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Abstract

Array design of a wave farm composed of multiple WECs is an essential issue during
the design phase of an offshore wave energy farm. Although various research has
looked into the optimal array design, the optimization process usually takes a lot of
time.

The objective of this thesis is to reduce the time required during the WEC design
phase. The study focuses on performing a hydrodynamic analysis of a wave farm con-
sisting of four single-point absorbers, examining the relationship between excitation
force and array spacing, and determining the average total power production of the
wave farm.

This thesis employs the Boundary Element Method (BEM) to analyze the hydrody-
namic interactions of waves and oscillatory motions in WECs. Using the open-source
software Capytaine, it estimates key hydrodynamic coefficients and solves the sys-
tem of equations via Green’s theorem to evaluate added mass and excitation forces.
By selecting excitation force as a design parameter, a linear regression model is es-
tablished. Furthermore, a machine learning model based on the Random Forest al-
gorithm is developed to capture the complex relationship between total power output
and the design parameter. After the machine learning model is created, the optimal
array spacing for a specific site can be estimated quickly by combining results with a
wave scatter diagram.

These findings aim to contribute to wave energy systems design by providing a
reliable link between hydrodynamic results and design parameters and accelerating
development in the wave energy sector.
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1
Introduction

1.1. Background
In 1973, a disruption in crude oil supplies led to a significant shift in energy policy
[1]. During this period, the increasing oil prices caused a growing interest in wave
energy production. Numerous research and conferences supported by the British
and Norwegian governments began to explore the potential of wave energy. In 1991,
the European Commission decided to include wave energy in its renewable energy
plans, and sponsor various wave energy projects [2]. Nowadays, the European Union
continues to invest in these projects, aiming to increase the installed wave energy
capacity to 40GW by 2050 [3].

Figure 1.1: Energy Density Comparison (Data compiled from Iván A. Hernández-Robles et al. [4])

Wave energy is regarded as one of the highest energy-dense and predictable off-
shore renewable energy [5][4]. The key advantage of wave energy is its predictability,
which makes the electricity grid more stable [6]. Due to the higher density of water,
the scale size of the wave energy converter can be much smaller when compared to

1



1.2. Wave Energy Converter Overview 2

a wind turbine, meaning a saving in material [7]. Additionally, wave energy offers high
flexibility which allows WECs to operate at various sites or be integrated with other
offshore structures. It can be utilized for powering marine buoys, lighthouses, and
large-scale power generation, with minimal regional limitations[8].

To sum up, wave energy stands out as a reliable and highly promising renewable
energy source. To reach the target of net-zero greenhouse gas emissions by 2050,
integrating wave energy into future energy plans is crucial.

1.2. Wave Energy Converter Overview
A wave energy converter (WEC) is a device designed to capture energy from ocean
waves and transform it into electricity or another form of usable power. WECs can be
classified into various types based on their underlying principles for converting wave
oscillations into electricity.

1.2.1. Oscillating Water Column
An oscillating water column (OWC) is a device that transforms airflow within a cham-
ber and converts it into electricity. It is a type of WEC that operates based on the rise
and fall of water within a chamber caused by the oscillating motion of waves [9][10][11].
The structure typically consists of a hollow chamber partially submerged in the water,
with an open bottom facing the ocean and a sealed top. As waves move in, the water
level within the chamber increases, compressing the air trapped above. This com-
pressed air goes through a turbine, which drives a generator to produce electricity.
There are two types of OWC: fixed and floating type. The advantage of fixed OWC
is the high reliability because it has no moving parts in the water, making it easier to
maintain. On the other hand, floating OWCs have the advantage of reduced noise
because they are located farther from the shoreline.

Figure 1.2: Fixed oscillating water column structure

1.2.2. Point Absorber
A point absorber (PA) is a floating device that reacts to wave motion by moving ver-
tically or horizontally. It usually includes a buoyant structure and a power take-off
(PTO) system. Different configurations of these components lead to various types of
point absorbers. In a one-body heave design, the buoy is connected to a fixed struc-
ture on the seabed by a cable and a spring mechanism. This arrangement allows the
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PTO system to engage based on the relative motion between the floating part on the
surface and the submerged part.

Figure 1.3: Schematic drawing of point absorber

1.2.3. Attenuator
Attenuators are long, floating structures consisting of multiple floating bodies con-
nected by hinged joints that align perpendicular to the direction of the waves. The
energy is generated from the relative rotation between the adjacent segments. This
movement creates mechanical energy, which is then converted into electrical power
using different mechanisms, such as linear generators.

Figure 1.4: Schematic drawing of attenuator

1.3. Research Gap
1. Finding the relation between design parameters and excitation

forces within a wave farm
Determining the excitation forces experienced by a WEC experience is essential for
evaluating its lifetime. Deriving excitation forces without performing hydrodynamic
analysis is not possible, and the process becomes time-consuming as design parame-
ters increase. However, limited research has focused on establishing an approximate
mathematical relationship between excitation forces and other parameters. Once this
relationship is identified, deriving excitation forces will become more straightforward,
which can significantly reduce the required time to assess the lifetime of the WEC.
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2. Finding a way to estimate power production in a short time
Most of the research that has been proposed used numerical comparison methods
to achieve optimization considering power production and array configuration. Re-
cently, there has been an emergence of research using artificial intelligence methods.
However, these methods usually require a huge amount of time to analyze, and the
result is only suitable for individual cases. Thus, a research gap exists with the goal
of reducing calculation time. One of the objectives of this research is to find out the
mathematical relation between array configuration factors and the final power produc-
tion. Once the models are trained, a broader range of cases can be investigated in a
shorter time.

3. Optimization of Array Design and Power Production
Most previous research focuses on predicting power output from a single device. How-
ever, wave farms typically contain multiple devices with various array configurations.
These configurations should also be considered in power prediction analysis. In this
thesis, a square array design consisting of four devices is used, and the spacing be-
tween devices is also included as a crucial parameter in the power analysis. By doing
so, the overall power production of the wave farm can be more accurately predicted.

1.4. Research Objective
1. Find an effective way to estimate excitation forces and power

production
A mathematical formulation is used to estimate the excitation forces, while a machine
learning model is utilized to predict power production. After running several cases
with different array designs, a mathematical relationship between excitation forces and
wave frequency will be established. Following this, multiple hydrodynamic analyses
will be conducted, and the resulting data will be used to train a ML model for power
estimation.

2. Perform optimization and predict power production
The final goal of this research is to discover an optimal solution for the WEC array
layout. With a trained machine learning model, the predicted power production in any
given sea state can be easily estimated.

1.5. Outline of The Thesis
In chapter 2 research on previous literature is performed. A comparison between
available methods is conducted, and various similar questions proposed before are
discussed. chapter 3 elaborates on the background theory of BEM software used
in this thesis and explain the derivation process of power production. chapter 4 out-
lines the overall methodology used in this thesis to address the research question.
chapter 5 shows the whole process of solving the hydrodynamic problems for multiple
devices in Capytaine. After performing hydrodynamic analysis, chapter 6 presents the
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derivation process and the result of the mathematical relation between the excitation
forces and design parameters. In chapter 7 the data generated in the previous step
are used to train the machine learning model. Once the model is trained the optimal
array spacing between 2 devices in a square-shaped wave farm can be determined.
Finally, chapter 8 summarizes the overall result and identifies the limitations of the
findings.

1.6. Highlight
1. Setting up the relationship between forces and array layout
Although the leading method to estimate the excitation forces on a floating body is
using the machine learning method, an effort is made in this thesis to set up the math-
ematical relationship between the forces and design parameters. After derivation, an
evaluation is made to check the reliability of this formulation.

2. Perform hydrodynamic analysis of multi-body in Capytaine
Capytaine does not really support multi-body fluid interaction due to the way it pro-
cesses input data. However, for hydrodynamic problems, a multi-body system with 6
DOFs can be effectively treated as a single body with generalized DOFs [12], making
the hydrodynamic analysis feasible. While limited literature has explored multi-body
hydrodynamic analysis using Capytaine, this thesis offers a deeper understanding of
the application in this context.



2
Literature Review

Before addressing the optimization problem of the WEC array, a comprehensive litera-
ture review was conducted. The main objective of this study is to enhance the breadth
of knowledge and to get deeper insight into the array design of the wave farm. By ex-
amining existing studies and available methods, the methodology used to address the
research questions can be determined.

2.1. Numerical Method Overview
Thanks to the highly developed computer technology, numerical methods are capable
of solving hydrodynamic problems, and this relies on the application of the Boundary
Element Method (BEM). In the frequency domain, BEM is used to solve Green’s func-
tions on the wetted surface of a floating body. For time-domain problems, the Cum-
mins Equation and Computational Fluid Dynamics (CFD) are the primary approaches
used to capture nonlinearities that cannot be addressed in the frequency domain.

2.1.1. Frequency Domain Model
The hydrodynamic problem can be modeled using a simplified linear approach, where
wave amplitude is relatively small compared to the wavelength. Additionally, when
reactive forces like moorings and PTO (with a linear damper) are represented linearly,
the dynamics of WECs can be described using linear equations. It also means that
the superposition principle holds [13]. Consequently, the dynamics of WECs can be
analyzed effectively in the frequency domain because all the non-linearity terms are
ignored. In this context, the equations of motion transform into a system of linear
equations that can be solved directly.

