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Chapter 1

Introduction

During applied mechanics courses for undergraduates, the words ‘finite element’
will be mentioned if a structural problem is so complex that it cannot be solved
analytically or simply because it would require too much time to solve it by
hand. The lecturer refers to a software package and explains how to work with
it. Unfortunately, during these courses, no time is spend on the inner workings
of this software. How does the program know, after virtually assembling the
structural members and specifying the load, how the structure mechanically be-
haves? Another term that is mentioned in conjunction with the finite element
method is ‘approximation’; the method is not an exact method, only approxi-
mated values are obtained. The accuracy depends on the amount of elements
and the type of element.

In this thesis the following question will be answered: what is the influence
of the mesh size and the element type used in a finite element protocol for
trusses and frames, on the accuracy of the displacements and forces and how
does it affect the computation time? The goal of this thesis is also to get a
better comprehension of the inner workings of a finite element program with a
structural application. All this can be achieved by developing, analysing and
using a finite element program created in the Matlab environment. To do this,
prior literary study is required. Use is made of [1] and sub-paragraph 5.1.1 of
[6].

A total of four programs are developed, one for trusses in 2D space, one
for trusses in 3D space and two for frames in 2D space. Frames can namely
be described by so-called linear and quadratic elements. What that means will
be explained in paragraph 2.2. The structural models will be discretized and
solved within the framework of Matlab matrix solutions.

The created finite element programs will be described and explained in the
second chapter. After reading that part, it will be clear how the programs work
and how to use them. In the chapter that follows, three elementary frame struc-
tures will be analysed by modelling them with different amount of elements and
different element types. A comparison will be made with the analytical solution.
Other aspects of the programs and how they compare to commercial finite ele-
ment software is the focus of chapter 4. A geometrically complex structure like
an arch will modelled by beam elements and analysed in the fifth chapter. The
findings will be summarised and the central question will answered in chapter
6, the conclusion.
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Chapter 2

Description of the programs

In this chapter the four programs are described, starting with the Matlab script
for trusses in two dimensional space. Each program, i.e. for trusses in 2D and
3D space, for frames in 2D space modelled by linear elements and for frames
in 2D space modelled by quadratic elements can be considered in this order
as a stepping stone for the successive program. For that reason the scripts
are discussed in this particular order. To become familiar with the input and
output, a truss example will be used in the description of the programs for 2D
and 3D trusses.

2.1 Trusses

2.1.1 Input

To understand the input file which describes the structure, an example is used
as shown in figure 2.1.
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Figure 2.1: Truss example

A couple of things can be observed from this figure. First of all, the global
coordinate system consists of an x- and y-axis which are oriented to the right
and upwards respectively. The nodes and elements are centrically labelled in
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red and the structure is suspended in node N3 by a hinge and in node N10 by
a roller. As for the point loads, these are indicated with arrows and grab onto
the structure in node N2, N5 and N8. To finish this observation, it is pointed
out that in a truss structure the nodes between the bars are pin joints and only
on these joints point loads can be applied.

This structure is described by a spreadsheet file. Figure 2.2 shows how this
is done.

Figure 2.2: Descriptive file

As can be seen at the bottom, the file consists of three worksheets. The sheet
‘nodes’ is presented at the left and describes the position of the nodes in the
x-y-plane; column A lists the x-coordinates and column B the y-coordinates,
both in millimeters. The row index values correspond to the node numbering.
This can be checked by looking at the node numbering in figure 2.1.

The middle worksheet contains the element information of which the first
two columns describe from which node (column A) to which node (column B)
the bar element goes. Again, the row index values correspond to the numbering.
See figure 2.1. Column C and D contain the elastic moduli of the used material
in N/mm2 and the cross-sectional areas of the bars in mm2 respectively.

Boundary conditions need to be given as well in order to let the program
know which nodes has which degrees of freedom and at which node a point
load is exerted. This is presented in the worksheet at the right where the first
column describes the degrees of freedom; each successive row pair describes
one node. The first row of each pair denotes the translation in the x-direction
and the second row the translation in the y-direction. When these translations
are unknown the nan value is inserted into the corresponding cell. In case of
the suspensions, the degrees of freedom are (partly) known; the hinge at N3 is
constrained in both directions and the roller at N10 only in the y-direction, this
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is described by the null value. Column B shows at which nodes there are known
and unknown point loads applied in units of newton and has the same structure
as column A. Unknown point loads are present at the suspension points, i.e.
the reaction forces, and known point loads are present at the other nodes of
which the forces acting on node N2, N5 and N8 are pointing in the negative
y-direction.

How this input is processed is explained in the following paragraph.

2.1.2 Trusses2d.m

The program, divided into ten sections, will be discussed from top to bottom,
starting with the first section. Here the input data will be loaded and empty
vectors and matrices will be set up. The spreadsheet which describes the struc-
ture is recognised in line 3 and the different worksheets are divided into separate
matrices. Note the name of the descriptive file, the last number represents the
amount of elements and the number before that represents the order of the in-
terpolation polynomial. Because the number of nodes and elements will be used
extensively throughout the program in different loops, these are set up in line
8 and 9 as numnode and numelem respectively. As for the empty matrix and
vectors, these will be filled and used during the run of the program.

Listing 2.1: Section 1

1 %% SECTION 1
2 % Load input and setup empty vectors and matrices
3

4 structure = 'beam truss 01 17.xlsx';
5

6 nodes = xlsread(structure,1);
7 elements = xlsread(structure,2);
8 boundaries = xlsread(structure,3);
9 numnode = size(nodes,1);

10 numelem = size(elements,1);
11

12 k = zeros(2*numnode,2*numnode); %global stiffness matrix
13 U = zeros(2*numnode,1); %global displacements of the nodes
14 epsilon = zeros(numelem,1);
15 sigma = zeros(numelem,1);
16 F int = zeros(numelem,1);

In the next section the global stiffness matrix is constructed. This is done by
adding the global stiffness matrix of each element to the empty matrix as defined
in line 11 with the help of a loop which will be iterated numelem times. In the
loop, the first thing that will be done is finding the x- and y-coordinate of both
node i and node j. These values will be used as an input for the computation
of the element length L and the orientation parameters l and m. To clarify
the latter two, figure 2.3 presents the reasoning behind the derivation of the
transformation matrix

[
λ
]
.
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Figure 2.3: Node defined in global and local coordinate system

Because not every bar is parallel to the global coordinate system, a transforma-
tion needs to be performed in order to let the deformations of the bar be related
to the local s-t coordinate system. The following can be derived from figure 2.3.{

u
v

}
=

[
cosα sinα
− sinα cosα

]{
u◦

v◦

}
=

[
l m
−m l

]{
u◦

v◦

}
(2.1)

The circle as superscript means that the considered parameter is related to
the global coordinate system. Because bar elements can solely undergo axial
deformations, only the upper row of equation (2.1) is relevant. Dealing with
two nodes per element, the following transformation matrix applies.

[
λ
]

=

[
l m 0 0
0 0 l m

]
(2.2)

The entries vector is constructed next. This vector tells the program which
entries of the global stiffness matrix need to be computed. In order to do this
systematically the relation between the structure of the global stiffness matrix
and the structure of the global displacement vector is used. Take element E1
for example. This element goes from node N1 to N2 and the resultant entries
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vector is [1; 2; 3; 4]. Equation (2.3) presents the general case for the global
element displacement vector. Note the indices.

{
U◦
}

=


u◦i
v◦i
u◦j
v◦j

 =


u◦2i−1
u◦2i
u◦2j−1
u◦2j

 (2.3)

The final act within this loop is to assign numerical values to the according
entries of the stiffness matrix

[
k
]

of the entire structure. This matrix is defined
by equation (2.4) and for the derivation reference is made to paragraph 5.2
(p.61-66) of [1].

[
k
]

=

E∑
e=1

[∫
L

[
B(e)

]T [
D(e)

][
B(e)

]
dx
]

=

E∑
e=1

[
k(e)

]
(2.4)

For the upper limit E of the summation, the number of elements (i.e. numelem)
is substituted. It will be discussed later on how the element stiffness matrix[
k(e)

]
needs to be transformed by the matrix

[
λ
]

in order to make it applicable

for every arbitrary orientation of the bar element. First the matrix
[
B(e)

]
and[

D(e)
]

will be defined.
The axial displacement field u is described by a first order polynomial u =

a + bx which can be expressed in the unknown displacements ui and uj by
solving the equation for a and b. As a result u can be formulated as follows.

u = Niui +Njuj (2.5)

With Ni = (xj − x)/L and Nj = (x − xi)/L. These functions are called
shape functions and can be expressed in vector-matrix form: u =

[
N (e)

] {
U (e)

}
.[

B(e)
]

is the derivative of
[
N (e)

]
to x, because the strain ε is defined as du/dx.

Equation (2.6) shows the result.[
B(e)

]
=

1

L

[
−1 1

]
(2.6)

Where the matrix
[
B(e)

]
holds the compatibility information (i.e. the relation

between displacements and strains), the matrix
[
D(e)

]
holds the constitutive

information: [
D(e)

]
= EA (2.7)

Substitution of (2.6) and (2.7) into (2.4) and assuming that the elastic modulus
and the cross-sectional area are constant along the entire length of the bar, the
stiffness matrix for the element can be defined as follows.[

k(e)
]

=
EA

L

[
1 −1
−1 1

]
(2.8)

To let this equation be compatible with any arbitrary orientation of the bar,
the element stiffness matrix needs to be pre multiplied by the transpose of the
lambda matrix and post multiplied by the lambda matrix. This is because
the local and global displacement vector can be translated into each other with{
U
}

=
[
λ
] {
U◦
}

and the local and the global force vector with
{
F
}

=
[
λ
] {
F ◦
}

.
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By substituting these two equations into
{
F
}

=
[
k
] {
U
}

, followed by a rear-

rangement, one obtains:
[
k◦(e)

]
=
[
λ
]T [

k(e)
] [
λ
]
. Note that the stiffness matrix

of the entire structure can now be called the ‘global’ stiffness matrix:
[
k
]
⇒
[
k◦
]
.

Listing 2.2: Section 2

18 %% SECTION 2
19 % Constructing k
20

21 for n = 1:numelem
22 x i = nodes(elements(n,1),1);
23 y i = nodes(elements(n,1),2);
24 x j = nodes(elements(n,2),1);
25 y j = nodes(elements(n,2),2);
26

27 L = sqrt((x j-x i)ˆ2+(y j-y i)ˆ2);
28 l = (x j-x i)/L;
29 m = (y j-y i)/L;
30

31 lambda = [l m 0 0; 0 0 l m];
32

33 entries = [2*elements(n,1)-1; 2*elements(n,1);...
34 2*elements(n,2)-1; 2*elements(n,2)];
35

36 k(entries,entries) = k(entries,entries)+elements(n,3)*...
37 elements(n,4)/L*transpose(lambda)*...
38 [1 -1; -1 1]*lambda;
39 end

As described by the descriptive file (figure 2.2), a distinction can be made be-
tween two kinds of known and unknown quantities; the known and unknown
degrees of freedom and the known and unknown nodal forces. The knowns are
either denoted by the null or a non-null value and the unknowns are denoted
by the nan value. To solve the finite element equations, the program needs to
recognise this distinction. That is done in the third section.

From line 44 down to 57, the code constructs an index vector of which
the first part contains the row index values of the unknown degrees of freedom.
These index values correspond to the known nodal forces (i.e. the external forces)
as well. The second part contains the row index values of the known degrees of
freedom/unknown nodal forces.

By using this index vector the global stiffness matrix, which is constructed
in section 2, can be rearranged and partitioned into four sub-matrices.

Listing 2.3: Section 3

41 %% SECTION 3
42 % Rearranging and partitioning k
43 % [k 11 k 12; k 21 k 22]*{U 1; U 2} = {F 1; F 2}
44 % U 1 and F 2 -> unknown degrees of freedom and unknown nodal forces
45 % U 2 and F 1 -> known degrees of freedom and known nodal forces
46

47 vector 1 = zeros(2*numnode,1);
48 vector 2 = zeros(2*numnode,1);
49 counter = 0;
50 for n = 1:2*numnode
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51 if boundaries(n,1) ~= 0
52 vector 1(n) = n;
53 counter = counter+1;
54 else
55 vector 2(n) = n;
56 end
57 end
58 vector 1 = vector 1(vector 1~=0);
59 vector 2 = vector 2(vector 2~=0);
60 vector 1(counter+1:2*numnode) = vector 2; %index vector
61

62 matrix = k(vector 1,vector 1); %rearranged stiffness matrix
63

64 k 11 = matrix(1:counter,1:counter);
65 k 12 = matrix(1:counter,counter+1:2*numnode);
66 k 21 = matrix(counter+1:2*numnode,1:counter);
67 k 22 = matrix(counter+1:2*numnode,counter+1:2*numnode);

These sub-matrices will be used in the section where the actual solution of the
finite element equations will be computed, i.e. section 4. The final assembly
of the equations are shown in (2.9). Here

{
U1

}
and

{
F2

}
are the unknowns

and
{
U2

}
and

{
F1

}
are the knowns. The former two are computed in line 72

and 73 and the latter two are constructed in line 70 and 71. What remains is
replacing the nan values as listed in the worksheet ‘boundary conditions’ with
the found solutions accordingly. The result is a vector U with the global nodal
displacements and a vector F ext with the external forces, i.e. the nodal forces.[

[k11] [k12]
[k21] [k22]

]{{
U1

}{
U2

}} =

{{
F1

}{
F2

}} (2.9)

Listing 2.4: Section 4

69 %% SECTION 4
70 % Determining U and F ext
71 % [k 11]*{U 1}+[k 12]*{U 2} = {F 1}
72 % [k 21]*{U 1}+[k 22]*{U 2} = {F 2}
73

74 U 2 = zeros(2*numnode-counter,1);
75 F 1 = boundaries(1:end,2); F 1 = F 1(~isnan(F 1));
76 U 1 = k 11\(F 1-k 12*U 2); %[k]*{U} = {F} -> {U} = [k]\{F}
77 F 2 = k 21*U 1+k 22*U 2;
78

79 U(vector 1(1:counter)) = U 1;
80 F ext = boundaries(1:end,2); F ext(isnan(F ext)) = F 2;

It is known from applied mechanics that the internal force within a prismatic
bar that is axially loaded, is N = Aσ = AEε. This relation is used in section
5 of the script in order to find the normal force within each truss member.
Starting with the axial strains, the deformations related to the local coordinate
system need to be determined. To do this, firstly, the element length L and
the orientation parameters l and m need to be recalculated. Secondly, the
relevant global node displacements need to be retrieved from the vector U. The
local displacements are then found by multiplying these displacements with the
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transformation matrix as defined by equation (2.2). To determine the strains,
the definition needs to be revisit: ε = du/dx. This can be described as ε =
∆u/L. The relevant elastic modulus and cross-sectional area are retrieved from
the descriptive file.

