
 
 

Delft University of Technology

Remote Identification of Port Scan Toolchains

Ghiëtte, Vincent; Blenn, Norbert; Doerr, Christian

DOI
10.1109/NTMS.2016.7792471
Publication date
2016
Document Version
Accepted author manuscript
Published in
IFIP International Conference on New Technologies, Mobility and Security

Citation (APA)
Ghiëtte, V., Blenn, N., & Doerr, C. (2016). Remote Identification of Port Scan Toolchains. In M. Badra, G.
Pau, & V. Vassiliou (Eds.), IFIP International Conference on New Technologies, Mobility and Security (pp.
1-5). IEEE. https://doi.org/10.1109/NTMS.2016.7792471

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/NTMS.2016.7792471
https://doi.org/10.1109/NTMS.2016.7792471


Remote Identification of Port Scan Toolchains
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Abstract—Port scans are typically at the begin of a chain of
events that will lead to the attack and exploitation of a host over a
network. Since building an effective defense relies on information
what kind of threat an organization is facing, threat intelligence
outlining an actor’s modus operandi is a critical ingredient
for network security. In this paper, we describe characteristic
patterns in port scan packets that can be used to identify the
tool chain used by an adversary. In an empirical analysis of scan
traffic received by two /16 networks, we find that common open
source port scan tools are adopted differently by communities
across the globe, and that groups specializing to use a particular
tool have also specialized to exploit particular services.
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I. INTRODUCTION

Once one connects a new host to a public IP address,
it only takes seconds to a few minutes before the first data
arrives: probe traffic that tests the machines for open ports
and applications running behind them. Scans are typically
the precursor to a subsequent exploitation attempt, aiming to
seize control over the host and repurpose it to send SPAM,
use it as an amplifier in distributed denial-of-service (DDoS)
attacks, or install malware that monitors the user and steals
valuable information. In order to effectively defend computer
networks, we need to begin threat mitigation already during
the adversaries’ probing for potential targets.

There are a number of ways this reconnaissance step may
be used by the defender. A study of targeted ports across
machines reveals which services the remote party aims to
exploit and for specific ones also why, an analysis of the
sequence of probed hosts reveals where individual subranges
were singled out after open source intelligence (OSINT) or
whether the adversary runs a trawl scan across large parts of
the Internet. In this paper, we will take an unusual angle to port
scan analysis, namely to remotely identify which scan tools the
scanners are using in their campaigns. Knowledge of this tool
may be used for scan mitigation by predicting the next target
[1], or by returning false information to the originator.

The results presented in this paper were derived in two
ways. First, characteristic patterns in probe traffic suitable to
identify scan tools were found by source code inspection and
were validated experimentally. Second, the tool identification
patterns were then applied across probe traffic obtained from a
large network telescope which revealed surprising differences
in how these tools are adopted and used. This paper presents
the following key findings:

• We demonstrate that it is possible in practice to
remotely distinguish between software used by scan
originators. This may be used to identify scan cam-
paigns, or identify hosts collaborating in a single
campaign.

• We show that tool adoption highly differs around
the world. Usage of old programs such as NMap
follows the global distribution of IP addresses, while
ZMap is dominated by Western institutional usage
and Masscan/Unicorn fuels massive scan campaigns
in South East Asia.

• We find that even though programs have comparable
functionality, there exist statistically significant differ-
ences in how they are used. Nearly a third of all ZMap
usage is to find open SSH services, while originators
relying on Masscan scan hundreds of uncommon non-
privileged ports.

The remainder of this paper is structured as follows.
Section II will present an overview of the previous literature
on Internet port scans. Section III will describe the setup used
for our measurements and the data collection process. Section
IV will describe the process of port scanning as well as explain
how residual artifacts in scan traffic may be used to identify
scan tools. Section V will describe the empirical findings of
how these tools are used in practice. Section VI will conclude
our work.

