loss in the module due to soiling. The soiling

in the PV modules can be uniform and non- uniform [12]. The uniform soiling is deposition of dust in PV

module homogeneously which effects current of the PV module whereas the non-uniform occurs when there
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is an accumulation of dust or foreign object in the certain area of PV module which causes partial shading.

The partial shading causes considerable effects on the power output of PV cells [15].

Figure 1.4: Soiled and unsoiled module .

a) Commercial Product to determine soiling:

The industries and research facilities are working tirelessly to develop products which can precisely

measure the power loss in PV modules due to soiling. The precise and cost effective devices helps to

determine soiling behaviour in the PV modules, which can be followed by scheduled cleaning of PV

modules. Some of the popular products available in market for soiling measurements are Dust IQ from

Kipp & Zonen, Soiling measurements instruments from Atonometrics,PVsoil from ground works and

many others. The details on Dust IQ from Kipp & Zonen is given below.

• Dust IQ: The Dutch company, based in Delft, the Netherlands developed a product that can precisely

measure transmission loss and soiling ratio known as DustIQ. The device consists of mini PV module,

two Dust IQ sensors and Junction box. The device is framed with an anodized aluminum, with glass as

front cover. The PV module has ethylene-vinylacetate (EVA) in between front and back side both [16].

The Dust IQ is shown in figure below:

Figure 1.5: Dust IQ with sensors on.

The device measures light scattered light from internal LED due to the the soiling on top of the glass panel.

It uses optical soiling technology measurement (OSM), shown in fig 1.6 [16]
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Figure 1.6: Dust IQ working principle [16].

The two OSM sensors determines the transmission loss and also the soiling ratio(SR) using the automatic

calculations. The device is factory calibrated using standard Arizona test dust to perform the transmission

loss calculations but the dust color and sizes varies with location. Therefore, using the on-board mini Poly

crystalline silicon PV module it is possible to calibrate the Dust IQ on site for specific location with few min-

utes [16].

Figure 1.7: Dust IQ in the field.

1.2.5. Shading losses
The PV market is growing exponentially recently and one of major issue for PV installation is to find out a

optimal location for its installation. The shading losses should be considered before installing PV systems in

certain locations since, the power output of PV systems decreases drastically due to shading. The shading

caused by moving clouds or various atmospheric conditions is known as dymanic shading which causes ir-

radiance level to fluctuate within a short time interval. The shading caused by physical objects such as trees,

building shadows, dust particles, snows are known as static shading which is constant for certain period of

time.

The shading which is due to patches accumulating of certain foreign objects, or certain area of PV module

under the shadow of other object is known as partial shading [17]. The shading in which the soil or dust is

deposited uniformly over PV module is known as uniform shading. The shading drastically decreases the

performance of PV module because the efficiency of PV module will decrease. Due to continuous shading

the panel also degrades at faster rate leading to faster ageing of PV module [18].
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(a) shading due to buildings [19] (b) Snow [20]

Figure 1.8: Partial shading caused by various sources.

The solution to overcome shading problem can be done by integrating Bypass diode in the PV module.

The bypass diode also prevents from localized overheating of the shaded cell. The working principle of PV

module is shown in figure below.

Figure 1.9: Working principle of Bypass diode

As shown in the figure 1.9, which has five PV cells in series connection where the fifth cell is shaded. The

current is passed by the Bypass diode which is connected in parallel with the cell [10]. The current is no longer

affected by the shaded cell preventing dissipation of energy and potential breakage of cell due to overheating.

The bypass diose remains neutral when cells are not shaded [10].

1.3. Thesis motivation and research questions
The immense installation of PV systems globally is influenced by various factors as discussed in previous sec-

tions which decreases the optimal output. rradiance sensors are nowadays an integral part of the PV world

since they measure the incident POA irradiance which forms a crucial part in the calculation of the perfor-

mance ratio of the system and help study its performance. There are various types of irradiance sensors

available in the market with slightly different performance. The accuracy of this kind of sensors depends

upon the design and calibration procedure.

Kipp & Zonen a company based in Delft, The Netherlands developed a sensor known as DustIQ which pre-

dicts the soiling in PV panels. DustIQ has a mini PV module which is used for calibrating the soiling sensing

sensors. The purpose of this thesis is to make the DustIQ multi-functional by converting it into PV irradiance

sensors. While investigating the calibration procedure for DustIQ PV module necessity for the development

of Primary reference cell was felt. The primary reference cell is developed following the ASTM 1362 calibra-

tion standard.

In this thesis, the performance of different irradiance sensors available in the market is evaluated. The vari-

ous cost-effective sensors data such as Silicon pyranometer, Mencke & Tegtmeyer silicon sensor are evaluated

based on CMP21 pyranometer data which is regarded as the most accurate sensor. This was conducted to
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compare the performance of cost-effective sensors with respect to Pyranometer performance.The offset of a

cost-effective sensor with respect to pyranometer culminated the idea of developing an Artificial Intelligence

that can improve the output of the cost-effective sensor. An Artificial Intelligence is implemented to correct

the data of cost-effective sensors around the proximity of pyranometer data as reference data. Therefore, the

main goal of this thesis is to answer the following research questions:

1. What is the procedure to develop a primary reference cell?

The details about the Primary reference cell development is discussed in chapter 2.

2. Can Dust IQ PV module become a reference cell? If so, by which design or method?

Chapter 4 gives answer about the possibility of developing Dust IQ PV module as Primary Reference

cell.

3. How are the cost-effective sensors performing when compared with pyranometer?

The cost effective sensors performance is validated in chapter 5.

4. How accurate is the DustIQ data in contrast to other PV reference cell?

The uncalibrated Dust IQ PV module performance with respect to calibrated Reference cell is presented

in chapter 4.

5. Is it possible to improve cost-effective sensor performance using an Artificial Intelligence (AI) model?

The possibility of improving the cost-effective sensor output with respect to Pyranometer output is

discussed in chapter 6.

1.4. Thesis outline
This thesis consists of 6 chapters. The research questions will be answered in these chapters. The brief de-

scription of each chapter can be found below:

Chapter 2 - Design of Reference cell In this chapter, the mechanical structure of the reference cell and dif-

ferent instruments involved during the experiments is presented.

Chapter 3 - PV cell characterization This chapters provides details about the PV cells used in Primary refer-

ence cell. The characterization procedure of PV cells and results obtained are also discussed.

Chapter 4- Calibration of PV reference cell Here, the calibration procedure of Primary reference and Dus-

tIQ mini PV module is presented. The results obtained after the calibration is also discussed in this

chapter.

Chapter 5 - Data analysis: In this chapter, the variation between the output between cost-effective sensors

and Pyranometer is evaluated. The uncalibrated DustIQ mini-PV module performance in contrast to

calibrated Reference cell from Mencke & Tegtmeyer is presented in this chapter.

Chapter 6 -Artificial Intillegence: In this chapter, the variation between the output between cost-effective

sensors and Pyranometer is evaluated. The method implemented to correct the output of a cost-

effective sensor is also discussed.

Chapter 6- Conclusion and Recommendations: Results obtained for the proposed research questions is sum-

marized. Finally, recommendations for future work are presented.
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2
Design of PV reference cell

The solar industry is growing massively in global scale. The industries are investing a huge sum of money in

research and development to manufacture the PV cells with better characteristics. These PV cells are com-

piled together to manufacture a PV module which can comply with the customer preference of obtaining the

most efficient and cheapest PV module as possible. The PV systems are highly affected by the various envi-

ronmental and technical factors as discussed in previous chapter. The irradiance sensor plays a significant

role to check the output behaviour of the PV system. In this chapter, the design of a PV reference cell by Kipp

& Zonen as a new irradiance sensor for the company will be discussed.

2.1. Physical specification of Reference cell
There are two types of reference cell primary and secondary cell described by ASTM and IEC standards. It

gives specifics regarding the selection of Primary Reference but the Secondary reference is customer depen-

dent [21]. If any of the major specifications from the standards are missing the reference cell is regarded as

working class reference cell. The physical specifications for Primary and secondary reference are given below:

1: Primary Reference cell The Primary reference cell is calibrated in the outdoor environment directly un-

der sunlight following test method ASTM E1125 or IEC 60904-4 [22][23].

The PV cells size in the primary reference cell should be 20 ×20mm2 [22]. The mechanical housing

should have a field of view of greater than 160°for the PV cell. The design should have low thermal

mass with small and durable packaging which should match world photovoltaic scale(WPVS) refer-

ence cell design. The WPVS design gives preference to Mono C-Si due to its quality and stability [24].

The changes in PV cells can be considered according the industry preference. The window should be

fused silica for a primary reference cell with surface thickness of 40nm/mm [21]. The temperature sen-

sor should be standard pt100, with good internal wiring and connectors.The packaging design will be

discussed later in section 3.2.

2: Secondary Reference cell The cell can be calibrated both indoor and outdoor environments against the

primary reference cell following the test method ASTM 1362 or IEC 60904-2 [23][25].

The physical dimensions of the housing and PV cells size are not specified for secondary reference

cell so, it depends upon the customer preference. The PV cell to be calibrated should resemble the

characteristics of PV module thermally and optically. The temperature sensor should standard class A

pt100, with reliable internal wiring and compatible connectors. In this study, the mini PV module in

Dust IQ calibration procedure to make it a Secondary reference cell or a multi- cell reference device.

The design of mini PV module is discussed in section 3.2.

2.2. Design of Reference cell
In this section, the components required within a reference cell, and a mechanical design of Primary refer-

ence cell is discussed.

9
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2.2.1. Components required within a Primary reference cell
The reference cell requires different components integrated within it to be considered as PV reference cell.