To evaluate the radiation and excitation loads on the device, the Boundary Ele-
ment Method (BEM) is employed. Newman[14] developed approximations of the free-
surface Green function applicable across all frequency ranges and water depths. This
advancement facilitates the analysis of hydrodynamics for complex offshore struc-
tures. The approach uses Green’s theorem [15] to calculate all the hydrodynamic
coefficients, such as added mass and radiation damping, and hydrodynamic forces.

6
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Green’s theorem is the application of the Green functions which enable the velocity
potential over the submerged part of the body to satisfy the required boundary con-
ditions [16][17]. By solving these integral equations, one can determine the added
mass, radiation damping, and excitation forces.

Commonly used frequency-domain models, such as NEMOH, Capytaine, Ansys-
AQWA, and WAMIT, are all based on potential flow theory. NEMOH and Capytaine
are open-source BEM solvers, with NEMOH developed in Fortran programming lan-
guage and Capytaine being a Python package rewritten from NEMOH. These tools
are designed to calculate first-order hydrodynamic coefficients and excitation forces.
In contrast, Ansys-AQWA and WAMIT are commercial software capable of handling
second-order nonlinear behaviors.

2.1.2. Time Domain Model
Time-domain models can effectively handle nonlinearities resulting from various com-
ponents within the energy chain. They also allow for more complex formulations of
fluid interactions, which lead to nonlinear hydrodynamic forces. A time-domain model
is generally unavoidable in the PTO configurations applied on the WECs due to the
complex systems involved [18][19]. Furthermore, when validating a solution based
on real sea-state performance, a time-domain model becomes necessary [15]. The
time domain approach involves calculating the dynamics of floating bodies directly
over time. Typical methods within this framework include the application of Cummins
Equation [20] in Potential Flow Theory and Computational Fluid Dynamics (CFD).

Application of Cummins Equation relies on the application of potential flow theory
discussed in section 3.2. This approach uses Cummins equations to address hydro-
dynamic problems through a system of differential equations. By importing hydrody-
namic coefficients from frequency-domain solvers, such as Capytaine, the Cummins
Equation is then used to determine the motion and forces in the time domain.

Computational Fluid Dynamics (CFD) is a numerical technique used to solve the
governing Navier-Stokes equations related to fluid flows. Apart from its wide appli-
cation in the aerospace sector, CFD is also valuable in the study of wave energy.
Specifically, it can predict the performance of WECs in extreme sea conditions, where
assumptions required for potential flow theory like small wave steepness are no longer
valid.

Notable time-domain numerical software includes OpenFOAM, WEC-Sim, and
FLOW-3D. OpenFOAM is an open-source CFD software based on the finite volume
method. It solves the governing Navier-Stokes equations on the discrete control vol-
ume. WEC-Sim is another free solver for the simulation of WECs. It reads the hy-
drodynamic coefficients from other frequency-domain solvers and solves Cummins
Equation [21] to determine the motion and forces. FLOW-3D is a commercial CFD
software that uses finite volume method to solve the Navier-Stokes equations for fluid
flow [22]. In an analysis performed by Mohammad[23], a new kind of WEC was ex-
amined through experimental research and numerical simulation using FLOW-3D. By
comparing the results between the two methods, FLOW-3D showed a good agree-
ment.
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Table 2.1: Summary of 3 Different Open-Source Numerical Tools

Capytaine OpenFOAM WEC-Sim
Analysis Do-
main

Frequency domain Time domain Time domain

Fundamental
Principle

Potential Flow The-
ory

Computational
Fluid Dynamics

Potential Flow The-
ory and Cummin
Equations

Programming
Language

Python C++ MATLAB

Limitation Relatively new soft-
ware that requires
more validation

Long calculation
time

Does not model
highly nonlinear hy-
drodynamic events
such as wave slam-
ming[24]

2.2. Optimization Method Overview
In order to evaluate the effectiveness of optimizing WEC arrays, specific parameters
need to be considered. One such parameter is the q factor, which is proportional to
the total output power of the entire array and is defined as:

q =
Ptotal

N · Pisolated

(2.1)

In Equation 2.1, Ptotal is the total power generated by the WEC farm combined with
multiple WECs, N is the number of WECs, and Pisolated is the power generated by a
single WEC. Research[25] has shown that q-factor can be greater than 1 in theory.

When q is less than 1, the average power per WEC in the overall wave farm is
lower than that of an isolated WEC. Conversely, if q is greater than 1, the location of
the WEC are in the optimal layout and result in a better performance.

There are many methods dealing with the optimization problems of WEC array.
For example: Genetic Algorithm (GA) and Monte Carlo Method (MCM)[26].

GA is an algorithm used for finding the optimal solution. The term ”genetic” indi-
cates that the core idea of the algorithm is based on natural selection, which is the
process that drives biological evolution [27]. The algorithm starts with a population of
individuals, where each individual represents a potential solution to the problem. GA
continuously generates a large number of individual solutions. In each iteration, the
algorithm selects individuals as parents and uses them to create the next generation
of solutions.

The Monte Carlo Method (MLM) solves optimization problems through random
sampling. Initially, a large number of samples are generated with randomly selected
design parameters such as water depth and array spacing. The resulting q factor is
then calculated for each sample, and the optimal design is identified as the one that
yields the maximum q factor.
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2.3. Review on Machine Learning Method
Machine learning (ML) is a method that enables machines to process and analyze
data efficiently[28]. It is particularly effective at extracting valuable insights from large
datasets. ML utilizes various algorithms to handle data-related problems. For the
optimization problem of the WEC array, the Random Forest Regressor and Neural
Network are two of the most commonly used algorithms.

2.3.1. Random Forest Regressor
Random Forest Regressor is one of the algorithms of the machine learning method.
The fundamental concept of the algorithm is the formation of decision trees. A de-
cision tree recursively divides the original dataset by creating decision nodes. A de-
cision node contains the condition of how the data would be split and classified into
the next nodes. At the end of the decision nodes are the leaf nodes, and they store
the prediction of the target variable. The term ”random forest” is an ensemble used
to describe the randomly selected decision trees. Each tree is trained on a different
random subset of the data. These randomly selected trees help decrease the sensi-
tivity of the model to the variance of the initial data, leading to better generalization
and improved performance on unseen data[29]. At each node of the tree, a random
subset of features is selected to further decrease correlation among each tree. Af-
terward, the potential split points are evaluated. The algorithm chooses the split that
minimizes the impurity in the resulting child nodes. Impurity is typically measured by
metrics like Mean Squared Error (MSE) for regression tasks. Finally, The process of
finding the best split is repeated recursively for each child node, and the predictions
are made by averaging the outputs of all the trees in the forest.

Figure 2.1: Random Forest Schematic Diagram

2.3.2. Neural Network
The term ”Neural Network” refers to a broad category of models inspired by the hu-
man brain’s network of neurons. This category covers various architectures and mod-
els designed for different tasks. The fundamental component of a neural network is
the neuron. A neuron receives one or more inputs, processes them by calculating
a weighted sum, adds a bias, and then applies an activation function to generate an
output. Neural Networks come in various types based on the geometric architecture
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of their neurons. The most common types used in data analysis include Multi-layer
Perceptrons (MLPs) and Radial Basic Functions (RBF)

Multi-Layer Perceptron
The architecture of the MLP method is made up of multiple neurons organized into
layers, typically comprising an input layer, several hidden layers, and an output layer.
During training, the input data moves sequentially through each layer of the network.
Each neuron within a layer has its own set of weights and biases. The weights modify
the impact of each input feature, while the bias enables the activation function to shift,
influencing whether the neuron is activated. The output of each neuron is calculated
and sent to the subsequent layer until the final result is obtained. A diagram of MLP
is shown in Figure 2.2

Figure 2.2: Multi-Layer Perceptron Schematic Diagram

Radial Basis Functions
Unlike the MLP method which usually has multiple hidden layers, the RBF method
consists of only one hidden layer, along with a single input layer and a single output
layer. This method uses radial basis functions ϕ as activation functions to form the
neurons in the hidden layer. These functions depend on the distance between the
input and certain center points, which enables the network to model complex, non-
linear relationships effectively. A schematic drawing of RBF is shown in Figure 2.3

2.4. Review on Load Estimation
The accurate estimation of WEC loads is crucial in the design process of an offshore
wave farm. By setting up a precise relation between the loads and other parameters,
one can fasten the design cycle and optimization process of the wave farm.

