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 A B S T R A C T

Distribution system operators (DSOs) often lack high-quality data on low-voltage distribution networks 
(LVDNs), including the topology and the phase connection of residential customers. The phase connection 
is essential for phase balancing assessment and distributed energy resources (DERs) integration. The existing 
load profiles-based approaches rely on stepwise subtraction of the identified customers in a step-by-step 
identification procedure, while the accuracy of each step is not guaranteed. This paper introduces a siamese 
neural network model to identify single-phase connections without requiring stepwise subtraction. It comprises 
self-taught learning (STT) and a phase-label identification strategy. The introduced self-taught learning enables 
DSOs to train a recurrent neural network-based Siamese network (RSN) only relying on an unlabelled dataset. 
Besides, the siamese network (SN) is robust to noise and fluctuations in the data to a certain extent, making 
the proposed method robust to measurement errors. A Kendall correlation-based phase modification strategy 
is introduced to modified phase labels with lower confidence, aiming to mitigate the accuracy loss induced 
by the limited generalization of SN. The proposed approach is tested on the IEEE European low voltage test 
feeder and a residential network in the Netherlands Simulation results illustrate the feasibility and robustness 
of the proposed approach on incomplete datasets. The accuracy exceeded 83% and 90%, respectively, when 
using datasets of less than 20 days with and without measurement errors.
1. Introduction

Phase connection of customers in distribution networks (DNs) is 
crucial for distribution system operators (DSOs) to perform active man-
agement, e.g., load balancing, congestion management and distributed 
energy resources (DERs) integration [1–3]. However, this informa-
tion might be incomplete due to the missed and uninformed phase 
switching. Compared to three-phase customers, the large amount of 
single-phase customers in LVDNs, especially in European LVDNs [4], 
imposes pressure on the timely updating of phase connectivity. More-
over, the uncertainty of DERs impacts the variation of load and the 
correlations between measurements, challenging the phase identifica-
tion [5,6]. Approaches relying on phasor measurement units (PMU) 
might be infeasible since there is a lack of PMU in LVDNs [7]. Although 
smart meters (SM) are gradually installed in LVDNs, privacy issues 
and communication errors make it hard to obtain a complete dataset 
[8]. Thus, flexible phase identification approaches for single-phase 
customers are needed.

Traditional approaches, such as manual phase identification, are 
rarely used due to their high cost and low efficiency [9]. Instead, 
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state-of-the-art research focuses on data-driven approaches, which rely 
on increasing amounts of time-series SM data and machine learning 
(ML) methods. According to the utilized data, the SM data-based ap-
proach could be divided into voltage-based and active power-based 
approaches. Voltage magnitude of the customers that are connected 
to the same phase shows similar variations when the load changes, 
indicating a higher correlation among voltage magnitude within the 
same phase compared to different phases [10,11]. However, voltage 
correlations on the same phase are also impacted by other factors, such 
as customer electrical distance. For instance, the voltage correlation 
between customers located far apart may be lower than the voltage 
correlation between customers in closer proximity to each other but 
connected to different phases. Meanwhile, adequate time-series voltage 
datasets are not commonly available in LVDNs, which are required by 
most of the approaches based on voltage [12]. Conversely, time-series 
load profiles are normally recorded and stored for billing [13].
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Compared to voltage profiles, there is no strong correlation among 
load profiles in the same phase since the electricity consumption pat-
terns vary across households. However, there exists a correlation be-
tween the customer and transformer data. Similarities of paired data 
samples (i.e., customer data and the corresponding phase data) should 
be larger than those of unpaired data samples. Thus, phase identifica-
tion using load profiles could be taken as a time-series data pairing 
problem, illustrated in Fig.  1. The general process of data pairing 
is summarized into four steps: (1) calculate the correlations between 
households and the three phases. (2) if the highest correlation coeffi-
cient of a household is higher than the pre-set threshold, the phase label 
of the household is set as the corresponding phase. (3) The dataset of 
households with assigned phase labels is removed. (4) Repeat steps 2 
to 3 until all the households are assigned one label. To reveal the sim-
ilarities between time-series data, feature extraction can be integrated 
into the pairing strategies. Wavelet decomposition (WD) was adopted 
to extract expressive features to enhance the identification accuracy 
of power cable faults in [14]. Saliency analysis (SA) was integrated 
to pre-process the raw time-series data, and correlation analysis was 
used to determine the phase label [15]. Based on SA, the approach 
in [16] integrated statistical tests to guarantee the identification accu-
racy of the data pairs with weak correlations. A clustering approach 
with a high-pass filter was introduced in [13] to identify the phase 
connections under random and consecutive incompleteness datasets. 
The above approaches are similar to hard classification, i.e., labelling 
the customers as 0/1. Besides, phase identification could be taken as a 
soft classification problem. A Bayesian-based fuzzy phase identification 
method was proposed to assign three probabilities to label customers, 
with the sum of probabilities equalling one [4]. The common step 
in the above approaches is the stepwise subtraction of the identi-
fied customers, which enhances the correlations between transformers 
and the customers who are located far away from the substation. 
However, the accuracy of the current step is subject to the accuracy 
of the previous step, leading to error accumulation. To address this 
challenge, a data-driven approach in [17] was constructed based on 
a genetic algorithm and correlation analysis to identify the customer 
phase under incomplete period datasets. Nevertheless, most of the 
above approaches require a complete time-series dataset, and some are 
sensitive to missing data points and measurement errors. [18].

Siamese network (SN) is a common structure network in meta-
learning and it is commonly used in similarity analysis of images [19] 
and visual objection tracking [20]. The main advantage of SNs is that 
their training does not require a large number of samples from the 
same category, which alleviates the workload of collecting labelled 
training datasets. Thus, SN is a promising solution for analysing the 
similarity between the transformer and customer datasets. For phase 
identification, there are only limited or no labelled customer datasets 
for training an SN. To address this issue, self-supervised learning (SSL) 
[21] and self-taught (ST) process [22] are potential solutions, originally 
proposed to learn transferable and representative knowledge from un-
labelled data or the generated pseudo data. ST aims to complete the 
tasks only relying on given datasets by the combination of unsupervised 
and supervised learning schemes [22,23]. A deep SN was constructed 
to identify the electricity theft behaviour in [24] and a robust classifica-
tion approach was proposed based on recurrent neural networks (RNN) 
to identify the grid disturbances [25]. To locate the fault in DNs without 
requiring real-word labelled datasets, an SN was designed based on 
Transformers Neural Network (TNN) [26]. Based on a modified TNN, 
an SSL-based load forecasting approach was proposed to predict the 
DERs power [21]. In [27], a feature extraction strategy was integrated 
into the SSL to assess the reliability of the power systems. Although SN 
and ST are used to analyse time-series measurements in power systems, 
they have not been used to address phase identification. Moreover, 
there is no ST technique for SN training, hindering the application of 
SN for the phase identification problem. It is important to highlight 
that the similarity between transformer and customer data is impacted 
2 
Fig. 1. Phase identification process: blue, orange, and red blocks represent customer 
data in phases a, b, and c, respectively. Darker blocks represent transformer data. Blocks 
with a red triangle indicate wrongly identified customers.

by multiple factors, including measurement errors, line loss, and the 
number of customers connected to the same phase, which makes simi-
larities analysis in phase identification more complex and difficult than 
that of images. Table  1 summarizes the approaches discussed in the 
aforementioned papers and the proposed approach.