These components are discussed below:

1: Temperature sensors The ASTM standards mention that temperature sensor should be class A Pt100 sen-

sor which should be according to DIN EN 60751 standards. The 2 pin Pt100 class A (RTD) being used

in the PV reference cell is from Thermo- Electro B.V. located in the Netherlands. The resistance tem-

perature detectors (RTDs) is made by winding a platinum wire onto the glass core and then fusing the

exterior with glass. The HG1310 2 PIN RTD is suitable for a wide range of temperature (-200°C to 450°C)

and corresponds to DIN EN 60751 [26].

Figure 2.1: Temperature senor [26]

2: Connectors and cables The connectors from binder are used in PV reference cell due to its high tolerance

and reliability. The connector has 8 wire connection with low impedance. The cables can withstand

extreme temperatures and years of ultra-Violet (UV) exposure [27]. The yellow cable of the connector

makes it distinguishable from other cables [27].

Figure 2.2: Connector and cables [27]

3: Shunt Resistor The shunt resistor required in the PV reference cell is 0.04 Ω SWD chip resistor. The re-

sistor is connected with the wires from the PV cell to measure the short circuit current of the PV cell.

The resistor is from TT electronics, a company based in the Netherlands. The resistor is very precise

and stable during temperature fluctuations. To make the PV reference cell voltage reading similar to

the pyranometer reading the small resistor is selected. This also makes the voltage reading from PV

reference cell compatible with CR1000X datalogger.

4: Glass The standard Fused Silica glass with dimension 50×50mm
2 is used as a cover of reference cell. The

glass is exceptionally pure with transmission range from 180 nm to 2000nm, and can withstand high

temperatures. The glass is manufactured by UQG Optics,England [28].

Figure 2.3: Fused silica glass [28]
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2.2.2. Mechanical housing of Primary reference cell
The housing design of primary reference cell compiles with the WPVS standards. The housing is designed at

Kipp & Zonen premises in Delft. The design is according to WPVS standard with 165° field of view [22]. The

figure below shows the design principle in order to maintain field of view of 165° [29].

Figure 2.4: Basic principle of Reference cell design

The reference cell housing should be durable, electrically and thermally conductive. The package should

be polished with black color. The package height should not exceed 17 mm [29]. The package should have

a ground pin with enough space for a shunt resistor, wiring, connectors, and cables. The RTD temperature

sensor should be placed below the solar cell carrier.

(a)Complete design of Reference cell (b)Bottom housing of Reference cell

Figure 2.5: Mechanical Housing of Reference cell

As seen in figure 2.5, the reference cell package design compiles with the WPVS standard. The PV is in

the center of housing with FOV of 165°. The cell is covered with fused silica glass. The cell is placed solar

brackets with the help of thermal tape. The top cover is placed to completely seal the PV cell and hold the glass

tight. The O-ring is used below the top cover to prevent PV cell degradation due to water and atmospheric

moisture’s and to reduce mechanical stress. The package contains two mounting holes which are compatible

with 2AP dual axis tracker from Kipp & Zonen.



12 2. Design of PV reference cell

(a)Top cover (b)Solar cell carrier bracket

Figure 2.6: Separate parts of Housing

Figure 2.6 shows top cover and solar cell carrier bracket. The top cover has screw holes according to

standards and does not hamper the FOV of solar cells. The solar cell carrier bracket is 1.5 mm thin, and has

opening downwards in order to take busbars down to connect with shunt resistor via wires. The resistor will

float in the space near connector as shown in figure 2.5. The temperature sensor is kept in small spacing

below the carrier bracket glued to the carrier using silicon glue to measure the temperature of the PV cell.

Figure 2.7: Wiring of Reference cell

The 8 pin connection from Binder is used in the PV reference cell as shown in figure 2.7. The 2 pins are

used to measure the voltage of the PV cell. Next, 2 pins are used to measure the temperature of the PV cell.

The wires from the RTD-pt100 sensor is connected to those pins. Another,pin is used as a shield pin for PV

cell and RTD respectively. The shield will prevent possible interaction between the cables, reduces electrical

noise, and possible electromagnetic interference.
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The Primary reference cell from Kipp & Zonen in real life looks like figure 2.8

Figure 2.8: Primary Reference cell

The detailed figures of mechanical housing of the PV reference cell are available in appendix-A.

2.2.3. Design of cooling unit
The cooling unit is an integral part while calibrating a reference cell. The Peltier element is used with a cooling

fan from PC. Two Peltier element in series is glued to aluminum plate of PC fan. The mounting plate is glued

on the upper side of Peltier element where the Reference cell can be placed. The temperature of the reference

cell can be maintained at 25 °C with the help of the cooling unit [22]. The temperature of the cooling unit can

be controlled automatically using a simple code. The variation in the voltage will decrease the temperature

of Peltier element which helps to maintain the temperature of Reference cell at 25 °C. The unit can decrease

the temperature upto 8°C. The Peltier element cut- off voltage is 17V. After this, the element starts heating up.

If the ambient temperature is low the element can increase the temperature of the reference cell. The figure

below shows the PC cooling fan and Peltier element,

(a)PC cooling fan (b)Peltier Element [30]

Figure 2.9: Cooling Unit

The figure below shows Reference cell mounted on cooling unit with the help aluminium mounting plate.

Figure 2.10: Cooling unit mounted in reference cell
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2.2.4. Design of collimator
The collimator is made from the PVC pipes. The collimator should have the receiving aperture radius (r) 35.4

mm (
√

50×50)2/2) for a reference cell with 50 mm
2 window [22]. The slope angle (θS ) and field of view (FOV)

is the equivalent to pyrheliometer and the opening angle (θO) is half of the FOV. The entrance aperture radius

(R) and diameter (D) of the tube can be calculated using the resulting equations [22]:

R =

r

1− (t anθS /t anθO)
(2.1)

D =

R

t anθS

(2.2)

The reference cell gets same amount of direct normal irradiance (DNI) as pyrheliometer with help of

collimator. The cross-section of collimator design is presented in 2.11,

Figure 2.11: Cross- Section of collimator

The parameters values for collimator design is listed in table below [22];

Table 2.1: Collimator design Parameters values

FOV θS θO r (mm) D (mm) R Aperture stop (x)

5° 1° 2.5 ° 35.4 1350 58.9 8

The reference cell along with collimator and cooling unit is mounted on a dual-axis tracker with other

instruments for the calibration as shown in figure 2.12. The calibration procedure is described in chapter 4.

Figure 2.12: The reference cell mounted in dual axis tracker with other instruments
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The cooling unit mounted on a Primary reference cell during the calibration conducted in Almeria, Spain

is shown in figure 2.13.

Figure 2.13: The reference cell mounted on 2AP tracker with cooling unit

In the next chapter, the characterization procedure of PV cells and results obtained after characterization

is discussed.
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3
Characterization of PV cells

The PV cell is a pivotal part of the PV reference cell. The ASTM, IEC standards provide a standard size of PV
cells, and characterization to be done to consider the cell as a Primary reference cell [21]. The guidelines for
Secondary and Working class differs from the Primary reference PV cell requirement guidelines. The PV cell
should be exactly 20 ×20 mm2 to be considered as the primary reference cell. The user or customer are free
to choose the size of cells for secondary or working class reference cell. The type of cells is also left upon for
the user to decide.

3.1. Types of PV cells
There are various types of PV cells available in the market. These cells are made up of different materials, and
structures with varying characteristics. Crystalline silicon cell is the most preferred PV material as the market
exemplifies. The high-efficiency C-Si is used as a PV cell in the Kipp & Zonen PV reference cell.

a.Mono C-Si Cell: The Mono Crystalline silicon PV cells are the purest form of Silicon, which has continuous
lattice structure with no grain boundaries. The cells are generally manufactured by Czochralski process
in which the crystals are grown to form a uniform single crystal of Silicon. The Mono C-Si PV cell
which is used as PV reference cell were manufactured by Shenzhen Meisongmao Industrial Co., Ltd
from Shenzhen, China one of the largest solar cells and modules distributor in China. The standard PV
cell was later sliced into 20×20 mm2 mini PV cell. The characteristics of the standard Mono C-Si cell
are given in Table 3.1.

b.Poly C-Si Cell: The Poly Crystalline silicon PV cell is high purity silicon but has several grain boundaries
making it easily distinguishable to Mono C-Si. It is a perfect rectangle with no round edges. Poly C-Si
PV cells are generally produced by the Siemens process where the volatile silicon are separated, and
small crystals are decomposed together to form a Poly C-Si. The Poly C-Si PV cell which is used as PV
reference cell were developed by Chinaland solar another prominent manufacturer of solar cells and
modules distributor in China. The characteristics of the standard Poly C-Si cell from the manufacturers
datasheet are presented in Table 3.1.

Table 3.1: Charateristics of PV cell

PV cells
Parameters Mono C-Si Poly C-Si
Size (mm2) 156.75×156.75 156.75×156.75

Efficiency (% ) 19.8 18
Pmax (W) 4.87 4.33

Voc (V) 0.541 0.63
Ioc (A) 9.0 8.620
FF (%) 79.93 79.6

17
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3.2. Characterization of PV cells
The ASTM standard mentions that the cell size should be 20×20 mm2 to be considered as a primary reference
cell. The standard 156.75×156.75 mm2 PV cells was cut into 20×20 mm2 PV cells in the TU Delft laboratory
cells by using Lasergraaf machine. The characterization was carried out for optimized Mono and Poly crys-
talline silicon using Wacom WXS-156S solar simulator and EQE testing set-up. The Wacom is class AAA solar
simulator with temperature control block to obtain precise characterization results [31]. The Hydrogen and
Xenon lamps are combined in the Wacom solar simulator has high accuracy with respect to spectral con-
tent (set of the light source), Uniform intensity (spatially uniform intensity), temporal instability (stable light
source) [31]. The Wacom is shown in the figure below.

(a)Wacom at TU Delft. (b)Wacom with solar simulator.

