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ABSTRACT

The outermost strong part of a planet is called the lithosphere. When loads, such as volcanoes, sediments, or
intrusions, are applied to the lithosphere, it flexes. The amount of flexure is controlled by the flexural rigidity
of the lithosphere. The elastic thickness Te is the thickness of an equivalent fully elastic spherical shell which
flexes in the same way as the real lithosphere. It is an important quantity because it strongly depends on the
lithospheric heat flux at the time that the load was applied, which is controlled by the thermal evolution of
the planet and varies in space and time. The loads and the associated lithospheric deflections cause gravity
anomalies and topographic relief. Observations of these can be used to constrain Te .
In this study, a global map of the elastic thickness of Mars is presented. Several recent missions to Mars have
provided global spherical harmonics data sets of gravity and topography. These data are inverted for the
shape of the crust-mantle boundary, or equivalently the crustal thickness. This is assuming that all gravity
anomalies are caused by only two density interfaces which are the surface and the crust-mantle boundary.
The large amplitudes of the Martian gravity field necessitate the application of a finite amplitude correction.
A simple, but realistic model, which allows loading and compensation at the same two interfaces, is derived.
It uses the differential equations for the flexure of a thin elastic shell and depends on six parameters: the
elastic thickness Te , the ratio F of the amplitude of the loads at the two interfaces before flexure, the cor-
relation r between these loads, and three parameters of a covariance function of the isotropic Matérn class
which describes the topography before flexure. The input data are localized to specific grid points of a map
using multitaper spectral estimation. Contrary to most elastic thickness studies which compute observed
and modelled admittance or coherence to find a best-fit solution for Te , this study uses maximum likelihood
estimation as first proposed by Simons and Olhede (2013). This technique allows to determine the parame-
ter set which is most likely to have produced the localized estimates of the topography and the shape of the
crust-mantle boundary.
Maps of the most likely parameter sets are presented for different localization window sizes. The results gen-
erally agree with previous studies, yielding Te = 10km in the southern uplands and higher values at the large
volcanoes. This also corresponds to thermal evolution models predicting a more rigid lithosphere in more
recently formed areas. Log-likelihood contours and Monte Carlo simulations with synthetically generated
topographies reveal the quality of the results. The elastic thickness is well constrained in the southern up-
lands and at Elysium and Ascraeus Mons, but poorly constrained in the northern lowlands and at the other
volcanoes. While this study shows that it is possible to retrieve Te with maximum likelihood estimation, more
research is needed to explain these poor constraints.

Cover figure: The Tharsis province. Laser altimetry data from MOLA (Source: http://mola.gsfc.nasa.gov/images.html).
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1
INTRODUCTION

1.1. GEOLOGIC HISTORY OF MARS
Since the late 1990’s, Mars has been visited by several spacecrafts and landers, providing us with a large
amount of data which has helped to understand the planet and its history.

Figure 1.1: Topographic features superimposed on a map of the shape of Mars.

The history of Mars has been divided in three epochs: the Noachian, the Hesperian, and the Amazonian.
Little is known about the pre-Noachian period because no surfaces from that era remain, but the Martian
dichotomy, a stark contrast in topography between the Northern and Southern Hemisphere whose origin re-
mains unknown (Nimmo, 2002), has its origins in that time. The Southern Hemisphere is heavily cratered and
its surface elevation is about 5 km higher than that of the Northern Hemisphere (Smith et al., 1999b). Thus, it
must be older than the smooth Northern Hemisphere which has been resurfaced at some later point (Smith
et al., 1999b), probably through liquid water erosion (Di Achille and Hynek, 2010; Head et al., 1999), although
this ocean hypothesis remains contested.
The Noachian is named after the heavily cratered Noachis Terra (Figure 1.1), which characterizes the oldest
period in Martian history. The beginning of the Noachian is marked by the formation of the Hellas impact
basin approximately 3.8 to 4.1 Ga ago. It is the largest impact basin still clearly visible in the topography to-
day and has the lowest elevation of the whole Martian surface with a total depth of 9 km (Smith et al., 1999b).

1



2 1. INTRODUCTION

In the Noachian, cratering rates were very high. Especially large impacts formed both the Argyre and Isidis
basins during this time (Carr and Head, 2010). Contrary to the Earth, some surfaces from this epoch are still
preserved because of the absence of plate tectonics and less erosion on Mars. The Tharsis rise is an enor-
mous volcanic province centered at 100° W on the Martian equator (Wieczorek, 2007) which probably began
developing in the Noachian. The region encompasses about one fifth of the planet’s surface area (Lowry and
Zhong, 2003) and rises to 7 km above the surrounding terrain, not including the actual volcanoes (Beuthe
et al., 2012). Together with the dichotomy, the Tharsis rise has caused a remarkable difference between the
center of mass and center of figure of Mars of about 3.3 km (Wieczorek, 2007).
The Hesperian, following the Noachian, started about 3.7 Ga ago. It is named after Hesperia Planum whose
surface characterizes this epoch. In the Hesperian, volcanism continued at a similar rate as in the Noachian,
and about 30% of the planet was resurfaced. In this epoch, the Valles Marineris rift system probably formed.
The Amazonian is the most recent epoch in the geological history of Mars. Although the Hesperian-Ama-
zonian boundary is very uncertain, the current Amazonian epoch is estimated to have begun approximately
3.3 to 2.9 Ga ago. It is named after Amazonis Planitia, a very smooth plain between Olympus and Elysium
Mons. Amazonian surfaces are only sporadically cratered because cratering rates have dropped significantly.
Although volcanic activity has declined with respect to the Hesperian, large areas were resurfaced in the Ama-
zonian. The major volcanoes formed in this epoch. Olympus Mons is the largest volcano with an elevation of
22 km with respect to the areoid defined by the Mars Orbiter Laser Altimeter (MOLA). Additionally, Elysium
Mons and the Tharsis Montes Ascraeus, Pavonis, and Arsia were also formed in the Amazonian.
A driving factor to many of these changes and an important quantity for the evolution of Mars is the heat
flow, which mainly depends on the abundance of radiogenic heat producing elements in the crust and man-
tle. Modelling suggests that shortly after the formation of Mars, the heat flow was very high, possibly from
60 to 70 mW

m2 Carr and Head (2010). With time, Mars became colder and the heat flow declined almost linearly

to a present value of 6.4 mW
m2 exhibiting considerable regional differences (Hahn et al., 2011). The current value

is estimated from the abundance of heat producing elements derived from gamma-ray spectrometry.
For a more detailed review of the Martian geologic history, the reader is referred to Carr and Head (2010).

1.2. ELASTIC THICKNESS

The inner structure of terrestrial planets can be described both mechanically and chemically. From a me-
chanics point of view, the uppermost strong layer is the lithosphere which behaves elastically on geological
time scales and is at least as thick as the crust, but often also includes the upper part of the mantle. It is un-
derlain by the ductile and viscous asthenosphere. Chemically, the crust and mantle can be distinguished by
their different seismic velocities and densities. On Mars, the crust and mantle have differentiated within the
first few millions of its formation.
The MOLA instrument on the Mars Global Surveyor mission has provided us, for the first time, with high
resolution topography data by means of laser altimetry. Radio science experiments aboard the Mars Global
Surveyor, Mars Express, and the Mars Reconnaissance Orbiter complemented MOLA’s data with high resolu-
tion gravity measurements which made it possible to reliably determine the structure of the crust and upper
mantle (Zuber et al., 2000). These remotely sensed data will remain the best way to probe the subsurface of
Mars until a seismometer is deployed to the surface as planned for the InSight mission due for launch in 2018
(Zuber, 2001, http://insight.jpl.nasa.gov/science.cfm). From the subsurface structure, insights can
be gained about composition, differentiation, and mantle flows (McKenzie et al., 2002; Zuber et al., 2000).
In the gravity field, the hemispherical dichotomy behaves contrary to the topography. The Southern Hemi-
sphere is mostly smooth, indicating widespread isostatic compensation, whereas large gravity anomalies in
the Northern Hemisphere lack topographic expression (Smith et al., 1999a). This difference in compensation
may be explained by a thinner, but stronger crust in the Northern Hemisphere than in the Southern (Smith
et al., 1999a).
The effective elastic thickness of the lithosphere is a measure of the flexural rigidity which describes the be-
havior of the lithosphere when loads are applied vertically. It is not a physical quantity describing the depth to
an actual interface in the planetary lithosphere, but instead refers to a hypothetical, fully elastic plate which
possesses the same flexural properties as the real lithosphere (Watts and Burov, 2003). It can, however, also
be regarded as the depth to the isotherm at which the material becomes too weak to support loads over ge-
ologically long periods of time (McKenzie and Fairhead, 1997) which lies at ∼ 650◦C on Mars (Zuber et al.,
2000) and at ∼ 450− 600◦C on Earth (Burov and Diament, 1995). An elastic thickness which is larger than
the crustal thickness implies high mantle strength (Burov and Watts, 2006). The elastic thickness of the litho-

http://insight.jpl.nasa.gov/science.cfm


1.2. ELASTIC THICKNESS 3

sphere strongly depends on the lithospheric heat flux and thermal gradient (McGovern et al., 2002; Zuber
et al., 2000) and is thus a function of time. On a generally cooling planet, the elastic thickness increases over
time. Elastic thickness Te and flexural rigidity D are related by the equation (Timoshenko and Woinowsky-
Krieger, 1959)

D = ET 3
e

12(1−ν2)
(1.1)

where E is Young’s modulus and ν is Poisson’s ratio.
The lithosphere is in complete hydrostatic equilibrium when the flexural rigidity or, equivalently, the elas-
tic thickness is zero. This case is called local isostasy and can be described by the Airy-Heiskanen model
where loads are compensated by changes in crustal thickness or by the Pratt-Hayford model where loads are
compensated by density variations in the crust (Watts, 2001). Intermediate values of the elastic thickness
correspond to regional isostasy, as suggested by Vening-Meinesz. In the Bouguer case, a theoretical case of
a plate of infinite rigidity, no isostasy exists, and surface and subsurface processes are decoupled (Forsyth,
1985; Watts, 2001).
There are three common methods for estimating the elastic thickness: forward modelling, inverse modelling,
and rheological modelling (Kirby, 2014).
In forward modelling, the observed topography is used to calculate the expected gravity anomaly assuming a
value of Te and then the observed and calculated gravity anomalies are compared in the spatial domain. Te

is then chosen as the value that yields the best fit between calculated and observed gravity anomalies (e.g.
Burov and Watts, 2006).
Dorman and Lewis (1970) refrained from assuming a non-linear hypothesis of Airy or Pratt compensation for
the computation of isostasy, and instead advocated for using a linear transfer function, which they called the
isostatic response function. The gravity and topography are related by

∆gc = q ∗h , (1.2)

where h is the topography, ∆gc the gravity anomaly due to compensation, and q is the isostatic response
function. The operation ∗ indicates convolution, and hence it is obvious to perform the computations in the
spectral domain. In inverse modelling, the misfit between the transform of the linear transfer function and
the model prediction is minimized to determine the optimal value of Te (e.g. Burov and Watts, 2006; McKen-
zie and Bowin, 1976; Zuber et al., 2000). Spectral modelling is also better than modelling in the spatial domain
when dealing with long wavelength features which are unrelated to compensation (Wieczorek, 2007).
Both forward and inverse modelling are based on observations of gravity and topography. They can only
reveal the elastic thickness at the time of loading because gravity and topography have not changed since
loading occurred. In this study, the notion of elastic thickness implicitly refers to the the elastic thickness at
the time of loading, unless otherwise stated.
Finally, rheological models determine Te from yield strength envelopes, which depend on the internal tem-
perature profile, strain rate, and rheological parameters and indicate the lithospheric strength as a function
of depth (Burov and Diament, 1995; Grott and Breuer, 2008; Tesauro et al., 2012). They do not directly depend
on gravity and topography and can therefore serve as an independent control for Te results from forward and
inverse modelling.
Estimates of the elastic thickness at the time of loading make conclusions about the thermal evolution and
origin of surface features of Mars possible. Generally, the elastic thickness is lower in older surface regions
on Mars because these regions formed when the planet was younger and the heat flux was still high (Zuber,
2001). When the age of a feature is well known, accepted, and derived through other methods, the elastic
thickness can be used to constrain the heat flow at that time. For example, Grott and Breuer (2008) compared
the elastic thicknesses of surface features of different ages obtained from inverse modelling. They found that
the elastic thickness increased from ∼20 km in the Noachian to ∼70 km in the Amazonian and attributed
that to the rapid cooling of Mars. They also applied rheological modelling to determine the elastic thickness
using yield strength envelopes. The constraints imposed on the rheological model by the elastic thicknesses
obtained from spectral modelling led them to conclude a wet crust and mantle rheology. Conversely, the heat
flow can also be modelled independently to constrain the age of a surface feature. To determine today’s elas-
tic thickness, gravity and topography can only be used at the poles because the ice caps are a recent loading
process. Estimates for the north pole (Phillips et al., 2008) and the south pole (Wieczorek, 2008) have yielded
quite different results which also do not agree very well with heat flux models (Grott and Breuer, 2010). Grott
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and Breuer (2010) explained high elastic thickness values at the north pole by an uneven distribution of ra-
diogenic heat in the mantle, depositing less excess heat at the north pole and more in active mantle plumes
under the Tharsis rise.

1.3. SPECTRAL RATIOS
To obtain estimates of the elastic thickness, measurements of the gravity and topography are thus trans-
formed in the spectral domain. The common procedure is to compute ratios of their observed power spectra
and cross-power spectra and compare them to modelled ratios which depend on the elastic thickness as an
input parameter to the model. The misfit between model and observations is then minimized to yield an
optimal value of the elastic thickness.
The spectral ratios which are used are in principle arbitrary (McKenzie and Fairhead, 1997), however, com-
monly used are the admittance and the coherence, given by

q̄ = 〈ḡ h̄∗〉
〈h̄h̄∗〉 , (1.3)

and

γ2 = |〈ḡ h̄∗〉|2
〈ḡ ḡ∗〉〈h̄h̄∗〉 , (1.4)

respectively, where the bar indicates Fourier transformed variables, the ∗ indicates the complex conjugate,
and 〈·〉 indicates averaging over a distinct wavenumber band (e.g. Kirby, 2014). The admittance was found by
McKenzie and Bowin (1976) to be identical to the Fourier transform of the isostatic response function from
Equation 1.2. Either free-air or Bouguer gravity anomalies can be used as input gravity observations. After the
publication of Forsyth (1985) it has been common practice to use the Bouguer coherence for the inversion
of Te (e.g. Djomani et al., 1999; Lowry and Smith, 1994; Simons et al., 2000) because it is more sensitive to
Te than the free-air admittance (Watts and Burov, 2003), but McKenzie and Fairhead (1997) and McKenzie
(2003) advocated for using the free-air admittance instead, arguing that the high values of Te resulting from
most Bouguer coherence studies would not match geophysical expectations, and finding Te values of about
25 km. Specifically, they argued that elastic thicknesses of 100 km to 130 km correspond to geotherms which
should not be able to support elastic stresses, and that the seismogenic thickness Ts , which is the thickness
of the layer in which most earthquakes occur, should be higher than the elastic thickness. However, Pérez-
Gussinyé et al. (2004) found that the differences between the lower results of McKenzie and Fairhead (1997)
and those obtained by other studies are not principally due to the usage of a different spectral ratio, but rather
originate from different methodologies. Watts and Burov (2003) and Burov and Watts (2006) then argued that
Ts and Te are not directly related to each other because Ts represents the strength of the uppermost crust on
short time scales, while Te represents the integrated strength of the lithosphere over long time scales, so that
occasionally, Te can in fact be smaller than Ts . Wieczorek (2007) pointed out that any good model must fit
both spectral ratios and proposed a joint inversion of coherence and admittance which was first carried out
by Audet (2014). McKenzie (2015) showed that the Bouguer coherence does not depend on Te in areas where
there is little coherence between the free-air gravity and the topography and deemed the Te estimates pro-
duced by the Bouguer coherence method in such regions as meaningless. Such areas are often found when
the topography is almost flat over large regions due to processes like erosion and sedimentation, and espe-
cially also in the Northern Hemisphere of Mars (Zuber et al., 2000). Nevertheless, the debate is still ongoing
today (Kirby, 2014; McKenzie, 2015).

1.4. GEOPHYSICAL MODELS
On Mars, the elastic thickness has so far been calculated locally for the Tharsis region (Belleguic et al., 2005;
Beuthe et al., 2012; Lowry and Zhong, 2003; McKenzie et al., 2002), for the Elysium region (Belleguic et al.,
2005; McKenzie et al., 2002), for the dichotomy boundary (Nimmo, 2002), for the northern lowlands (Hoogen-
boom and Smrekar, 2006), for the south pole (McKenzie et al., 2002), and for a variety of other surface features
and regions (McGovern et al., 2002, 2004; McKenzie et al., 2002), and has recently been mapped globally for
the first time by Audet (2014). Audet (2011) compute admittance and coherence globally under consideration
of anisotropy, but could not estimate the elastic thickness from those values because they lacked a suitable
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spherical flexure model which also takes into account anisotropy.
There have been several missions probing the gravity field through radio science experiments, but all of them
have been flying in near-polar areocentric orbits. This causes aliasing when computing the spherical har-
monics coefficients of the gravity field which are therefore inaccurate (McKenzie et al., 2002). Several studies
on Mars (Beuthe et al., 2012; McKenzie et al., 2002; Nimmo, 2002) have therefore computed the admittance
from the line-of-sight Doppler accelerations directly without using the spherical harmonics representation of
the gravity field. Inverting for the elastic thickness along such one-dimensional tracks is an intrinsically local
method (Beuthe et al., 2012). For the creation of global maps it is more convenient to use global gravity and
topography data sets. In such two-dimensional treatments, there is also more data available, which causes
the results to be less noisy, so that smaller windows can be applied (McKenzie et al., 2002). While on Earth,
most studies use two-dimensional Cartesian coordinate systems, the planetary science community has pre-
ferred to work in spherical coordinates (Audet, 2014). The distortions caused by projection of the data fields
onto a Cartesian grid and the subsequent reprojection of the results onto the sphere are larger for bodies with
a smaller radius of curvature. The same holds for the effect of neglecting membrane stresses in Cartesian
models (Turcotte et al., 1981). Thus, for small bodies like Mars, the choice of coordinate system makes a non-
negligible difference.
A model of the lithosphere is used to relate the elastic thickness to the gravity and topography. Most com-
monly it is modelled as a thin elastic plate of infinite lateral extent on top of an inviscid asthenosphere in the
Cartesian domain, or as a thin elastic shell in the spherical domain, respectively. Before the study of Forsyth
(1985), models without bottom loads were common, but inconsistent (Kirby, 2014; Lowry and Zhong, 2003)
and biased (Stark et al., 2003) results were achieved. Nowadays, loads are usually applied as undulations of
the density interfaces at the surface and the Mohorovičić discontinuity, often denoted as top and bottom
loads, respectively. This implies that the upper layer uses the crustal density and the lower layer the mantle
density.
The models require several input parameters, which can either be solved for or be assumed to be known.
These parameters include the densities of the layers, crustal thickness, elastic moduli, and ratio and phase
correlation of top and bottom loads. While the internal density structure of the Earth is quite well known, the
data situation on Mars is much worse, and the only way to meaningfully improve it is by placing a seismome-
ter on the surface (Beuthe et al., 2012; Neumann et al., 2004; Zuber, 2001). Therefore, McGovern et al. (2002)
jointly estimated the elastic thickness and either load density, or crustal thickness, or load ratio, thus solving
for two parameters at a time, but for four in total. When multiple parameters are solved for, it becomes in-
creasingly non-trivial to find that parameter set which constitutes the optimal solution. Few studies mention
their solution strategy, but for example Kirby and Swain (2009) used a least-squares estimation technique and
Audet (2014) applied a neighbourhood algorithm.
An even bigger controversy is the proper estimation of load ratio F and correlation r (Audet, 2014; Kirby,
2014). The load ratio is given by (Kirby, 2014)

F = f

1+ f
, (1.5)

with

f 2 = 〈LbLb∗〉
〈Lt Lt∗〉 (1.6)

and where Lb and Lb are the (unknown) bottom and top loads in the spectral domain, respectively. A load
ratio of zero corresponds to a model which only considers loads at the surface and a load ratio of one signifies
that loads are only present at the Mohorovičić discontinuity. The load correlation takes values between -1 and
1, and expresses the phase difference between top and bottom loads. Both F and r are needed to calculate
spectral ratios for given Te .
Forsyth (1985) first proposed a method to “deconvolve the loads” (Lowry and Smith, 1994) and retrieve F as
a function of wavelength under the assumption of zero correlation between the loads, thereby potentially
describing the physical world better than with an inversion for a value of F which is uniform over all wave-
lengths. His method exactly reproduces the observation because the load ratio is wavelength dependent.
Kirby and Swain (2009) compared the load deconvolution method with estimating F as an independent pa-
rameter which is uniform over all wavelengths and found large differences of over 50 km, but only in those
areas where the estimation is unreliable for both methods. Audet (2014) also included F as an independent
model parameter. While most studies investigating Earth after Forsyth (1985) have assumed zero correlation
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between the phases of the loads, the planetary community has usually assumed perfect correlation (r = 1) or
anti-correlation (r =−1; Belleguic et al., 2005; McGovern et al., 2002). When top and bottom loads are due to
the same cause, for example volcanoes, an important origin of loads on Mars, the loads are correlated (Audet,
2011). When top loads develop through surface processes which do not strongly influence the bottom loads,
like for example erosion and sedimentation, they are not strongly correlated.
Audet (2014) states that estimating the load correlation in his model would have likely yielded significant im-
provements, but is difficult to perform for planetary applications because of limited data resolution. Simons
and Olhede (2013) developed a model for the joint estimation of elastic thickness, load ratio, and load corre-
lation, and applied it to synthetic data, obtaining encouraging results (McKenzie, 2015).
Numerous variations from this thin elastic two-layer model exist, but so far none yielded significant improve-
ments. For example, McKenzie (2003) included an intermediate load interface in the lithosphere, reformulat-
ing the problem as a three-layer model, and McKenzie and Bowin (1976) considered an incompressible elastic
plate. A number of approximations have to be made to keep the models sufficiently simple. While tangen-
tial loads are important in stress modelling (Banerdt, 1986), they are negligible in elastic thickness modelling
(Audet, 2014), and hence as a first approximation, only radial loads are considered. As previously mentioned,
a second common approximation is that F and r are considered independent of wavelength. A third approx-
imation is to consider loads as mass sheets without vertical extent located at the density interfaces. The grav-
ity anomaly is then calculated from the topography and the deflected interface at the crust-mantle boundary.
This does not have a big impact when the geoid undulation is in the order of 100 m, like on Earth, but can
become important on Mars, where the dynamic range of the areoid exceeds 2 km (Smith et al., 1999a) with
areoid heights of ∼1.8 km in the Tharsis region (Wieczorek, 2007). Wieczorek and Phillips (1998) derived a
correction term for this approximation, and McGovern et al. (2002) demonstrated that applying this so-called
finite amplitude correction improves the estimated elastic thickness on Mars. The correction has later been
refined by Belleguic et al. (2005).
The averaging in Equations 1.3 and 1.4 is in most studies performed over discrete wavenumber annuli, as-
suming that the properties of the lithosphere are isotropic. It is also possible to average for discrete wavenum-
ber and azimuth bins, thus modelling the lithosphere anisotropically and achieving a more realistic flexural
model. Anisotropy reflects the preferred direction of isostatic compensation of the lithosphere due to fault-
ing in the crust. When erosion or sedimentation erase the directionality in the topography, anisotropy is also
induced (Audet, 2011; Audet and Mareschal, 2007). Simons et al. (2000) and Audet and Mareschal (2007) both
found significant anisotropy in Australia and Canada, respectively. Audet (2011) stresses that the incorpo-
ration of anisotropy into flexural models is also important for the Moon and Mars because admittance and
coherence signals are sometimes strongly anisotropic. However, flexural models respecting anisotropy only
exist for the thin elastic plate to date, and not for the thin elastic sphere.

