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Abstract

Despite its advantages in performance and control, hardware design is mainly bottle-
necked by high design complexity and long development time. This thesis explores
the use of domain specific languages for high-level synthesis (HLS) of hardware data
filters and transformations.

The main goal of this thesis’ prototype is automating the transpiling of SQL to HLS
C++ to generate hardware for filtering and data streams using CAPI on POWER sys-
tems. This work uses the Fletcher framework to automate the handling of datamove-
ment between memory and the field-programmable gate array (FPGA). The use of
HLS technologies can greatly reduce the development time of FPGAs compared to
manual FPGA development workflows. Deploying FPGAs in fast changing data pro-
cessing pipelines, can be very complicated or limit the use of the FPGA hardware. This
work investigates if HLScan be used for these kinds of applications to reduce total
development time while still maintaining performance. Additionally, the use of the
Fletcher framework further reduces required developer time. The proof-of-concept
shows that it is possible to efficiently use HLS for data filtering and transformations.
And that without a significant effort from the designer, usable designs and filters can
be generated. For example some of the simpler kernels can reach upwards of 1GB/s
while using less than 1% of a Xilinx Kintex UltraScale XCKU060 FPGA. By using multi-
ple instances of these kernels the design can saturate the system bandwidth. Though
this approach is not without issue, it does lend itself to extending the tool and some
extra development effort to improve the current proof-of-concept.

The project code is released under Apache 2.0 license on GitHub at:
https://github.com/EraYaN/FletcherFiltering.

https://github.com/EraYaN/FletcherFiltering


| Preface

This thesis is the result of a nine month effort to see if HLS is suitable to integrate
with Fletcher, a framework that the Accelerated Big Data Systems group at the Delft
University of Technology has been working on; and to see if HLS is a good solution for
the task of connectingmultiple different kernels. The desire for a query compiler or a
easierway for data scientists and analysts to interfacewith the framework and FPGAs,
resulted in the effort this thesis describes. When used in a Just-in-Time situation this
can help keep the data on the FPGA for as long as possible, since thenfilter operations
between different compute kernels do not need to move the data off the chip.

This thesis describes the design, implementation and testing of this compiler, and an-
swers the question if HLS is ready and mature enough yet, to in a reasonable time-
frame develop such an application, without sacrificing too much of the performance
of the resulting output hardware.

These past nine months have been a great learning experience for me, from internal
compiler design philosophies to the nitty-gritty details of the hardware design and
deployment tools.

I would like to thank my friends and colleagues in the Accelerated Big Data Systems
group for their tremendous help and assistance, Peter Hofstee for his assistance in
getting the testing infrastructure ready andworking, my copyreaders for helping find
mymistakes and shaping the final text, andmy supervisor Zaid Al-Ars for his feedback
during the process of development and writing.

— Erwin de Haan, 20 August 2019
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1 | Introduction

1.1 Context

In the race tomore and bigger data systems, performance is becomingmore andmore
the focus. This increased focus paves the way for accelerating big-data tasks with ac-
celerators. FPGAs offer a great opportunity for big data systems due to their ability to
provide very wide and deep data pipelines and the resulting very high throughput po-
tential. Using FPGAs in an ever-changing environment is a complex problem though.
Hardware design is much more expensive than software design and development cy-
cle times are much longer. This may lead to high or even prohibitive costs for any
application with evolving data processing needs.

Tomitigate this problem, FPGAs vendors have been hard at work making HLS tools to
lower the bar of entry for FPGA development. These allow people to use higher level
languages such as C++ to describe hardware processes. The downside is that it still
requires some hardware knowledge to effectively make use of these tools, although
resulting performance has been getting better [23].

HLS faces some real challenges in reaching the same or similar performance as hand-
written hardware description language (HDL) designs without a lot of care and coach-
ing from the developer’s side. Different tools can vary a lot between different bench-
marks and the spread in performance is quite significant [16]. For some applications
HLS can reach the manually optimized register-transfer level (RTL) descriptions’ per-
formance as shown by Homsirikamol and Gaj [9]. This does, however, require a lot of
attention from the developer. HLS code needs extra attention for things like prop-
erly pipelining and unrolling loops and removing control flow. These optimizations
help the HLS compiler generate more performant hardware designs. However, for
most existing C++ software code many of these tools will generate highly inefficient
designs. This means that, even though HLS will save developer time because of the
amount of required code is much smaller, one is still writing code quite specifically for
and informed by hardware architectures. This is still not ideal.
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CHAPTER 1. INTRODUCTION 1.1. CONTEXT

For many application domains, HLS can fill the role of the orchestrating language or
otherwise for simpler glue kernels, between bigger and more complex HDL IP cores.
Onemight think of it as thePythonof the hardwareworld, especiallywith the addition
of blackbox C functions, to be replaced by customHDL designs, to the newest version
of for example Vivado HLS.

Fletcher
Source

Fletcher
Source

Fletcher
Source

Fletcher Streams

Fletcher
Sink

Fletcher
Sink

Fletcher
Sink

Fletcher Infrastructure

Fletcher 
ArrayWriters

Fletcher 
ArrayReaders

Host CPU

Data Engine

FPGA Boundary

MMIO

Figure 1.1: Filtering on the CPU adds a full roundtrip to host memory. All existing CPU
tools for data filtering and transformation are available.
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CHAPTER 1. INTRODUCTION 1.2. PROBLEM DEFINITION & RESEARCH QUESTIONS

FletcherFiltering
HLS Core

Fletcher
Source

Fletcher
Source

Fletcher
Source

Fletcher/Streams

Fletcher
Sink

Fletcher
Sink

Fletcher
Sink

Fletcher Infrastructure

FPGA Boundary

MMIO

Figure 1.2: Filtering on the FPGA without the round trip to the CPU. More limited filters,
but most common cases are be covered.

1.2 Problem definition & research questions

Themain problem is illustrated in figure 1.1. On the left, there are sources of data, be
it other kernels or for example an ArrayReader that reads directly from memory. On
the right, there are data destinations, which consume the data. Consider a scenario
where there needs to be a filter operation between these two sides. For example an
outlier filter, or a date range filter. The filter runs on the host CPU, meaning all the
data needs to go to host memory for the CPU to be able to process it. For big data
applications, one never wants the data to touch main memory if it can be helped. So
this is a problem, figure 1.2 illustrates the proposed solution. Here in the middle is
a core generated by HLS that does the filtering, so that the data never has to leave
the FPGA. The core can filter or transform the data or both, all using the only on-chip
resources. Of course, the type of filters will be more limited than on the host CPU,
but for many cases, this should provide much better performance.

This scenario reflects ause casewhere this setupwouldbeusedas a just-in-timekernel
generator in a big data framework. Mostly when there is a simple SELECT or WHERE
operation between two bigger fixed kernels. Those fixed kernels would be shipped
with the framework, not unlike how GPU kernels are shipped with frameworks today.
This setupwould allow for these little filters and transformations to the automatically
generated thus preventing a move of the data back over to the host memory, and

3



CHAPTER 1. INTRODUCTION 1.3. OUTLINE

instead it can keep all the data on-chip. This project could be used to make longer
pipelines out of multiple of these kernels.

Considering all of this, a couple of research questions arise:

How much of a performance bottleneck would HLS tools introduce into the gen-
erated hardware?

Can HLS C++ be used as an orchestration language for hardware?

Can one automatemost of this HLS codewriting for filtering and simple transfor-
mations?

Does this automation result in saved developer hours?

1.3 Outline

This thesis explores the possibility of using a domain specific language to generate
suchHLS code, to reduce thedeveloper timecost even further formaking these smaller
filter and stream transformation kernels. As an example the SQL query language is
used to describe filters and stream data transformations. This results in a SQL to HLS
C++ transpiler, to be used for example as a just-in-time component in a larger data
processing system or as some glue logic to connect to other computational cores.