Various research has investigated the estimation of forces on theWEC. Krishna Ku-
mar[30] collected characteristic wave data in different sites and estimated sea state
characteristics. The DBN-based machine learning method was used, and a model
was trained to predict the sea state characteristics to compute the wave drift force.
Zheng Wu[31] focused on 3-DOF wave energy convertor and established the relation-
ship between the load resistance and power conversion efficiency based on machine
learning. Shuo[32] used an Observed-Based Unknown Input Estimator(OBUIE) to es-
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Figure 2.3: Radial Basis Functions Schematic Diagram

Table 2.2: Summary of three previous literature related to load estimation

Literature Year Method Main Work Limitation
Krishna
Kumar et
al.[25]

2018DBN
based ML
model

Using Deep Belief Network
(DBN) based ML method to
predict the wave characteristic
and derive the wave-induced
loads

Only apply for
long-term predic-
tion

Zheng
Wu et
al.[31]

2022EEMD
and LSTM
based ML
model

Propose a load optimization con-
trol based on machine learning

Only focus on sin-
gle device

Shuo Shi
et al.[32]

2019OBUIE
and GP

Estimate the excitation force in
time domain and predict the fu-
ture forces using Gaussian Pro-
cess

Does not perform
well at sea state
with low signifi-
cant wave height

timate the excitation force, then a Gaussian Process is adopted to predict future value
of the excitation force. The summary of these literatures are presented in Table 2.2

2.5. Review on the optimization of WEC Array Design
Several studies have been proposed on the optimization ofWEC array design. Most of
these studies look into a limited number of layouts, and then analyze each case by nu-
merical modeling method to identify the optimal design. Borgarino[25] looked into the
power absorption of a WEC farm with different layouts and interval distances between
two absorbers. By comparing power production of square-based and triangle-based
array, an optimal solution can be achieved. Moreover, Göteman[33] studied the im-
pact of the dimension of PAs on the annual absorbed energy. The highlight of this
research is the exploration of layouts involving PAs with different sizes. Apart from
layout and distances between WECs, Bozzi[34] also studied the influence of different
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Table 2.3: Summary of seven previous literature related to WEC array optimisation

Literature Year Method Main Work Limitation
B.Borgarino
et al.[25]

2012Numerical
compari-
son

Investigate the power absorption
of WEC farms with varying array
shapes.

Insufficient num-
ber of shape
tests

Malin
Göte-
man et
al.[33]

2017Analytical
and Nu-
merical

Investigate how varying dimen-
sions of WECs affect the an-
nual power output of wave en-
ergy farms.

Does not account
for the varying
sea state during a
year

Silvia
Bozzi et
al.[34]

2017Numerical
compari-
son

Investigate WEC farm power ab-
sorption with diverse array con-
figurations, considering different
wave directions

Lack of connec-
tion between to-
tal cost and power
output

Alejandro
et al.[39]

2018Numerical
compari-
son

Aiming to maximize the power
output in a wave energy farm
composed of 9 PAs in different
array

Lack of connec-
tion between ar-
ray and other de-
sign factor

E. Farag-
giana et
al.[40]

2019Particle
swarm(PSO)
and GA

Aiming to minimize LCOE of
WEC with different array

Cost estimation
only based on
part of the design

Mehdi Ne-
shat et
al.[38]

2020Cooperative
EA

Use multiple optimization meth-
ods to maximize the absorbed
power

Long calculation
time

Marianna
et al.[36]

2020Genetic
Algorithm

Explore optimal array design
considering cost and power pro-
duction

Numbers of
WECs is limited
due to long calcu-
lation time

wave directions. The study not only showed the importance of aligning WECs with the
dominant wave direction but also revealed that wave interaction could be negligible
when the distance between two PAs is large.

In addition to simply comparing different results to achieve an optimal solution,
other optimization methods are available. Genetic Algorithm is a commonly used
method in WECs array design optimization. Jabrali [35] focused on the optimization
of WEC parameters, such as the dimensions and PTO damping coefficient, using
GA. Marianna[36] developed an economic model for a point absorber wave farm and
used GA to identify the optimal array layout based on LCOE values. Chris [37] also
explored the optimization of the array considering cost and power using GA. Addition-
ally, Neshat[38] used multiple Evolution Algorithm (EA) strategies to validate the newly
proposed Hybrid Cooperative Co-evolution Algorithm (HCCA) for array optimization.
The highlights and the limitations of the above research are summarised in Table 2.3



3
Theory Background

The body motion of a WEC device in regular incoming waves is described by an equa-
tion of motion that accounts for both reaction and excitation forces. To solve this
problem, potential flow theory is applied. Software like Capytaine uses the Boundary
Element Method (BEM) to solve the Green function numerically, which enables the
derivation of the potential on the surfaces of the floating bodies. Once the motion of
the rigid body in a fluid is known, the mean power absorption of a single body point
absorber can be determined.

The fundamental theorem of the numerical method will be presented in this chap-
ter.

3.1. Basic Law of Fluid Mechanics
To describe the dynamic motion of a floating body, a fundamental understanding of
fluid flow properties is necessary. The Navier-Stokes equations, which govern fluid
motion, are crucial in this context. These equations consist of partial differential equa-
tions expressing the concepts of mass conservation, momentum conservation, and
energy conservation.

3.1.1. Continuity Equation
The continuity equation is the application of mass conservation laws. It can be derived
using the Reynold Transport Theorem (RTT) and Gauss Theorem. RTT provides a
link between the conservation laws for a control volume and the conservation laws for
a system of particles moving with the flow. The general RTT can be expressed as:

dBsystem

dt
=

d

dt

∫
CV

ρb dV +

∫
CS

ρb V⃗ · n̂ dA (3.1)

Where:

• Bsystem is the generic extensive property of the system (such as mass or momen-
tum

13
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• b is the corresponding intensive property (extensive property per unit mass)
• ρ is the fluid density.
• CV is the control volume
• CS is the control surface, the boundary of CV

• V⃗ is the velocity vector of the fluid.
• n̂ is the unit normal vector pointing outward on the control surface

Gauss’s Theorem is a key concept in vector calculus. It establishes a connection
between the flux of a vector field through a closed surface and the divergence of the
vector field within the volume enclosed by that surface. The theorem is given by:∫

CS

F · n dS =

∫
CV

∇ · F dV (3.2)

where:

• CS is the closed surface enclosing the volume CV .
• n is the outward-pointing unit normal vector on the surface.
• dS is a differential element of the surface.
• dV is a differential element of the volume.
• ∇ · F is the divergence of the vector field F .

Substitute mass m into Bsystem in Equation 3.1, and transform the control surface
term into control volume using Gauss Theorem yields the continuity equation:

∂ρ

∂t
+∇ · (ρV⃗ ) = 0 (3.3)

For incompressible flow, the density ρ is a constant and therefore Equation 3.3 can be
simplified as:

∇ · V⃗ = 0 (3.4)

3.1.2. Momentum Equation
The momentum equation is derived from Newton’s second law and momentum con-
servation. With the application of RTT and Gauss Theorem again, the equation can
be derived. Substitute momentummV⃗ into Bsystem in Equation 3.1 yields the following
formulation: ∑

F⃗ =

∫
CV

∂

∂t
V⃗ ρdV +

∫
CS

V⃗ ρV⃗ · n̂dA (3.5)

The
∑

F⃗ term is a combination of forces acting on the fluid, including viscous
stress, pressure, and external gravity force. Combine the term in the right hand using
Gauss Theorem and decomposes the term in the left-hand side yields the momentum
equation:
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ρ

(
∂V

∂t
+ V · ∇V

)
= −∇p+ µ∇2V + ρg (3.6)

For non-viscous fluids, the mu∇2V in the right-hand side in Equation 3.6 can be
neglected, and yields the Euler Equation:

ρ(
∂V⃗

∂t
+ V⃗ · ∇V⃗ ) = −∇p+ ρg (3.7)

3.1.3. Pressure and Force
The Bernoulli equation is an important concept that provides a relationship between
the pressure, velocity, and elevation in a moving fluid. It is a simplification and rewrite
of the Euler Equation along a streamline:

p = −ρ
∂Φ

∂t
− 1

2
ρ(u2 + v2 + w2)− ρgz (3.8)

Where Φ is the velocity potential. When considering the linear behavior of a floating
body, the second term with higher order in Equation 3.8 can be neglected, which yields
the linear pressure:

p = −ρ
∂Φ

∂t
− ρgz (3.9)

In frequency domain, the pressure can be written as:

p = −iωρϕ− ρgz (3.10)

Once the fluid pressures surrounding the floating body are available, the forces that
the floating body experiences can be obtained:

F =

∫∫
S

(p · n̂)dS (3.11)

Where S is the mean wetted surface of the floating body, n̂ is the unit normal vector
pointing outward of that surface. Considering 6-DOF body motion, the force in ith
degree of freedom can be expressed as:

Fi =

∫∫
S

(p · ni)dS (3.12)

3.2. Potential Flow Theory
The theory background of Capytaine is based on the potential flow theory which is
used to analyze the behavior of fluid flow under certain conditions. It is particularly
useful for studying incompressible, irrotational, and non-viscous flows. The gradient
of a given velocity field is the velocity potential. The velocity potential Φ is widely used
for hydrodynamic analysis.
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3.2.1. Velocity Potential
A velocity potential Φ(x, y, z, t) is a function where its derivative in any direction cor-
responds to the flow velocity in that direction. Assuming that the fluid is irrotational,
non-viscous, incompressible, continuous, and homogeneous, the potential Φ is de-
fined by:

V⃗ = ∇Φ (3.13)

u =
∂Φ

∂x
, v =

∂Φ

∂y
, w =

∂Φ

∂z
(3.14)

Where u, v, and w represent the velocity component in x, y, and z directions. Each
velocity must still satisfy the continuity equation. Therefore Equation 3.4 is introduced
and can be expressed as:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (3.15)

Apply the continuity equation and combine with Equation 3.14 yields the Laplace
equation:

∇2Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0 (3.16)

The potential flow can be easily superposition by adding simple potential elements
to produce a more complicated flow. The most widely used potential flow element in
ship hydrodynamics is the source flow. A source is a point from which flow radiates
outward in all directions. The potential of a 3D source flow with source strength σ in
spherical coordinate is given by:

Φ =

∫
S

σ

4πr
dS (3.17)

3.2.2. Airy Wave Theory
Airy wave theory is a fundamental theory in fluid mechanics used to describe the
propagation of waves on the water surface. The wave profile of the regular wave can
be described by a simple harmonic function:

η(x, t) = ζcos(kx− ωt) (3.18)

Where:

• η is the wave elevation.
• ζ is the wave amplitude.
• k is the wave number (k = 2π

λ
)

• ω is wave frequency, measured in radians per second [rad/s].