1.5. SPECTRAL ESTIMATION TECHNIQUES

Equations 1.3 and 1.4 strictly describe signals which are Fourier transformed and then averaged over discrete
wavelengths. In actuality, there are various spectral estimation techniques available which all have their re-
spective advantages and limitations. The data are windowed prior to transforming them into the spectral
domain and each window applies to one set of parameters which are constant over the extent of that window.
For the mapping of the elastic thickness this means in practice that overlapping windows are considered
whose centers are the sample points of the map.
The simplest spectral estimation method is the periodogram, but its power is strongly biased, a phenomenon
which is known as spectral leakage. One method to decrease that effect is to mirror the signal at the edges to
avoid the Gibbs phenomenon while maintaining the spectral properties. However, mirroring causes aliasing
when applied to red spectra, i.e. spectra with more power in long wavelengths than in short wavelengths, like
that of planetary topography (McKenzie and Fairhead, 1997). Maximum entropy spectral estimation (Lowry
and Smith, 1994) also uses extrapolation, but rather of the autocorrelation function than of the original signal,
to decrease the effects of data windowing. Lowry and Smith (1994) found that the maximum entropy method
produces better estimates than the periodogram, especially for small windows, but also noted a bias in the
estimates and a high computational complexity.
Multitaper estimation is another spectral estimation technique which is available in 2D (Hanssen, 1997) and
spherical coordinates (Wieczorek and Simons, 2005). In this method, the data are tapered, or windowed, us-
ing multiple orthogonal tapers. As shown by Simons et al. (2000), the weighted average of the tapered data
then possesses minimal spectral leakage, and the elastic thickness estimates are therefore better than those
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produced by the periodogram and maximum entropy methods. The variance of the estimation is lower when
more tapers are used. The disadvantage of the multitaper method is that there is always a trade-off between
window size and variance (Wieczorek and Simons, 2005). As previously described, small windows are gener-
ally desired to avoid large variations of the geophysical parameters in the windowed area, but large windows
are needed to recover large wavelengths.
The wavelet transform circumvents the problem of the window size by not using windows in the first place. As
previously mentioned, windowing data also always assumes that the geophysical parameters are stationary
over the extent of the window (Daly et al., 2004), an approximation which is overcome by the wavelet trans-
form. Its wavenumber resolution increases with increasing wavenumber which can cause spectral leakage
in red spectra (Audet and Mareschal, 2007; Kirby, 2014). The wavelet transform is also available in 2D Carte-
sian and spherical coordinates (Audet, 2011) and has a greater computational efficiency than the multitaper
method (Daly et al., 2004).
In recent years, most studies have either used the multitaper method (Beuthe et al., 2012; McKenzie, 2003,
2010; McKenzie and Fairhead, 1997; Pérez-Gussinyé et al., 2004; Simons et al., 2000; Zuber et al., 2000) or
the wavelet transform (Audet, 2011, 2014; Audet and Bürgmann, 2011; Audet and Mareschal, 2007; Kirby and
Swain, 2009; Stark et al., 2003). Daly et al. (2004) compared the two techniques on real data and found differ-
ences of no more than ∼25%, and observed consistency with results from maximum entropy estimation and
rheological forward modelling as well, but there is no general consensus that one or the other method would
provide better estimation results.
In summary, there is still a lot of controversy about the correct way of spectrally estimating the elastic litho-
spheric thickness. While studies following the methodology of Forsyth (1985) using Bouguer coherence and
load deconvolution generally received high estimates in the order of 100 km on Earth, McKenzie and Fairhead
(1997) argued that such high values are not realistic and proposed much lower estimates of ∼30 km with his
free-air admittance method. The inclusion of load ratio and load correlation as model parameters, or as fixed
quantities of an assumed value, or obtaining the load ratio independently from deconvolution also all lead to
different estimates of Te which is potentially one of the biggest limitations of current models (Audet, 2014).
The multitaper method and the wavelet transform yield relatively similar estimates, but still applying the one
or the other method biases comparable results. Nowadays, there is a variety of estimation techniques which
have been combined into even more variations, but there is no unique setup emerging as the best or gen-
erally accepted approach. This argument needs to be resolved in order to make spectral elastic thickness
estimates more valuable for geophysicists and geologists again, especially since the data needed to compute
these estimates have become so widely available (McKenzie, 2003). Rheological modelling cannot resolve
this issue either. Tesauro et al. (2012) compared rheological modelling to the spectral estimates of Audet and
Bürgmann (2011) and found significantly different values in about half of the Earth’s continental areas, usu-
ally with a higher elastic thickness value coming from the spectral estimation compared to the rheological
estimation.

1.6. MAXIMUM LIKELIHOOD ESTIMATION

Recently, a completely new spectral estimation method has been presented by Simons and Olhede (2013).
They argued that joining a geophysical model and the observations over an intermediate quantity like ad-
mittance or coherence is not a straightforward approach and not statistically rigorous either. Because of the
non-Gaussianity of those spectral ratios, they said, minimising the least-squares misfit between observed
and computed value is not appropriate. Instead, they proposed to estimate the flexural rigidity from the data
as directly as possible using maximum likelihood estimation. This way, spectral ratios such as admittance
and coherence are not needed any more. Their approach also includes both load ratio and load correlation
as independent parameters into the model, with one value which is uniform over all wavelengths, thereby
circumventing another current problem in elastic thickness modelling.
In maximum likelihood estimation, a likelihood function is maximized instead of a least-square misfit. This
means that the parameter set is found which is most likely to have produced the observations, and not the
one which most accurately describes them (e.g. Myung, 2003). The likelihood function depends on the geo-
physical model, the model input parameters Te , F , and r , the Fourier transformed observations, and an
assumed covariance function, for which Simons and Olhede (2013) chose the isotropic Matérn covariance
function (Matérn, 1960) which depends on another three parameters. The likelihood function is then maxi-
mized to find the optimal set of the total of six parameters. The confidence intervals of the parameters can
be computed analytically (Simons and Olhede, 2013), but in practice this is difficult because of the necessary
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localization of the global input fields which would have to be applied to the analytical expressions as well.

1.7. RESEARCH MOTIVATION
The thickness of the Martian elastic lithosphere has already been the subject of several studies in the past
decades, most of which focused their investigation on specific surface features. The creation of a global map
of the elastic thickness has previously been achieved by Audet (2014) using the wavelet transform and a si-
multaneous estimation of Te and F from a joint inversion of both Bouguer and free-air admittance and co-
herence. His study did not include the finite amplitude correction (Wieczorek and Phillips, 1998) which is
necessary because of the high dynamic range of the areoid (McGovern et al., 2002).
Similarly, the goal of this study is to create a global map of the elastic thickness. The map is primarily con-
cerned with the global distribution of the elastic thickness and sheds light into regions that have not yet
been thoroughly explored in other studies, such as the northern lowlands of Mars. Unlike other studies us-
ing admittance or coherence methods, this study will uniquely be conducted using the maximum likelihood
formalism proposed recently by Simons and Olhede (2013) and apply it for the first time to recently collected
actual data. The multitaper spectral estimation technique, as described by Wieczorek and Simons (2005), will
be applied to localize the input data. To consider the importance of membrane stresses on Mars, the two-
layered thin elastic plate model of Simons and Olhede (2013) is transformed to a thin elastic shell model in
spherical coordinates. Furthermore, the finite amplitude correction is applied for the retrieval of the subsur-
face interface.
The principal research question answered by this thesis is thus: What is the global distribution of the elastic
thickness on Mars?



2
DATA

2.1. TOPOGRAPHY
The topographic data used in this study originates from the Mars Global Surveyor (MGS) spacecraft and was
acquired between 1997 and 2001. The data is available freely at the Planetary Data System (PDS) Geosciences
Node (http://pds-geosciences.wustl.edu) where a detailed description of the used measurements and
the processing can also be found. The Mars Orbiter Laser Altimeter (MOLA) instrument on MGS was the first
altimeter sent to Mars and therefore greatly improved the accuracy of the topography in both vertical and
horizontal direction, reaching horizontal and vertical accuracies of ∼ 1m with respect to the center of mass
(Smith et al., 2001). The data are provided as a map with horizontal resolution of 1

32
◦
. For the mapping to

planetocentric coordinates the IAU2000 reference system was used (Seidelmann et al., 2002). The heights
are referenced to the areoid defined by the Goddard Mars potential model GMM3 (mgm1025) evaluated to
degree and order 50 (Lemoine et al., 2001). The areoid is precisely defined as "the surface (gravitational plus
rotational) whose average value at the equator is equal to the mean radius as determined by MOLA" (Smith
et al., 2001).
Here, topography is defined as the height of the surface over a reference equipotential surface, which is the
areoid. Shape is defined as the height with respect to the center of mass of Mars. With these definitions,
caution should be exercised, because different conventions exist in literature (e.g. Wieczorek and Phillips,
1998). A topography defined with respect to the areoid is relatively meaningless for geophysical analyses
(Turcotte et al., 2002) and in this study, the main concern is the shape, and thus the original data set from
the PDS Geosciences Node is inconvenient, especially because a different reference radius is used than for
the gravity data. Mark Wieczorek provides on his website (http://www.ipgp.fr/~wieczor/SH/SH.html)
a processed version of the original data set in which he has converted topography to shape and transformed
it to spherical harmonics coefficients to degree and order 2600 (Wieczorek, 2007). This processed data set is
used in this study (Figure 2.1).

9

http://pds-geosciences.wustl.edu
http://www.ipgp.fr/~wieczor/SH/SH.html
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Figure 2.1: The shape of Mars after removing the h20 coefficient. The spherical harmonic data set is cut off after degree 110 and trans-
formed into the spatial domain using the algorithm of Driscoll and Healy (1994). The minimum and maximum values plotted are
3382.601km and 3412.586km, respectively. The white line is a contour at the level of the mean planetary radius of 3389.500km and
will be shown in all subsequent global maps in this study to provide geographic reference to the reader.

2.2. GRAVITY

Here, the most recent gravity field of Mars from the Jet Propulsion Laboratory (JPL), MRO110C, is used, which
is available under http://pds-geosciences.wustl.edu (Figure 2.2). Its computation is described in de-
tail in Konopliv et al. (2006) and Konopliv et al. (2011). It includes radio science data from the Mars Global
Surveyor (MGS), Mars Odyssey, Mars Reconnaissance Orbiter (MRO), Pathfinder, and Viking 1 Lander mis-
sions. The gravity field is provided in fully normalized spherical harmonic coefficients up to degree and order
110 and shows resolution to degree 100 (Figure 2.3, Konopliv et al., 2011). The MGS mission arrived at Mars
in 1997 and entered in orbit around Mars, providing gravity solutions which are a drastic improvement over
previously available ones because of the uniform global data sets from a low altitude of about 400 km and be-
cause it used X-band frequencies rather than the previously used S-band frequencies (Konopliv et al., 2006;
Lemoine et al., 2001; Tyler et al., 1992). The arrival of the MRO mission in 2006 again increased the quality of
the gravity field because of its lower orbit with a periapse of 255 km (Konopliv et al., 2011). The current gravity
field is not expected to improve significantly until new spacecraft orbit Mars, but future data from the MRO
and Mars Odyssey missions will yield slight improvements over time (Konopliv et al., 2011).
The gravity field data is provided in the form of normalized spherical harmonic coefficients, or Stokes coef-
ficients, Clm , from which the gravitational potential can be computed as (Hofmann-Wellenhof and Moritz,
2006)

U (r ) = GM

Rg

∞∑
l=0

l∑
m=−l

(
Rg

r

)l+1

ClmYl m(Ω) (2.1)

where G is the gravitational constant, M is the mass of the planet, l is the degree, m is the order, Rg is the
reference radius, Ylm are the spherical harmonics (Equation A.3), r = (r,Ω) = (r,θ,λ) is the position, θ is
the colatitude, λ is the longitude, and r is the distance from the center of mass, which is also the center of
the reference system so that the degree one coefficients are zero. The reference radius is Rg = 3396km for
the MRO110C gravity field, but Rg = 3397km for the GMM3 (mgm1025) gravity field used to reference the
topography to the areoid (Lemoine et al., 2001). In practice, the infinite sum over l in Equation 2.1 is only
evaluated to a maximum degree L depending on the data resolution.

http://pds-geosciences.wustl.edu
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Figure 2.2: The potential of the Mars gravity field MRO110C, evaluated at the mean planetary radius and after removing the C20 term.
The spherical harmonic data set is transformed into the spatial domain using the algorithm of Driscoll and Healy (1994).

The spherical harmonic degree variance is given by (Neumann et al., 2004)

σl =
l∑

m=−l
C 2

l m (2.2)

and indicates how much of the power is concentrated at which spherical harmonic degrees. The root of the
potential power per coefficient is given by (Neumann et al., 2004)

σ= σlp
2l +1

(2.3)

and is usually used to compare gravity field solutions (Figure 2.3).
The gravity anomaly is given by

∆g = GM

R2
g

∞∑
l=0

(l −1)
l∑

m=−l
∆ClmYl m (2.4)

where

∆Clm =Cl m −C ′
lm , (2.5)

and C ′
l m are the coefficients of a theoretical ellipsoidal potential V , so that one can define a disturbing poten-

tial as (Hofmann-Wellenhof and Moritz, 2006)

T =U −V . (2.6)

On Earth, the ellipsoidal potential is the potential of an ideal best-fit ellipsoid, and can be computed using
the international gravity formula (Hofmann-Wellenhof and Moritz, 2006). On Mars, there is no standard def-
inition of a reference body. A reference ellipsoid is needed to avoid very large areoid values which would
otherwise result from the rotational flattening of Mars. The gravity anomaly ∆g thus represents deviations of
the gravitational attraction from the one caused by such an ideal ellipsoid at the surface of that ellipsoid.
This assumes that all masses are inside of the reference surface and therefore the gravity anomaly is incorrect
whenever there is topography which does not coincide with the reference surface. This topography has to
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Figure 2.3: The root of the power of the gravity potential and its uncertainties per coefficient.

be corrected for to obtain the Bouguer anomaly, the true gravity anomaly at the reference surface, which can
then be used to gain insight into the mass distribution in the inside of the planet, and especially in the crust
and upper mantle.
The so-called simple Bouguer anomaly (Hofmann-Wellenhof and Moritz, 2006) corrects for the topography
locally. It approximates the gravitational attraction of the topography at position r by the gravitational at-
traction of a Bouguer plate, that is a plate of infinite lateral extent and thickness h, which is the height of the
topography over the reference surface. The Bouguer anomaly is then given by

gB =∆g −∆gB (2.7)

where

∆gB = 2πρcGh(Ω) (2.8)

is called the Bouguer correction and ρc is the density of the topography which is assumed to be constant and
identical to the crustal density. This simple correction model neglects the curvature of the planet and the
topography in neighboring areas. It is therefore problematic for small planets like Mars and for areas with
large topographic steepness like mountainous regions.

2.2.1. FINITE AMPLITUDE CORRECTION
An exact way of computing the potential caused by topography has been presented by Wieczorek and Phillips
(1998). He gives the respective spherical harmonics coefficients as

C BC
lm = 4πρc (R̄ t )3

M(2l +1)

l+3∑
n=1

nhlm

(R̄ t )nn!

∏n
j=1(l +4− j )

l +3
(2.9)

where nhlm are the spherical harmonics coefficients of the n-th power of the shape, which is referenced
to the mean planetary radius R̄ t = h00, and M is the mass of the planet. Equation 2.9 is called the finite-
amplitude correction (McGovern et al., 2002) and is only valid for potential outside of topography, that is
r > R̄ t +max(h(Ω)). In practice, the summation over n can be truncated after a couple of terms and when the
required precision is reached to save computation time. The coefficients of the Bouguer anomaly are then
given in analogy to Equation 2.7 by

C BA
lm =Cl m −C BC

lm . (2.10)
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2.3. OTHER PARAMETERS
For the geophysical model used in this study further data input is required, which is not available in the res-
olution and quality of the topography and gravity data. Namely, these parameters are the elastic moduli of
Mars’ lithosphere, as well as the densities of the crust and mantle. This study uses the most common values
used in literature to facilitate a comparison of the results. For the elastic moduli, most studies use Poisson’s
ratio ν = 0.25 and Young’s modulus E = 1011 Pa (Belleguic et al., 2005; Beuthe et al., 2012; Hoogenboom and
Smrekar, 2006; McGovern et al., 2002; Nimmo, 2002; Wieczorek, 2008). McKenzie et al. (2002) and Lowry and
Zhong (2003) use significantly different values, which McKenzie et al. (2002) obtained from meteorites, but
it is unclear if those meteorites are representative of the present surface of Mars (Neumann et al., 2004), and
these values did not prevail in literature.

Zuber et al. (2000) found the crust and mantle density to be ρc = 2900 kg
m3 and ρm = 3500 kg

m3 , respectively.
These values or very similar ones are widely used (Beuthe et al., 2012; Hoogenboom and Smrekar, 2006; Mc-
Govern et al., 2002; Neumann et al., 2004; Wieczorek, 2008) and therefore also applied in this study. A more
rigorous approach would of course be the local modelling of the crustal density, as performed by Beuthe et al.
(2012), Belleguic et al. (2005), and McKenzie et al. (2002), but this is not done in this study for reasons of com-
plexity, as described in more detail in Chapter 3.





3
METHOD

This chapter describes the processing steps needed to retrieve the elastic thickness of the lithosphere from
the input gravity and topography data described in Chapter 2. At first, the global input data must be localized
in order to receive outputs for one specific location and not a global value for the whole planet. For this
localization, the multitaper spectral estimation technique is used, which is presented in Section 3.1. The core
of this chapter is formed by Section 3.2, in which the geophysical model relating localized input and output
variables is described. Section 3.3 treats maximum likelihood estimation, the method for finding the set of
output parameters which is most likely to have produced the observations. Finally, Section 3.4 describes how
the uncertainty of the results can be quantified using Monte Carlo simulations. The data processing scheme
is also summarized in Figure 3.5, and Table C.1 gives an overview of all symbols and quantities used in this
study.

3.1. MULTITAPER SPECTRAL ESTIMATION
The ultimate goal of this study is the creation of a global map of the elastic thickness of Mars. For this purpose,
Te is computed on a regular grid of locations (see Section 4.3). The data fields and their spectral estimates
must therefore be localized to each of those grid points. The multiplication of window functions with the
data fields in the spatial domain is called tapering. The windows are selected such that only data from an
area around the location of interest are used for the estimation at that location while spectral leakage is min-
imized. In this section, the multitaper spectral estimation procedure developed by Wieczorek and Simons
(2005) is presented.
Ideally, one would like to include all data from an area around the location of interest into the estimation and
not include any data from outside of that area, or, in other words, one would like to apply a sharply truncated
window. Here, a spherical cap is used as a window. Assuming that the location of interest is the north pole,
then the sharply truncated spherical cap window includes all information up to a colatitude θ0, and discards
all other information. The window can then simply be rotated to any arbitrary desired location. Here, I re-
strict myself to axisymmetric windows because I assume isotropy in the whole model. The estimated spectra
are only a function of the spherical harmonic degree l , and not of the order m. To estimate anisotropy, non-
axisymmetric windows would be required.
When using sharply truncated windows, the phenomenon of spectral leakage occurs. Therefore, bandlim-
ited windows are used which possess no power outside of a certain spectral bandwidth and are optimally
concentrated in the spatial domain. The quality of the spatial concentration is measured by a parameter

c =
∫ 2π

0

∫ θ0
0 H 2(Ω)sinθdθdλ∫ 2π

0

∫ π
0 H 2(Ω)sinθdθdλ

(3.1)

which represents the ratio of the energy of the bandlimited taper H(Ω) in the spherical cap region 0 < θ < θ0

to the energy of H(Ω) over the whole sphere.
With Equation A.1 the filter functions can be expanded into spherical harmonics

H(Ω) =
∞∑

l=0

l∑
m=−l

HlmYlm(Ω) , (3.2)
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but in practice, one can only expand the filter into spherical harmonic coefficients up to a certain degree Lb ,
so that

H(Ω) =
Lb∑

l=0

l∑
m=−l

HlmYlm(Ω) , (3.3)

and since the taper is axisymmetric, this simplifies to

H(Ω) = H(θ) =
Lb∑

l=0
Hl Yl0(Ω) =

Lb∑
l=0

Hl P̄l0(cosθ) . (3.4)

Applying Parsival’s theorem (Equation A.8) and Equation 3.4 to Equation 3.1, the energy ratio can be written
as

c =
∑Lb

l=0

∑Lb
l ′=0 Hl Dl l ′ (θ0)Hl ′∑Lb

l=0 H 2
l

(3.5)

where

Dl l ′ (θ0) = 1

2

1∫
cosθ0

P̄l (cosθ)P̄l ′ (cosθ)dcosθ . (3.6)

Equation 3.5 can be written in matrix form as

c = H>D H

H>H
(3.7)

where H is the (Lb +1)-vector of filter coefficients Hl and D is the (Lb +1)× (Lb +1)-matrix defined by Equa-
tion 3.6. Equation 3.7 has the same solutions of c as the eigenvalue problem

c H = D H . (3.8)

The Lb +1 orthogonal eigenvectors H i therefore each form the filter coefficients of a filter with their energy
ratio given by the corresponding eigenvalue ci . The order of the eigenvalues is defined as

1 > c1 > c2 > ... > cLb+1 > 0 (3.9)

so that H 1 is the filter with the best spatial concentration. Wieczorek and Simons (2005) showed that there is
a sharp transition between eigenvalues that are close to one and eigenvalues that are almost zero. The eigen-
vectors whose corresponding eigenvalues are close to one are near-perfectly concentrated tapers. Wieczorek
and Simons (2005) defined a space-bandwidth product

N0 = (Lb +1)
θ0

π
(3.10)

which is an important quantity in practice because the first N0 − 1 tapers are near-perfectly concentrated.
Windowing a function using the first K = N0 −1 tapers and then taking the weighted average is statistically
more representative than windowing the function with only one taper. Here, I take the simple average of the
first K = N0−1 tapers because all of them are near-perfectly concentrated. This average is called the localized
multitaper spectral estimate and it is asymptotically unbiased for an increasing number of tapers. Therefore,
a large number of tapers is desired. However, Equation 3.10 shows that there is a trade-off between the win-
dow size and the bandwidth one the one hand, which are preferably kept small, and the number of applied
tapers on the other hand.
When applying the tapers to a spherical harmonic gravity or topography field which is determined up to
degree L, only the degrees Lb < l < L − Lb can be determined reliably which puts serious restrictions on
the window size and number of tapers that can be used for the spherical harmonic fields of degree L = 110
which are used in this study. Furthermore, the Martian gravity and topography fields are globally influenced
by the signature of the Tharsis region and its flexure up to degree L = 5, and the gravity field only shows
resolution up to degree L ≈ 100. These low and high degrees must be removed before an analysis can take
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place (Wieczorek and Zuber, 2004), so that the remaining degrees used for the elastic thickness estimation are
Lb +5 < l < 100−Lb . As an example, for a spherical cap size of θ0 = 15° and using K = 2 tapers, the bandwidth
is Lb = 35, and only the spherical harmonic degrees 40 < l < 65 can be used.
In this study, the freely available software package SHTOOLS (Wieczorek et al., 2015) is used in which multi-
taper spectral estimation is implemented. From a choice of two of the three parameters N0, Lb , and θ0 from
Equation 3.10, the third parameter can be determined. Then, with θ0, the components of the matrix D (Equa-
tion 3.6) are computed, and the eigenvalue problem (Equation 3.8) is solved for Lb +1 eigenvalues. These two
processing steps are implemented in computationally efficient ways which are not presented here. The K op-
timally concentrated filters are then rotated to the point of interest using a standard algorithm and expanded
into the spatial domain, where they can be multiplied with the data field. The windowed data fields are then
expanded back into the spherical harmonic domain and the spectral estimates are averaged.