Listing 2.5: Section 5

82 %% SECTION 5
83 % Determining the strains, stresses and internal forces
84

85 for n = 1:numelem
86 x i = nodes(elements(n,1),1);
87 y i = nodes(elements(n,1),2);
88 x j = nodes(elements(n,2),1);
89 y j = nodes(elements(n,2),2);
90

91 L = sqrt((x j-x i)ˆ2+(y j-y i)ˆ2);
92 l = (x j-x i)/L;
93 m = (y j-y i)/L;
94

95 entries = [2*elements(n,1)-1; 2*elements(n,1);...
96 2*elements(n,2)-1; 2*elements(n,2)];
97

98 U local = [l m 0 0; 0 0 l m]*U(entries);
99 epsilon(n) = (U local(2)-U local(1))/L;

100 sigma(n) = elements(n,3)*epsilon(n);
101 F int(n) = elements(n,4)*sigma(n);
102 end

In the three sections that follow two matrices are constructed; one with the
coordinates of the non-displaced nodes and one with the coordinates of the
displaced nodes. The former is a reassembly of the coordinates as described in
the worksheet ‘nodes’ of the descriptive file. As for the displaced nodes, the
coordinates are found by adding the global displacement components to the
x- and y-coordinate of the non-displaced nodes accordingly. The matrix that
follows is constructed in the same way.

Listing 2.6: Section 6, 7 and 8

104 %% SECTION 6
105 % Merger of 'nodes' and 'elements'
106 % Row-format: [x i,y i,x j,y j]
107

108 matrix 1 = zeros(numelem,4);
109 for p = 1:numelem
110 matrix 1(p,[1 2]) = nodes(elements(p,1),:);
111 matrix 1(p,[3 4]) = nodes(elements(p,2),:);
112 end
113

114 %% SECTION 7
115 % Coordinates of displaced nodes
116 % In format of 'nodes'
117

118 vector dx = U(1:2:end)*10ˆ3;
119 vector dy = U(2:2:end)*10ˆ3;
120

121 disnodes(1:numnode,1) = nodes(1:numnode,1) + vector dx;
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122 disnodes(1:numnode,2) = nodes(1:numnode,2) + vector dy;
123

124 %% SECTION 8
125 % Merger of 'disnodes' and 'elements'
126 % Row-format: [x i,y i,x j,y j]
127

128 matrix 2 = zeros(numelem,4);
129 for p = 1:numelem
130 matrix 2(p,[1 2]) = disnodes(elements(p,1),:);
131 matrix 2(p,[3 4]) = disnodes(elements(p,2),:);
132 end

These matrices are put to use by plotting them and generating a graphical
output as done in the ninth section. Each element and node is efficiently plotted
in their position of the undistorted and distorted configuration of the structure
by using loops. Adding labels and assigning helpful properties gives a graphic
that is clear and easy to comprehend.

It needs to be noted that in section 7 the global displacements are multiplied
by an amplification factor of 103 in order to observe the deformed structure easily
in the graph.

Listing 2.7: Section 9

134 %% SECTION 9
135 % Graphical output
136

137 figure
138 hold on
139

140 for n = 1:numelem
141 line undef = line([matrix 1(n,1),matrix 1(n,3)],...
142 [matrix 1(n,2),matrix 1(n,4)]);
143 line undef.LineStyle = '--';
144 line undef.LineWidth = 0.75;
145 line undef.Color = 'k';
146 text((matrix 1(n,1)+matrix 1(n,3))/2,...
147 (matrix 1(n,2)+matrix 1(n,4))/2,...
148 ['E #' num2str(n)],'Color','r');
149 end
150

151 for n = 1:numelem
152 line def = line([matrix 2(n,1),matrix 2(n,3)],...
153 [matrix 2(n,2),matrix 2(n,4)]);
154 line undef.LineStyle = '-';
155 line def.LineWidth = 0.75;
156 line def.Color = 'k';
157 end
158

159 for n = 1:numnode
160 scatter(nodes(n,1),nodes(n,2),'k');
161 scatter(disnodes(n,1),disnodes(n,2),'k');
162 text(nodes(n,1),nodes(n,2),['N #' num2str(n)],'Color','r');
163 end
164

165 xlabel('x-coordinate [mm]');
166 ylabel('y-coordinate [mm]');
167 title('Deformed structure, amplification = 10ˆ3');
168 grid on
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169

170 hold off

What remains is generating a non-graphical output in which the different quan-
tities are clearly displayed. This is done in the tenth section by tabulating
the external forces and global displacements related to the nodes, as well as
the strains, stresses and internal forces related to the elements. The units are
expressed in N, mm and N/mm2.

Listing 2.8: Section 10

172 %% SECTION 10
173 % Non-graphical output
174 % Nodal (external) forces, nodal displacements and internal forces
175

176 node = transpose(1:numnode);
177 F x ext = F ext(1:2:end)*10ˆ0;
178 F y ext = F ext(2:2:end)*10ˆ0;
179 dx = U(1:2:end);
180 dy = U(2:2:end);
181 table(node,F x ext,F y ext,dx,dy)
182

183 element = transpose(1:numelem);
184 sigma = sigma*10ˆ0;
185 N = F int*10ˆ0;
186 table(element,epsilon,sigma,N)

2.1.3 Output

During the run of the program Matlab loads and stores the input values, com-
putes the different vectors and matrices and generates the output. The vectors
and matrices that are called and computed in the program are all stored and can
be found in the Workspace window. It is also possible to find these quantities
in the Command Window by calling them. Fortunately, the program presents
the relevant non-graphical output automatically, as shown in figure 2.4. The
graphical output is shown in figure 2.5.

As can be observed from figure 2.4, the program generates two answers;
firstly, a table with the quantities that are related to the nodes and secondly, a
table with the quantities that are related to the elements.

The second and third column of the first table presents the external forces
per node in the x- and y-direction respectively in units of newton. As described
in the descriptive file, the point loads exerted upon the structure in node 2,
5 and 8 are 10 kN, 20 kN and 10 kN in the negative y-direction respectively.
From symmetry, one can easily conclude that the reaction force at node 3 and
10 are both 20 kN in the positive y-direction. This can be checked by looking
at the according rows of the third column. Because no loads are working in the
x-direction, the values in the second column are all zero. Why node 3 shows a
negligible amount of reaction force leftwards is because the truss deforms a neg-
ligible amount rightwards at the lower right corner which is due to compatibility
conditions.

The nodal displacement coordinates relative to the location of the non-
displaced nodes are presented in the fourth and fifth column of the first table
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in mm. As for the sign convention, this relates to the global coordinate system.
For instance, the upper left and right node (N1 and N9) both displace inwards
and down. This means that dx for N1 is positive and for N9 is negative and
that dy for both is negative. Graphically, this can easily be checked by looking
at figure 2.5.

Which elements elongate and which elements compress can be found in the
second column of the second table. An elongation is indicated by a positive
value and a compression is indicated by a negative value. This sign convention
also applies to the third column where the stresses are presented in N/mm2 and
the fourth column where the normal forces are presented in units of newton;
tension is positive and pressure is negative. In this simple truss example, phys-
ical intuition tells that the upper horizontal elements compress and the lower
horizontal elements elongate as well as the diagonals. This can be checked by
looking at the signs in figure 2.4 or by looking at the deformed structure in
figure 2.5. Apparently, element 16 compresses a negligible amount.

A comparison between the normal forces determined with Trusses2d.m and
a commercial finite element program will be provided in paragraph 4.2.
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Figure 2.4: Non-graphical output
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Figure 2.5: Graphical output

2.1.4 3D trusses

In the real world structures are three dimensional and can be modelled and
analysed as such with the help of a finite element program. To demonstrate
this a program for three dimensional trusses is written. Like in the previous
program bar elements are used. Keep in mind that a third dimension can also
be implemented in FE protocols that concern elements which are able to bend.
Because both programs are very similar, only the input and output are presented
in this paragraph. The full script ‘Trusses3d.m’ is presented in appendix A.
One point that needs to be mentioned is that the added z-axis to the global
coordinate system comes with a different transformation matrix

[
λ
]

as defined
by equation (2.10). [

λ
]

=

[
l m n 0 0 0
0 0 0 l m n

]
(2.10)

Just like in the program for two dimensional trusses, transformation parame-
ter l and m can be implemented as (xj − xi)/L and (yj − yi)/L respectively.
Transformation parameter n is implemented as (zj − zi)/L and the global el-
ement stiffness matrices

[
k◦(e)

]
are still computed by pre multiplication with

the transpose of the lambda matrix and post multiplication with the lambda
matrix. Equation (2.8) applies for bar elements in 3D space as well. After all,
the bar element still deforms only along the local x-axis, i.e. the s-axis.

Input and output

As an example a cubicle truss of 3×3×3 m3, supported by four three dimensional
hinges is described by a spreadsheet (figure 2.6). The structure derives its
stability from the four vertical sides of which the corners are connected by
diagonal bar elements. Point loads of 200 kN are exerted upon the structure in

15



the positive y-direction at node 7 and 8. The resultant deformation is shown in
figure 2.8.

Figure 2.6: Descriptive file
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Figure 2.7: Non-graphical output
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Figure 2.8: Graphical output

Signal tower

To make telecommunication possible, signal towers are a necessity. These struc-
tures are geometrically interesting and are perfect to analyse with a finite ele-
ment program for 3D trusses. Imagine a conical truss tower with a triangular
footprint. At the top, a dish is attached to one of the nodes in a vertical posi-
tion. If a gust of wind catches the dish, the signal tower will deform. How this
deformation looks, is presented in figure 2.9.
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2.2 Frames

Where trusses which are an assembly of bar members, can only transfer loads
to the suspension points by way of internal normal forces, frames also convey
loads via internal shear forces and bending moments. The components of which
these kind of structures consist are called beams.

In this paragraph two types of beam elements are discussed: linear and
quadratic. These terms relate to the order of the polynomial which describes
the displacement fields of the elements. Starting with the linear type, only the
input and the script are presented and clarified; the output is analysed in depth
in the chapters that follow.

2.2.1 Linear elements

Input

As an example, a simply supported beam of 10 meters is used with the cross-
sectional profile HEA500. A uniformly distributed load of 15 kN/m is applied
over the entire span in the negative y-direction. The corresponding descrip-
tive file describes this structure by four linear beam elements. See figure 2.10.
Among others, this structure will be analysed in the third chapter.
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Figure 2.10: Simply supported beam described by linear elements

The set-up of the descriptive file is similar for frame structures. However, there
are some additions. Firstly, a column E is added to the elements worksheet,
containing the second moment of area. Secondly, regarding the same worksheet,
column F and G are added, containing the uniformly distributed load in the x-
and y-direction respectively, expressed in N/mm. Finally, a third degree of
freedom per node is added to column A of the worksheet ‘boundary conditions’
which is the (un)known rotation around the axis parallel to the z-axis. In
conjuction with this, a third force related quantity is added per node to column
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B, i.e. the reaction moment or (un)known torque around the axis parallel to the
z-axis. All this can be observed in figure 2.11. For example, row 3 and 15 show
the new boundary conditions for the suspension points at both ends. Because
these nodes cannot resist a bending moment, the rotational degree of freedom is
unknown, as indicated by the nan value, and the corresponding force quantity
will be either null or a non-null value; in this case null, because torque is not
present.

Figure 2.11: Descriptive file

FramesLinear2d.m

As remarked at the start of this chapter, each program can be considered as
a steppingstone for the successive program; the complexity increases but the
fundamental concepts remain the same. For that reason the scripts are similar
and only those sections that need further explanation will be presented and
discussed. This is done for frame structures described by linear elements in this
part of the paragraph. The entire script can found in appendix B. Just like
for trusses, the script for frames is divided into ten sections. Starting with the
second section ‘Constructing

[
k◦
]

and
{
q◦
}

’, the input is already loaded and
the empty vectors and matrices are already set-up.