This thesis consists of several parts, first a look at the background and related work in
chapter 2. Then a look into the design goals and implementation in chapters 3 and 4.
The specification of all the performed tests is described chapter 5. An overview of the
test cases’ results is discussed in chapter 6 and finally the conclusions and recommen-
dations in chapter 7.

4



2 | Background

2.1 FPGAs & SQL

In the last couple of years, FPGAs have slowly started tomake their way into the high-
performance computing (HPC) and the Big Data world. Their incredible potential for
complex parallel processingmakes them very appealing tomany in this space. A large
amount of research effort has gone into finding uses for FPGAs in the HPC world,
with a lot of very promising results [8, 13]. Sadly not all algorithms are very suitable
for FPGAs, some are much more efficient on GPUs for example, like kernels that are
very heavy on floating point compute [10]. Still, other applications can benefit from
great speed-ups, lower latency or power savings [17].

SQL as a language has long been used for filtering and transforming data. It has a very
extensive syntax andallowsmany constructs outside justfiltering and transformation.
This makes it harder to fully master, but plain SELECT statements are very easy to pick
up. Many in the data analysis field are familiar with the language, making it a good
pick for the interface language of this project. The project will support a subset of
SQL, mainly plain SELECT statements with WHERE clauses, as described in section 3.3.

2.2 Arrow & Fletcher

More andmore large scale applications are constrained in performance by datamove-
ment. Some often used technologies and platforms use different in-memory layouts,
making this even worse, since this will cause a (de)serialization overhead every time
data passes between thesedifferent entities. To helpwith thedatamovement and se-
rialization overhead, Apache Arrow tries to define a commonmemory model [1]. This
memory model can greatly reduce the amount of data copying and transformation
that needs to be done to have different programming environments cooperate. The
Fletcher project brings this technology to FPGAs [7], this enables FPGAs to directly
use the host memory buffers without any data serialization. The Fletcher project in-
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CHAPTER 2. BACKGROUND 2.3. RELATEDWORK

cludes tools to generate all the required hardware to easily read and write to the Ar-
row buffers either on the devicememory or when using Coherent Accelerator Proces-
sor Interface (CAPI) the host memory.

ApacheArrow’s standarddescribes a columnar format. The focussesof theproject are
interoperability, flexibility and performance, while being very flexible for different
data types and structures [2]. A simple example is shown in table 2.1. This means if
there needs to be any processing on one column, there is great data locality, and thus
good performance. An example of one such operation is a filter operation in on one
data field.

Table 2.1: Arrow memory buffers versus traditional memory buffers.

ID Name Age
1 Alice 24
2 Bob 34
3 Chris 45

Traditional Memory Buffer

Row 1

1
Alice
24

Row 2

2
Bob
34

Row 3

3
Chris
45

Arrow Memory Buffer

ID

1
2
3

Name

Alice
Bob
Chris

Age

24
34
45

2.3 Related work

Previous work on query compilers for FPGAs [14, 15] have mostly been for self con-
tained systemswithout theadvantageof zero-serialization integrationwithother cores
and host-side CPU based software. These provide a great amount of functionality for
processing data, but for being used as a tool in a diverse big data analysis software
stack without (de)serialization overhead most of the existing work does not provide
the required flexibility.

Previous work on accelerated databases has also included work that uses FPGAs as
their main accelerator [19]. This work takes a hybrid approach to processing full-

6



CHAPTER 2. BACKGROUND 2.3. RELATEDWORK

featured SQLqueries: parts of the systemwill runon theCPUand select operators can
be run on the FPGA. This setup requires a lot of bandwidth between the host proces-
sor and the accelerator. This can limit its applicability if the data needs to be shifted
between compute devices often.

In the software space, there have been a number ofworks that have resulted in SQL to
C compilers [22]. Thiswork shows thatHLS-like techniquehas a lot of potential also for
pure software applications. The authors note that for great performance an efficient
set of data structures is required. This is not fully reconcilablewith the desire to share
data structures in a standardized fashion amongst applications, mostly since those
data structures are somewhat platform dependent: different compute environments
have very different needs.

7



3 | Design

To test the main questions posed in this thesis, a proof of concept compiler needs
to be created. The original philosophy was to use as many ready made components
as possible to get something up and running quickly and try to saturate the system
bandwidth with any one generated kernel or multiple of them.

3.1 Architecture

Almost every compiler consists of a front end, a host of transformations and a back
end for code generation. Figure 3.1 shows the different parts of the architecture. In
this case the back end needs to generate C++ code that Vivado HLS can compile to an
RTL representation. While the front end needs to parse a subset of SQL (as described
in section 3.3) to generate a representation that the transformations can work on.
This project focusses mostly on the compiler middleware that does the transforma-
tions, so that the front end and back end can successfully be connected to produce
useful output.

Compiler front end
parser, input

Middleware
validation,
transformations

Compiler back end
codegen, output

Platform Python, HLS, Fletcher

Figure 3.1: Design architecture, showing the front end, middleware and back end of the
compiler.
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CHAPTER 3. DESIGN 3.2. REQUIREMENTS

3.2 Requirements

The compiler front end should parse a subset of SQL to an internal abstract syn-
tax tree (AST) representation.
SQL is chosen for its ubiquity and flexibility. And ASTs are required for easy transfor-
mations in the compiler.

The compiler back end should generate correct C++ code that is understood by
the HLS tool of choice, in this case Vivado HLS.

The generatedHLS IP should have a signal layout that is compatible with Fletcher
streams.

The one or more of the generated kernels should be able to saturate the system
bandwidth.

The code should be licensed under a Apache-2.0 [3] and MPL-2.0 [12] compatible
license.
This is because of the used open source dependencies.

3.3 Supported subset of SQL

The design will support a subset of SQL, because it does not need any of the control
queries or things like INSERT, UPDATE and DELETE, because its target are stream trans-
formations and filters. For the class of SELECT queries, the design does not aim to sup-
port things like UNION or JOIN for the same reason. GROUP BY, ORDER BY and LIMIT are
also not supported. So to define the filters and transformations only SELECT queries
with WHERE clauses are supported. As for the SQL functions, the function CONCAT is
the only supported function, mostly as an example for further function implementa-
tions. Other than that all operators listed in table 3.1 are supported for booleans and
numerical formats for use in the SELECT clause and in the WHERE clause.

9



CHAPTER 3. DESIGN 3.4. EXPLORATION

Table 3.1: The supported operators and their applicable types.

Operator Symbol Types

MulOperator * numbers
DivOperator / numbers
AddOperator + numbers
SubOperator - numbers
BitAndOperator & integers
BitOrOperator | integers
BitXorOperator ^ integers
AndOperator and booleans
OrOperator or booleans
USubOperator - number
UAddOperator + number
NEqOperator !=, <> numbers, booleans
GtOperator > numbers
LtOperator < numbers
GtEOperator >= numbers
LtEOperator <= numbers
EqOperator =, == numbers, booleans
IsOperator is numbers, booleans

3.4 Exploration

During the exploration phase, one of the main wants was that the kernel would be
able to wrap a regular expression to VHDL generator, that was made by someone
in the Accelerated Big Data Systems group. Since regular expression matching is an
often used operation in text processing, this seemed like a great addition. Unfortu-
nately the required C function replacement by RTL modules was not yet available in
the then available version of Vivado HLS, since this project was started version 2019.1
was released in May which adds this functionality.

Since writing a custom SQL parser seemed quite a pointless exercise, the options that
are compatiblewith Python are compared in table 3.2. The best option for this project
is moz-sql-parser [11]. One of the only suitable SQL parsers out there that outputs
an actual tree structure of the query, although it outputs plain dictionaries and lists,
not really something that lends itself for transformations. Preferably it would be pos-
sible to use the NodeTransformer class from the Python standard library. Thankfully

10



CHAPTER 3. DESIGN 3.4. EXPLORATION

the parser is based on the very popular pyparsing library, making it relatively easy to
change the form of the output.

