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This paper explores charge transport at the single molecule level. The conductive properties of both

small organic molecules and conjugated polymers (molecular wires) are considered. In particular, the

reasons for the transition from fully coherent to incoherent charge transport and the approaches that

can be taken to describe this transition are addressed in some detail. The effects of molecular orbital

symmetry, quantum interference, static disorder and molecular vibrations on charge transport are

discussed. All of these effects must be taken into account (and may be used in a functional way) in

the design of molecular electronic devices. An overview of the theoretical models employed when

studying charge transport in small organic molecules and molecular wires is presented.

1. Introduction: the quantum mechanical and the

classical

One of the smallest scales that can be imagined for functional

electronic devices is that of a single molecule.1 For this reason,

charge transport in single molecules has been the subject of

numerous experimental and theoretical studies over the last

few decades.2–9 There are some similarities, but also many

fundamental differences between charge transport in a molecule

and an electrical current in a macroscopic wire. On the small

scale, many effects that originate from the quantum mecha-

nical nature of matter are observed explicitly, while such

effects are mostly averaged out in macroscopic wires at room

temperature.

Charge transport in, for instance, a short conjugated

molecule generally occurs by a single step tunneling process,

which implies a coherent (quantum mechanical) mechanism.

Such a single-step tunneling process infers an exponential

dependence of the current or the charge transfer rate on the

length of the molecule. An exponential dependence has been

observed in experiments that can roughly be divided into two

categories: spectroscopic experiments of charge transfer in

donor–bridge–acceptor systems10,11 and measurements on

molecules between electrodes.12,13 From both experimental
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methods there are many examples in which the rate or the

current decays exponentially, although the strength of

this dependence may vary depending on the energetics of a

particular system.14

Interestingly, when increasing the length of the molecule

in which charge transport is measured, deviations are

observed from a simple exponential distance dependence. Such

deviations have been observed in studies of charge transfer in

donor–bridge–acceptor systems where the bridge consists

of a p-stack of DNA bases. For short bridges the rate of

charge transfer decays exponentially with the distance between

the donor and the acceptor, but beyond a certain length the

rate is almost independent of the distance.15–17 A very similar

observation has also been made in single molecule con-

ductance experiments for a series of conjugated chains of

varying length.11,18 The chain length dependence of the

conductance was found to be exponential for short chains

but at a certain length the decrease with distance became

much weaker.19 These deviations from exponential behavior

have been explained by a transition in the mechanism

of charge transfer from coherent single-step tunneling to

incoherent hopping where the distance dependence is

much weaker than for tunneling.20–22 Such an incoherent

hopping mechanism would imply that the charge actually

becomes localized on the bridge between the donor and

acceptor or between the electrodes. However, charge localiza-

tion on the bridge has not been observed experimentally

until now.

Alternative experiments have been performed in which

charges were directly generated on conjugated molecular wires

by irradiation with short electron pulses.23–26 Charge transport

could subsequently be studied directly by microwave con-

ductivity experiments25 or indirectly by spectroscopically

probing the movement of the charges to appended traps at

the chain ends.23 Interestingly, also in these experiments it

is not always straightforward to predict whether charge trans-

port occurs by a partially coherent (band-like) mechanism or

by incoherent hopping.27

It is clear from these examples that the transition from a

purely quantum mechanical description of charge transport to

a purely classical model is of considerable interest, especially in

longer molecular wires where mobile charges can interact with

vibrational degrees of freedom.

Our universe is inherently quantum mechanical in nature—

at least there is currently no experimental evidence to suggest

otherwise. However, many physical phenomena can be readily

described classically, and it is not always obvious whether a

specific case calls for a quantum mechanical or a classical

description. In the context of charge transport this means that

sometimes charge carriers may be treated as particles, while

other times they must be described by their wavefunctions. In

the former case it is, in principle, possible to follow the

trajectory of a charge carrier, while in the latter case only a

time-dependent probability of finding the charge carrier in any

given spatial region can be defined. More generally, any

property of a classical particle has a well-defined state, while

a quantum mechanical particle resides in a superposition of

states (until an observable is measured and the wavefunction

‘‘collapses’’ into a specific eigenstate of that observable).

One can imagine that the propagation of a quantum mecha-

nical charge carrier through space (and particularly through a

medium, where interactions with the environment are present)

may be substantially different from that of its classical

counterpart. In the following sections the models that were

developed to treat both of these cases will be discussed in some

detail. However, it is interesting to first consider the reasons

behind the transition from a quantummechanical to a classical

description (beyond the superficial, albeit intuitive, connection

that follows from the Ehrenfest theorem28,29 or from the WKB

approximation).29–32 This issue was originally treated in the

context of quantum measurement and quantum information

theory. While a detailed consideration of the subject is beyond

the scope of this paper (comprehensive reviews can be found in

ref. 33 and 34), a summary of the reasoning and of the relevant

conclusions is in order.

Consider a system with a state vector |csi and an observable

corresponding to a Hermitian operator As with a discrete

spectrum acting on the Hilbert space of the system. Let {|ani}
be the set of normalized eigenvectors of As, and {an} be the set

of corresponding eigenvalues, for simplicity assumed to be non-

degenerate: As|csi= an|ani. The set of eigenvectors {|ani} forms

a basis in the Hilbert space of the system: jcsi ¼
P
n

janihanjcsi.
As long as no measurement is performed on the system,

its state vector evolves according to the time-dependent

Schrödinger equation:

i�h
djcsi
dt
¼ H sjcsi; ð1Þ

where Hs is the Hamiltonian of the system. However,

once As is measured, the state vector of the system ‘‘collapses’’

into one of the eigenstates of As with probability

P(an) = P(|csi - |ani) = |han|csi|2 for each eigenstate. It is

clear that with respect to the observable As not all states are

created equal: if the system is already in an eigenstate of As, the

measurement will not alter its state, P(an) = P(|ani- |ani) =
|han|ani|2 = 1. Measuring a complete set of commuting

observables specifies the quantum state of the system.
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A measurement is nothing else than an interaction of the

system with a measuring device. During the measurement the

system does not evolve independently anymore: together with

the device it forms a larger system (which will be from now on

referred to as ‘‘complex’’) with state vector |Ci and

Hamiltonian

H = Hs # Ie + Is # He + Hi, (2)

where Hs is the system part, He is the device (environment)

part, Hi is the system–environment interaction part and Ie and

Is are the identity operators in the environment and system

Hilbert spaces, respectively.

During the measurement event, the time-dependent Schrödinger

equation holds for the system–device complex as a whole:

i�h
djCi
dt
¼ H jCi: ð3Þ

However, eqn (1) for the system separately is no longer valid:

within the timeframe of the measurement the state vector

‘‘collapse’’ |csi - |ani occurs. It should be noted here that

although measurements in quantum mechanics are typically

assumed to be instantaneous, in reality they are not. However, it

can be shown that the characteristic timescale of the state vector

collapse, known as the ‘‘decoherence time’’, is much shorter than

any other characteristic dynamic timescale of the system.33

A logical conclusion is that the state vector ‘‘collapse’’

|csi - |ani of the system is a consequence of the system–

device interaction. During the measurement process the

system and environment wave vectors become entangled and

no longer evolve independently.33 However, information

transfer usually associated with measurements is a common

result of almost any interaction of the system with its environ-

ment. Thus, one can imagine that the environment constantly

‘‘measures’’ any non-isolated system, and any system state |csi
that is not an eigenstate of an observable quickly collapses into

one that is. This is the basis of environment-induced super-

selection of states, nicknamed ‘‘einselection’’, and einselected

states are referred to as ‘‘pointer states’’. It is obvious now

that, save the classical dynamics, nothing happens to pointer

states, even though they are immersed in the environment.33

A subsequent measurement of an observable already

‘‘measured’’ by the environment will produce a predefined

result, which means that the system behaves as if it were

classical. Thus, classical behavior is a consequence of the

‘‘openness’’ of the systems observed. Therefore, in order to

decide whether a quantum mechanical description of a system

is necessary or a classical description will suffice, it is necessary

to consider the interactions of the system with its environment.