3.2. GEOPHYSICAL MODEL

In this section, a geophysical model is developed which relates the input variables topography and gravity
to the elastic thickness of the lithosphere. It is necessary to use a thin shell model because Mars is too small
to neglect the role of membrane stresses in lithospheric modelling (Turcotte et al., 1981). There is currently
no thin elastic shell model available which incorporates the effect of anisotropy, which is therefore neglected
(Audet, 2011; Simons and Olhede, 2013). This section presents a model which has previously been described
by other authors in the Cartesian domain and by Audet (2014) in the spherical domain. Most derivations in
this section are therefore also given in similar form in Audet (2014) and Simons and Olhede (2013).

3.2.1. FLEXURE

The equation for the flexure of a thin, isotropic shell is (Beuthe, 2008)

(
D∇2 (∇2)′ (∇2)′+ (R̄ t )2ETe

(∇2)′)u (r ) =−(R̄ t )4
((∇2)′−1−ν

)
q (r ) (3.11)

where R̄ t is the radius of the shell, u (r ) is the deflection at position r measured positive upwards, and q (r ) is
the loading pressure at position r measured positive downwards (Figure 3.1). For a definition of the differen-
tial operators ∇2 and

(∇2
)′

see Appendix B. Note that Equation 3.11 is also given in McGovern et al. (2002), but
incorrectly attributed to both load and deflection pointing in the same direction, contrary to the definition in
Beuthe (2008), Turcotte et al. (1981), and this study. Note also that Turcotte et al. (1981) and after them many
other studies (e.g. McGovern et al., 2002) used a slightly erroneous version of Equation 3.11 which includes
the term D(∇6 +4∇2) instead of D∇2

(∇2
)′ (∇2

)′
. However, this only has significant impacts on the degree one

term, and therefore did not affect elastic thickness estimates for which the higher degrees are relevant.

Figure 3.1: Thin elastic shell for Te ¿ R̄ t . When a load is applied at position r , the deflection u(r ) causes a loading pressure q(r ).

Transforming Equation 3.11 into the spherical harmonic domain and inserting Equation 1.1 gives

(
ET 3

e

12(1−ν2)

(−l 3(l +1)3 +4l 2(l +1)2 −4l (l +1)
)+ (R̄ t )2ETe (−l (l +1)+2)

)
ul m =−(R̄ t )4(−l (l +1)+1−ν)qlm ,

(3.12)
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where ul m and qlm are the spherical harmonics coefficients of u(r ) and q(r ), respectively (Equation A.1).
Defining the flexural parameters

ξ= ET 3
e

12(R̄ t )4(1−ν2)
(3.13a)

τ= ETe

(R̄ t )2
(3.13b)

and

f1 =−l 3(l +1)3 +4l 2(l +1)2 −4l (l +1) (3.14a)

f2 =−l (l +1)+2 (3.14b)

f3 =−(−l (l +1)+1−ν) , (3.14c)

Equation 3.12 can be written as

(ξ f1 +τ f2)u = f3q (3.15)

where the subscript l m was omitted for simplicity and because all further treatment will be in the spherical
harmonic domain.

Figure 3.2: An initial surface topography hi causes a subsurface deflection w t and an equilibrium surface topography ht (top left and
middle). An initial subsurface topography w i causes a surface deflection hb and a equilibrium subsurface topography wb (bottom
left and middle). Note the smoothing effect of the upward and downward continuations. Surface and subsurface quantities from both
sources are summed up to yield the final (observable) surface and subsurface topographies h and w (right). This figure is adapted from
Simons and Olhede (2013) who simulated the values with the Matérn covariance function.

The model incorporates two density interfaces: the surface with a density contrast equal to the crustal den-
sity ρc , assuming the atmosphere a zero-density fluid; and the crust-mantle boundary with a density contrast
∆ρ = ρm −ρc where ρm is the mantle density. Loads can be emplaced on either or both of those density in-
terfaces as undulations of their topography and cause, by compensation, a deflection of the respective other
interface (Figure 3.2). Here, topography means a small deviation from an interface and generally refers to any
surface or subsurface interface.
This model is a very simple approximation to reality. Other studies have used more than two density inter-
faces (Belleguic et al., 2005; McKenzie, 2003) and load densities that differ from crust and mantle densities
(Belleguic et al., 2005; Beuthe et al., 2012; McGovern et al., 2002). The realistic modelling of phenomena like
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mantle plumes and high density intrusions requires such different load densities (Beuthe et al., 2012). Bel-
leguic et al. (2005) also applied the loads and the compensation at different interfaces, whereas this study
uses the assumption that the depth of loading and the depth of compensation are identical (Forsyth, 1985).
All of these variations are trade-offs between keeping the model simple and making it more realistic, and
come with additional unknown parameters that must be estimated, such as top and bottom load densities
and the depths of the various interfaces. In this study, the model is kept as simple as possible while remaining
realistic (Simons and Olhede, 2013), to keep the parameter optimization process feasible and to demonstrate
the general applicability of the method.

3.2.2. SURFACE LOADING
For surface loads Equation 3.15 can be written as

(ξ f1 +τ f2)w t = f3q t . (3.16)

where q t is the surface (top) loading pressure and w t is the subsurface deflection caused by it. One con-
tribution to the pressure is the weight of the load gρc ht where g is the gravitational attraction and ht is the
surface topography in an equilibrium state which is reached after the initial load has been compensated. This
weight also causes a downward displacement of the shell. Therefore, the crust-mantle boundary with density
contrast ∆ρ generates an upward pressure g∆ρw t . This gives the equation

q t = gρc ht + g∆ρw t (3.17)

which assumes a homogeneous density structure both in lateral direction and within the two layers, a con-
stant gravitational attraction,

g = GM

(R̄ t )2
, (3.18)

at the level of the mean planetary radius throughout the crust, and an unperturbed equipotential surface at
the crust-mantle boundary (Belleguic et al., 2005). All these assumptions are critical for very large loads, as
found for example in the Tharsis region, but cannot be implemented without using a much more complex
model.
Inserting Equation 3.17 into Equation 3.16 gives

(ξ f1 +τ f2)w t = f3(gρc ht + g∆ρw t ) (3.19)

⇔ w t = ρc

∆ρ

f3
ξ f1

g∆ρ +
τ f2
g∆ρ − f3

ht , (3.20)

or

w t =αt ht , (3.21)

where

αt = ρc

∆ρ

f3
ξ f1

g∆ρ +
τ f2
g∆ρ − f3

(3.22)

can be regarded as the flexural filter of top loading.

3.2.3. SUBSURFACE LOADING
Processes which can cause density anomalies in the subsurface include igneous intrusions and magma cham-
bers (Beuthe et al., 2012; Watts and Burov, 2003). Subsurface density anomalies caused by impact cratering
are called mascons and rifting processes in Valles Marineris can cause crustal thinning (McGovern et al.,
2002). For such subsurface loads Equation 3.15 can be written as

(ξ f1 +τ f2)hb = f3qb . (3.23)

where qb is the subsurface (bottom) loading pressure and hb is the surface deflection caused by it. Analogy
to top loading gives the equation

qb = g∆ρwb + gρc hb (3.24)
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which again underlies several assumptions and where wb is the equilibrium subsurface topography.
Inserting Equation 3.24 into Equation 3.23 gives

(ξ f1 +τ f2)hb = f3(g∆ρwb + gρc hb) (3.25)

⇔ wb = ρc

∆ρ

ξ f1
gρc

+ τ f2
gρc

− f3

f3
hb , (3.26)

or

wb =αbhb , (3.27)

where

αb = ρc

∆ρ

ξ f1
gρc

+ τ f2
gρc

− f3

f3
(3.28)

can be regarded as the flexural filter of bottom loading.
Note that in the derivations of Equations 3.22 and 3.28 of Audet (2014) there are several typos, but his final
results for the flexural filters (his Equations B13 and B19) are nonetheless correct and identical to mine.

3.2.4. SUBSURFACE TOPOGRAPHY
For the geophysical model used in this study it is essential to know the subsurface topography. The only
available data to probe the subsurface is the gravity, specifically the Bouguer anomaly which by design gives
information only about the subsurface and not about the surface topography. Here it is assumed that the
Bouguer anomaly is caused by subsurface topography on only one density interface which is the crust-mantle
boundary. This means that the crust and mantle are both assumed to be completely homogeneous and the
density anomalies resulting from all crust and mantle processes are merged into one density anomaly which
is the bottom load and causes the Bouguer anomaly. Specifically, the higher density of the Tharsis volcanoes
(McGovern et al., 2002), the lower density of the polar caps, and the effect of the hydrostatic flattening of
the core-mantle boundary (Neumann et al., 2004) are known to cause deviations of the Bouguer anomaly
from the homogeneous case. To unambiguously determine the subsurface topography using this method,
the depth of the subsurface interface must be set to a fixed value at one location on Mars. Since, unlike for
the Moon, there is no data available for such a constraint on Mars, I follow Zuber et al. (2000) and arbitrarily
set the global minimum crustal thickness, which is located in the Isidis crater, to 3km. It is in fact possible that
the crustal thickness in Isidis is much larger (Wieczorek and Zuber, 2004), but the impact of this uncertainty
is probably small for the estimation of the elastic thickness (Belleguic et al., 2005). Again, a more realistic
model, including more density interfaces or a more complicated density structure, is renounced in favor of
a simpler model. This approach is justified with the limited data situation on Mars (no interior structure
through seismology) and the complexity of the parameter optimization.
The process of deriving subsurface gravity from surface gravity is called downward continuation (Blakely,
1996). Since the potential field becomes smoother with increasing distance, the input to the downward con-
tinuation is smoother than the output which causes the process to be unstable and to amplify noise (Blakely,
1996; Wieczorek and Phillips, 1998). In a wider sense, the term downward continuation is also used for the
derivation of subsurface topography from surface gravity, thereby including the transition from subsurface
gravity to subsurface topography. A simple downward continuation filter uses the Bouguer plate approxi-
mation (Section 2.2), but Wieczorek and Phillips (1998) provided a more robust approach by minimizing the
relief along the subsurface interface. They give the subsurface topography as

wlm =χl

(
C BA

l m M(2l +1)

4π∆ρ(R̄b)2

(
R̄ t

R̄b

)l

− R̄b
l+3∑
n=2

n wlm

(R̄b)nn!

∏n
j=1(l +4− j )

l +3

)
(3.29)

where

χl =
1+λ

(
M(2l +1)

4π∆ρ(R̄b)2

(
R̄ t

R̄b

)l
)2

−1

(3.30)
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is the downward continuation filter, R̄b is the mean radius of the subsurface interface, and λ is a Lagrange
multiplier, which is in practice chosen so that χl = 1

2 for the maximum degree at which the potential spec-
trum shows resolution (Wieczorek and Phillips, 1998).
Equation 3.29 can be evaluated iteratively. An initial guess of the subsurface topography, which is related
to the crustal thickness Tc by w(r ) = R̄ t −Tc (r ) and referenced to the center of mass, is given in the spatial
domain, for example a constant value for the whole planet. This field is then expanded to the n-th power for
all n < nmax. Evaluating the sum in Equation 3.29 until l +3 would be computationally expensive, but Wiec-
zorek and Phillips (1998) found that for nmax = 5 the resolution is sufficient. All the powers of the topography
are then transformed into the spectral domain using a spherical harmonics analysis algorithm (Driscoll and
Healy, 1994). The mean value of the subsurface topography is given as

R̄b = 1w00 . (3.31)

The coefficients wlm resulting this way from Equation 3.29 are then transformed back into the spatial domain
by a spherical harmonics synthesis algorithm and used as the intitial values for the next iteration. In practice,

w3
l m = 1

2
(w1

l m +w2
lm) (3.32)

is used as the initial value for the third iteration to achieve increased stability (Wieczorek et al., 2015). The
iteration is continued until convergence is reached.

3.2.5. COMBINED LOADING
The top and bottom loading processes are combined by superposition. This gives the final surface and sub-
surface topographies

h = ht +hb (3.33)

w = w t +wb . (3.34)

These are the observables of the model. h is observed directly and w is computed from the Bouguer anoma-
lies. To the initial topographies, isostatic compensation applies (Watts, 2001). Surface heights are causing
subsurface deflection and vice versa:

hi = ht −w t (3.35)

w i = wb −hb . (3.36)

Combining Equations 3.35 and 3.36 with Equation 3.33 gives

h = hi ht

ht −w t +
w i hb

wb −hb
= hi

1− w t

ht

+ w i

wb

hb −1
(3.37)

and combining Equations 3.35 and 3.36 with Equation 3.34 gives

w = hi w t

ht −w t +
w i wb

wb −hb
= hi

ht

w t −1
+ w i

1− hb

wb

. (3.38)

Inserting the loading filters (Equations 3.21 and 3.27) into Equations 3.37 and 3.38 gives

h = hi

1−αt +
w i

αb −1
(3.39)

w = αt hi

1−αt +
αb w i

αb −1
, (3.40)

or, in matrix notation (
h
w

)
=

(
(1−αt )−1 (αb −1)−1

αt (1−αt )−1 αb(αb −1)−1

)(
hi

w i

)
(3.41)

Equations 3.41 are called the load deconvolution equations (Forsyth, 1985; Lowry and Smith, 1994) and can
also be written as

h = M Te hi (3.42)

where the matrix M Te contains all information about the geophysical model and depends only on the elastic
thickness Te .
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3.2.6. INITIAL LOADS
When studying planetary gravity and topography, one has to distinguish between the random processes grav-
ity and topography, and their realizations. Here, the fact that the subsurface topography is a derived quantity
is ignored, and it is treated as a random process in its own right. For the spherical harmonics expansion of
two zero mean random processes of topographies hlm and wlm one can write the spectral cross-covariance
as a function of degree l as (Wieczorek and Simons, 2005)

Shw (l ) =
l∑

m=−l
hlm wl m . (3.43)

The spectral cross-covariance matrix of final topographies is then given by

Shh (l ) =
(

Shh(l ) Shw (l )
Swh(l ) Sw w (l )

)
. (3.44)

Only one realization of the random processes of surface and subsurface topography can be observed, and this
realization is blurred by a localization window as described in Section 3.1. The blurred spectral covariance is
computed from this blurred realization of the random process topography and denoted as S̄hh (l ).
The cross-covariance matrix of initial topographies is given by

Shi hi (l ) =
(

Shi hi (l ) Shi w i (l )
Sw i hi (l ) Sw i w i (l )

)
. (3.45)

Then, applying error propagation to Equation 3.42, one can write

Shh (l ) = M Te (l )Shi hi (l )M>
Te

(l ) . (3.46)

So, with knowledge of the geophysical model M Te and the covariance spectrum of the random process of ini-
tial topographies Shi hi , one can deduce the covariance spectrum of the random process of final topographies
Shh , which will, after blurring, enter the objective function of the maximum likelihood estimation as S̄hh (see
Section 3.3.2).
The goal is now to eliminate three of the four components of Shi hi (l ) by the assumptions of load correlation
and load proportionality. First, note that because of isotropy

Shi w i (l ) = Sw i hi (l ) . (3.47)

Then, the coefficient

r = Shi w i (l )√
Shi hi (l )Sw i w i (l )

(3.48)

is introduced, which gives the correlation between the initial topographies, so that the covariance matrix
(Equation 3.45) can be written as

Shi hi (l ) =
(

Shi hi (l ) r
√

Shi hi (l )Sw i w i (l )
r
√

Shi hi (l )Sw i w i (l ) Sw i w i (l )

)
, (3.49)

thereby eliminating the cross-covariance terms. In studies investigating the Earth’s elastic thickness, the ini-
tial loads have often been assumed to be uncorrelated (e.g. Forsyth, 1985), which corresponds to a load cor-
relation r = 0. In contrast, McGovern et al. (2002) assumed perfect correlation r = 1 for Mars’ lithosphere.
Recently, several studies have pointed out that the assumption of either perfectly correlated or perfectly un-
correlated initial loads can be a severe limitation for the correct estimation of the elastic thickness (Audet,
2014; Kirby and Swain, 2009; Simons and Olhede, 2013). Therefore, the load correlation is here estimated
as an independent parameter together with the elastic thickness. However, it is assumed constant over all
spherical harmonic degrees, to keep the number of parameters in the estimation at a minimum.
The bottom and top loads Lb and Lt are essentially pressures acting on the respective interfaces and resulting
from the weight of the topography:

Lt = gρc hi (3.50a)

Lb = g∆ρw i . (3.50b)
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A spherical harmonics equivalent of the loading fraction f 2 (Equation 1.6) defined by Forsyth (1985) the in
the Fourier domain is

f 2(l ) =
∑l

m=−l Lb
lmLb

lm∑l
m=−l Lt

lmLt
lm

(3.51)

which, using Equations 3.43 and 3.50, can be written as

f 2(l ) = ∆ρ
2Sw i w i (l )

ρ2
c Shi hi (l )

. (3.52)

The loading fraction can be used to eliminate the third component from the covariance matrix of initial loads
(Equation 3.45) by writing

Shi hi (l ) = Shi hi (l )

(
1 r f ρc

∆ρ

r f ρc
∆ρ f 2 ρ2

c
∆ρ2

)
. (3.53)

By the assumption of such a loading fraction, the loads become proportional. Again, this study estimates the
loading fraction as an independent parameter, but treats it as constant over all spherical harmonic degrees to
keep the number of parameters small.
At this point it is worth to take a look back at the standard spectral estimation procedure for the elastic thick-
ness in literature (e.g. Audet, 2014; Forsyth, 1985; Kirby and Swain, 2009; McGovern et al., 2002; McKenzie,
2003). Writing the spherical harmonics equivalent (Wieczorek and Simons, 2005) of the admittance and co-
herence (Equations 1.3 and 1.4) as

q̄l =
Shg (l )

Shh(l )
(3.54)

γ2
l =

S2
hg (l )

Shh(l )Sg g (l )
(3.55)

one can see that explicit expressions would become very complicated when considering the propagation
from initial to final quantities (Equation 3.46). The final quantities are given for the much simpler planar
case by Kirby and Swain (2009) and Simons and Olhede (2013) and show strong nonlinearity in all three pa-
rameters Te , F , and r . McKenzie (2003) plotted misfit surfaces for the admittance as a function of Te and
f 2 which illustrate the ambiguity in the estimated results and McKenzie (2015) emphasized that in regions
of incoherent gravity and topography both spectral ratios cannot estimate the elastic thickness, and instead
provide over-estimates. By studying the admittance or coherence, one essentially takes ratios of elements of
the matrix Shh which have unknown statistical distributions, and uses them to invert for the elastic thickness,
whose statistics are therefore also unknown.

3.3. MAXIMUM LIKELIHOOD ESTIMATION
This study abstains from using admittance and coherence because of the aforementioned complications.
Least-squares estimation is not a flexible estimation method because it always requires a normal distribu-
tion of the data that are supposed to be fit, which is not the case for admittance and coherence. Instead, in
this study I apply an approach which is new to the field of elastic thickness estimation and uses maximum
likelihood estimation. It has been proposed and tested on synthetic data by Simons and Olhede (2013). For
maximum likelihood estimation, a statistical distribution of the input data must be assumed, but here, I in-
vert for the parameters of that distribution, and thereby determine the statistical distribution in the same
inversion process in which I also determine the geophysical parameters Te , F , and r .