Table 3.2: Comparison of alternatives for SQL parsers.

Library License Parse
Output

Extendability Software
support

python-sqlparse ++
BSD

-
Tokens

-
custom regex
parser

+
Python
2.7-3.3

moz-sql-parser ++
MPL-2.0

-
Python dicts

++
Pyparsing

based

++
Python
2.7-3.6

General SQL Parser --
Commercial

-
Tokens

--
Commercial

--
Python 2
only

python-sqlparser +
LGPL

--
Internal

-
In external
project

+
Python 3
only

After trying to generate the C++ with some simple templating, it quickly became ap-
parent that it would not give the project the required flexibility. In table 3.3 some of
the options are compared. Since SQL allows arbitrary functions to be specified both in
the SELECT and WHERE clauses the project needs a lot of flexibility in it’s unparser. And
using an AST or other proper intermediate representation (IR) is a muchmore natural
fit. So in the end for the back end, the transpyle [4] project was picked since it pro-
vides a mostly working C++ unparser, a program that takes an AST and generates the
code that would have originally produced that AST. It works on Python 3 ASTs as the
input.

11



CHAPTER 3. DESIGN 3.4. EXPLORATION

Table 3.3: Comparison of alternatives for C++ unparsers.

Library License Unparse
Input

Extendability Output
quality

Flexibility

transpyle ++
Apache-
2.0

++
Python 3
AST

++
Pure Python

++
Readable
C++

++
Annotated
AST based

LLVM C++ ++
BSD-like

--
LLVM IR

-
Complex C++

-
Compilable
C++

+
LLVM IR

Custom
templates

++
Own code

+
Python
objects

-
Template
engine

++
Readable
C++

--
Template
engine

Both of these projects, moz-sql-parser and transpyle, are fully open source and are
released under respectively the MPL-2.0 [12] and the Apache-2.0 [3] licenses, both of
which are compatible with this project’s intended Apache-2.0 license.

Finally to connect the final HLS kernel to the generated Fletcher infrastructure, there
will need tobeanextrawrapper thatmanages the control signals and tells theFletcher
readers and writers what buffers to read or write to. It would be preferable if this
wrapper is also generated automatically. During the initial phase of this project it
seemed that the best idea was to extend Cerata. Cerata is part of the generation core
of Fletcher, it’s a library for high-level hardware design; it transforms graphs of enti-
ties into for example VHDL. Due to the complexity of this, later a templating engine
in Python (Jinja2) was used for the wrapper generation.

12



4 | Implementation

When the compiler is used it requires an SQL query, written in a subset of SQL (as
described in section 3.3), and an input and output Arrow schema both in a flatbuffer
file. These schemas are the same as the ones that are used with the code generator
for Fletcher, fletchgen. The final implementation is very extendable, if extra trans-
formations are required they can be added to the stack fairly easily. In figure 4.1 the
stack of transformations are shown on the right. On the left you have the front end,
a fork of moz-sql-parser, more on this in section 4.1. You have the back end, a fork of
transpyle, more on this in section 4.3. In the middle on themain block is the compiler
middleware, this validates the input and passes all the required data structures to
the transformations, the transformations are essentially part of the middleware. All
these transformations are detailed in section 4.2. In the C++ block, the different parts
of the project that arewritten in the C++ language are displayed, these are all support
parts and are not directly used by the compiler itself. The Fletcher HLS API for exam-
ple is used by the generated code and is described in section 4.4. And at the bottom
of the figure, all the dependencies are shown, the ones in blue (darker on grayscale)
were modified for this project. Finally in the top right is the settings module, this is
meant for users to change values themselves to change the precise behaviour of the
compiler and the resulting kernels.

13



CHAPTER 4. IMPLEMENTATION 4.1. FRONT END

Compile Architecture for FletcherFiltering

deps

codegen (python)

codegen (C++)

SQL function implementations Fletcher HLS API

Vivado HLS

Compiler front end
moz-sql-parser

settings

moz-sql-parser (fork) transpyle (fork) pyarrow

WhereTransform

ConstantPropagationTransform

ConcatTransform

WildcardTransform

PythonASTTransform

Compiler back end
transpyle unparse

Compiler middleware
validation, transformation

Testbench templates

AuxSingalsTransform

Input data adapter

fletchgen fletcher

Figure 4.1: Compiler architecture, showing the front end, middleware and back end of
the compiler and all the support systems, tools and libraries. This is an
extended version of figure 3.1.

4.1 Front end

ThealreadyexistingSQLparser, moz-sql-parsermaintainedbyMozillawritten inPython,
provides a good starting point, as described in section 3.4. This parser is based on py-

parsing and is relatively easy to extend. This parser originally output object structures
akin to JSON. For the first simple version this worked, but this makes transformations
needlessly complicated. So as the intermediary was going to be Python 3 ASTs (sec-
tions 3.4 and 4.3), custom classes based on the AST Python class were added to the
project and the parser adjusted to output a full AST. This AST can be properly trans-
formed using the build in NodeTransformer interface, more on that later. The front
end then does some sanity checking on the input and output schemas to make sure
the number of columns and column names in the query match up, and after that it
hands off control to the first set of transformations.
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4.2 Transformations

The transformations in themiddle of the compiler stack enable the correct translation
of the initial custom AST into the final Python AST.

4.2.1 WhereTransform
This adds a WHERE TRUE clause to every query that has no WHERE clause. This transforma-
tion is one of the transformations that normalizes the parsed AST for transformations
later in the chain.

4.2.2 ConstantPropagationTransform
This transformation does some basic constant propagation. Not necessarily to im-
prove performance, since the target compiler will do a much better job of that. But
mostly to improve the readability of the generated C++ code. This also removes adja-
cent variables in binary operations and literals. For example:

𝐴 ∧ 𝐴↦𝑡𝑟𝑢𝑒
𝐴 ∨ 𝐴↦𝐴

This transformation runs continually until the inputmatches the output, this waymul-
tiple layers of constants can be propagated.

4.2.3 ConcatTransform
This is a helper transformation to transform calls to the CONCAT SQL function. This is
mainly because there are some extra requirements because the same function call in
C++. The function in SQL can have many many arguments that are all concatenated,
while it’s C++ counterpart only accepts a fixed number of arguments. It also adds the
correct IntermediaryReferences for any variable that has a length, like strings. It also
converts all floating point and integer types into strings and adds a length constant
after them in the argument list. In the final transform the function-specific code gen-
erator will take this and generate the final Python AST for this function call.

4.2.4 WildcardTransform
This replaces any Wildcard() column AST node with all available input columns from
the input schema. This is another transformation that normalizes the incoming AST
for the last transformation, so it can be simpler in design.
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4.2.5 AuxSignalsTransform
This transforms a data expression in the same expression but with any of the auxiliary
signals. For example for two nullable variables 𝐴 and 𝐵 that are summed:

𝐴.𝑑𝑎𝑡𝑎 + 𝐵.𝑑𝑎𝑡𝑎↦𝐴.𝑣𝑎𝑙𝑖𝑑 ∧ 𝐵.𝑣𝑎𝑙𝑖𝑑

The valid signals for the + operator will go through an AND gate, this is to say that if
one or both values are a NULL value the result with be NULL as well. The transform
is mostly used by the PythonASTTransform if the valid signal is required separately,
for example in a function call. Normally the defined fletcher data types have most
operators correctly overloaded, meaning that the auxiliary signals are automatically
handled behind the scenes.

4.2.6 PythonASTTransform
This in the final internal transformation of the AST. This transform builds the Python
AST understood by the transpyle back end (section 4.3) to generate the final C++ out-
put. This transform also uses some of the other helper transforms directly on parts of
the AST, like the AuxSignalsTransform (section 4.2.5) to help it pass auxiliary Fletcher
stream signals through the same operators as the main data signals.