Assuming the wave steepness is small and nonlinearity can be neglected, the
wave potential can be obtained by solving the Laplace equation with the appropriate
boundary conditions:
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Figure 3.1: Regular wave diagram[41]

1. Free surface boundary condition: The pressure at the free surface is equal to
the atmospheric pressure, and the moving speed of the surface and the fluid are
identical

∂Φ

∂t
+ gη = 0 at z = 0

∂Φ

∂z
=

∂η

∂t
at z = 0

(3.19)

Combine the above two equation yield the free surface boundary condition:
∂2Φ

∂t2
+ g

∂Φ

∂z
= 0 (3.20)

2. Seabed boundary condition: The seabed is impermeable, therefore the vertical
velocity at the seabed must be zero

∂Φ

∂z
= 0 at z = −h (3.21)

These conditions constitute the essential boundary conditions required to solve the
Laplace equation. For a wave traveling in x direction, the solution of incoming Airy
wave potential in the frequency domain can be expressed as:

• Shallow water

ϕ0 = −i
gζ

ω

cosh(k(z + h)

cosh(kh)
eik(xcosβ+ysinβ) (3.22)

• Deep water
ϕ0 = −i

gζ

ω
ekzeik(xcosβ+ysinβ) (3.23)

Where β is the incoming wave angle range from −2π to 2π, ζ is the wave amplitude, h
is the water depth, and wave number k is given by dispersion relation ω2 = kgtanh(kh).
In deep water condition, the water depth h is infinity and the wave number k is defined
by ω2 = kg
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3.2.3. Potential Coefficient
Imagine a rigid body floating in a fluid with regular waves. The total potential of the
floating body is the combination of the undisturbed incoming wave potential, the scat-
tered wave potential, and the radiation potential:

Φ = Φr + Φ0 + Φ7 (3.24)

Where:

• Φr represents the radiated wave potential caused by waves generated by body
motion

• Φ0 represents the incoming Airy wave potential
• Φ7 is the scattered wave potential due to the presence of the fixed body

The potentials have to satisfy the following conditions:

1. Laplace equation

∇2Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0 (3.25)

2. Free surface boundary condition

g
∂Φ

∂z
− ω2Φ = 0 (3.26)

3. Seabed boundary condition

∂Φ

∂z
= 0 with z = −h (3.27)

For frequency domain expression, the linear potential Φ can be expressed as the
product of a space-dependent term and a harmonic time-dependent term with unit
amplitude:

Φ(x, u, z, t) = Re
[
ϕ(x, y, z)eiωt

]
(3.28)

The complex amplitude of velocity potential ϕ is the superposition of the Airy wave
potential ϕ0, the scattered wave potential ϕ7 and the radiation potential ϕj in six degree
of freedom:

ϕ = ϕ0 + ϕ7 + iω

6∑
j=1

ϕj ζ̂j (3.29)

Where ζ̂j represents the complex amplitude of the harmonic body motion in jth de-
gree of freedom. The added mass and radiation damping coefficients are defined as
follows:

aij = Re
[
ρ

∫∫
S

ϕjnidS
]

(3.30)

bij = Im
[
− ρω

∫∫
S

ϕjnidS
]

(3.31)
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Where ni is the unit normal direction of a surface element dS due to the motion in
i degree of freedom. They are defined as follows:

surge : n1 = cos(n, x)

sway : n2 = cos(n, y)

heave : n3 = cos(n, z)

roll : n4 = yn3 − zn2

pitch : n5 = zn1 − xn3

yaw : n6 = xn2 − yn1

(3.32)

Where cos(n, x) represents the cosine of the angle between the normal vector n and
the x-axis, which is the same expression as: nx

|n|

3.2.4. Solving Potentials
Radiation Problem
For different problem cases, the normal velocity on the body surface would vary. In
the case of the radiation problem, the boundary condition at the hull surface is water-
tight, meaning that the normal velocity of the fluid around the hull matches the normal
velocity of the hull itself for each degree of freedom. The normal velocity at a specific
point on the hull surface is given by:

vj = ζ̇j · n̂j (3.33)

Where ζ̇j is the velocity in j degree of freedom, and n̂j is the unit normal vector. There-
fore, the hull boundary condition yields:

∂Φj

∂n
= vj (3.34)

Substitute Equation 3.28 in the left-hand side and transform the right-hand side yields:

Re
[∂ϕj

∂n
· ζ̂ · eiωt

]
= Re

[
ζ̂ · eiωt · ni

]
(3.35)

∂ϕj

∂n
= nj (3.36)

Diffraction Problem
For the diffraction problem, the velocity on the floating body corresponds to the velocity
of Airy’s wave field. Since the hull surface is watertight, the sum of the incoming wave
potential and the diffraction potential must equal zero.

∂ϕ0

∂n
+

∂ϕ7

∂n
= 0 (3.37)

Boundary Integral Problem
It is stated that the potential ϕj at a specific point on the mean wetted surface S,
resulting from motion in the j degree of freedom and the diffraction potential ϕ7, can
be represented by a distribution of single sources across the body surface:

ϕj(x) =
1

4π

∫∫
S

σj(ξ) ·G(x, ξ)dS (3.38)

Where:
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• ϕj(x) represents the potential function at a point x on the surface S

• σj(ξ) represents the complex source strength at a source point ξ on the surface
S

• G(x, ξ) is the Green function which enables the potential due to a distribution
of sources over the surface S satisfies the Laplace equation, the free surface
condition, and the sea bottom condition.

Once the source strength σj(ξ) is known the potential can be derived. The unknown
source strengths σj(ξ) for radiation and diffraction problems can be determined by
applying corresponding boundary conditions on the body:

• For radiation boundary value problem

∂ϕj

∂n
= nj = −1

2
σj(x) +

1

4π

∫∫
S

σj(ξ) ·
∂G(x, ξ)

∂n
· dS (3.39)

• For diffraction boundary value problem

∂ϕ7

∂n
= −∂ϕ0

∂n
= −1

2
σ7(x) +

1

4π

∫∫
S

σ7(ξ) ·
∂G(x, ξ)

∂n
· dS (3.40)

After solving the above equations the unknown source strengths and potential can be
determined. Substituting the result into Equation 3.12, Equation 3.30, Equation 3.31
yields the hydrodynamic forces, added mass, and radiation damping respectively.

Numerical Method
In general, the hull shape of the floating body cannot be described by an analytical
function, so the numerical aspect is introduced. By dividing the mean wetted surface
of the body into N panels with uniformly distributed sources, the normal derivative of
the potential at location m can be described as:

∂ϕmj

∂n
= −1

2
σmj +

1

4π

N∑
n=1

σnj ·
∂Gmn

∂n
∆Sn for m = 1, . . . , N and n ̸= m (3.41)

This equation can be converted into a system of linear equations with N unknown
complex source strengths.

For radiation problem
A11 · · · · · · · · · A1N

· · · A22 · · · · · · · · ·
· · · · · · A33 · · · · · ·
· · · · · · · · · . . . · · ·
AN1 · · · · · · · · · ANN




σ1,j
...
...
...

σN,j

 =


n1,j
...
...
...

nN,j

 (3.42)

Where:

• j represents the degree of freedom of the radiation potential: j = 1, ..., 6
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• Ann = −1
2

• Amn = 1
4π

∂Gmn

∂n
∆Sn

• σn,j = unknown source strength
• nn,j = is the local normal direction component at panel n in j degree of freedom
given in Equation 3.32

For diffraction problem
A11 · · · · · · · · · A1N

· · · A22 · · · · · · · · ·
· · · · · · A33 · · · · · ·
· · · · · · · · · . . . · · ·
AN1 · · · · · · · · · ANN




σ1,7
...
...
...

σN,7

 =



−(∂ϕ0

∂n
)
1...

...