3.3.1. SPECTRAL COVARIANCE OF THE INITIAL TOPOGRAPHIES
The geophysical model depends on the parameter Te , which is to be estimated, and the constants ρc , ∆ρ, E ,
ν, g , and R. It is connected to the spectral representation of the unknown initial topographies Shi hi by load
proportionality and load correlation. These concepts are represented by the parameters F and r which are
also to be estimated. Here, in accordance to Simons and Olhede (2013), the Matérn isotropic class is used to
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parameterize the covariance of the initial topographies. The Matérn class of covariance functions has been
introduced in the spatial domain as

M(||d ||) = Cov(f (r ), f (r +d )) = σ221−ν

Γ(ν)
(α||d ||)νKν(α||d ||) (3.56)

by Matérn (1960) and popularized by Handcock and Stein (1993). In Equation 3.56, σ2 > 0 is the variance,
α > 0 is the scale parameter, ν > 0 is the smoothness parameter (Guttorp and Gneiting, 2006), Γ(x) is the
gamma function,

Kν(x) = π(I−ν(x)−Iν(x))

2sin(νπ)
(3.57)

is the modified Bessel function of the second kind, and

Iν(x) =
∞∑

m=0

1

m!Γ(m +ν+1)

( x

2

)2m+ν
(3.58)

is the modified Bessel function of the first kind (Abramowitz and Stegun, 1964). The covariance M is isotropic
because its value does not depend on the two points r and r +d , but only on the distance ||d || between them
(Stein, 1999). M will become smoother for increasing ν. Other covariance functions, like for example the
spherical, the exponential, and the Gaussian covariance, do not have such a smoothness parameter. There-
fore, they are not flexible enough to predict the local behavior which is typical for geo-spatial data (Stein,
1999). They may be able to model processes with known smoothness well, but usually, and so also in the case
of planetary topography, the smoothness is not known in advance. Note also that the Gaussian covariance
function is a liming case of the Matérn covariance for ν→∞, and the exponential covariance function is a
special case for ν= 1

2 (Guttorp and Gneiting, 2006). In fact, all functions of the type

M(||d ||) =σ2(α||d ||)νKν(α||d ||) (3.59)

are valid isotropic covariance functions, even after dropping the term (2ν−1Γ(ν))−1 from Equation 3.56 (Stein,
1999). This term normalises the covariance so that M(||d ||) → σ2 for x → 0, which gives the term σ2 its
practical interpretation as the variance.
Gneiting et al. (2013) showed that the Matérn covariance function can be expressed on the sphere as

M(ψ) = σ221−ν

Γ(ν)

(
αψ

)ν
Kν

(
αψ

)
(3.60)

for great circle distances ψ ∈ [0,π], σ2 > 0, and α> 0, and 0 < ν≤ 1
2 . Including the alternate parametrization

(Stein, 1999)

ρ = 2
p
ν

α
(3.61)

one can write the spherical Matérn covariance as

M(ψ) = σ221−ν

Γ(ν)

(
2
p
ν

ρ
ψ

)ν
Kν

(
2
p
ν

ρ
ψ

)
(3.62)

for σ2 > 0, ρ > 0, and 0 < ν ≤ 1
2 . This parametrization has the advantage that all the parameters are in-

terpretable without mutual couplings. σ2 only signifies the value approached for ψ → 0, ν indicates the
smoothness around the origin, and ρ is the decorrelation distance, a measure for the decay of the covariance
function with great circle distance, which is similar to the spatial range parameter in other covariance models
(Stein, 1999). In parametrizations including the parameter α, the behavior of α changes depending on the
values of ν.

The constraint ν ≤ 1
2 of the spherical form of the Matérn covariance is critical for many applications be-

cause data fields generated with such a low ν are not smooth. This covariance function therefore should not
be used to model smooth processes on the sphere and, compared to its planar equivalent, loses a lot of its
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Figure 3.3: Chordal Matérn covariance function for various values of ν. νmainly influences the smoothness around the origin and leaves
the shape of the graph relatively unaffected, except for very small ν< 0.5.

flexibility (Guinness and Fuentes, 2016; Jeong and Jun, 2015). Guinness and Fuentes (2016) discussed sev-
eral workarounds for the problem of limited smoothness in the spherical case. One of them is the so-called
chordal Matérn covariance function Mc (ψ), which replaces the great circle distance ψ by the Euclidian dis-
tance 2sin ψ

2 :

Mc (ψ) =σ2
(
2αsin

ψ

2

)ν
Kν

(
2αsin

ψ

2

)
(3.63)

Using the alternate parametrization of Equation 3.61 and including again the factor (2ν−1Γ(ν))−1, one can
write the chordal Matérn covariance function as

Mc (ψ) = σ221−ν

Γ(ν)

(
4
p
ν

ρ
sin

ψ

2

)ν
Kν

(
4
p
ν

ρ
sin

ψ

2

)
(3.64)

for σ2 > 0, ρ > 0, and ν > 0. The chordal Matérn covariance is plotted for various values of ρ and ν in Fig-
ures 3.3 and 3.4. It can be seen that the decorrelation distance ρ can be interpreted as the distance in radians,
at which the covariance function reaches approximately the value 0.3σ2. For example, for ρ = 0.1, the value
0.3σ2 = 3km2 is reached approximately at ψ = 0.1rad = 5.7°. Gneiting et al. (2013) deemed this model as
potentially yielding unphysical results, but Guinness and Fuentes (2016) found practical evidence for the va-
lidity of its application.
For this study, a spectral representation of the covariance function on the sphere is needed, so I isotropically
(see Equation 3.4) expand Equation 3.62 or 3.64 into spherical harmonics (Baran and Terdik, 2015)

M(ψ) =
∞∑

l=0
Ml P̄l0(cosψ) (3.65)

and define

Shi hi (l ) := Ml , (3.66)

which finally, after exploiting the concepts of load correlation and proportionality and specifying a spectral
form for the covariance of the topography fields, makes it possible to evaluate Equation 3.46 and compute
the covariance spectrum of the random process of final topographies.
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Figure 3.4: Chordal Matérn covariance function for various values of ρ. ρ influences the shape of the graph and the distance at which it
becomes close to zero.

Another covariance function proposed by Guinness and Fuentes (2016) is what they call the Legendre-Matérn
function

MLegendre(ψ) =σ2
L∑

l=0
(α2 + l 2)−ν−

1
2 Pl0(cosψ) =σ2

L∑
l=0

(α2 + l 2)−ν−
1
2p

2l +1
P̄l0(cosψ) (3.67)

for σ2 > 0, α> 0, and ν> 0. It is again possible to apply a more useful parametrization

MLegendre(ψ) =σ2 Γ(ν+ 1
2 )p

πΓ(ν)

(
4ν

ρ2

)ν L∑
l=0

(
4ν

ρ2 + l 2
)−ν− 1

2 1p
2l +1

P̄l0(cosψ) (3.68)

which decouples the meaning of the smoothness parameter ν and the decorrelation distance ρ. However,
the parameter σ2 is not the variance of the Legendre-Matérn covariance function, even though it does act
as a factor that linearly scales the function. There is no way of scaling the function to have exactly σ2 as its
variance known to me.
This covariance function’s spectral representation in the spherical harmonic domain is simply given by

Ml =σ2 Γ(ν+ 1
2 )p

πΓ(ν)

(
4ν

ρ2

)ν (
4ν

ρ2 + l 2
)−ν− 1

2 1p
2l +1

(3.69)

so that the computation of its spectrum is very easy.

3.3.2. LIKELIHOOD FUNCTION
The probability density function P (x |y) is the function that gives the probability of observing the data x given
the parameter set y . The likelihood function

L (y |x) =P (x |y) (3.70)

is the reverse of the probability function in the sense that it gives the likelihood that the parameter set y has
caused the observed data x (Myung, 2003). The 6-dimensional parameter space is sampled to obtain a variety
of parameter sets

y = (
Te F r ν ρ σ2 )>

, (3.71)
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for each of which the likelihood is computed. The most likely parameter set is then accepted as the result. The
log-likelihood is the natural logarithm of the likelihood and will give the same maximum as the likelihood,
while being more easy to calculate. It is given by (Simons and Olhede, 2013)

L
(

y |h̄)= 1

L
ln

L∏
l=0

exp
(
−h̄

>
(l )S̄

−1
hh (l , y)h̄(l )

)
∣∣S̄hh (l , y)

∣∣ =− 1

L

L∑
l=0

(
ln

(∣∣S̄hh (l , y)
∣∣)+ h̄

>
(l )S̄

−1
hh (l , y)h̄(l )

)
, (3.72)

where h̄ is the vector of windowed and localized topography, and S̄hh is the blurred version of the spectral
covariance of final topographies from Equation 3.46.

Figure 3.5: Processing scheme for the generation of a global elastic thickness map.

Figure 3.5 summarizes the processing steps described in this chapter which are necessary to compute a global
map of the elastic thickness of Mars.
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3.4. ERROR ESTIMATION
After determining the most likely parameter sets of geophysical and statistical parameters, Simons and Ol-
hede (2013) go on in their methodology by exploring the statistics of the estimates and giving formulae for
variances and confidence intervals. This is possible in the 2D planar case, because an analytic expression
for the derivatives of the spectral form of the covariance exists, and might be possible in the 3D spherical
case when using the Legendre-Matérn covariance function or a similar one whose spectrum has an analyt-
ical expression. I do not attempt this method, and instead use a Monte Carlo approach to determine the
uncertainties on the parameters, which can also deal better with the problems introduced into the analytical
derivations by blurring of the spectral covariance and small sample sizes (F. Simons, personal communica-
tion). When determining uncertainties of the estimated parameters analytically, it would be impossible to
also include the effects of multitapering into the derivation of formal variances because there is no simple
analytical expression for the multitapering.
First, synthetic planetary topographies are simulated using the maximum likelihood estimates of the six pa-
rameters Te , F , r , ν, ρ, and σ2. Then, these simulations are treated as new inputs for the geophysical model
from which new most likely parameter estimates are generated. This process is repeated for many simula-
tions to generate a large enough sample of most likely parameters generated from simulations. Finally, the
standard deviation of the each simulated optimal parameter can be determined. These are the uncertainty
estimates of the original most likely solution.
The actual input data, which is the topography and gravity of Mars, is not involved in the error estimation
process. Two locations on Mars which happen to have exactly the same most likely solution in all parame-
ters, will also have the same uncertainties attributed to them. For every parameter set and for each simulation
created with them, the parameter optimization process has to be run, so that the computation time for the
errors is much longer than the computation time of the original estimates. For this reason, I only create error
estimates for certain locations on Mars, and not for the entire map.
It is necessary to simulate random fields of planetary topography using a specified set of parameters. Such a
simulation of a random field on the sphere is performed using the field’s desired power spectrum. First, I will
define the power spectra of all topographies of interest.
The power spectrum of the initial surface topography is Shi hi , as given by either Equation 3.66 for the case
of the chordal Matérn covariance function or by Equation 3.69 for the Legendre-Matérn covariance function.
The power spectrum of the initial subsurface topography can be obtained from Equation 3.52 as

Sw i w i = Shi hi
ρ2

c

∆ρ2 f 2 (3.73)

and the cross-spectrum of initial surface and subsurface topography can then be obtained over the load cor-
relation (Equation 3.48) as

Shi w i = r
√

Shi hi Sw i w i . (3.74)

While the initial topographies are interesting quantities to understand the flexure process, the final topogra-
phies are needed for the error estimation process. The spectra of the final topographies can be determined by
Equation 3.46 and Equation 3.44. From the spectra of final surface and subsurface topography Shh and Sw w

and the cross-spectrum Shw = Swh one can define a correlation coefficient between surface and subsurface
as

r f = Shw√
ShhSw w

. (3.75)

A generic random field f (Ω) on the sphere can be simulated as (Lang and Schwab, 2015)

f (Ω) =
∞∑

l=0

l∑
m=−l

√
Sffp
2l +1

XlmYlm(Ω) (3.76)

where Sff is the field’s power spectrum, and Xlm is a sequence of independent, real-valued, standard normally
distributed random variables.
For the simulation of topography fields I set the degree zero term to zero, so that the resulting field can be
interpreted as undulations on an interface with unspecified distance from the center of mass. Removing the
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degree zero term does not have any effect on the actual error estimation process, because in the multitapering
the lowest degrees of all fields are removed, but it facilitates understanding of the simulated fields itself. The
random field of initial surface topography is then given by

hi (Ω) =
∞∑

l=1

√
Shi hi (l )p

2l +1

l∑
m=−l

X 1
l mYlm(Ω) . (3.77)

In order to express load correlation in the initial subsurface topography, correlated random variables are
generated as

Xlm = r X 1
lm +

√
1− r 2X 2

lm (3.78)

where X 1
lm is the sequence of random variables used for the simulation of the initial surface topography, and

X 2
lm is a new sequence of independent, real-valued, standard normally distributed random variables. Then,

the simulated initial subsurface topography can be written as

w i (Ω) =
∞∑

l=1

√
Sw i w i (l )p

2l +1

l∑
m=−l

(
r X 1

l m +
√

1− r 2X 2
lm

)
Ylm(Ω) . (3.79)

Analogously, for the final topographies one can write

h(Ω) =
∞∑

l=1

√
Shh(l )p

2l +1

l∑
m=−l

X 1
l mYlm(Ω) (3.80)

w(Ω) =
∞∑

l=1

√
Sw w (l )p

2l +1

l∑
m=−l

(
r f X 1

lm +
√

1− (r f )2X 2
lm

)
Ylm(Ω) (3.81)

where again X 1
lm and X 2

lm are sequences of independent, real-valued, standard normally distributed random
variables.
The truncation error of the random field f (Ω) (Equation 3.76) is bounded if and only if its power spectral
density decays algebraically with order k > 2, such that

Sffp
2l +1

≤C l−k (3.82)

where C is a constant. Inserting the spectrum of the Legendre-Matérn covariance function (Equation 3.69)
gives

σ2 Γ(ν+ 1
2 )p

πΓ(ν)

(
4ν

ρ2

)ν (
4ν

ρ2 + l 2
)−ν− 1

2 1

2l +1
≤C l−k . (3.83)

It can be shown that for any value of ν> 0, there is a k > 2, so that this inequality holds. For parametrizations
of the Matérn covariance in the spatial domain is not straightforward to prove that the truncation error is
bounded, but because they are only different parametrizations of the same covariance function, I conclude
that this inequality is also valid.
The simulated random fields of surface topography h(Ω) and subsurface topography w(Ω) are generated us-
ing the most likely solutions of all the six parameters of our model: Elastic thickness Te , load ratio F , load
correlation r , smoothness ν, decorrelation distance ρ, and variance σ2. Examples are given in Section 4.5.
These simulated topographies are then used as an input of the same model again, they are tapered the same
way as the original data, and compared with the modelled covariance spectra of topographies as in Equa-
tion 3.72 to determine the parameter set that is most likely to have caused these simulated topographies.
Ideally, it would be expected that this is identical to the parameter set used for the simulation. All deviations
from the input parameters are due to model failure and can therefore be used as an uncertainty estimation of
the most likely solution.
Table C.1 gives an overview of all symbols and quantities used in this study.





4
RESULTS

4.1. SUBSURFACE TOPOGRAPHY
The two input quantities to the maximum likelihood estimation of the elastic thickness are the surface to-
pography h and the subsurface topography w . While the surface topography is directly observable, the sub-
surface topography is not, and therefore it has to be computed beforehand from the surface topography and
the gravity. This has been done in this study using the finite-amplitude correction method by Wieczorek and
Phillips (1998) which has been summarized in Section 3.2.4.

Shape of the Moho

3310 3320 3330 3340 3350 3360 3370 3380

Moho distance from center of mass [km]

Figure 4.1: The subsurface topography of Mars at the Moho.

The minimum amplitude downward continuation filter χl (Equation 3.30) is used. It is adjustable over the
Lagrange multiplier λ which determines how strongly the subsurface topography is smoothed in the filter-
ing. For λ = 0, no smoothing is applied, which causes an unrealistically rough subsurface topography, and
for increasing values of λ more short wavelength information is suppressed. I choose λ such that χl = 1

2 for
l = 70 because this eliminates short wavelength noise sufficiently (see Figure 4.1). I calculate the subsurface
topography up to L = 110 because spherical harmonic fields up to high degrees are needed for the multita-
pering (see Section 3.1) and evaluate the sum in Equation 3.29 up to nmax = 6. The calculation was carried out
using the MarsCrustalThickness.f95 script of Wieczorek et al. (2015) under usage of a minimum crustal

31
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Figure 4.2: The crustal thickness of Mars.

thickness value of 3km. The result is shown in Figure 4.1.
The crustal thickness can easily be computed as

Tc = h −w (4.1)

and is plotted in Figure 4.2 for easier interpretability. It compares favourably to the results of Neumann et al.
(2004) who used a very similar, but more sophisticated method.

4.2. PARAMETERS OF THE MATÉRN COVARIANCE FUNCTION
The log-likelihood equation (Equation 3.72) is used to calculate the likelihood of a certain parameter set to
have caused the observed topographies. For each of the six parameters yi a vector of nyi possible values is
chosen, and then the log-likelihood equation is evaluated for all

ntot =
6∏

i=1
nyi (4.2)

combinations of those vectors. This method is a gridded sampling of the 6-dimensional parameter space. For
each of the ntot parameter sets, the spectral covariance of the final topographies Shh has to be computed and
multitapered. In fact, the multitapering is the bottleneck in the time complexity of the whole elastic thick-
ness mapping algorithm (see also Figure 3.5). If one would apply an iterative algorithm, for example Newton’s
method, one could find a most likely solution for one map point (θ,λ) much faster and more precisely than
with the grid sampling. However, this study focuses on the creation of a map, and therefore it is necessary to
calculate the log-likelihood at each map grid point (θ,λ). An iterative algorithm would have to be initialized
from zero or close to zero for each map grid point. Therefore, I believe that the grid sampling is an efficient
approach for the problem treated in this study, and furthermore it is simple to implement.
The choice of values at which each parameter should be evaluated must be taken with care, both because of
additional program run time caused by unnecessary values and because of the effect which unphysical pa-
rameters may have on the most likely solution. The parameters Te . 300km, 0 ≤ F < 1, and −1 ≤ r ≤ 1 have
obvious physical limitations, whereas the parameters of the Matérn covariance function have to be assessed
more carefully. Using the parametrization from Equation 3.64, I compute an experimental covariance func-
tion from the shape of Mars to roughly find possible values of the parameters σ2, ρ, and ν. Note, however,
that the covariance function will in the end model the initial surface topography, while all experimental con-
straints can only be obtained from the final surface topography. This difference should not have any practical
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impact when I assume that the initial and final surface topographies have very similar statistical properties.
After a transformation of the shape field into the space domain, 1000 random pointsΩ= (θ,λ) on the surface
of Mars are chosen and an experimental variogram is computed. The dissimilarity between any two points at
locationsΩ andΩ′ is

d(Ω,Ω′) = (h(Ω)−h(Ω′))2

2
(4.3)

and can be plotted against a lag distance in the form of the great circle distance ψ(Ω,Ω′) between the two
points. Binning and averaging the results with respect to great circle distance gives the so-called experimen-
tal variogram.
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Figure 4.3: Experimental variogram of the shape of Mars with and without the l = 2, m = 0 coefficient.

The equatorial bulge is very visible in the variogram and is superposed to a linear trend which is visible when
the variogram is computed after setting h20 = 0 (Figure 4.3). Variogram functions generally flatten off at a
level σ2 which is reached after a distance which is related to the parameter ρ. This behavior is not visible in
the variogram of the Martian shape which implies some correlation even at very large distances. This leaves
the variance σ2 unconstrained and implies a large value for the decorrelation distance ρ. Because of this, the
purpose of fitting a theoretical variogram function such as the Matérn variogram functionσ2−M is question-
able.
A lower limit for the decorrelation distance ρ can be obtained by stating that a signal cannot decorrelate over
a distance that is smaller than its spatial resolution. All data sets used in this study are truncated after degree
L = 100, which has an equivalent Cartesian wavelength of λl = 212km or about 3.6° = 0.06rad. On the other
limit, the experimental variogram of the shape of Mars shows that the decorrelation distance can be larger
than the circumference of the planet. Therefore, I constrain the range parameter as 0.05 < ρ < 10.
The effect of the limited resolution of the global fields to degree L = 100 can also be illustrated practically
by investigating the truncation error. The chordal Matérn covariance function has its analytical expression
given in the spatial domain as a function of great circle distance (Equation 3.64). It is transformed into the
spherical harmonic domain because the covariance spectrum is needed for further analysis. In this transfor-
mation degrees larger than L = 100 are cut off, which results in a loss of high frequency signal. For low values
of decorrelation distance (Figure 3.4) and smoothness (Figure 3.3), the covariance function is decreasing very
quickly close to the origin. This is a high frequency signal, a lot of whose power is in the spherical harmonic
degrees larger than L = 100 and is lost in the transformation. The truncation error can be assessed by retrans-
forming the covariance spectrum into the spatial domain, and comparing this with the original covariance.
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Figure 4.4: Truncation error introduced by spherical harmonics transformation into the chordal Matérn covariance function Mc (0) at the
origin for various values of smoothness ν and decorrelation distance ρ. Truncation error values relate to a true value of 1 at the origin.

It can be seen that the peak value close to the origin is cut off while the rest of the function is almost identical
(see also Figure 4.14).
Therefore, I compare the values at ψ = 0 of the original and retransformed covariance functions. Their nor-
malized difference is plotted in Figure 4.4. It can be seen that the truncation error decays with increasing ν
and ρ. For ν= 0.1 and ρ = 0.05 almost 70% of the signal is lost. For ν= 0.2 at least 6% of the signal is lost, even
for a very high ρ = 10. This means that topography of the available resolution cannot be modelled with such
low smoothness values, simply because such a quick decay of the covariance function cannot occur because
of the low resolution. Even if the topography between two neighboring pixels would be completely decorre-
lated, it does not decorrelate as fast as for such low smoothness values. Guinness and Fuentes (2016) found a
value of ν= 1.5 for the smoothness parameter for global temperature data. I assume shape data to be less or
equally smooth and constrain therefore 0.3 ≤ ν ≤ 1.6. Still, within these limits, one has to be cautious about
combinations of low smoothness and low decorrelation distance values.
The variance can be constrained by noting that it is essentially a function of the maximum topography differ-
ence between two points in the area of interest. I set constraining values as 0.1km2 <σ2 < 100km2.

Table 4.1: Overview of parameter constraints and sampling intervals.

Parameter Lower limit Interval Upper limit nyi

Elastic thickness Te 10 km 10 km 300 km 30
Load ratio F 0 0.1 0.9 10
Load correlation r -1 0.2 1 11
Smoothness parameter ν 0.3 0.325 1.6 5
Decorrelation distance ρ 0.05 Logarithmically spaced 10 5
Variance σ2 104 m2 Logarithmically spaced 108 m2 5

My choices for parameter constraints are in general supported by the fact that the extreme values are not
found to be the most likely ones very often. The parameter constraints and the sampling intervals used in
this study are summarized in Table 4.1.