This part of the compiler is the part that handles all the stream interaction as well,
it generates the Python AST code to grab all the values out of the streams and write
themto theoutputwhenappropriate. Somost of thedata handling that is not directly
influenced by the actual query that is used is also generated here, most of the control
and management code is as well.

This is also the place where the final function AST code is generated, every function
call that is supported in the used subset of SQL has it’s own generator function. For
example the CONCAT function can have an unlimited number of arguments and this
does not map very well to C++ and hardware, so it is split into consecutive function
calls by a previous transformation, building up the final output buffer one string at a
time.

The complete generated AST consists of three parts. The input and data ingestion
part, the data processing and conditional evaluation part, and finally the output and
stream closing part. The test functions and data structures used for the hardware and
software co-simulation is also generated in this transformation by calling it multiple
times with different parameters.
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4.3 Back end

To make the code generation more versatile the prototype needs a suitable IR. The
transpyle project [5, 6] uses Python 3 ASTs for it’s IR and supports C++ code gener-
ation. This C++ generation needed a bit of extending, but this greatly improved the
extensibility of the prototype. The final back end generates Python ASTs from the in-
ternal ASTs that come from the front end (section 4.1). These Python ASTs are passed
into a slightly modified unparser from the transpyle framework for C++.

4.4 Fletcher HLS API

To help HLS kernels integrate with Fletcher streams, there needs to be an easy way
to wrap all Arrow types in C++. There are structures for every primitive Arrow type to
help users and the generated code use and move data, listed in table A.2. The aim of
these types was to make them behave just like regular c-type variables, so all opera-
tors in all possible mutations are overloaded. For the nullable types, it approximately
follows the rules of MySQL operators for NULL values, for example for arithmetic the
valid signal passes through anANDgate as shown in section 4.2.5. In the hardware the
types generate a concatenated bus (with data, last and dvalid) plus when using the
ap_fifo interface, also a ready and valid signal, that are very similar to the Fletcher
ones. Originally AXI-Stream or ap_hs interfaces seemed better options, but both have
issues. AXI-Stream has some magic string matching going on on the names of the
structure members to bind them to special AXI signals, and these are undocumented.
While ap_hs breaks all co-simulation functionality in the Vivado suite.

4.5 Test infrastructure

The design must be tested in multiple stages. Some tests take much longer then oth-
ers, so to keep development speed high early development was done with software
testing, after that co-simulation and finally hardware testing on the target system.
As the source of truth a MySQL build called Percona Server 8.0 was used [21], to run
all queries against. Since this SQL server does not support for example half-precision
floats and Arrow does support this, they are mapped to single precision floats and
the code allows from some deviation and clamps any values outside the range of the
16-bit floats. Timestamps are represented as 64-bit BIGINT UNSIGNED, since the na-
tive TIMESTAMP column is 32-bit in MySQL. The full type mappings for both MySQL and
software testing are in Appendix A. In figure 4.2 these two tests represent the left 2
columns of the flow chart in the middle, these are further described in section 4.5.1.
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The third column from the left, the co-simulation flow, is described in section 4.5.2.
The right most column represents the final co-simulation and hardware testing, this
is described in section 4.5.3. And finally all the outputs are compared to the source of
truth (the left column, MySQL) to see if the process works correctly.

Testing architecture for FletcherFiltering

test_compiler

deps

cmake pytest ninja/msbuild

Test front end

Generate data

Create table and insert

Execute SQL query

Generate wrapper Compile with Vivado HLS

Run synthesis in Vivado

Run co-simulation

Build library

Call library for all data

Compare Output

Compile SQL to C++

Vivado HLS snap

Create SNAP model

Run SNAP simulation

Run on FPGA using SNAP

pyfletcherMySQL

Figure 4.2: Testing Architecture

4.5.1 Software
To test the functionality of the generated C++, initially the code was compiled using
regular host compilers for use with the Python package ctypes, this allows Python
code to call dynamic libraries that use the C calling convention directly. This can speed
up development a lot on platforms where either Vivado HLS is not supported or on
hosts where it is not installed. Running the C++ code directly can quickly verify that
there are no logic and memory access errors in the generated code. The next step is
running the C Simulation in Vivado HLS, this loads a lot of extra libraries to emulate
the behavior of the code on the final hardware better. This is generally gives the same
output as the direct C++ runs. Note that this does not actually synthesize any RTL.
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4.5.2 Co-simulation
Co-simulation is a highly useful feature of some HLS packages where the test bench
can bewritten in C++ too, while still running the actual kernel in an actual HDL simula-
tor. This process takes a lot longer andwas added later in the project life cycle to keep
development speed up, this verified that the data acquisition from the input streams
and output streams is done correctly. Since this actually simulates the generated RTL
representation of the kernel, this reflects reality much closer and the given result for
kernel latency in cycles is fairly accurate.

4.5.3 Hardware
The next step is to run the kernel with the actual generated Fletcher hardware wrap-
per. Currently Fletcher does not support generating the final connection and control
logic for the kernels as mentioned in section 3.4. For this testing the simulation envi-
ronment of theOpenPOWERSNAP frameworkwas used [18]. This framework handles
the building of the model and generation of the FPGA image; it also provides some
extra communication facilities Fletcher uses internally to pass data between de FPGA
and the host CPU.

For hardware testing, a cloud-based POWER8 host was used with a Nallatech 250S
FPGA card, a card with a Kintex UltraScale XCKU060 speedgrade −2 device from Xil-
inx. Better would have been POWER9 testing, but the support software for the avail-
able hardware was not ready in time. The SNAP and Fletcher frameworks do a great
job of abstracting away the hardware and thus the host-side code can be exactly the
same for both the simulation and the real hardware runs. So for the kernels to work
on the actual hardware, there is theoretically very little effort required from the de-
veloper. Mostly just building the actual FPGA image and spinning up the POWER host
and programming the FPGA board. Of course the nature of the POWER host will re-
quire building some of the support libraries and host-side software for the platform,
but this is fairly easy to script, or the base image for the POWER machine could be
updated, to include most of the required software and tooling; for example cmake,
libarrow and libfletcher in this case to save time with each deployment.
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5.1 Queries

Representative tests for the compiler are very important for themeasurement results
to be useful. To this end, a set of queries were chosen to test all currently supported
functions (asdescribed in section3.3). Thesequeries alsoneed to reflect semi-realistic
scenarios. Note that in each query the FROM clause is effectively ignored. The given Ar-
row schemas are equivalent to an SQL table definition. The ’Notes’ columnwill specify
the primary key for the resulting SQL table andwhether values are allowed to be NULL.

5.1.1 Simple
This query will test the maximum throughput per bit on the incoming and outgoing
data buses. The resulting code will only be reading a value into a register and pass-
ing it along to the output. This is obviously not a truly useful application, but useful
nonetheless, as it measures the maximum throughput for its given data width.

The query text is shown in listing 5.1 and the Arrow schemas are shown in table 5.1.

Listing 5.1: The most basic query, this just selects the primary key column.

1 SELECT

2 `pkid`

3 FROM

4 `in_ff`;

Table 5.1: Arrow schemas for the Simple query.

Name Type Notes

pkid int32 primary

(a) Input schema

Name Type Notes

pkid int32 primary

(b) Output schema
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5.1.2 Wildcard
This query has some string columns, so this querywill test the current implementation
for reading strings. This should be much slower than the Simple query, since strings
can only be read one byte per cycle, making latency and execution time dependent on
string length.

The query text is shown in listing 5.2 and the Arrow schemas are shown in table 5.2.

Listing 5.2: This query tests the wildcard transform and string passing.

1 SELECT

2 *

3 FROM

4 `in_ff`;

Table 5.2: Arrow schemas for the Wildcard query.

