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ABSTRACT

Reactive Programming is a way of programming designed to
provide developers with the right abstractions for creating
systems that use streams of data. Traditional debug tools
lack support for the abstractions provided, causing develop-
ers to fallback to the most rudimentary debug tool available:
printf-debugging.

In this work, we design a visualization and debugging tool
for Reactive Programming, that aids comprehension and de-
bugging of reactive systems, by visualizing the dependencies
and structure of the data flow, and the data inside the flow.
We present RxFiddle, a platform for the visualization as well
as the required instrumentation for RxJS in the ReactiveX-
family of Reactive Programming libraries. Evaluation based
on an experiment with 111 subjects, shows that RxFiddle
can outperform traditional debugging in terms of debug time
required.

Keywords
reactive programming, debugging, visualization, program
comprehension

1. INTRODUCTION

Software often needs to respond to external events and data
flows. Consider for example software in interactive applica-
tions, for desktops, web and mobile phones, in graphics and
in processing sensor data from phones or loT-devices. Tradi-
tionally, handling these asynchronous events was done using
the Observer design pattern [25] or callback functions [19].
Using these patterns, the system consuming the data does
not have to block waiting for methods to return, but instead
receives a notification event when data is available. While
these patterns decouple the consumer from the producer of
the data, they typically lead to dynamic registration, side
effects in the consumers, and inversion of control [14, 42].

Reactive Programming (RP) is an alternative to these pat-
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terns for event driven computation. RP defines event streams
as lazy collections and provides operators that allow devel-
opers to deal with the complications of asynchronous event
handling. It offers declarative and concise syntax for com-
posing streams of data, to express the complex reactive be-
havior of these applications. RP started in academia in the
form of Functional Reactive Programming (FRP) [12, 15, 16,
32, 35], but in recent years the use of RP has exploded. Lan-
guages such as Elm [11] and libraries such as Reactor [23],
Akka [6] and Rx [34] are being used by companies like Net-
flix, Microsoft and Google, to build highly responsive and
scalable systems. Front-end libraries like Angular®, that use
RP in their foundations, are used by many large sites (9.1%
of Quantcast Top 10k websites?). Developers and companies
alike attempted to standardize “Reactive Programming” in
the form of the Reactive Manifesto [5].

While reactive programs might be more declarative and con-
cise, RP does not work well with traditional interactive de-
buggers, shipped with most IDE$ [44]. RP borrows from
Functional Programming (FP) for its abstractions, its lazi-
ness and advocating the use of “pure” lambda functions.
Those features contribute to a control flow that is hidden
inside the RP implementation library and lead to non-linear
execution of user code. This results in not useful stack
traces, while breakpoints do not help either, since relevant
variables are frequently not in scope. Furthermore, using
a low level debugger makes it harder to interact with the
high level abstractions that RP provides. Compared to im-
perative programming, there is limited scientific knowledge
regarding how developers debug reactive programs. Tradi-
tional imperative program debugging practices [2] do not
apply to RP [44].

In this work we address the issue of RP debugging by design-
ing and implementing a high level debugger called RxFiddle
for a popular version of RP, namely Reactive Extensions
(Rx). RxFiddle (1) provides an overview of the dependen-
cies in the data flow, (2) enables a detailed insight in the
data flow and the timing of individual events, and (3) al-
lows developers to trace values back through the data flow.
To guide our design we conducted interviews among profes-
sional developers. After building RxFiddle, we validated it
with a user experiment. The results show that RxFiddle can
help developers debug RP data flows faster.

"https://angular.io/
*https://trends.builtwith.com/, accessed 2017-06-20
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To steer the research, we formulate the following research
questions:

RQ1 How do developers debug RP?
Before we design tools it is important to understand
the problems arising in the the current state [46]. Anec-
dotal evidence by a number of resources®? suggests
that debugging RP is difficult.

RQ2 How can we design a tool that helps developers debug
RP?
By examining the results of RQ1, the limitations of
traditional debuggers and the opportunities that RP
programs offer in terms of structure and explicit de-
pendencies between data flows, we design a novel RP
debugger.

RQ3 Can specialized RP debuggers speed up comprehen-
sion & debugging?
To validate our design and examine whether special-
ized tooling can improve the experience we measure
the speed and correctness of comprehension in an ex-
periment.

2. BACKGROUND: RP

Reactive Programming (RP) is a declarative programming
paradigm for working with streams of input data. Accord-
ing to the first definition® a reactive program must interact
with the environment “at a speed which is determined by
the environment”. Conceptually, when a reactive program
is run, it sets up a data pipeline and waits until input arrives,
i.e. when the environment changes. Reactive Programming
languages and libraries provide developers with a set of ab-
stractions and methods to create such programs.

The programming paradigm of Reactive Programming is im-
plemented by multiple languages and libraries. Many RP
implementations share a notion of a collection that abstracts
over time, in contrast to space like standard collections.
This collection comes in different flavors, such as Observable
(Rx [34]), Signal (Elm [11]), Signal/Event (REScala [43])
or Behavior/Event (FRP [16]). The implementations differ
in the precise semantics of their collections, their execution
model (push/pull), and the set of available operators. In
this paper, we focus on the Rx formulation, but our work is
applicable to other RP implementations to some extent.

Understanding how we derive our visualization requires a
minimal understanding of Rx. Rx introduces two basic types,
Observable and Observer. Observables define the data flow
and produce the data while Observers receive the data, pos-
sibly moving the data further down the stream. Figure la
shows a very basic example of an “in situ” data flow in Rx.
Initially, an Observable is created, here using the static of-
method, then dependent Observables are created using the
map and filter-methods on the Observable instance. Fi-
nally we subscribe to start the data flow and send the data
in the flow to the console.

3http://contributordays.com/contributor-days/rxjs
‘https://staltz.com/how-to-debug-rxjs-code.html

5 “Reactive programs [..] maintain a continuous interaction
with their environment, at a speed which is determined by
the environment, not the program itself.” [3]

Assembly. 1t is important to note that Observables are
lazy; initially they only specify the blueprint of a data flow.
Creating this specification is called the assembly phase. In
the code sample of Figure la the assembly phase consists of
the calls to of, map and filter, creating respectively Ob-
servables 01, 02 and o3 from Figure 1b.