2. Interference effects on charge transport: a fully

quantum mechanical case

Purely coherent quantum mechanical phenomena can only

occur in isolated systems. However, in the microworld, inter-

actions with the environment are often sufficiently weak

for the system to be considered nearly isolated, and thus for

its evolution to be considered quantum mechanical on a

sufficiently long timescale. Any measurement performed

on the system inevitably leads to the collapse of the system’s

state vector into an eigenstate of the measured observable,

|csi - |ani. However, if the system is isolated between

measurement events, the probabilities of possible outcomes,

P(an) = |han|csi|2, are determined by its quantum mechanical

evolution history.

One of the most striking effects predicted by quantum theory

is particle interference. Interference effects have been known for

over 300 years (Newton’s rings were first described by Hooke in

1665).35 A consistent theory of interference, based on Huygens’

wave theory of light, was developed by Fresnel in the first

quarter of the nineteenth century.36 With the emergence of

quantum mechanics and the concept of the particle–wave

duality, it was expected that interference could occur not just

for weightless photons, but also for heavier particles. However,

the first experimental observation of interference for anything

other than photons was not made until 1961, when Jönsson

performed Young’s double-slit experiment with electrons.37 In

recent years, quantum interference experiments have also been

extended to composite nanoparticles, such as fullerenes,38

helium clusters39 and large fluorinated molecules.40,41

In double-slit experiments with electrons arriving at the slits

one at a time, Merli and coworkers demonstrated that the

position of every electron upon interaction with the detector is

well-defined, but the interference pattern is retained for a

statistical ensemble of electrons.42 This means that there is

no need for an interaction between several electrons in

order for quantum interference to occur. The probability

P(r) = |ce(r)|
2 of being registered at position r exhibits

an interference pattern even for a single electron with state

vector |cei (or wavefunction ce(r) = hr|cei in the position

representation):29 in effect, the electron ‘‘interferes with itself’’.

This result has important implications for charge transport.

An electron moving in free space is described by a plane wave:

ce(r,t) = exp[i(k�r � ot + j0)], where o is the frequency, k is

the wavevector and j0 is the initial phase. However, the

wavefunction of an electron travelling in a static potential,

V(r), experiences partial reflections at every point where

rV(r) a 0. The incident and reflected waves are coherent

(have a constant phase difference), and their interference

may result in the formation of a standing wave pattern.

For example, the wavefunction of an electron in a periodic

potential, V(r +
P3

n=1mnan) = V(r), of a crystal lattice with

primitive vectors an, mn A Z, is a Bloch wave:43

ce(r) = uk(r)exp(ik�r), (4)

where uk(r) is a function with the same periodicity as V(r).

The wavefunction given by eqn (4) does not depend on time;

it is a standing wave resulting from an electron ‘‘interfering

with itself’’ in the periodic potential of the crystal. Similarly,

atomic or molecular orbitals are standing waves formed by an

electron ‘‘interfering with itself’’ in the potential of an atom or

molecule or, effectively, in a potential well. The square of the

electron wavefunction |ce(r)|
2 determines the probability of

finding an electron at position r (in effect, the electron density).

According to the Hohenberg–Kohn theorem, a one to one

correspondence exists between a potential field V(r), defined

up to a constant, and the ground state electron density r(r) or
the ground state wavefunction ce(r), defined up to a phase
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factor.44 Thus, interference effects determine the electronic

structure (band or orbital) and local electron density in perfect

crystals and molecules—and, consequently, charge transport!

An interesting example to consider in this context is that of

charge transport from a donor to an acceptor coupled to a

benzene molecule in either the ortho, meta or para configura-

tion (Fig. 1a). It is well-known that charge transport in organic

molecules is mediated primarily by the conjugated p-electron
system, and thus it is reasonable to consider only the atomic

orbitals contributing to this system—in benzene, these are the

pz orbitals on carbon atoms (Fig. 1b).45,46 In the Hückel

approximation, the molecular orbitals (Fig. 1c), formed by

these atomic orbitals, can be written as:47

cða2uÞ ¼
ffiffi
6
p

6
ðp1 þ p2 þ p3 þ p4 þ p5 þ p6Þ;

caðe1gÞ ¼
ffiffi
3
p

6
ð2p1 þ p2 � p3 � 2p4 � p5 þ p6Þ;

cbðe1gÞ ¼ 1
2
ðp2 þ p3 � p5 � p6Þ;

caðe2uÞ ¼
ffiffi
3
p

6
ð2p1 � p2 � p3 þ 2p4 � p5 � p6Þ;

cbðe2uÞ ¼ 1
2
ðp2 � p3 þ p5 � p6Þ;

cðb2gÞ ¼
ffiffi
6
p

6 ðp1 � p2 þ p3 � p4 þ p5 � p6Þ;

ð5Þ

where pn, n ¼ 1; 6 is the pz orbital on the n-th carbon atom in

the benzene ring (Fig. 1a).

If the donor and the acceptor are assumed to be coupled to

benzene by just a single pz-orbital, it is easy to calculate the

electronic couplings of the donor and the acceptor (at ortho,meta

or para position) to each of the molecular orbitals of benzene

given by eqn (5). These electronic couplings (also referred to as

charge transfer integrals) are presented in Table 1, in terms of

the electronic coupling J0 between pz orbitals on two carbon

atoms. From Fig. 1c and Table 1 it is immediately obvious that

the orbitals cb(e1g) and cb(e2u) do not contribute to charge

transport from the donor to the acceptor coupled to benzene in

any configuration, since the electronic coupling between the

donor and each of these orbitals is zero. However, the

remaining four orbitals may contribute to charge transport.

The Hamiltonian of the total donor–benzene–acceptor

system in the energy representation can be written as

where the diagonal elements are molecular orbital energies

(Fig. 1c), with the energy of the donor set to zero, and the

Fig. 1 (a) A benzene molecule with a donor and an acceptor coupled to it in either the ortho, meta or para configuration; (b) pz-orbitals on the

carbon atoms in the benzene ring, on the donor and on the acceptor, with two possible ‘‘spatial’’ pathways between the donor and the acceptor;

(c) the molecular orbitals of benzene.