The global stiffness matrix is constructed by adding the global stiffness ma-
trix of each element to the assigned empty matrix as defined in the first section.
This will be done with the help of a loop which will be iterated numelem times.
In the loop, the first thing that will be done is finding the x- and y-coordinate
of both node i and node j. These values will be used as an input for the com-
putation of the element length L and the orientation parameters l and m. The
material and cross-sectional properties are defined next: E, A and Iyy are ex-
tracted from the descriptive file and the shear modulus G is related to E by
G = E/(2(1 + ν)) in which Poisson’s ration ν is set to 0.3.

What follows is the definition of the global element stiffness matrix
[
k◦(e)

]
and the correct positioning of this matrix into the global stiffness matrix

[
k◦
]
.

The matrix
[
k
]

is defined by equation (2.4). Where a bar element has one
displacement field, a beam element has three displacement fields: longitudinal
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u, transverse v and rotational θ. In the case of a linear beam element, these
displacement fields are described by a first order polynomial and can be defined,
after solving for the constants a and b, by the following equations.

u = Niui +Njuj (2.11)

v = Nivi +Njvj (2.12)

θ = Niθi +Njθj (2.13)

With Ni = (xj−x)/L and Nj = (x−xi)/L. The element shape function matrix[
N (e)

]
can be found by putting the equations into vector-matrix form.

uv
θ

 =

Ni 0 0 Nj 0 0
0 Ni 0 0 Nj 0
0 0 Ni 0 0 Nj




ui
vi
θi
uj
vj
θj


(2.14)

Where the product of the shape function matrix and the nodal displacement
vector

{
U (e)

}
defines the displacements throughout the element, the product of

the matrix
[
B(e)

]
and the nodal displacement vector defines the strains through-

out the element. Equation (2.15) down to (2.17) presents the definition of the
axial strain ε, the shear strain γ and the curvature κ.

ε =
du

dx
=
dNi

dx
ui +

dNj

dx
uj (2.15)

γ =
dv

dx
− θ =

dNi

dx
vi +

dNj

dx
vj − (Niθi +Njθj) (2.16)

κ =
dθ

dx
=
dNi

dx
θi +

dNj

dx
θj (2.17)

After determining the derivative of the shape functions for linear beam elements
(dNi/dx = −1/L and dNj/dx = 1/L), the matrix

[
B(e)

]
can be found by

putting the equations into vector-matrix form.

εγ
κ

 =
1

L


0
0
−1

0
−1
0

−1
−NiL

0

0
0
1

0
1
0

1
−NjL

0



ui
vi
θi
uj
vj
θj


(2.18)

The final step before equation (2.4) can be evaluated, is formulating the con-
stitutive matrix

[
D(e)

]
, i.e. the matrix which holds the relation between the

stresses and strains. From applied mechanics, this relation is known for the
normal force N , the shear force S and the bending moment M and can be
presented in vector-matrix form as shown by equation (2.19).NS

M

 =

EA 0 0
0 GA 0
0 0 EI

εγ
κ

 (2.19)
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Numerical integration is applied for the evaluation of
[
k(e)

]
, because

[
B(e)

]
is a

function of x. The numerical evaluation will be exact if the correct integration
point is chosen. For a first order interpolation polynomial this is the mid-point
of the element. A graphical clarification is presented in figure 2.12.

y

x

α

α

β

q (β = π/2) = q0

f(x) = [B]T[D][B]

x
L0 L/2

f(x) = [B]T[D][B]

x
L0 L/2

Figure 2.12: Numerical integration for linear beam elements

The left diagram represents the analytical solution and the right diagram rep-
resents the numerical solution. As a weight for the latter, wi=1 is set to L and
for the variable x in the matrix

[
B(e)

]
L/2 is substituted.

Up to this point, the element stiffness matrix only applies to beam elements
which are orientated parallel to the global x-y coordinate system. In order to let[
k(e)

]
apply to elements with an arbitrary orientation, a transformation matrix

needs to be used in same way as is done for bar elements, i.e. the element stiffness
matrix needs to be pre multiplied by the transpose of the lambda matrix and
post multiplied by the lambda matrix.[

k◦(e)
]

=
[
λ
]T [

k(e)
] [
λ
]

(2.20)

But how is this lambda matrix formulated? To answer this question, use is made,
again, of figure 2.3 and equation (2.1). Unlike a bar element, a beam element
can undergo shear deformation and rotational deformation as well. However
the latter is not dependent on the orientation of the element, so for that reason
an identity entry is used. Dealing with two nodes per element, the following
transformation matrix applies.

[
λ
]

=


0
0
0
0
−m
l

0
0
0
0
l
m

0
0
0
1
0
0

0
−m
l
0
0
0

0
l
m
0
0
0

1
0
0
0
0
0
 (2.21)

In the program, this modification is implemented by post multiplying the matrix[
B(e)

]
with the lambda matrix. See line 55 and 56 of the script. Because now
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the local s-t coordinate system applies, the variable x is replaced by the variable
s as shown in line 38 down to 43 which hold the relevant s-coordinates of the
element and the shape functions. The element is shown in figure 2.13.
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Figure 2.13: Linear beam element with arbitrary orientation

Now that the element stiffness matrix is defined, the positioning of each of these
matrices into the global stiffness matrix needs to be performed in a systematic
fashion. This is done, like in the program for trusses, by constructing the entries
vector. See line 48 down to 50. The entries are identical to the renumbered in-
dices of the elements in the global displacement vector. Equation (2.22) presents
the general case for the global element displacement vector. Note the indices.

{
U◦
}

=



u◦i
v◦i
θ◦i
u◦j
v◦j
θ◦j


=



u◦3i−2
u◦3i−1
u◦3i
u◦3j−2
u◦3j−1
u◦3j


(2.22)

What remains is the construction of the global distributed force vector
{
q◦
}

which is defined by equation (2.23). For the derivation, reference is made to
paragraph 5.2 (p.61-66) of [1].

{
q◦
}

=

E∑
e=1

∫
L

[
N (e)

]T qxqy
0

 ds

 =

E∑
e=1

{
q◦(e)

}
(2.23)

The entry values for the component vector are retrieved from the descriptive
file, the elements worksheet, column F and G. Why the last entry contains the
null value is because there is no distributed equivalence for the bending moment.
These components are parallel to the global coordinate system and can only be
applied as such. In the fourth chapter it will be investigated how these kinds
of loads can also be modelled parallel to the local coordinate system. After
the component vector is pre multiplied by the transpose of the element shape
function matrix, an integration along the local x-axis is performed. Numerically
this is done by multiplying the product with a weight L and substituting for the

variable s in the matrix
[
N (e)

]T
the value L/2. This needs to be a halve times

the element length in order to discretize the q-load equally at the outer nodes.
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In other words, the distributed load is modelled as a pair of point loads qL/2
exerted upon both nodes of the considered element. The same entries vector
is used to construct the global distributed force vector

{
q◦
}

by substitution of

the global element distributed force vectors
{
q◦(e)

}
accordingly. See line 60.

Continuing with the example structure of the input, figure 2.14 presents this
graphically.
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Figure 2.14: Model of the distributed load for linear elements

Listing 2.9: Section 2

20 %% SECTION 2
21 % Constructing k and q glob
22

23 for n = 1:numelem
24 x i = nodes(elements(n,1),1);
25 y i = nodes(elements(n,1),2);
26 x j = nodes(elements(n,2),1);
27 y j = nodes(elements(n,2),2);
28

29 L = sqrt((x j-x i)ˆ2+(y j-y i)ˆ2);
30 l = (x j-x i)/L;
31 m = (y j-y i)/L;
32

33 E = elements(n,3);
34 G = E/(2*(1+0.3));
35 A = elements(n,4);
36 I = elements(n,5);
37

38 s i = 0;
39 s j = L;
40 s = L/2;
41

42 N i = (s j-s)/L;
43 N j = (s-s i)/L;
44

45 lambda = [l m 0 0 0 0; -m l 0 0 0 0; 0 0 1 0 0 0;...
46 0 0 0 l m 0; 0 0 0 -m l 0; 0 0 0 0 0 1];
47

48 entries = [3*elements(n,1)-2; 3*elements(n,1)-1;...
49 3*elements(n,1); 3*elements(n,2)-2;...
50 3*elements(n,2)-1; 3*elements(n,2)];
51

52 q = [elements(n,6); elements(n,7); 0];
53

54 N = [N i 0 0 N j 0 0; 0 N i 0 0 N j 0; 0 0 N i 0 0 N j];
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55 B = 1/L*[-1 0 0 1 0 0; 0 -1 -L*N i 0 1 -L*N j;...
56 0 0 -1 0 0 1]*lambda;
57 D = [E*A 0 0; 0 G*A 0; 0 0 E*I];
58

59 k(entries,entries) = k(entries,entries)+transpose(B)*D*B*L;
60 q glob(entries) = q glob(entries)+transpose(N)*q*L;
61 end

After the global stiffness matrix is rearranged and partitioned, the global nodal
displacements and the external forces can be determined. This is done in the
fourth section of the script in the same way as for trusses. However, in order to
deal with the q-load, some additions are implemented.

The first part of the index vector ‘vector a’ is used to retrieve the known
external forces from the worksheet that contains the boundary conditions. See
line 101 of the script. Vector F 1 is completed after the values of the global
distributed force vector q glob are added. This can be done quite easily, be-
cause column B of the worksheet ‘boundary conditions’ has the same ordering
as q glob. Special attention goes to the nodes where the structure is supported.
Here the discretizised distributed load is transferred to the support directly.
With respect to the example structure of the input, this concerns node 1 and 5.
See figure 2.14. Because these entries of q glob do not influence the behaviour
of the structure, they simply need to be added to the reaction forces with an
opposite sign. This is done in line 108.

Listing 2.10: Section 4

95 %% SECTION 4
96 % Determining U and F ext
97 % [k 11]*{U 1}+[k 12]*{U 2} = {F 1}
98 % [k 21]*{U 1}+[k 22]*{U 2} = {F 2}
99

100 U 2 = zeros(3*numnode-counter,1);
101 F 1 = boundaries(vector a,2)+q glob(vector a);
102 U 1 = k 11\(F 1-k 12*U 2); %[k]*{U} = {F} -> {U} = [k]\{F}
103 F 2 = k 21*U 1+k 22*U 2;
104

105 U(vector a) = U 1;
106 boundaries(vector a,2) = F 1;
107 F ext = boundaries(1:end,2);
108 F ext(isnan(F ext)) = F 2-q glob(vector b);

Constructing the matrices which hold the coordinates of the non-displaced and
the displaced nodes, enables generating a graphical output of the undistorted
and distorted structure. This is done in section 5 down to 8. What follows is
the section in which the internal forces are determined: the normal force N , the
shear force S and the bending moment Mz.

The ninth section contains three loops of which the first computes the inter-
nal forces and the strains and also creates the graphical presentation of these
quantities. Because this is done per element, the number of iterations is equal
to numelem. As can be observed from listing 2.11, per loop iteration the global
element stiffness matrix and the global element distributed force vector are com-
puted, just like in the second section. But instead of substituting this matrix
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and vector in their global equivalence, the former is multiplied with the global
displacements of the relevant nodes in order to find the internal forces ‘F int’.
See line 225.

F int =



Fx,i

Fy,i

Mz,i

Fx,j

Fy,j

Mz,j


(2.24)

In the lines that follow, down to line 233, the entries of the global element
internal force vector with the same direction index, see (2.24), are isolated as
three 2 by 1 matrices. To determine a normal force and a shear force per node,
the matrices that hold the internal forces in the x- and y-direction are modified
twice.

First, the uniformly distributed load per element is equally concentrated in
the nodes as point loads and added to the aformentioned matrices accordingly.
See line 227 down to 230. This is done because the discretizised distributed
load at the support nodes are of no influence on the nodal displacements. So
when the global element displacement vector (

{
U◦(e)

}
= U elem) is used to

compute the internal quantities, these particular external forces will not ‘show’.
Obviously, this effect will become less when the mesh size is increased, but for
linear elements the solution will become more accurate with this modification,
regardless of the amount of elements. A closer look will be taken at this in the
third chapter.

The second modification concerns the transformation of the internal forces
related to the global x-y coordinate system, i.e. Fx and Fy, to the normal force
N and the shear force S. This is done by pre multiplying the internal forces
with the transformation matrix as defined by equation (2.1). See line 231 and
232.

Next, the strains are computed by multiplying
[
B(e)

]
with

{
U◦(e)

}
, after

which the result is assigned to the empty vectors that are set-up in the first
section. Note that the strains are computed at the location of the integration
point. Generating the graphical and non-graphical output are the remaining
acts within this loop.

In the loops that follow, the undistorted structure is generated as a graph-
ical output along which the internal force related quantities are graphically
presented.