Subscription. When the subscribe-method of an Observ-
able is called, the data flow is prepared by recursively sub-
scribing “up” the stream: every subscribe call creates an Ob-
server, that is passed to the input Observable, which again
subscribes an Observer to its input Observable, until finally
the root Observables are subscribed to. We call this the sub-
scription phase. In Figure la, inside the single subscribe
call, Observer s; from Figure 1b is created, and passed to
03, which in turn will recursively subscribe to o2 with a new
Observer sz with destination si, until the full chain is sub-
scribed.

Runtime. After the root Observables are subscribed to, they
can start emitting data. This is the runtime phase. Depend-
ing on the nature of the Observable this might attach event
listeners to Ul elements, open network connections or start
iterating over a list of elements. Events are pushed to ss, to
s2 and finally to s; which calls console.log in Figure la.

Rx identifies three types of events that can occur during the
runtime phase: next-, error- and complete-events. Next-
events contain the next value in the flow, an error-event
encapsulates an error and is a unsuccessful termination to
a stream, while a complete-event denotes the successful ter-
mination of the stream. There are restrictions on their or-
der: a Observable may first emit an unlimited amount of
next-events, and then either an error or a complete event.
Observables do not need to emit any next-events, and do
not need to terminate.

More complex programs feature operators that merge Ob-
servables®, split Observables” or handle higher order Ob-
servables®, resulting in more complex graphs. An example of
flatMap is shown in Figure 1c. While merging and splitting
happens on an Observable level (the source property still
points to one or more dependencies), higher order Observ-
able flattening manifests only in Observer structure (there is
no reference between the Observables). Figure 1d shows this
with an (abbreviated) inner Observable that is subscribed
twice (for both values 2 and 3, value 1 is skipped), resulting
in two identical data flows over o;. The data flow through
S4,n and sg4,, is pushed into s1, flattening the data flow.

Marble Diagram. The term Marble Diagram comes from
the shape of the glyps in the images used to explain Rx in
the official documentation. An example is shown in Figure 2.
The diagrams contain one or more timelines containing the
events that enter and leave Observables. Next-events are
typically represented with a circle, an error-event with a

6 concat, merge, combinelLatest, zip
" partition, or through multicasting with share or publish
8 flatMap, mergeMap, concatMap
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Observable.of (1, 2, 3)
.map(x => x * 2)
filter(x => x < 3)
.subscribe(console.log)

(a) Rx code example

let inner = Rx.0Observable.of("A", "B")
let outer = Rx.0Observable.of(1, 2, 3)

.skip(1)
.flatMap(() => inner)
.subscribe()

(c) Higher order flatMap operation

skip(1) flatMap(() => inner)

map(_ * 2) filter (_ < 3)
of(1,2,3) M\M\ 0f(],273) /02\/\/0_3\/\ .
w source @ source o3 U source U source
subscribe subscribe subscribe subscribe subscribe subscribe
S ED S
> destination \\5_2/ destination . * /" destination U destination i
(b) Rx graph example inner
(d) Higher order Rx graph example
Figure 1: Samples of Rx Observables
Method Focus
fg\ fé\ | Interview What are current practices
O/ o/ | RQl . e p
Literature What is recommended
RQ2 Design What can a RP debugger show
multiplyByTen Implement  Extract meta information from Rx
RQ3 Experiment Quantification of effect on debugging
@ N/ Table 1: Research Methods used in the study
A4 N\

Figure 2: Marble Diagram

cross and a complete-event with a vertical line. Developers
can see from the diagram how operators work by inspecting
the difference between the timelines, where events might be
skipped, added, transformed or delayed. Mapping time on
the x-axis provides insight that is missing when inspecting
only a single time slice.

3. RESEARCH DESIGN

To answer our research questions, we employ a three-phase
Sequential Exploratory Strategy, one of the mixed methods
research approaches [10, 24], as shown in Table 1. First, we
interview professional developers and review available doc-
umentation (RQ1) to form a understanding about current
debugging practices. Second, we apply this understanding
to design a debugger and implement it to test its feasibility
(RQ2). Finally, we validate the debugger using an experi-
ment (RQ3).

4. RP DEBUGGING PRACTICES

To validate the need for better tools we must first under-
stand how existing tools are used (RQ1). We interview de-

velopers, as we want to explore and understand the current
practices, instead of using an experiment or survey to test a
particular hypothesis. The questions were semi-structured.
We first established a general understanding of the experi-
ence of the subjects. Then we asked several open questions
regarding use of RP, how subjects debug RP and test RP.
Table2 lists the questions used as a guideline for the inter-
views.

Five developers with professional programming experience
ranging from 4 to 12 years were interviewed. The first
four developers (D1-D4) work in Company A, which builds
mostly reactive systems [5] using various RP solutions. De-
velopers range from a month to over a year of Rx experi-
ence. The fifth developer (D5) works in Company B, and
is concerned with building and maintaining a large scale
distributed server application, that uses Rx to handle asyn-
chronous events.

4.1 Interviews

In the following paragraphs we discuss the results of Q6-
Q10 in detail. Not every subject answered each question in
the same amount of detail, so we discuss the answers that
provide meaningful insights in the current practice.



Question

Q1  Explain your (professional) experience.

Q2 Assess your experience on a scale from beginner to expert. Context,
Q3 Explain your (professional) reactive programming experience. understanding
Q4  Assess your RP experience on a scale from beginner to expert. subjects

Q5  Did you refactor or rework RP code?

Q6  Did you and how did you test or verify the workings of RP code?

Q7  Did you and how did you debug RP code?
Q8  Did you and how did you use documentation on RP?

Content questions

Q9  What difficulties did you experience with RP?
Q10 What is your general approach to understand a piece of Rx?

Table 2: Interview questions

Testing. Of the 4 subjects of Company A, none performed
tests specifically for Rx logic. “Just running the applica-
tion”, is enough according to D3, saying that they only test
the business logic in their application and consider the Rx
code as “glue” which either works or does not work. In con-
trast, D5 and his team at Company B extensively tests their
application using the Rx’ built-in test facilities like “marble
tests” and the TestScheduler [40]. Using tests, the subject
confirms his believes about the behavior of the chain of op-
erators, and tests also help later on when refactoring code.