Figure 3.1: Solar Simulator [31]

3.2.1. Fill Factor of reference cell
The I-V curve of the cells was obtained at standard test condition(STC) using Wacom. The IV curve was
generated using Wacom and software (“Wacom IV sweep v202”) [31]. The solar simulator was left for 30
minutes to gain stability. The table shows the characteristics of optimized PV cells at STC.

Table 3.2: Characteristics of optimized PV cell

PV cells
Parameters Mono C-Si Poly C-Si

Size 20×20 mm2 20 ×20 mm2

Efficiency 18.5 % 16 %
Pmax 0.073 W 0.0645 W
Vmpp 0.52 V 0.5 V
Impp 142 mA 129 mA
Voc 0.63 V 0.61 V
Isc 152 mA 138 mA
FF 77.5 % 75 %

The "fill factor (FF)" is defined as the ratio of the maximum power from the solar cell to the product of
Voc and Isc. FF determines the maximum power the solar cell can produce. FF is expressed by the following
equation [10].

F F = Impp ×Vmpp

Isc ×Voc
= Pmpp

Isc ×Voc
(3.1)
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Figure 3.2: IV characteristics of PV module [9].

The "Fill Factor" measures the squareness of IV curve of the PV cells, as shown in the figure above. The
solar cell with larger voltage will have higher Fill Factor. The current for both optimized Poly and Mono C-Si
have decreased due to the reduction of the active surface, but the voltage only varies slightly. The influences
on current lead to a lessening of Fill factor of optimized PV cells with respect to standard PV cells as seen in
Table 3.2. However, the PV cells still have good "Fill factor" to be used as a standard cell for Primary Reference
cell.

3.2.2. Temperature sensitivity of PV cell
The IV curve of PV cells was measured to determine external parameters for different temperature. The IV
curve for varying temperature was generated using Wacom with the help water cooling system integrated into
the instrument. The temperature was varied with "Wacom IV sweep v202” software. The effect of temperature
on the IV curve and measured parameters are presented below.

(a)Mono C-Si. (b) Poly C-Si .

Figure 3.3: Temperature sensitivity of PV cells

From the above figures, it can be conferred that the VOC of both PV cells decreased with temperature.
Meanwhile, there is only a minor variation in the ISC . To have a distinct picture, the VOC , ISC , and Pmax of the
two PV cells at different temperatures are listed in the table below.

Table 3.3: Characteristics under varying temperatures

Mono C-Si Poly C-Si
Prameters 25° 35° 50 ° 25° 35° 50 °

Voc (V) 0.63 0.60 0.58 0.61 0.58 0.56
Isc (mA) 152 152.12 153 138 141 142

Pmpp (W) 0.0 73 W 0.065 W 0.062 0.0645 0.0576 0.055

From the above tables, it can be seen that the VOC and Pmax for both cells decreased with temperature.
Meanwhile, there is a small increase in ISC of the cell. The temperature coefficients for external parameters
helps to understand the influence of temperature on PV cells. The Temperature coefficients for PV cells can
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be obtained by using the following equation [10]:

αVOC = VOC ,T −VOC ,STC

VOC ,STC × (T −25)
(3.2)

αISC = ISC ,T − ISC ,STC

ISC ,STC × (T −25)
(3.3)

αPMPP = PMPP,T −PMPP,STC

PMPP,STC × (T −25)
(3.4)

where,

αVOC , αISC and αPMPP are temperature coefficients for voltage, current and Maximum power points

VOC ,T , ISC ,T and PMPP,T are voltage, current and Power at varying temperature

VOC ,STC , ISC ,STC and PMPP,STC are voltage, current and Power at Standard test condition

The temperature coeffecients for respective PV cells are presented in Table 3.4.

Table 3.4: Characteristics under varying temperatures

Parameters Mono C-Si [%/ °C] Poly C-Si [%/ °C]
αVOC -0.32 -0.33
αISC 0.026 0.11
αPMPP -0.6 -0.36

As seen in the above table, PV cells are immensely influenced by temperature. The VOC and Pmax are
negative since it decreases with temperature. The open circuit voltage VOC is the most influenced param-
eter, and short circuit current ISC increases with temperature. The bandgap of a semiconductor decreases
with increasing temperature, and more photon is absorbed resulting in more photogeneration. This leads to
slight increment in short circuit current,ISC , which is negligible. However, reduction in bandgap also leads to
heavy decrements in open circuit voltage effecting the PV cells overall performance. This is illustrated by the
following equation [10].

VOC = kT

q
ln

(
JSC

J0

)
(3.5)

3.2.3. Linearity of short circuit current of the cell with respect to irradiance
Here, the performance of the PV cell based on varying irradiance were analyzed. The lenses with distinct
optical density were placed above the solar cell to vary the light intensity. Figure 3.4 shows that only part of
the light is transmitted, the rest of them either absorbed by glass or reflected back.

Figure 3.4: UV reflective OD filters

The lenses are available in various optical density(OD), the irradiance value for each optical density can
be obtained using following equation [31].

OD =−log10

( G

GSTC

)
(3.6)
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Where, GSTC is irradiance at standard test condition, and G is irradiance obtained after light passes through
filter. The short circuit current,ISC , obtained for the different irradiance is tabulated in table 3.5. It shows that
short circuit current of PV cells is directly proportional to irradiance,

ISC =βG (3.7)

Here, β is proportionality constant.

Table 3.5: Short circuit current based on changing light intensity.

Mono C-Si Poly C-Si
OD Irradiance (W/m2) ISC (A) ISC (A)

0 1000 0.152 0.139
0.1 794.33 0.112 0.103
0.5 316.23 0.038 0.037
0.6 251 0.031 0.029
1 100 0.013 0.012
2 10 0.004 0.004

The figure 3.5 shows the linearity of short circuit current with respect to varying light intensity. The short
circuit current decreases linearly as the irradiance decreases.

(a)Mono C-Si. (b) Poly C-Si .

Figure 3.5: Linearity of short circuit current vs irradiance

The linearity check performed is not accurate due to uncertainties in the solar simulator and lenses.
Therefore, the non- linearity is calculated to make corrections in linearity measurements. The equation to
estimate non-linearity(ON L) is [32]

ON L =
(PSTC × I

ISTC ×P

)
−1 (3.8)

Where, P is the power incident on device under test, and I is the current of device under test. The following
graph shows shows the non-linearity between short circuit current of cell with respect to varying irradiance.

(a)Mono C-Si. (b) Poly C-Si .

Figure 3.6: Non-Linearity of short circuit current vs irradiance
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3.2.4. External Quantum Efficiency of PV cell
The External quantum efficiency(EQE) is the number of electron- hole pair generated to the incident photon
per unit time. The EQE of the cell is defined as [31];

EQE = Iph(λ)

q ×φ(λ)
(3.9)

where φ(λ)is the spectral photon flux incident on the PV cells, q is the elementary charge and Iph is the pho-
tocurrent generated. The EQE is measured by illuminating the solar cells by monochromatic light and Iph is
measured through the solar cells at different wavelength (λ). This shows that the EQE is wavelength depen-
dent.

The EQE measurement set up consists of a light source as a Xenon lamp, chopper frequency generator, the
monochromator, a lens system, and Lock-in amplifier. The light from Xenon lamb, which has even spectral
distribution passes through a filter to prevent interference of short wavelength with a long wavelength. Then
the light is chopped by chopper wheel to get the on-off frequency of 123 Hertz. The monochromator selects
a narrow band of wavelengths from the incoming chopped light. The monochromatic light is focused on so-
lar cells through the lens system. The solar cell under test produces a current which passes through shunt
resistance, and the voltage drop is measured. The lock-in amplifier is used to filter the solar cell’s response to
monochromatic light from noise by comparing with light at the chopper [31].

The figure 3.7 shows the EQE measurement set up at TU Delft laboratory. The set up consists of all the
required objects as mentioned before for EQE measurement. The wavelength range and step size can be
defined in software "MAIN QEM 3.0"[31]. The calibrated silicon reference diode is used for calibration to
measure the photon flux precisely for each wavelength before measuring the sample PV cell. After calibrating
the entire set up the PV cell was placed on the mounting frame. The contact probes are connected on the
front contact and back contact of PV cells. The light spot should be placed in such a way to avoid shading
due to fingers. The EQE curve for PV cells can be seen in the "MAIN QEM 3.0" software for the specified
wavelength range.

Figure 3.7: External Quantum Efficiency set-up (TU Delft lab) [31]
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The EQE for Mono and Poly Crystalline silicon cell obtained as seen in figure below. The wavelength range
was specified from 300 nm to 1200 nm which the response range of typical C-Si cell.

(a)EQE of Mono C-Si PV cell. (b)EQE of Poly C-Si PV cell.

Figure 3.8: External Quantum Efficiency (EQE)

The EQE of the Mono C-Si cell and Poly C-Si is around 95% and 90% in the mid wavelength ranges. It also
demonstrates that EQE is higher for Mono C-Si than Poly C-si. The EQE measurement is influenced slighly by
the distance between the fingers of respective cell. The EQE of overall PV reference cell including the fused
silica glass is shown in figure below.

(a)EQE of Mono C-Si PV cell. (b)EQE of Poly C-Si PV cell.

Figure 3.9: External Quantum Efficiency (EQE) with fused silica glass

3.3. Uncertainties and experimental error
The devices used for the measurements has seen some degradation over time due to prolonged uses. The so-
lar simulator Wacom consists of two light source Halogen and Xenon lamp, where the halogen lamp is prone
to wearing out if used for a long time. Xenon lamp efficiency also decreases over time. The lenses used during
the linearity measurement had some scratches and dirt on it leading to marginal uncertainties. During the
linearity measurement, the reflected light sources from the surrounding were incident on the PV cells causing
deviation from actual measurement values.