This paper proposes a siamese neural network model to identify the 
phase of single-phase customers in LVDNs, which is not subjected to 
stepwise subtraction while showing strong robustness to measurement 
errors. The proposed approach consists of two stages: self-taught train-
ing (STT) and phase label identification. The first stage is composed 
of pseudo-data generation, feature extraction and recurrent neural 
network-based SN (RSN) training procedures, deployed to prepare the 
input dataset using unlabelled SM data for training RSN. In the second 
stage, a sliding window strategy is adopted to calculate the probability 
phase labels by aggregating the output of the trained RSN in each win-
dow. Finally, a Kendall correlation-based phase modification strategy 
is proposed to determine the final phase labels. The main contributions 
of this paper are summarized as follows:

• An RSN is constructed to analyse the similarity between high-
dimension transformer and customer load profiles, which is used 
to calculate the probability of phase label by each customer. The 
obtained similarity score and phase identification accuracy are 
not subject to the stepwise subtraction of the identified customers.

• To train the constructed RSN without requiring labelled datasets, 
a self-taught training strategy is proposed. WD was first uniquely 
adopted to extract features for phase identification. By leveraging 
pseudo data, the STT strategy enables the trained RSN to effec-
tively calculate similarity in time-series data, even in the absence 
of labels, ensuring accurate phase identification.

• A Kendall correlation coefficient-based phase label modification 
is introduced to determine the final phase label by modifying the 
probability phase labels obtained through the trained RSN. This 
step aims to mitigate the accuracy loss induced by the inherent 
limitation of neural networks (e.g., limited generalization) by 
revising labels with less confidence.

The remainder of this paper is organized as follows: Section 2 
illustrates the framework of phase identification, the process of self-
taught and the phase identification based on the trained RSN. Sec-
tion 3 describes the case of studies and results. Section 4 presents the 
conclusions.
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 Nomenclature
 𝐀𝐜𝐫𝐨𝐧𝐲𝐦𝐬 𝑃𝑡𝑟𝑖𝑎𝑛 Training dataset for RSN  
 LVDNs Low-voltage distribution networks 𝑃𝑚𝜓 ∕𝑃

𝑚
𝑢,𝑛 The 𝑚th row in matrix 𝑃 ∗

𝜓∕𝑃
∗
𝑢,𝑛  

 DNs Distribution networks + Dataset consists of samples with label 1  
 DSOs Distribution system operators 𝐸 Error Matrix  
 DERs Distributed energy resources 𝛾 Pre-set margin for calculating loss  
 STT Self-taught training 𝜖 Threshold for 𝛥𝜏∗𝑛  
 SN Siamese Network 𝛥𝑃𝜓∕𝛥𝑃𝜓 Variation of real/identified phase data  
 RNN Recurrent neural network 𝑝𝑡𝜓∕𝑝

𝑡
𝜓 Real/identified phase data at time 𝑡  

 RSN Recurrent neural network based SN 𝑁∕𝑁𝜓 Number of customers in LVDN/each phase  
 SM Smart meter 𝑁̃∕𝑁̃𝜓 Number of customers whose labels are  
 PMU Phasor measurement units correctly identified in three phases/each phase 
 SA Saliency analysis 𝑁∗

𝜓 Number of customers whose labels are  
 WD Wavelet decomposition labelled as phase 𝜓  
 ST Self-taught  
 SSL Self-supervised Learning Variables  
 TNN Transformers Neural Network 𝑓𝜙() Output of the RSN  
 𝐿𝑜𝑠𝑠𝑆𝑁 Loss of the RSN  
 𝐈𝐧𝐝𝐞𝐱∕𝐒𝐞𝐭 𝑑𝑚𝑛,𝜓 Euclidean distance  
 𝑛∕ Index/set of customers in the networks between customer 𝑛 and three phases  
 𝑡∕ Index/set of time step 𝜄0𝑛,𝜓∕𝜄𝑛,𝜓 Aggregated/normalized distance  
 𝜓∕ Index/Set of the phases 𝜄′𝑛,𝜓 Binary phase label of customer 𝑛  
 𝑚∕ Index/set of the windows between customer 𝑛 and three phases  
  Set of customers whose 𝐿𝜓 Identified probability phase labels  
 labels with lower confidence 𝐿′

𝜓 Identified hard phase labels  
 𝜏 Kendall correlation coefficient  
 𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬 𝐾∗

𝜓∕𝐾𝜓∕𝐾
′
𝜓 Kendall correlation coefficient vectors  

 𝑃𝑢𝑢∕𝑃𝑝 Data from N customers/transformer between transformer data/variation  
 𝑃̇𝑢𝑢∕𝑃̇𝑝 Reconstructed data from customers/transformer across the same phases  
 𝑃 ∗

𝑢,𝑛∕𝑃
∗
𝜓 Split data from each customer/each phase 𝛥𝐾𝜓 Residual vectors of Kendall correlation  

 𝑃 ∗
𝑢𝑢∕𝑃

∗
𝑝 Split data from all customers/transformer coefficients between adjacent iterations  

 𝑃∕𝑌 Input dataset/label for proposed approach 𝛥𝜏∗𝑛 Maximum difference in the  
 𝑦𝑚𝜓,𝑛 Label of the sample in the 𝑚th window that three aggregated distances for customers 𝑛  
 consists of the pseudo transformer data 𝐺 Vector of 𝛥𝜏∗𝑛  
 𝑃𝑚𝜓  and the 𝑛th customer data 𝑃𝑚𝑢,𝑛  
Table 1
Summary of literature of approaches for phase identification.
 Method Ref. Feature Incomplete Measurement No stepwise Probability 
 extraction dataset error subtraction label  
 
Voltage-based

[10] 7 ✓ ✓ 7 7  
 [11] 7 ✓ 7 7 7  
 [12] 7 7 7 ✓ ✓  
 

Active power-based

[4] SA ✓ ✓ 7 ✓  
 [13] High-pass filter ✓ 7 7 7  
 [15] SA ✓ 7 7 7  
 [16] SA+selection ✓ 7 7 7  
 [17] SA ✓ 7 7 7  
 Proposed method SA+WD ✓ ✓ ✓ ✓  
2. Phase identification framework

Phase Identification based on time-series load profiles could be 
taken as a data-pairing process, incorporating feature extraction, sim-
ilarity calculation, etc. The framework of the proposed phase identifi-
cation based on RSN is depicted in Fig.  2. The proposed phase identi-
fication approach consists of two stages: self-taught training (i.e., the 
lower level in Fig.  2) and phase label identification (i.e., the upper level 
in Fig.  2).