Debugging. All subjects independently mention using tem-
porary printf-debugging statements (console.log in Java-
Script). Subjects use printf-debugging to “add more con-
text” (D1) to their debug sessions. Printing which values
flow through the flow allows them to “quickly reason what
happens” (D3). Breakpoints are only used when the project
requires costly (TypeScript) recompilation if the source is
modified, as required for printf-debugging (D1).

Existing debuggers often can not be used to inspect the life-
cycle of Observables (subscription and disposal), as these
occurrences are not normally defined in user code and would

require breakpoints in library code, like the subscribe-method,

which is used by all class instances of Observable. This
debugging inside the Rx library was described as “painful”
by D2, when using the Node.js debugger to step through
the inners of Rx. Alternatives used by our subjects are
(1) creating a custom debug-operator which prints these
life-cycle events (D5) or (2) creating custom Observables
(Observable.create) with custom subscribe- and dispose-
methods, inserted at the beginning of the chain, that print
upon their usage (D2, D5). While printf-debugging and
breakpoints are useful in various degrees when executing a
single Observable chain, these methods both become con-
siderably more difficult and “overview is easily lost” when
executing multiple chains concurrently (D3, D5).

Documentation. Subjects give different reasons to visit the
documentation, but the most common reason is to “find an
operator for what I need” (D1). They feel that there might
be an operator that precisely matches their needs, however
knowing all operators by heart is not common (the Rx’s
Observable API has 28 static methods and 114 instance
methods), therefore subjects sometimes end up doing an ex-
tensive search for some specific operator. Another reason

to visit the documentation is to comprehend how operators
in existing code work. For this, subjects use the Marble
Diagrams at RxMarbles.com [33] (D2, D5), the RxJS 4 doc-
umentation at GitHub (D2, D5), the RxJS 5 documentation
at ReactiveX.io [40] (D1, D4, D5) and the online book In-
troToRx.com [7] (D4). D1 specifically mentions the need for
more examples in the documentation.

Difficulties experienced. The IDE does not help with de-
veloping Rx (D2, D4); according to D4 “Rz is more about
timing than about types”, and “You miss some sort of indica-
tion that the output is what you expect”. 1t is not always clear
what happens when you execute a piece of code, “mostly due
to Observables sometimes being lazy” (D2). Flows are clear
and comprehensible in the scope of a single class or func-
tion, but for applicationwide flows it becomes unclear (D3,
D4 and D5). D3 mostly used RxScala and mentions that
creating micro services helps in this regard. D1 mentions
that “you need to know a lot as a starting [RxJS] developer”,
giving the example of the many ways to cleanup and un-
subscribe, which he did manually initially. D1 used both
logging while analyzing existing code and learning to over-
come inexperience.

Understanding. Subjects first look at which operators are
used, then they reason about what types and values might
flow through the stream (D2, D3, D4 and D5), using var-
ious methods. By analyzing the variable names D2 forms
an expectation of the resulting value types, then reasoning
backwards, to see how this data is derived. Running the
code, is used when possible by D5, to observe the outcome
of the stream, as this “shows the intentions of the original de-
veloper”. If it remains unclear how the data is transformed,
the subject adds his debug-operator or looks up operators
in the documentation.

4.2 Analysis of Literature

Developers can learn Rx through several sources such as the
official documentation at ReactiveX.io, books, online courses
and from the many blog posts available. We gathered re-
sources to be analyzed by selecting 4 popular books about
Rx, and complement this with the official documentations
and an article by a core contributor of RxJS. All reviewed re-
sources either mention debugging briefly and suggest using
the do-operator for printf-debugging, or teach the devel-
oper printf-debugging via code samples.
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The RxJS 4 documentation® and two books [17, 38] pro-
pose the use of the do-operator for debugging. Esposito and
Ciceri [17] further explain how to best format the log state-
ments and introduce ways to limit the logging by modifying
the Observable through means of throttling and sampling.
The RxJava book [38] also contains tips to use the various
do-operators to integrate with existing metric tools. To our
knowledge the only article!® addressing issues of debugging
Rx is by Staltz, one of the contributors of RxJS, noting that
conventional debuggers are not suitable for the higher level
of abstraction of Observables. Staltz explains three current
ways to debug Rx, being: (1) tracing to the console, (2) man-
ually drawing the dependency graph, (3) manually drawing
Marble Diagrams.

We analyzed a set of 13 books about RxJS, which was cre-
ated by selecting 69 books matching “RxJS” from the O’Reilly
Safari catalogue!!, and further reducing the set by filtering
on the terms “debug” and “debugger”. While, none of the
remaining books had a chapter about debugging, many of
these books use printf-debugging in their code samples.
Notably, Blackheath [4] suggests, in a “Future Directions”
chapter, that special debuggers could provide a graphical
representation of FRP state over time and would allow de-
bugging without stepping into the FRP engine.

4.3 Overview of practices

The available literature matches the results of the inter-
views: printf-debugging is commonly advised and used.
While the conventional debugger works in some cases, this
is mostly the case for the procedural logic that interleaves
Rx logic. Automated tooling is suggested, but is not imple-
mented. We see that developers use printf-debugging to
learn the behavior of Observables, behavior meaning both
their values flowing through and their (one or many) sub-
scriptions.

Overall, we identified four overarching practices when de-
bugging Rx code:

1) Gaining high-level overview of the reactive structure.

)
2) Understanding dependencies between Observables.
) Finding bugs and issues in reactive behavior.

)

(
(
(3
(4) Comprehending behavior of operators in existing code.

5. DEBUGGER DESIGN

In this section we describe the design of a visualizer for the
ReactiveX (Rx) family of RP libraries to answer RQ2. Given
the findings of RQ1, the requirements for our visualizer are:

REQ1 Provide overview of Observable flows. This overview
should support practices 1 and 2, by graphically rep-
resenting the relations between Observables, such that
a complete image is given of all Observables and how
they interact.