The EQE set-up consists of a Xenon lamp, which efficiency decreases gradually due to continuous usage.
The light from the Xenon lamp travels through different instruments leading to fluctuations in light intensity
before reaching the device under test. The EQE measurement device at TU Delft was specially designed for
Amorphous silicon cell, the cell with a wider gap between the fingers. The device under test for our case was
crystalline silicon cell with a small gap between the fingers. The narrow beam of the light source was slightly
over the fingers causing shading, which leads to a certain error during the EQE measurements. The EQE mea-
surements are not completely isolated from the external light source. The parasitic external light source and
uncertainties in various devices used during the measurement immensely impact the EQE measurements.
The opening where the signal generators are kept leads to parasitic light source inside measurement set-up
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In the next chapter, calibration techniques of Primary Reference cell is discussed. The techniques are then
applied to calibrate the Primary reference cell in Delft, The Netherlands and Almeria, Spain.



4
Calibration of Reference cell

It is important to know the performance of the installed PV systems. The calibrated PV reference cell plays a

vital role to determine the performance ratio of PV systems. The standards such as ASTM, IEC has precise cal-

ibration procedures, which are accepted worldwide. Taking into account the time, conditions, instruments,

calibration procedure, and the structure of the device to be calibrated, the reference cell is divided into dif-

ferent classes.

In this chapter, we first look into the calibration procedure of Primary reference cell and calibration value

of the reference cell is calculated. Next, the procedure applicable to develop Mini- Module in DustIQ as a

reference device is investigated.

4.1. Calibration of Primary Reference cell
"Calibration" is the methodology to compare the results of the device under test with the standard values to

verify the new product gives precise results. The Primary reference cell is the PV cell calibrated against direct

sunlight,traceable against the SI units. The device should have small package design as discussed in chapter

2, which should have a field of view of 165° and low thermal mass. The crystalline silicon cell is preferred with

a standard dimensions 4cm2. The PV cell should be characterized before calibrating following the procedure

mentioned in chapter 3. The various instruments used for calibrating the reference cell are described elow.

a) Absolute cavity radiometer:

The PMO6-cc from Davos Instruments, is an absolute cavity radiometer calibrated according World

Meteorological organization(WMO) standards. The instrument measures direct solar irradiance(DNI).

The instrument has two cavities a reference cavity and an active cavities [33]. The difference of radiant

power decreased when exposed to sunlight, gives the DNI data. The device can be used in any envi-

ronmental conditions. The instrument can be controlled remotely via RS232 software or through the

touch-screen integrated with the device [33]. The device is self calibrating due to periodic blocking of

light due to shutter.

Figure 4.1: PMO6-cc Radiometer [33]

25
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b) Pyrheliometer:

The Pyrheliometer is a radiometer used to measure the direct normal irradiance (DNI). The Pyrhe-

liometer CHP1 used in this calibration procedure was developed by Kipp & Zonen. The device is known

to be the best commercially available first class pyrheliometer. The CHP1 is calibrated against reference

pyrheliometer traceable to world radiation center (WRC) in outdoor conditions at Davos, Switzerland.

The pyrheliometer has field of view (FOV) of 5°, the slope of 1° [34]. The device gives accurate measure-

ments when the sun is right above its head, and placed in sun tracker at certain tracking angle.

Figure 4.2: CHP1 Pyrheliometer [34]

c) Spectroradiometer:

The spectroradiometer is used to measure the spectral irradiance."Spectral Irradiance" is the irradiance

as a function of Wavelength,with unit in W /m2nm1 [25]. Thus, it refers power incident per unit area

per wavelength. The spectroradiometer "USB4000-XR1-ES" is the product from ocean optics which is

used during the calibration period. The USB2000 Spectromter has a good response from 200-1100 nm

which perfectly aligns with C-Si spectral response range [35].

Figure 4.3: USB 2000 Spectrometer [35]
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d) Dual axis Sun tracker:

The dual axis tracker is most important device in-order to calibrate the reference cell. The 2AP tracker

which is a reliable for all weather conditions and steady is used to mount the instruments to calibrate

the reference cell [36]. The 2AP tracker is from Kipp & Zonen.

Figure 4.4: 2AP Tracker [36]

The instruments mentioned above were mounted on 2AP sun tracker along with the Reference cell, cool-

ing unit and collimator tube. The design principle of cooling units and collimator tube are described in chap-

ter 2. The data during the calibration was recorded using the Campbell Scientific CR1000X datalogger, and

stored in the PC storage unit.

4.2. Calibration Procedure
In this section, details of calibration technique to calibrate the primary reference along with calculation of

results obtained after calibration is discussed. Next,the calibration procedure suitable for calibrating the Mini

PV Module in DustIQ is discussed.

4.2.1. Calibration of Primary Reference cell
The PV cells were calibrated as primary cell by following ASTM 1125 standard [21]. The Primary reference cell

was calibrated using reference spectral irradiance which can be selected by user, the relative spectral irradi-

ance distribution which can be measured using the spectroradiometer and relative quantum efficiency of the

cell which can be determined in chapter 2. The intensity of direct illumination received by PV cell should be

same as Spectroradiometer and Pyrheliometer. The reference cell to be calibrated, the pyrheliometer, and the

spectroradiometer are mounted on the tracking platforms, and collimators are fitted on spectroradiometer

and PV cell to be calibrated to restrict the FOV to 5° [22]. The reference cell is clamped on the cooling units

to maintain its temperature at 25°C ±1 [24]. The calibartion should be carried when the irradiance range is

between 750 W m−2 to 1100 W m−2 [22]. The calibration procedure of Primary Reference is [22]:

1. The array of short circuit current of PV reference cell should be measured.

2. The array of irradiance value of the pyrheliometer should be measured. The time periods of measure-

ment of both PV reference cell and pyrheliometer should match.

3. The spectroradiometer spectral irradiance measurement time period may vary with the calibration

time period so,collect multiple data and average them to obtain a single spectral irradiance.

4. The absolute cavity radiometer shutter blocks the light for the certain interval. The period during which

the light is blocked should be considered as a calibration time period.

5. Measure the reference cell temperature.
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6. Repeat the procedure as much as you can for 3 different days.

7. Compute the mean short circuit and mean irradiance [22].

I j =
1

n

n∑

i=1

(Ii ) (4.1)

E j =
1

n

n∑

i=1

(Ei ) (4.2)

8. Compute the results using various parameters obtained.

Figure 4.5: Primary reference cell calibration

The calibration of Primary reference cell conducted in Almeria, Spain from June 12 to 14 is shown in the

figure below:

(a) (b)

Figure 4.6: Calibration of Primary reference cell with cooling unit

4.2.2. Computation Methods
Furthermore, to know the calibration value of PV reference cell several steps are involved. The irradiance

range should be between (750 W m−2 to 1100 W m−2), any data points below or above the specified range is

discarded. The short circuit current range and irradiance range should be computed in percentage by using

the following equations [22],

Ir ang e = 200
maxI j −mi nI j

maxI j +mi nI j
(4.3)
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Er ang e = 200
maxEi −mi nEi

maxEi +mi nEi
(4.4)

If a change in current is greater than 1% and change in irradiance is greater than 0.5% reject those points. The

response of silicon material faster than the pyrheliometer which the reason for pyrheliometer having a lesser

limit. If the changes in irradiance is more than 0.5 % shows that pyrheliometer is not in thermal equilibrium.

Next, the spectral correction factor, S j , is calculated by using the following equation [22]:

S j =

∫λ2

λ1
λQD (λ,T0)ES j dλ+ (TD j −T0)

∫λ2

λ1
λΘD (λ,T0)ES j (λ)dλ

∫λ4

λ3
λZp (λ)E0(λ)dλ

×

∫λ4

λ3
λZp (λ)ES j (λ)dλ

∫λ2

λ1
λQD (λ,T0)E0dλ

(4.5)

Where

QD (λ,T0) is the quantum efficiency of the reference cell to be calibrated,

ES j (λ) is spectral irradiance(W m–2nm–1),

TD j is the measured cell temperature (°C) ,

T0 is 25°C ,

ΘD (λ) is the partial derivative of quantum efficiency with respect to temperature (%°C –1).

ZP (λ) is the spectral transmittance of the pyrheliometer, and

E0(λ) is the reference spectral irradiance distribution ( W m–2nm–1).

.

In equation 4.5, wavelength integration limits λ1 and λ2 shall correspond to the spectral response limits of

the PV cell ,and λ3 and λ4 corresponds to those of the spectral transmittance limits of the pyrheliometer. The

the partial derivative of quantum efficiency with respect to temperature ( ΘD (λ)) can be excluded from the

equation 4.5, if temperature of the device under test is maintained at 25 °C ±1. Next, the calibration value can

be obtained using following equation [22]:

CV =

I j

E j S j
(4.6)

The calibration value for different time intervals can be computed and mean of all the calibration value can

be obtained. If the calibration data points is greater for a day when compared with other days, compute a

mean calibration value for each and every day. The final calibration value can be obtained by taking mean of

daily calibration value.

4.2.3. Calculation of results
The calibration of Primary reference was conducted for three consecutive days in Almeria, Spain. The spectral

correction factor, is not included in the calculation due to problem in the dataset. The spectrometer diffuser

and fibre were changed for the calibration procedure. This changes the conversion factor to convert num-

ber to photons counts to spectral irradiance. Therefore, it is necessary to re-calibrate the spectrometer to

get the conversion factor.The spectral mismatch factor, S j , is not included while calculating the calibration

value (CV). The spectral correction factor will be included while calculating the calibration factor after the

spectrometer used during the calibration procedure is calibrated.

Next, the calibration value(CV) obtained for Primary reference cell with Mono C-Si is is 5.04 µV /W m−2.

The calibration value is calculated in µV /W m−2 to make it similar to the sensitivity of other Kipp & Zonen

instruments. Next, the calibration value (CV) obtained using equation 4.6 is 0.000126 A/W m−2.