Listing 2.11: Section 9

178 %% SECTION 9
179 % Graphical and non-graphical output: N, S and M z int
180 % [k elem]*{U elem} = {F int} with {U elem} = {U(entries)}
181

182 figure
183 hold on
184

185 for n = 1:numelem
186 x i = nodes(elements(n,1),1);
187 y i = nodes(elements(n,1),2);
188 x j = nodes(elements(n,2),1);
189 y j = nodes(elements(n,2),2);
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190

191 L = sqrt((x j-x i)ˆ2+(y j-y i)ˆ2);
192 l = (x j-x i)/L;
193 m = (y j-y i)/L;
194

195 E = elements(n,3);
196 G = E/(2*(1+0.3));
197 A = elements(n,4);
198 I = elements(n,5);
199

200 s i = 0;
201 s j = L;
202 s = L/2;
203

204 N i = (s j-s)/L;
205 N j = (s-s i)/L;
206

207 lambda = [l m 0 0 0 0; -m l 0 0 0 0; 0 0 1 0 0 0;...
208 0 0 0 l m 0; 0 0 0 -m l 0; 0 0 0 0 0 1];
209

210 entries = [3*elements(n,1)-2; 3*elements(n,1)-1;...
211 3*elements(n,1); 3*elements(n,2)-2;...
212 3*elements(n,2)-1; 3*elements(n,2)];
213

214 q = [elements(n,6); elements(n,7); 0];
215

216 N = [N i 0 0 N j 0 0; 0 N i 0 0 N j 0; 0 0 N i 0 0 N j];
217 B = 1/L*[-1 0 0 1 0 0; 0 -1 -L*N i 0 1 -L*N j;...
218 0 0 -1 0 0 1]*lambda;
219 D = [E*A 0 0; 0 G*A 0; 0 0 E*I];
220

221 k elem = transpose(B)*D*B*L;
222 q elem = transpose(N)*q*L;
223

224 U elem = U(entries);
225 F int = k elem*U elem;
226

227 F x int = (F int(1:3:end)+diag(abs(q elem(1:3:end)))*...
228 sign(F int(1:3:end)))*10ˆ0;
229 F y int = (F int(2:3:end)+diag(abs(q elem(2:3:end)))*...
230 sign(F int(2:3:end)))*10ˆ0;
231 N = [l*F x int(1)+m*F y int(1); l*F x int(2)+m*F y int(2)];
232 S = [-m*F x int(1)+l*F y int(1); -m*F x int(2)+l*F y int(2)];
233 M z int = F int(3:3:end)*10ˆ0;
234

235 strains = B*U elem;
236 epsilon(n) = strains(1);
237 gamma(n) = strains(2);
238 kappa(n) = strains(3);
239

240 element = [n; n];
241 node = [elements(n,1); elements(n,2)];
242 table(element,node,N,S,M z int)
243

244 x 1 = x i-m*S(1)*10ˆ-2;
245 y 1 = y i+l*S(1)*10ˆ-2;
246 x 2 = x 1+(x j-x i);
247 y 2 = y 1+(y j-y i);
248

249 x 3 = x i-m*M z int(1)*10ˆ-5;
250 y 3 = y i+l*M z int(1)*10ˆ-5;
251 x 4 = x j-m*abs(M z int(2))*sign(M z int(1))*10ˆ-5;
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252 y 4 = y j+l*abs(M z int(2))*sign(M z int(1))*10ˆ-5;
253

254 matrix S = [x i y i x 1 y 1; x 1 y 1 x 2 y 2;
255 x 2 y 2 x j y j]; %coordinates S-line
256 matrix M = [x i y i x 3 y 3; x 3 y 3 x 4 y 4;
257 x 4 y 4 x j y j]; %coordinates M-line
258

259 X S = [matrix S(:,1) matrix S(:,3)];
260 Y S = [matrix S(:,2) matrix S(:,4)];
261 plot(X S,Y S,'Color',[1 0.5 0],'LineWidth',2) %S-line
262 X M = [matrix M(:,1) matrix M(:,3)];
263 Y M = [matrix M(:,2) matrix M(:,4)];
264 plot(X M,Y M,'Color',[0.5 0 0.5],'LineWidth',2) %M-line
265 end
266

267 for n = 1:numelem
268 line undef = line([matrix 1(n,1),matrix 1(n,3)],...
269 [matrix 1(n,2),matrix 1(n,4)]);
270 line undef.LineStyle = '--';
271 line undef.LineWidth = 0.75;
272 line undef.Color = 'k';
273 text((matrix 1(n,1)+matrix 1(n,3))/2,...
274 (matrix 1(n,2)+matrix 1(n,4))/2,...
275 ['E #' num2str(n)],'Color','r');
276 end
277

278 for n = 1:numnode
279 scatter(nodes(n,1),nodes(n,2),'k');
280 text(nodes(n,1),nodes(n,2),['N #' num2str(n)],'Color','r');
281 end
282

283 set(gca,'xtick',[])
284 set(gca,'ytick',[])
285 title('S-line and M-line')
286

287 hold off

In the last section, section 10, the non-graphical presentation of the nodal quan-
tities are generated in the form of a table. The strains per element are tabulated
here as well.

2.2.2 Quadratic elements

Input

For frame structures which are described by quadratic beam elements, the same
example is used as for the description by linear beam elements to explain the
input. As can be seen from observing figure 2.15, each element has one extra
node in the middle. This is because the interpolation polynomial is of the second
order which is accompanied by three unknown coefficients that need to be solved
in order to determine the shape functions. The middle node is always located
at the centre of the element, but does not have to be. It could have been placed
at another point along the element, but that is not explored any further.
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Figure 2.15: Simply supported beam described by quadratic elements

The spreadsheet that describes this structure is not any different from the de-
scriptive file of its linear counterpart. However two remarks need to be made;
each element takes two rows to be described in the corresponding worksheet.
This is indicated in figure 2.16. Both sub-elements need to be grouped in this
particular way, because the program reads the corresponding nodes from A i
to B i to B j. Also, the three degrees of freedom of the middle node are all
unknown and the corresponding external nodal forces are known.
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Figure 2.16: Descriptive file

FramesQuadratic2d.m

Consisting of ten sections as well, only the second section of the script is dis-
cussed. The entire script can be found in appendix C.

As in the previous programs, the second section consists of a loop in which
the global stiffness matrix

[
k◦
]

is constructed. The loop starts with defining
the x- and y-coordinate of the outer nodes, after which the element length L
and the orientation parameters l and m can be computed. The material and
cross-sectional properties are defined next.

To define the global element stiffness matrix
[
k◦(e)

]
by equation (2.4), the

three displacement fields u, v and θ need to be defined first. The script is
kept comprehensible by introducing natural coordinates which are a function
of the local coordinates: L1 = (x − xi)/L and L2 = (xj − x)/L (if the local
and global coordinate system are positioned in the same direction). All three
displacement fields are described by a second order polynomial u = a+bL1+cL2

1

that is a function of the first natural coordinate L1. Solving for a, b and c, the
displacement fields can be described in terms of the shape functions.

u = Niui +Njuj +Nkuk (2.25)

v = Nivi +Njvj +Nkvk (2.26)

θ = Niθi +Njθj +Nkθk (2.27)

Ni = 1− 3L1 + 2L2
1 (2.28)

Nj = 4L1 − 4L2
1 (2.29)

Nk = −L1 + 2L2
1 (2.30)
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The element shape function matrix
[
N (e)

]
can be found by putting the equations

into vector-matrix form.

uv
θ

 =

Ni 0 0 Nj 0 0 Nk 0 0
0 Ni 0 0 Nj 0 0 Nk 0
0 0 Ni 0 0 Nj 0 0 Nk





ui
vi
θi
uj
vj
θj
uk
vk
θk


(2.31)

In order to obtain matrix
[
B(e)

]
, the definition of the strains ε, γ and κ needs

to be known.

ε =
du

dx
=
dNi

dx
ui +

dNj

dx
uj +

dNk

dx
uk (2.32)

γ =
dv

dx
− θ =

dNi

dx
vi +

dNj

dx
vj +

dNk

dx
vk − (Niθi +Njθj +Nkθk) (2.33)

κ =
dθ

dx
=
dNi

dx
θi +

dNj

dx
θj +

dNk

dx
θk (2.34)

The derivatives of the shape functions to x can be determined with the chain
rule dN/dx = dN/dL1 · dL1/dx.

dNi

dx
= (−3 + 4L1)/L (2.35)

dNj

dx
= (4− 8L1)/L (2.36)

dNk

dx
= (−1 + 4L1)/L (2.37)

Matrix
[
B(e)

]
can be found by putting the equations into vector-matrix form.

εγ
κ

 =


0
0
N ′i

0
N ′i

0

N ′i

−Ni

0

0
0
N ′j

0
N ′j

0

N ′j

−Nj

0

0
0
N ′k

0
N ′k

0

N ′k

−Nk

0




ui
vi
θi
uj
vj
θj
uk
vk
θk


(2.38)

What follows is the definition of the constitutive matrix
[
D(e)

]
. This matrix

does not change with respect to equation (2.19).
In order to evaluate the element stiffness matrix

[
k(e)

]
numerically, two

integration points are required, i.e. L1 = (−1 +
√

3)/(2
√

3) and L1 = (1 +√
3)/(2

√
3). A graphical clarification is presented in figure 2.17.
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Figure 2.17: Numerical integration for quadratic beam elements

As a weight for both terms, wi=1 and wi=2 are set to L/2.
In order to let

[
k(e)

]
apply to elements with an arbitrary orientation, the

lambda matrix needs to be used as shown in (2.20). Matrix
[
λ
]

is simply
extended with the same repetition as defined in equation (2.21).

[
λ
]

=


0
0
0
0
0
0
0
−m
l

0
0
0
0
0
0
0
l
m

0
0
0
0
0
0
1
0
0

0
0
0
0
−m
l
0
0
0

0
0
0
0
l
m
0
0
0

0
0
0
1
0
0
0
0
0

0
−m
l
0
0
0
0
0
0

0
l
m
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0


(2.39)

Now that the local s-t coordinate system applies, the variable x can be re-
placed by the variable s as shown in line 38 down to 46 which hold the relevant
coordinates of the element. Figure 2.18 presents this element.

j
s

k

j

i

0 1

 ≈ 0.2113249  ≈ 0.7886751

(-1+√3)/(2√3) (1+√3)/(2√3)

s

i

t t

Figure 2.18: Quadratic beam element with arbitrary orientation
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The entries vector that is used to substitute the global element stiffness matrix
into the global stiffness matrix, has the following systematics.

entries =



3i− 2
3i− 1
3i
3j − 2
3j − 1
3j
3k − 2
3k − 1
3k


(2.40)

Before the loop ends, the global distributed force vector
{
q◦
}

is constructed.
Equation (2.23) is used for this. Numerical evaluation of the global element
distributed force vectors

{
q◦(e)

}
is done by using the scheme that is presented

in figure 2.17. The entries vector (2.40) is used to substitute the global element
distributed force vectors in the global distributed force vector accordingly.

Unlike the program for linear beam elements, FramesQuadratic2d.m will
divide the q-load unequally over the nodes i, j and k, i.e. 1/6:2/3:1/6. This is
graphically presented in figure 2.19.
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Figure 2.19: Model of the distributed load for quadratic elements

Listing 2.12: Section 2

20 %% SECTION 2
21 % Constructing k and q glob
22

23 for n = 1:numelem/2
24 x i = nodes(elements(2*n-1,1),1);
25 y i = nodes(elements(2*n-1,1),2);
26 x k = nodes(elements(2*n,2),1);
27 y k = nodes(elements(2*n,2),2);
28

29 L = sqrt((x k-x i)ˆ2+(y k-y i)ˆ2);
30 l = (x k-x i)/L;
31 m = (y k-y i)/L;

34



32

33 E = elements(2*n-1,3);
34 G = E/(2*(1+0.3));
35 A = elements(2*n-1,4);
36 I = elements(2*n-1,5);
37

38 s i = 0;
39 s a = (-1+sqrt(3))/(2*sqrt(3))*L;
40 % first integration point
41 s b = (1+sqrt(3))/(2*sqrt(3))*L;
42 % second integration point
43 L 1 a = (s a-s i)/L;
44 % natural coordinate of first integration point
45 L 1 b = (s b-s i)/L;
46 % natural coordinate of second integration point
47

48 N i a = 1-3*L 1 a+2*L 1 aˆ2; N i b = 1-3*L 1 b+2*L 1 bˆ2;
49 N j a = 4*L 1 a-4*L 1 aˆ2; N j b = 4*L 1 b-4*L 1 bˆ2;
50 N k a = -L 1 a+2*L 1 aˆ2; N k b = -L 1 b+2*L 1 bˆ2;
51

52 dN i a = (-3+4*L 1 a)/L; dN i b = (-3+4*L 1 b)/L;
53 dN j a = (4-8*L 1 a)/L; dN j b = (4-8*L 1 b)/L;
54 dN k a = (-1+4*L 1 a)/L; dN k b = (-1+4*L 1 b)/L;
55

56 lambda = zeros(9,9);
57 lambda(1:3,1:3) = [l m 0; -m l 0; 0 0 1];
58 lambda(4:6,4:6) = [l m 0; -m l 0; 0 0 1];
59 lambda(7:9,7:9) = [l m 0; -m l 0; 0 0 1];
60

61 entries = [3*elements(2*n-1,1)-2; 3*elements(2*n-1,1)-1;...
62 3*elements(2*n-1,1);...
63 3*elements(2*n-1,2)-2; 3*elements(2*n-1,2)-1;
64 3*elements(2*n-1,2);...
65 3*elements(2*n,2)-2; 3*elements(2*n,2)-1;...
66 3*elements(2*n,2)];
67

68 q = [elements(2*n-1,6); elements(2*n-1,7); 0];
69

70 N a = [N i a 0 0 N j a 0 0 N k a 0 0;...
71 0 N i a 0 0 N j a 0 0 N k a 0;...
72 0 0 N i a 0 0 N j a 0 0 N k a];
73 N b = [N i b 0 0 N j b 0 0 N k b 0 0;...
74 0 N i b 0 0 N j b 0 0 N k b 0;...
75 0 0 N i b 0 0 N j b 0 0 N k b];
76

77 B a = [dN i a 0 0 dN j a 0 0 dN k a 0 0;...
78 0 dN i a -N i a 0 dN j a -N j a 0 dN k a -N k a;...
79 0 0 dN i a 0 0 dN j a 0 0 dN k a]*lambda;
80 B b = [dN i b 0 0 dN j b 0 0 dN k b 0 0;...
81 0 dN i b -N i b 0 dN j b -N j b 0 dN k b -N k b;...
82 0 0 dN i b 0 0 dN j b 0 0 dN k b]*lambda;
83

84 D = [E*A 0 0; 0 G*A 0; 0 0 E*I];
85

86 k(entries,entries) = k(entries,entries)+...
87 transpose(B a)*D*B a*L/2+...
88 transpose(B b)*D*B b*L/2;
89 q glob(entries) = q glob(entries)+...
90 transpose(N a)*q*L/2+...
91 transpose(N b)*q*L/2;
92 end

35



With regard to section 9, one remark need to be made. Where the internal
forces are more accurate for linear elements by adding the discretizised q-load,
for quadratic elements this artifice is not applied, because it does not contribute
to the interpretation of the normal force distribution and the shear force distri-
bution. A closer look will be taken at this in the third chapter.
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Chapter 3

Analyses of elementary
structures

Now that the programs are explained, it is time to use them and analyse the
result. For that, three elementary frame structures are chosen; the simply sup-
ported beam, as presented in the previous chapter (see figure 2.10 and 2.15), a
cantilever beam loaded by a point load at the unsupported end and a statically
indeterminate beam. Starting with the simply supported beam, the output for
the structure described by four elements (linear and quadratic) will be analysed
first. What are the nodal displacements and how to interpret the internal forces
N , S and Mz? Is there a difference between linear and quadratic elements?
Also, how do these forces convergence when the mesh size, i.e. the amount of
elements, is increased? Secondly, the influence of the mesh size and the element
type on the accuracy of the displacements is investigated, as well as the influence
on the computation time.