Table 1 Electronic couplings (charge transfer integrals) between a
single pz orbital of a donor and an acceptor and the molecular orbitals
of benzene; J0 = 2.3 eV is the electronic coupling between two carbon
atoms at 0.14 nm distance, the equilibrium length of an aromatic
bond46

Donor
Acceptor
(ortho)

Acceptor
(meta)

Acceptor
(para)

c(a2u) þ J0ffiffi
6
p þ J0ffiffi

6
p þ J0ffiffi

6
p þ J0ffiffi

6
p

c(b2g) þ J0ffiffi
6
p � J0ffiffi

6
p þ J0ffiffi

6
p � J0ffiffi

6
p

ca(e1g) þ J0ffiffi
3
p þ J0

2
ffiffi
3
p � J0

2
ffiffi
3
p � J0ffiffi

3
p

ca(e2u) þ J0ffiffi
3
p � J0

2
ffiffi
3
p � J0

2
ffiffi
3
p þ J0ffiffi

3
p

cb(e1g) 0 � J0
2

� J0
2

0

cb(e2u) 0 � J0
2

þ J0
2

0

H s ¼

0 JpDcða2uÞ JpDcðb2gÞ JpDcaðe1gÞ JpDcaðe2uÞ 0
JpDcða2uÞ ecða2uÞ 0 0 0 JpAcða2uÞ
JpDcðb2gÞ 0 ecðb2gÞ 0 0 JpAcðb2gÞ
JpDcaðe1gÞ 0 0 ecaðe1gÞ 0 JpAcaðe1gÞ
JpDcaðe2uÞ 0 0 0 ecaðe2uÞ JpAcaðe2uÞ

0 JpAcða2uÞ JpAcðb2gÞ JpAcaðe1gÞ JpAcaðe2uÞ i�h=t

2
6666664

3
7777775
; ð6Þ
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energy of the acceptor taken to be imaginary to ensure that the

charge is irreversibly trapped when it arrives at the acceptor.48

The value of t = 1.3 (small enough to ensure that the

charge disappears from the acceptor site instantaneously,

and sufficiently large to avoid severe reflections of the wave-

function on the acceptor site) was assumed in the calculations

described below. Varying t within reasonable limits has no

effect on the calculated results. The off-diagonal elements of

the Hamiltonian (eqn (6)) are electronic couplings between the

orbitals involved in charge transport. The electronic couplings

of the benzene molecular orbitals, given by eqn (5), to

the donor and acceptor orbitals can be found in Table 1.

Electronic couplings between different molecular orbitals of

benzene are assumed to be zero.

The wavefunction of a charge carrier on the donor–

benzene–acceptor system in the energy representation is

cs(t) = CD(t)pD + C1(t)c(a2u) + C2(t)c(b2g)

+ C3(t)ca(e1g) + C4(t)ca(e2u) + CA(t)pA, (7)

where CD, CA and Cn(t), n = 1,2,3,4, are complex time-

dependent coefficients. Introducing the Hamiltonian given by

eqn (6) and the wavefunction given by eqn (7) into the time-

dependent Schrödinger equation for an isolated system,

eqn (1), produces a set of equations for the coefficients Cn(t).

Solving the obtained equations for Cn(t) with the initial

condition of a charge carrier localized on the donor,

CD(0) = 1, (8)

and all other coefficients in the expansion of the wavefunction

being zero, allows one to estimate the rate of charge transfer

from the donor to the acceptor. Since |Cn(t)|
2 gives the

probability of finding the charge carrier in a given orbital,

|CD(t)|
2 +

P4
n=1|Cn(t)|

2 + |CA(t)|
2 gives the total probability

of finding the charge in the donor–benzene–acceptor system.

The initial conditions make this probability unity at t = 0.

However, once the charge reaches the acceptor, it is removed

from the system due to the imaginary component in the

Hamiltonian, eqn (6). This leads to the decay of the total

probability of finding the charge in the system, with a rate

given by the rate of charge transfer from the donor to the

acceptor.

The (numerical) solutions of the time-dependent Schrödinger

equation, eqn (1), with the Hamiltonian, wavefunction and

initial condition given by eqn (6)–(8), respectively, are shown

in Fig. 2a for the donor and acceptor coupled to the benzene

ring in an ortho, meta or para configuration (Fig. 1a). Charge

transfer between a donor and an acceptor in a para or ortho

configuration is found to be efficient: it only takes a fraction

of a picosecond. On the contrary, for an acceptor at the

meta position charge transport is inefficient. After a short

equilibration time, during which charge transfer may occur

with a probability of approximately 20%, the system reaches a

steady state. The probability of charge transfer to the acceptor

at later times is zero.

This phenomenon can be understood in terms of the

molecular orbital structure of benzene. It turns out that the

contribution of the orbitals c(a2u) and c(b2g) to charge trans-

port is negligible because of the large energy difference of these

orbitals with the donor and acceptor sites (Fig. 1c). Charge

transport is thus fully determined by the orbitals ca(e1g) and

ca(e2u). Due to symmetry, the contributions of these orbitals

to the amplitude of the wavefunction on the acceptor at the

meta position are equal in magnitude, but opposite in sign,

resulting in zero net charge transport in equilibrium.49,50

It is more illustrative, however, to look at charge transport

through the benzene ring in terms of the pz orbitals on

individual carbon atoms, rather than in terms of molecular

orbitals.46 The wavefunction of the charge carrier can in this

case be written as

csðtÞ ¼ CDðtÞpD þ
XN

n¼1 cnðtÞpn þ CAðtÞpA; ð9Þ

where cn(t), n ¼ 1;N, are complex time-dependent coefficients,

N is the number of atoms in the bridge molecule (N = 6 in the

case of benzene). This representation of the wavefunction can

be obtained from eqn (7) by a (unitary) transformation of the

orbital basis set, inverse to the transformation given by

eqn (5). The systemHamiltonian (in the Hückel approximation)

written in the basis set of molecular orbitals, eqn (6), should be

transformed accordingly.45,46 The initial condition for the

charge carrier wavefunction is still given by eqn (8).

Since the pz orbitals are localized on individual atoms, one

can imagine that there are two possible ‘‘spatial’’ pathways

from the donor to the acceptor, as shown by arrows in Fig. 1b.

This notion is purely illustrative: using atomic orbitals still

implies working in the energy, rather than the coordinate,

representation. One can now think of a component of

the wavefunction travelling along each of the two ‘‘spatial’’

pathways. As the two components are coherent, after a

short equilibration time, they form an interference pattern—a

standing wave, with a node at the meta position. Because the

probability of finding a charge at a node is zero, charge

transfer to an acceptor coupled to the benzene ring at the

Fig. 2 Decay of the survival probability for a charge in a system

consisting of a donor and an acceptor coupled to a benzene molecule

in an ortho (dotted), meta (solid) and para (dashed) configuration:

(a) Hückel approximation; (b) electronic couplings between pz orbitals

on all atoms included.
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meta position does not occur. This also accounts for the

well-known chemical fact that it is much more difficult to

couple a substituent at the meta than at the para or ortho

position, where there is an appreciable electron density.51

This description offers an intuitive understanding of charge

transport in molecules.46,52 Keeping to it, one can go as far as

formulating a mnemonic rule, stating that charge transport

between two sites in a molecule is inefficient if all possible

pathways between these sites are cross-conjugated (have two

adjacent single bonds).53,54 For aromatic molecules this rule

holds whichever way the single and double bonds are drawn

(Fig. 1a).

The significant difference in the rate of charge transfer

through a benzene molecule to the meta and para positions

has led to a suggestion that this molecule may be used as a

molecular transistor.55 However, the performance of such a

transistor may be significantly impaired by the contribution of

charge transfer ‘‘through space’’ rather than ‘‘through bonds’’.

The Hückel approximation, which was used in the calculations

above, neglects the possibility of direct charge transport

between atoms that are not covalently bound. When applied

to a benzene molecule, this assumption is hardly reasonable,

since quantum chemical calculations show a significant electronic

coupling of the pz orbitals on non-nearest carbon atoms, which

has important consequences for the orbital structure of the

molecule.56

The result of a charge transfer calculation for benzene with

non-nearest neighbor couplings included in the Hamiltonian is

shown in Fig. 2b. One can see a significant increase in the

charge transfer rate to an acceptor at the meta position,

although charge transfer to an acceptor at the ortho or para

position is still an order of magnitude faster.46 It has been

shown that through-space, rather than through-bond terms

dominate charge transfer in a surprising number of cases.57 A

related problem with using benzene as a molecular transistor is

that if it were connected to electrodes, the distance would be

small enough for the charge to tunnel from one electrode to

the other directly, without ever going onto the benzene ring.