4.3. MAPPING THE ELASTIC THICKNESS
First, I present results obtained using only K = 1 taper. This allows to keep the window size at θ0 = 10° with a
bandwidth of Lb = 35, which leaves the spherical harmonic degrees 41 to 64 for the flexural analysis. A regular
4°×4° grid covering the entire globe has been used for the center points of the windows. The observed and
modelled topographies have been localized to each of these windows. A most likely parameter set has been
computed for each localization. The most likely elastic thickness values have been assigned to the central
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Figure 4.5: Map of the elastic thickness of Mars created using the chordal Matérn covariance function and tapering with K = 1 taper and
a spherical cap size of θ0 = 10°. The white line is a contour at the level of the mean planetary radius of 3389.500km and the same as in
Figure 2.1.

points of their respective windows and are presented in a map (Figure 4.5).
Te is generally lower than 60 km in the southern uplands, with many locations reaching 10 km, which is the
minimum value allowed in this experiment (compare Table 4.1). Some single pixels in the Argyre basin and
northeast of Hellas basin reach values of above 100 km, and south of Hellas even 300 km, which is the maxi-
mum value.
In the Tharsis region the general behavior is similar, with some locations in the proximity of the large vol-
canoes and Alba Patera reaching Te = 300km, but most of the remaining area staying below about 60 km.
Notably, at the peak of Olympus Mons, the value is only 70 km, though, and 30 km at Ascraeus Mons. Also
west of Elysium Mons, some locations reach 300 km, while the peak blends in with its surroundings at 20 km.
Remarkably, there are often abrupt transitions between values of 300 km in one pixel and values of less than
60 km, in some cases even 10 km, in the next pixel. Intermediate values are rarely found in the volcanic re-
gions. The center of the Isidis basin has an elastic thickness of around 200 km.
In the northern lowlands the Te values are very mixed. There are some larger areas northeast of Elysium
Mons and around the north pole with Te = 10km, but most of the central northern lowlands, especially be-
tween 30°N and 80°N and when far away from the highlands and volcanoes, reach at least 50 km. Values range
up to 300 km and all intermediate values can be found, but the behavior is not very smooth, and areas with a
difference of 250 km in elastic thickness bordering each other directly are common.
Such abrupt changes of elastic thickness over relatively small distances seem geophysically unlikely. The
Te value of each pixel of 4° represents the most likely elastic thickness value for a spherical cap of θ0 = 10°
which is centred around that location. Therefore, there is a big overlap between the spherical caps of two
neighboring pixels. Completely different parameter values in two neighboring pixels indicate unconstrained
parameter values.
Figure 4.6 shows maps of the most likely solutions for not only the elastic thickness, but also all other param-
eters, the most important trends of which I describe in the following paragraphs.
The load ratio in the southern uplands usually lies between 0.4 and 0.7, but exceptionally values between 0.1
and 0.9 are possible. Around Olympus Mons, Elysium Mons, the Tharsis Montes, and Valles Marineris, values
below 0.3 are reached. The northern lowlands have a very high load ratio, peaking at 0.9 in most areas, which
is the largest allowed value in this experiment. Exceptions from this are a large region around Elysium Mons
and the north pole. While the load ratio is generally a lot smoother than the elastic thickness, there are still a
lot of instances where transitions between high and low values are abrupt. The smallest sampled value F = 0
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Figure 4.6: Maps of most likely solutions for the six estimation parameters created using the chordal Matérn covariance function and
tapering with K = 1 taper and a spherical cap size of θ0 = 10°. The elastic thickness map is identical to the one in Figure 4.5, but plotted
again for better comparison.

is not the most likely value for any pixel.
The load correlation is either lower than -0.8 or exactly 1 at almost all locations. The negative and positive
extremes are arbitrarily mixed. Only in those areas of the northern lowlands where the most likely elastic
thickness and load ratio estimates are high, there are also values of r = 0.4 to r = 0.8. Furthermore, there are
some single pixels of intermediate load correlation values distributed over the globe in an indiscernible pat-
tern. The mix between strong positive and negative correlation indicates that the model cannot distinguish
well between these two kinds of correlation and rather only between strong and weak correlation. Remark-
ably, low correlation r ≈ 0 practically does not occur.
All possible values of the smoothness parameter ν between 0.3 and 1.6 occur frequently and seemingly very
randomly, with 0.3 the most common one. I recognize slightly lower smoothness in the northern lowlands
and slightly higher averages in the Isidis and Hellas basins, but a reliable interpretation is very difficult due to
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how scattered the map is.
The same issue holds for the decorrelation distance ρ. For this parameter, all values between 0.05 and 10
occur in a very scattered manner. In the northern lowlands, the value ρ = 2.7 is most common, whereas in
the southern uplands and in the Tharsis region the average is lower than that.
The variance σ2 is evidently correlated with the roughness of the shape of Mars. In the smooth northern
lowlands the valueσ2 = 104 m2 dominates, while in the cratered southern uplands the most common value is
at 105 m2 slightly higher. The dichotomy boundary, the large basins, most of the Tharsis region, and the sur-
roundings of Valles Marineris reach σ2 = 107 m2 and the highest peaks of Olympus and Elysium Mons reach
the highest allowed value 108 m2. The relatively smooth southwestern part of Tharsis shows a low variance of
σ2 = 104 m2, giving further evidence for a correlation between variance and roughness of the surface. How-
ever, there are also frequent pixels whose values are very different from their neighbors, like in the maps for
the other parameters.
In conclusion, the maps of most likely parameters in Figure 4.6 have shown that there are some clearly visi-
ble trends and quite some correlation between the parameters themselves and between them and the main
geological provinces of Mars. However, in an analysis with a spherical cap size of θ0 = 10°, there is also a lot
of scatter in all the parameters.

4.4. INFLUENCE OF TAPERING PARAMETERS
The next experiment I present uses K = 1 taper again, but the spherical cap size is increased to θ0 = 15°. Ac-
cordingly, the bandwidth decreases to Lb = 23, which leaves the degrees 29 to 76 for the analysis.
In the southern uplands, Te values (Figure 4.7) are generally lower than 40 km with most pixels having 10 km
as their most likely solution and some isolated pixels ranging up to 180 km.

Figure 4.7: Map of the elastic thickness of Mars created using the chordal Matérn covariance function and tapering with K = 1 taper and
a spherical cap size of θ0 = 15°.

In the Tharsis region, areas close to the large volcanoes and Alba Patera often reach the maximum value of
Te = 300km, and values range down to 10 km in the other parts. The peak of Olympus Mons only reaches
values of about 50 km, but is surrounded by a ring of high elastic thickness values of 300 km. The same be-
havior is observed at Elysium Mons, and to some extent also around Valles Marineris, although values there
only reach 300 km in a few instances.
In the northern lowlands, all values between 10 km and 300 km are present, with large areas of low Te close to
Elysium Mons and the north pole, and a large area of high Te northwest of Elysium Mons. Around longitude
15°W, there is a large area of Te ≈ 120km which seems to be surrounded by a belt of higher Te up to 300 km.
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In comparison with the cap size of θ0 = 10°, the map with θ0 = 15° is slightly smoother. Around the largest
elevation peaks (Olypus and Elysium Mons and Valles Marineris) rings of high Te have become visible while
the peaks themselves have low Te . This feature was to some extent already visible around Olympus Mons for
the map with smaller cap size, but here the ring has widened and is located further away from the central
peak. This widening might be due to the increase in cap size; pixels further away from the peak now include
information about it.
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Figure 4.8: Maps of most likely solutions for the six estimation parameters created using the chordal Matérn covariance function and
tapering with K = 1 taper and a spherical cap size of θ0 = 15°. The elastic thickness map is identical to the one in Figure 4.7, but plotted
again for better comparison.

In the case of the load ratio F (Figure 4.8), a significant smoothing has taken place in comparison to the map
with smaller cap size. This smoothing favors low and medium values, so that areas of F = 0.9 in the Tharsis
region and in the northern lowlands have receded.
For the load correlation, r = 0.8 and r = −0.8 are now the most common occurrences. Previously small
patches of high correlation or anti-correlation have changed into larger, more homogeneous patches. There
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is a clear preference for strong positive correlation in the northern lowlands and for strong negative corre-
lation in the southern uplands. Intermediate values are again quite rare, but there are some areas of low
correlation in the southern uplands.
The smoothness ν reaches all values from 0.3 to 1.6, with 0.3 the most common value globally. The map for
θ0 = 15° is slightly less scattered than the map for θ0 = 10°. High smoothness values of 1.3 and higher are
found in all three major impact basins and around Olympus Mons.
The decorrelation distance ρ also remains very scattered, with a slightly higher average in the northern high-
lands.
The behavior of the variance σ2 for increasing cap size is similar to that of the load ratio F . Low variance
regions in the northern lowlands and southwest of Tharsis recede to make room for more extended areas of
high variance. This behavior seems obvious where a larger cap is more likely to include varied topography
which increases the variance within that cap.
In conclusion, the most visible effect of a larger cap size of θ0 = 15° compared to θ0 = 10° is the smoothing in
all parameters. The transitions between two zones of different topographies become larger which is obvious
because also pixels further away from topographic features become influenced by them. Most strikingly this
is visible in ring patterns around locations of extreme elevation.
The multitaper spectral estimate becomes statistically more representative with an increasing number of ta-
pers. Therefore, in my next experiment, I increase the number of tapers to K = 2, while keeping the cap size
at θ0 = 15°, so that the bandwidth is again Lb = 35.

Figure 4.9: Map of the elastic thickness of Mars created using the chordal Matérn covariance function and tapering with K = 2 tapers and
a spherical cap size of θ0 = 15°.

For the analysis with K = 2 tapers and a spherical cap size of θ0 = 15°, the elastic thickness in the southern
uplands is generally lower than 50 km, with some pixels reaching up to 130 km, and one pixel on the south
rim of Hellas at 300 km.
In the Tharsis region, the only large area with high elastic thickness values of up to 300 km is around Olympus
Mons. Apart from that, there are only single pixels with high Te . Elysium Mons is also barely distinguishable
from its surroundings, with only one location reaching 130 km.
In the northern lowlands, values of 40 km to 70 km are very abundant, and only relatively small areas have a
Te larger than that, reaching up to 300 km in some locations.
In general, these results are much more reminiscent of the experiment with K = 1 taper and θ0 = 10° than of
the one with θ0 = 15°.
In the maps of the remaining parameters (Figure 4.10) no new trends can be clearly identified, but they can
in general be regarded as intermediate between the solutions for K = 1 taper and θ0 = 10° and θ0 = 15°, re-
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Figure 4.10: Maps of most likely solutions for the six estimation parameters created using the chordal Matérn covariance function and
tapering with K = 2 tapers and a spherical cap size of θ0 = 15°. The elastic thickness map is identical to the one in Figure 4.9, but plotted
again for better comparison.

spectively. They are less smooth than the results of the experiment with θ0 = 15°, but more smooth than the
results for θ0 = 10°. The reason for this decreased smoothness with respect to the same cap size and one less
taper is unclear. When using two tapers instead of one, the results of the two tapers are averaged and should
therefore be more statistically significant and contain less outliers. The downside is that the bandwidth which
is usable for analysis decreases which might be the dominant effect in this case.
Next, I study very large spherical caps of θ0 = 30° and increase the number of tapers to K = 3 because the
resulting bandwidth Lb = 24 is still quite small.
This experiment (Figure 4.11) results in very low Te values in the southern uplands, where Te is almost every-
where 10 km.
Olympus Mons reaches 300 km at its peak and is surrounded by a region of high Te values, which has a radius
of approximately 30°. Values in this area reach from 100 km to 300 km and are distributed unevenly. Some
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Figure 4.11: Map of the elastic thickness of Mars created using the chordal Matérn covariance function and tapering with K = 3 tapers
and a spherical cap size of θ0 = 30°.

locations further south of this area also have high Te values of up to 300 km. These areas are in the proximity
of the Tharsis Montes, and specifically Arsia Mons. Valles Marineris itself has a very low Te of 20 km, but it
is surrounded by an annulus of higher Te values ranging from 30 km in the west to 110 km in the east. At
Elysium Mons, the exact opposite can be observed: The peak reaches 300 km, and is surrounded by a ring of
locations with Te = 10km at about 25° distance from the peak. In between, there are intermediate values of
mostly around 40 km. These annular features are very reminiscent of those observed in the experiment with
K = 1 taper and θ0 = 15°, but their size has approximately doubled, as has the cap size.
In the northern lowlands values range from 30 km to 300 km, but only few locations surpass 150 km. The
spatial distribution is similar as in the previous experiments. In the Isidis basin, there is a quite pronounced
peak reaching up to 300 km in the center of the basin.
In conclusion, this experiment serves as further evidence that large cap sizes indeed make the resulting maps
more smooth. However, all solutions for locations within a 30° proximity of prominent elevation features,
such as Olympus Mons, Elysium Mons, and Valles Marineris, should be treated cautiously. Due to the large
cap size, these solutions include signal from those features which may strongly bias the estimation.
This is also visible in the estimates of the load ratio F (Figure 4.12) which is 0.3 and lower in large circular re-
gions around Valles Marineris, Olympus Mons, and the Tharsis Montes, and 0.4 around Elysium Mons. There
is a very smooth transition from those low values to higher values of about 0.6 in the southern uplands and
about 0.8 in the northern lowlands.
The load correlation is -0.8 on most of the planet, but there are some exceptions. For example, an area around
the Tharsis volcanoes has r = 0.8. Furthermore, large parts of the northern lowlands which also showed a
strong positive correlation in the previous experiments have r = 1. Some areas close to the south pole have a
relatively weak correlation of around 0.4. The latter is a feature which had not been observable in the previous
experiments. Apart from that, the results for the load correlation mostly show an increased smoothing, as for
the other parameters.
For the smoothness parameter ν, values below 0.7 are the most common. There are areas of ν = 1.3 in the
Argyre and Hellas basins, but most strikingly a large patch of ν= 1.6 east and southeast of Hellas basin which
is not associated with any particular topographic or crustal features.
The decorrelation distance ρ is also a lot smoother than in previous experiments. The southern uplands gen-
erally have a higher ρ than the rest of the planet, with many locations reaching the minimum value of ρ = 0.05.
The variance σ2 is significantly higher than for smaller cap sizes. This confirms the interpretation of the vari-
ance as a function of the maximum topographic difference between any two points within the localization
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Figure 4.12: Maps of most likely solutions for the six estimation parameters created using the chordal Matérn covariance function and
tapering with K = 3 tapers and a spherical cap size of θ0 = 30°. The elastic thickness map is identical to the one in Figure 4.11, but plotted
again for better comparison.

window. Since the windows are much bigger with θ0 = 30°, the variance must also be bigger on average. The
regions with the highest σ2 are Tharsis, Elysium Mons, and all the large impact basins.
After describing the results for all the model parameters for the case of K = 3 tapers and a spherical cap size of
θ0 = 30°, the conclusions drawn from the analysis of the elastic thickness results still hold. The large window
makes the result significantly more smooth than previous experiments, but this also creates problems when
placing the spherical cap on an area in which assumptions of homogeneity do not hold any more.
In total, the smoothing effect of the spherical cap size has become evident by analyzing results of different
experiments. The impact of a change of the bandwidth is less clear, but a smaller bandwidth is definitely
beneficial. For the interpretation of the results (Chapter 5) I will use two experiments: one with the smallest
spherical cap size θ0 = 10° and a bandwidth of Lb = 35 (Figure 4.6) and one with the largest spherical cap size
θ0 = 30° and a bandwidth of Lb = 23 (Figure 4.12). The former provides the most localized solutions, which
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is important in geologically inhomogeneous areas, such as in the vicinity of volcanoes, impact basins, and
close to the dichotomy boundary. The latter provides the smoothest solution, which is beneficial in large
homogeneous areas such as the northern lowlands and the southern uplands.

4.5. SIMULATION OF RANDOM FIELDS OF PLANETARY TOPOGRAPHY

Figure 4.13: Simulated random fields for different values of smoothness ν and decorrelation distance ρ generated with the same set of
random numbers. These fields are generated using the chordal Matérn covariance function and the variance is normalized to σ2 = 1.

For the estimation of uncertainties of the six parameters which are output of the geophysical model, this
study uses Monte Carlo simulation. The input for the Monte Carlo simulation are synthetically generated
random fields of final surface and subsurface topography, which substitute the real observed and derived to-
pographies. Before simulating random fields of final topography, I begin by simulating initial topographies
to explore how well these match the behavior prescribed by the input parameters.
The initial surface topography is a function of the Matérn parameters smoothness ν, decorrelation distance ρ,
and variance σ2. The chordal Matérn covariance function as a function of great circle distance M(ψ) (see
Equation 3.64) is transformed in the spherical harmonic domain to give the covariance spectrum as a func-
tion of spherical harmonic degree and denominated as Shi hi (l ). This covariance spectrum is used to generate
random fields of initial surface topography according to Equation 3.77, and depends on the three Matérn pa-
rameters. Figure 4.13 shows that random fields with higher smoothness ν are indeed more smooth, and
random fields with higher decorrelation distance ρ have larger distances between extreme values. I do not
plot random fields for different values of the variance σ2 because it simply acts as a factor.
It is expected that the experimental variogram of the simulated random field should approximate the chordal
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Figure 4.14: Comparison of theoretical variograms of the chordal Matérn covariance function with experimental variograms from sim-
ulated topography. The experimental variograms originate from topography which is simulated using the same parameters as for the
plot of the theoretical variogram. The theoretical variograms are computed in the spatial domain. For the simulation of topographies
spectral densities of the covariance are needed, so the variogram is transformed into the spherical harmonics domain. It is then also
retransformed into the spatial domain and plotted here to show the loss of high frequency signal associated with this transformation.
Plots represent various values of ν and ρ and are covariances normalized to σ2 = 1. The theoretical and retransformed variograms are
visually indistinguishable in the three plots in the lower right corner.

Matérn variogram with that specific set of parameters. Experimental variograms are created using the proce-
dure described in Section 4.2 and the theoretical variogram of the chordal Matérn covariance function is just
σ2 −M(ψ).
In some cases the experimental and theoretical variograms do not match well (Figure 4.14). For small values
of smoothness and decorrelation distance (ν= 0.3, ρ = 0.05; ν= 0.3, ρ = 0.5; ν= 0.7, ρ = 0.05) the experimen-
tal variogram, which is retrieved from the simulated topography, is significantly lower than the theoretical
variogram. This is largely due to the necessary transformation of the covariance function into the spherical
harmonics domain. The analytical form of the chordal Matérn covariance function, which can be evaluated
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Figure 4.15: Comparison of theoretical variograms of the Legendre-Matérn covariance function with experimental variograms from
simulated topography. The experimental variograms originate from topography which is simulated using the same parameters as for
the plot of the theoretical variogram. The theoretical variograms are computed by transforming its spectral density into the spatial
domain. Plots reprsent various values of ν and ρ and covariances are normalized to σ2 = 1.

at different parameter values, is given in the spatial domain, but for the simulation of random fields its spec-
trum is required. It is therefore transformed into the spherical harmonics domain and coefficients up to
degree L = 100 are evaluated, because this is also the degree to which real data exists in sufficient quality. A
truncation error is induced through this truncation of the infinite sum of spherical harmonic coefficients (see
also Section 4.2). For low values of smoothness and decorrelation distance, the variogram increases already
close to the origin. This high frequency signal with a lot of power in the spherical harmonic degrees larger
than L = 100 is lost in the transformation. When transforming the covariance spectrum back into the spatial
domain, the peak at the origin of the resulting covariance is cut off. When the retransformed covariance is
Mc,r , its variogram can be computed as max(Mc,r )− Mc,r . This retransformed variogram is parallel to the
true variogram with an offset equal to the truncation error shown in Figure 4.4. The experimental variograms
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match such retransformed variograms much better for a combination of low ν and ρ values (Figure 4.14),
indicating that the actual simulation process performs well. Increasing the amount of evaluated spherical
harmonics decreases the gap between theoretical and empirical variograms, but only at a very slow rate com-
pared to the additionally needed computational expenses.
The quality of the fit generally becomes worse for increasing decorrelation distances ρ. For low decorrelation
distance (ρ = 0.05) the experimental variogram generally fits the retransformed one very well. For ρ = 0.5,
the experimental variogram is slightly lower than the retransformed one, but still generally a good fit, espe-
cially at small distances. For high decorrelation distances (ρ = 10), the fit is quite bad, although for low and
moderate smoothness (ν= 0.3, ν= 0.7) it is still comparable up to a great circle distance of about 20°, which
is the maximum value of relevance for all analyses that use a filter cap size of 10°. One should also note that
the covariance generally rises very slowly for high values of ρ, especially in the case of ρ = 10, ν = 1.6. This
means that the topography signal only decorrelates very slowly, so that a mismatch between theoretical and
experimental variogram might not be very relevant.
In conclusion, the simulation of random fields using the chordal Matérn covariance function with speci-
fied parameters causes problems for, firstly, a combination of low smoothness values and low decorrelation
distances, and, secondly, for high decorrelation distances, which is why I go on to explore also the Legendre-
Matérn covariance function.
When using the Legendre-Matérn covariance function to simulate the initial surface topography, there is no
transformation to the spherical harmonic domain necessary, because its analytical form is already given in
that domain. Accordingly, there are also no issues simulating topographies from variograms which have a low
smoothness (Figure 4.15), and the experimental and theoretical variogram match very well for low decorre-
lation distance ρ. This behavior is because the theoretical variogram itself is an approximation, obtained by
truncating the covariance spectrum at degree L = 100.
For higher values of the decorrelation distance an increasing mismatch, especially at large distances, is ob-
served, and in this way the behavior of chordal and Legendre-Matérn covariance functions is very similar.
Furthermore, the Legendre-Matérn variogram does not approach its variance σ2 at large distances, which
makes it harder to interpret (see Section 3.3). Still, I am going to use both covariance functions for the local
error estimation procedure which follows to gain practical insights in the difference between their behavior.

Figure 4.16: Simulated initial topographies with load ratio F = 0.8 and load correlation r = 0.2.

I have shown that synthetic random fields on the sphere can be generated whose behavior is governed by a
covariance function of the chordal Matérn type. These function as initial surface topographies in my geophys-
ical model of Mars. I now go on to investigate the simulation of a set of surface and subsurface topographies.
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Figure 4.17: Simulated initial topographies with load ratio F = 0.2 and load correlation r = 0.8.

Random fields of initial subsurface topography can be generated using Equations 3.73 and 3.79. Figures 4.16
and 4.17 shows simulations of surface and subsurface topographies generated using the chordal Matérn co-
variance function. The load ratio F determines the amplitude of the subsurface topography. For low values
most of the load is on the surface and the subsurface topography has a low amplitude. For high values most
of the load is in the subsurface and the subsurface topography has a high amplitude. The load correlation r
determines how correlated surface and subsurface topography are.
Not only the power spectra of the synthetic surface and subsurface topographies must match Shi hi and Sw i w i ,
respectively, but also the cross-power spectrum (Equation 3.43) of the simulated fields must correspond to its
theoretical counterpart (Equation 3.74). Figure 4.18 compares the power spectrum densities and the cross-
power spectrum density of simulated surface and subsurface topographies to curves generated from these
equations and shows that they are indeed properly modelled.
So far, I have shown simulations of initial topographies and illustrated how the choice of model parameters
influences the simulation results. However, for the Monte Carlo simulation of estimates of the model param-
eters, final topographies are needed as inputs, which have been generated using a specified set of parame-
ters. These final topographies can be simulated using Equations 3.80 and 3.81, when their power spectrum is
specified by the parameter set. Figure 4.19 shows simulated final surface and subsurface topographies which
result from a flexural model with Te = 10km. Such a low elastic thickness is equivalent to a very high degree
of isostatic compensation. For this reason the two fields are almost perfectly anti-correlated. The difference
in amplitude between surface and subsurface signal is closely related to crust and mantle densities.
Figure 4.20 shows simulated final surface and subsurface topographies which result from a flexural model
with Te = 200km. This value corresponds to a low degree of isostatic compensation. Neither surface nor sub-
surface topography are strongly influenced by any compensation process and after flexure they continue to
be mostly uncorrelated.
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Figure 4.18: Power spectrum density of the simulated random fields of initial surface and subsurface topography and cross-spectrum
density (solid lines) and the theoretical power spectrum densities (dashed lines). r = 0.8, F = 0.8.