® https://github.com/Reactive-Extensions/RxJS/blob/
master/doc/gettingstarted/testing.md
DOhttp://staltz.com/how-to-debug-rxjs-code.html
Uhttp://www.safaribooksonline.com

REQ2 Provide detailed view inside flow. This view should
support practices 3 and 4 by giving access to both data
flow and life-cycle events and should be able to show
the behavior of a operator visually.

To meet those requirements, we propose a visualizer consist-
ing of two parts: (1) a Data Flow Graph and (2) a Dynamic
Marble Diagram. The data flow graph satisfies REQ1, pro-
viding a high-level overview, showing how different flows are
created, combined and used, while the marble diagram sat-
isfies REQ?2, offering a more in-depth look into a single se-
lected data flow showing the contents (in terms of values
and subscriptions) of the flows and can be used to learn the
behaviors and interplay of operators.

5.1 Data Flow Graph

Simplified graphs. When running a RP program, Observ-
ables are created that depend on other Observables (their
source) and Observers are created to send their values to a
defined set of Observers (their destination). Figure 1b shows
these relations in a graph. For the simplest of programs, the
relations between the Observables (O = o1, 02, 03) and those
between Observers (S = s1, 2, s3) share an equally shaped
sub-graph after a reversal of the Observer-edges. To pro-
vide more overview, we process the graph to merge the two
Observable and Observer sequences together, simplifying it
in the process, resulting in a Data Flow Graph (DFG) as in
Figure 3. The process is simple: we retain only the Observer-
subgraph nodes, complementing them with the meta data of
the corresponding Observable nodes. Higher order relations
are retained, as shown in Figure 4. Figure 5B shows the
DFG in practice.

0f(1,2,3)
map(- * 2)
filter(_ < 3)
Figure 3: DFG of Figure 1b
0f(1,2,3)

of(‘A’, ‘B’) skip(1)

flatMap(() => inner)

Figure 4: DFG of Figure 1d

Layout. Layout is used to add extra meaning to the graph.
If multiple subscriptions on the same Observable are created,
multiple flows are kept in the graph and they are bundled
together in the resulting layout. This is designed to help
developers find related flows. Also it is easy to see that
for example an Observable is reused many times, hinting a
possible performance improvement by sharing the compu-
tation (Rx has special share-operators to multicast). The
layout is based on StoryFlow [30], which employs a hierar-
chical clustering before ordering the graph in a way to reduce
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crossings. Whereas StoryFlow clusters on physical charac-
ter location, we cluster flows per Observable. Furthermore,
StoryFlow supports interactivity in various layout stages of
which we use the algorithms for straightening and dragging
to support selecting a specific flow, which is then highlighted,
straightened and positioned at the right in order to match
the Marble Diagram, shown for the current highlighted flow.

Color. Coloring the nodes can be used to identify the same
Observable in multiple places in the graph, as Observables
can be reused in different places of the stream. For example,
in Figure 1d the inner Observable is reused twice, which
we denote visually by applying the same color to its two
occurrences in the DFG.

5.2 Dynamic Marble Diagrams

In contrast to the original diagrams (Section2), we use dy-
namic diagrams which update live when new events occur
and are stacked to show the data in the complete flow. This
allows the developer to trace a value back through the flow,
a debug operation which is impossible using a classic debug-
ger. Handcrafted marble diagrams can use custom shapes
and colors to represent events, but for the generic debugger
we use only three shapes: next-events are a green dot, errors
are a black cross and completes are a vertical line, as shown
in Figure 5C. For our generic debugger, it is unfeasible to
automatically decide which properties (content, shape and
color) to apply to events, as the amount of events and dis-
tinguishing features might be unbounded. Instead the event
values are shown upon hovering.

5.3 Architecture

To support the visualization, we design a debugger architec-
ture consisting of two components: a host instrumentation
and a visualizer.

The Host instrumentation instruments the Rx library to
emit useful execution events. Depending on the language
and platform, specific instrumentation is required. Output
of the instrumentation is a platform and language indepen-
dent graph like Figure 1d. By splitting the instrumentation
from the visualization, the debugger can be used for the
complete Rx family of libraries by only reimplementing the
first component. The communication protocol for the in-
strumentation is shown in Table 3. Note that the user never
needs to use this protocol, it is internal to the debugger.

The Visualizer takes the output of the host instrumenta-
tion, the initial graph, and simplifies it into a Data Flow
Graph. Then it lays out the Data Flow Graph and provides
the debuggers User Interface. By separating the visualizer,
we can safely export generated graphs and visualize them
post mortem for example for documentation purposes.

The components can run in their own environment. The
instrumentation must run inside the host language, while
the Visualizer can use a different language and platform.

5.4 Implementation
To validate the design and to provide an implementation to
the developer community we created RxFiddle.net. The

RxFiddle project is a reference implementation of our reac-
tive debugger design. Besides the visualizer, the website also
contains a code editor for JavaScript code with sharing func-
tionality, for developers to share snippets with their peers,
as shown in Figure 5A. In this section we will explain differ-
ent parts of the implementation. For RxFiddle, we initially
focused on RxJS (JavaScript).

Instrumentation. With JavaScript being a dynamic lan-
guage, we use a combination of prototype patching and
Proxies'? to instrument the RxJS library: the Observable
and Observer prototypes are patched to return Proxies wrap-
ping the API method calls. The instrumentation passes ev-
ery method entry and method exit to the Linking-step.

Linking. We distinguish between method calls from the dif-
ferent phases (Section 2). From the assembly phase, we de-
tect when Observables are used as target or arguments of
a call or as return value, and create a graph node for each
detected Observable. We add an edge between the call tar-
get & call arguments and returned Observables, denoting
the source-relation. Also, we tag the returned Observable
with the call frame information (time, method name, argu-
ments). In the subscription phase, we detect calls to the
subscribe-method: the destination Observers are passed as
arguments, so we create the graph nodes and save the re-
lation as an edge. In the runtime phase we detect next-,
error- and complete-calls on Observers and add these as
meta data to the Observer nodes.