Where

I j is 0.10 A

E j is 842.5 W m–2,
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. The calibration value should be used to calculate the irradiance of the reference cell using following equation[22].

I r r adi ance =
I

CV ×αIsc × (T −25)
(4.7)

Where

I is the output current (A)

αIsc is Temperature Coefficient (%/°C ),

T is measured temperature (°C),

.

4.3. Investigation of process applicable for calibrating mini- PV module in

DUSTIQ
The Dust IQ consists of Mini PV module of dimensions 23.5×7.7 cm2 integrated in it. The working principle

of DustIQ is explained in section 1.2 of chapter 1. The Mini PV Module if calibrated will be considered as

large scale reference cell. Here,the procedure which can be used in the future to calibrate the DustIQ PV cell

will be discussed.

Figure 4.7: Mini PV module in Dust IQ.

The outdoor calibrations of reference cell require a collimator tube which should match the field of view

of pyrheliometer. The Mini PV module dimensions are way big to design the specified collimator tube so, it

is not possible to calibrate the DustIQ mini PV module outdoor. The PV module can be calibrated indoor

using the class AAA solar simulator. The class AAA solar simulator has high accuracy with respect to spectral

content (set of the light source), Uniform intensity (spatially uniform intensity), temporal instability (stable

light source) [31]. The 19 different LED’S are used to develop class AAA nowadays. Hydrogen and Xenon

combined together it can also be used as class AAA solar simulator [31]. The solar simulators can be built in

the Kipp & Zonen product development unit or can be brought from different suppliers around the globe.

Some of the prominent manufacturers of class AAA solar simulator suitable for DustIQ are listed in the table

below:

Table 4.1: Statistical Parameters

Company Model Beam size Price (USD)

Newport Oriel Sol3A 30.5 ×30.5 cm $16000 approx

Photonicssolutions UHE-33 33 ×33 cm $68000 approx

Photonicssolutions UHE-45 45 ×45 cm $68000 approx

Eternal sun LASS - -

Reoo GTM-3B 200 ×110 cm $9000 approx

OAI TriSOL 30 ×30 cm $49000 approx

The characterization of the mini PV module will be the same as the Primary reference cell calibration pro-

cedure. The omission of a few characterizations mentioned will lead to a reduction in a class of Reference
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cell.

The irradiance of the solar simulator should be within ±5% of the standard test condition (STC). If the tem-

poral instability of the solar simulator is within 0.1% following the calibration procedure should be followed

[25]:

1. Place the calibration source device in the test plane, and adjust temperature control block to maintain

the temperature of the source device within 25 °C.

2. Measure the temperature and short circuit current of calibration source device.

3. Place the device to be calibrated in same plane by replacing calibration source device as shown in figure

below,

Figure 4.8: Secondary Reference cell calibration Set-up

4. Repeat the procedure few times to get accurate calibration value.

If the temporal stability of the solar simulator is high the calibration procedure mentioned below should be

followed,

1. Place the calibration source device in the test plane, and adjust temperature control block to maintain

the temperature within 25 °C.

2. Measure the temperature and short circuit current of calibration source device.

3. Place the monitor solar cell in the same plane, and measure short circuit current of both solar cell.

Continue the measurement for more than 10 times. This is done to transfer the calibration.

4. The transfer calibration ratio can be calculated using following equation [25]

CT =
1

n

n∑

t=1

Ir

Im
(4.8)

Where Ir is the current of reference cell and Im is the current of monitor cell.

5. Now, replace the calibrated source with device to be calibrated as shown in figure below,

Figure 4.9: Secondary reference cell calibration Set-up( For high temporal instability of solar simulator)

6. Follow procedure a and b for at least 10 times. For each repetition one data point will be obtained.
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After the calibration procedure, the calibration factor should be calculated. The calibration value must be

calculated for respective data points by using the equation 4.9 [25],

C = ID ×
CR

IR ×Mi
(4.9)

Where CR is calibration value of source devic, and Mi is spectral mismatch parameter. If the transfer calibra-

tion method was followed use the succeeding equation to get calibration value for each data point [25],

C = ID ×
CR

CT × IR ×Mi
(4.10)

Finally, the average of all the calibration value is computed to get a single calibration factor.

4.3.1. Dust IQ Calibration Test in TU Delft
The Dust IQ has a Mini PV module which requires a large class AAA solar simulator in order to be calibrated.

A test was conducted at TU Delft laboratory in the large class AAA solar simulator from the eternal sun known

as LASS [37]. The solar simulator from the eternal sun temperature rises quickly within a few minutes which

is not suitable for calibration. The temperature racked up to almost 70°C during the test period. The solar

simulator temporal stability is also high which requires the monitor to transfer the calibration. The Kipp

& Zonen can work on the suitable cooling system for Mini PV module in Dust IQ to make the calibration

in eternal sun solar simulator possible. An alternative method can be changing the wiring configuration of

DustIQ mini PV module. Out of six PV cells in DustIQ connecting only one cell electrically will make the

calibration and characterization procedure easier.

Figure 4.10: Solar simulator- LASS [37].

In the next chapter, the data analysis of various irradiance sensors located on the rooftop. The data anal-

ysis is carried out to check the variation between the different sensors data with respect to pyranometer.
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5
Data Analysis

In this chapter, a brief information about the different types of solar irradiance measurement device are pre-

sented. Following a brief introduction about sensors the data processing methods are discussed. Finally, the

data analysis is carried out for various instrument considering pyranometer data as a reference.

5.1. Solar irradiance measurement instruments
There are various types of solar irradiance measuring instruments available in the market. Kipp & Zonen is

one of leading company manufacturing irradiance sensors such as Thermopile Pyranometer (CMP21), Sili-

con pyranometer, Pyrheliometer, Cavity Raidiometer and many others. In the terrace of Kipp & zonen three

silicon Pyranometer and one silicon sensor from Mencke & Tegtmeyer are installed which are recognized as

cost effective sensors. The irradiance data from cost effective sensors is compared with the data from ther-

mopile pyranometer installed right beside these cost effective sensors. All sensors are in same plane of array

(POA) with repsect to Poly C-Si PV panel from Canadian solar. The figure 5.1 shows the different devices in-

stalled at the roof of Kipp & Zonen.

Figure 5.1: Instruments at Roof of Kipp & Zonen .

The description of the irradiance sensors installed in the roof is given in Chapter 1. The tilt angle of all the

sensors positioned is 30°.

5.2. Data processing
The various irradiance senors,temperature data from the rooftop installation at Kipp & Zonen were used. The

Air Mass (AM) value was calculated using equation 5.3. The Air mass is selected to check variation as it has

heavy influence on the performance of an irradiance sensor.

Next, the data were aggregated in a minute by minute format for the research purpose. The morning data

were removed from the datasets due to huge constant shading of instruments. The shading was due to trees,

chimneys, and buildings surrounding the places where the instruments were located. The missing gaps and

outliers between the data were removed using a simple code in Matlab. The equations used to remove the

33
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outliers are as follow:

U B =Q3+1.5× IQR (5.1)

LB =Q1−1.5× IQR (5.2)

Here, Q3 and Q1 are third and first quartile respectively. UB and LB are upper and lower bound respec-

tively and IQR is inter-quartile range.The data which were lower than LB and greater than UB were removed.

The Mencke & Tegtmeyer PV reference cell had the most outliers. The dataset for Mencke & Tegtmeyer PV

reference cell reduced after the outliers were removed.

5.2.1. Data Analysis method
The reference instrument is taken as CMP21 Pyranometer. The differences between the reference instrument

and test instruments are evaluated to know the performance of test instruments. The test instruments are

cost-effective sensors including DustIQ. The difference between the data of reference and test is considered

as an “error”. If the median of the distribution is not equal to pyranometer value there is a bias in the test

instruments. Further assessment was carried out with the help of statistical indicators such as bias,mean

absolute error (MAE) and root mean square error (RMSE). The equations for the statistical indicators can be

written as [38],

M AE =

∑n
i=1

|Mi −Ci |

n
(5.3)

RMSE =

√

∑n
i=1

(Mi −Ci )2

n
(5.4)

Where, Mi is the data from Pyranometer and Ci is data from cost effective sensor. The MAE is the average

absolute difference between reference and test device. The RMSE helps to determine how close the reference

and test datasets are. The RMSE will be high if there is an enormous difference between reference and test

data. The boxplot diagram is used to represent the quantiles of the errors. The boxplot will help to get an

inclusive view of error distributions. The data sets are further divided into subsets for winter and summer

weather to determine the performance of the instruments during those conditions.

5.2.2. General performance of sensors
Figure 5.2 shows the error distribution of datasets for the sensors mentioned in section 5.1. The boxplot

demonstrates the IQR range (bluebox), the median (red line), and the extended range of the data distribution

without outliers. The boxplot of the relative error distribution is in Appendix B.

Figure 5.2: Boxplot diagram of the overall error distributions

The acronym RT1, SP1 and SP2 is for three silicon Pyranometers respectively. The acronym MT is for

silicon sensor from Mencke & Tegtmeyer, and PYR stands for thermopile pyranometer (CMP21). The SP1

and SP2 sensors deviates when compared with a thermopile pyranometer. The expended error distribution
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ranges from -16 W /m2 to 5 W /m2 (-9% to 3%). Both SP1 and SP2 underestimates the irradiance with median

error bias by -5 W /m2 (-3 %), respectively . For RT1, the bias error is -1 W /m2 which is significantly lower.

The error range for RT1 is -8 W /m2 to 8 W /m2 (-5% to 5%). Among all the sensors, the MT has the highest

bias error and error range. The MT error overestimates the irradiance with error ranging from -8 W /m2 to 22

W /m2 (-2% to 6%) with a bias of 6 W /m2. The relative error distribution is low for MT sensor due to removal

of outliers.