Figure 4.19: Simulated final topographies with elastic thickness Te = 10km, initial load ratio F = 0.2, initial load correlation r = 0.2, and
the chordal Matérn covariance parameters ν= 0.5, ρ = 0.5, σ2 = 1km2.
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Figure 4.20: Simulated final topographies with elastic thickness Te = 200km, initial load ratio F = 0.2, initial load correlation r = 0.2, and
the chordal Matérn covariance parameters ν= 0.5, ρ = 0.5, σ2 = 1km2.
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4.6. LOCAL ANALYSIS OF THE ELASTIC THICKNESS
In Section 4.5, the results of simulations of planetary topography have been presented. It has been shown that
planetary surface and subsurface topographies can be generated using a specific parameter set y , although
for certain combinations of the decorrelation distance ρ and the smoothness ν the results can be biased, es-
pecially at larger great circle distances. This is mainly a problem when applying tapers with large window
sizes, for example θ0 = 30°, to the simulated topographies.
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Figure 4.21: Position and size of the tapering windows used in this section superimposed on a map of the shape of Mars (see Figure 2.1).

The simulated topographies are needed for a Monte Carlo approach of determining the uncertainties in the
estimated parameters, as described in Section 3.4. For a specific location a most likely parameter set is deter-
mined, which is then used to simulate 100 sets of synthetic topographies. Multitapering has to be applied to
all of these 100 sets, thereby treating them the same way as the real data. Because of this, the error estima-
tion procedure is computationally expensive. Therefore, I only apply it to several specific locations on Mars,
namely the major Martian volcanoes (Olympus, Elysium, Ascraeus, Pavonis, and Arsia Montes), Hellas basin,
Valles Marineris, and representative areas of the northern lowlands and southern uplands (see Figure 4.21
and Table 4.2).

Table 4.2: Overview of center points and radii of localization windows used in this study.

Location Latitude φ Longitude λ θ0 K Lb

Olympus Mons 18.65°N 133.8°W 10 1 35
Elysium Mons 25.02°N 147.21°E 10 1 35
Ascraeus Mons 11.92°N 104.08°W 10 1 35
Pavonis Mons 1.48°N 112.96°W 10 1 35
Arsia Mons 8.35°S 120.09°W 10 1 35
Hellas basin 42.4°S 70.5°E 10 1 35
Valles Marineris 12°S 60°W 25 2 22
Northern lowlands 50°N 108°E 30 3 23
Southern uplands 22°S 4°E 30 3 23

In this section, I will treat these specific locations in the following way: First, I analyze the log-likelihoods of
input parameter sets. Calculating the log-likelihood for every allowed combination of parameters (see Ta-
ble 4.1) makes it possible to determine the most likely parameter set for any given location on Mars. In total,
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ntot = 412500 log-likelihood values are evaluated for each location. I only analyze planes in the six dimen-
sional parameter space because I cannot analyze all the combinations of parameters in a rigorous manner.
This method furthermore does not have much statistical significance. Second, I calculate for each location
the formal error estimates from 100 sets of simulated topographies, as described in Section 3.4.

4.6.1. OLYMPUS MONS
The histogram of the log-likelihood values is given in Figure 4.22 for Olympus Mons. The highest log-likelihood
value reached is -13.1. Over 50000 of the ntot parameter sets have log-likelihoods above -20, concentrating
about one eighth of the parameter sets in a very small range. Below -20, The number of values per bin declines
quickly with decreasing log-likelihood. The lowest reached log-likelihood (not in the Figure) is in the order
of −1030. The histograms of all locations which have been investigated in this study show the same general
trend. A significant part of the values is concentrated very close to the most likely value and the remaining
values are widely spread out over the entire domain.
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Figure 4.22: Histogram showing the distribution of log-likelihood values. Depicted are the log-likelihoods resulting from a localization
to Olympus Mons with K = 1 taper and θ0 = 10° using the chordal Matérn covariance function. The total number of log-likelihood values
is ntot = 412500, but only those with L >−50 are depicted.

From this distribution of log-likelihood values, I conclude that many parameter sets are almost equally likely
to have caused the observed topographies. Figure 4.23 shows how these very likely parameter sets are dis-
tributed, which allows to make some conclusions about how constrained the solution is. Blue color indicates
combinations of parameters whose log-likelihood is not close to the maximum log-likelihood, and increas-
ingly bright yellow color indicates increasingly more likely parameter sets. There is one value at F = 0.5,
r = −1, which has white color. No value for this pixel could be determined because the multitapered co-
variance spectrum of final topographies S̄hh (l , y) could not be inverted for at least one spherical harmonic
degree l in the calculation of the log-likelihood (Equation 3.72) for this specific parameter set y . This some-
times occurs for certain parameter sets and is a numerical artifact of the multitapering. The impact of these
failures to invert the covariance spectrum is very limited because of the rarity of these events and because
they apparently occur only for parameter sets which are unlikely in the first place.
At Olympus Mons, some parameters are quite well constrained: The load ratio F = 0.2, the decorrelation dis-
tance ρ = 0.188, and the variance σ2 = 108 m2, although ρ might also take lower, and F might also take higher
values. The smoothness is less constrained. ν= 1.6 is the most likely value, but all values of ν can be reached
with L > −14, which is very close to the maximum log-likelihood. Te and r are even less constrained, with
almost all values being able to reach log-likelihoods that are in Figure 4.23 indistinguishable from the maxi-
mum log-likelihood. Furthermore, there is some correlation between parameters. For example, a high value
of ρ and a low value of ν can be just as likely as an intermediate value of ρ and a high value of ν. A similar
correlation is visible between ρ and σ2. This behavior is not surprising because it has been shown that differ-
ent parameter sets can cause similar Matérn covariance curves, and also not concerning, because ultimately,
I am not interested in an independent resolution of the Matérn parameters, but rather the elastic thickness.
It is very important to note that these findings are mere indications. From the log-likelihood, one can only
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Figure 4.23: Contours of the log-likelihood L for varying pairs of parameters. Depicted are the log-likelihoods resulting from a localiza-
tion to Olympus Mons with K = 1 taper and θ0 = 10° using the chordal Matérn covariance function. Each plot is a slice though the six
dimensional parameter space, holding four parameters fixed at their most likely value and varying the other two. The log-likelihood is
cut off at -19 for better visibility, and because this is where the large peak in the histogram begins (see Figure 4.22).

draw conclusions about the relative likelihood of certain parameter sets, that is which parameter set is the
most likely and if one parameter set is more or less likely than another. But with this simple analysis it is im-
possible to quantitatively evaluate the absolute likelihood of any parameter set, that is how much less likely
than the most likely parameter set another specific parameter set is. Therefore, error estimates have been
generated in a Monte Carlo process from synthetically generated topographies. These error estimates are
not related to the observations, but are instead solely based on the specific parameter set which is used as
an input. They therefore only describe the model behavior for that parameter set. I give both the contours
of log-likelihood and the results of the Monte Carlo simulation because they complement each other. The
contours of log-likelihood do not give formal errors and the Monte Carlo simulation does not work with the
actual input data.

Table 4.3: Results of Monte Carlo error estimation using the most likely parameter set for Olympus Mons as an input (see Figure 4.23). 100
sets of final topographies are simulated, used as input for the maximum likelihood estimation procedure, and the mean and standard
deviations of the 100 resulting most likely parameter sets are computed.

Parameter Input Mean Standard deviation

Elastic thickness Te [km] 60 70 89
Load ratio F 0.2 0.19 0.039
Load correlation r 0.8 -0.28 0.92
Smoothness parameter ν 1.6 0.69 0.47
Decorrelation distance ρ 0.188 0.59 1.5
Variance σ2[m2] 108 3.8 ·107 4.2 ·107

Generating error estimates for the parameter set y which is most likely at Olympus Mons reveals significant
bias in the model. The mean of the most likely Te values is 10 km larger than the input value of 60 km. The
three most common solutions are 30 km, 20 km, and 300 km, indicating a very badly constrained solution.
Intermediate values barely occur in the 100 simulations. Out of the other parameters, only F could be recon-
structed well. For the load correlation, there are no values of −0.8 < r < 0.8 in the 100 solutions, so that the
mean is a bad representation of the actual distribution. Taking the mean and the standard deviation of the
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Figure 4.24: Correlations between the most likely parameter sets generated from 100 Monte Carlo simulations using the most likely
parameter set for Olympus Mons (see Figure 4.23) as an input.

absolute value yields results which are much more constrained and less biased.
The smoothness is not constrained at all which was also indicated by the likelihood space (Figure 4.23). For
the decorrelation distance, 0.188 is the value which occurs most often, but the mean value is much higher
because of single occurrences of the highest value ρ = 10. The logarithmic spacing of the points at which the
parameter space is sampled is heavily biasing the estimation. The same holds to an extent for the variance.
All simulations either return the input value σ = 108 m2 or the next lower value σ2 = 107 m2. A denser sam-
pling would probably decrease the spread in this case.
The generation of 100 most likely parameter sets also allows the analysis of correlations between them (Fig-
ure 4.24). It confirms moderate correlations between ρ and the two other Matérn parameters, and uncovers
a strong correlation between r and σ2, while the correlation between the Matérn parameters and the other
parameters is generally low. There are also moderate correlations between r and F and between r and Te

which might be concerning because an independent resolution of these parameters is important.
In conclusion, the error estimation confirms what has been shown by the likelihood contour plots: F , ρ and
σ2 are constrained considerably better than the other parameters. I attribute the large uncertainties of the
error to three causes: firstly, the bias in the simulated topographies, which do not properly reflect their in-
put parameters for very high ρ and for combinations of low ν and low ρ; secondly, the lack of constraint
in the maximum likelihood estimation itself, which is caused by imperfections in the multitapering and the
geophysical model; and thirdly, the coarse sampling of the parameter space, especially for the Matérn param-
eters.

4.6.2. ELYSIUM MONS

At Elysium Mons (Figure 4.25), the elastic thickness is quite well constrained at 20 km and the Monte Carlo
error estimation gives a value of 22±4.3km. Only when the load correlation r is not very strong, also higher
elastic thicknesses are possible. The load ratio F is also well constrained at around 0.3, but slightly higher
or lower values seem possible. The Monte Carlo simulation gives F = 0.3±0.01, indicating a very well con-
strained solution. The load correlation r is somewhat constrained to a strong correlation, but without a clear
preference for positive or negative correlation. The Monte Carlo simulation always results in either r = 1 or
r =−1.
The smoothness ν is quite constrained to the lowest value ν= 0.3, except if ρ is low. There is a strong corre-
lation between ρ and ν. Since ρ is also very unconstrained, the most likely parameter sets from the Monte
Carlo simulation can take any values of ν and ρ. From the contours of log-likelihood, the variance seems very
constrained to σ2 = 108 m2, but the Monte Carlo simulation gives an average of less than 107 m2, indicating
large bias and uncertainty.
In conclusion, the elastic thickness and load ratio are low and quite constrained at Elysium Mons, but few
meaningful statements can be made about the other parameters. The formal error estimation gives addi-
tional insights to what can be seen in the log-likelihood space.
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Figure 4.25: Contours of the log-likelihood L for varying pairs of parameters. Depicted are the log-likelihoods resulting from a local-
ization to Elysium Mons with K = 1 taper and θ0 = 10° using the chordal Matérn covariance function. Each plot is a slice though the six
dimensional parameter space, holding four parameters fixed at their most likely value and varying the other two. The log-likelihood is
cut off at -17 for better visibility.

Figure 4.26: Correlations between the most likely parameter sets generated from 100 Monte Carlo simulations using the most likely
parameter set for Elysium Mons (see Figure 4.25) as an input.

4.6.3. ASCRAEUS MONS

The most likely elastic thickness at Ascraeus Mons is Te = 30km (Figure 4.27). The Monte Carlo simulation
gives Te = 41±13km, indicating a rather constrained solution. In general the solution is very similar to the
one for Elysium Mons. The load ratio is very well constrained with all of the 100 simulations resulting in
the maximum likelihood solution F = 0.1. The other parameters are again very unconstrained. Interestingly,
Figure 4.28 reveals that there are very little correlations between the geophysical parameters themselves and
between the geophysical and the Matérn parameters. An exception from this is a strong correlation between
r and ν.
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Figure 4.27: Contours of the log-likelihood L for varying pairs of parameters. Depicted are the log-likelihoods resulting from a localiza-
tion to Ascraeus Mons with K = 1 taper and θ0 = 10° using the chordal Matérn covariance function. Each plot is a slice though the six
dimensional parameter space, holding four parameters fixed at their most likely value and varying the other two. The log-likelihood is
cut off at -17.5 for better visibility.

Figure 4.28: Correlations between the most likely parameter sets generated from 100 Monte Carlo simulations using the most likely
parameter set for Ascraeus Mons (see Figure 4.27) as an input.

4.6.4. PAVONIS MONS

The most likely elastic thickness at Pavonis Mons is Te = 30km (Figure 4.29). The Monte Carlo simulation
gives Te = 33± 37km, indicating a moderately constrained solution. The load ratio is well constrained to
0.2 and the load correlation is strong, but it is unclear if the load correlation is positive or negative. The
decorrelation distance is smaller than ρ = 0.7, and the variance larger than σ2 = 107 m2. The contours of the
log-likelihood are not very clear on the smoothness, but the Monte Carlo simulation indicates that it is quite
well constrained at ν= 0.3.
The correlation is generally quite low at Pavonis Mons, so that the solution for this window is one of the most
constrained ones.
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Figure 4.29: Contours of the log-likelihood L for varying pairs of parameters. Depicted are the log-likelihoods resulting from a local-
ization to Pavonis Mons with K = 1 taper and θ0 = 10° using the chordal Matérn covariance function. Each plot is a slice though the six
dimensional parameter space, holding four parameters fixed at their most likely value and varying the other two. The log-likelihood is
cut off at -19.5 for better visibility.

Figure 4.30: Correlations between the most likely parameter sets generated from 100 Monte Carlo simulations using the most likely
parameter set for Pavonis Mons (see Figure 4.29) as an input.

4.6.5. ARSIA MONS

The most likely elastic thickness at Arsia Mons is Te = 40km (Figure 4.31). The Monte Carlo simulation gives
Te = 36± 49km, indicating a somewhat unconstrained solution. The most likely value for the load ratio is
0.3 and the Monte Carlo simulation gives F = 0.25±0.06. The load correlation is well constrained to strong
correlation, but it is unclear if it is positive or negative. All the Matérn parameters are well constrained to their
respective most likely values, although there is a significant correlation between ρ and σ2 (Figure 4.32).

4.6.6. VALLES MARINERIS

For the analysis of Valles Marineris a considerably larger window was used than for the volcanoes. This is
necessary because of the size of this feature which is barely completely included in this window of θ0 = 25°.
The windows which were used to localize the Martian volcanoes were all focused on the peak and include
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Figure 4.31: Contours of the log-likelihood L for varying pairs of parameters. Depicted are the log-likelihoods resulting from a local-
ization to Arsia Mons with K = 1 taper and θ0 = 10° using the chordal Matérn covariance function. Each plot is a slice though the six
dimensional parameter space, holding four parameters fixed at their most likely value and varying the other two. The log-likelihood is
cut off at -17 for better visibility.

Figure 4.32: Correlations between the most likely parameter sets generated from 100 Monte Carlo simulations using the most likely
parameter set for Arsia Mons (see Figure 4.31) as an input.

the volcano and some relatively homogeneous surrounding area. For the Tharsis Montes, the windows partly
include parts of the neighboring volcanoes, and for Olympus Mons, some of the surrounding belongs to the
northern lowlands, while other parts are in the Tharsis region. For Valles Marineris, it is not possible to focus
the window on a peak because of the elongated shape of the feature. This shape is generally problematic
because the model used in this study is isotropic and therefore cannot recognize elongated features as such.
I use K = 2 tapers to receive a taper bandwidth Lb = 22 which is slightly lower than for all other windows
applied in this study.
The most likely elastic thickness at Valles Marineris is 20±3.7km and the most likely load ratio is 0.2±0.01
(Figure 4.33). The other values are similarly to the Martian volcanoes very unconstrained.
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Figure 4.33: Contours of the log-likelihood L for varying pairs of parameters. Depicted are the log-likelihoods resulting from a localiza-
tion to Valles Marineris with K = 1 taper and θ0 = 10° using the chordal Matérn covariance function. Each plot is a slice though the six
dimensional parameter space, holding four parameters fixed at their most likely value and varying the other two. The log-likelihood is
cut off at -29.5 for better visibility.

Figure 4.34: Correlations between the most likely parameter sets generated from 100 Monte Carlo simulations using the most likely
parameter set for Valles Marineris (see Figure 4.33) as an input.

4.6.7. HELLAS BASIN

In the Hellas basin the elastic thickness is very low, with Te = 10km the most likely solution. The average of
100 Monte Carlo simulations is 14±12km. The load ratio is very well constrained, like for the other locations.
r is also well constrained as a strong negative correlation. For ν, ρ, and σ2, the lowest values are the most
common ones retrieved from the Monte Carlo simulation, contrary to the likelihood space, which sees them
unconstrained and favors intermediate values for ρ and σ2, as does the most likely solution.

4.6.8. NORTHERN LOWLANDS

In this study, the northern lowlands are studied by applying a window to a representative region. A region
has been chosen that is as homogeneous as possible and as large as possible at the same time. This region
borders the dichotomy boundary in the south west, Elysium Mons in the south east, and the polar cap in the



4.6. LOCAL ANALYSIS OF THE ELASTIC THICKNESS 59

Figure 4.35: Contours of the log-likelihood L for varying pairs of parameters. Depicted are the log-likelihoods resulting from a local-
ization to Hellas basin with K = 1 taper and θ0 = 10° using the chordal Matérn covariance function. Each plot is a slice though the six
dimensional parameter space, holding four parameters fixed at their most likely value and varying the other two. The log-likelihood is
cut off at -14.1 for better visibility.

Figure 4.36: Correlations between the most likely parameter sets generated from 100 Monte Carlo simulations using the most likely
parameter set for Hellas basin (see Figure 4.35) as an input.

north. The spherical cap size θ0 = 30° allows for a bandwidth of Lb = 23 when K = 3 tapers are used. Other
windows could have been chosen, for example between Elysium Mons and Tharsis or east of Tharsis, but the
present one is the largest mostly homogeneous region.
The most likely elastic thickness value for this window is Te = 210km, which seems to be constrained only
on the lower end for much lower values (Figure 4.37). The most likely Te values from 100 simulations are
bimodally distributed, the most common values are 60 km and 300 km. This leads to a formal error of 110 km
which is very large. The load ratio is very constrained at F = 0.9 and r can be strongly positively or negatively
correlated.
The smoothness and the variance are relatively constrained to ν= 0.3 and σ2 = 104 m2, respectively, whereas
the decorrelation distance ρ is unconstrained.
In the simulated most likely solutions, there is a strong correlation between all Matérn parameters, and es-
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Figure 4.37: Contours of the log-likelihood L for varying pairs of parameters. Depicted are the log-likelihoods resulting from a localiza-
tion to the northern lowlands with K = 3 tapers and θ0 = 30° using the chordal Matérn covariance function. Each plot is a slice though the
six dimensional parameter space, holding four parameters fixed at their most likely value and varying the other two. The log-likelihood
is cut off at -19.2 for better visibility.

Figure 4.38: Correlations between the most likely parameter sets generated from 100 Monte Carlo simulations using the most likely
parameter set for the northern lowlands (see Figure 4.37) as an input.

pecially between ν and σ2, which are perfectly correlated. Strong correlations which are not indicated by the
log-likelihood contours also exist between the elastic thickness and the Matérn parameters.

4.6.9. SOUTHERN UPLANDS

To study the southern uplands, a window was applied which borders Hellas basin in the south east, Argyre
basin in the south west, and Valles Marineris in the north west. Again, different windows could have been
chosen, but this is a large and homogeneous region which is sufficiently representative of the southern up-
lands.
The most likely elastic thickness value for this window is Te = 10km (Figure 4.39). The Monte Carlo simu-
lation results in an estimation of 15±13km, which indicates quite a good constraint. The load ratio is well
constrained at F = 0.5. r is clearly constrained as a strong negative correlation.
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Figure 4.39: Contours of the log-likelihood L for varying pairs of parameters. Depicted are the log-likelihoods resulting from a localiza-
tion to the southern uplands with K = 3 tapers and θ0 = 30° using the chordal Matérn covariance function. Each plot is a slice though the
six dimensional parameter space, holding four parameters fixed at their most likely value and varying the other two. The log-likelihood
is cut off at -20.5 for better visibility.

Figure 4.40: Correlations between the most likely parameter sets generated from 100 Monte Carlo simulations using the most likely
parameter set for the southern uplands (see Figure 4.39) as an input.

All Matérn parameters are quite well constrained too, but there are are strong correlations between the smooth-
ness, the elastic thickness, and the load correlation (Figure 4.40). The variance shows up as having perfect
negative correlations with all other parameters because all 100 Monte Carlo simulations give σ2 = 105 m2.

4.6.10. CONCLUSIONS

In this section, I have given the parameter sets which are most likely to have caused the observed surface and
subsurface topographies for localizations to nine windows representing specific geologic features of Mars.
Furthermore, I have for each window analyzed the distribution of log-likelihoods in the six dimensional pa-
rameter space, and compared the findings to the results of 100 Monte Carlo simulations which used the most
likely parameter set as an input.
An overview of the results for the geophysical parameters is given in Table 4.4. The elastic thickness could
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Table 4.4: Summary of most likely solutions for elastic thickness, load ratio, and load correlation for the nine windows analyzed in this
study. Accuracies are not given for r because of its bimodal distribution in the Monte Carlo simulations.