Graph Loggers. From the Linking-step the graph muta-
tions are streamed to the environment of the visualizer,
where the graph is rebuilt. Depending on the host lan-
guage a different protocol is used: RxFiddle’s code editor ex-
ecutes the code in a Worker® and transmits events over the
postMessage protocol, while RxFiddle for Node.js transmits
over WebSockets. Being able to support multiple protocols,
extends the possible use cases, ranging from the code editor
for small programs, to a Node.js plugin for server applica-
tions, to Chrome DevTool extensions'® for web applications.

Visualizer. The visualizer receives the current state in the
form of a graph from the Logger. It then uses the Ob-
servers in the graph to create the DFG. To layout the DFG
using StoryFlow [30], we first rank the graph using depth
first search, remove slack [20] and reverse edges where nec-
essary to create a directed acyclic graph. We then add
dummy nodes to replace long edges with edges spanning
a single rank. Finally we order and align the nodes in the
ranks assigning coordinates for the visualization. It is impor-
tant that layouting is fast, as it runs every time the DFG
is changed. To render the Marble Diagrams, the flow to
and from the selected Observer is gathered, by recursively
traversing the graph in the direction of the edges, respec-
tively the reversed direction.

2https://developer.mozilla.org/docs/Web/
JavaScript/Reference/Global_Objects/Proxy
Bhttps://developer.mozilla.org/docs/Web/API/Worker
Yhttps://developer.chrome.com/extensions/devtools
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Figure 5: Screenshot of RxFiddle.net, showing the Code Editor (A), the DFG (B) and the Dynamic Marble Diagram (C)

addObservable(id, sourcelds)

Adds a Observable node, with zero or more source Observable’s

addObserver (id, observableIld, destinationId)

Add a Observer, observableId denotes the Observable it subscribed to,
optional destinationId adds an edge to the destination Observer

addOuterObserver (observerId, outerDestination)

Create a special edge between an existing Observer and the higher order
destination Observer

addEvent (observerId, type, optionalValue)

Add an event to the Observer denoted by observerId, of type (next, error, complete),
optionally with a value (for next / error events).

addMeta(id, metadata)

Add meta data such as the method call which created an Observable.

Table 3: Instrumentation protocol

6. EVALUATION

In this section we evaluate our debugger to assess the effi-
cacy of our approach, by answering RQ3. We want to com-
pare the original situation with the situation when using
RxFiddle. RxFiddle is our “treatment” for the RP debug-
ging problem, so we use an experiment, in which we control
for the debugger that subjects use, to test our hypothesis
that RxFiddle improves debugging.

Ko et al. [28] describes two commonly used measures for ex-
periments regarding tools in Software Engineering: success
on task, and time on task. The goal of our experiment is to
measure the time required to solve programming problems
correctly. If our reasoning for RQ2 is right and our design
leans itself for RP, we expect to see that the group using
RxFiddle can more quickly reason about the reactive code
at hand and can trace bugs faster. We do not choose only
success or correctness as a measure for the experiment, as
we expect both groups to be able to complete the tasks cor-
rectly: while the current debugging situation is non-optimal,
it is still used in practice, indicating that it works at least
to some extend. The construct of time also matches debug-
ging better; a developer needs to continue debugging until
he finds an explanation or a solution to his problem, and
incorrect assumptions can be tested and corrected.

We measure the time from the moment the participant re-
ceives the question until the correct answer is given. Par-
ticipants use either the built-in Chrome Browser debugger
(group Console) or - the treatment - our RxFiddle debugger
(group RzFiddle). This single alternative Console debugger
together with the experiment UI (which acts as a small IDE)
offers all the debugging capabilities subjects of our prelimi-
nary interviews (RQ1) reported to use.

The experiment consists of a questionnaire, a warm-up task
and four programming tasks, all available in a single in-
browser application, of which the source code is available
at [1]. The questionnaire contains questions regarding age,
experience in several programming languages and several re-
active programming frameworks. We use this self estimation
as a measurement of skill instead of a pretest, since it is a
faster and better estimator [18, 27, 45]. The warm-up pro-
gram is situated in the same environment as the program-
ming problems and contains several tasks designed to let the
participants use every control of this test environment. The
first two programming problems require the participants to
obtain an understanding about the behavior of the program
and report the findings. The last two programming prob-
lems contain a program with a bug. The participants are
asked to find the event that leads to the bug in the third
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problem and to identify and textually propose a solution in
the fourth problem. The first two problems are synthetic
examples of two simple data flows, while the latter two con-
tain some mocked (otherwise remote) service which behaves
like a real world example.

We use a between-subjects design for our setup. While this
complicates the results - subjects have different experience
and skills - we can not use a within-subjects design as it
would be impossible to control for the learning effect in-
curred when asking subjects to perform survey questions
with and without the tool. This also allows us to restrict
the amount of tasks to incorporate in the experiment, re-
quiring less time from our busy subjects. In the experiment
environment subjects can answer the question and then hit
“Submit”; alternatively they can “Pass” if they do not know
the answer.

6.1 Context

The experiment was run both in a offline and in an online
setting. The offline experiment was conducted at a Dutch
software engineering company. Subjects are developers with
several years of programming experience, and range from
little to no experience with RP to many years of experience
(Figure 6). As we do not try to measure the effect of learning
a new tool, but rather using a tool after learning to use it,
we explained RxFiddle in the introductory talk and added
the warm-up question to get every participant to a minimum
amount of knowledge about the debugger at hand.

The online experiment was announced by the authors on
Twitter, and consequently retweeted by several core contrib-
utors to RP libraries, and via various other communication
channels, such as Rx related Slack and Gitter topics. Sub-
jects to the online experiment took the test at their own pre-
ferred location and have possibly very different backgrounds.
We created several short video tutorials and included these
in the online experiment to introduce the participants to the
debug tool available to them and the tasks they needed to
fulfill. The introductory talk was used as the script for the
videos, in order to get all participants to the same minimum
level of understanding.

6.2 Results

The online experiment was performed outside of our control,
and some participants quit the experiment prematurely. In
total we had 111 subjects (13 offline, 98 online) starting the
survey, of those 98 completed the preliminary questionnaire,
and 89, 74, 67, and 58 subjects started respectively T1, T2,
T3 and T4. All of the subjects in the offline setting started
all tasks. Figure 7 shows the outcome of the tasks; in the
remainder of this section consider only the outcomes marked
as “Correct”.