3.1 Simply supported beam

3.1.1 Output

The first set of answers that the frame programs give, after the input is processed
and computations are made, are the internal forces per element in N and Nmm.
This is presented in figure 3.1 and 3.2. Column one denotes which element it
regards. The second column tells at the side of which node the internal forces
apply. As expected, there are no normal forces present. Figure 3.3 and 3.4 show
the tabulated nodal quantities. The second, third and fourth column present
the nodal displacements in mm and radians, the fifth, sixth, seventh, eighth
and ninth column the nodal loads in N and Nmm and the tenth, eleventh and
twelfth column the reaction forces in N and Nmm. To interpret the interplay of
forces more easily, a graphical presentation is given in figure 3.5 and 3.6. The
sign convention corresponds to the local coordinate system which in this case is
parallel to the global coordinate system. kN and kNm are the units.
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Figure 3.1: Non-graphical output FramesLinear2d.m: internal forces
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Figure 3.2: Non-graphical output FramesQuadratic2d.m: internal forces
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Figure 3.3: Non-graphical output FramesLinear2d.m: nodal quantities

Figure 3.4: Non-graphical output FramesQuadratic2d.m: nodal quantities
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Figure 3.5: Graphical interpretation of figure 3.1 and 3.3
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Figure 3.6: Graphical interpretation of figure 3.2 and 3.4

As mentioned in paragraph 2.2.1 in the discussion of the internal forces for linear
elements, the equally concentrated q-load is added to the internal forces in order
to come to a more accurate result. In paragraph 2.2.2 it was remarked that this
artifice is not beneficial to the interpretation of the N - and S-distribution in
quadratic elements. The reason for this is that the computed internal forces at
the middle node of each element can be interpreted as the concentrated q-load
on that element. Compare the shear forces at the middle nodes 2, 4, 6 and 8 as
presented in figure 3.2 with the according concentrated q-loads as presented in
figure 3.4. To make this more comprehensible, a graphical clarification is shown
in figure 3.7.
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Figure 3.7: S-distribution, quadratic element 1, with (r) and without (l) artifice

The right graphic of figure 3.7 shows the shear force distribution in quadratic
element 1 with the added concentrated q-load in the ratio of 1/6:2/3:1/6. As
can be clearly seen, this does not give an enclosed polygon which is an incorrect
interpretation. The correct interpretation is shown at the left where the polygon
is enclosed.

Figure 3.8 and 3.9 present the shear force distribution within the entire
structure modelled by linear and quadratic elements respectively. A red line
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is added which indicates the analytical distribution of the shear force: S =
q/2(l − 2x). For the derivation, see chapter 11 of [3]. It needs to be noted that
the global vertical axis in this derivation is pointing downwards. Increasing the
mesh size, results in a better approximation of the red line. See figure 3.10 and
3.11.

S-line

E #1 E #2 E #3 E #4N #1 N #2 N #3 N #4 N #5

Figure 3.8: S-distribution, simply supported beam, 4 linear elements

S-line

E #1 E #1 E #2 E #2 E #3 E #3 E #4 E #4N #1 N #2 N #3 N #4 N #5 N #6 N #7 N #8 N #9

Figure 3.9: S-distribution, simply supported beam, 4 quadratic elements
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For this structure, in the case of linear elements, the shear force at both ends
are exact, unlike quadratic elements where S at the nodes deviates from the
exact distribution. However, the exact shear force of the inner nodes can be
found by taking the mean of the upper and lower value of the approximation
line at the considered node.

S-line

Figure 3.10: S-distribution, simply supported beam, 32 linear elements

S-line

Figure 3.11: S-distribution, simply supported beam, 32 quadratic elements
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Polygons can also give a graphical presentation of the bending moment distri-
bution as shown in figure 3.12. This distribution is the same for both linear and
quadratic elements, because the bending moment at the middle node of each
quadratic element is negligible as can be seen in figure 3.2. The red line indi-
cates the analytical distribution of the bending moment: Mz = qx/2(l−x). For
the derivation, see chapter 11 of [3]. A better approximation will be obtained
when the mesh size is increased. See figure 3.13.

Unlike the shear force values, the bending moment values are exact at the
outer nodes of quadratic elements.

M-line
E #1 E #2 E #3 E #4N #1 N #2 N #3 N #4 N #5

Figure 3.12: M-distribution, simply supported beam, 4 elements
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M-line

Figure 3.13: M-distribution, simply supported beam, 32 elements

Figure 3.14 and 3.15 present the strains for linear and quadratic elements respec-
tively. Note that these strains are computed at the location of the integration
points. Getting closer the middle of the span, one can observe that the shear
strain γ decreases in absolute value. The reason for this can be found in equa-
tion (2.19); S is linearly related to γ by GA. Looking at the shear distribution
in the previous figures, S decreases more and more when getting closer to the
middle of the span. The same observation can be made for the bending moment
Mz, only now the corresponding strain κ (i.e. the curvature in mm−1) increases
towards to middle of the span. From equation (2.19): Mz is linearly related to
κ by EI.

Figure 3.14: Strains of linear elements
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Figure 3.15: Strains of quadratic elements

A graphical presentation of the undeformed and deformed structure is presented
in figure 3.16 and 3.17. The red line presents the analytical description of the
deflection: v = qx/(24EI)(x3 − 2lx2 + l3). Paragraph 4.11 of [4] presents the
differential equation from which this description is derived. One can conclude at
a glance that the four quadratic elements approximate the deflection line more
accurately than the four linear elements. This will be analysed in more detail
in the next sub-paragraph.
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Figure 3.16: Deflection of the simply supported beam, 4 linear elements
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Figure 3.17: Deflection of the simply supported beam, 4 quadratic elements

3.1.2 Convergence behaviour

To say something quantitatively about the convergence behaviour of the sim-
ply supported beam, different descriptive files are evaluated by the programs;
each successive file describing the structure by more elements. For both element
types, the following mesh sizes are used: 2, 4, 8, 16, 32, 64, 128 and 256. Fo-
cussing on the middle node, the following deflections and computation durations
are obtained.

Figure 3.18: Convergence of deflection at midspan and computation durations

Before this data is presented graphically, one important observation can be made
already; it takes 128 to 256 linear elements to obtain the most accurate midspan
deflection of -10.811 mm, whereas with quadratic elements it only takes two.
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Based on the corresponding computation times of 5.724 to 10.122 seconds and
1.429 seconds respectively, it would be more economical to model the structure
by two quadratic elements in order to obtain the deflection at midspan.

Because the quadratic deflection does not convergence any further, only the
linear deflection at midspan is presented graphically. This is done in two differ-
ent ways. First, dividing the linear approximation by the analytical value gives
the graph as shown in figure 3.19. The analytical deflection value is obtained
from the description as noted in the previous sub-paragraph: v analytical =
-10.6934 mm.

The linear approximation exceeds the analytical value from 16 elements.
This phenomenon can also be observed at the other nodes. See figure 3.20;
the black line hangs slightly under the red line with a maximum difference at
midspan. Why is this?
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Figure 3.19: Convergence of FE to analytical (= 1) midspan deflection
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Figure 3.20: Deflection of the simply supported beam, 64 linear elements

To answer this question, reference is made to paragraph 11.2 of [2]. The reason
for this discrepancy is the different underlying beam models. In the analytical
description the Bernoulli-Euler beam is used which ignores the influence of the
transverse shear stresses on the deformation, i.e. each cross section does not
rotate around an axis that is parallel to the z-axis and passes through the
centroid of the cross section. This relates to the kinematic assumption that is
fundamental for the Bernoulli-Euler derivation: cross sections remain plane and
normal to the deformed longitudinal axis. For the finite element programs the
Timoshenko beam is applied which does take the shear deformation into account;
cross sections do remain plane, but do not remain normal to the deformed
longitudinal axis.

The requirement of normality and the corresponding neglected shear defor-
mation in the Bernoulli-Euler model gives it a higher stiffness in comparison to
the Timoshenko model. So, one would expect that by increasing the shear mod-
ulus G the deflection of the latter model converges to that of the former. This
is indeed the case; G (= 80769 N/mm2) is multiplied by 2, 4, 8, 16 and 32 and
the corresponding quotients of the FE and analytical deflections are presented
in figure 3.21. Figure 3.22 shows the graphical output.
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Figure 3.21: Influence of the shear modulus on midspan deflection
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Figure 3.22: From bottom to top: G/2G/4G/8G/16G/32G, 64 linear elements

Another way to present the data of figure 3.18 is by calculating the absolute
difference with the most accurate value of -10.811 mm and plotting the resultant
decreasing error in logspace.
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Figure 3.23: Error convergence

The tangent of this graph is a quantitative measure for the convergence rate,
ranging between 0.0 and −∞. In this case the slope is -2.0 which is empha-
sized by the grey polygon with the same tangent. Regarding the computation
efficiency, one can state that the steeper the log/log-curve, the better.

3.2 Cantilever beam

The structure that is analysed next is a cantilever beam loaded by a point load
of 100 kN in the negative y-direction, exerted at the unsupported end. See
figure 3.24.
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Figure 3.24: Cantilever beam
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To determine the accuracy of the finite element approximation for the different
quantities, the following analytical expressions are used of which the underlying
differential equations can be found in chapter 11 of [3] and paragraph 4.11 of
[4].

S = −F (3.1)

Mz = −Fx (3.2)

θ =
F

2EIyy
(x2 − l2) (3.3)

v =
F

6EIyy
(x3 − 3l2x+ 2l3) (3.4)

Describing the structure by linear and quadratic elements approximates the
internal forces as shown in the previous paragraph, i.e. the exact value of S
and Mz at both nodes of a linear element and the exact value of Mz at the
outer nodes of a quadratic element. However, there is one difference; now that
the shear distribution is constant along the longitudinal axis of the structure, a
quadratic element shows the exact S-value at the outer nodes as well.

S- and M-line

N #1 N #2 N #3 N #4 N #5 N #6 N #7 N #8 N #9

Figure 3.25: S- and M-distribution, cantilever beam, 8 linear elements
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S- and M-line
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Figure 3.26: S- and M-distribution, cantilever beam, 8 quadratic elements

The next quantities that will be analysed are the angle of rotation θ and the
deflection v at the unsupported end and at midspan. Figure 3.27 shows the
obtained values in a spreadsheet. As can be observed right away, the quadratic
elements give the most accurate approximation already with the smallest mesh
size. This also applies for linear elements in the case of θ.

Figure 3.27: Convergence of deformation quantities and computation durations
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For this structure as well, the deflections approximated with the finite element
programs exceed the analytical value of -182.5009 mm at the unsupported end
and -57.0315 mm at midspan. By increasing the shear modulus, the most accu-
rate finite element approximation approaches the analytical value. Figure 3.28
presents the deflection line modelled by 64 quadratic elements and a G-modulus
of 80769 N/mm2.
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Figure 3.28: Deflection of the cantilever beam, 64 quadratic elements

Figure 3.29 presents the convergence behaviour of both deflections, modelled
by linear elements. Normalising the error enables one to make a comparison
which tells that the convergence proceeds similar, almost identical up to 64
linear elements, but shows an increasing difference when the mesh becomes
finer. At such small values it is assumed that this has a computational reason,
i.e. numerical precision. The tangent of the overlapping parts is -2.0.
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Figure 3.29: Error convergence of both deflections

The discrepancy between the finite element and analytical result does not apply
to the angle of rotation. The FE approximation is, regardless of the mesh size
and element type, identical to the analytical value; 0.027375 radians at the
unsupported end and 0.020531 radians at midspan. Why is this?