This issue can be resolved by replacing benzene with a larger

cyclic molecule (Fig. 3a).58

It is surprising that a molecule as simple and common as

benzene already exhibits pronounced quantum interference

effects that could, in principle, be used in a functional way.

Even though benzene is probably more of a model system than

an actual working molecular device, there is clear potential for

exploiting quantum interference effects as a mechanism to

control charge transport.

Since quantum interference effects were first considered as

such by Sautet and Joachim in 1988 (curiously, for a benzene

ring embedded in a polyacetylene chain),66 a large number of

molecules were considered that would allow to tune and

optimize these effects. Already in 1989 Sautet and Joachim

Fig. 3 Some molecules with strongly pronounced quantum interference effects and devices based on such molecules: (a) annulene;55,58

(b) N-salicylideneaniline molecular switch;59 (c) interference-based XOR switch;60,61 (d) linearly- and cross-conjugated acyclic molecules;62

(e) branched molecule with linearly conjugated ‘‘long’’ pathway and cross-conjugated ‘‘short’’ pathway;63 (f) porphyrin;64 (g) davidene;46,65

(h) hexabenzocoronene.46
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showed that quantum interference was the operational

mechanism in the N-salicylideneaniline molecular switch

activated by photoexcited intramolecular proton transfer

(Fig. 3b), and proposed optimizations of this switch.59 Other

device-concepts exploiting interference effects have been

proposed since (for example, Fig. 3c).60,61

In order for quantum interference to have a significant

impact on charge transport the molecule need not be aromatic

or even cyclic. In branched molecules (for example, Fig. 3d

and e) charge transfer is much more efficient along linearly

conjugated pathways, than along cross-conjugated pathways.62

Under normal circumstances the conductance of a ‘‘wire’’ is

proportional to its length. However, the conductance of a

linearly conjugated pathway in a branched molecule can be

higher than for a cross-conjugated pathway even when the

latter is shorter (Fig. 3e).63 One can also think of charge

transport in branched molecules in terms of ‘‘spatial’’

pathways. The interference pattern is then formed by two

components of the charge carrier wavefunction: the one that

travels directly along the pathway from electrode to electrode

(or from donor to acceptor) and the one that goes into the side

branch, encounters a ‘‘dead end’’ and is reflected.

Quantum interference effects were also predicted to influence

charge transport in heterocyclic molecules (such as porphyrin,

Fig. 3f),64 molecules that are non-planar in their equilibrium

conformation (such as davidene, Fig. 3g),46,65 and fused-ring

molecules (such as hexabenzocoronene, Fig. 3h),46 among

others.

There are several theoretical approaches to studying the

effects of quantum interference on charge transfer through

molecules. One possibility is to solve the time-dependent

Schrödinger equation, eqn (1), for the wavefunction of the

charge and look at the rate of the charge arriving at the

acceptor site, as discussed above.46 Equivalently, one may

solve the von Neumann (quantum Liouville) equation67

i�h
drs
dt
¼ ½H s; rs�; ð10Þ

for the density operator of the charge, rs = |csihcs|. If the

charge is removed from the system by using an imaginary term

in the Hamiltonian, see eqn (6), then Tr rs decays as the charge
arrives at the acceptor. The rate of this decay can be equated

to the charge transfer rate. Alternatively, the charge transfer

rate through a molecule in the steady state can be defined as

kSS = krAA/rDD, where rAA and rDD are the steady-state

populations of the donor and acceptor sites and k is a system

constant with the dimension of inverse time.65

It is also possible to obtain a charge transfer rate without

directly solving the quantum mechanical equations of motion,

eqn (1) or (10), for the charge carrier. This approach is taken

particularly often when charge transfer through a molecule

between electrodes, rather than through a molecular bridge in

a donor–bridge–acceptor system, is studied. It is then possible

to apply the Landauer linear response theory.68,69 The trans-

mission function Z(E), which characterizes charge scattering

within the molecule and, consequently, the molecular con-

ductance, is then calculated using either the electron scattering

quantum chemistry technique66,70 or the Green’s function

approach.52,71

3. Decoherence: emergence of classical reality

from quantum mechanics

Real molecules in solid state, solution or gas phase are far

from being isolated. Charge carriers on such molecules can

experience decoherence effects, induced by the environment.

This leads to a complete or partial loss of quantum mechanical

behavior and could have important consequences for charge

transport.

Consider a system interacting with its environment, forming

together a complex that can be assumed to be isolated from

the outside world. The system-environment complex as a

whole is described by the state vector |Ci or density operator

r = |CihC|. The state vector |Ci obeys the time-dependent

Schrödinger equation, eqn (3), and the density operator

evolves as prescribed by the von Neumann equation67

i�h
dr
dt
¼ ½H ; r�; ð11Þ

where H is given by eqn (2). A density operator that satisfies

eqn (11) can be written in the form

rðtÞ ¼ exp �iH
�h
t

� �
rð0Þ exp i

H

�h
t

� �
: ð12Þ

To elucidate the contribution of the system–environment

interaction to the evolution of the density operator r(t) it is
convenient to work in the Dirac (interaction) picture.

Operators in the Dirac picture are related to operators in the

Schrödinger picture by a unitary transformation72,73

AðIÞðtÞ ¼ UþðtÞAðtÞUðtÞ;

withUðtÞ ¼ exp �iH s � I e þ I s �He

�h
t

� �
:

ð13Þ

The density operator in the Dirac picture then becomes

rðIÞðtÞ ¼ UþðtÞrðtÞUðtÞ

¼ exp �iH i

�h
t

� �
rð0Þ exp i

H i

�h
t

� �
:

ð14Þ

where eqn (2), (12) and (13) have been used, and the Hamiltonian

becomes

H(I)(t) = U+(t)HU(t). (15)

It is obvious from eqn (14) that in the Dirac picture the

density operator r(I)(t) changes with time only due to

the interaction part of the Hamiltonian Hi; at initial time

r(I)(0) = r(0). The internal evolution of the system and the

environment, described by Hs and He, respectively, in the

Dirac picture does not affect the density operator r(I)(t), but
gives the Hamiltonian H(I)(t) explicit time dependence,

eqn (15); at initial timeH(I)(0) =H. Note that the Hamiltonian

H in the Schrödinger picture is time-independent, since explicit

time dependence would violate energy conservation in the

isolated system–environment complex. The evolution of the

system with time is completely described in the Schrödinger

picture by r(t).
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Differentiating eqn (14) with respect to time yields

drðIÞ

dt
¼ 1

i�h
½H ðIÞi ; rðIÞ�: ð16Þ

Formally integrating eqn (16) and introducing the obtained

expression for r(I)(t) back into eqn (16) produces an expression

of the second-order in system–environment coupling:

drðIÞ

dt
¼ 1

i�h
H
ðIÞ
i ðtÞ;r

ðIÞð0Þ
h i

� 1

�h2

Z t

0

½H ðIÞi ðtÞ;½H
ðIÞ
i ðt

0Þ;rðIÞðt0Þ��dt0:

ð17Þ

If only the evolution of the system, and not of the environ-

ment, is of interest, eqn (17) can be reduced to an equation for

the density operator of the system alone, r(I)s = |c(I)
s ihc(I)

s |.