Name Type Notes

pkid int32 primary
string1 string
string1 string

(a) Input schema

Name Type Notes

pkid int32 primary
string1 string
string2 string

(b) Output schema

5.1.3 Float
In this test, floatingpointmath fordifferentfloat sizes are tested. Thiswill give results
based on the floating point hardware available in the FPGA of choice. Floating point
operations are expected to add a number of cycles to the kernel latency: for most
high performance devices this should be around 2–8 cycles.

The query text is shown in listing 5.3 and the Arrow schemas are shown in table 5.3.

Listing 5.3: This query tests the floating point math in all supported sizes.

1 SELECT

2 *,

3 `half1` * 2 AS `half1x2`,

4 `float1` * 2 AS `float1x2`,

5 `double1` * 2 AS `double1x2`

6 FROM

7 `in_ff`;
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Table 5.3: Arrow schemas for the Float query.

Name Type Notes

pkid int32 primary
half1 float16
float1 float32
double1 float64

(a) Input schema

Name Type Notes

pkid int32 primary
half1 float16
float1 float32
double1 float64
half1x2 float16
float1x2 float32
double1x2 float64

(b) Output schema

5.1.4 Concat
Here, string concatenation will be tested. Concatenation implies for the current im-
plementation that the string needs to be composed in a block RAM (BRAM) before
it can be written to the output, which should have a rather large impact on perfor-
mance. The BRAMs are required over normal flip flops, because of the size of the
strings, BRAMs allow for much more data to be stored.

The query text is shown in listing 5.4 and the Arrow schemas are shown in table 5.4.

Listing 5.4: This tests the concatenation of two incoming strings.

1 SELECT

2 `pkid`,

3 CONCAT(`string1`, `string2`) AS `concat`

4 FROM

5 `in_ff`;

Table 5.4: Arrow schemas for the Concat query.

Name Type Notes

pkid int32 primary
string1 string
string1 string

(a) Input schema

Name Type Notes

pkid int32 primary
concat string

(b) Output schema
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5.1.5 Combination1
This is the first query that tests the filtering function with a WHERE clause. Filtering
implies performance will mainly be limited by input stream performance. The limiting
factor will be the string column, and the concatenations. Filtering happens on two
32-bit uniformly distributed random integer columns (as described in section 5.2.1),
in roughly the middle (4 and 18 respectively), so the expected pass rate of records is
about one fourth. This means the output bandwidth will be greatly reduced.

The query text is shown in listing 5.5 and the Arrow schemas are shown in table 5.5.

Listing 5.5: This combines many of the previous tests and also tests concatenation with
constants and has a filter as the WHERE clause.

1 SELECT

2 `int1` + `int2` AS `int1`,

3 CONCAT(`string1`, 1 << 4, 'NULL') AS `concat`,

4 CONCAT('123456', `string1`, TRUE, FALSE) AS `concat2`,

5 `timestamp1`,

6 `timestamp2`,

7 `timestamp3`,

8 `timestamp4`

9 FROM

10 `in_ff`

11 WHERE

12 `int1` > 4 AND `int2` < 18;

Table 5.5: Arrow schemas for the Combination1 query.

Name Type Notes

pkid int32 primary
int1 int32
int2 int32
string1 string
timestamp1 timestamp[s]
timestamp2 timestamp[us]
timestamp3 timestamp[ms]
timestamp4 timestamp[ns]

(a) Input schema

Name Type Notes

pkid int32 primary
concat string
concat2 string
timestamp1 timestamp[s]
timestamp2 timestamp[us]
timestamp3 timestamp[ms]
timestamp4 timestamp[ns]

(b) Output schema
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5.1.6 Combination2
This query expands on the previous one, with some in-compiler constant to string gen-
eration for floating point numbers, as well as some of the integer operators. Again,
since this is a filter, this will be mainly be limited by input stream performance, with
the limiting factors being the string column and concatenations. For this filter the ex-
pected pass rate of records is about one eight, because three uniformly distributed
columns (see section 5.2.1) are filtered in the middle of their range.

The query text is shown in listing 5.6 and the Arrow schemas are shown in table 5.6.

Listing 5.6: This tests the comparison operators and constant generation for floating
point numbers.

1 SELECT

2 CONCAT(0.5, `string1`, 0.3) AS `concat`,

3 CONCAT(3.453345, `string1`, 3.12E4) AS `concat2`

4 FROM

5 `in_ff`

6 WHERE

7 `half1` > 0 AND `float1` > 0

8 AND `double1` > 0

Table 5.6: Arrow schemas for the Combination2 query.

Name Type Notes

pkid int32 primary
string1 string
half1 float16
float1 float32
double1 float64

(a) Input schema

Name Type Notes

concat string
concat2 string

(b) Output schema

5.1.7 Nullable
This is the first query that tests nullable columns and the extra control logic required
for it. Some of the basic operators and functions are also tested for proper NULL prop-
agation. For example,most operatorswill result in a NULL valuewhen any of the inputs
are NULL.

The query text is shown in listing 5.7 and the Arrow schemas are shown in table 5.7.
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Listing 5.7: Query that tests the functionality around nullable columns.

1 SELECT

2 `pkid`,

3 `nullint`,

4 `string1`,

5 `pkid` + `pkid` AS `pkid2`,

6 `nullint` * 2 AS `nullint2`,

7 CONCAT(435, `string1`, 123) AS `concat`

8 FROM

9 `in_ff`;

Table 5.7: Arrow schemas for the Nullable query.

Name Type Notes

pkid int32 primary
nullint int32 nullable
string1 string nullable

(a) Input schema

Name Type Notes

pkid int32 primary
nullint int32 nullable
string1 string nullable
pkid2 int32
nullint2 int32 nullable
concat string nullable

(b) Output schema

5.2 Data

To run the queries specified in section 5.1, input data is required. To make sure every
aspect is tested, this data should be sufficiently random. The queries are essentially
fuzzed with random data. When done with a sufficiently large dataset, this should
expose any problems with specific values.

5.2.1 Numerical
To generate the numerical values, a uniform distribution is sampled along the numer-
ical types’ full range. The only exceptions to this are the 64-bit unsigned integers and
16-bit floats. Unsigned 64-bit integers for timestamp columns are limited to 63 bits,
because of an issue in the Python Arrow bindings for generating output files: these
will not take unsigned 64-bit integers for timestamps. As 16-bit floating point num-
bers are not natively supported by Python, they need to bemanually truncated to get
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the correct precision. Otherwise, they will have the correct range but their precision
will still be 32-bit.

5.2.2 Textual
The length of the used strings is at most half of the maximum string length, so that
their concatenation result will still fit in the buffers. For the actual text data, the well
known lorem ipsum sample text based generator lipsum is used to generate random
sentences. This text is commonly used in publishing and graphic design for place-
holder text. The original text is based on a lightly scrambled piece of text out of De
Finibus - Cicero and looks like mock Latin and the random generated sentences fairly
accurately represent a natural language. It also completely fits into the lower ASCII
range.

While further testingwith full Unicode test datawould be preferential, for now that is
outside the scope of this thesis. Due to the nature of the test implementation, which
relies on the strlen C function, most of it should just work, since it handles all strings
as simple sequences of bytes and so does the hardware. The problem comes from
the implementation of any other string processing functions, these require Unicode
awareness to function properly.
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6.1 Simulation

For the main simulation results the designs were run using Vivado HLS co-simulation.
This gives latency estimations in number of cycles, which will allow us to estimate the
maximum performance of the kernels. All of the numbers are the result of runs with
the default clock period target of 10ns in Vivado HLS version 2019.1. Tighter timings
are therefore possible, at the cost of extra registers, though the number of cycles
might become higher if there is some hardware bottleneck, such as a floating point
unit.