II. RELATED WORK

For many years, port scan campaigns have been observed
on the Internet, and Lee et al. [2] and Yegneswaran et al.
[3] provide an empirical analysis of early scan behavior and
targets. In an analysis of intrusion attempts between 1994 and
2006 the authors in [3] note the cyclic nature of targets over
time with the evolution and adoption of services, for example
probes for open FTP servers started to appear around 2001,
tests for RPC ports around 2003, and in 2004 adversaries began
to systematically test the observed networks for a backdoor
port opened by a malware. With the advent of for-hire botnets
around 2004, cyber criminal activities began to significantly
change to specialization and professionalization of services [4].
Indeed, we see that early results from 10 to 15 years ago such
as [2], who report that 91% of all horizontal scans traversed
the IP space sequentially, do not hold any longer.

In a longitudinal survey of scan behavior, Allman et al. [5]
report a drastically increasing general volume of scans in the



Internet and note the presence of two types of behaviors: (1)
“heavy hitters” which send large amounts of probe packets as
fast as possible, and (2) the existence of slow scanners who
emit only few packets at a slow rate. Given computational
limitations in analyzing packets at the time, it was however
challenging to identify and single out such slow scanners over
longer periods of time.

Due to the challenging nature of detecting such scans and
the availability of data, empirical analyses of scan behavior
are sparse in the literature. In recent years however, Dainotti
et al. [6] presented a traffic analysis from a network telescope
observing a distributed and coordinated scan for SIP services.
The authors could track the activity back to a botnet, and
note that while the individual bots did work together, the
overall nature of the campaign was relatively uncoordinated
and unstructured, showing significant overlap and redundancy
in scanned targets.

Conducting a scan in a distributed manner has the sig-
nificant advantage for the attacker of reducing the detection
surface, as each source will make only a few attempts. Javed
et al. [7] found evidence of coordinated SSH attacks in their
networks, where adversaries would attempt to brute-force
login information from many different source IPs, increasing
the difficulty to detect and prevent such low-rate distributed
attacks.

While in the past years coordinated campaigns have been
observed in network traces, to this date comparatively little is
known yet about the mechanics and strategies of these scans.
In the following, we will report techniques to identify scanner
tools for incoming traffic and show empirical results on the
adoption footprint and targeting of these tools.

III. SCANNING FOR OPEN PORTS

When monitoring an IP address, three different types of
traffic is going over the link: First, there will be user data in
and out of a host, either being requests leaving or responses
returning. Second, backscatter traffic will flow into the host,
which are misdirected responses of ongoing attacks on the
Internet, in which the adversary has randomly spoofed the
source IP addresses of the attack traffic to avoid attribution.
This leads to the responses mistakenly being delivered to the
local IP. Third, the host will receive probes that scan it for
open ports and available services.

The idea behind these probes is that operating systems react
differently to incoming packets whether or not a port is open.
Following RFC793 [8], a TCP packet with the SYN flag sent
to an open port is answered by a TCP packet with both the
SYN and ACK flags set. If the packet was directed at a closed
one, the packet is responded with a packet having the RST flag
enabled as shown in figure 1. In case of applications using the
UDP transport layer, no universally applicable behavior exists
as a reaction to an incoming UDP packet. Whether or not a
response is triggered depends on the application and whether
the probe’s content and format was within the expectation of
the application. When testing for the presence of common
place applications operating at their default ports (e.g., DNS
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Fig. 1. TCP and UDP ports react differently to received packets, depending
on whether they are open or closed.

at port 53, SIP at 5060), the originator of the scan could send
packets triggering a response for these defaults. In case of a
closed UDP port, the operating system should reply with an
ICMP Port Unreachable reply, which might however be filtered
out at the host or the network level.

In this study we analyze traffic from a two /16 network
telescope, a block of 128,000 unused IP addresses. Since no
user data would flow into this range, the remaining traffic
must thus be backscatter or scan probes. We can distinguish
between the two through an analysis of the packet headers and
contents: TCP backscatter that is reflecting off from a host
under attack would have the SYN+ACK flag set, incoming
TCP scan probes will however only have the SYN flag set to
elicit a difference between open and closed ports as described
above. Separating backscatter from scan probes in UDP is
somewhat more elaborate as it requires parsing and interpreting
the packet’s payload itself. A DNS query packet for example
would thus test for the presence of an open DNS server
and thus constitute a scan, while a packet containing a DNS
response would not elicit a response from the receiving port
and in turn imply backscatter. For our measurements we have
implemented a library of packet parsers for the most important
applications and protocols.