Reference is made to paragraph 11.2 of [2] to answer this question. De-
pending on the used beam model, the calculated angle θ consists of either one
or two components. In case of the Bernoulli-Euler beam, the rotation of the
longitudinal axis ψ is equal to θ; the angle that one computes with the analyti-
cal description. An extra component is considered when the Timoshenko beam
is applied: the shear distortion angle γ. This quantity describes the rotation
of the cross-section relative to its non-displaced configuration. Apparently, for
this particular structure, the value of γ is negligible to null; the cross-sections
at both ends of each element remain parallel to the global vertical axis during
shear deformation. A graphical presentation of θ along the entire structure is
presented in figure 3.30.
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Figure 3.30: θ-diagram, 4 linear elements

3.3 Statically indeterminate beam

The final structure that will be analysed is a statically indeterminate beam,
fixed at the left side and supported by a roller at the right where a couple of
250 kNm is applied clockwise. The cross-sectional and material properties are
the same as in the previous frame structures.
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Figure 3.31: Statically indeterminate beam

To determine the accuracy of the finite element approximation for the different
quantities, the following analytical expressions are used of which the underlying
differential equations can be found in chapter 11 and paragraph 4.11 of [3] and
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[4] respectively.

S = −3Tz
2l

(3.5)

Mz =
Tz
2l

(−3x+ l) (3.6)

θ =
Tzx

4EIyyl
(3x− 2l) (3.7)

v =
Tzx

2

4EIyyl
(x− l) (3.8)

Starting with internal forces, both linear and quadratic elements generate the
same output because of the S-distribution being constant along the longitudinal
axis of the beam. There is one obscurity however to be observed from the
diagram in figure 3.32; theMz-value is slightly off at the left side of the structure,
gradually overlapping the analytical distribution more and more when moving
towards the right.

S- and M-line

Figure 3.32: S- and M-distribution, statically indeterminate beam, 64 elements
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Figure 3.33: Discrepancy between FE and analytical distribution of Mz

Looking at the convergence of the reaction forces at the fixed end as presented
in the spreadsheet of figure 3.34, one comes to the conclusion that this does
not only apply to the bending moment, but also to the shear force; note the
convergence of the vertical reaction force R y in the spreadsheet. Why is this?

The fact that the structure is statically indeterminate is the reason why;
such structures can have any internal force distribution if only equilibrium is
considered. However, this is not the case; constitutive and kinematic conditions
need to be met as well, i.e. the deformed configuration of the structure is of
influence. So, the FE approximation of the quantities v and θ not corresponding
exactly to their analytical counterparts means the FE approximation of the
force quantities not corresponding exactly to their analytical values: Ry = -37.5
kN and Mz,ext = -125 kNm. In accordance with the analyses of the simply
supported beam, this can be demonstrated by increasing the shear modulus G
for a fine mesh, let’s take 128 quadratic elements. See figure 3.35.
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Figure 3.34: Convergence data and computation durations
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Figure 3.35: Convergence of reaction forces with increasing shear modulus
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Continuing with the values of the spreadsheet, quadratic elements, again, give
already the most accurate approximation with a mesh size of two. This applies
for the deformation quantities as well. With linear elements, an amount of 256
is required to come to an equally accurate value as obtained with two quadratic
elements. The analytical value of the deflection at midspan and the angle of
rotation at the roller is 4.2774 mm and -0.003422 radians respectively.

Figure 3.38 presents the normalised error convergence of all four quantities.
Just like the previous structure, all quantities converge with the same slope, but
an increasing mesh size results in an increasing discrepancy due to numerical
precision. The tangent of the overlapping parts is -2.0.
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Figure 3.36: Deflection of the beam, 64 quadratic elements
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Figure 3.37: θ-diagram, 64 quadratic elements
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Figure 3.38: Error convergence of all four quantities
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3.4 Linear versus quadratic

The question whether to use linear or quadratic elements can only be answered
if the nodes of interest are known. For a limited amount of nodes, quadratic
elements will suffice; the approximations are the most accurate and the compu-
tation time is limited. However, if the number of nodes becomes greater it will
be more efficient to use linear elements, because of the equally accurate approx-
imation (starting from 256 elements) and the relatively limited computation
time.

A trend that can be observed at all three structures as analysed in the
previous paragraphs, is that the duration increases linearly with increasing mesh
size and that for quadratic elements the gradient has a higher value and is
always located above the one of its linear counterpart. Figure 3.39 shows the
progression of the computation time for both element types in the case of the
cantilever beam.
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Figure 3.39: Progression of the computation time, cantilever beam
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Chapter 4

Five compatible structures

The aesthetic is elevated by evaluating multiple member structures instead
of single member structures. With a total of five, this chapter starts with a
bridge structure upon which two different uniformly distributed loads are ex-
erted. A comparison will be made with the commercial finite element software
‘Matrixframe’1. For the second structure, the initial truss example will be re-
visited (figure 2.1). How do the internal forces change if the pin joints were to
be replaced by joints that are able to transfer bending moments? In the third
paragraph a portal structure is investigated by analysing the influence of the
bending stiffness EIyy on the M-distribution and the deflection line. This is
followed by a simple roof structure which will be used to explain how a q-load
can be related to the local s-t coordinate system. The chapter will end with
an observation of how to program responds if a structure becomes kinematic
indeterminate. Where needed, explanation will be provided.

4.1 Structure 1

Figure 4.1 presents the structure of which each member is modelled by 128
quadratic elements having an E-modulus of 2.1 · 105 N/mm2, a cross-sectional
area of 1.9754 · 104 mm2 and a second moment of area of 8.6975 · 108 mm4. The
graphical output of both Matrixframe and FramesQuadratic2d.m will be shown,
i.e. the S-line, the M-line and the deflection line. Also, a comparison will be
made between the programs with regard to the quantities that are related to
the node which connects all four members. The resultant discrepancy is due to
the chosen mesh size. See figure 4.9.

1Downloaded from: http://www.matrix-software.com/
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Figure 4.1: Bridge structure

Figure 4.2: Matrixframe model
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Figure 4.3: S-distribution according to Matrixframe

S-line

Figure 4.4: S-distribution according to FramesQuadratic2d.m
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Figure 4.5: M-distribution according to Matrixframe

M-line

Figure 4.6: M-distribution according to FramesQuadratic2d.m
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Figure 4.7: Deflection according to Matrixframe
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Figure 4.8: Deflection according to FramesQuadratic2d.m
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Figure 4.9: FramesQuadratic2d.m versus Matrixframe: mid node

4.2 Structure 2

The structure of figure 2.1 will be evaluated by the frame programs in order to
investigate what happens to the internal forces if the members are able to trans-
fer shear forces and bending moments as well. In other words, what happens to
the internal force distribution if the members are modelled as beams instead of
bars? The material and cross-sectional properties are the same with addition of
the second moment of area: Iyy = 4.12 · 106 mm4.

Based on the output, it appears that a small part of the load will be trans-
ferred to the support as shear force and bending moment. This can also
be solely observed from the normal forces as computed by Trusses2d.m and
FramesQuadratic2d.m; showing values that are slightly different. See figure
4.10.

Linear beam elements do not present an accurate approximation as can be
observed from the evaluation by Matrixframe. See column C of figure 4.10 and
the right column as shown in figure 4.11. From the same figures it can be con-
cluded that quadratic elements give an equally accurate result as Matrixframe.

68



Figure 4.10: Normal forces (kN) determined by the three programs

Figure 4.11: Normal forces (kN) determined by Matrixframe: truss and frame
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Figure 4.12: Deformation of the structure as frame, 17 quadratic elements

4.3 Structure 3

A portal structure with an alternating bending stiffness ratio between its mem-
bers, results in varying mechanical behaviour. Loaded by a uniformly dis-
tributed load of 15 kN/m on the beam member, the structure as shown in
figure 4.13 will be investigated. More specifically, the influence of EIyy of the
left column on the internal bending moment at B and E and the horizontal
displacement at B will be investigated quantitatively. This is done by plotting
the normalised values. Example 4 in paragraph 7.2 of [5] derives the obtained
relation analytically. See equation (4.1) to (4.3).

Each member is modelled by 128 quadratic elements having an E-modulus
of 2.1 · 105 N/mm2, a cross-sectional area of 1.9754 · 104 mm2 and a second
moment of area of 8.6975 · 108 mm4.

MB

MB,prismatic
=

5n

4n+ 1
(4.1)

ME

ME,prismatic
=

5(2n+ 1)

3(4n+ 1)
(4.2)

uB
ql4/EIyy

=
n− 1

24(4n+ 1)
(4.3)
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Figure 4.13: Portal structure
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M-line

Figure 4.14: M-distribution if n = 0.001
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Figure 4.15: Deflection if n = 0.001

72



M-line

Figure 4.16: M-distribution if n = 1
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Figure 4.17: Deflection if n = 1
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M-line

Figure 4.18: M-distribution if n = 1000
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Figure 4.19: Deflection if n = 1000
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The left column having a bending stiffness such that the limit of n goes to 0,
results in the structure having an M-distribution which is similar to that of
the simply supported beam as seen in chapter 3; a parabolic distribution with a
minimum of null at the corners B and C and a maximum at midspan. Increasing
the value for n leads to an increase of the corner moments and a decrease of the
midspan moment which corresponds to an increase of the M-distribution along
both columns, because the connections between the members are considered
stiff. A graphical presentation of this observation is given in figure 4.20. As
for the distribution of the shear force, this will remain unchanged for the beam
member, but will increase in both columns with an increasing value for n. This
is because the gradient of the M-line is not dependent on the parameter n, only
in case of the horizontal member.

For the horizontal displacement of B a similar graph can be made as shown
in figure 4.21. Depending on which column has a relative higher bending stiff-
ness, the structure deflects either to the left (n < 1) or to the right (n > 1),
considering the columns respectively as roller bearings. Why the deflection line
is not symmetric as the bending moment distribution is because the curvature
‘kappa’ is linearly related to M by EIyy.
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Figure 4.20: Normalised MB and ME as function of n
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Figure 4.21: Normalised uB as function of n

4.4 Structure 4

The structure as presented in figure 4.22 is used to demonstrate how a uni-
formly distributed load can be rotated such that it is exerted perpendicular on
a structural member with any arbitrary orientation. Modelling a wind load is a
perfect example for the necessity of this requirement to the program; idealised
as a uniformly distributed load exerted on one leg as a pressure and on the other
as a tensile stress, depending from which side the wind blows. See figure 4.26.
But first the nodal quantities are evaluated in case the roof structure is loaded
by snow which is idealised as a q-load exerted along the longitudinal axis of the
member and orientated parallel to the global vertical axis.

Each leg is modelled by four quadratic elements having an E-modulus of
2.1 ·105 N/mm2, a cross-sectional area of 1.9754 ·104 mm2 and a second moment
of area of 8.6975 · 108 mm4.
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Figure 4.22: Simple roof structure loaded by snow

Note that the q-load due to snow is ten times greater than what is considered
realistic in Dutch engineering practice; assuming a specific mass of 200 kg/m3
and a strip of 2.5 meter width. This is done to calculate distinct displacement
values for the nodes.

A discrepancy can be observed between the nodal displacements computed
by FramesQuadratic2d.m (figure 4.24) and Matrixframe (figure 4.25). This is
because of the numerical accuracy of the latter program; values are rounded off
to a tenth of a millimetre. The difference is of the order of one percent. As
for the discretized q-load, again, a distribution ratio per quadratic element of
1/6:2/3:1/6 can be observed. See sub-paragraph 2.2.2.
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Figure 4.23: Deformed roof structure due to an amplified snow load

Figure 4.24: Nodal quantities, FramesQuadratic2d.m, first load case
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Figure 4.25: Nodal displacements (m), Matrixframe, first load case

In the next load case wind is presented as a static uniformly distributed load that
exerts pressure at the left leg and tensile stress at the right leg, perpendicular
to each member. Proper modelling of this load starts with the descriptive file.
One option is to calculate both the x- and y-component manually and insert
these values in the columns F and G of the elements worksheet respectively.
However, this is rather tedious and a better option is to make use of the lambda
matrix.

The local equivalence of the global force vector
{
F ◦
}

and the global displace-

ment vector
{
U◦
}

is obtained by pre-multiplication with the lambda matrix.

This applies to the global distributed force vector
{
q◦
}

as well. If the values
in columns F and G of the elements worksheet are considered as components
in the s- and t-direction instead of the x- and y-direction, one can obtain their
global equivalence by pre-multiplication with the inverse, i.e. the transpose, of
the lambda matrix. Compare (2.23) with (4.4). This is an efficient way to
deal with q-loads that are exerted perpendicular to the member. However, it
is paramount to know how the local coordinate system is orientated for each
element, i.e. from which node to which node the element is defined, in order to
make sure whether a pressure or a tensile stress is applied.

{
q◦
}

=

E∑
e=1

[λ]T ∫
L

[
N (e)

]T qsqt
0

 ds

 =

E∑
e=1

[[
λ
]T {

q(e)
}]

(4.4)
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Figure 4.26: Simple roof structure loaded by wind

From the eight and ninth column of the table as presented in figure 4.28, it
can be checked that the discretized distributed force has the correct orientation
with respect to the global coordinate system and that in this direction as well
a distribution ratio per quadratic element of 1/6:2/3:1/6 is applied.
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Figure 4.27: Deformed roof structure due to wind

Figure 4.28: Nodal quantities, FramesQuadratic2d.m, second load case
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Figure 4.29: Nodal displacements (m), Matrixframe, second load case

4.5 Structure 5

Up until now, only frames that are both statically and kinematic determinate
were evaluated, as well as frame structures that are statically indeterminate.
But how does the program respond when a 2D configuration of beams and
columns is not sufficiently constrained? That is, how does the program deal
with kinematic indeterminate frames? The frame structure presented in figure
4.30 is used to demonstrate this.