In table 6.1, the estimated amount of clock periods and kernel latency are displayed.
As expected, string processing in the current implementation has a large negative im-
pact on the overall latency and interval. In the current implementation, strings are
processed in serial fashion, so when the strings get longer, the row latency goes up.
Also due to some HLS limitations for the current implementation, there is no pipelin-
ing in between records, causing latency and interval to be mostly the same. This is
a mayor cause for the lower throughput numbers for some of the kernels, as shown
later in this chapter. Thankfully, as shown in table 6.2 all of these kernels are rather
small, so that will allow many instances on the FPGA.
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Table 6.1: Estimated clock periods, average latency and interval for all kernels.
Maximum input string length was 127 characters.

Kernel Period Latency Interval

Simple 4.530 ns 0 cycles 1 cycles
Wildcard 4.036 ns 887 cycles 887 cycles
Float 8.419 ns 6 cycles 6 cycles
Concat 5.172 ns 1333 cycles 1333 cycles
Combination1 4.337 ns 1124 cycles 1124 cycles
Combination2 4.337 ns 1290 cycles 1290 cycles
Nullable 5.172 ns 869 cycles 869 cycles

Table 6.2: Estimated area usage for all kernels. Maximum string buffer length was 255
characters, for an input length of 127 characters. The maximum number of
kernel instances is without any place for the interconnects, but it should paint
a picture of the size of these kernels. The target device’s totals are listed in
table 6.3.

Kernel BRAM_18K DSP48E FF LUT Max Inst.

Simple 0 0 33 59 ≈ 5.6k
Wildcard 2 0 433 990 ≈ 330
Float 0 16 912 555 ≈ 120
Concat 3 0 511 1511 ≈ 210
Combination1 5 0 1209 2627 ≈ 120
Combination2 5 0 1275 2776 ≈ 110
Nullable 3 0 715 1761 ≈ 180

To measure the impact of the maximum string length, the queries that have string
columns were tested again with a maximum string length of 32 rather than 127. The
results in tables 6.4 and 6.5 show that when the string buffers are small enough and
there are no constants to store in BRAMs, the BRAMs are replaced by registers, hence
the gain in used flip flops and lookup tables formost queries. This also shows that the
limiting factor in the current implementation for much larger strings is the number of
available block RAMs on the used device.
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Table 6.3: Target device Kintex UltraScale XCKU060 total resources

Resource Available

BRAM_18E 2160
DSP48E 2760
FF 663360
LUT 331680

Table 6.4: Estimated clock periods, average latency and interval for all kernels with
string columns. Maximum input string length was 16 characters, with the
effects indicated.

Kernel Period Latency Interval

Wildcard 2.963 ns ▾ 118 cycles ▾ 118 cycles ▾
Concat 5.194 ns ≈ 182 cycles ▾ 182 cycles ▾
Combination1 4.359 ns ≈ 175 cycles ▾ 175 cycles ▾
Combination2 4.359 ns ≈ 217 cycles ▾ 217 cycles ▾
Nullable 5.194 ns ≈ 130 cycles ▾ 130 cycles ▾

Table 6.5: Estimated area usage for all kernels with string columns. Maximum string
buffer length was 32 characters, for an input length of 16 characters. With
the effects indicated. The maximum number of kernel instances is without
any place for the interconnects, but it should paint a picture of the size of
these kernels. The target device’s totals are listed in table 6.3.

Kernel BRAM_18K DSP48E FF LUT Max Inst.

Wildcard 0 ▾ 0 = 459 ▴ 986 ▾ ≈ 330 =
Concat 0 ▾ 0 = 550 ▴ 1517 ▴ ≈ 210 =
Combination1 2 ▾ 0 = 1248 ▴ 2644 ▴ ≈ 120 =
Combination2 2 ▾ 0 = 1314 ▴ 2806 ▴ ≈ 110 =
Nullable 1 ▾ 0 = 741 ▴ 1760 ▾ ≈ 180 =

6.1.1 Observations: Simple
The simple kernel gets almost completely optimized away since there is basically no
real logic in the data path. Removing most of the extra scaffolding code results in
essentially the code displayed in listing 6.1.
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Listing 6.1: Simplified generated C++ code for the Simple query.

1 // Read the value from the input stream

2 (ff_in.pkid >> pkid);

3 //Start of data processing

4 f_int32 pkid_o(pkid);

5 bool __pass_record = true; // The absence of the WHERE clause results

in a straight 'true' value

6 //End of data processing

7 if (__pass_record) {

8 // Write the value to the output stream

9 (ff_out.pkid << pkid_o);

10 }

Theactual dataprocessing codeheredoesnothingbut create a copyof the input value
to the output. In the resulting HDL, this copy will be optimized away to essentially a
directly wired connection, as shown in listing 6.2.

Listing 6.2: Simplified generated VHDL code for the Simple query.

1 -- Connect the input signals directly to the output

2 ff_out_pkid_V <= ff_in_pkid_V;

Obviously, the control code to handle all the stream handshakes and other auxiliary
signals is retained, but the data flow is very straight forward.

6.1.2 Observations: Queries with strings
To see what the full relation is between maximum string size and resource use and
latency, the Wildcard query was tested with 127–1023 character buffers in addition
to the previous tests. The used resources stay relatively constant, the only changing
quantities are the used BRAMs: for a max length of 255 it stays at 2, probably un-
til the 18 kbit of the block RAM is filled. The most important change is in estimated
clock period and simulated latency. The clock period drops by about 1 nswhen charac-
ter buffers of 127 characters and under are used, because then BRAMs are no longer
required, thus removing the control logic that adds the extra delay.

Figure 6.1 shows the relation between string length and latency. For any sufficiently
large string size this relationship is linear. The non-linear part occurs when the num-
ber of BRAMs changes. To test this theory formore than 2BRAMs, a test was runwith
8095 characters. This resulted in Vivado HLS generating a design with 12BRAMs, and
a latency of 16 786 cycles, while the expected latency, calculated with a linear regres-
sion on the plotted data where the design uses BRAMs, would be around 18.5 kcycles.
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This shows that the expected latency converges to 4 ⋅ 𝑥 + 480 for larger strings. A test
with 16383 character buffers further confirms this relation.
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Figure 6.1: Latency and interval of the kernel with different maximum string lengths,
the input string length is at most half the maximum buffer length.

6.1.3 Observations: Floating point numbers
Asmentioned, for queries with floating point numbers, performance is limited by the
latency of the hardware floating point units or the digital signal processors (DSPs),
whichever is used, on the target device. On the used target device (Kintex UltraScale
XCKU060) this results in a maximum latency of 6 cycles for a column with a double-
precisionmultiply. On FPGA architectures with hardware floating point units, this can
be reduced, or, if the DSP slices are less advanced, this might increase.

6.2 Hardware

As described in section 4.5.3, the hardware tests were run on a cloud instance. Due
to hardware and software availability, only one of the queries could be tested on ac-
tual hardware. Using the knowledge gained from thesemeasurements, themaximum
performance of the other queries can be estimated.

6.2.1 Simple
The kernel was tested multiple times using record batches of 40MB (10Mrecords)
and 1GB (250Mrecords). The average dataset setup and read time for the 1GB was
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134ms, and the average clean up and output saving time 32ms. The same values for
the 40MB record batch are 9.3ms and 0.30ms, respectively. With the platform setup
andqueueingof the recordbatches for both taking less than2ms it’s basically insignif-
icant for the larger data sets, though for very small record batches onemight want to
queue a larger number of them at one time.

For the smaller data sets, the standard deviation was about 100 times bigger than
for the larger one, at about 46MB/s run-to-run, so the larger data set measurements
are more useful and repeatable. The measured throughput numbers for the kernel
are shown in table 6.6. With the FPGA running at 250MHz in the test system, these
results indicate that the estimated interval from section 6.1 is fairly accurate for this
kernel. Barring any other bottlenecks, widening the bus, like with a column of 64-bit
integers, should yield a near perfect doubling of throughput. This is due to the highly
parallel nature of this specific kernel and how FPGAs implement these.