Alongside respective boxplot, the magenta and the cyan bars show the RMSE and MAE. The statistical es-

timators are also high for MT sensor and low for RT1 sensor. The PV reference cell (MT) overestimates the

irradiance during certain time interval leading to higher RMSE ,and MAE is high due to mismatch between

irradiance data when compared with pyranometer. The SP1 and SP2 also overestimates the irradiance output

leading to RMSE. The silicon sensor RT1 has temperature correction which makes the sensor more accurate

compared to two other silicon sensor SP1 and SP2.

5.2.3. Performance for specific conditions
Here, the performance of irradiance sensors during summer months with high sun elevation, more sun hours

and mostly sunny days, and during winter months with Low sun elevation, less sun hours and fluctuating

weather conditions (Sunny, cloudy and snowy days).

(a) Error distribution during summer

(b) Error distribution during winter

Figure 5.3: Boxplot diagrams of the error distributions at different conditions.

Figure 5.3a shows SP1 and SP2 has similar error distribution. The error distribution ranges from -18 W /m2

to 8 W /m2 (-8% to 3%). The devices underestimates the irradiance with bias of -7 W /m2 (4%) and -6 W /m2

(3%) for SP1 and SP2 respectively. The RT1 has expanded error distribution of -12 W /m2 to 10 W /m2 (-4% to

3%), and slightly underestimates the irradiance by 2 W /m2 (1%) when compared with pyranometer. The bias

error for MT is 8 W /m2 (3%) and error ranges from -10 W /m2 to 33 W /m2 (-1% to 5%).

The relative error distribution boxplot is in Appendix B. The relative error distributions for the device
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is slightly higher during winter months compared to summer months. The RT1 sensor have relative error

distribution of -5% to 8% in winter months vs -4% to 3% during summer months. The error distribution has

variation during two different climatic conditions for all the sensors due to the difference in sun hours, fast-

moving clouds which cause shading, fluctuating temperatures, the sun is low in the sky during winter. The

snow, fog, water droplets cause high variation between the data. The winter months have few data points due

to fewer sun hours, which leads to higher relative error distribution compared to summer months.

5.3. Comparison of DustIQ mini-PV module with Pyranometer
DustIQ consists of six PV cells connected as a mini-PV module. The PV cells in DUSTIQ has not been cal-

ibrated according to the standard to be considered as a PV reference cell. The irradiance data from the PV

module in DustIQ is compared with the Plane of array data from pyranometer. The irradiance data of DustIQ

is calculated with help of parameters obtained from LASS solar simulator in TU Delft laboratory.The reference

short circuit current at standard test condition is 1.1 A, and temperature coefficient for short circuit current

is taken as 0.053 (%/°C).

Figure 5.4: Overall error distribution of Pyranometer v/s DustIQ PV Module

Figure 5.4 shows the expanded error distribution ranges from -15 W /m2 to 25 W /m2 (-12% to 10%). The

bias error for DustIQ PV cells is 4W /m2 (2%).The statistical errors RMSE and MAE is 19 W /m2 to 13 W /m2

respectively. The DustIQ PV module even though not calibrated according to the standards is still comparable

to the output of silicon sensor from Mencke & Tegtmeyer. The comparison between two PV silicon devices

are shown in table below:

Table 5.1: Statistical Parameters

Error MT DustIQ

MAE (W /m2) 9 13

RMSE (W /m2) 14 19

Bias error 6 3

The statistical error is slightly higher for DustIQ PV module compared to the silicon sensor which can be

due to a large area of the Mini-PV module compared to the small area of Mencke & Tegtmeyer. The bias error

of the DustIQ better considering Mencke & Tegtmeyer silicon sensor bias error. Therefore, the performance

of DustIQ PV module can better the working class reference cell (Mencke & Tegtmeyer silicon sensor) if cal-

ibrated according to high-class standards. The investigation of the calibration procedure for the PV cells in

DustIQ is presented in section 4.3 of chapter 4.



5.4. Variation between irradiance sensors due to Air mass 37

5.4. Variation between irradiance sensors due to Air mass
In this section, silicon photodiode pyranometers and silicon sensor(MT) will be compared with Pyranometer

based on varying Air mass. The silicon pyranometers and silicon sensor are currently prevalent instruments

to measure the PV usable light. The sensors have a fast response rate, easy maintenance and most impor-

tantly low price are the reason behind the popularity of these sensors in the PV industry.

Air mass (AM) is the path the sunlight has to travel through to reach the earth surface. As the sunlight

passes through the atmosphere it gets attenuated, due to absorption and scattering [39]. The sunlight passes

through the minimum atmosphere when the sun is directly overhead, known as AM1. The path length for

sunlight to travel through the atmosphere increases with increasing Air mass. The AM increases when the

sun is closer to the horizon. The “AM1.5” is the standard condition universally accepted to characterize the

solar cells [40]. The Air mass is calculated using the following equation [10].

Ai r mass(AM) =
e−z/zh

Si n(as ))+0.5057.(as +6.08)−1.634
(5.5)

where, z is the site altitude which is 10 m, zh is the scale height of the Rayleigh atmosphere near the Earth

surface which is 8434.5 m, and as is the sun altitude which extracted from KNMI website.

The graph below shows variation of the silicon photodiode pyranometers and silicon sensor (MT) output with

respect to Pyranometer output based on Air mass.

(a)Silicon Pyranometer(RT1) (b) Silicon Pyranometer(SPLite1).

(c)Silicon Pyranometer(SPLite2) . (d) Silicon Sensor(PV Reference cell)

Figure 5.5: Variation of between various sensors with respect to Pyranometer based on Airmass

July 3, 2018, was observed as a clear day in Delft, The Netherlands. The data is hugely influenced by shad-

ing from buildings, trees, chimneys, and temporary blockage of sight. The huge fluctuations in the graph

are due to the aforementioned problems. The SPlite 1 (SP1)and 2 (SP2) perform better during higher Air

mass or higher Zenith angle compared to lower Air mass which is the blue region of light. The RT1 another

silicon pyranometer which agree with Pyranometer irradiance output during low Airmass and slightly under-

estimates during high Airmass. The RT1 response is better than SPlites because the device is temperature

corrected while SPlites are not temperature corrected. PV reference cell (MT) slightly underestimates during

low Air mass, and has a bad response during high Air mass leading to massive overestimation.

The aerosols are fine particles or gas filling the atmosphere causes the scattering of sunlight which influ-

ences the spectral distribution [41]. The pathlength for sunlight is high when it is low in the horizon, which
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leads to absorption and scattering of light causing differences in spectral distribution between the irradiance

sensors [41]. The high aerosols also causes scattering in the blue part of the solar spectrum causing under

and over prediction when compared with well-calibrated Thermopile Pyranometer. The irradiance devices

are calibrated at different zenith angle, temperature, and Air mass which makes devices to perform different

during the varying atmospheric condition. The error during Air mass calculation also causes an error in the

relative response of the sensors [42].

5.5. Conclusion on sensor performance
The 8 months of data collected from different cost-effective sensors were compared with Pyranometer data.

The sensors were placed in the same plane of the array. The relative error distribution graph is available in

appendix B.

The overall performance of different sensors showed that each device performed differently when com-

pared with Pyranometer. The SP1 and SP2 underestimates the irradiance with median error bias by -5 W /m2

(-3 %), respectively. For RT1, the bias error is -1 W /m2 which is significantly lower. The error range for RT1 is

-8 W /m2 to 8 W /m2 (-5% to 5%). Among all the sensors, MT has the highest bias error and error range. The

MT error underestimates the irradiance with error ranging from -8 W /m2 to 22 W /m2 (-2% to 6%) with a bias

of 6 W /m2. The 8 months of data were separated for varying environmental conditions (Summer and winter

months). The SP1 and SP2 device performance is quite similar during both summer and winter months with

error range of -18 W /m2 to 8 W /m2 (-8% to 3%) and -8 W /m2 to 2 W /m2 (-10% to 2%). The MT sensor data

had excessive outliers. The removal of these outliers shrunk the dataset resulting in low relative error. The

performance of the device is not uniform in the summer and winter months. The bias error is almost negli-

gible for RT1 sensor during summer months (> -1W /m2, >1%), but has a slightly higher relative bias ( 2.5%)

in winter months. During winter months the error range, bias errors are low due to low irradiance which re-

duces the error in the data. The error distribution was not uniform but the range of relative distribution only

differed slightly.

The irradiance sensors behavior is similar to pyranometers during low Air mass . The sensors underesti-

mate or overestimate when the Air mass is high. The deviation of PV reference cell (MT) from Pyranometer is

highest among all other instruments. The RT1 sensor agreed with the Pyranometer output in the most of the

period. The irradiance devices are sensitive to the spectral composition of sunlight due to variation in cali-

bration environments which also causes deviation among instruments [41]. The empirical correction factors

or normalization factor is implemented to correct the response of sensors. The empirical correction factor of

1.005,1.008,1.012, and 0.9746 can be applied to SP1, SP2, RT1, and MT, respectively. The graphs of linear fit

for all the sensors are shown in figure 5.6. These correction factor changes with the location due to different

environmental conditions. The calibration excellency of the device is also shown by the following graph. The

correction is only applicable in Delft, The Netherlands.

(a)Silicon Pyranometer(RT1) (b) Silicon Pyranometer(SPLite1).
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(c)Silicon Pyranometer(SPLite2) . (d) Silicon Sensor(PV Reference cell)

Figure 5.6: Linear fit Pyranometer vs cost-effective sensors

The above results were evaluated based on 1-minute data for 8 months. The results can improve if eval-

uated with more datasets. The test should be conducted in different environmental conditions to check the

demonstrability of results.