In the first stage, the proposed STT strategy consists of three steps: 
(1) pseudo-data generation, (2) feature extraction and (3) RSN training. 
The first step is to generate a pseudo transformer dataset, and the 
3 
pseudo-phase labels of customers are derived from the pseudo-phase 
data to which the customer is grouped. The second step is feature 
extraction based on WD, which is used to construct the input dataset 
for RSN training. The third step is to train the RSN on the reconstructed 
dataset. The second stage consisted of phase label estimation and 
modification. The reconstructed datasets of initial SM data are first 
obtained by the same process in the first stage. The phase labels of 
customers are estimated by aggregating and normalizing the output 
of trained RSN in each window. Finally, a phase label modification 
strategy based on the Kendall correlation coefficient is introduced to 
assess and obtain phase labels. Next, a detailed explanation of each of 
the stages is presented.
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Fig. 2. Framework of the proposed phase identification approach: the self-taught 
training process of RSN in the lower level and the phase label identification in the 
upper level.

2.1. Self-taught training

The training of the RSN requires labelled datasets (i.e., the phase 
labels), which are not available and are the destination of our approach. 
To address this issue, a self-taught training strategy is proposed using 
pseudo datasets. Fig.  3 illustrates the detailed framework of the STT 
strategy, which corresponds to the lower level in Fig.  2. The STT 
strategy consists of pseudo-data generation, feature extraction and RSN 
training. The constructed RSN is introduced first.

2.1.1. Recurrent neural network-based siamese network
In meta learning, SN is a common structure for analysing the 

similarity among datasets, including images and time-series data, which 
does not depend on the amount of training samples from the same 
distribution. SN is normally used in image identification, e.g., objection 
detection in videos, image classification and faulty identification of 
bearing. As shown in Fig.  2, the first half of the SN network is two 
networks with the same structure and shared parameters, indicating 
that two inputs are required for the training of SN and two feature 
embeddings are obtained after the feature extraction networks. The 
latter part of the SN network typically consists of a single-layer fully 
connected network, providing the distance or similarity of the two 
inputs.

Compared to image classification, self-correlation and dependencies 
exist in time-series data. Specifically, the data at the present time 
step shows a stronger correlation with the data preceding it but ex-
hibits relatively weak correlations with the data from several weeks 
earlier. RNN is designed to deal with sequence datasets, which are 
capable of grasping the dynamic features and transferring them to the 
subsequent neurons through the recurrent neuron [28]. Thus, com-
pared to feedforward neural networks and 1-dimensional convolutional 
neural networks (CNNs), RNN is more suitable for time-series data pre-
processing and is taken as the siamese part of SN in our problem. 
Besides, the final layer of our network also employs a fully connected 
neural network, similar to the common structure.

2.1.2. Pseudo data generation
The pseudo-data generation aims to randomly divide the customer 

load profiles into three sub-datasets, which is consistent with the goal 
of phase identification. Given the 𝑇  dimension customer data 𝑃𝑢𝑢 of 𝑁
customers (as expressed as (1)), the 𝑛th row 𝑃𝑢,𝑛 represents the data of 
the 𝑛th customer. The process of pseudo-data generation is summarized 
into two steps:

(1) Shuffle the time-series dataset 𝑃𝑢𝑢 and randomly divide it into 
three balance sub-datasets, which contain comparable numbers of cus-
tomers.
4 
Fig. 3. Framework of self-taught training of RSN: Step I: pseudo data generation, Step 
II: feature extraction and Step III: RSN training.

(2) Obtain the pseudo transformer data 𝑃𝑝 (as expressed as (2)) by 
summing the customer data in each sub-dataset. 

𝑃𝑢𝑢 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑝11 𝑝21 ⋯ 𝑝𝑇1
𝑝12 𝑝22 ⋯ 𝑝𝑇2
⋮ ⋮ ⋱ ⋮

𝑝1𝑁 𝑝2𝑁 ⋯ 𝑝𝑇𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑃𝑢,1
𝑃𝑢,2
⋮

𝑃𝑢,𝑁

⎤

⎥

⎥

⎥

⎥

⎦

(1)

𝑃𝑝 =

⎡

⎢

⎢

⎢

⎣

𝑝1𝑎 𝑝2𝑎 ⋯ 𝑝𝑇𝑎
𝑝1𝑏 𝑝2𝑏 ⋯ 𝑝𝑇𝑏
𝑝1𝑐 𝑝2𝑐 ⋯ 𝑝𝑇𝑐

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑃𝑎
𝑃𝑏
𝑃𝑐

⎤

⎥

⎥

⎦

(2)

(3) Pseudo label generation: based on the clustering results in step 
(1), the pseudo-phase label of households is determined according to 
the sub-datasets to which the customers are assigned. For example, 
if the dataset of household 𝑛 is put into sub-dataset A (i.e., pseudo 
transformer dataset for phase A), the pseudo phase label of household 
𝑛 is set as A.

2.1.3. Feature extraction
There are three sub-steps in feature extraction: normalization,

Wavelet decomposition and reconstruction. In order to alleviate the 
impact of SM data amplitudes on phase identification, the dataset 𝑃𝑢𝑢
and 𝑃𝑝 are first normalized. Then, to reveal the similarity between 
transformer and customer data, Wavelet decomposition, as an efficient 
technique in time-series data analysis, is adopted to decompose the 
time-series datasets 𝑃𝑢𝑢 and 𝑃𝑝 into multiple high-frequency 𝐻 and low-
frequency 𝐿 components. An illustrated example of two-level Wavelet 
decomposition of load profile 𝑃0 is formulated in expressions (3) - (6).