The findings presented in this work build on the analysis
of an 18 month long observation of a /16 network telescope.
As the block is otherwise unused, the telescope receives
approximately 15 GB of scan probes and backscatter per day.
As the 8 TB dataset is too large for a per packet/per source
analysis in a single block, snapshots of one month each were
taken out of the corpus and the analysis performed on them.
The figures in this paper stem from an analysis of the month
of April 2015, with general findings validated for other slices.

IV. IDENTIFYING SCANNERS

Over the last 2 decades, a number of tools to conduct
port scans, in the following named “scanner”, have been



developed. Scanners are specialized programs geared to send
probe packets towards a predefined set of IP addresses as fast
as possible, and can either craft packets on the fly or for higher
throughout combine per-packet headers with a static payload.

Conducting a scan through a large number of IP addresses
efficiently is not trivial. The obvious approach of opening a
TCP connection to a remote port and negotiating the TCP
handshake has the major disadvantages that the 1.5 round trips
make the connection establishment very slow. Furthermore, as
the TCP connection would be handled by the operating system,
the maximum connection pool sizes of the OS would limit
the number of simultaneous tests a scanner could execute. In
result, port scanners using the operating system and a full TCP
handshake would be impracticably slow for large scans.

While for many years nmap was the default tool for
port scanners, a new generation of tools such as ZMap [9],
Masscan (github.com/robertdavidgraham/masscan) or Unicorn
(unicornscan.org) have appeared recently that are aimed to-
wards scanning of large IP ranges at high speed. The authors
of ZMap state that it is possible using their tool to scan the
entire IPv4 space on a 1 Gbps link in under 1 hour [9].
These speedups are created by injecting scan probes as low
as possible into the networking subsystem, and avoiding to
maintain internal state about which destination IPs and hosts
have already been probed.

This however creates a new challenge that scanners now
need to reidentify the response traffic and matching it up with
a previously issued request from other data, such as traffic
generated by other applications running on the same host.
Currently available tools usually follow one of two strategies to
address this: First, they keep state internally and record which
probes have been sent where. This is for example applied by
nmap, which has the distinct advantage that it is possible to
look up which request packets are still unanswered and resend
them to account for potential packet losses. As a scan over
a large range will generate a large state table, as a second
strategy scanners encode meta information identifying the scan
within the packet itself. By hashing an identifier and using it
as a TCP sequence number in the original SYN packet, the
returned SYN+ACK packet would acknowledge the original
sequence number and let the scanner identify the reply and
resume the state. This provides the significant advantage that
all record keeping is offloaded to the traffic itself and allows
the scanner to run at a higher rate and with less resource
consumption.

While each of the above four major scanners could all
be used to conduct a port sweep over TCP port 80 and
generate comparable results1, there exist subtle differences in
how these programs generate their request packets. We will
in the following describe these differences from specifications
and source code inspections and how they can be used to
associate incoming scans with a particular tool.

1the main difference would be false negatives in case of state-less scanners
that cannot send retries to account for packet losses in the network

A. Masscan

Masscan reduces its internal state by implementing a
minimal lookup table. For outgoing packets the source and
destination IPs and ports are hashed using SipHash and this 64
bit identifier later used for reidentification. The IP specification
includes a 16 bit IP identification header, which is used to
group together individual packets belonging to the same flow.
This number is normally chosen randomly, masscan creates
its arbitrary IP ID by performing a computation on the packet
meta data: ipID = dstIP ⊕ dstPort ⊕ tcpSeq

Since all inputs to the computation are known to the
receiver, it can check whether they match the IP ID in the IP
header. Since a random match would only occur with a prob-
ability of 1

216 , after the local network has received k probes
it can establish with very high confidence p > 1 − ( 1

216 )
k

that the probes have originated from a scanner implementing
a masscan-like procedure.

B. ZMap

In order to verify that it has indeed send out the probe
to which it now receives a reply, ZMap initializes a random
encryption key at startup. The TCP sequence number of each
outgoing request is set to be the ciphertext of the IPv4 source
and IPv4 destination address of this probe, encrypted using
AES under above key. As the TCP SYN+ACK will acknowl-
edge the receipt of the sequence number of the previous packet,
ZMap has all information to establish its authorship of a
previous request.