...
−(∂ϕ0

∂n
)
N

 (3.43)

Where:

• Ann = −1
2

• Amn = 1
4π

∂Gmn

∂n
∆Sn

• σN,7 = unknown source strength of diffraction potential at panel N

3.3. Rigid Body Motion
The motion of a rigid body is governed by the different external forces and by the
inertia of the body itself. These forces can be derived by solving the boundary integral
problems. After the forces are known, the rigid bodymotion can be predicted by setting
up a proper equation of motion.

3.3.1. Total Forces
To estimate the motion of a body in fluid, it is essential to understand the forces acting
on the hull surface. For a floating body in a moving fluid, the forces acting in the ith
degree of freedom include the Froude-Krylov force, diffraction force, radiation force,
and hydrostatic force. The first two forces are commonly referred to as excitation
forces. In a linear analysis, it is assumed that the wave excitation force and the body’s
motion are decoupled, same as the radiation force and incoming waves. This means
the forces experienced by the body due to its motion are independent of the waves,
and the forces due to the waves are independent of the body’s motion. Consequently,
the total force can be described as the simple sum of these four components:

F =
6∑

i=1

FFK,i + Fd,i︸ ︷︷ ︸
Excitation Force

+Fr,i + Fs,i

 (3.44)

The Froude-Krylov force FFK is generated from the unsteady pressure field gener-
ated by undisturbed incoming waves, while the radiation force Fr is due to the waves
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produced by the body’s motion. Furthermore, the diffraction force Fd is caused by
wave disturbances resulting from the presence of the stationary body. Lastly, the hy-
drostatic force Fs, resulting from buoyancy, is the only term that is not related to the
fluid’s dynamic behavior around the hull of the floating body. Once the potentials are
solved, the total pressure p can be derived by substituting Equation 3.29 into Equa-
tion 3.10:

p = −iρω

(
ϕ0 + ϕ7 + iω

6∑
i=1

ϕiζ̂i

)
− ρgz (3.45)

With the application of Equation 3.12, the total force in ith degree of freedom can be
written as:

Fi =

∫∫
S

[
−iωρ

(
ϕ0 + ϕ7 + iω

6∑
i=1

ϕiζ̂i

)
− ρgz

]
nidS for i = 1, ..., 6 (3.46)

This expression can be further decomposed into the summation of excitation force,
radiation force, and hydrostatic force:

Fi = −iωρ

∫∫
S

(ϕ0 + ϕ7)nidS︸ ︷︷ ︸
Excitation Force

+ ρω2

∫∫
S

(
6∑

i=1

ϕiζ̂i

)
nidS︸ ︷︷ ︸

Radiation Force

− ρg

∫∫
S

znidS︸ ︷︷ ︸
Hydrostatic Force

(3.47)

3.3.2. Excitation Force
When a wave approaches a floating body, the pressure field is disturbed by the incom-
ing wave potential, which leads to the generation of excitation forces. These forces
are a combination of the Froude-Krylov force and the diffraction force. The Froude-
Krylov force arises from the velocity potential of the undisturbed incident wave and
is calculated by integrating the pressure distribution over the mean wetted surface of
the body. This can also be seen as the incoming wave potential remains unchanged
and ignores the presence of the body. Conversely, the diffraction force, which results
from the diffracted wave potential across the wetted surface, acts as a corrected term
to the Froude-Krylov force because of the body’s presence. The contribution of the
incoming wave potential and diffraction potential extracted from Equation 3.45 can be
expressed as:

pEX = −iρω(ϕ0 + ϕ7) (3.48)
Substitute this formulation into Equation 3.12 yields the excitation force.

FEX,i = −iωρ

∫∫
S

(ϕ0 + ϕ7)nidS (3.49)

3.3.3. Radiation Force
A moving body in a fluid will generate waves that radiate outward. This wave would
gradually dissipate after traveling over an infinite distance. This energy loss is cap-
tured by a damping force that opposes the body’s motion. Additionally, as the body
moves, it causes a small portion of the surrounding water to oscillate from crest to
trough. Since this portion of water accelerates at the same rate as the moving body,



3.3. Rigid Body Motion 23

the resulting additional net force can be captured by the added mass. The pressure
correspond to the radiation potential can be extracted from Equation 3.45:

pR = ρω2

(
6∑

i=1

ϕiζ̂i

)
(3.50)

Substitue the pressure into Equation 3.12 yields the radiation force:

FR,i = ρω2

∫∫
S

(
6∑

i=1

ϕiζ̂i

)
nidS (3.51)

This expression can also be rewritten as:

FR,i =
6∑

j=1

ζ̂ifij i = 1, ..., 6 (3.52)

Where fij is the complex force in ith degree of freedom induced from the velocity of
the structure in j direction. fij can be written as:

fij = ω2aij − iωbij (3.53)

Where aij and bij are the added mass and radiation damping coefficient defined in
Equation 3.30 and Equation 3.31 respectively. In other words, the radiation forces
are incorporated into the equation of motion through the added mass and radiation
damping coefficient matrices, as shown in Equation 3.59.

3.3.4. Hydrostatic Force
The hydrostatic force, also known as the buoyancy force, is the force acting on the
floating body which is proportional to the submerged volume of the body.The pressure
corresponding to hydrostatic force can be extracted from Equation 3.45:

pS = −ρgz (3.54)

Substitute the pressure into Equation 3.12 yields the hydrostatic force:

FS,i = −ρg

∫∫
S

z · nidS (3.55)

When calculating the hydrostatic force using the above equation, the force is consid-
ered zero-order, meaning that it is independent of the floating body’s motion. How-
ever, in reality, this force is balanced by the weight of the structure and is influenced
by the body’s movement. This motion-dependent hydrostatic force is referred to as
the restoring force and can be expressed as:

FS,i = −
6∑

j=1

cijζi i = 1, ..., 6 (3.56)
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Where ζi is the motion of the body in ith degree of freedom, and cij represents the
restoring coefficient. For a rigid body the restoring coefficient can be calculated by:

c33 = ρg

∫∫
S

n3dS

c34 = ρg

∫∫
S

yn3dS

c35 = −ρg

∫∫
S

yn3dS

c44 = ρg

∫∫
S

y2n3dS − ρg∀zb +mgzg

c45 = −ρg

∫∫
S

xyn3dS

c46 = −ρg∀xb +mgxg

c55 = ρg

∫∫
s

x2n3dS + ρg∀zb −mgzg

c66 = −ρg∀yb +mgyg

(3.57)

These coefficients constitute the hydrostatic coefficient matrix K, and the hydrostatic
force is incorporated into the equation of motion through this matrix.

The center of buoyance of the floating body in Cartesian coordinates can be cal-
culated by:

xb =
1

∀

∫∫∫
∀
xdV

yb =
1

∀

∫∫∫
∀
ydV

zb =
1

∀

∫∫∫
∀
zdV

(3.58)

Where ∀ represents the submerged volume of the body.

3.3.5. Equation of Motion
Once the total forces are derived, the motion of the body can be predicted using a
mass-spring-damper system. This system includes an inertia term that resists accel-
eration, a damping term that dissipates energy, and a spring term that represents the
restoring force. The mass-spring-damper system includes the excitation force can be
written as:

(M + A) Ẍ +BẊ +KX = F (3.59)

Here M is the 6x6 mass matrix representing the inertia of the floating body. Ad-
ditionally, A is the added mass matrix of the same dimension, and B is the radiation
damping matrix. the coefficients of added mass matrix and radiation damping are de-
fined in Equation 3.30 and Equation 3.31 respectively. Lastly, K is the hydrostatic
stiffness matrix whose coefficients are defined in Equation 3.57. The mass matrix M
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can be expressed as:

M =


m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0
0 −mzg myg I11 I12 I13

mzg 0 −mxg I21 I22 I23
−myg mxg 0 I31 I32 I33

 (3.60)

Where m is the mass of the body. xg, yg, and zg are the coordinate of the center of
gravity. The motion of the body can be expressed in the frequency domain as:

X = ζ̂eiωt (3.61)

Where ζ̂ represents the complex amplitude of the body motion. With this expression,
the body acceleration and the velocity can also be written in frequency domain:

Ẋ = iωζ̂eiωt (3.62)

Ẍ = −ω2ζ̂eiωt (3.63)
Consequently, the overall equation of motion in frequency domain becomes:[

−ω2(M + A) + iωB +K
]
ζ̂eiωt = F (3.64)

To find the natural frequency, the right-hand side of the above equation is set to zero.
Then, the natural frequency can be derived by finding the ω which fulfills the following
equation: [

−ω2(M + A) + iωB +K
]
ζ̂eiωt = 0 (3.65)

For the nontrivail case(ζ̂ ̸= 0), the natural frequency ωn fulfill the following equation:

−ωn
2 +

K

M + A(ωn)
= 0 (3.66)

Once the mass matrix, added mass matrix, radiation damping matrix, hydrostatic ma-
trix, and excitation force are determined, the motion of the body can be predicted. By
combining these values, the response amplitude operator (RAO) can be calculated,
which is defined as:

RAO =
ζ̂

ζ̂a
(3.67)

Where ζ̂a is the complex amplitude of the incoming wave. The RAO can be used to
compute the response motion of the floating body in 6 degree of freedom. For regular
wave, the response motion is the wave amplitude times the RAO at each degree of
freedom.