𝑃0 = 𝐿1 ⊕𝐻1 (3)

𝐿1 = 𝐿2 ⊕𝐻2 (4)

𝑃0 = 𝐿2 ⊕𝐻2 ⊕𝐻1 (5)

𝑃̇0 = [𝐿2,𝐻2,𝐻1] (6)

where ⊕ represents the Wavelet reconstruction. The subscripts of 𝐿
and 𝐻 represent the level of Wavelet decomposition. For instance, 𝐻1
and 𝐻2 represent the high-frequency components extracted through 
Wavelet decomposition at the first and second levels, respectively.

Given the extracted components, a reconstructed dataset 𝑃̇0 is ob-
tained according to (6), which has the same dimension as the initial 
data. The reconstructed datasets of the initial datasets 𝑃𝑢𝑢 and 𝑃𝑝 are 
represented by ̇𝑃𝑢𝑢 and 𝑃̇𝑝. In the phase identification problem, we take 
the time-series SM data from the transformer and customers as the two 
inputs for the RSN, respectively. To define the dimension of the input 
layer of the RSN, the two time-series datasets ̇𝑃𝑢𝑢 and 𝑃̇𝑝 are split into 
short-term data based on a pre-set window width 𝑤. 

𝑃 ∗
𝜓 =

⎡

⎢

⎢

⎢

⎢

⎢

𝑝̇1𝜓 𝑝̇2𝜓 ⋯ 𝑝̇𝑤𝜓
𝑝̇𝑤+1𝜓 𝑝̇𝑤+2𝜓 ⋯ 𝑝̇2𝑤𝜓
⋮ ⋮ ⋱ ⋮

(𝑀−1)𝑤 (𝑀−1)𝑤+1 𝑀𝑤

⎤

⎥

⎥

⎥

⎥

⎥

,∀𝜓 ∈  (7)
⎣
𝑝̇𝜓 𝑝̇𝜓 ⋯ 𝑝̇𝜓 ⎦
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𝑃 ∗
𝑢𝑢 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑃 ∗
𝑢,1

𝑃 ∗
𝑢,2,

⋮

𝑃 ∗
𝑢,𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(8)

where 𝜓 and  represent the phase index and its set (i.e.,  =
{𝑎, 𝑏, 𝑐}), and 𝑀 represents the total number of windows. The split data 
𝑃 ∗
𝑢,𝑛 of customers has the same structure as 𝑃 ∗

𝜓 . Parameters with star 
superscripts represent the split data.

The width 𝑤 of the window is taken as the input dimension of the 
RSN. The vectors 𝑃𝑚𝜓  and 𝑃𝑚𝑢,𝑛 represent the 𝑚th row in matrix 𝑃 ∗

𝜓  and 
𝑃 ∗
𝑢,𝑛, respectively. In our approach, the 𝑃 ∗

ℎ  and 𝑃 ∗
𝑢𝑢 are concatenated to 

construct the training datasets (i.e., each row in the matrix 𝑃  in (9)). 
The first and the second columns of 𝑃  are the transformer and customer 
data, respectively. Each row in 𝑃  represents a sample, and the two 
columns are used as the two inputs for SN. This dataset is unlabelled 
data since it is assumed that there are no available phase labels and 
pre-knowledge of the topology.

According to the obtained pseudo phase labels in Section 2.1.2, 
the labels of the samples in dataset 𝑃  are obtained. Specifically, if 
the 𝑛th customer belongs to the sub-dataset 𝑎 (i.e., the index set of 
the customers who are connected to the pseudo phase 𝑎), the sample 
[𝑃𝑚𝑎 , 𝑃

𝑚
𝑢,𝑛] is taken as positive sample and its label is set as 1. The samples 

[𝑃𝑚𝑏 , 𝑃
𝑚
𝑢,𝑛] and [𝑃𝑚𝑐 , 𝑃𝑚𝑢,𝑛] are taken as negative samples and their labels 

are set as 0. 𝑦𝑚𝑎,𝑛 represents the label of the sample in the 𝑚th window 
that consist of the pseudo transformer data 𝑃𝑚𝑎  and the 𝑛th customer 
data 𝑃𝑚𝑢,𝑛, which is defined by (10). The labels of samples, comprising 
customer data belonging to pseudo phases 𝑏 and 𝑐, are defined using 
the same procedure.

𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑃 1
𝑎 𝑃 1

𝑢,1

𝑃 1
𝑏 𝑃 1

𝑢,1

𝑃 1
𝑐 𝑃 1

𝑢,1

⋮ ⋮

𝑃𝑀𝑎 𝑃𝑀𝑢,𝑁
𝑃𝑀𝑏 𝑃𝑀𝑢,𝑁
𝑃𝑀𝑐 𝑃𝑀𝑢,𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

𝑦𝑚𝜓,𝑛 =

{

1, 𝜓 = 𝑎, ∀𝑛 ∈ 𝑎,∀𝑚 ∈ 
0, 𝜓 ∈ {𝑏, 𝑐}, ∀𝑛 ∉ 𝑎,∀𝑚 ∈ 

(10)

where  is the index set of the windows and   is the index set of the 
customers in the LVDN. 𝑌  is the dataset of labels, i.e., consisting of all 
labels for each row in 𝑃 .

A balanced training dataset contributes to enhancing the perfor-
mance of the training of RSN, the positive samples 𝑆+ (i.e., the samples 
with pseudo label 1 in 𝑃 ) are duplicated since the rate of negative 
samples to positive samples is 2 in the dataset 𝑃 . Moreover, a normally 
distributed error matrix 𝐸 with the same dimensions are added to 
the pre-processed customer datasets, preventing identical samples and 
over-fitting. Thus, the training dataset 𝑃𝑡𝑟𝑎𝑖𝑛 for training RSN is obtained 
by Eq. (11). 