At initial time, t = 0, the system and the environment are

typically taken to be uncorrelated: r(I)(0) = r(I)s (0) # r(I)e (0);

this is known as the factorization assumption and its validity

must be verified for each specific system.74,75 If it is further

assumed that the environment is much larger than the

system, and that the coupling between the two is sufficiently

weak so that the influence of the system on the evolution

of the environment is negligible, and the environment can

be assumed to remain in an equilibrium state at all times:

r(I)e (t) = r(I)e (0), 8t. Then,

r(I)(t) = r(I)s (t) # r(I)e (0). (18)

The assumption that the environment remains in equilibrium

at all times is sufficient, but not necessary, as long as the Born

approximation is valid.76,77

From eqn (18) it follows that the density operator of the

system is a partial trace of the total density operator of the

system–environment complex over environmental states:

Tre r
(I) = r(I)s (t)Tr r(I)e (0) = r(I)s (t), since Tr r(I)e (0) = 1 is the

normalization condition. Introducing eqn (18) into eqn (17)

and taking a partial trace over environmental states

results in

drðIÞs
dt
¼ � 1

�h2

Z t
0

Tre½H ðIÞi ðtÞ; ½H
ðIÞ
i ðt

0Þ; rðIÞs ðt0Þ � rðIÞe ð0Þ��dt0;

ð19Þ

where the first term in eqn (17) was eliminated by setting

Tre[H
(I)
i (t), r(I)e (0)] = 0, this is true if the coupling of the

environment to the system has a zero mean value in the state

r(I)e (0), which can always be arranged by simply including

Tre[H
(I)
i (t), r(I)e (0)] in the system Hamiltonian.

Since the environment is assumed to always remain in the

equilibrium state r(I)e (0), it cannot retain any information

about the system’s evolution history. Assuming that the

system’s density operator r(I)s (t + dt) is only determined by

r(I)s (t), and not by r(I)s (t0 o t) (Markov approximation),78 one

can replace r(I)s (t0) in eqn (19) by r(I)s (t):

drðIÞs
dt
¼ � 1

�h2

Z t

0

Tre½H ðIÞi ðtÞ; ½H
ðIÞ
i ðt

0Þ; rðIÞs ðtÞ � rðIÞe ð0Þ��dt0:

ð20Þ

Eqn (20) is the master equation for the density operator of

the system, r(I)s (t), in the Born and Markov approximations.

Since it is written in the Dirac picture, it only accounts for the

changes of the system state resulting from interaction with

the environment. Several approaches are available to estimate

the commutators in eqn (20).72,73,79 There are also numerous

non-Markovian generalizations of the master equation.80–83

In the above derivation it was assumed that the system is

weakly coupled to the environment. Indeed, for practical

purposes this is the most interesting case: if the coupling of

the system to the environment is strong, the system behaves

classically and can be described with classical equations of

motion, while if the coupling is absent altogether, eqn (1) is

valid. In the case of weak coupling, the interaction with the

environment can be considered a perturbation of the system. A

consequence of this is, for example, the fact that in systems

weakly coupled to the environment transition rates obtained

fromMarkovian master equations coincide with those calculated

using Fermi’s golden rule (which can also be derived using

perturbation theory).84

There are several approaches to describing the dynamics of

Markovian open quantum systems, most notably, Redfield

theory85,86 and the semigroup formalism developed by

Lindblad87 and Gorini, Kossakowski and Sudarshan.88

The Redfield equations were derived for the matrix

elements of the density operator in the energy representation:

rsnm = hEn|rs|Emi, where |Eni, |Emi are eigenstates of the

system Hamiltonian Hs. In the Schrödinger picture the

equation of motion for each matrix element takes the form

drsnm
dt
¼ �i�honmrsnmðtÞ þ

X
kl

Rnm;klrsklðtÞ; ð21Þ

where �honm = En � Em is the energy difference between

Hs eigenstates |Eni and |Emi, and Rnm,kl is the Redfield tensor,

rank(Rnm,kl) = [rank(rnm)]
2.

In the derivation of eqn (21) Redfield combines projection

operator techniques89 with perturbation theory,29 thus limiting

the applicability of his approach to the weak coupling regime.

Outside the applicability limits of perturbation theory, as well

as on timescales smaller than the correlation time of the

environment, Redfield theory does not retain the density

operator completely non-negative.90 Thus, for an arbitrary

Hermitian operator As with a set of eigenvectors {|ani}, the
expression han|rsnm|ani cannot be interpreted as the probability

of finding the system in state |ani.
Lindblad takes a more generic approach, showing that, in

the Schrödinger picture, the general form of Markovian

evolution of the system density operator rs(t) is
87

drs
dt
¼ 1

i�h
½H s; rs� �

X
n40

gn
2
ð½Fnrs;F

þ
n � þ ½Fn; rsF

þ
n �Þ; ð22Þ

where gn are real, positive scalar interaction parameters

with the dimension of frequency and Fn are the so-called

Lindblad or ‘‘quantum jump’’ operators,91 defined by

Hi = �h
P

ngnFn # Bn, with Bn being environmental operators

(remember, the environment constantly ‘‘measures’’ the system).

The first term on the right accounts for the unitary evolution

of the system, described by the von Neumann equation,
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eqn (10); the second term accounts for the system–environment

interaction. Eqn (22) is known as the Lindblad equation and can

be used to treat a variety of dissipative processes: dephasing,92

collisions,93 bond breaking,94 electron transfer,95 etc.

Dissipative processes can be classified into two major types.

The first type involves energy exchange between the system

and the environment and changes the populations of the

system’s energy states. For example, if the system is initially

not in thermal equilibrium with its environment, then the

interaction in the system–environment complex will cause

energy transfer and will lead to eventual equilibration. The

second type is pure dephasing, a quasielastic interaction that

leads only to a loss of phase coherence between quantum

levels. Since pure dephasing conserves the energy state of the

system, the Lindblad operators in this case must commute

with the system Hamiltonian: [Hs, Fn] = 0, 8n.96 Both inelastic

and quasielastic interactions lead to wave function

decoherence.

An alternative approach is not to use one of the more

formal relaxation theories,87,88,97–101 but to incorporate the

system–environment coupling in a phenomenological way. In

this case the density operator rs of the system is propagated

with the von Neumann equation, eqn (10), with additional

relaxation terms.102 These dephasing terms can be handled

explicitly, although there are also attempts to incorporate

them directly into the system Hamiltonian in the frame-

work of time-dependent density functional theory.103,104

When charge transport in donor–bridge–acceptor systems is

described, the additional terms that have to be included are a

charge injection rate on the donor, a charge decay rate on the

acceptor and dephasing rates g on bridge sites. The latter

describe how much time is required for the phases of the

charge carrier wavefunction at different atoms in a molecule to

lose correlation, which makes components of the wave-

function travelling along different spatial pathways incoherent

and the charge transport, by definition, classical.

In ref. 65 a model with a Hückel type Hamiltonian was used

to calculate the steady-state charge transfer rate kCT through a

benzene molecule with a donor and an acceptor coupled to it

in ortho, meta and para configurations (Fig. 1a). The result of

the calculation is shown schematically in Fig. 4. It can be seen

that the charge transfer rate from a donor to an acceptor

coupled in the meta configuration is zero if there is no

dephasing, while for an acceptor coupled in the ortho or para

configuration charge transfer is efficient (the rate of electron

transfer in benzene is as high as 150 ps�1). This is in agreement

with the calculation results presented in Fig. 2a. As dephasing

gets stronger, the difference between charge transfer from a

donor to an acceptor coupled in different configurations is

diminished. Thus, in the classical regime the absence of

interference effects leads to charge transfer to all sites in the

molecule being equally probable.