Table 6.6: Throughput numbers measured on POWER8 using a Nallatech 250S FPGA
card and the SNAP framework.

Kernel 40MB record batch 1GB record batch

Simple 863 MB/s 216 Mrecords/s 948 MB/s 237 Mrecords/s

6.2.2 Implementation results
Due to some hardware availability issues and hardware bugs, the other kernels were
not able to be run on the actual hardware. However, using the knowledge gained
from the Simple test and timing reports generated by Vivado, the possible maximum
throughput can estimated fairly accurately. All numbers in this section were run with
a clock period target of 4 ns to match the target architecture’s FPGA frequency of
250MHz. The results are shown in tables 6.7 and 6.8.
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Table 6.7: Post implementation kernel statistics, and input bandwidth potential at 𝐹𝑚𝑎𝑥
and at 250MHz, the given interval number is the reported average. The
bandwidth and record size calculations for string columns use the average
string length and 4B for the string length itself.

Kernel Period Interval Size Potential @250MHz

Simple 1.513 ns 1 cycles 4 B 2644 MB/s 1000 MB/s
Wildcard 2.318 ns 890 cycles 195 B 95 MB/s 55 MB/s
Float 3.425 ns 11 cycles 18 B 478 MB/s 409 MB/s
Concat 2.983 ns 1347 cycles 198 B 49 MB/s 37 MB/s
Combination1 3.209 ns 1133 cycles 139 B 38 MB/s 31 MB/s
Combination2 2.676 ns 1291 cycles 112 B 32 MB/s 22 MB/s
Nullable 2.399 ns 870 cycles 94 B 45 MB/s 27 MB/s

Table 6.8: Post implementation kernel resource usage, all of these numbers are less
than 0.45% of the total on the target device, the totals for each resource are
shown in table 6.3. The maximum number of kernel instances is without any
place for the interconnects, note how the number of duplicated kernels is
much higher than the ones based on the estimated resource usage, because
the implemented resources are much lower.

Kernel BRAM_18K DSP48E FF LUT Max Inst. Max Total Bw

Simple 0 0 0 1 N/A N/A
Wildcard 2 0 391 420 ≈ 780 43 GB/s
Float 0 13 730 202 ≈ 210 86 GB/s
Concat 3 0 514 623 ≈ 530 20 GB/s
Combination1 5 0 1101 1117 ≈ 290 9 GB/s
Combination2 5 0 1001 933 ≈ 350 8 GB/s
Nullable 3 0 651 571 ≈ 580 16 GB/s

The period for the Simple kernel is the smallest possible on the −2 speed grade of the
target device (specified as 661MHz [24, page 8]).

The 250MHz calculated bandwidth of 1000MB/s also confirms the measured band-
width from section 6.2.1.

For the Float kernel, the output bandwidth will be higher than the input bandwidth,
due to the increased number of output columns, at 849MB/s and 727MB/s for the
potential bandwidth and the bandwidth at 250MHz, respectively.
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The output bandwidth will bemore than double the input bandwidth for the Nullable
kernel, because it duplicates the columns.

In the Concat kernel, the bandwidth is mostly limited by the output bandwidth, since
there is a string concatenation, implying strings are longer than the input.

Finally, the Combination kernels have a lower output bandwidth, since they drop a
coupleof columnsandhave fairly aggressivefilters. They respectively only let through
one quarter and one eighth of the input data, assuming the numerical values are uni-
formly distributed as described in section 5.2.1.

The differences in potential output bandwidth are shown in figure 6.2. These values
are per instance. The maximum number of instances is much larger than the ones cal-
culated from the estimated resource usage, because the actual synthesis optimizes
thedesign a lot and this results inmuch lower area utilisation. The ”Max Total Bw.” col-
umn shows the potential full system bandwidth if the FPGA was filled with instances
without any interconnect overhead, and the FPGA runs at 250MHz, so some of these
can go a lot higher if the frequency can go up. In the real world, most likely the achiev-
able total number of instances is about half.

With CAPI 1.0 reaching a usable bandwidth peak limit of about 8GB/s, every kernel
can potentially saturate system bandwidth. And in the real world, the ones running
on primitives will reach system bandwidth even for CAPI 2.0 which doubles that band-
width to16GB/s, while the kernelswith string columnswill lagbehind. The sameholds
for OpenCAPI, the next generation version of this interface should provide 25GB/s.
In the real world, the achievable total number of instances is most likely about half.

Thesenumbers showthat the currently fairly naive string implementation clearly needs
some work. For floating point and string operations, it might be valuable to do all
filtering on other columns first and do the operations that take a long time in a sec-
ondary kernel after the first one. This way, the higher latency has a much smaller
impact on overall throughput, especially if the filter function discards many records.

To increase throughput, one can use multiple kernels next to each other. To do this,
effectively one needs to process multiple record batches at the same time. Especially
when the Cerata library adds kernel parallelization, the FPGA can accommodatemany
kernels, and since Fletcher is designed to saturate the memory bandwidth of devices,
the total design should be able to hit that limit too. But first the string implementa-
tion should take advantage of themultiple elements per cycle feature of the Fletcher
framework. Because the relation between latency and string length is linear, a dou-
bling from1 to 2 elements per cyclemight already almost halve the slope of the graph
as shown in figure 6.1. And since data widths of 64-bits are not a problem for the
framework, 8 elements per cycle should be possible, at the cost of increased resource
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Figure 6.2: The input and output throughput of the kernels, split into two graphs. These
numbers are per instance.

usage. This will however bemore efficient than runningmultiple kernels at once area-
wise. The Fletcher framework has an example called stringwrite which uses 64 ele-
ments per cycle and it reaches 10GB/s for one instance [20]. With additional opti-
mizations in the string handling, like not serially reading then writing, this means that
the string column containing kernels can most likely also be made to reach the target
system bandwidth.

Comparing the throughputs in table 6.7 to some of the earlier work, for example
Glacier [15], does 1.6GB/s on 3 32-bit integers and one fixed size 4 character string
with a simple integer operator as a filter. This projects automatically generated ker-
nels can reach similar speeds (2GB/s on a similar bus width) when using fixed length
strings, with something like a binary type of 32-bits in Arrow. For Centaur [19], the au-
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thors never directly mention and data throughput. In one of their tests they mention
a query (MulAdd-Perc, a query with a multiply-add operation and a percentage cal-
culation) that works on a single numerical column, that the hardware processes 641
queries per second on a table with 1.25M values. So an estimate for their attained
bandwidth is 3.2GB/s for this query, and that while using about 2200 LUTs for their
compute operators, plus about 4 kLUTs for their scheduling, these are included in our
kernels by the HLS tool. Assuming that the numbers are floating point and using the
numbers from the Float kernel, to match this performance 7 instances would be re-
quired. For integers about 3 instances, both would have a smaller number of LUTs
used.
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7.1 Conclusions

In this thesis the merits of using SQL and HLS for automatically generating filter and
simple transformation kernels are discussed. The results are very promising for using
the generated kernels as glue logic between larger kernels, since especially simpler
filtering and transformations donot have a very large latency impact. These are there-
fore not affected by the number of columns, so it scales very well to wider queries.
HLS tooling still has quite someway to go, but can be a great tool in the toolbox of any
hardware designer, and should be considered as a tool worth looking at. The results
in chapter 6 clearly show that the input C++ code for the HLS tool is still very impor-
tant, even if it might perform very well as software on a CPU, writing the same code
for HLS requires extra care by the developer. The results also show that, this project
can match or exceed the throughput of earlier work.

In the followingwewill reflect on the research questions and requirements discussed
in chapters 1 and 3, and provide answers to them based on the findings in this thesis.