𝑃𝑡𝑟𝑎𝑖𝑛 =
[

𝑃
𝑆+

]

+ 𝐸 (11)

2.1.4. RSN training
The final step of the STT strategy is to train RSN with given hyper-

parameters, e.g., learning rate, batch size, the maximum iteration, the 
optimizer, etc. The loss function of the constructed RSN is formulated 
as Eq. (13) [29].
𝐷(𝑃𝑚𝜓 , 𝑃

𝑚
𝑢,𝑛) = ‖𝑓𝜙(𝑃𝑚𝜓 ) − 𝑓𝜙(𝑃

𝑚
𝑢,𝑛)‖ (12)

𝐿𝑜𝑠𝑠𝑆𝑁 = 1
𝑁
∑

𝑀
∑

(𝑦𝑚𝜓,𝑛 ⋅ (𝐷(𝑃𝑚𝜓 , 𝑃
𝑚
𝑢,𝑛))

2

𝑁 𝑛 𝑚

5 
Fig. 4. Framework of probability phase label estimation based on trained RSN.

+ (1 − 𝑦𝑚𝜓,𝑛) ⋅ (𝑚𝑎𝑥(𝛾 −𝐷(𝑃𝑚𝜓 , 𝑃
𝑚
𝑢,𝑛), 0))

2) (13)

where 𝐷(⋅, ⋅) represents the Euclidean distance and 𝑓𝜙(⋅) represents the 
output of the RSN. Hyperparameter 𝛾 is the margin parameter for the 
negative and positive samples.

The loss function 𝐿𝑜𝑠𝑠𝑆𝑁  is used to measure the dissimilarity be-
tween the two outputs 𝑓𝜙(𝑃𝑚𝜓 ) and 𝑓𝜙(𝑃𝑚𝑢,𝑛) for each sample and each 
window 𝑚. It consists of two terms. For positive samples, the loss is 
calculated as the squared Euclidean distance between the two outputs 
𝑓𝜙(𝑃𝑚𝜓 ) and 𝑓𝜙(𝑃𝑚𝑢,𝑛), denoted by (𝐷(𝑃𝑚𝜓 , 𝑃

𝑚
𝑢,𝑛))

2. This term aims to min-
imize the distance between the two columns of positive samples. For 
negative samples, the loss involves the term (max(𝛾 − 𝐷(𝑃𝑚𝜓 , 𝑃

𝑚
𝑢,𝑛), 0))

2. 
This term is zero when the 𝐷(𝑃𝑚𝜓 , 𝑃

𝑚
𝑢,𝑛) is larger than the margin 𝛾. 

Otherwise, it is (𝛾−𝐷(𝑃𝑚𝜓 , 𝑃
𝑚
𝑢,𝑛))

2. This term aims to enlarge the distance 
between the two columns of negative positives and to enforce a distinct 
separation between positive and negative samples within the feature 
space. By minimizing the loss function in (13) during training, the 
model aims to identify the phase labels while maintaining a mar-
gin of separation between positive and negative samples, improving 
robustness in phase identification.

2.2. Phase label identification

A phase label identification strategy is proposed to identify the 
phase label using the output of the trained RSN and phase-to-phase 
correlation coefficients, which consists of probability phase label esti-
mation and modification. The reconstructed datasets of initial SM data 
(i.e., the transformer and customer data) are first obtained by the same 
process as the second step in the lower level (i.e., Section 2.1.3), which 
has the same format as in (9).

2.2.1. Phase label estimation
The framework of the proposed phase label estimation based on RSN 

is demonstrated in Fig.  4. The data in each window 𝑊𝑚 are the pro-
cessed initial SM data (i.e., the high-frequency and low-frequency com-
ponents of the data). Given the trained RSN, the distance 𝑑𝑚𝑛,𝜓  between 
customers and the three phases are obtained in each window. The 
probability phase labels 𝐿𝜓  of customers are calculated by aggregating 
the distance in each window, as formulated in Eq. (14)–(16).

𝜄0𝑛,𝜓 =
𝑀
∑

𝑚
𝑑𝑚𝑛,𝜓 , ∀𝑛 ∈  ,∀𝜓 ∈  (14)

𝜄𝑛,𝜓 =
𝜄0𝑛,𝜓

∑
𝜓 𝜄0𝑛,𝜓

, ∀𝑛 ∈  ,∀𝜓 ∈  (15)

𝐿𝜓 =
⎡

⎢

⎢

𝜄1,𝑎, 𝜄1,𝑏, 𝜄1,𝑐
⋮, ⋮, ⋮

⎤

⎥

⎥

(16)

⎣𝜄𝑁,𝑎, 𝜄𝑁,𝑏, 𝜄𝑁,𝑐⎦
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Algorithm 1: Phase Label Identification
Input: Trained RSN 𝑓𝜙(⋅), Reconstructed data 𝑃 𝑡∗, Thresholds 𝜖
for 𝑖 ≤ 𝑁 do

𝜄0𝑛,𝜓  = ∑𝑀
𝑚 ‖𝑓𝜙(𝑃𝑤𝜓,𝑚) − 𝑓𝜙(𝑃

𝑤
𝑢,𝑛,𝑚)‖

end 
Calculate 𝐿𝜓  using Eq.  (14) and (15)
𝑃𝜓 ← aggregation based on 𝐿𝜓
Obtain 𝐾𝜓  by Eq.  (17) to (20)
Calculate 𝐺 and 𝐿′

𝜓  using 𝐿𝜓
Obtain index vector 𝐼𝑝 based 𝜖 and 𝐺
for 𝑖 ∈  do

for 𝑗 ≤ 2 do
Exchange label in the row 𝑖 in 𝐿′

𝜓
Obtain 𝛥𝐾𝑖,𝜓  by (20) and (24)

end 
Obtain position index 𝑗∗
𝐿′
𝜓← Update 𝐿′

𝜓  based on 𝑗∗
end 
𝐾∗
𝜓← Update 𝐾𝜓  based on 𝐿

′
𝜓

Output: Phase label matrix 𝐿′
𝜓  and matrix 𝐾∗

𝜓

The aggregated distance 𝜄0𝑛,𝜓 ∈ [0, ∞] and probability phase labels 
𝜄𝑛,𝜓 ∈ [0, 1]. The smaller the value of 𝜄0𝑛,𝑎, the greater the similarity 
between the 𝑛th customer data and transformer data in phase 𝑎, and 
vice versa. Thus, the position index corresponding to the minimum 
value in each row of 𝐿𝑛,𝜓  is considered as the index of the phase to 
which the customer is most likely connected.

2.2.2. Phase label modification
As the number of correctly aggregated load profiles within the same 

phase increases, the phase-to-phase correlation coefficients exhibit a 
larger disparity [16]. Meanwhile, the growth rate of the correlation 
coefficients between different phases with the aggregation of load 
profiles is significantly lower than that of the correlation coefficients 
between the same phases. Thus, a Kendall correlation coefficients-based 
phase label modification strategy is introduced to evaluate the obtained 
phase labels (i.e., 𝐿𝜓 ) and modify the labels with lower confidence. 
Specifically, the Kendall correlation coefficient is employed to evaluate 
the correlation between variations in transformer data across the same 
phases (i.e., the real data 𝑃𝜓  and identified data 𝑃𝜓 ).