Location Elastic thickness Te [km] Load ratio F Load correlation r
Most likely value Error Most likely value Error Most likely value

Olympus Mons 60 89 0.2 0.04 0.8
Elysium Mons 20 4.3 0.3 0.01 1
Ascraeus Mons 30 13 0.1 0 -0.8
Pavonis Mons 30 37 0.2 0.04 -0.8
Arsia Mons 40 49 0.3 0.06 -0.8
Valles Marineris 20 3.7 0.2 0.01 -0.8
Hellas basin 10 12 0.4 0.04 -0.8
Northern lowlands 210 110 0.9 0 -0.8
Southern uplands 10 13 0.5 0.01 -0.8

be constrained well for several locations: Elysium Mons, Ascraeus Mons, Valles Marineris, Hellas basin, and
the southern uplands. In all of these locations, the most likely elastic thickness is 30 km or lower. Te is most
unconstrained in the windows of Olympus Mons and the northern lowlands, which also have the highest Te

estimates.
The load ratio F is extremely well constrained for all locations.
The estimation of r is problematic because the model fails to distinguish between positive and negative corre-
lation. When simulating topographies from a certain parameter set with given strong positive load correlation
r , the most likely load correlation retrieved from these topographies is about equally likely to be positive or
negative, and vice versa. The log-likelihoods of strong positive and negative load correlation are also almost
the same.
The Matérn parameters are usually not constrained well. This is not a problem as long as it is a cause of
strong mutual correlations rather than strong correlations with the other parameters because determining
the Matérn parameters is not the goal of this study.
However, sometimes there are significant mutual correlations between the geophysical parameters and cor-
relations between the geophysical and the Matérn parameters. Such correlations are problematic because
they indicate that the parameters of interest are not independently resolvable.

4.7. THE LEGENDRE-MATÉRN COVARIANCE MODEL

All previous experiments have used the chordal Matérn covariance function (Equation 3.64) to determine a
most likely parameter set for each location on Mars. For comparison, I also investigate the performance of
the Legendre-Matérn covariance function (Equation 3.69) for K = 1 taper and a spherical cap size of θ0 = 10°.
These tapering parameters are the same as the ones used in Section 4.3 and should therefore produce very
similar results.
Figure 4.41 shows that this is indeed the case. The general trends are the same as in Figure 4.5. However, the
values of individual locations can differ a lot. This is especially visible in the high Te areas in the northern
lowlands where both maps show a similar distribution of values ranging from 50 km to 300 km, but single
pixels can differ by 250 km and more between the two experiments. This is a further indication of poorly
constrained solutions in those areas. All the significant trends described previously for the solution using the
chordal Matérn covariance function still fully hold.
The same is also true for the F , r , and ν parameters (Figure 4.42), with a very slight increase in noise when
using the Legendre-Matérn as opposed to the chordal Matérn covariance function.
The behavior is different for the decorrelation distance. In the experiment using the Legendre-Matérn covari-
ance function, values of ρ ranging from 0.05 to 10 are scattered over the whole map, with no clear regional
differences visible.
The map of σ2 shows globally higher values by about half a power of ten compared to the chordal Matérn
map. I interpret the differences in ρ and σ as results of the different parametrizations.
To illustrate the differences which occur between the solutions from the two covariance function, the local-
ized results for Olympus Mons are compared. Contours of the log-likelihood generated from the Legendre-
Matérn covariance function are given in Figure 4.43. The general pattern of the log-likelihood surfaces is
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Figure 4.41: Map of the elastic thickness of Mars created using the Legendre-Matérn covariance function and tapering with K = 1 tapers
and a spherical cap size of θ0 = 10°.

very similar to the one for the chordal Matérn covariance function (Figure 4.23). The most likely solution,
however, is quite different, finding Te = 300km as the most likely value, while the other parameters are the
same, except for ν, which is most likely to be 1.6 using the chordal Matérn covariance function and 0.85 using
the Legendre-Matérn covariance function. The Monte Carlo simulations give almost the same result for both
covariance functions: 70±89km for the chordal Matérn covariance function, and 64±85km for the Legendre-
Matérn covariance function. The latter result indicates a very unconstrained solution once again. Even when
entering Te = 300km as an input to the Monte Carlo simulations, the average of 100 solutions is only 64 km.
This bias is caused by a large number of most likely solutions which are around 30 km.
The correlations between the Matérn parameters are higher when using the Legendre-Matérn covariance
function (see Figures 4.44 and 4.24). This corresponds to the observation of more scattered most likely solu-
tions in the map of Matérn parameters (Figure 4.42) and is an argument in favor of using the chordal Matérn
covariance function.
In conclusion, the principal parameters of interest, Te , F , and r , are not meaningfully affected by the choice of
covariance function, indicating that both are valid options for modelling the initial surface topography. This
holds true even though large local differences can be encountered for the most likely solution of the elastic
thickness because these differences are within the normal uncertainty of the solutions, which is found when
applying either of the covariance functions. I continue to focus my investigations on the chordal Matérn
covariance function because of its better interpretability and for consistency.
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Figure 4.42: Maps of most likely solutions for the six estimation parameters created using the Legendre-Matérn covariance function and
tapering with K = 1 tapers and a spherical cap size of θ0 = 10°. The elastic thickness map is identical to the one in Figure 4.41, but plotted
again for better comparison.
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Figure 4.43: Contours of the log-likelihood L for varying pairs of parameters. Depicted are the log-likelihoods resulting from a localiza-
tion to Olympus Mons with K = 1 taper and θ0 = 10° using the Legendre-Matérn covariance function. Each plot is a slice though the six
dimensional parameter space, holding four parameters fixed at their most likely value and varying the other two. The log-likelihood is
cut off at -21 for better visibility.

Figure 4.44: Correlations between the most likely parameter sets generated from 100 Monte Carlo simulations using the most likely
parameter set for Olympus Mons (see Figure 4.43) as an input and the Legendre-Matérn covariance function.





5
DISCUSSION

Maps of the elastic thickness, initial load ratio, initial load correlation, and the Matérn parameters have been
presented which demonstrate that estimating these parameters on a global scale is generally possible. The
resulting low elastic thickness in the southern uplands and high elastic thickness at the major volcanoes and
in the northern lowlands correspond to the findings of previous studies (e.g. Audet, 2014; Belleguic et al.,
2005; McGovern et al., 2004; Zuber et al., 2000). For many locations on Mars, however, the results are very
unconstrained.
Nevertheless, this is a remarkable result, because it has been achieved using a novel method: maximum like-
lihood estimation in the framework proposed by Simons and Olhede (2013). This study on real data could not
confirm all the conclusions made by Simons and Olhede (2013) on synthetic data. Especially for high values
of Te , the solutions are not well constrained, and significant correlations between the parameters exist, mak-
ing it sometimes impossible to resolve them individually.
In this chapter, I will first discuss the geological implications from my results and compare them to previous
results. I will then continue to analyze the implications which my results have for the methodology of maxi-
mum likelihood estimation of the elastic thickness.

5.1. SOUTHERN UPLANDS AND HELLAS BASIN
In the southern uplands, the surface is heavily cratered (Figure 2.1) and strongly negatively correlated with
the subsurface topography (Figure 4.1). This already indicates a high degree of isostatic compensation which
is confirmed by the low elastic thickness values of 10 km in this area (Figure 4.11, Table 4.4). The large amount
of craters also implies Noachian and Hesperian surface ages in the southern uplands. At 2.9 to 4.1 Ga, these
are in fact the oldest surfaces on Mars (Carr and Head, 2010; Zuber et al., 2000). The crust stabilized early in
the history of Mars when the upper layers of Mars were still very hot and could not support big loads, which
also supports the observation of a low elastic thickness. Even though the Hellas and Argyre basins are very
significant surface features, these conclusions also hold there, including the very low elastic thickness esti-
mates.
The initial load ratio F and initial load correlation r give the properties of the distribution of top and bottom
loads before flexure. In the southern uplands, F has most likely values of about 0.5, which corresponds to the
current load ratio. The value 0.5 means that top and bottom loads are equal which is the case in full isostatic
compensation. Also r , which is -0.8 at most locations, indicates negative correlation, which is currently the
case. This is a general problem of the model. For high degrees of isostatic compensation, the initial state of
the lithosphere before flexure becomes very hard to retrieve. For Te = 0km, there will always be a perfect local
equilibrium between top and bottom loads regardless of the load ratio and load correlation.
The most likely elastic thickness values compare favorably with the results of previous studies. Zuber et al.
(2000) obtained a best fit elastic thickness of 0 to 20 km for the southern uplands and Hellas basin from for-
ward modelling. McKenzie et al. (2002) found a best-fit value Te = 14.5km from measurements of line of sight
velocity. Audet (2014) obtained best fit elastic thickness values with his spherical wavelet method that are
generally below 45 km in the southern uplands, although no solutions could be obtained for large regions
around Hellas basin. His results for using free-air or Bouguer admittance and coherence do not differ much.
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While these results are significantly higher than those found in this study and in previous studies, they are
the lowest values on the planet he retrieved. He also solved for the load ratio, which takes values between 0.2
and 0.4 in the southern uplands. It is noteworthy that he finds a significant increase in Te around the Argyre
basin, a feature which does not stand out in this study. The discrepancies between the results of Audet (2014)
and this study might be explained by the different models. Apart from using a wavelet approach, Audet (2014)
also used a fixed r = 0 and did not properly take into account finite-amplitude effects. McGovern et al. (2004)
generally obtained values below 20 km for this region with models that do not include bottom loading. At one
location at 64°S, 66°E in Malea Planum, which they denominate as the southern Hellas rim, they find high Te

values of up to 120 km when including some bottom loading up to f = 0.4, which is equivalent to F = 0.3
(see Equation 1.5). While this study’s most likely solution for this location exhibits the same low elastic thick-
ness as in the rest of the southern uplands, there are some pixels very close at 60°S, 60°E in Malea Planum
whose most likely elastic thickness values are 300 km for θ0 = 10° (Figure 4.5) or 90 to 120 km for θ0 = 30°
(Figure 4.11).

5.2. NORTHERN LOWLANDS

The θ0 = 30° window applied to a representative location at 50°N 108°E in the northern lowlands gives a most
likely elastic thickness of 210 km. There are several indications that this value is very unconstrained. The log-
likelihood contours (Figure 4.37) show that all values above 80 km have very similar log-likelihoods. Also, the
Monte Carlo simulations have resulted in a formal standard deviation of 100 km and the spatial distribution
of most likely Te values (Figure 4.11) is quite inhomogeneous in the area, with elastic thickness values varying
between 50 km and 300 km. Furthermore, only the central areas of the northern lowlands reach such high
values whereas most areas in the vicinity of the dichotomy boundary exhibit very low elastic thickness values
similar to those in the southern uplands. I attribute this observation at least partly to the multitapering be-
cause the distance from the southern uplands at which higher elastic thickness values occur increases with
increasing spherical cap size θ0 of the taper and the multitapering assumes an isotropic distribution in the
window.
Nevertheless, one can clearly conclude that Te is higher in the northern lowlands than in the southern up-
lands. The strong gravity signal and the smooth topography indicate buried loads below the surface. The
fact that these subsurface loads are not represented in the surface topography suggests that the lithosphere
must be quite rigid. A high elastic thickness would be expected even though the crust is thin. This also cor-
responds to the observation that the northern lowlands are a relatively young surface. At the time when the
current surface formed and loading occurred, Mars had already had more time to cool down than when the
southern uplands formed, which is why the lithosphere was less elastic at the time of loading.
The load ratio in the northern lowlands is at 0.7 to 0.9 very high. This means that the amplitude of the bottom
load was much higher than the amplitude of the top load before flexure and is also what is observed today.
Such a low amplitude topography can be caused by sedimentation and erosion processes which bury the
original topography under a new layer and could for example have been caused by an ocean in the North-
ern Hemisphere at some point in the history of Mars (Di Achille and Hynek, 2010; Head et al., 1999). This
hypothesis is contradicted by the load correlation, which is either strongly positive or strongly negative in
the entire northern lowlands and in fact on most of the planet. Sedimentation and erosion are processes
which only directly affect the surface and therefore decorrelate surface and subsurface topographies. A value
around r = 0 would be expected. The actual value of r =−0.8 indicates a loading process which has affected
both surface and subsurface. This contradiction can be explained when the sedimentation or erosion process
which eradicated the surface topography is not the dominant loading process (Hoogenboom and Smrekar,
2006). The sedimentation or erosion process may have occurred at a much later point when the lithosphere
was already much more rigid and a thin layer of sediments could not cause significant flexure any more. The
original surface before sedimentation and erosion may have had more correlation with the subsurface. The
high elastic thickness then reveals that the lithosphere has already been quite rigid when the buried original
surface of the northern lowlands formed, although that may have been significantly earlier than when its cur-
rent surface was generated.
Another way of explaining the high elastic thickness in the northern lowlands is by questioning the assump-

tion on crustal density. This study has assumed a crustal density of ρc = 2900 kg
m3 globally for simplicity and to

keep the number of estimated parameters small. Since the crusts of northern lowlands and southern uplands
have different formation histories, different densities are not unlikely. A higher density in the northern low-
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lands would require a lower elastic thickness which might be in between those of the southern highlands and
the volcanic regions. This hypothesis would be more in line with a formation process which occurred before
the creation of the large volcanoes (Zuber et al., 2000).
McGovern et al. (2002) found that there are no simple models which fit the data of the northern lowlands
well in their conventional spectral modelling approach. Instead, they propose forward modelling as a more
suitable technique. Using forward modelling, Zuber et al. (2000) found values of Te = 100km at the Utopia
basin, which is also contained in the area investigated in this study (Section 4.6.8). Hoogenboom and Sm-
rekar (2006) modelled the elastic thickness in the northern lowlands using four 2D Cartesian windows and
obtained results between 10 and 25 km. By using Cartesian windows they ignored membrane stresses (Tur-
cotte et al., 1981) and finite-amplitude effects Wieczorek and Phillips (1998), and induced projection errors.
Their four windows were chosen because their topographic power was comparable to that in the southern
uplands. This seems questionable as the low topographic power is a pervasive feature of the northern low-
lands. Finally, Audet (2014) also modelled the northern lowlands in their global map. They found Te = 90km
in most areas and load ratios around 0.7. These values correspond quite well with the values of this study and
the spatial distribution is also very similar, with areas of lower elastic thickness north of Elysium Mons and
Alba Patera.

5.3. THARSIS REGION

Applying small windows (θ0 = 10°) to the volcanoes Olympus Mons, Ascraeus Mons, Pavonis Mons and Ar-
sia Mons reveals most likely elastic thickness values which lie between 30 and 60 km. These values indicate
a moderately rigid lithosphere at the time of loading. Observing these values in the context of their spatial
surroundings reveals that they are strictly confirmed by a global map of the elastic thickness obtained using
the same tapering parameters (Figure 4.5). Notably, however, there are locations of very high Te , reaching
the highest sampled value of 300 km, in the vicinity of every one of the volcanoes: on the western flank
of Olympus Mons, slightly north of Ascraeus Mons and Arsia Mons, and east of Pavonis Mons. Apart from
these locations, the remaining area of the Tharsis province is best modelled by values between 10 and 60
km. This result from modelling with a very localized window of θ0 = 10° stands in contrast to the results for
θ0 = 30°. A large area centered around Olympus Mons and including the other Tharsis volcanoes has very
high elastic thicknesses, but the parts of the Tharsis region which lie east and south of that are best modelled
by Te = 10km. This contrast indicates a lack of homogeneity in the whole region which causes the results
to depend strongly on the multitaper window size. The best conclusion that can be drawn from these very
unconstrained results is that the elastic thickness of the shield of Tharsis has the same order of magnitude as
the elastic thickness of the volcanoes, between 30 and 60 km. This allows the interpretation that the Tharsis
province formed at a time when the crust was already cooled down more than during the formation of the
southern uplands and Elysium Mons. Olympus Mons formed later than the Tharsis Montes.
The load ratio at the large volcanoes is small, whereas the other regions of Tharsis reach high values up to 0.9
(Figure 4.6). This can indicate a depleted mantle or dense intrusive materials in the crust. The local differ-
ences in the initial load ratio can then result from the different surface topographies, even if the subsurface
topographies are similar in the whole Tharsis region.
McKenzie et al. (2002) used line of sight velocities from radio science tracking in a large window encompass-
ing almost the entire Tharsis region to obtain one best fit value for the entire region and found the elastic
thickness to be 70 km. This value is best compared with the results obtained in this study when using a win-
dow size of 30° (Figure 4.11) which also indicates higher, but very unconstrained values in the Tharsis region
in general. Audet (2014) found Te = 150km in a large area centered around Olympus Mons and including the
other Tharsis volcanoes which is also very similar to the area of high Te values in that experiment. Corre-
spondingly, they then found lower values in the southern and eastern part of Tharsis.
Other studies used localized windows to investigate the volcanoes in the Tharsis province. Zuber et al. (2000)
used 2D multitaper coherence methods to find that the elastic thickness at Olympus Mons and the Tharsis
Montes should be larger than 100 km. McGovern et al. (2002) and McGovern et al. (2004) computed the admit-
tance from shape and finite amplitude corrected gravity to infer on the elastic thickness. In their geophysical
model, the surface and subsurface loads are modelled individually and not as undulations on the respective
interface, as is done in this study. They also possess densities which can be different from crustal and mantle
densities. This makes their model more elaborate, but also more complicated than the model used in this
study, and they leave additional parameters free. In a model without bottom loading, they constrained Te

to be larger than 70 km at Olympus Mons, between 2 and 80 km at Ascraeus Mons, smaller than 100 km at
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Pavonis Mons, and larger than 20 km at Arsia Mons. These values agree with the results of this study within
their respective uncertainties.
Belleguic et al. (2005) applied a model which is quite similar to the one used by McGovern et al. (2002), but
they use a more rigorous method to calculate the gravity anomalies caused by the various interfaces and
the loads resulting from them. In a model without subsurface loading, they found an elastic thickness of
93±40km for Olympus Mons, 105±40km for Ascraeus Mons, more than 50 km for Pavonis Mons, and less
than 30 km for Arsia Mons. In a model which includes subsurface loading they found an elastic thickness of
more than 70 km for Olympus Mons, more than 50 km for Ascraeus and Pavonis Montes, and less than 35
km for Arsia Mons. The inclusion of subsurface loads significantly improves their model, especially at Arsia
Mons, but also at Olympus Mons, indicating the importance of subsurface loading. The values of Belleguic
et al. (2005) are somewhat higher than the most likely solutions obtained in this study which emphasizes the
importance of correctly modelling the gravity signal.
Beuthe et al. (2012) applied two models to retrieve the elastic thickness from admittance comparisons. Using
models including top and bottom loads, similar to the one used by McGovern et al. (2002), they found an
elastic thickness of more than 110 km for Olympus Mons, between 20 and 60 km for Ascraeus Mons, and less
than 10 km for Arsia Mons. No model could be fit to the observed admittance signature of Pavonis Mons.
Another model assumes two loading processes at different points in time. First, the Tharsis rise developed, at
a time of lower elastic thickness. Then, the large volcanic shields developed on top of the Tharsis basement
at a later time, when the elastic thickness was already higher. The results of these loading history models
generally agree with the conventional model including surface and subsurface loads.
In conclusion, the elastic thicknesses resulting from localized admittance studies for Olympus Mons and the
Tharsis Montes as presented by McGovern et al. (2002), Belleguic et al. (2005), and Beuthe et al. (2012) tend
to be slightly higher than the results of this study. An interesting difference is the low elastic thickness which
all of these studies obtain for Arsia Mons whereas this study finds the highest elastic thickness values out of
all Tharsis Montes there.

5.4. ELYSIUM MONS
The most likely elastic thickness for Elysium Mons is 20 km. This means that there must have been a high
heat flow at the time of loading, although not as high as for the southern uplands. There is, however, an area
on the western flank, where the most likely value is 300 km which indicates some lack of constraint which is
not visible in the contours of log-likelihood for Elysium Mons (Figure 4.25). The load ratio at Elysium Mons is
at 0.3 relatively small, but significantly different from zero. This indicates a lower density in the upper mantle
which could be caused by either a mantle plume or a depleted mantle composition (Belleguic et al., 2005).
McGovern et al. (2004) found a value of 15 to 45 km, but they also solve for a load density, for which they

obtain a best fit value of 3250 kg
m3 . By solving for the load density, they consider that the crustal material close

to volcanoes may have a different density than that found in other parts of the crust. This higher load density
leads to larger elastic thickness estimates which would explain why McGovern et al. (2004) found a slightly
higher value than this study with a relatively similar geophysical model. In their conventional model using
top and bottom loads, Beuthe et al. (2012) found an elastic thickness of less than 30 km at Elysium Mons.
Their new model which considers the loading history revealed that the volcanic basement of the Elysium rise
essentially reached isostatic equilibrium. Then, the volcanic shield of Elysium Mons developed at a later time,
and they found the elastic thickness for this second step to be 20 km, thereby well agreeing in both models
with this study. McKenzie et al. (2002) found a value of 29 km using line of sight velocities which is also
comparable to the result of this study. Belleguic et al. (2005) found a significantly higher value of 56±20km
with a similar, but more refined model and similar load density as McGovern et al. (2004). Both studies found
that bottom loads are not necessary, but can improve the fit. Audet (2014) found even higher elastic thickness
values of around 90 km with his wavelet method, but agreed on the low load ratio.

5.5. VALLES MARINERIS
This study finds as the most likely elastic thickness for Valles Marineris 20 km, a value which is quite con-
strained and associated with a load ratio of 0.2. This solution indicates a formation when the lithosphere was
quite hot, significantly earlier than when the Tharsis region formed.
McKenzie et al. (2002) used admittances from line of sight velocity measurements in a rectangular window
around Valles Marineris to find a best fit solution of Te = 53km. Audet (2014) received values of 80 km and
higher in the area around Valles Marineris from his wavelet transform of free-air and Bouguer coherence and
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admittance. McGovern et al. (2004) applied several small windows to some of the major chasmata and ana-
lyzed the admittance signatures with top and bottom loading models. They found elastic thicknesses greater

than 60 km in all windows when using a load density of 2900 kg
m3 and bottom loading, and slightly lower values

for models without bottom loading which include the load density as a free parameter. In the latter case,
they found significantly lower load densities, but McGovern et al. (2002) state that these are unlikely, and the
scenario including bottom loads, which could be caused by crustal thinning, seems more likely. Beuthe et al.
(2012) also applied small windows to several regions of Valles Marineris, but also used a large window includ-
ing the entire system. They received values larger than 70 km in all cases, and significant load ratios when
they modelled bottom loads.
In conclusion, all previous studies found much higher elastic thickness values than this study. These indicate
a formation of Valles Marineris after the Tharsis region. The large discrepancy may be due to the lack of flex-
ibility with regard to density variations in this study, or due to problems with the inhomogeneous terrain in
the large window which was used.