A strong point of the above-described approach is the

possibility of easily varying the magnitude of the dephasing

rate g, as well as the possibility of applying dephasing locally

(at a specific site or a group of sites within the molecule). These

features were used, for example, to study the scaling laws in

molecules with multiple spatial pathways for charge transfer.

The dependence of the charge transfer rate kCT through a

molecule on the number and length of available spatial

pathways was found to change significantly with both the

magnitude of g and the sites at which dephasing was

applied.105

The dephasing rate g is an empirical parameter and estimating

its value for a specific molecule in a specific environment is not

straightforward. Experimental estimates have been performed

for some systems using spectral hole burning, photon echo, or

resonance Raman techniques among others.106 It would be

interesting, however, to directly observe the effects of dephasing

stemming from vibrations within the molecule or its environ-

ment on charge transport in a simulation, without having

to invoke additional experiments. This can be achieved by

simultaneously simulating the (quantum mechanical) charge

transfer from a donor to an acceptor through a molecular

bridge and the (classical) dynamics of the bridge molecule.46

The results of such simulations for bridges consisting of a

benzene and a hexabenzocoronene molecule in gas phase at

0 K and at 300 K are shown in Fig. 5. In these simulations the

charge carrier wavefunction was assumed to be given by

eqn (9), with the initial conditions given by eqn (8). Electronic

couplings between the pz orbitals on all atoms were included in

Fig. 4 The coalescence of charge transmission rates for a donor and

an acceptor coupled to benzene in the ortho (dotted), meta (solid) and

para (dashed) configuration, adapted from ref. 65.

Fig. 5 Decay of the survival probability of the charge in a

donor–bridge–acceptor system at 0 K (gray) and 300 K (black),

with the acceptor at the meta (solid) or para (dotted) position

with respect to the donor. The bridge consists of: (a) benzene;

(b) hexabenzocoronene.
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the Hamiltonian. The charge carrier was removed from the

system once it arrived at the acceptor site, and the survival

probability of the charge in the system was calculated as

discussed in Section 2.

One can see that in the case of benzene the intramolecular

vibrations have no noticeable effect on the quantum mecha-

nical evolution of the system at room temperature. In the case

of hexabenzocoronene charge transfer at 300 K retains the

quantum mechanical character only partially. The difference

between the transfer rates from a donor to an acceptor in the

meta and para configurations is still evident, but it is signifi-

cantly smaller than in the absence of vibrations. This agrees

well with the result shown in Fig. 4.

In general, for small molecules quantum interference effects

are expected to be largely retained at room temperature.

Charge transfer through such molecules can be described

quantum mechanically. In larger molecules with more vibrational

degrees of freedom (and particularly in flexible molecules

with rotational and out-of-plane bending degrees of freedom

present) dephasing is likely to be non-negligible. At room

temperature these molecules may be in the intermediate regime

between quantum mechanical and classical charge transfer, or

even exhibit fully classical behavior.

If a molecule interacts strongly with its environment, such as

in solution or in the solid state, the environmental degrees of

freedom may additionally contribute to dephasing and the loss

of quantum mechanical behavior. One should keep in mind,

however, that the characteristic timescales of these degrees of

freedom are typically large as compared to the timescales

of intramolecular vibrations. Thus, if charge transfer in a

molecule is fast with respect to environmental fluctuations,

dephasing effects can be expected to be relatively weak.

Although dephasing can be a significant hurdle to designing

molecular electronic devices based on quantum interference

effects, it could also be used in a functional way. If specific

vibrational modes in a molecular system were controlled,

both pure dephasing and energy dissipation due to vibrations

would provide a mechanism of switching charge transfer

through molecules on and off. Several designs of molecular

switches and interferometers based on these effects have been

proposed.107,108

4. Polymers: from band-like to incoherent hopping

charge transport

Ever since the discovery of electrically conductive polymers

by MacDiarmid, Shirakawa and Heeger et al.,109,110 these

materials have enjoyed growing attention of researchers.

Studying charge transport in polymers is interesting both from

the fundamental and the practical viewpoints. Thiophene-,111–114

phenylene-,115–117 fluorene-,118 naphthalene-based polymers,119

among others, are currently considered promising materials

for applications in solar cells, light-emitting diodes and other

(opto)electronic devices.

Charge transport properties of conducting polymers

are typically characterized by the charge carrier mobility

m = vd/E, where E is the applied electric field and vd is the

drift velocity of the charge carrier induced by the applied

electric field. Generally, in anisotropic materials m is a tensor.

In quasi-one-dimensional materials, such as polymers, one is

interested in the mobility along the contour of the chain.

Many polymers have been shown to possess sufficiently high

intrachain charge carrier mobilities to be used in electronic

applications, with values up to 600 cm2 V�1 s�1 reported.26

However, the charge transport mechanism in polymers is still

not fully understood.

A major difficulty when describing charge transport in

polymers is that it often falls into the intermediate regime

between the quantum mechanical and the classical. Charge

transport in some polymers has been successfully described as

quantum mechanical, or bandlike,26,45,120 while in others it

has been described as classical incoherent hopping.27,45,121

However, both bandlike and hopping models are nothing

more than approximations for a charge transport regime that

is neither fully coherent nor fully incoherent.

Conceptually, charge transport in polymers is no different

from charge transport in small molecules. The main difficulties

that should be dealt with are of computational nature.

Representing the wavefunction of a charge carrier in the form

given by eqn (9) would involve a very large number of atomic

orbitals, N. Finding the wavefunction coefficients cn(t),

n ¼ 1;N, requires a large amount of computational power

for large N, since numerical methods for solving a system of

linear differential equations always scale superlinearly with the

number of variables.122 It would thus be practical to reduce

the size of the basis set used to represent the charge carrier

wavefunction.

In Section 2 it was shown that only two molecular orbitals,

ca(e1g) and ca(e2u), contribute to charge transfer through

a benzene molecule. The other four molecular orbitals, com-

posed of the pz orbitals on carbon atoms, see eqn (5), can be

discarded without sacrificing the accuracy of the calculation.

Using a basis set of two, rather than six, orbitals reduces the

computational power requirements by a factor of 3r, r > 1.

Thus, a good choice of a basis set offers the possibility of

performing charge transport simulations more efficiently.

An infinitely long polymer chain is a quasi-one-dimensional

periodic structure and can be described in terms of band

theory. The bands are formed as a result of the interaction

between the discrete energy levels of monomer units. Thus, the

valence (highest occupied) band of a polymer is largely

composed of monomer unit HOMOs and the conduction

(lowest unoccupied) band is largely composed of the monomer

unit LUMOs. The valence and conduction bands are typically

the only energy bands that contribute to charge transport in

intrinsic semiconductors; all other bands can be taken out of

the consideration.43 The monomer unit HOMOs and LUMOs

then form natural basis sets for the wavefunction of a charge

carrier in the valence band or conduction band, respectively.

Since the monomer unit can consist of a significant number of

atoms, using monomer unit orbitals rather than atomic orbitals

as the basis set in charge transport simulations results in con-

siderably reduced computational power requirements.27,117,118

A further simplification can be achieved by reconsidering

the initial conditions. In the case of donor–bridge–acceptor

systems it has been assumed that the charge carrier is initially

generated on the donor site; the initial condition was

thus taken in the form of eqn (8). Then, in the absence of
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decoherence, in order for energy to be conserved during charge

transfer through the bridge molecule, both the HOMO and

LUMO of the bridge must contribute to charge transfer.