Since The excitation force is proportional to the incoming wave amplitude ζa =
ζ̂ae

iωt, Equation 3.64 can also be expressed as:[
−ω2(M + A) + iωB +K

]
ζ̂eiωt = F · ζ̂aeiωt (3.68)

Consequently, the RAO can be obtained using the following equation:

RAO(ω) = [−ω2(M + A) + iωB +K]−1F (ω) (3.69)
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3.4. Power Absorption
Power production is a critical parameter for evaluating the performance of a WEC.
For a single-body point absorber, the heave motion is the most significant among all
six degrees of freedom, since only the heave motion drives PTO system and gener-
ates power. Furthermore, research indicates that selecting the optimal PTO damping
coefficient can maximize the production of wave energy.

3.4.1. Mean Power Absorption
As waves propagate through the WECs, the motion of the buoy drives the damper
of the PTO system and generates power. During a wave cycle, the mean power ab-
sorption is equivalent to the average power utilized by the mechanical damper within
the PTO system. Consequently, if the wave is assumed to be harmonic, the mean
absorbed power over a wave cycle can be expressed as:

P =
1

T

∫ T

0

BPTOu
2dt =

1

2
ω2Bpto|ζ3|2 (3.70)

Where BPTO represents the damping coefficient of the PTO device, and ζ3 represents
the heave amplitude of the WEC.

3.4.2. Suboptimal Power control
The suboptimal PTO control is a principle that maximizes the power absorption ex-
pressed in Equation 3.70. This approach incorporates the concept of impedance
[42][43], which is an analogy to its use in electric systems. The radiation impedance,
denoted by Z, is defined as:

Z = −iωρ

∫∫
S

ϕ3 · n3dS (3.71)

Where ϕ3 is the radiation potential component in heave degree of freedom. Conse-
quently, the radiation force of the heave mode can be written as:

Fr = iωZζ̂3 = R + iX (3.72)

Where ζ̂3 represents the complex heave amplitude. The optimum PTO damping coef-
ficient can be derived using the following equation:

B(ω)PTO = |Zi|

=
[
Ri(ω)

2 +Xi(ω)
2] 1

2
(3.73)

Where:
Ri(ω) = Ba(ω) + Rf (3.74)

Xi(ω) = iω [m+ a33(ω)] +
c33
iω

(3.75)

• Zi is the intrinsic impedance of the heaving body
• Ri is the real part of the intrinsic impedance
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• Xi is the imaginary part of the intrinsic impedance
• Ba is the radiation damping at certain wave frequency
• Rf is the term accounting for the viscous loss
• m is the mass of the floating body
• a33 is the heave added mass at certain wave frequency
• c33 is the restoring coefficient

The nonlinear viscous term Rf , derived from Morrison’s equation, can be linearized
using a Fourier series expansion based on work from Malta et al.[44]. Combining all
the parameters in the above equation yields the optimal power-damping coefficient at
a certain wave frequency.



4
Methodology

In this chapter, the methodology and the process to find the optimal array design is
presented. The response motion of a WEC in regular waves is estimated using poten-
tial flow theory and Newton’s second law. The hydrodynamic analysis is performed
with Capytaine, and once the body’s motion is determined, the power output of the
WEC is computed using Matlab. This process is repeated with the added devices
to evaluate an array of four WECs. By varying the design parameters and collecting
data on power production, relationships between parameters can be analyzed. Once
these relationships are established, the optimal array design can be determined.

4.1. Model Setup
In this thesis, a single-device point absorber with a cylindrical shape is selected as
the test model. The geometry is created using the CAD software Rhinoceros 3D[45].
After creating the model in Rhino, it is exported as a .stl file, which can then be read
into Capytaine for setting up a FloatingBody. The full geometry of the model is shown
in Figure 4.1 and the mesh below water plane is shown in Figure 4.2

The test point absorber is cylindrical, with a diameter of 4 meters and a height of
10 meters. A FloatingBody contains information of mesh, degree of freedom, and
physical properties such as mass and center of mass. Note that only the submerged
part of the model is used for hydrodynamic analysis.

4.2. Radiation & Diffraction Analysis
Once a floating body is created the next step is to define LinearPotentialFlowProblem,
which is a defined class in Capytaine and is also a problem collection of several pa-
rameters such as the wave angular frequency ω, water density ρ, and water depth
h. The LinearPotentialFlowProblem class has two sub-classes: RadiationProblem
and DiffractionProblem. These two types of problems require different necessary
parameters and solve theGreen function with corresponding boundary conditions. For
the radiation problem, the necessary parameters include themesh, degree of freedom,

28



4.3. Data Analysis 29

Figure 4.1: Full geometry of test point absorber shown in BEMRosetta

Figure 4.2: Submerged part of the mesh shown in Capytaine

and the incoming wave frequency. For the diffraction problem, the necessary param-
eters are mesh, wave angle, and wave frequency. By configuring these problems
with various parameters and running them multiple times, several key hydrodynamic
characteristics can be determined.

4.3. Data Analysis
4.3.1. Linear Regression
The goal of performing data analysis is to find the relationship of input parameter and
the output power and forces. For property that involves single parameter like forces,
the linear regression is used to setting up the relationship between forces and input
parameters. The work is conducted in Matlab using the first-order polyfit function [46].
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Table 4.1: Summarized characteristic of the buoy model

Feature Value Unit
Diameter 4 [m]
Height 10 [m]
Mass 62831 [kg]
Natural frequency 1.22091 [rad/s]
PTO damping coefficient 29 [kNs/m]
Number of panels 220 [-]
Number of nodes 112 [-]

4.3.2. Machine Learning Method
When a property involves two or more parameters, linear regression cannot clearly
show the relationship between the parameters and the output data. To address this
limitation, machine learning is employed. By training a model using machine learning,
relationships involving multiple inputs can be more accurately determined.

In this thesis, the scikit-learn (sklearn) Python package was used for machine
learning analysis. This package enables the application of both Random Forest Re-
gressor and Neural Network. For the Random Forest Regressor, key parameters
include n_estimators, which specifies the number of trees, and random_state, which
controls the randomness of the sampling process used to build the trees. Setting
random_state to a constant ensures that the model produces identical results each
time it is run. The sklearn package also provides the Multi-Layer Perceptron (MLP) for
neural network analysis. The hidden_layer_sizes parameter determines the number
of neurons in each hidden layer, while the max_iter parameter controls the maximum
number of iterations for the optimization algorithm to converge. If the model fails to
converge within this limit, training will stop, and it means that further adjustments are
required to improve convergence. After training the machine learning models, the op-
timal array design can be determined by repeatedly running the model and predicting
the output multiple times.



5
Numerical Results Using Capytaine

Capytaine is an open-source Python package frequency-domain BEM solver, adapted
from NEMOH. It can be used for the computation of wave loads on the floating struc-
ture. Besides the various function in Capytaine, the Python programming environment
makes it easier to perform further analysis after obtaining hydrodynamic results. The
process of solving a problem in Capytaine starts with setting up a model used in the
analysis, followed by defining a linear potential flow problem with appropriate param-
eters. After solving the problem, the results are saved for further analysis.

5.1. Single device in Heave Mode
5.1.1. Hydrodynamic Result for Single Device
Once the floating body is set, the multiple problems with different input wave fre-
quencies can be solved in a loop. The frequency range is divided into 100 uniform
values between 0.01 and 10, and the wave direction is zero. After solving all the
LinearPotentialFlowProblem, the result can be visualized by line plots shown in Fig-
ure 5.3
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Figure 5.1: Heave added mass Figure 5.2: Heave excitation force

Figure 5.3: Hydrodynamic characteristic for single device

It can be seen from the figures that both added mass and excitation force has a
larger variance at lower frequencies and coverge at higher frequencies.

5.1.2. RAO Computation
Capytaine offers a default module for computation of Response Amplitude Operator.
the rao function receives the xarrayDataset containing the result of previous hydrody-
namic problems and return the RAO result stored in the xarrayDataArray. The RAO
in the heave direction calculated based on the default function is shown in Figure 5.4

5.1.3. Power Production
In the simulation analysis of the output power of a WEC, the natural frequency is an
important factor to verify the power output and controlling factors during the design
process of the device. The natural frequency is the value that makes Equation 3.66
equals zero. The figure used for derivation of the natural frequency is shown in Fig-
ure 5.5

Figure 5.4: RAO in heave direction Figure 5.5: Natural frequency derivation

The figure clearly shows that the blue line intersects between wave frequencies 1
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and 2. With closer inspection, the natural frequency is determined to be 1.22.
To estimate the power output of the WEC device in the regular wave, the linear

PTO was included to the model. In this thesis, 29000[Ns/m] was selected as the PTO
damping coefficient as it is the optimal damping coefficient under the natural frequency
of the device[43]With the usage of Equation 3.70, the powermatrix of the single device
can be obtained in Figure 5.6

Figure 5.6: Power matrix of the single device

Based on the power matrix figure, the maximum power occurs at a period of 5
seconds, which coincides with the natural frequency.