Overall. Figure 8 shows the time until the correct answer
was given per task. Here we consider the combined results
from the offline experiment and the online experiment. We
make no assumptions about the underlying distribution so
we perform a non-parametric Wilcoxon Mann-Whitney U
test (Ho: times for the Console group and RzFiddle group
are drawn from the same population) to see if the differences
are significant, and a Cliff’s delta test for ordinal data to

1. JavaScript
ndiddle | 22% 36% 42%
console | 22% 27% 51%
2. Java
ixfiddle | 53% 25% 22%
console | 39% 20% 41%
3. Scala
ndiddle | 78% 13% 9%
console | 69% 19% 12%
4.C#
ndiddle | 52% 20% 28%
console | 53% 14% 33%
5. Swift
ixfiddle | 89% 9% 2%
console | 91% 2% 6%

6. Reactive Programming
ndiddle | 66% 21% 13%
console | 53% 24.% 22%
7. ReactiveX (RxJS, RxSwift, Rx.NET, etc.)
ndiddle | 57% 25% 19%

console | 57% 17% 26%
100 50 0 50 100
Percentage

Response

Figure 6: Experience in various programming languages, 9-
point Likert scale (0 = none, 2 = beginner, 4 = medium, 6
= senior, 8 = expert)

determine the effect size. The results are shown in Table 4.

For tasks T3 we can reject Ho with high significance (p <
0.05), the RxFiddle group is faster. For the tasks T1, T2 and
T4 we can not reject Ho (p > 0.05), meaning the RzFiddle
group and Console group perform or could perform equally.

Control for experience. To investigate this further, we
split the results for different groups of subjects, as shown
in Figure 10 in the Appendix. When we control for the self-
assessed Rx experience, we see bigger differences for all tasks
for groups with more experience, as shown in Figure 9 and
Table 5 (we split at the median; exp_rx > “Beginner™-level).

n1 ne W  p-value Cliff’s ¢
T1 34 36 559 0.540 0.0866
T2 32 31 517 0.780 -0.0424

T3 23 28 96 6.19¢e % 0.702
T4 13 12 60  0.347 0.231

Table 4: Results comparing the Console and RxFiddle
groups, with respectively n1 and ng subjects.

n1 ne W  p-value Cliff’s ¢
T1 16 17 105 0.276 0.228
T2 14 13 99 0.720 -0.0879
T3 10 11 10 7.88¢~* 0.818
T4 8 7 13 9.34e72 0.536

Table 5: Results comparing the Console and RxFiddle
groups, with respectively n1 and ng subjects, with Rx expe-
rience above “Beginner”-level.
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Figure 7: Task outcome per group (RxFiddle/Console) and
environment (online/offline)

Still, for tasks T1, T2, and T4 we can not reject Ho, but
the results are more significant comparing only experienced
subjects.

7. DISCUSSION

We now discuss our main findings, how RxFiddle resolves
the debugging problem of Rx, and contrast our design to
other design choices and possibilities of future work.

7.1 Main results

Quick and dirty debugging. Through interviews and lit-
erature we establish that current debugging practices for
RP consist mostly of printf-debugging. The shortcomings
of this method were evident from the interviews: it works
reliably only for synchronous execution or small amounts of
events being logged, otherwise overview is lost. Furthermore
the time-context of events and dependency-context of flows
are not available using this method. We attribute the preva-
lence of printf-debugging to this “quick and dirty” method
being available in every language and on every platform,
without a viable alternative.

600- .

E 4001 ® L mode

dE) . . ° E console
£ . B3 rxfiddle
'— L]
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0- " . " '
T T2 T3 T4
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Figure 8: Time until correct answer per task, overall

600-
L]
L]
. 400- o .
o mode
Q . ° E console
E B3 rxfiddle
F 200- .
0- : ; ; :
T T2 T3 T4

Task

Figure 9: Time until correct answer per task, for subjects
with more than “Beginner”-level of experience with Rx.

Improved context: being complete, disposing doubts.
With our design and complementary implementation we show
that the abstract model of RP is suitable for visualization on
two levels: overview and detail. On the overview level, we
complement the dependencies visible in source code with a
graph of the resulting structure, showing the run-time effect
of certain operators on the reactive structure. On the detail
level we add the time-context, by showing previous values
on a horizontal time line, and the dependency-context, by
showing input and output flows above and below the flow
of interest. While the results of our evaluation could be
observed as a negative, RxFiddle is a new tool, where sub-
jects have only just been exposed to the tool and received
only a short training. We expect that by designing a debug-
ger model so close to the actual abstractions, our debugger
works especially well for users with some knowledge of these
abstractions; while only T3 shows better performance with
high significancy, we observe slightly better results when
controlling for experience. Future research might investi-
gate the effect of experience in more detail, including the
use of more complicated tasks, with larger samples.

In the presented research, we did not perform tests with
subjects using their own code. However, during piloting and
after the release of RxFiddle we received positive feedback
regarding the completeness of the visualization. As one user
put it, “by using RzFiddle when learning and understanding
what RxJS does in our project, I have a feeling of improved
control over our Observables, Subscriptions and the reactive
parts of our app”. Specifically the life-cycle events, which are
generally hard to debug using printf-debugging, are more
clear: “Initially we were reluctant to manually subscribe, but



after seeing that ‘complete’ often triggers a ‘dispose’, the
team became more confident to sometimes use subscribe()
directly”. Future research might address this by designing
experiments specifically using the users own code.

7.2 Implications

The developers using Rx in practice now have an alterna-
tive to printf-debugging. We recommend developers to try
RxFiddle on their codebase to better understand the reac-
tive behavior of their applicatoin, and potentially detect and
verify (performance) bugs they are not aware of. At least
one example of this has already occurred in practice: one
of our interview subjects reported a bug'® in the groupBy
implementation of RxJS, which resulted in retention of sub-
scriptions, increased memory usage and finally led to an out-
of-memory exception; the subject detected the bug in prac-
tice and required extensive amount of debugging involving
the Node.js debugger to trace down, but could be validated
quickly when examining the life-cycle events in RxFiddle.