𝛥𝑃𝜓 = [𝑝2𝜓 − 𝑝1𝜓 , 𝑝
3
𝜓 − 𝑝2𝜓 ,… , 𝑝𝑇𝜓 − 𝑝(𝑇−1)𝜓 ], ∀𝜓 ∈  (17)

𝛥𝑃𝜓 = [𝑝2𝜓 − 𝑝1𝜓 , 𝑝
3
𝜓 − 𝑝2𝜓 ,… , 𝑝𝑇𝜓 − 𝑝(𝑇−1)𝜓 ], ∀𝜓 ∈  (18)

𝜏(𝛥𝑃𝜓 , 𝛥𝑃𝜓 ) = 𝐹𝐾 (𝛥𝑃𝜓 , 𝛥𝑃𝜓 ), ∀𝜓 ∈  (19)

𝐾𝜓 = [𝜏(𝛥𝑃𝑎, 𝛥𝑃𝑎), 𝜏(𝛥𝑃𝑏, 𝛥𝑃𝑏), 𝜏(𝛥𝑃𝑐 , 𝛥𝑃𝑐 )], (20)

𝐾∗
𝜓 = [𝜏(𝑃𝑎, 𝑃𝑎), 𝜏(𝑃𝑏, 𝑃𝑏), 𝜏(𝑃𝑐 , 𝑃𝑐 )], (21)

where 𝑝𝑡𝜓  and 𝛥𝑃𝜓  represent identified transformer data and the vari-
ations, respectively. The function 𝐹𝐾 (⋅) represent the function that is 
used to calculated Kendall correlation coefficient [30].

Meanwhile, the Kendall correlation coefficients 𝐾∗
𝜓  between trans-

former data across the same phases are used as the indicator to show 
the credibility of the final phase labels in each phase while revealing 
the recall and precision of phase identification, which is similar to the 
purity in the classification field. The closer the value of 𝜏(⋅, ⋅) is to 1, 
the higher the precision and recall rate of the phase identification. 
The process of phase label identification based on RSN is shown in 
Algorithm 1.

The maximum difference 𝛥𝜄𝑛 among the three aggregated distances 
[𝜄0 , 𝜄0 , 𝜄0 ] of each customer is calculated by (22) and stored in vector 
⋅,𝑎 ⋅,𝑏 ⋅,𝑐

6 
Fig. 5. Topology of the 188-bus LVDN in the Netherlands.

𝐺. Matrix 𝐿𝜓  is converted to hard phase labels 𝐿′
𝜓  by converting the 

smallest value in each row to 1, the other values are replaced by 0. 
The hard labels are subjected to the constraint (23). If the maximum 
difference 𝛥𝜄𝑛 of customer 𝑖 is smaller than the threshold 𝜖, the phase 
labels of the customer 𝑖 are taken as a label with lower confidence. 
The indexes of these customers are stored in set . Then, the position 
of label 1 in row 𝑖 is exchanged with the other two, respectively. For 
instance, [1, 0, 0] are replaced by [0, 1, 0] and [0, 0, 1], respectively. The 
residual phase-to-phase correlation coefficients before and after the 
label modification are calculated by (24). If the residual 𝛥𝐾𝜓  of phase-
to-phase correlation is positive, the swapped position 𝑗∗ that leads 
to the most significant increase is taken as a correlate one and the 
corresponding results are taken as the modified phase label of customer 
𝑖. After modifying all phase labels with lower confidence, the phase-to-
phase correlation coefficients 𝐾∗

𝜓  obtained under the final phase labels 
are taken as the credibility of labels in each phase.
𝛥𝜄𝑛 = 𝑚𝑎𝑥{|𝜄𝑛,𝑎 − 𝜄𝑛,𝑏|, |𝜄𝑎,𝑛 − 𝜄𝑛,𝑐 |,

|𝜄𝑛,𝑏 − 𝜄𝑛,𝑐 |}, ∀𝑛 ∈  (22)

∑

𝜓
𝜄′𝑛,𝜓 = 1, ∀𝑛 ∈  (23)

𝜄′𝑛,𝑎, 𝜄′𝑛,𝑏, 𝜄′𝑛,𝑐 ∈ [0, 1]

𝛥𝐾𝜓 = 𝐾 ′
𝜓 −𝐾𝜓 (24)

where 𝐾 ′
𝜓  represents the phase-to-phase correlation coefficients during 

the phase label modification process, which will be identical to 𝐾∗
𝜓  after 

the final step.

3. Case of study

In this section, the feasibility and accuracy of the proposed phase 
identification approach are verified on the IEEE 116-bus test feeder 
case (denoted as LV-116) and an 188-bus LVDN (denoted as LV-188) 
in the Netherlands with different types of cables. These two LVDNs 
are obtained from [31] and [32]. The topology of the 188-bus LVDN 
is illustrated in Fig.  5. The base three-phase voltage is 0.4 kV. Three 
datasets are used:

(1) Dataset I: time-series profiles for each household with 15 min 
time resolution are selected and scaled from [33].

(2) Dataset II: time-series profiles with 1 h time resolution are 
collected from the SM in the Netherlands.

(3) Dataset III: a synthetic dataset is generated from a chi-square 
distribution, with Gaussian errors introduced simultaneously.
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Fig. 6. Framework of parameters tuning and online application represented by yellow 
lines and green lines, respectively.

Table 2
Summary of key parameters in the proposed approach.
 Parameter Values 
 Power factor (cos 𝜃) 0.95  
 WD base function (Haar wavelet) db1  
 Margin parameter (𝛾) 1  
 Number of neurons in hidden layer 500  
 Learning rate 0.005  
 Activation function ELU  

The power factor 𝑐𝑜𝑠𝜃 is set at 0.95 for each household, which is 
a common value for customers. The time-series load profiles of trans-
formers are generated by a power flow model [34]. For the training of 
RSN, the learning rate is 0.005, the maximum iteration is set at 100 
and the margin parameter 𝛾 is set at 1. The input dimension of the 
RNN is 96 (i.e., the same as the dimension of a one-day sample with 
a 15 min time resolution) and the number of neurons in the hidden 
layer is 500, which is also the dimension of the fully connected layer. 
The activation function is ELU. The SGD optimizer is used to train the 
RSN. The Haar wavelet and the db1 base function are adopted in the 
Wavelet decomposition. Besides, the threshold 𝜖 is set the same as the 
margin parameter 𝛾 (i.e., 1). These parameters were chosen as a result 
of the cross-validation method, aiming to ensure the performance of 
the proposed approach. For instance, the pre-set maximum iteration is 
used to avoid overfitting while ensuring the accuracy of identification. 
The general process of the parameter tuning is depicted as the yellow 
lines in Fig.  6, and the parameters are summarized in Table  2.