In the case of polymers the situation is somewhat different.

For the sake of specificity, consider hole transport. A hole on a

polymer chain is most often created by exciting a valence band

electron—over the bandgap, to an impurity or defect energy

level, or to the vacuum level (in the case of ionization). The

hole is created in the valence band, and is then transported via

states belonging to the valence band only. Similarly, an

electron created in the conduction band is transported via

states belonging to the conduction band only. This means that

the basis set used to represent the charge carrier wavefunction

can be reduced further: a hole wavefunction can be represented

in terms of monomer unit HOMOs and an electron wave-

function can be represented in terms of monomer unit

LUMOs only.

The wavefunction of a hole (electron) on a polymer can be

written in the energy representation as

csðtÞ ¼
X1
n¼�1

cnðtÞjn; ð23Þ

where jn is the HOMO (LUMO) of the n-th monomer

unit, and cn(t) are complex time-dependent coefficients. As

discussed in ref. 45, it can be assumed that the charge carrier is

initially localized on a single monomer unit:

cs(0) = jm. (24)

Although this is a crude approximation, it allows making a

reasonable estimate of the charge carrier mobility along the

polymer chain in the case of band-like (quantum mechanical)

charge transport.

The summation in eqn (23) runs over all monomer units in

an infinite polymer chain. However, it is sufficient to consider

a finite chain with negligible reflection of the charge carrier

wavefunction at the chain ends within the timeframe of the

charge transport simulation. Since all monomer units in a

periodic infinite chain are equivalent, the charge carrier in this

case should simply be initially localized as far as possible from

the chain ends: in the middle of the long finite polymer chain.

It is also possible to simulate charge transport along oligomers,

but the initial charge distribution that is assumed in this case

should reflect the process by which the charge carrier is created

on the oligomer chain.

The Hamiltonian of the charge carrier in the Hückel

approximation is45

H s ¼

e1 J12 0 . . . 0 0
J12 e2 J23 . . . 0 0
0 J23 e3 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 . . . eðN�1Þ JðN�1ÞN
0 0 0 . . . JðN�1ÞN eN

2
66666664

3
77777775
; ð25Þ

where en = hjn|Hs|jni is the energy of a charge carrier

localized on the n-th monomer unit, and Jnm = hjn|Hs|jmi �
1
2
hjn|jmi(en + em) is the effective charge transfer integral

between the n-th and m-th monomer units, with the first term

being the exact charge transfer integral (electronic coupling)

and the second term being a correction accounting for orbital

spatial overlap.45,123,124

The components of the Hamiltonian given by eqn (25) can

be found from quantum chemical calculations. It is often a

good approximation to assume that en is a monomer property

and Jnm is a dimer property. It is then sufficient to perform the

calculations for a monomer and a dimer, respectively. It is

particularly convenient to calculate these parameters using the

ADF program, which implements the possibility of using

the orbitals of arbitrarily defined molecular fragments

(such as monomer units) as a basis set.125 However, when

the components of the Hamiltonian are obtained from

calculations on monomers and dimers, care should be taken

to make sure that the electronic structure of the monomer

(dimer) is not altered by the electronic coupling to other units

along the polymer chain. For example, from Fig. 6 it is evident

that both the monomer and the dimer of poly(para)phenylene

and poly(meta)phenylene are identical. Still, these are different

polymers that may be expected to have distinct conductive

properties.

The quantum mechanical evolution of the charge carrier

follows the time-dependent Schrödinger equation, eqn (1),

with the wavefunction given by eqn (23), the Hamiltonian

given by eqn (25) and initial conditions given by eqn (24).

In the absence of an applied electric field, the mean displace-

ment of a charge carrier from its initial position is zero at all

times. On the other hand, the mean squared displacement

increases with time, and can generally be expressed as

hDx2ðtÞi ¼
X
n;m

f ðmÞjcnðt;mÞj2ðn�mÞ2a2; ð26Þ

where f(m) describes the initial distribution of the charge, a is

the distance between neighboring monomer units, (n � m)a is

the distance between the orbitals localized on monomer units

n and m, and cn(t,m) is the coefficient of the orbital on

monomer unit n at time t for the case of the hole wavefunction

being initially localized on monomer unit m.

According to the work of Kubo, the frequency-dependent

(one-dimensional) mobility of charge carriers is given by126–128

mðoÞ ¼ � eo2

2kBT

Z1
0

hDx2ðtÞi cosðotÞdt; ð27Þ

where e is the elementary charge, o is the (radial) frequency of

the probing electric field, and the mean squared displacement of

the charge carrier hDx2(t)i is given by eqn (26). An implicit

convergence factor exp(�ot) (lim o - 0) is understood in the

integral.127,128 For normal Gaussian diffusion the mean squared

displacement of charge carriers moving along an infinitely long

one-dimensional chain increases linearly with time:

hDx2(t)i = 2Dt, (28)

Fig. 6 Poly(para)phenylene (left) and poly(meta)phenylene (right).
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where D is the diffusion constant. In this special case, the

mobility is frequency independent, and eqn (27) reduces to the

Einstein relation

mdc ¼
e

kBT
D: ð29Þ

In the presence of structural disorder, eqn (28) and (29) are

not valid. In that case the charge carrier mobility m must be

calculated from the mean squared displacement hDx2(t)i found
on the basis of a numerical simulation, eqn (26), using

eqn (27).

It is possible to account for decoherence effects on charge

transport along polymer chains by simultaneously propagating

the degrees of freedom that define the geometry of the chain in

a (classical) molecular mechanics simulation, as described in

ref. 46. However, if the monomer HOMOs (LUMOs), jn, are

to remain time-independent, only those degrees of freedom

that do not change the internal geometry of the monomer

units can be propagated. For example, for the polymers

depicted in Fig. 6 such degrees of freedom include the dihedral

angles between neighboring monomer units (which turn out to

strongly influence the electronic couplings between them).26

Alternatively, decoherence can be included in charge transport

simulations in a more formal manner, for example, by employing

the Redfield equation, eqn (21).45

For an infinitely long periodic polymer chain, the charge

carrier mobility in the limit of weak scattering can also be

estimated directly from band theory (for oligomers its

applicability is somewhat limited). The width of the conduc-

tion (valence) band in the case of an unperturbed periodic one-

dimensional lattice is W = 4|J|, here the electronic couplings

Jmn = J, 8m,n, since all monomer units in the periodic chain

are equivalent.45,129 In wide-band materials,Wc kBT, mobile

charges are found at the bottom of the conduction band

(electrons) or at the top of the valence band (holes). Near

the band extremum the harmonic approximation for the

dispersion relation, E(k), is valid. Within this approximation

the mobility of charge carriers is given by the well-known

expression, derived within the framework of the Drude free

electron model:130–132

mðoÞ ¼ et
m�

1� iot
1þ o2t2

� �
; ð30Þ

where e is the elementary charge, t is the average time between

scattering events (scattering time), o is the driving field

frequency and the free-electron mass has been replaced by

the effective mass of the charge carrier m* = �h2(d2E/dk2)�1.

For the dc mobility, mdc = et/m* trivially follows from

eqn (30). The band structure and scattering time can be

calculated with standard solid state theory methods.43,131

As long as perturbations of the periodic polymer chain

remain negligible, reducing the band width W simply increases

the effective mass m* of the charge carrier.129 According to

eqn (30), this reduces the charge carrier mobility m, but up to a

certain point the description of charge transport does not

change qualitatively. However, once the bandwidth becomes

comparable to the thermal energy, W E kBT, the situation

changes significantly.