How much of a performance bottleneck would HLS tools introduce into the gen-
erated hardware?
Depending on the situation, HLS tools generate as good a piece of hardware as the in-
put is suitable for the tool. Thismeans that HLS tools, with some tweaking to pragmas
and other tool specific constructs, can be used to create high performance designs.
In this project’s instance, anything to do with longer strings makes the resulting hard-
ware nigh unusable, though this is fixable by spending some time to change the string
implementation in the codegeneration. By takingadvantageof themultiple elements
per cycle capabilities of the Fletcher infrastructure, string processing can reach the
memory bandwidth of the target device, like the included example with the Fletcher
framework [7]. This reduces the latency of the kernels to such an extent that they
should also saturate the system bandwidth, meaning the requirements in this thesis
are fulfilled.
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Can HLS C++ be used as an orchestration language for hardware?
With the new developments on HLS tools and the addition of blackbox C functions
to, for example, the latest version of Vivado HLS, C++ really can become the Python
of the hardware world. One would only write HDL for high-performance compute
kernels and let HLS deal with all the top-level logic and data movement. Potentially,
Fletcher could bemade into a bunch of C function prototypes that can be used in HLS
to use the full power and performance right from the HLS kernels, without the use of
any external tools or the need to write any HDL.

Can one automatemost of this HLS codewriting for filtering and simple transfor-
mations?
The current project automates most of the generation of the required code. It gener-
ates the HLS kernel, most of the other project and helper files. It can also generate a
SNAP project including a kernel wrapper.

Does this automation result in saved developer hours?
Yes it does, though it is important to note that the time saved by using HLS might
be offset by the added complexity of yet another tool in the hardware development
stack. The final synthesis, and place and route operations still require the traditional
development tools and all the pitfalls that come with them. Fletcher as a framework
for using these transformations directly with SNAP might be a little overkill and one
might be better off using a row-based memory format instead. That is, however, not
the power of this application, which is that this format is understood by a lot of differ-
ent development platforms and is standardized, thus allowingmany kernels and tools
to use the samememory space directly. This allows for a tight integration of this work
and other Arrow and Fletcher based projects.

The most of the requirements have been met, the front end does parse SQL and the
back end outputs C++ that can be understood by Vivado HLS. The signal interfaces
for the Fletcher HLS API provide all required signals on a concatenated bus. Unfortu-
nately with the current string implementation it will be very hard to reach the system
bandwidth of even a CAPI 1.0 interface with a real world and more complex design.

The project code is released under the Apache 2.0 license on GitHub at .

7.2 Recommendations

This project shows that HLS can be truly viable to generate usable hardware designs.
The current implementation needs some additional work to improve performance,
especially for strings, for example by taking advantage of the multiple element per
cycle functionality of the Fletcher framework. When that is done supporting Arrow
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lists should also be fairly straightforward. Furthermore, the pipeline and data flow
functions of the HLS engine should be explored more; these can greatly improve per-
formance for more complex kernels. Finally, since the current string implementation
is not very good, there is a lot of opportunity to increase the total throughput of these
kernels. The process is currently completely serial, because reading and writing have
to wait for each other to finish; this while the strength of FPGAs is their massively
parallel nature. Fixing this problem can easily result in a gain of x8–10, lowering the
number of instances required to saturate interface bandwitdh.
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| Glossary

Arrow
Arrow is an Apache Foundation project to create and maintain a standard for
in-memory data layouts, to help with reducing serialization overhead when
sharing data between different technology stacks.

AST
abstract syntax tree

BRAM
Block random-access memory (RAM) consist blocks of memory on the FPGA
chip itself, these are very high performance, but are often very limited in
quantity and size.

C++
C++ is a high-performance, general-purpose programming language, often
used for high performance applications. It was created as an extension to
the C language.

CAPI
CAPI is a high speed processor expansion bus standard, it runs on top of PCI
Express. In our case it allows the FPGA to have a high speed connection to the
host CPU and memory.

Cerata
Cerata is a library for high-level structural hardware design. It’s used inter-
nally by Fletcher to describe the hardware structures and their connections.

DSL
domain-specific language

DSP
DSPs are the main provider of math functionality in most FPGAs, they are the
core in the implementations of most math functions, like multiplication and
any floating point math.

FF
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Flip flops or latches are small 1 bit memories in the FPGA fabric. These are
the fastest way of saving data.

Fletcher
Fletcher is a framework that brings Arrow to FPGAs.

FPGA
Field-programmable gate arrays are large reconfigurable integrated circuits
with large arrays of switches, memories and look-up-tables to allow for the
creation of any hardware function.

HDL
hardware description language

HLS
High-level synthesis is the automated process of transforming a behavioral
description written in a high-level language, like C++, into a digital hardware
representation that implementents the same behavior.

HPC
high-performance computing

IR
intermediate representation

LUT
Lookup tables are the main logic ingredient in an FPGA fabric. These can be
used to implement any logic function, these together with all the intercon-
nects are the brain of the FPGA.

\protect $\relax \DOTSB \mapstochar \rightarrow $  (↦)
This operator is used to signify the result of a transformation.

MySQL
MySQL is an open-source relational database management system.

Percona Server
Percona Server is a drop-in replacement fork of the MySQL database server.
This is the database server used as the source of truth for the tests done in
this thesis.

POWER
POWER is a microarchitecture and brand name created and used by IBM for
their microprocessors.

Python
Python is an interpreted, high-level, general-purpose scripting language, used
in anything fromweb applications, network administration, machine learning
and generic scientific programming. With a focus on code readability.
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RAM
random-access memory

record batch
A record batch is an Arrow data set with a certain schema.

RTL
register-transfer level

schema
A schema is anArrowobject that specifies how the data looks andwhat values
and their types record batches with this schema will contain.

SNAP
SNAP is a framworkmaintained by the OpenPOWER foundation and IBM, cre-
ated to facilitate the quick creation of FPGA based applications on POWER
systems.

SQL
SQL is a domain-specific language, designed to manage relational data. For
this thesis’ project it is used to describe the streamor filter operation the user
want to create.

transpiler
Transpilers, or source-to-source compilers, areprograms that read source code
written in one programming language, and produce the equivalent output in
another.

VHDL
VHDL is the main HDL that is used in this project and the projects it depends
on, it is the language that describes all the different hardware structures.

Vivado
Vivado the brand name used by Xilinx to market their software suite for syn-
thesis and analysis of HDL designs. This software is used to turn the descrip-
tion of the hardware the designer creates into a bitstream that can be loaded
on the FPGA hardware.
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A | Arrow type mapping

1.1 To MySQL

Table A.1: The Arrow to MySQL type mappings used in testing.

Arrow Type MySQL Column Type Notes

bool BOOLEAN

int8 TINYINT

int16 SMALLINT

int32 INT

int64 BIGINT

uint8 TINYINT UNSIGNED

uint16 SMALLINT UNSIGNED

uint32 INT UNSIGNED

uint64 BIGINT UNSIGNED

float16 FLOAT MySQL does not natively support half
precision, the constraints are enforced in
the interface code.

float32 FLOAT

float64 DOUBLE

timestamp[] BIGINT UNSIGNED The TIMESTAMP column is 32-bit inMySQL.
string VARCHAR The length of the column is the maxi-

mum string buffer size.
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APPENDIX A. ARROW TYPE MAPPING A.2. TO HLS C++ AND PYTHON

1.2 To HLS C++ and Python

Table A.2: The Arrow to HLS C++ types and Python struct type mappings used in testing.

Arrow Type HLS C++ Type Python Struct Type Notes

bool ap_int<1> ?

int8 ap_int<8> b

int16 ap_int<16> h

int32 ap_int<32> i

int64 ap_int<64> q

uint8 ap_uint<8> B

uint16 ap_uint<16> H

uint32 ap_uint<32> I

uint64 ap_uint<64> Q

float16 half e half is a Vivado HLS exten-
sion.

float32 float f

float64 double d

timestamp[] ap_uint<64> Q

string ap_uint<8>* B The type is per character.

XI
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