3.1. Performance evaluation

Two LVDNs with similar load profiles but different topologies were 
used to test the feasibility and accuracy of the proposed phase identifi-
cation strategy. The load profiles in both two LVDNs were selected and 
scaled from Dataset I. This case aims to analyse the impact of topology 
and power loss on the performance of our approach. Moreover, there 
are measurement errors in SM data induced by SM and communication 
issues, which is a common phenomenon in DNs. Thus, Gaussian noise 
was generated according to the SM class and added to the initial dataset 
to emulate the measurement errors. According to the IEC 62053–21 [4], 
four classes of SM were considered in this case, including 0%, 0.5%, 1% 
and 2%. Meanwhile, the amount of available time-series data (i.e., the 
value 𝑇 ) will impact the aggregated distance matrix 𝐿𝜓  and correla-
tion matrix 𝐾𝜓 , influencing the accuracy of phase identification. The 
amount of available data represents the number of days during which 
households’ data were measured and collected. Thus, the datasets with 
7 
Fig. 7. The correlation coefficients in (a) and (d); the normalized distance matrix 𝐿𝜓
in (b) and (e) and the phase label in (c) and (f). The correlation coefficients between 
identified and real phase data are shown in brackets.

Table 3
Accuracy of proposed approach (%) under dataset I with multiple measurement
error.
 DNs Class of The amount of SM Data (Day)
 SM 5 10 15 20  
 
LV-188

0 92.90 ± 2.2 97.42 ± 2.2 97.85 ± 1.5 99.35 ± 0.6 
 0.5% 93.55 ± 3.6 96.99 ± 1.4 97.63 ± 1.4 99.57 ± 0.6 
 1% 90.75 ± 3.3 95.48 ± 1.2 96.77 ± 0.8 99.57 ± 0.6 
 2% 91.82 ± 1.2 94.41 ± 1.8 95.91 ± 1.4 99.14 ± 1.2 
 
LV-116

0 88.00 ± 2.4 89.82 ± 4.9 92.73 ± 7.4 93.46 ± 2.8 
 0.5% 86.54 ± 2.8 91.27 ± 1.5 89.45 ± 2.0 92.73 ± 4.5 
 1% 86.54 ± 1.0 87.27 ± 1.3 89.09 ± 6.7 93.09 ± 4.5 
 2% 85.45 ± 4.1 86.55 ± 6.0 89.45 ± 2.7 90.18 ± 2.8 

5, 10, 15 and 20 days under the above four types of errors were used to 
evaluate our approach. On the other hand, the quality of the generated 
pseudo dataset, as the training datasets, influences the training of RSN, 
which therefore impacts the calculation of distances 𝜄𝑛,𝜓 . The approach 
was executed twenty times, and the average accuracy of five solutions 
with large 𝐾𝜓  and the corresponding standard deviation were recorded, 
which are summarized in Table  3 and Fig.  7.

As shown in Table  3, given more than 10 days of the Dataset I with 
measurement errors, the proposed approach correctly identified phase 
labels for at least 90% of customers in both networks. As expected, with 
the increasing measurement error magnitudes, there is a slight decrease 
in phase identification accuracy in both LVDNs, specifically ranging 
from 2% to 4%. With the increase in the amount of available SM data, 
the phase identification accuracy increases. Compared to the negative 
impact of measurement error, the positive impact of the amount of 
SM data is more significant, indicating more SM data could mitigate 
the negative effect induced by the measurement error of SM on the 
phase identification accuracy. Besides, there exists a discrepancy of 
approximately 5%–10% in the phase identification accuracy between 
the two LVDNs, showing that power losses and errors impact the phase 
identification accuracy.

Given the 15-day dataset with 1% measurement error, the Kendall 
correlation coefficients, normalized distance (i.e., the matrix 𝐿𝜓 ) and 
the modified phase labels (i.e., the matrix 𝐿′

𝜓 ) are demonstrated in 
Fig.  7. From Fig.  7(a) and (d), it is hard to directly identify the phase 
labels by the correlations among the initial SM data. However, the 
normalized distance 𝐿𝜓  in Fig.  7(b) and (e) show clearer boundaries 
between positive and negative samples. After the phase label modifica-
tion, the hard phase label in Fig.  7(c) and (f) described the output of 
the proposed approach, which reveals the majority of the true labels 
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Fig. 8. Accuracy comparison under Dataset I in (a) and (b) and Dataset II in (c) and 
(d) without and with a 2% measurement error, respectively.

of customers. The phase-to-phase correlation coefficients 𝐾∗
𝜓  in the 

brackets also depicted the purity of the phase labels in each phase.

3.2. Method comparison

The accuracy, recall, and precision of the proposed phase identifi-
cation approach were compared to that of similar approaches (i.e., the 
approaches based on load profiles) under multiple scenarios, including 
the ML-based clustering approach [13], the saliency analysis (SA)-
based approach [15], and the genetic algorithm(GA)-based approach 
[17]. These three methods represent three typical phase identification 
approaches: (1) phase identification using classical machine learning 
techniques, such as clustering algorithms; (2) approaches that rely 
heavily on the saliency or variability of time-series data; and (3) 
optimization-based solutions for phase identification. Dataset I and 
Dataset II with and without 2% measurement error were used to evalu-
ate the performance of the above approaches in LV-188. The accuracy 
is depicted in Fig.  8, and the recall and precision are summarized in 
Table  4.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁̃
𝑁

× 100% (25)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁̃𝜓

𝑁𝜓
, 𝜓 ∈  (26)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁̃𝜓

𝑁∗
𝜓
, 𝜓 ∈  (27)

where 𝑁̃ and 𝑁̃𝜓  are the number of households whose labels are 
correctly identified in three phases and each phase, respectively. 𝑁𝜓  is 
the true number of households in phase 𝜓 . 𝑁∗

𝜓  represents the number 
of households whose labels are labelled as phase 𝜓 .