While the TCP sequence number provides little handle, the
fact that ZMap maintains no internal state means that it does
not know which IP addresses it has already contacted as part
of the current scan. Instead of generating targets randomly, it
must follow an algorithmic approach and ZMap creates the
sequence of IP addresses to test in a /0 scan using a generator
in a multiplicative group modulo 232 + 15, the first prime
larger than 232, which guarantees that all IP addresses will be
covered once. Given the predictable nature of this generator,
it is possible using a number of algorithmic improvements to
brute force the seed used by ZMap during a scan within the
time frame of 10 minutes on a GPU cluster [1]. This seed will
then describe the sequence of IP addresses to be scanned by
this host in the exact order. To identify itself to the network
monitors, ZMap has also a hardcoded IP ID of 54321 in the
source code.

If the incoming probes follow this exploration order, the
TCP sequence numbers over multiple packets are distributed
randomly (which most operating systems don’t do but AES-
encrypted ciphertext does), and have a fixed IP ID (54321 or
another one after a source code modification) we can with very
high likelihood conclude the adversary to be using ZMap or a
software implementing all of these components.

C. Unicorn

Similar to ZMap, the Unicorn scanner also encodes its
re-identification information within the outgoing packets. At
startup, the software creates a random 32 bit session key, which
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Fig. 2. Generation of nmap’s TCP sequence number

is run with a bit-wise exclusive OR against the other meta data
of the probe:

tcpSeq = sessionKey⊕ srcIP⊕ ((srcPort << 16) + dstPort)

While the sessionKey is not known, this is essentially
a stream cipher with a fixed initialization vector. As the
“plaintext” as well as the “cipher text” is known, XORing
the meta data from the IP and TCP header against the TCP
sequence number yields the random session key for the dura-
tion of the scan. If the TCP sequence numbers of subsequent
packets match this established session key, we can with a high
likelihood conclude that the probes are generated by a unicorn-
like software.

D. Nmap

Nmap also relies on a random session key to generate its
TCP sequence number. nmap is the only one of the discussed
tools that maintains a state of sent probes for retransmits, and
the sequence number of pings as well as the number of retries
forms the basis of the TCP sequence number. As shown in
figure 2, the two fields are concatenated twice to arrive at the
32 bit length of the sequence number and obfuscated by a
bit-wise XOR against the session key.

As the session key remains fixed, the original concatenated
data may be easily reconstructed using subsequent packets,
as tcpSeq1 ⊕ tcpSeq2 = ((nfo1||nfo1) ⊕ sessionKey) ⊕
((nfo2||nfo2) ⊕ sessionKey) = (nfo1||nfo1) ⊕ (nfo2||nfo2). If
the ping sequence number and try number would be unknown
to the receiver, we could only establish these packets as
statistical outliers, as the likelihood of encountering a TCP
sequence number of two identical 16-bit segments is only 1

216 ,
but for an nmap-like scanner this occurs for every probe.

If nmap is executed without specifying the source port to be
used, the software selects a random base port between 33000
and (65536 - 256), adds the ping sequence number (if this ping
is equal to 0, the try number is added) and sends an probe from
the resulting port number. We can thus confirm whether this
value is in line with the TCP sequence number, and further
increase our confidence that the remote part is using an nmap-
like tool.

V. SCANNER USAGE

After a verification of scanner characteristics from source
code inspection in field trials, we implemented modules to
match up scan traffic from our network telescope with specific

tool usage. Although all the above scan tools may be used
to test any TCP/UDP port combination and pose minimal
restrictions on their usage, we find that each tool is used in
different regions, communities, with differently sized setups
and with different goals in mind. Due to space constraints,
we will only highlight two of these aspects in this paper,
differences in regional adoption and the services targeted by
their users.