Figure 5.7: Multiple devices array configuration (array spacing = 40m)
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Figure 5.8: Wave direction
Figure 5.9: Array configuration and incoming
wave configuration (wave direction angle=0◦)

5.2. Multiple device
5.2.1. Derivation of Hydrodynamic Characteristics
For the purpose of finding the optimal array design, multiple bodies should be included
in the Capytaine to determine the hydrodynamic characteristic. To reduce the mem-
ory load in the further machine learning analysis, only the heave degree of freedom is
added each of the floating body. The array design is selected as a square shape for
several reasons. The first reason is that a square shape has fewer factors when com-
pared to complex shapes, which is crucial to perform machine learning. Additionally,
a square array is less sensitive to wave direction, making the results applicable to a
wider range of sites. The tested wave farm is composed of 4 identical single device
point absorbers used in section 5.1. The configuration of the wave farm is shown in
Figure 5.7. The parameters of the analysis include a frequency range divided into
100 uniform values between 0.01 and 10, a wave direction of zero, and a spacing of
40 meters (10 times the diameter) between each device. The RAO in heave direc-
tion and hydrodynamic characteristics for each device are shown in Figure 5.10 and
Figure 5.13.
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(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure 5.10: Heave RAO for each device of the array

Figure 5.11: Heave added mass Figure 5.12: Heave excitation force

Figure 5.13: Hydrodynamic characteristic for each device in the wave farm

5.2.2. Derivation of Wave Field
To better understand the wave-structure interaction among the four devices, an anal-
ysis of the radiation field and the diffraction field is included. The radiation field repre-
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sents the elevation caused by the radiated waves generated from the moving devices
in each degree of freedom. Since each device is only allowed to move in heave direc-
tion, the radiation field of the array therefore has four degree of freedom. The results
are shown in Figure 5.14 and Figure 5.15. To better illustrate the elevation, a wave
frequency of 2 rad/s and 1 rad/s are selected.

(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure 5.14: Radiation Field ω = 2
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(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure 5.15: Radiation Field ω = 1

The diffraction field represents the elevation caused by diffracted waves. In the
simulation, the wave angle is set to zero radians. In Capytaine, a wave direction of
zero radians propagates from the negative x to the positive x direction, which mean
from left to the right. The result of the diffraction wave fields for wave frequency equal
to 1 and 2 rad/s are shown in Figure 5.18

Figure 5.16: Diffraction field ω = 2 Figure 5.17: Diffraction field ω = 1

Figure 5.18: Diffraction Field
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Figure 5.19: Power Matrix of The Wave Farm

The power production of the wave farm, consisting of four individual devices, can
be computed by calculating the heave amplitude of each device and using Equa-
tion 3.70. The power matrix of the wave farm is shown in Figure 5.19. Compared
Figure 5.19 with Figure 5.6, the period where the maximum power output occurs shifts
from 5 seconds to 6 seconds. This shift indicates that there exist a significant differ-
ence between modelling of a single device and multiple devices. The interactions
within the wave farm can alter the natural frequency of individual devices.



6
Finding the Relationship

In this chapter, the relationship between array configuration and power output, as well
as excitation force, will be discussed using linear regression. The array spacing is
selected as an input variable to analyze this relationship. The spacing ranges from
2 times the diameter of the device to 12 times the diameter, with increments of 2D.
Additionally, the wave direction angle is included as another input, varying from 0 to
90 degrees in 45-degree increments

6.1. Determine the Relation of Load between design pa-
rameters Using Linear Regression

The regression analysis is performed in Matlab using polyfit function. Due to the
limitation of linear regression, which restricts the input variable to only one, the results
and the linear polynomial lines are displayed as three individual lines. Besides, the
excitation force on different device is displayed in individual figures. The results for
spacing equals 8 meters and 40 meters are shown in Figure 6.1 and Figure 6.2. The
linear polynomial fit line shows a trend similar to the original data. The excitation
force on devices 1 and 4 does not exhibit significant variance when the wave direction
changes. However, the excitation force on devices 2 and 3 shows slight changes with
varying wave direction angles.
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(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure 6.1: Excitation Force at spacing = 8 meters

(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure 6.2: Excitation Force at spacing = 40 meters

The regression analysis of the overall power output is also performed in Matlab.
For power production, a cubic polynomial fit curve wass used to describe the variance
of the power. The results are shown in Figure 6.3 and Figure 6.4. The results implied
that as the input variables increase the regression analysis is no longer reliable for
determining the relation between power and array configuration.

By combining all the linear equations with different array spacing using linear re-
gression analysis, the general mathematical formulation for specific angle and device
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Figure 6.3: Power analysis for spacing = 8 meters

Figure 6.4: Power analysis for spacing = 40 meters

index can be derived. For device 1 at wave incoming direction angle equals to zero,
the relation can be expressed as:

Fex(x, y) = (0.041 · x− 64.166) · y + (−0.084 · x+ 127.31) (6.1)

Where:

• x is the array spacing [m]
• y is the wave frequency [rad/s]
• Fex is the heave excitation force on the device [kN]

To evaluate the reliability of this mathematical formulation, the value generated by
Equation 6.1 is compared to the original data, and the summarized results are pre-
sented in Table 6.1:
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Table 6.1: Evaluation of the estimated forces

Wave Frequency [rad/s] Original Data [kN] Predicted Data [kN] Error [%]
0.5 98.25 92.68 5.66
0.6 91.58 86.43 5.62
0.7 83.16 80.18 3.59
0.8 74.24 73.92 0.43
0.9 67.88 67.67 0.31
1 61.04 61.42 0.63
1.1 49.79 55.16 10.79
1.2 41.85 48.91 16.88
1.3 37.83 42.66 12.77
1.4 32.34 36.40 12.58
1.5 24.87 30.15 21.25
1.6 22.37 23.90 6.80
1.7 14.94 17.64 18.07
1.8 14.21 11.39 19.87
1.9 10.02 5.13 48.77
2 9.93 -1.12 111.26

The table shows that the mathematical formulation is reliable only within the wave
frequency range below 1. The results indicate that even when the relationship appears
nearly linear, deriving a mathematical formulation through linear regression analysis
is not reliable enough. For more complex, nonlinear relationships like a polynomial
line, the mathematical formulation becomes even more complicated. Consequently,
a machine learning model is employed to estimate power production with different
parameters.

6.2. Determine Power Relation Using Machine Learning
Method

The machine learning analysis begins with data preparation. Multiple results are com-
puted and stored in an xarray.DataFrame within a loop. The data contain parameters
with different scales and units, Therefore preprocessing the data is required to scale
down the input parameters to a common scale. Standardization is a common pre-
processing technique that transforms the data to have a mean of 0 and a standard
deviation of 1, shaping them into a standard normal distribution. After setting up the
data frame, standardization is applied using the following equation:

xnew =
(x− µ)

σ
(6.2)

Where x is the original feature value, µ is the mean feature value, σ is the standard
deviation of the feature values. Using scaled data instead of the original data is cru-
cial before applying machine learning. One advantage of scaling is that it increases
accuracy [47]. Many machine learning algorithms perform better and converge faster
when features are on a similar scale. Algorithms can be sensitive to values with large



6.2. Determine Power Relation Using Machine Learning Method 43

magnitudes, therefore standardization also helps in faster and more stable conver-
gence. Without scaling, these values may dominate and lead to incorrect results. In
this thesis, the Random Forest Regressor and Neural Network are chosen as the al-
gorithms for machine learning. Besides, the input variables of the model are wave
frequency, array spacing, and incoming wave direction angle. The computer used for
the machine learning process is equipped with an i5-1240P CPU and 16GB of RAM.
The performance of the trained models using the above algorithms of the excitation
force on each device is evaluated and presented in Figure 6.5, Figure 6.6, Figure 6.7,
Figure 6.8. The performance of the model can be evaluated by the coefficient of de-
termination R2 in the following equation:

R2 = 1−
∑

i(xi − xpredict)
2∑

i(xi − x)2
(6.3)

Where xi is the actual data, x is the mean of the data and xpredict is the predicted
value. The closer the R2 value to the one, the more reliable the model is, meaning the
predicted load is closer to the actual load. The results show that the model trained by
Random Forest Regressor algorithm is more reliable than by Neural Network, as the
larger R2 value indicated.