It has been shown by Anderson that introducing static

disorder in charge carrier localization energies, the diagonal

elements of the Hamiltonian given by eqn (25), leads to charge

carrier localization.133 Lifshitz showed that the same is true if

disorder is introduced in electronic couplings, the off-diagonal

elements in eqn (25).134,135 Charge carrier localization due to

the presence of (static) disorder in a system is known as

‘‘Anderson localization’’.136 This effect is purely coherent:

the localized wavefunction of the mobile charge carrier is the

interference pattern formed by wavefunction components

reflected from the varying potential V(r) of the atomic cores

at every point where rV(r)a 0, as discussed in Section 2. The

interference pattern is a localized state, rather than a Bloch

wave, eqn (4), since the potential V(r) is no longer strictly

periodic.

The criterion for a state being localized is not trivial to

define mathematically, and a number of criteria have been

proposed.133,137–140 However, qualitatively the behavior of a

localized wavefunction is the same for all definitions. The

original criterion proposed by Anderson is that a wave-

function given by eqn (23) could be considered localized if

9n : jcnð0Þj2a0) lim
t!1
jcnðtÞj2a0: ð31Þ

Eqn (31) may hold for more than one n; localization in this

sense does not imply that the charge carrier stays on a given

monomer unit. Rather, if eqn (31) holds for an arbitrarily

large (but finite) number of neighboring monomer units, often

termed a ‘‘cluster’’, the charge carrier is considered ‘‘localized’’

on that cluster. The periodic boundary conditions used to

obtain the Bloch wave, eqn (4), are replaced by the condition

of the wavefunction coefficients becoming zero at the boundaries

of a cluster that is not equivalent to other clusters along the

polymer chain.

For a one-dimensional chain the presence of even weak

disorder always leads to the formation of localized states.129

However, the number of sites in the cluster, on which the

charge carrier wavefunction is localized, is very large if the

electronic coupling along the polymer chain is strong. Strong

electronic coupling means that the electronic couplings J in the

Hamiltonian given by eqn (25), or the bandwidth W = 4|J|,

are large as compared to the magnitude of disorder. In the case

when the cluster size is comparable to the polymer (oligomer)

chain length, charge transport along the chain may be

considered band-like.45

The variations in the energies and electronic couplings along

the polymer chain may be induced by electrostatic interaction

of the mobile charge carrier with its environment (polarization,

which may include nuclear rearrangement within the polymer

chain and/or the surrounding medium). In this case one speaks

of a polaron, a self-induced localized state of the charge carrier.

The degree of localization, in the sense of eqn (31), depends on

the relative magnitude of the electronic couplings J and the

reorganization energy l of the environment due to polariza-

tion by the charge carrier. If lc J, the charge carrier is almost

completely localized on a single molecular unit and is referred

to as a ‘‘small’’ polaron. If lE J, the charge carrier is localized

on a considerably larger cluster, and is called a ‘‘large’’
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polaron.120,121 Since polarization of the environment is always

present, all charge transport is polaronic to some extent.

If disorder in the charge carrier localization energies on

monomer units and in the electronic couplings is static, no

charge transport outside the boundaries of the localization

cluster is possible. However, dynamic disorder, such as thermal

vibrations, perturbs the localization cluster, so the coefficients

of the charge carrier wavefunction, eqn (23), are no longer

zero at its boundaries. Interactions with phonons allow

the polaron to absorb or dissipate energy and momentum

necessary to ‘‘hop’’ to a new site on the polymer chain.141,142

Also, interaction with the environment always leads to wave-

function decoherence, as has been discussed in Section 3. If the

decoherence time is shorter than the time spent at a localiza-

tion site, the charge carrier loses all memory of its quantum

mechanical evolution after each hop to a new site. Thus,

subsequent hopping events can be considered independent,

and the overall motion of the charge is diffusive. This transport

regime is known as ‘‘incoherent hopping’’.45

Incoherent hopping transport is realized for small polarons,

since their lifetime at each localization site is large. In most

polymers the electronic couplings between neighboring

monomer units are sufficiently large for intrachain charge

transport to be described as band-like.26,117,118 However,

incoherent hopping is the acting charge transport mechanism

in some polymers with weaker electronic couplings.27 Hopping

transport is also commonly assumed when charge transfer

between different molecules is described (polymer chains in a

film, individual molecules in a discotic liquid crystal).143,144 It

should be noted that the transition from band-like to hopping

transport is not well defined, and in many cases contributions

of both mechanisms can be expected.145,146

A large number of models have been proposed to describe

hopping transport. Among the most popular is the Miller–

Abrahams model, which neglects polaronic effects.147,148 The

Miller–Abrahams rate from an initial site n with energy en to a

final site m with energy em is expressed as

wnm ¼ w0 expð�2aRnmÞ
exp½�ðem � enÞ=kBT �

1
if em4en
if em � en

�
;

ð32Þ

where w0 is a pre-factor, which is proportional to the square of the

magnitude of the electronic coupling Jnm; Rnm is the distance

between the initial and the final sites; a is a decay factor, which

takes into account the decay of the electronic coupling with inter-

site distance. Incoherent charge transport with aMiller–Abrahams

hopping rate, eqn (32), can be studied with Monte-Carlo

simulations, for example, employing a Metropolis–Hastings

algorithm.149,150 Miller–Abrahams hopping is a special case of

the more general Holstein–Emin equation.141,142,151

In the presence of a charge induced lattice deformation the

hopping rate of a charge carrier can be described by the

Marcus (small polaron hopping) theory. The classical expression

for the hopping rate, originally derived by Marcus,152 has the

form45

wnm ¼
2pjJnmj2

�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4plkBT

r
exp �ðem � en þ lÞ2

4lkBT

" #
; ð33Þ

where l is the reorganization energy of the environment of

the charge carrier. This expression is only valid in the high-

temperature limit, where charge transport is purely classical. It

has been generalized to other temperature regimes by Jortner

and Bixon153,154 and Schatz and Ratner.155

For recent reviews of modeling charge transport by hopping

in organic materials, see ref. 156–158.

5. Summary and outlook

Charge transfer processes in materials on all length scales are

largely determined by the electronic structure: orbital structure

in molecules and band structure in crystals. Orbitals and

energy bands in perfectly regular molecules and crystals are

standing waves, or interference patterns of the electron wave-

function in a static potential. Thus, coherent charge transport

is largely governed by quantum interference effects.

Real systems at room temperature are not static. Consequently,

the charge carrier Hamiltonian H(t) is time-dependent.

If the variation of the Hamiltonian relative to equilibrium is

small, it can be considered a time-dependent perturbation:

H(t) = H0 + H0(t), where the equilibrium Hamiltonian

H0 accounts for the unitary evolution of the charge carrier

wavefunction, while the perturbation H0(t) is responsible for

wavefunction decoherence. If the interaction of the charge

carrier with the environment (phonons) is strong enough,

different components of its wavefunction are no longer coherent

and do not form an interference pattern (standing wave).

The charge carrier then behaves classically and its motion is

described by classical equations of motion.

It is obvious that the more degrees of freedom a system

possesses, the stronger the perturbations that a charge carrier

in it experiences. Thus, in large and flexible molecules, such as

polymers, purely quantum mechanical interference effects are

likely to be suppressed, at least partially. However, a compre-

hensive investigation of quantum interference survival as a

function of the molecular size and other parameters is still

to be carried out. An in-depth study of interference and

decoherence effects in molecules would allow us to design

molecular electronic devices in which both of these pheno-

mena could be used in a functional way.
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