A. Regional and Community Preferences

Curiously, we find that scanners are not used equally
across the globe, but that geographic regions, organizations and
networks show strong preferences of one tool over the other.
Figure 3 shows a plot of the scanning hosts, with the IP address
geolocalized through the Maxmind geoIP database, separated
by usage of ZMap, Masscan, Unicorn and NMap. The size
of the point represents the amount of probes originating from
this particular region. If we compare these distributions against
the geographical allocation of the IPv4 address space, we find
that only NMap – the oldest scan tool and the one that is
typically described in tutorials and instructional material on
port scanning – actually resembles this global distribution,
while all other tools heavily deviate from it. We find that ZMap
is used by a limited user base but the majority of adopters each
send out large volumes of requests. An analysis of the involved
IP addresses using reverse DNS, Whois lookups and visiting
the host showed a significant share belonging to universities
and research organizations. The user base of Masscan on
the other hand is much more dispersed and heterogeneous.
We see two regimes in masscan-originated scan campaigns:
extremely small runs generating only a few packets to highly
volumetric ones, in the worst case a single IP sending out a
total of 34.5 million packets over the course of one month,
orders of magnitudes larger than heavy hitters using other
tools which are also mostly located in South-East Asia. Also
unicorn features this heavy bias towards South East Asian
origins, although there exists a base population of low usage
resembling the global IP allocation like in the case of NMap.
Except for the case of ZMap, which comes from an academic
lab publicized by a research paper and thus might explain
the strong organizational/academic user base, there are no
clear reasons to explain the large differences in geographical
adoption. All four tools are open source and directly installable
through packet managers in major Linux distributions.

B. Targeted Services

When matching the identified tool against the ports a scan
campaign targets, even more biases emerge. Table I lists a
selection of 10 commonly used applications on servers together
with their default TCP port configuration. In our data we see
that IP addresses exhibit a strong preference for a particular
tool to scan the Internet. If we analyze the total amount of
probes sent by a certain tool with regard to the targeted ports,
we see that specific users show a strong specialization.

What is unexpected though is that comparatively strong
port preference exists for the majority of users employing a
certain tool. More than a third of all NMap probes target telnet
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Fig. 3. World-wide distribution of the main four scan tools.

TABLE I. PERCENTAGE OF TARGETED PORTS BY SCAN TOOL

Port (Typical Application) NMap ZMap Masscan Unicorn
7 (Echo) 0.0% 0.0% 0.09% 0.0%
22 (SSH) 2.68% 32.97% 5.03% 81.74%
23 (Telnet) 34.44% 2.37% 1.41% 0.68%
53 (DNS) 0.0% 2.09% 0.18% 0.0%
80 (HTTP) 4.52% 8.15% 6.44% 2.13%
110 (POP) 0.0% 1.38% 0.39% 0.0%
123 (NTP) 0.0% 0.04% 0.09% 0.0%
443 (HTTPS) 0.16% 11.14% 2.94% 0.05%
3306 (MySQL) 0.0% 1.14% 0.39% 0.01%
8080 (Alt HTTP) 7.21% 4.83% 3.17% 1.63%

on port 23, while a third of ZMap probes are directed at SSH
on port 22. We further notice the existence of ZMap branches
in the wild, each with a different hardcoded IP ID and a varying
set of preferred ports. Even more biased is Unicorn, whose
users direct 4 out of 5 packets to port 22. Masscan on the other
hand is also an outlier in terms of targeting. Masscan users
send out a massive amount of packets, directed at a massive
amount of ports – even the top frequented port 80 (HTTP)
accumulated less than 6.5% of all masscan-attributed probes.
The reason for this behavior is still subject to research, one
possible hypothesis is working relationships and knowledge
exchange between actors specializing in the same goal, who
then also adopt tooling used by their peers.

VI. CONCLUSION

In this paper, we demonstrated that is is possible to identify
major scanner software based on residual artifacts in the
generation of network and transport layer header fields, as well

as the exploration order of hosts. Based on an analysis of probe
traffic directed against a two /16 network telescope, we find
that the major tools have a unique geographic footprint, differ-
ing from the global IP allocation and in case of ZMap biased
towards institutional adoption. We also see that IP addresses
show preference towards a particular tool and surprisingly also
a general bias exists in terms of the ports tool users target.
The origin for these geographic and usage biases is subject of
ongoing research.
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