Each member is modelled by two quadratic elements having an E-modulus
of 2.1 · 105 N/mm2, a cross-sectional area of 1.9754 · 104 mm2 and a second
moment of area of 8.6975 · 108 mm4.
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Figure 4.30: Kinematic determinate frame structure
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Figure 4.31: Deformed kinematic determinate frame structure
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If the left hinge is replaced by a roller bearing, the structure will become kine-
matic indeterminate and Matlab will give the following warning.

In order to compute the unknown nodal displacements
{
U1

}
in the fourth sec-

tion of the program, the relevant part of the stiffness matrix
[
k11
]

needs to
be inverted. However, it appears that when the frame is kinematic indeter-
minate its corresponding relevant part of the stiffness matrix will be singular
or almost singular (‘badly scaled’), i.e. the matrix cannot be inverted at all or
with enough accuracy depending on how close the determinant is to null. This
is quantitatively described by the reciprocal condition number ‘RCOND’; the
closer this value is to 1.0, the higher the accuracy of the solution. RCOND of[
k11
]

is 1.1775 · 10−22 and 1.1335 · 10−10 for the kinematic indeterminate and
determinate frame structure respectively. The displacement is shown in figure
4.32. Note the values along the x-axis.
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Figure 4.32: Deformed and displaced kinematic indeterminate frame structure
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Chapter 5

An arch structure

Arches were and are still used as architectural and structural elements in build-
ings and other civil engineering applications. That’s why it is important to
determine the mechanical behaviour under a certain load for these kind of struc-
tures as well. In this chapter a semicircle is modelled by beam elements in 2D
space and evaluated by different mesh sizes. Depending on the application, this
conceptual model will suffice more or less; it is clear that a structure like the
Gateway Arch2 -located in the American city of St. Louis, Missouri- is more
susceptible to this model than a barrel vault, let alone a dome structure. The
latter two require 2D or even 3D elements to come to a more reliable model.

Figure 5.1 presents the structure loaded by a uniformly distributed load
of 50 kN/m in the negative y-direction. Each element has an E-modulus of
2.1 ·105 N/mm2, a cross-sectional area of 1.9754 ·104 mm2 and a second moment
of area of 8.6975 ·108 mm4. The way each successive mesh size is created, can be
seen in figure 5.2; going from 2 to 1024 elements, the corresponding nodes are
divided equally over the semicircle. With help from the function as presented
in listing 5.1, the coordinates of these nodes can be found efficiently.

y

x

q = 50 kN/m

Figure 5.1: Semicircle arch structure

2Eero Saarinen, 1963-1965
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Figure 5.2: Geometry convergence

Listing 5.1: Function to find node coordinates

1 function [coordinates] = NodesSemicircle(numelem,radius,order)
2

3 angle = zeros(numelem+1,1);
4 for n = 1:numelem
5 angle(n+1) = pi*n/numelem;
6 end
7

8 coordinates = zeros(numelem+1,2);
9 for n = 1:numelem+1

10 coordinates(n,1) = radius*cos(angle(n))+radius;
11 coordinates(n,2) = radius*sin(angle(n));
12 end
13

14 if order == 2
15 matrix = zeros(2*numelem+1,2);
16 matrix(1:2:end,:) = coordinates(:,:);
17 for n = 1:numelem
18 matrix(2*n,1) = (matrix(2*n-1,1)+matrix(2*n+1,1))/2;
19 matrix(2*n,2) = (matrix(2*n-1,2)+matrix(2*n+1,2))/2;
20 end
21 coordinates = matrix;
22 end
23

24 coordinates = flipud(coordinates);

The focus of this chapter lies on the convergence behaviour of five quantities,
i.e. the deflection of the top, the rotation at the left support, the horizontal
reaction force at the left support, the vertical reaction force at the left support
and the internal bending moment at the top. Figure 5.6 presents the obtained
values. By plotting the corresponding normalised errors in logspace, one obtains
a clear graphical presentation of the convergence behaviour as done in chapter
3. These plots are shown in figure 5.7 to 5.11. The slope values are tabulated
in table 5.1.

But first, have a look at figure 5.3 to 5.5 which depicts the deflection line,
the S-line and the M-line. As expected, the arch dents in at the top and flexes
outwards at the left and right. This corresponds to a decrease respectively an in-
crease of the curvature as can be checked by observing the moment distribution.
After all, Mz is linearly related to κ by EIyy.
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Figure 5.3: Deflection, 512 linear elements

S-line

Figure 5.4: S-distribution, 512 linear elements
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M-line

Figure 5.5: M-distribution, 512 linear elements

Figure 5.6: Convergence data and computation durations
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Figure 5.7: Error convergence of deflection at the top
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Figure 5.8: Error convergence of rotation at the left support
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Figure 5.9: Error convergence of Rx at the left support
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Figure 5.10: Error convergence of Ry at the left support
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Figure 5.11: Error convergence of Mz,int at the top

linear quadratic
v -1.9 -1.9
θ -2.0 -2.0
Rx -2.1 -2.0
Ry -2.0 -2.0

Mz,int -3.5/-2.0 -2.1

Table 5.1: Slope values

Based on the spreadsheet data, a prominent distinction between the error con-
vergence of the arch structure and the structures investigated in chapter 3 can
be observed right away; it takes an equal amount of elements to obtain the most
accurate approximation of the mechanical quantities of the arch, regardless of
the element type. Indeed, in case of the horizontal reaction force at the left
support and the internal bending moment at the top, an even smaller amount
of linear elements is required. A value for Rx of 124.56 kN can be obtained
with either 128 to 256 linear elements or 256 to 512 quadratic elements. As for
Mz,int, the best approximation of 90.683 kNm can be found with either 128 to
256 linear elements or more than 1024 quadratic elements. Looking at the cor-
responding computation durations, it can be concluded that it would be more
efficient to model the arch by linear elements.

The reason for this is the geometry convergence. With every iteration that
the mesh size increases, the configuration alters and with that the structure
as a whole; a gable roof typology like the one investigated in paragraph 4.4
is different than a gambrel roof typology. See figure 5.2. This translates in a
similar convergence behaviour of the normalised error for linear and quadratic
elements as can be observed from the diagrams and the corresponding tangents.
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It appears that the slope values are the same as the ones determined in chapter
3, i.e. around -2.0. However, the accuracy of the quantity values can be increased
by using curved quadratic elements. This is not explored any further in this text.
As for the relative positioning of the convergence graphs, the linear line lying
above the quadratic line in case of v and θ is because the maximum difference
between the best and worst approximation is smaller for linear elements. The
opposite can be observed for Rx and Mz,int.

As a final observation, the initial slope value of Mz,int is discussed. Where
the green line at the end has a similar slope as the blue line, at the beginning, a
steeper trend can be observed. The cause of this can be assigned to the discrep-
ancy between the deformation quantities for linear and quadratic elements in
case of mesh sizes between 2 and 8. See row 3 to 5 of the spreadsheet. Because
the value of these quantities is of influence on the internal force distribution,
a different error development occurs. After all, we’re dealing with a statically
indeterminate structure.
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Chapter 6

Conclusion

The goal of this project was twofold. First, gaining a better comprehension of
the inner workings of a finite element program with a structural application.
Second, answering the question: what is the influence of the mesh size and the
element type used in a finite element protocol for trusses and frames, on the
accuracy of the displacements and forces and how does it affect the computation
time? Both these goals are achieved by developing, analysing and using four
finite element programs created in the Matlab environment. That is, a program
for trusses in 2D space, a program for trusses in 3D space and two programs
for frames in 2D space (linear and quadratic). Also, a lot of emphasis is put
on comparing the output of the programs with that of analytical computations
and commercial finite element software. The discrepancy which can be observed
during these comparisons results from the usage of different beam elements;
where a Timoshenko element considers shear deformation, a Bernoulli-Euler
beam does not. The result will be that a FE analyses gives an absolute higher
deflection value than an analyses based on theory, because of a lower stiffness.
As for the discrepancy with commercial finite element software, this is generally
less and can presumably be explained by numerical precision. In the next three
subsections the central question of this thesis will be answered.

An increase of the mesh size will lead to an accuracy increase of the values of
the displacement quantities (u, v and θ) and force quantities (N , S, Mz,int, Rx,
Ry and Mz,ext). For linear elements, the slope of the (normalised) error con-
vergence, plotted in logspace, will have a value of around -2.0. This is whether
or not the structure is statically indeterminate and/or needs to geometrically
converge. As for quadratic elements, it takes a minimum amount of two per
member to come to the most accurate approximation, regardless of the static
determinacy. However, this does not apply when the geometry of the structure
needs to converge as well. In that case the convergence of the normalised er-
ror will be the same for both linear and quadratic elements, i.e. a tangent of
around -2.0. By applying curved quadratic elements the geometry of the struc-
ture will converge more rapidly and with that the convergence of the error as
well. In general, one can state with regard to the slope of the log/log-curve: the
steeper, the better; a steeper line indicates a more rapid convergence which is
an indication of higher computation efficiency.

Sticking to straight elements, as argued in paragraph 3.4, it will be more time
efficient to model a structure by linear elements if the required amount becomes
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more than 256 per member. For instance, when the different quantities need
be known at all 257 nodes per member or because a more accurate graphical
presentation of the stress distributions is required. However, when the quantities
at a limited amount of nodes need to be known, i.e. less than 257 nodes, it would
be more efficient to use quadratic elements. Dealing with a curved structure like
an arch, it is recommended to use linear elements, regardless of the number of
elements.

Based on the 2D truss structure of paragraph 2.1 and 4.2, it only requires
one linear bar element per member to come to a normal force distribution that
is equally accurate as the one obtained with the commercial finite element soft-
ware.
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Appendix A

Trusses3d.m

1 %% SECTION 1
2 % Load input and setup empty vectors and matrices
3

4 structure = 'cube 01 16.xlsx';
5

6 nodes = xlsread(structure,1);
7 elements = xlsread(structure,2);
8 boundaries = xlsread(structure,3);
9 numnode = size(nodes,1);

10 numelem = size(elements,1);
11

12 k = zeros(3*numnode,3*numnode); %global stiffness matrix
13 U = zeros(3*numnode,1); %global displacements of the nodes
14 epsilon = zeros(numelem,1);
15 sigma = zeros(numelem,1);
16 F int = zeros(numelem,1);
17

18 %% SECTION 2
19 % Constructing k
20

21 for p = 1:numelem
22 x i = nodes(elements(p,1),1);
23 y i = nodes(elements(p,1),2);
24 z i = nodes(elements(p,1),3);
25 x j = nodes(elements(p,2),1);
26 y j = nodes(elements(p,2),2);
27 z j = nodes(elements(p,2),3);
28

29 L = sqrt((x j-x i)ˆ2+(y j-y i)ˆ2+(z j-z i)ˆ2);
30 l = (x j-x i)/L;
31 m = (y j-y i)/L;
32 n = (z j-z i)/L;
33

34 eta = [lˆ2 l*m l*n; m*l mˆ2 m*n; n*l n*m nˆ2];
35

36 entries = [3*elements(p,1)-2; 3*elements(p,1)-1;...
37 3*elements(p,1); 3*elements(p,2)-2;...
38 3*elements(p,2)-1; 3*elements(p,2)];
39

40 k(entries,entries) = k(entries,entries)+elements(p,3)*...
41 elements(p,4)/L*[eta -eta; -eta eta];
42 end
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43

44 %% SECTION 3
45 % Rearranging and partitioning k
46 % [k 11 k 12; k 21 k 22]*{U 1; U 2} = {F 1; F 2}
47 % U 1 and F 2 -> unknown degrees of freedom and unknown nodal forces
48 % U 2 and F 1 -> known degrees of freedom and known nodal forces
49

50 vector 1 = zeros(3*numnode,1);
51 vector 2 = zeros(3*numnode,1);
52 counter = 0;
53 for p = 1:3*numnode
54 if boundaries(p,1) ~= 0
55 vector 1(p) = p;
56 counter = counter+1;
57 else
58 vector 2(p) = p;
59 end
60 end
61 vector 1 = vector 1(vector 1~=0);
62 vector 2 = vector 2(vector 2~=0);
63 vector 1(counter+1:3*numnode) = vector 2; %index vector
64

65 matrix = k(vector 1,vector 1); %rearranged stiffness matrix
66

67 k 11 = matrix(1:counter,1:counter);
68 k 12 = matrix(1:counter,counter+1:3*numnode);
69 k 21 = matrix(counter+1:3*numnode,1:counter);
70 k 22 = matrix(counter+1:3*numnode,counter+1:3*numnode);
71

72 %% SECTION 4
73 % Determining U and F ext
74 % [k 11]*{U 1}+[k 12]*{U 2} = {F 1}
75 % [k 21]*{U 1}+[k 22]*{U 2} = {F 2}
76

77 U 2 = zeros(3*numnode-counter,1);
78 F 1 = boundaries(1:end,2); F 1 = F 1(~isnan(F 1));
79 U 1 = k 11\(F 1-k 12*U 2); %[k]*{U} = {F} -> {U} = [k]\{F}
80 F 2 = k 21*U 1+k 22*U 2;
81