Figure 6.5: Device 1 model performance predicted load

The training of the model for power prediction follows the same steps. However,
the significant wave height is now also included in the input variables. The perfor-
mance of the model is shown in Figure 6.9 and Figure 6.10. The maximum iteration
times for Neural Network algorithm were set at 10000, and the total calculation time
required is 94 minutes (depending on the computer hardware). However, the resulting
predicted power using Neural Network had a bad fit with the actual power. To improve
this, The maximum iteration is increased to 100000, and the resulting time required
also increases to 237 minutes. However, despite the extended training time, the Neu-
ral Network model still did not achieve a better fit with the actual power. To further
improve the model, the design is changed from 100 neurons in a single layer to 100
neurons in a single layer and with two layers in total. Unfortunately, a warning mes-
sage appeared, and the computer crashed. As a result, for the optimization process
in the next step, only the Random Forest Regressor model will be used.
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Figure 6.6: Device 2 model performance predicted load

Figure 6.7: Device 3 model performance predicted load

Figure 6.8: Device 4 model performance predicted load
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Figure 6.9: Power performance (maximum iteration times =10000)

Figure 6.10: Power performance (maximum iteration times =100000)



7
Optimization of Array Desgin

Optimizing the design of an array is essential for maximizing power production in re-
newable energy systems. Once a power production model is trained, it can predict
power output based on various input parameters. This chapter focuses on the opti-
mization process, where the model is used to explore different configurations by in-
putting randomly generated data. By analyzing the resulting outputs, the optimal array
design that yields the maximum power can be identified. This methodology enhances
the efficiency of energy systems and contributes to the advancement of sustainable
energy solutions.

7.1. Totally Random Data
The most straightforward way to use the model is to find the input factors that result
in the maximum predicted power. All the input data, including wave frequency, array
spacing, wave direction, and wave height, are generated randomly. By generating
a sufficiently large amount of data, the maximum power can be determined by com-
paring all the data sets. In the analysis, 1,000 sets of data are generated, and the
input variables that result in the maximum power are recorded. This process is then
repeated six times to check for convergence. The final results are shown in Figure 7.1.
Note that the units for the parameters are as follows: frequency is in radians, wave
height in meters, wave angle in radians, array spacing in meters, and predicted power
in kilowatts. The result indicated that the maximum power output always occurs when
the wave frequency is near around 1.27, which is likely the natural frequency value of
the wave farm. Additionally, the resulting power output is unrealistically high and is
not likely to be observed in the real sea states.

7.2. Random Data in A Given Sea Site
Due to the fact that the maximum power production always occurs when the wave fre-
quency is near the natural frequency of the WECs array, power prediction combined
with a wave occurrence matrix was introduced to evaluate the most probable power
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Figure 7.1: Maximum power output and input variables

in a given sea state. A wave occurrence matrix is a diagram showing the probability
of occurrence of different wave periods and wave heights at a specific site. By using
this matrix along with predicted power at specific periods and wave heights, the most
probable power output of the wave farm at this site can be easily estimated. Further-
more, by randomly selecting a large number of wave directions and array spacings and
input these data into the model trained in chapter 6, the maximum power and the corre-
sponding wave direction angle and spacing distance can be determined. In this thesis,
the wave occurrence matrix from AMETS, Ireland, was used[48]. To evaluate the per-
formance of the array design, the q factor was computed for each analysis. Since the
wave frequency and significant wave height are selected based on the diagram, the
remaining variables to consider are the wave direction angle and array spacing. By
randomly generating 100 sets of these variables and repeating the process six times,
the optimal parameters that result in the largest q factor can be determined.

The results show that the wave farm would have the largest q factor at a wave
angle of 0.823 to 0.988 radients (around 48◦ to 56◦) and a spacing of 45 meters, with
a q factor of 1.06.
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Figure 7.2: Wave scatter plot showing the wave occurrence for the AMETS site, Ireland[48]

Figure 7.3: Optimal q factor and other design parameters



8
Conclusion and Recommendations

8.1. Conclusion
The objectives that the thesis is going to complete are:

1. Perform hydrodynamic analysis using frequency domain BEM software Capy-
taine of a single device as well as the wave farm consisting of 4 devices arranged
in a square configuration.

2. Setting up the relation of the various parameters with the excitation force on
each device and the total power output

3. Perform optimization using the previously trained model to find the optimal con-
figuration that results in the highest probable power output for a given site.

Previous research has shown that optimization studies often require a lot of time
and high computility. Consequently, the goal of this research is to develop a method
(either by establishing a mathematical relationship or training a machine learning
model) that can reduce the time required during the design phase. Finally, this ap-
proach can significantly shorten the estimation time and accelerate the design pro-
cess.

The hydrodynamic analysis was performed on a cylindrical point absorber. By cal-
culating its hydrodynamic characteristics using Capytaine, the power output in regular
waves was determined, and the result show that the maximum power occurs at the
natural frequency of the single device. To analyze the wave field within the wave farm,
additional devices were added to form a WEC array.

The relationship of the design parameters and the power output as well as the
excitation force was initially derived using linear regression. Despite the straightfor-
ward calculation process, the mathematical function of the power output did not fit the
original data well. Therefore, a machine learning approach was used to provide a
more accurate solution for determining this relationship. The Random Forest Regres-
sor and Neural Network algorithms were used for the analysis. While both algorithms
provided a good fit for the excitation force model, the Neural Network model did not
perform well for predicting power output compared to the Random Forest Regressor.
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After training the model, it is possible to predict the performance of a wave farm
consisting of 4 buoys in a given sea state. Only the model trained in Random Forest
Regressor was used due to the better performance. By the usage of wave occurrence
diagram the power output in a site can be easily estimated. The optimal q factor is
achieved when wave direction is between 48 to 56 degree and array spacing is 45
meters.

8.2. Recommendations
In order to improve future work related to WEC array design, several recommenda-
tions can be made.

The optimization method used in this thesis relies on estimated power output from
a machine learning-trained model. While the randomly selected samples help ensure
that the optimal q factor is identified, the results are based on a human-designed
model, which may not perfectly align with the results from direct calculations. There-
fore, comparing the Monte Carlo Method or Genetic Algorithm with the optimization
results from this thesis would provide valuable support and validation.

Additionally, the number of panels used in theWECmodel in this thesis is set to the
default value from the CAD software. Conducting a convergence study on the panel
numbers could help identify the optimal number of panels, enabling more efficient
analysis in further hydrodynamic analysis.

Furthermore, the PTO damping coefficient in the thesis is selected based on the
natural frequency of the floating device, and the machine learning model is trained
based on this feature to predict power performance at any sea site. However, the
optimal PTO damping coefficient varies depending on the sea site, which limits the
ability to train a model that applies to all locations. Despite the consistency of the
optimal power damping coefficient under different wave periods shown in Figure A.13,
additional steps can be taken to further improve the model. One approach is to train
multiple machine learning models, each under different PTO damping coefficients.
When a test sea site is selected, these models can be used to predict the power per-
formance and identify the best optimal PTO coefficient that maximizes the q factor in
this sea site.
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A
Supplement Information

A.1. Linear Relation Equations of Excitation Force
• Device 1 angle=0◦

Fex(x, y) = (0.041 · x− 64.166) · y + (−0.084 · x+ 127.31) (A.1)

• Device 1 angle=45◦

Fex(x, y) = (0.072 · x− 65.041) · y + (−0.134 · x+ 128.891) (A.2)

• Device 1 angle=90◦

Fex(x, y) = (0.041 · x− 64.178) · y + (−0.085 · x+ 127.346) (A.3)

• Device 2 angle=0◦

Fex(x, y) = (0.041 · x− 64.178) · y + (−0.085 · x+ 127.346) (A.4)

• Device 2 angle=45◦

Fex(x, y) = (0.04 · x− 63.895) · y + (−0.052 · x+ 125.624) (A.5)

• Device 2 angle=90◦

Fex(x, y) = (−0.026 · x− 61.329) · y + (0.05 · x+ 121.819) (A.6)

• Device 3 angle=0◦

Fex(x, y) = (−0.023 · x− 61.41) · y + (0.048 · x+ 121.86) (A.7)

• Device 3 angle=45◦

Fex(x, y) = (0.042 · x− 63.946) · y + (−0.052 · x+ 125.64) (A.8)

54



A.2. Figures 55

• Device 3 angle=90◦

Fex(x, y) = (0.041 · x− 64.166) · y + (−0.084 · x+ 127.31) (A.9)

• Device 4 angle=0◦

Fex(x, y) = (−0.026 · x− 61.33) · y + (0.05 · x+ 121.82) (A.10)

• Device 4 angle=45◦

Fex(x, y) = (0.005 · x− 62.044) · y + (0.041 · x+ 121.338) (A.11)

• Device 4 angle=90◦

Fex(x, y) = (−0.023 · x− 61.41) · y + (0.048 · x+ 121.86) (A.12)

A.2. Figures

(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure A.1: Excitation Force at spacing = 8 meters



A.2. Figures 56

(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure A.2: Excitation Force at spacing = 16 meters

(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure A.3: Excitation Force at spacing = 24 meters
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(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure A.4: Excitation Force at spacing = 32 meters

(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure A.5: Excitation Force at spacing = 40 meters
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(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure A.6: Excitation Force at spacing = 48 meters

Figure A.7: Power analysis for spacing = 8 meters
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Figure A.8: Power analysis for spacing = 16 meters

Figure A.9: Power analysis for spacing = 24 meters
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Figure A.10: Power analysis for spacing = 32 meters

Figure A.11: Power analysis for spacing = 40 meters
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Figure A.12: Power analysis for spacing = 48 meters

Figure A.13: Optimal power damping coefficient variation under different wave periods
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