Contributors of RP libraries should use tools like the RxFiddle

visualizer in documentation to provide executable samples,
which would allow for a better learning experience, and at
the same time introduces novice developers to other ways of
debugging than printf-debugging.

7.3 Limitations

Multiple inputs and outputs. 1f we compare our debugger
visualization to the visualization of learning tools, like Rx-
Marbles [33] or RxViz [37], the main difference is that those
tools show all input and output Observables of a single op-
erator concurrently, for comprehension of that one operator,
while RxFiddle shows one input and output Observable per
Marble Diagram, part of a single full flow (a path through
the graph). The choice to show a full flow allows developers
to trace events from the start until the end of the flow, but
restricts us in showing only a single ancestor flow per node
at each vertical position, as adding a third dimension would
clutter the (currently 2D) visualization. For future research
it would be interesting to compare (1) the different ways Ob-
servable streams can be combined in Marble Diagrams and
(2) which visualization elements can be added to explicitly
show causality and lineage for events and show durations for
subscriptions.

Edge visualization. In our graph visualization, the edges
represent the dependencies and the path of the events. Nodes
with multiple incoming edges merge the events, however
users could falsely think that all event data ends up in the
outgoing path: besides for merging data Rx also uses Ob-
servables for timing, as durations (window), as stop condi-
tions (takeUntil) and as toggles (pausable). Different vi-
sual representations for joining paths could be explored to
distinguish between using Observables for data or for timing.

Graph scalability. Debugging large reactive systems over
longer periods of time can result in significantly larger Ob-

Bhttps://github.com/ReactiveX/rxjs/issues/2661
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servable graphs and Marble Diagrams than is currently eval-
uated. During tests of RxFiddle with larger applications
like RxFiddle itself and an existing Angular application the
graph became too large to render in a reasonable amount
of time. Besides rendering performance, a potentially even
bigger issue is with communicating large graphs to the devel-
oper. We propose several extensions to RxFiddle to remedy
this issue: (1) pruning the graph of old flows to show only
the active flows, (2) bundling flows that have the same struc-
ture and only rendering a single instance offering a picker
into the flow of interest, (3) collapsing certain parts of the
graph that are local to one source file or function, (4) adding
search functionality to quickly identify flows by operator or
data values, (5) support navigation between code & graph.

Marble Diagram scalability. Furthermore we think that
while Marble Diagrams are useful for small to medium amount
of events (< 20), both better performance and better func-
tionality would be achieved by providing a different inter-
face for high volume flows. Above a certain threshold of
events this high volume interface could be the default, offer-
ing features like (1) filtering, (2) watch expressions (to look
deeper into the event’s value), and advanced features like
(3) histograms & (4) Fast Fourier Transform (FFT) views.
Manually examining these distinct events could take a long
time. In contrast, a debugger could leverage the run-time
information about the events that actually occur, to provide
a Ul Advanced features like histograms could help the fil-
tering process, while FFT could offer new ways to optimize
the application by doing smarter windowing, buffering and
sampling later on in the chain.

Breakpoints. Placing traditional breakpoints in a reactive
program stops the system from being reactive, and therefore
can change the behavior of the system. This was our reason
not to include breakpoints in RxFiddle. However, the be-
havior of breakpoints is twofold: they allow us to modify the
application state by interacting with the variables in scope,
but they also provide a way to be notified of an event occur-
rence. While the first is arguably not desirable for reactive
systems, the notification property might be a good addi-
tion to RxFiddle. BIGDEBUG [22], a debugging solution
for systems like Spark [48], introduces simulated breakpoints
for this purpose. When a simulated breakpoint is reached,
the execution resumes immediately and the required lineage
information of the breakpoint is collected in a new indepen-
dent process. Implementing this for RxFiddle is a matter of
creating the right UI as the required lineage data is already
available.

8. THREATS TO VALIDITY

External validity. For the interviews we selected 5 profes-
sional developers that were both available and worked on
projects involving RxJS. The online experiment was open
to anyone who wanted to participate, and shared publicly.
These recruitment channels pose a threat to generalizability:
different practices might exist in different companies, differ-
ent developer communities and for different RP implemen-
tations & languages. Future work is needed on validating
the debugger in these different contexts.
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Our code samples for the tasks are based on documentation
samples and common use cases for Rx; RxFiddle might per-
form different on actual samples from practice, especially
when the developer is familiar with the project or domain.
The experiment consists of 2 small and 2 medium tasks; for
larger tasks the effect of using the debugger could be bigger
and therefore be better measurable. Still, we chose for these
smaller tasks: in the limited time of the subjects they could
answer only so many questions. With the limited amount
of time available, we still show that a significant speed-up
can be achieved in some cases. We leave it for future work
to extend the experiment to include user code and larger
systems.

Construct validity. We measure the time between the mo-
ment a question is displayed and the moment its correct
answer is submitted. Even though our questions and code
samples are short and were designed to be read quickly,
still some variation is introduced by different reading speeds
of subjects. A setup where the question and code can be
read before the time is started can remedy this threat; but
introduces the problem of planning when given unlimited
time [28]: subjects can start planning their solution before
the time starts. Furthermore, subjects might have different
strategies to validate their (potentially correct) assumptions
before submitting, ranging from going over the answer once
more, to immediately testing the answer by submitting it.
However, explicitly stating that invalid answers do not lead
to penalty might introduce more guessing behavior. Future
studies could use longer tasks, with preparation time to read
the sample software at hand, with a wizard-like experiment
interface presenting one short question at a time.

Internal validity. As a result of the recruitment method
of the experiment, a mixed group of developers took part,
attracting even those without Rx experience. To reduce the
variation in experience that this introduces, we separately
examined the results of more experienced developers.

At the time of the experiment RxFiddle was already avail-
able online for use, and furthermore some of the experiment
subjects had already used RxFiddle during piloting. We mit-
igate this issue partially by providing a instruction video at
the start of the experiment, however subjects with extensive
experience with RxFiddle might bias the results.