5.6. IMPLICATIONS FOR THE METHODOLOGY

In this study, the maximum likelihood estimation framework for the determination of the effective elastic
thickness of the lithosphere, first proposed by Simons and Olhede (2013), has for the first time been applied
to real data. Most previous studies had used spectral ratios to estimate the elastic thickness. The admittance
and coherence are derived quantities from the observed global fields of gravity and topography. Even if the
observed data possess a Gaussian distribution, functions of these data do not generally do so. This makes it
impossible to assess if the currently widely used least squares curve fitting of admittance and coherence is
even statistically significant (Simons and Olhede, 2013).
Furthermore, the inversion problem is losing degrees of freedom when the two-dimensional data are reduced
to spectral ratios which only depend on the wavelength or spherical harmonic degree. Maximum likelihood
estimation is avoiding these two problems by estimating the most likely solution directly from the observa-
tions.
The main components of the estimation framework are the input data, the flexural model (Equation 3.42),
the concepts of proportionality and correlation of the initial loads (Equation 3.53), and the isotropic covari-
ance function of the Matérn type. Several assumptions had to be made to combine these components into a
tractable form for maximum likelihood estimation.
First, the log-likelihood Equation 3.72 uses the surface and subsurface topography as inputs, even though the
actual observations are the surface topography and the gravity. The derivation of the subsurface topography
from the gravity is only possible under several simplifying assumptions. There are only two interfaces, the
crust-mantle boundary and the surface, and crust and mantle densities are assumed to be globally homoge-
neous and known. There is, however, general agreement that the densities are different both on the largest
scale, which is the Martian dichotomy, and on small scales. It is therefore important to regard the subsurface
topography rather as a translation of the observed gravity signal into a topography which is given in units of
height. During this conversion, all processes which cause density differences, such as intrusions and mantle
depletion, are combined into one global topography field. As Belleguic et al. (2005) found, the crustal thick-
ness is not a parameter which has a very strong impact on elastic thickness estimation. In this study, the
crustal thickness estimation is completely separated from the elastic thickness estimation, but an inclusion
of the gravity field into the maximum likelihood estimation framework does not seem feasible at this point.
Second, the actual flexural model also uses only two interfaces, and both loading and compensation occur
only at those interfaces. This is a simplification which several previous studies have overcome (e.g. Belleguic
et al., 2005; McKenzie, 2003). The goal of this study has been to keep the model as simple as possible which
also helps to apply it globally without having to readjust the model for different locations. For certain features,
for example volcanoes, it is very reasonable to assume more complex models because justifications for such
models from different sources exist. For example, the inclusion of a load density is useful because the volcanic
shield consists of different materials than the crust, based on their formation history. The results of this study
are not constrained very well for many volcanoes, indicating that another more sophisticated model might
be needed. This includes modelling topographies as individual layers rather than as small perturbations on
the interfaces. Belleguic et al. (2005) showed also here that a significant difference exists between those two
methods. The model should however not contain too many degrees of freedom.
Third, the flexural model used in this study is based on the concept of the effective elastic thickness. The
lithosphere is assumed to be perfectly elastic, integrating ductile and brittle strength. This is an assumption
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that neglects tectonic and viscoelastic effects. While a change of the model to incorporate such effects would
without doubt be interesting, these assumptions are quite reasonable.
Fourth, the model used in this study also neglects elastic anisotropy by treating the entire flexural process
isotropically. It has been shown that anisotropy is very relevant on Mars (Audet, 2011; Beuthe et al., 2012).
Flexure models which account for anisotropy exist (Kirby and Swain, 2009; Simons et al., 2000), but only in
the 2D case. When investigating Mars, the anisotropic flexure of a thin elastic shell would have to be mod-
elled, which is significantly more complex than that of a thin elastic shell (Wieczorek, 2007) and has not been
attempted yet to my knowledge.
Fifth, this model treats the initial load correlation r and the initial load ratio F as being independent of the
spherical harmonic degree l which is of course in practice not the case. Any set of surface and subsurface
topographies will have different amplitudes at different spherical harmonic degrees which generally do not
coincide. While keeping F and r constant for all spherical harmonic degrees is a rather unrealistic assump-
tion, estimating a separate parameter for each l would leave too many degrees of freedom in the model.
Forsyth (1985) estimated F as a function of wavelength, but this greatly increased the number of estimated
parameters and therefore led to the data always being close to perfectly fit.
Finally, two of the largest assumptions in the modelling in this study are related to the multitapering.
Firstly, all parameters are assumed to be homogeneous within the window, including the six estimated pa-
rameters, but also the densities and other lithospheric parameters which are assumed constant globally in
this study. Considering that the typical window sizes used in this study, ranging from diameters of 20° to 60°,
usually include several geologic provinces, this assumption is quite limiting, which is also why windows have
been kept as small as possible.
Secondly, the windowing introduces correlations between the spherical harmonic degrees of the input fields,
so that the observations do not follow a Gaussian distribution any longer. The coefficients of each spheri-
cal harmonic degree and order of gravity and topography are distributed as independent, Gaussian random
variables. This would be important for an analytical calculation of the confidence intervals of the estimated
parameters (Simons and Olhede, 2013) which has not been attempted in this study for this reason. By corre-
lations between the spherical harmonic degrees, the coefficients develop mutual dependencies. Therefore,
only a Monte Carlo approach could be applied to retrieve estimates of the model accuracy.
The Monte Carlo simulations which have been performed for nine localized windows on Mars (Section 4.6)
have given some insight into the behavior of the model. The retrieval of the principal parameter of interest,
the elastic thickness, is sometimes difficult. When synthetic topographies are generated using low Te < 30km,
the input value could be reproduced quite well. For higher values of Te , the most likely solutions are either low
or at the maximum of allowed values, Te = 300km. The actual input value is rarely reproduced for Te > 30km.
This is a major problem because it does not allow to make any meaningful constraints for locations where the
elastic thickness is high.
The load ratio, on the contrary, can always be resolved very well. In the case of the load correlation, the model
fails to distinguish between positive and negative correlation. When a strong positive load correlation is used
as an input parameter for the Monte Carlo simulation, both strong positive and strong negative correlations
are about equally likely to result from it, and vice versa. These difficulties in the retrieval of model parameters
stand in contrast to the very encouraging results of Simons and Olhede (2013) and are insofar unexpected.
I identify the grid spacing and the multitapering as possible reasons for the model failure for high Te and r .
Because of computational limitations, the most likely parameter set is chosen from a range of possible sets
which are sampled on a rather coarse grid (see Table 4.1). A sampling interval of 10 km is potentially too
large to find the maximum likelihood Te values in a six dimensional parameter space. The same holds for r
which is sampled in intervals of 0.2. Simons and Olhede (2013) applies some unspecified kind of tapering, or
blurring, to the data in his simulations, but the multitaper localization on the sphere may have significantly
worse properties, which are a result of the spherical nature of the problem and of the low resolution of the
observed data fields. The multitapering may therefore blur the simulated data to an extent that they are no
longer reproducable.
The maximum likelihood framework for the estimation of the elastic thickness estimates the load correlation
r as a free parameter which has not been accomplished by other studies. However, it has been revealed that
a very strong correlation is the most likely solution in almost all cases. This corresponds to the assumption
of r = 1 which is common in planetary science (Belleguic et al., 2005; Beuthe et al., 2012; McGovern et al.,
2002). It remains to be assessed how much advantage an estimation of r as a free parameter gives over this
assumption, especially in the context of how unconstrained the model is when it comes to determining r .
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CONCLUSION

6.1. SUMMARY
In this study, maximum likelihood estimation has been applied to constrain the effective elastic thickness of
the Martian lithosphere both globally and locally. Because of the large amplitudes of the Martian shape and
gravity fields and its comparably small radius, the estimation framework of Simons and Olhede (2013) had
to be redeveloped for the spherical case, resulting in a flexure model very similar to those used by McGovern
et al. (2002) and Audet (2014). For the localization of the global shape and gravity fields, spherical multitaper
analysis was used, which is optimally concentrated (Wieczorek and Simons, 2005).
The input observables to the geophysical model are surface and subsurface topography, or the distance of
surface and crust-mantle boundary from the center of mass of Mars. In a pre-processing step, the subsurface
topography has been obtained from the free-air gravity using the method of Wieczorek and Phillips (1998)
which determines the subsurface topography that could have caused the observed gravity while respecting
large amplitudes of the Martian gravity field. The resulting global map of the crustal thickness exhibits values
ranging from 3 to ∼ 100km.
Using a two-layer flexure model where loading and compensation occur as perturbations on the two inter-
faces, the modelled covariance spectrum of surface and subsurface topography has been determined. This
covariance spectrum depends on a set of six free parameters, including the elastic thickness Te , the initial
load ratio F , the initial load correlation r , and three parameters of the Matérn covariance function, namely
the smoothness ν, the decorrelation distance ρ, and the variance σ2. These are sampled in the six dimen-
sional parameter space and the covariance spectrum is computed for each combination of parameters.
For each parameter set, the log-likelihood Equation 3.72 is evaluated. The inputs for this equation are the
observed or derived surface and subsurface topography and their modelled covariance spectra. All of these
quantities have to be localized with suitable windowing functions to receive local estimates.
On a grid of 4°, localization windows have been applied to the whole globe, and for each of the points, a
most likely solution of six estimated parameters has been determined. The maps which have been created in
this way reveal the global distribution of the elastic thickness and the other parameters on Mars. The results
are given for several tapering parameters. When using only one taper, the window size can be decreased to
θ0 = 10° while still retaining sufficient bandwidth for the analysis. Maps using such a small window size are
best to characterize small features in inhomogeneous terrain. For global studies, larger windows are useful,
because more tapers can be used to improve the statistical significance. A map using windows with θ0 = 30°
was presented to reveal low elastic thickness values in the southern uplands of Mars, and higher values in
the northern lowlands and the volcanic provinces. Transitional areas such as the hemispheric dichotomy
boundary are difficult to analyze because the parameters change within the size of the window, which is not
reflected in the model.
For nine specific locations on Mars the contours of the log-likelihood were presented to investigate the con-
straint of the model parameters. The elastic thickness is most likely to be 10 km in the southern uplands,
20 km at Elysium Mons, 30 to 40 km at the Tharsis Montes, and 60 km at Olympus Mons. The elastic thick-
ness decreases with the age of the features which can be explained by a lithosphere which has cooled down
over time. The northern lowlands received a most likely estimate of 210 km which is very large and does not
correspond to this interpretation. All locations at which the elastic thickness was larger than 30 km had very
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unconstrained solutions.
This impression was confirmed by a Monte Carlo simulation. Synthetically generated planetary topographies
have been used to investigate the reliability of the model. On the basis of the most likely parameter set for
each location, synthetic topographies were generated, which were then treated as input data to a new esti-
mation. The most likely parameter sets from this new estimation revealed that the elastic thickness can be
reproduced very well when it is small, but the reproduction fails when Te is large. A lack of constraint and
confidence on the solution in previous studies has been one of the reasons why this study did not use the
more conventional admittance and coherence methods and instead the maximum likelihood framework was
implemented for the first time. In its current state, however, maximum likelihood estimation can not yet
reach the quality of elastic thickness modelling which is currently the standard in literature.

6.2. OUTLOOK

More research is needed to determine if maximum likelihood estimation can be a viable alternative to admit-
tance and coherence methods for elastic thickness modelling. I identify several features which are likely to
improve the processing used in this study meaningfully, but were out of its scope.
For all experiments in this study, the six dimensional parameter space has been sampled at certain grid points
where the log-likelihood was determined. The spacing of this sampling is limited by the computational effort
it creates and the flexural model had to be computed and multitapered for 412500 possible combinations of
parameters. Still, the resolution is not sufficient. For example, the elastic thickness is sampled in intervals
of 10 km. While a geological interpretation is possible with this resolution (Beuthe et al., 2012), it might be
problematic for finding the most likely value. This is even more of a problem for the other parameters, which
are sampled at larger intervals.
I therefore recommend the implementation of an iterative algorithm which does not need to evaluate the
log-likelihood at all grid points, but rather progressively searches for the most likely solution. This promises
a higher resolution of the solution after far less than 412500 iterations and, equivalently, model evaluations.
The original reason not to implement was the goal of creating a global map. When the most likely parameter
set has to be determined, the model evaluations only have to be carried out once and can be reused at every
map grid point. If future studies focus on single locations or on the methodology itself, this will not be a
problem. Iterative algorithms for finding maxima in six dimensional parameter spaces are readily available
when lower and upper bounds are known for all parameters.
For nine parameter sets, which are the most likely parameter sets of the localization windows investigated in
Section 4.6, synthetic topographies were created. 100 of those simulations were used again as inputs for the
same model to test the capacity of the model to reproduce its input values. This has already led to the conclu-
sion that low elastic thickness values can be reproduced better than high ones. It would be helpful to assess
this model behavior more systematically, and not just on the basis of nine parameter sets. This would give
insights into when exactly it is difficult to retrieve Te and the other parameters. Such a procedure would also
be of special importance for the estimation of r . Most likely values for r tend strongly towards strong positive
or negative correlation. A systematic analysis could reveal if this is a modelling bias because the parameter
cannot be retrieved properly, or if the initial load correlation is indeed almost always strong on Mars.
Finally, when this research has been carried out and the estimation procedure has been understood more
thoroughly, different physical models could be implemented. The flexural model used in this study is as sim-
ple as possible while keeping it realistic. Simplicity is beneficial for the understanding of a model and to keep
the number of parameters small, and thereby the estimation process tractable. When the model is well un-
derstood, more features can be added to it to make it more realistic.
Most importantly, the currently used model does not account for density differences apart from crust and
mantle densities. There is geological evidence for example for higher density surface loads in volcanic re-
gions, a hemispheric difference in crustal thickness, and subsurface loads of other density (Belleguic et al.,
2005). There are several studies which include such slightly more sophisticated assumptions into their model
to receive good results for Mars (Belleguic et al., 2005; Beuthe et al., 2012; McGovern et al., 2002). The density
can also be included as a free parameter into the model which would increase the number of parameters to
seven.
Another interesting problem in elastic thickness estimation is anisotropy. The model used in this study treats
the lithosphere completely isotropically, which is manifested in many parts of it, such as the flexural model,
the spectral Matérn covariance function, and the multitapering. However, there is strong evidence from ra-
dio science tracking analyses that the elastic thickness on Mars behaves anisotropically (Beuthe et al., 2012).
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Unfortunately, to date no flexural model for a thin elastic shell which does not assume isotropy exists to my
knowledge, so that considerable theoretical work would be needed to investigate the anisotropy of Mars’s
lithosphere using spectral methods.





A
SPHERICAL HARMONICS

This appendix gives a short overview over the spherical harmonics representation used in this study. Similar
introductions can be found e.g. in Hofmann-Wellenhof and Moritz (2006) or Wieczorek (2007).
A generic function on the sphere f (Ω) can be represented as a linear combination of spherical harmonics as

f (Ω) =
∞∑

l=0

l∑
m=−l

flmYlm(Ω) (A.1)

where Yl m are the spherical harmonics of degree l and order m, flm are the spherical harmonics coefficients,
and Ω= (θ,λ) is the position on the sphere, with θ being the colatitude and λ the longitude. The equivalent
Cartesian wavelength to spherical harmonic degree l is (Wieczorek, 2008)

λl ≈
2πR̄ t

p
l (l +1)

(A.2)

The spherical harmonics are defined as

Yl m = P̄l |m|(cosθ)

{
cos(mλ) for m ≥ 0
sin(|m|λ) for m < 0

(A.3)

where P̄lm(x) are the normalized associated Legendre functions given by

P̄l m(x) =
√

(2−δ0m)(2l +1)
(l −m)!

(l +m)!
Pl m(x) , (A.4)

with δi j the Kronecker delta. The unnormalized associated Legendre functions Plm(x) are related to the
Legendre polynomials Pl (x) by

Plm(x) = (1−x2)
m
2

dm

dxm Pl (x) (A.5)

and the Legendre polynomials are given by

Pl (x) = 1

2l l !

dl

dx l
(x2 −1)l . (A.6)

The spherical harmonics are then orthogonal with a 4π-normalization which is commonly used in geodesy:Ï
Ω

Ylm(Ω)Yl ′m′ (Ω)dΩ= 4πδl l ′δmm′ . (A.7)

Parsival’s theorem on the sphere relates the power in the spatial and spectral domains:

1

4π

2π∫
0

π∫
0

f 2(Ω)sinθdθdλ=
∞∑

l=0

l∑
m=−l

f 2
lm . (A.8)
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B
DIFFERENTIAL OPERATORS

The gradient of a scalar a(θ,λ) on the surface of a sphere S 2 is

∇a =
( ∂

∂θ

cscθ ∂
∂λ

)
a =

( ∂a
∂θ

cscθ ∂a
∂λ

)
. (B.1)

The surface divergence of a vector b = [bθ,bλ]> is given by

∇·b = cscθ

(
∂(sinθbθ)

∂θ
+ ∂bλ
∂λ

)
. (B.2)

The surface Laplacian operator is the surface divergence of the surface gradient of a scalar a(θ,λ) and given
by

∇2a =∇·∇a = ∂2a

∂θ2 +cotθ
∂a

∂θ
+csc2θ

∂2a

∂λ2 . (B.3)

Besides, we write (Beuthe, 2008) (∇2)′ =∇2 +2. (B.4)

In spherical harmonic space, the surface Laplacian operator of a function Ylm(Ω) can be simply written as
(Audet, 2014)

∇2Yl m(Ω) =−l (l +1)Yl m(Ω) . (B.5)
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C
OVERVIEW OF SYMBOLS

Table C.1: Overview of symbols used in this study, including their descriptions, units, and the equations in which they are defined or first
mentioned.

Symbol Unit Description Eq.

f - Generic function
x - Generic function argument
r m Position vector 2.1
d m Distance vector between two arbitrary points 3.56
r m Distance of a point from the center of mass 2.1
Ω - Surface location vector A.1
θ rad Colatitude A.1
λ rad Longitude A.1
ψ rad Great circle distance 3.62

l - Spherical harmonic degree A.1
m - Spherical harmonic order A.1
L - Maximum degree of spherical harmonic expansion
λl - Equivalent Cartesian wavelength A.2

Ylm - Spherical harmonics A.3
P̄lm - Normalized associated Legendre functions A.4
Plm - Unnormalized associated Legendre functions A.5
Pl - Legendre polynomials A.6

G m3kg−1s−2 Universal gravitational constant 2.1
M kg Mass of a planet 2.1
Rg m Reference radius of the gravity field 2.1
R̄ t m Mean planetary radius 2.9
R̄b m Mean radius of the subsurface interface 3.31

U m2s−2 Gravitational potential 2.1
V m2s−2 Potential of reference body 2.6
T m2s−2 Disturbing potential 2.6
σl - Spherical harmonic degree variance 2.2
σ - Root of the potential power per coefficient 2.3

g ms−2 Gravitational attraction 3.18
∆g ms−2 Gravity anomaly 2.4
∆gB ms−2 Bouguer correction 2.8
gB ms−2 Bouguer anomaly 2.7

Clm - Stokes coefficients 2.1
C BC

lm - Stokes coefficients of the Bouguer correction 2.9
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Symbol Unit Description Eq.

C BA
l m - Stokes coefficients of the Bouguer anomaly 2.10

χl - Downward continuation filter 3.30
λ - Lagrange multiplier 3.30

D Nm Flexural rigidity of the lithosphere 1.1
Te m Elastic thickness of the lithosphere 1.1
Tc m Crustal thickness 4.1
E ms−2 Young’s modulus 1.1
ν - Poisson’s ratio 1.1
ρc kgm−3 Crustal density 2.8
ρm kgm−3 Mantle density
∆ρ kgm−3 Density difference between crust and mantle 3.17

u m Deflection of a shell 3.11
q Nm−2 Loading pressure on a shell 3.11
ξ Nm−3 Flexural parameter 3.13
τ Nm−3 Flexural parameter 3.13
f1 - Parameter dependent on the spherical harmonic degree 3.14
f2 - Parameter dependent on the spherical harmonic degree 3.14
f3 - Parameter dependent on the spherical harmonic degree 3.14

Lt Nm−2 Loading pressure onto the surface interface 3.50
Lb Nm−2 Loading pressure onto the subsurface interface 3.50
h m Final (measurable) surface topography (shape) after flexure 3.33
w m Final (measurable) subsurface topography (shape) after flexure 3.29
ht m Equilibrium surface topography caused by top loading 3.17
w t m Equilibrium subsurface topography caused by top loading 3.17
hb m Equilibrium surface topography caused by bottom loading 3.24
wb m Equilibrium subsurface topography caused by bottom loading 3.24
hi m Initial surface topography before flexure 3.35
w i m Initial subsurface topography before flexure 3.36
αt - Flexural filter of top loading 3.21
αb - Flexural filter of bottom loading 3.27
h m Vector of final surface and subsurface topography 3.42
hi m Vector of initial surface and subsurface topography 3.42

M Te - Geophysical model matrix 3.42
h̄ m Multitapered vector of final surface and subsurface topography 3.72

q s−2 Isostatic response function 1.2
q̄ s−2 Fourier transform of isostatic response function, admittance 1.3
γ2 - Coherence 1.4
ḡ ms−2 Fourier transform of gravity 1.3
h̄ m Fourier transform of topography 1.3

F - Load ratio 1.5
f 2 - Loading fraction 1.6
r - Load correlation coefficient 3.48

Shh m2 Spectral auto-covariance of final surface topography 3.44
Shh m2 Spectral cross-covariance matrix of final topographies 3.44

Shi hi m2 Spectral auto-covariance of initial surface topography 3.45
Shi hi m2 Spectral cross-covariance matrix of initial topographies 3.45

S̄hh m2 Multitapered spectral covariance matrix of final topographies 3.72

c - Spatial concentration quality 3.1
H - Bandlimited taper function 3.1
H - Vector of taper coefficients 3.7
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Symbol Unit Description Eq.

Dl l ′ - Coefficient of matrix D 3.6
D - Matrix of Legendre functions 3.7
Lb - Bandwidth 3.3
N0 - Space-bandwidth product 3.10
θ0 rad Size of spherical cap window 3.10
K - Number of near-perfectly concentrated tapers

M - Matérn covariance 3.56
σ2 m2 Variance of the Matérn covariance 3.56
ν - Smoothness parameter 3.56
α - Scale parameter 3.56
ρ - Range parameter, decorrelation distance 3.61
Γ(x) - Gamma function 3.56

Kν(x) - Modified Bessel function of the second kind 3.57
Iν(x) - Modified Bessel function of the first kind 3.58

d - Dissimilarity 4.3

Xlm , X 1
lm , X 2

l m - Sequences of independent, real-valued, standard normally distributed
random variables

3.76

P - Probability function 3.70
L - Likelihood function 3.72
y - Set of parameters to be estimated in the maximum likelihood estima-

tion
3.71

yi - A generic parameter 4.2
nyi - Number of values at which a generic parameter is sampled 4.2
ntot - Number of parameter sets for which the likelihood is calculated 4.2
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