In the next chapter, the artificial intelligence algorithm used to improve the output of cost-effective sensor

will be introduced.
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6
Artificial Intelligence

Energy consumption is rapidly growing each year all over the globe. The improvement of living standard

and inclination to acquire as much as possible facilities to make their daily life better is the leading factor for

the growth in energy demand. Sustainable energy technology such as solar, wind is being installed in huge

amount globally to meet the energy demand due to its plummeting cost and as a technology to reduce the

adverse effect of global carbon emission. Even though renewable energy technologies are considered as an

answer to the growing energy, demand there is some offset in energy production due to fluctuating environ-

ments, different kinds of induced defects in technologies and many others. Irradiance device plays a major

role to accurately check the production of solar energy. Irradiance sensors such as thermopile pyranometer,

primary reference cells are very costly to be used in small scale PV systems and there is some sort of inac-

curacy in cost-effective sensors such as Silicon Pyranometers, PV reference cells. The cost-effective sensors

output are not accurate when compared with Pyranometer output as demonstrated in previous chapter.

In this chapter, the artificial intelligence algorithm used to correct the data of the cost effective sensors is

introduced.

6.1. Data processing
To determine the suitable Artificial intelligence algrithom for cost effective sensors for The Netherlands, ir-

radiance and temperature data from the rooftop installation at Kipp Zonen were used. The Air Mass (AM)

value was calculated using equation 5.3. The temperature and AM are selected as for the modelling approach

as it has heavy influence on the performance of the irradiance sensor.

Next,data was aggregated in a minute by minute format for the reasearch . The missing gaps and outliers

between the data were removed using a simple code in Matlab. The data used are of different measurement

units consisting of irradiance, temperature and AM data. A transformation method (standard scalar) to avoid

the dependence on choice of measurement units. Each column with different data are standardized with

mean of 0 and standard deviation of 1 while building artificial intelligence model to have a common scale.

6.2. Artificial Neural Network
Inspiration from biological neural network led to development of computational model known as artificial

neural network (ANN) [43]. AI consists of layers of interconnected nodes with each layer contributing to

transformation of input data. The initial layer is the input neurons [43]. The layer between input and output

are made up of multiple transverse layer or hidden layers.

In AI application, the most important step is to design a proper AI algorithm. There are different kinds of

algorithms available, and the choice depends on availability of the data and engineer’s knowledge. Machine

learning algorithm is a category of ANN which is subdivided into supervised learning, unsupervised learning

and semi supervised learning. In this research, a BackPropagation Neural Network (BPNN) is used to predict

and correct the output of an inaccurate sensor. Figure 6.1 shows the basic structure of an artificial neural

network.
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Figure 6.1: Artificial Neural network.

6.2.1. Backpropagation Neural Network
The neural network developed by Rumelhart in 1986 known as Back-propagation neural network (BPNN)

is the most popular ANN model [44]. BPNN is the supervised learning algotithm of machine learning. In

supervised learning algorithm, both input and output data are known. The error computed at the output

layers is propagated back into the neural network’s in the BPNN [44]. The error at output is minimized by

adjusting the weights of the interconnections by utilizing gradient descent. The discrepancy in the output

data is calculated by the following equation [45],

E =
1

2

∑

i

[Ai −Pi ]2 (6.1)

where E is the cost function or error, Ai and Pi are actual and predicted data.

The gradient descent is the method of recurrently trembling the input of the function by the multiple of the

negative gradient. The weights of the neural network are calculated employing gradient descent technique

and weights are attuned to lessen the output error [45]. The equation for adjustment of weight is given by

△W j i =−β
dE

dW j i
(6.2)

where β is learning rate, multiplied by gradient and -1.The weight is always adjusted in such a way that the

error is always decreases. The partial derivative of error with respect to weight is defined by following equa-

tion
dE

dW j i
= δ j Ai (6.3)

in which δ j is the error signal, and Ai is the output of neuron j. Therefore, the equation 6.2 can be written as

△W j i =−βδ j Ai (6.4)

The △W j i is added to the previous weight value which reduces the error at the output. Finally, the output of

a BPNN is the updated weighted sum of all its inputs:

Y = x1W1 +x2W2... (6.5)

The BPNN trains the neural network until the specified task is obtained. This makes the BPNN efficient to

update weights to improve desired output, periodic and iterative. In the next section, the implementation of

efficient BPNN to improve the output of a cost-effective sensor will be discussed.
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6.3. Machine learning Algorithm to Improve the Output of Cost-effective

Sensors
Python is an object-oriented, high-level programming language used to develop a machine learning algo-

rithm. The algorithm was written in an integrated development environment (IDLE) especially developed to

write python programs.

The neural network has 3 inputs which are Air mass, temperature and cost-effective senors irradiance

data. The predicted output of the cost-effective sensor is compared with the Pyranometer output and fed back

into the neural network until the desired output is obtained. The cost effective senors are silicon pyranometer

(RT1, SP1 ad SP2) from Kipp & Zonen and PV reference cell from Mencke & Tegtmeyer.

Figure 6.2: Schematic of Back propagation neural network

6.3.1. Machine learning Algorithm structure
First, significant libraries needed for programming is imported. To evade writing certain command every

time, libraries act as an embedded function. The extract for importing pandas library is import pandas as pd.

Next, the data is imported by using read-csv command. The .csv files and code are preferred to be in the same

directory. The data should be processed in the same way as explained in section 6.1. The processed data is

splitted into train and test dataset. The test train split from model selection library of scikit is imported for

this task.

Figure 6.3: Flow chart of cost effective sensor improved prediction

Here, 10% of the data is taken as test data and 90% is taken as training data. The MLP regressor is used

which trains multilayer perceptron (MLP) in BPNN. In MLP regressor we can define the optimal hidden lay-

ers, number of neurons in hidden layers, learning rate, number of iterations to obtain precise results.The MLP
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regressor uses square root error as the cost function. The number of hidden layers and neurons affects the

performance of the BPNN. The high number of hidden layers and neuron leads to an upsurge in computa-

tion time or overlearning and more complex operations. The fewer hidden layers and neuron leads to high

error in the output. Therefore, it is necessary to optimize number of hidden layers and neurons to obtain the

commendable output.

The learning rate is the hyperparameter which is the rate at which the weight is adjusted with respect to

error. The high learning rate leads to fast convergence of the model causing high errors. The MLP regressor

take the ideal learning rate to adjust the weight according to gradient error. The default learning rate of MLP

regressor which is 0.001 [46]. The work parameters selected for the algorithm after some preliminary tests are

given in table 6.1.

Table 6.1: Structure of BPNN for output prediction

Number of hidden layers Numbers of neurons Iterations Verbose Input Output

2 100/50 1000 True 3 1

The training iteration is selected as 1000. The verbose is kept true to see all the steps the algorithm is

undertaking while running it. The verbose can be kept false to hide the steps while running an algorithm. In

the end, the mean absolute error is calculated to check the accuracy of predicted output by the model and

predicted output is saved as a .CSV file.

6.4. Analysis of results from machine learning algorithm
The predicted output from the BPNN algorithm is compared with orginal data of cost effective sensor in this

section. The figure 6.4 shows the variation between the dataset through boxplot and statistical parameters

obtained. The boxplot demonstrates the IQR range (bluebox, the median (red line), and the extended range

of the data distribution without outliers. Alongside respective boxplot, the magenta and the cyan bars show

the RMSE and MAE. The statistical error is used to evaluate the model performances are RMSE and MAE as

described in previous chapter.

Figure 6.4: Comparison between normal data(Black) and predicted output data(Red)

The acronyms SP1 (SPLite), SP2 (SPLite) and RT1 are three silicon pyranometers from Kipp & Zonen, and
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MT is PV reference cell from Mencke & Tegtmeyer respectively. In the figure, the sensor with M (red) is pre-

dicted data from machine learning algorithm and N (black) in the acronym of sensor is normal data. It can

be seen that the output of all the cost effective sensors has been improved vastly with the help of machine

learning algorithm. The error range has decreased for all the sensors and also the statistical error. The median

bias error has also decreased enormously for all the sensor. The bias and error range of the most inaccurate

sensors (MT) has been decreased with the help of machine learning algorithm.

Figure B.4 in appendix B shows the relative error distribution before implementing and after implemen-

tation AI algorithm. The comparison of error range, error bias and statistical error between normal data and

data predicted by machine learning algorithm is given in table below.

Table 6.2: Error comparison between Normal data and Predicted data

Error range (W /m2) Bias error (W /m2)

Senors Normal data Predicted data Normal data Predicted data

MT -8 to 22 (-2% to 6%) -5 to 5 (-4% to 2%) 6 (2%) -1 (>1%)

RT1 -8 to 8 (-5% to 6%) -6 to 6 (-5% to 4%) -1 (>-1%) -1 (>-1%)

SP2 -17 to 5 (-9% to 3%) -6 to 7 (-5% to 4%) -5 (-4%) -1 (>-1%)

SP1 -14 to 5 (-9% to 3%) -8 to 6 (-4% to 3%) -4 (-4%) -1 (>-1%)

Table 6.3: Statistical Parameters

Statistical error

MAE (W /m2) RMSE (W /m2)

Senors Normal data Predicted data Normal data Predicted data

MT 9 4 14 6.6

RT1 6 4 8.36 6

SP2 8 5 11 7

SP1 7 5 9 6

The outliers removal caused excessive decrease in dataset of MT sensor compared to other irradiance

sensors. The low amount of data for MT sensor is the reason behind the low relative error distribution. The

results in the table indicate that the BPNN model is capable of learning the data extremely well and improve

the calibration and output of cost-effective sensors. The model can efficiently work with short period of data.

Therefore, the AI model can improve the performance of cost-effective sensor and can make the irradiance

measurement economical in the future.
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Conclusions & Recommendations

7.1. Conclusions
The research questions were articulated and investigated in this thesis with the aim of developing a PV ref-

erence cell, and an artificial intelligence algorithm to improve cost-effective sensor output. The ASTM and

IEC standards were studied to finalize the design, characterization and calibration procedure for developing

a PV reference cell. Meanwhile, a calibration procedure of the Mini- PV module in DustIQ to develop it as a

reference cell were explored. The conclusions derived after solving the research questions in the first chapter

are discussed in this section.