The subject-ezpectancy effect [28] poses a validity concern,
since subjects who expect a certain outcome, may behave
in a way that ensures it. Our subjects had the opportunity
to learn the context of the experiment and thus could be
more motivated to use RxFiddle than using the traditional
debugger. Our online experiment captures motivation to
some extend as drop-out (defined as quiting, before having
started all tasks) happens; the approximately equal drop-
out in both groups (RxFiddle 56.3%, Console 63.4%), sug-
gests no significant motivational differences. Future studies
could offer subjects external motivation (e.g. by ranking
contenders and gamification [13] of the experiment, or or-
ganizing a raffle among top contenders), to limit the threats
introduced by motivation.
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9. RELATED WORK

RP Debugging. REScala [43] is a RP library for Scala,
based on Scala.React. Recently a debugger model was cre-
ated for REScala, called “RP Debugging” [44], featuring a
dependency graph visualization, breakpoints, a query lan-
guage and performance monitoring. The debugger fully in-
tegrates with the Eclipse IDE and the Scala debugger fa-
cilities, creating a (Scala) developer experience and a fea-
ture RxFiddle currently can not offer: reactive breakpoints.
However breakpoints are arguably not as useful as “simu-
lated breakpoints” (Section7.3, Breakpoints). Furthermore,
our debugger design supports multiple languages, and works
outside of the IDE, in the browser environment and/or con-
necting to a production system. Rx has different reactive se-
mantics and a more powerful, but also more extensive API,
which includes operators acting in the time domain (delay,
etc.). Therefore, we argue that seeing the many values in
a flow over time is very valuable; RP Debugging shows the
latest values at the selected time.

RP Visualization. RxMarbles [33] visualizes single Rx op-
erators, for the purpose of learning and comprehension. Users
can modify the diagrams by dragging the events and in-
stantly see the changes reflected in the output. By using
specific precoded inputs and timings the essence of the op-
erator is made clear. In RxViz [37], Moroshko takes a similar
approach, but uses code instead of prepared inputs. Where
RxMarbles is limited to non higher order flows, RxViz sub-
scribes to all inner Observables, when it detects a higher
order Observable, showing them concurrently. In contrast
to our work, these tools focus only on teaching the behavior
of single operators.

Omniscient Debugging. Omniscient debuggers [39] are “all-
knowing debuggers”, that trace, store and query all events
in a program execution. When storing vasts amount of pro-
gram execution information, performance and efficiency be-
comes very much a problem and research in omniscient de-
buggers focus on this specifically. We also trace events of
the entire execution, however in contrast to omniscient de-
buggers we only store trace events regarding RP data flows.
The RP semantics allow us to create future optimizations,
for example retaining only the active flow structure, while
the flow’s data is kept in a rolling buffer.

Dynamic Analysis.. The study of program execution is
called “dynamic analysis” [9]. In most cases dynamic anal-
ysis involves a post mortem analysis, where first the pro-
gram is run, collecting an execution trace, and then the
trace data is analyzed to create a visualization. The vari-
ous derived visualizations, like class and instance interaction
graphs, function invocation histories [29], invocation views
and sequence diagrams [8] show the possibility to use trace
information for debugging. Arguably an on-line analysis is
more useful for debugging than the standard post mortem
analysis. Reiss, in reference [41], mentions the compromises
that have to be made to make an on-line analysis: reduced
tracing is required to not slow down the system (known as



the observer-effect) and fast analysis is required to lower the
cost of getting to the visualization, to not discourage the
users. In our design, we handle the same compromises as
they are relevant for RP debugging too, and our JavaScript
trace implementation bears resemblance to that of Program
Visualiser [29].

Understanding Debugging. Debugging for general pur-
pose languages revolves around attaching a debugger, step-
ping through the code, attaching code or data breakpoints,
navigating along different calls in the call stack and examin-
ing variables and results of expressions [47]. However, exist-
ing research, measuring how these different tasks are part of
the developers work day, found that while developers spend
much time on comprehending code, they do not spend much
time inside the IDE’s debugger [36]. Beller et al. [2] found
that only 23% of their subjects actively use the IDE’s debug-
ger, with the most common action being adding breakpoints,
followed by stepping through code. The automated tooling
of these studies did not measure different kinds of debugging
other than using the IDE provided tools, however Beller’s
survey indicates that 71% also uses printf statements for
debugging. No indication was given of any RP language
and libraries used by the subjects in the study, but the ob-
servation that printf-debugging is common, matches our
experience with debugging reactive programs.

Debugging for Program Comprehension. Both debug-
ging and comprehension are processes in the work of pro-
grammers. Initially, comprehension was seen as a distinct
step programmers had to make prior to being able to debug
programs [26], but this distinction is criticized by Gilmore,
saying we must view “debugging as a design activity” [21],
part of creating and comprehending programs. Maalej et
al. [31] interviewed professional developers and found that
developers require runtime information to understand a pro-
gram, and that debugging is frequently used to gather this
runtime information. This supports our view that debugging
is not only used for fault localization, but also for compre-
hension.

10. CONCLUSIONS

Observing the current debugging practices, this work shows
the prevalent method for RP debugging is printf-debugging.
To provide a better alternative, we have created a RP de-
bugger design and presented the RxFiddle implementation,
a RP debugger for RxJS, which allows developers to: (1)
gain a high-level overview of the reactive data flow structure
and dependencies, (2) investigate the values and life-cycle of
a specific data flow, at run-time.

Through an experiment we show that RxFiddle is an vi-
able alternative for traditional debugging and in some cases
outperforms traditional debugging in terms of time spent.
There are several promising directions for improving our de-
sign. Specifically scalability could be improved and different
edge visualizations could be explored, to improve the usabil-
ity of the tool. Furthermore, by leveraging already captured
meta data about timing of events, even more insight could
be provided. At the implementation level, we plan to extend
RxFiddle to other members of the Rx-family of languages.
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In this paper, we make the following concrete contributions:

(1) Design of a RP debugger

(2) The implementation of the debugger for RxJS, and the
service RxFiddle.net, a platform for the debugger in an
online environment with code sharing functionality.

In the month after the release of RxFiddle.net the site was
visited by 784 people from 57 different countries. The de-
bugger was already used by 53 developers, excluding the use
inside of the experiment. During that same period 42846 in-
teractions with the visualizations of the debugger have been
recorded, such as selecting Observables or inspecting values
by hovering the mouse over the event.

The debugger and the platform are open source and are
available online at [1].
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