As depicted in Fig.  8, the accuracy of the SA-based and GA-based 
approach is lower than 70% and does not increase when given more SM 
data, which is also not sensitive to time resolution and measurement 
errors. The performance of the proposed approach is similar to that of 
the ML-based clustering approach, i.e., above 80% with higher amounts 
of SM data and not sensitive to measurement errors. Given more than 
10 days of data, the accuracy of the proposed approach reached above 
93% and 82% under the two datasets with 2% measurement errors, 
respectively, indicating that the larger time resolution decreases the 
accuracy of the approach. The ML-based clustering approach demon-
strates robust performance across variations in the time resolution of 
SM data, effectively managing datasets with both regular and irregular 
temporal intervals. However, the proposed approach exhibits superior 
capabilities in capturing the variations within the lower-time resolution 
8 
Table 4
Recall (%) and precision comparison (%) under dataset with measurement errors.
 Approach Phase Dataset I Dataset II
 Recall Precision Recall Precision 
 
ML

a 96.77 85.71 90.32 87.50  
 b 100 96.88 87.10 90.00  
 c 80.65 96.15 93.55 93.55  
 
SA

a 35.48 44.00 48.39 55.56  
 b 48.39 51.72 41.94 56.52  
 c 54.84 43.59 77.42 55.81  
 
GA

a 67.74 72.41 74.19 76.67  
 b 77.42 66.67 67.74 60.00  
 c 67.74 75.00 64.52 71.43  
 
ST

a 93.55 100 87.10 87.10  
 b 96.77 96.77 80.65 86.21  
 c 100 93.64 87.10 81.82  

data, making it particularly effective in scenarios characterized by 
irregular consumption patterns or datasets with fine-grained temporal 
dependencies. This ability to model complex relationships highlights 
the versatility of the proposed method in handling real-world SM data, 
where such irregular variations in the time-series dataset are often 
encountered.  Moreover, the proposed method offers distinct advan-
tages beyond accuracy. In addition to outperforming some existing 
approaches, it provides not only probabilistic and hard labels but also 
indicators of phase purity. These outputs offer deeper insights into the 
phase identification process and can be instrumental for applications 
such as load balancing in DNs, where understanding the confidence 
level of accurate labels in each phase and its distribution is critical for 
operational efficiency.

As shown in Table  4, the recall and precision metrics follow a 
trend similar to the accuracy results observed in Fig.  8. Notably, the 
recall and precision across all phases for the proposed method are 
more consistent and balanced compared to the other approaches. This 
consistency is crucial for ensuring reliable phase identification across 
the three phases, minimizing the risk of phase misclassification, which 
provides a reference for load balancing in DNs.

3.3. Impact of incomplete data

On the other hand, the collected load profiles might be incomplete 
due to communication issues. The incompleteness of SM data point 
is random or continuous [13]. To evaluate the impact of incomplete 
datasets on the accuracy of the proposed approach, two scenarios under 
Dataset I and Dataset III were considered in this case: datasets with 
random missed data points and datasets with unmetered customers. 
The incomplete percentage was set between 0% and 20% in the first 
scenario and the incomplete ratio represents the proportion of missing 
data points relative to the dimension of the input data (i.e., 𝑇 ). In the 
second case, the incomplete ratio was set between 0% and 40%, which 
represents the ratio between the number of unmetered households and 
the total number of households. The missed data points and unmetered 
households were removed from the initial data, and the remaining 
data were used as the input data for the approach. The proposed 
approach was executed twenty times, and the five solutions with the 
correlation coefficients 𝐾𝜓  closest to 1 were saved. To ensure a diverse 
range of missing data scenarios and maintain statistical significance, the 
positions of missing data points and the identities of unmetered house-
holds were randomly selected for each simulation, following a uniform 
distribution. The average accuracy under the above two scenarios is 
depicted in Fig.  9.

As shown in Fig.  9(a)–(c), the average accuracy decreases with 
the increase in incomplete ratio while increasing with the increasing 
amount of available SM data. The removed missing data points impact 
the variation of time-series data, influencing the extracted features 
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Fig. 9. Average accuracy under Dataset I in (a,d) in LV-188 and in (b, e) in LV-116, 
and Dataset III in (c) and (f) with random missing data and unmetered households, 
respectively.

and the similarity calculation, which impacts the accuracy of phase 
identification. Given 10-day datasets with 5% missing data points, the 
proposed approach accurately identifies at least 85% of the customer 
phase labels in the LV-188 network and 80% in the LV-116 network. 
When the incompleteness ratio increases to 20%, the accuracy drops to 
77% in the LV-188 network and 75% in the LV-116 network. However, 
as shown in Fig.  9(c), when the available simulation data are less 
than 5 days, the phase identification accuracy declines below 80%. 
Conversely, when the data exceeds 5 days with varying incompleteness, 
the phase identification accuracy remains above 99%, indicating that 
the impact of missing data is negligible in such scenarios.

Fig.  9(d)–(f) depict the relationships between accuracy, the number 
of unmetered households, and the amount of available SM data. The 
average accuracy decreases as the percentage of unmetered households 
increases, attributable to the limited available SM data resulting in a 
limited training dataset. Additionally, the accuracies exhibit a rapid 
decline with the increasing incompleteness ratio, particularly when 5-
day datasets are available. For datasets containing more than 10-day 
time-series data, the accuracy under the scenarios decreased by 13%, 
20%, and 2% as the percentage of unmetered households increased 
from 0% to 40%, respectively. On the other hand, compared to mea-
surement errors in SM data and the presence of unmetered households, 
the negative impact of missing data points in time-series data on phase 
identification is more pronounced, resulting in lower accuracy.

4. Conclusion

A meta learning based self-taught phase identification approach was 
proposed based on SM data in this paper. Compared to existing methods 
and conventional neural networks training, the proposed STT strategy 
enables the RSN to identify phase labels without requiring extensive 
months of labelled datasets. This strategy reduces the dependency on 
large-scale, labelled data, making the approach more efficient and prac-
tical in real-world applications where data is limited or incomplete. The 
feasibility and accuracy of the proposed approach were evaluated on 
three datasets and multiple scenarios, including datasets with missing 
data points, unmetered households and multiple dimensions. Not only 
the probability and hard phase labels of customers but also the purity 
of each phase were provided by the proposed approach. The results 
showed that the probability phase labels could be represented by the 
distance matrix obtained from the trained RSN, and the Kendall corre-
lation coefficients were validated to assess the purity of the phase labels 
in each phase. Furthermore, the experimental results demonstrated that 
the proposed approach outperformed existing methods that rely on 
stepwise subtraction of identified users’ data from transformer data in 
9 
terms of accuracy while requiring a smaller amount of SM data. The 
results also indicated that the proposed approach is more robust to 
unmetered houses and measurement errors in comparison to missing 
data points. On the other hand, more available data alleviated the 
negative impact caused by missing data on the phase identification 
accuracy.
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