1. What is the procedure to develop a primary reference cell?

The ASTM E1125 standard was studied in order to develop a Primary PV Reference cell. The PV refer-

ence cell should be calibrated in natural sunlight. The temperature of the PV cell should be maintained

at 25°C with irradiance between 750 W /m2 to 1000 W /m2. The PV cell field of view should be same as

pyrheliometer during the calibration. The mechanical housing was designed according to World pho-

tovoltaic standard and manufactured in Kipp & Zonen D& E department. The PV cell was characterized

in the TU Delft Laboratory. The PV cell fulfills all the characterization standards. Finally, the reference

cell was assembled and calibrated in Almeria, Spain.

2. Can Dust IQ PV module become a reference cell? If so, by which design or method?

Yes, Mini-PV modules can be calibrated as a PV reference cell. Due to the PV module size, the Module

cannot be calibrated as a Primary Reference cell. The collimator design is not possible for a PV module

in DUSTIQ as it does not match with the standards. The module can be calibrated as a Secondary

Reference cell. For this Kipp & Zonen should either make their own solar simulator or purchase it. The

alternative option can be designing a cooling unit for calibrating it in LASS solar simulator in TU Delft

Laboratory. The calibration transfer can be done within 10 seconds if the LASS temperature does not

rise beyond 25°C quickly.

3. How are the cost-effective sensors performing when compared with pyranometer?

The 8 months of data collected from different cost-effective sensors were compared with Pyranometer

data. All the sensors were placed in the same plane of the array. The overall performance of different

sensors showed that each device performed differently when compared with Pyranometer. The SP1

and SP2 underestimates the irradiance with median error bias by -5 W /m2 (-3%), respectively. For RT1,

the bias error is -1 W /m2 which is significantly lower. The error range for RT1 is -8 W /m2 to 8 W /m2

(-5% to 5%). Among all the sensors, the MT had the largest bias error and error range. The MT error

overestimates the irradiance with error ranging from -8 W /m2 to 22 W /m2 (-2% to 6%) and bias of 6

W /m2. The RT1 was closest with the calibration standard of Pyranometer. The PV reference cell from

Mencke & Tegtmeyer was had the error among all the instruments. This results makes it likely that this

reference cell is at most a simple working class reference cell.

The comparison of the cost-effective sensor in varying Air mass with regards to Pyranometer exhibited
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that Silicon Pyranometer performance was close to Pyranometer during altering Air mass. The PV refer-

ence cell underestimated irradiance reading during the evening and morning hours when the Air mass

is high. The Silicon Pyranometer (RT1) was similar to Pyranometer irradiance reading during different

Airmass making it the most accurate cost-effective sensor.

4. How accurate is the DustIQ data in contrast to other PV reference cell?

The bias error of the DustIQ is better considering Mencke & Tegtmeyer silicon sensor bias error. The

expanded error distribution ranges from -15 W /m2 to 25 W /m2 (-12% to 10%),and bias error for DustIQ

PV cells is 4W /m2 (2%). The MT has error ranging from -8 W /m2 to 22 W /m2 (-2% to 6%) and bias of

6 W /m2. The statistical errors RMSE and MAE of DusiIQ is 19 W /m2 to 13 W /m2 vs 14 W /m2 and 9

W /m2 MT respectively. The statistical error is slightly higher for DustIQ PV module compared to the

silicon sensor which can be due to a large area of the Mini-PV module compared to the small area of

MT reference cell. Therefore, the performance of DustIQ PV module can better Mencke & Tegtmeyer

silicon sensor if calibrated according to high standards.

5. Is it possible to improve cost-effective sensor performance using an Artificial Intelligence (AI) model?

Yes, an Artificial Intelligence model was successful in improving output of the cost effective sensor.

A Back Propagation Neural Network (BPNN) which was one of the AI models used to develop an al-

gorithm to improve the output of a cost-effective sensor. The predicted output for the cost-effective

sensor from the machine learning algorithm improved the performance of sensors by decreasing the

error range and median bias. The error during the calibration of a cost-effective sensor was adjusted

with the assistance of the AI model. The statistical error (RMSE and MAE) correspondingly reduced for

the sensors after implementing the AI model.

Therefore, the Primary reference was manufactured and developed during this thesis can be a new prod-

uct for Kipp & Zonen. The primary reference cell can be used to calibrate the Mini-PV module in the DustIQ

in the future. It can be concluded from this thesis, the AI model can improve the performance of the cost-

effective sensor, and help the PV industry to be more efficient and economical.

7.2. Recommendations
Regardless of all the research work accomplished, there are room for improvements for further research.

Some recommendations for future work are:

• Validate the performance of Primary reference cell with respect to Pyranometer.

The newly developed Primary Reference from Kipp & Zonen should be compared with Thermopile

Pyranometer data to check its accuracy. The Pyranometer from Kipp & Zonen is considered to be one

of the best irradiance sensor available. The performance ratio between two sensors will give an upright

understanding of Primary reference cell accuracy.

• Investigate on procedure to develop a solar simulator to calibrate Mini PV module in DustIQ.

The class AAA solar simulator is required to calibrate Mini PV module in DustIQ as a Secondary Refer-

ence cell. It will be economical for Kipp & Zonen to develop their own solar simulator to calibrate the

PV module in large scale.

• Validation of Artificial Intelligence model in different climatic conditions.

The Artificial Intelligence model is only tested for data from Delft, Netherlands. The model perfor-

mance may vary with location and environmental conditions.

• Investigating other AI models such as radial basis function neural network (RBFNN), general regres-

sion neural network (GRNN), and support vector regression (SVR).

The Back propagation neural network(BPNN) was implemented to correct the output of Back Propaga-

tion Neural Network in this research. There are several AI models that can be investigated to check the

finest model to improve the performance of the cost-effective sensor.

• The AI model can be employed in other fields of PV research.

The AI models can be implemented in other fields of PV such as Transposition and Decomposition

model through AI algorithms. The AI models can also be used to optimize the performance of different

instruments used in PV systems.
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A
Mechanical housing design of PV

Reference cell

The design of PV reference cell from Kipp & zonen compiles with the WPVS standard.The detailed figure of

the mechanical housing of the PV reference cell with the dimensions is given below.

Figure A.1: Mechanical design of reference cell housing with dimensions
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B
Relative Errors

The error between two variables divided by the reference value is known as Relative errors. The figure below

shows Relative error distribution percentage between Pyranometer which is reference instruments and test

instruments. The SP1, SP2 and RT1 are silicon Pyranometer from Kipp & Zonen, and MT is PV reference cell

from Mencke & Tegtmeyer. The boxplot demonstrates the IQR range (bluebox), the median (red line),and

the extended range of the data distribution without outliers. The acronym RT1, SP1 and SP3 is for three

silicon Pyranometers respectively. The acronym MT is for silicon sensor from Mencke & Tegtmeyer, and PYR

stands for thermopile pyranometer. The figure B.3, shows the DustIQ mini PV module performance without

calibration. In the figure B.4, the sensor with M in its acronyms is predicted data from machine learning

algorithm and N in the acronym of sensor is normal data. The figure shows improvement in cost effective

data after implementing machine learning algorithm.

Figure B.1: Overall Relative error distribution
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56 B. Relative Errors

(a) Overall Relative Error distribution

(b) Relative Error distribution during summer

Figure B.2: Boxplot diagrams of the Relative error distributions at different conditions.
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Figure B.3: Overall Relative error distribution between Pyranometer and DustIQ

Figure B.4: Overall Relative error distribution for normal data vs data after implementing machine learning





C
Glossary

C.1. Acronyms

ASTM American Society for Testing and Materials

ANN artificial neural network

BPNN Back-propagation neural network

C-Si Crystalline silicon

CV Calibration value

DC Direct Current

DHI Diffuse Horizontal Irradiance

DNI Direct Normal Irradiance

EQE External Quantum Efficiency

EVA Ethylene-vinylacetate

FOV Field of view

FF Fill Factor

GHI Global Horizontal Irradiance

IDLE Integrated development environment

IQR interquartile range

IEA International Energy Agency

IEC International Electrotechnical Commission

LASS Large Area Steady State Solar Simulator

LED Light Emitting Diode

MT Mencke & Tegtmeyer

MAPE Mean Absolute Percentage Error

MPP Maximum Power Point

MPPT Maximum Power Point Tracking

MLP Multilayer perceptron
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60 C. Glossary

NL Non- Linearity

OSM Optical soiling technology measurement

OC Open Circuit

OD Optical Density

PVC Polymerization of vinyl chloride

POA Plane Of Array

PR Performance Ratio

PV Photovoltaic

PVMD Photovoltaic Material and Devices

RTDs Resistance temperature detectors

RMSE Root Mean Square Error

SC Short Circuit

SF Shading Factor

SR Soiling Ratio

STC Standard Test Condition

SVF Sky View Factor

UV Ultra-Violet

WPVS World photovoltaic scale
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C.2. List of Symbols

α Temperature coefficient for short-circuit current

β Temperature coefficient for open-circuit voltage

ISC Short-circuit current

VOC Open-circuit voltage

PMP P Maximum power

IMP P Maximum current

VMP P Maximum voltage

η Efficiency

J0 Saturation current density

λ0 Longitude of observer

θS Slope angle

x Aperture stop

θO Opening angle

AS Azimuth of the Sun

α Temperature coefficients

β Proportionality constant

▽N L Non-linearity

λ Wavelength

φ(λ) Spectral photon flux

ΘD (λ) Partial derivative of quantum efficiency

ZP (λ) Spectral transmittance

QD (λ, T0) Quantum efficiency

β Learning rate

δ j Error signal
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