82 U(vector 1(1:counter)) = U 1;
83 F ext = boundaries(1:end,2); F ext(isnan(F ext)) = F 2;
84

85 %% SECTION 5
86 % Determining the strains, stresses and internal forces
87

88 for p = 1:numelem
89 x i = nodes(elements(p,1),1);
90 y i = nodes(elements(p,1),2);
91 z i = nodes(elements(p,1),3);
92 x j = nodes(elements(p,2),1);
93 y j = nodes(elements(p,2),2);
94 z j = nodes(elements(p,2),3);
95

96 L = sqrt((x j-x i)ˆ2+(y j-y i)ˆ2+(z j-z i)ˆ2);
97 l = (x j-x i)/L;
98 m = (y j-y i)/L;
99 n = (z j-z i)/L;

100

101 entries = [3*elements(p,1)-2; 3*elements(p,1)-1;...
102 3*elements(p,1); 3*elements(p,2)-2;...
103 3*elements(p,2)-1; 3*elements(p,2)];
104
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105 U local = [l m n 0 0 0; 0 0 0 l m n]*U(entries);
106 epsilon(p) = (U local(2)-U local(1))/L;
107 sigma(p) = elements(p,3)*epsilon(p);
108 F int(p) = elements(p,4)*sigma(p);
109 end
110

111 %% SECTION 6
112 % Merger of 'nodes' and 'elements'
113 % Row-format: [x i,y i,z i,x j,y j,z j]
114

115 matrix 1 = zeros(numelem,6);
116 for p = 1:numelem
117 matrix 1(p,1:3) = nodes(elements(p,1),:);
118 matrix 1(p,4:6) = nodes(elements(p,2),:);
119 end
120

121 %% SECTION 7
122 % Coordinates of displaced nodes
123 % In format of 'nodes'
124

125 vector dx = U(1:3:end)*10ˆ3;
126 vector dy = U(2:3:end)*10ˆ3;
127 vector dz = U(3:3:end)*10ˆ3;
128

129 disnodes(1:numnode,1) = nodes(1:numnode,1) + vector dx;
130 disnodes(1:numnode,2) = nodes(1:numnode,2) + vector dy;
131 disnodes(1:numnode,3) = nodes(1:numnode,3) + vector dz;
132

133 %% SECTION 8
134 % Merger of 'disnodes' and 'elements'
135 % Row-format: [x i,y i,z i,x j,y j,z j]
136

137 matrix 2 = zeros(numelem,6);
138 for p = 1:numelem
139 matrix 2(p,1:3) = disnodes(elements(p,1),:);
140 matrix 2(p,4:6) = disnodes(elements(p,2),:);
141 end
142

143 %% SECTION 9
144 % Graphical output
145

146 figure
147 hold on
148

149 for n = 1:numelem
150 line undef = line([matrix 1(n,1),matrix 1(n,4)],...
151 [matrix 1(n,2),matrix 1(n,5)],...
152 [matrix 1(n,3),matrix 1(n,6)]);
153 line undef.LineStyle = '--';
154 line undef.LineWidth = 0.5;
155 line undef.Color = 'k';
156 end
157

158 for n = 1:numelem
159 line def = line([matrix 2(n,1),matrix 2(n,4)],...
160 [matrix 2(n,2),matrix 2(n,5)],...
161 [matrix 2(n,3),matrix 2(n,6)]);
162 line def.LineStyle = '-';
163 line def.LineWidth = 1;
164 line def.Color = 'k';
165 end
166
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167 for p = 1:numnode
168 text(nodes(p,1),nodes(p,2),nodes(p,3),...
169 ['N #' num2str(p)],'Color','r');
170 end
171

172 xlabel('x-coordinate [mm]');
173 ylabel('y-coordinate [mm]');
174 zlabel('z-coordinate [mm]');
175 title('Deformed structure, amplification = 10ˆ3');
176 % set(gca,'xtick',[])
177 % set(gca,'ytick',[])
178 % set(gca,'ztick',[])
179 grid on
180

181 hold off
182

183 %% SECTION 10
184 % Non-graphical output
185 % Nodal (external) forces, nodal displacements and internal forces
186

187 node = transpose(1:numnode);
188 F x ext = F ext(1:3:end)*10ˆ0;
189 F y ext = F ext(2:3:end)*10ˆ0;
190 F z ext = F ext(3:3:end)*10ˆ0;
191 dx = U(1:3:end);
192 dy = U(2:3:end);
193 dz = U(3:3:end);
194 table(node,F x ext,F y ext,F z ext,dx,dy,dz)
195

196 element = transpose(1:numelem);
197 sigma = sigma*10ˆ0;
198 N = F int*10ˆ0;
199 table(element,epsilon,sigma,N)
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Appendix B

FramesLinear2d.m

1 %% SECTION 1
2 % Load input and setup empty vectors and matrices
3

4 structure = 'beam 01 04.xlsx';
5

6 nodes = xlsread(structure,1);
7 elements = xlsread(structure,2);
8 boundaries = xlsread(structure,3);
9 numnode = size(nodes,1);

10 numelem = size(elements,1);
11

12 k = zeros(3*numnode,3*numnode); %global stiffness matrix
13 U = zeros(3*numnode,1); %global displacements of the nodes
14 q glob = zeros(3*numnode,1); %global distributed force vector
15

16 epsilon = zeros(numelem,1); %axial strain
17 gamma = zeros(numelem,1); %shear strain
18 kappa = zeros(numelem,1); %bending strain
19

20 %% SECTION 2
21 % Constructing k and q glob
22

23 for n = 1:numelem
24 x i = nodes(elements(n,1),1);
25 y i = nodes(elements(n,1),2);
26 x j = nodes(elements(n,2),1);
27 y j = nodes(elements(n,2),2);
28

29 L = sqrt((x j-x i)ˆ2+(y j-y i)ˆ2);
30 l = (x j-x i)/L;
31 m = (y j-y i)/L;
32

33 E = elements(n,3);
34 G = E/(2*(1+0.3));
35 A = elements(n,4);
36 I = elements(n,5);
37

38 s i = 0;
39 s j = L;
40 s = L/2;
41

42 N i = (s j-s)/L;
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43 N j = (s-s i)/L;
44

45 lambda = [l m 0 0 0 0; -m l 0 0 0 0; 0 0 1 0 0 0;...
46 0 0 0 l m 0; 0 0 0 -m l 0; 0 0 0 0 0 1];
47

48 entries = [3*elements(n,1)-2; 3*elements(n,1)-1;...
49 3*elements(n,1); 3*elements(n,2)-2;...
50 3*elements(n,2)-1; 3*elements(n,2)];
51

52 q = [elements(n,6); elements(n,7); 0];
53

54 N = [N i 0 0 N j 0 0; 0 N i 0 0 N j 0; 0 0 N i 0 0 N j];
55 B = 1/L*[-1 0 0 1 0 0; 0 -1 -L*N i 0 1 -L*N j;...
56 0 0 -1 0 0 1]*lambda;
57 D = [E*A 0 0; 0 G*A 0; 0 0 E*I];
58

59 k(entries,entries) = k(entries,entries)+transpose(B)*D*B*L;
60 q glob(entries) = q glob(entries)+transpose(N)*q*L;
61 end
62

63 %% SECTION 3
64 % Rearranging and partitioning k
65 % [k 11 k 12; k 21 k 22]*{U 1; U 2} = {F 1; F 2}
66 % U 1 and F 2 -> unknown degrees of freedom and
67 % unknown nodal stresses
68 % U 2 and F 1 -> known degrees of freedom and
69 % known nodal stresses
70

71 vector = zeros(3*numnode,1); %index vector
72 vector a = zeros(3*numnode,1); %first part of the index vector
73 vector b = zeros(3*numnode,1); %second part of the index vector
74 counter = 0;
75 for n = 1:3*numnode
76 if boundaries(n,1) ~= 0
77 vector a(n) = n;
78 counter = counter+1;
79 else
80 vector b(n) = n;
81 end
82 end
83 vector a = vector a(vector a~=0);
84 vector(1:counter) = vector a;
85 vector b = vector b(vector b~=0);
86 vector(counter+1:3*numnode) = vector b;
87

88 matrix = k(vector,vector); %rearranged stiffness matrix
89

90 k 11 = matrix(1:counter,1:counter);
91 k 12 = matrix(1:counter,counter+1:3*numnode);
92 k 21 = matrix(counter+1:3*numnode,1:counter);
93 k 22 = matrix(counter+1:3*numnode,counter+1:3*numnode);
94

95 %% SECTION 4
96 % Determining U and F ext
97 % [k 11]*{U 1}+[k 12]*{U 2} = {F 1}
98 % [k 21]*{U 1}+[k 22]*{U 2} = {F 2}
99

100 U 2 = zeros(3*numnode-counter,1);
101 F 1 = boundaries(vector a,2)+q glob(vector a);
102 U 1 = k 11\(F 1-k 12*U 2); %[k]*{U} = {F} -> {U} = [k]\{F}
103 F 2 = k 21*U 1+k 22*U 2;
104
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105 U(vector a) = U 1;
106 boundaries(vector a,2) = F 1;
107 F ext = boundaries(1:end,2);
108 F ext(isnan(F ext)) = F 2-q glob(vector b);
109

110 %% SECTION 5
111 % Merger of 'nodes' and 'elements'
112 % Row-format: [x i,y i,x j,y j]
113

114 matrix 1 = zeros(numelem,4);
115 for p = 1:numelem
116 matrix 1(p,[1 2]) = nodes(elements(p,1),:);
117 matrix 1(p,[3 4]) = nodes(elements(p,2),:);
118 end
119

120 %% SECTION 6
121 % Coordinates of displaced nodes
122 % In format of 'nodes'
123

124 vector dx = U(1:3:end)*10ˆ3;
125 vector dy = U(2:3:end)*10ˆ3;
126

127 disnodes(1:numnode,1) = nodes(1:numnode,1) + vector dx;
128 disnodes(1:numnode,2) = nodes(1:numnode,2) + vector dy;
129

130 %% SECTION 7
131 % Merger of 'disnodes' and 'elements'
132 % Row-format: [x i,y i,x j,y j]
133

134 matrix 2 = zeros(numelem,4);
135 for p = 1:numelem
136 matrix 2(p,[1 2]) = disnodes(elements(p,1),:);
137 matrix 2(p,[3 4]) = disnodes(elements(p,2),:);
138 end
139

140 %% SECTION 8
141 % Graphical output: deformed structure
142

143 figure
144 hold on
145

146 for n = 1:numelem
147 line undef = line([matrix 1(n,1),matrix 1(n,3)],...
148 [matrix 1(n,2),matrix 1(n,4)]);
149 line undef.LineStyle = '--';
150 line undef.LineWidth = 0.75;
151 line undef.Color = 'k';
152 text((matrix 1(n,1)+matrix 1(n,3))/2,...
153 (matrix 1(n,2)+matrix 1(n,4))/2,...
154 ['E #' num2str(n)],'Color','r');
155 end
156

157 for n = 1:numelem
158 line def = line([matrix 2(n,1),matrix 2(n,3)],...
159 [matrix 2(n,2),matrix 2(n,4)]);
160 line undef.LineStyle = '-';
161 line def.LineWidth = 0.75;
162 line def.Color = 'k';
163 end
164

165 for n = 1:numnode
166 scatter(nodes(n,1),nodes(n,2),'k');
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167 scatter(disnodes(n,1),disnodes(n,2),'k');
168 text(nodes(n,1),nodes(n,2),['N #' num2str(n)],'Color','r');
169 end
170

171 xlabel('x-coordinate [mm]');
172 ylabel('y-coordinate [mm]');
173 title('Deformed structure, amplification = 10ˆ3');
174 grid on
175

176 hold off
177

178 %% SECTION 9
179 % Graphical and non-graphical output: N, S and M z int
180 % [k elem]*{U elem} = {F int} with {U elem} = {U(entries)}
181

182 figure
183 hold on
184

185 for n = 1:numelem
186 x i = nodes(elements(n,1),1);
187 y i = nodes(elements(n,1),2);
188 x j = nodes(elements(n,2),1);
189 y j = nodes(elements(n,2),2);
190

191 L = sqrt((x j-x i)ˆ2+(y j-y i)ˆ2);
192 l = (x j-x i)/L;
193 m = (y j-y i)/L;
194

195 E = elements(n,3);
196 G = E/(2*(1+0.3));
197 A = elements(n,4);
198 I = elements(n,5);
199

200 s i = 0;
201 s j = L;
202 s = L/2;
203

204 N i = (s j-s)/L;
205 N j = (s-s i)/L;
206

207 lambda = [l m 0 0 0 0; -m l 0 0 0 0; 0 0 1 0 0 0;...
208 0 0 0 l m 0; 0 0 0 -m l 0; 0 0 0 0 0 1];
209

210 entries = [3*elements(n,1)-2; 3*elements(n,1)-1;...
211 3*elements(n,1); 3*elements(n,2)-2;...
212 3*elements(n,2)-1; 3*elements(n,2)];
213

214 q = [elements(n,6); elements(n,7); 0];
215

216 N = [N i 0 0 N j 0 0; 0 N i 0 0 N j 0; 0 0 N i 0 0 N j];
217 B = 1/L*[-1 0 0 1 0 0; 0 -1 -L*N i 0 1 -L*N j;...
218 0 0 -1 0 0 1]*lambda;
219 D = [E*A 0 0; 0 G*A 0; 0 0 E*I];
220

221 k elem = transpose(B)*D*B*L;
222 q elem = transpose(N)*q*L;
223

224 U elem = U(entries);
225 F int = k elem*U elem;
226

227 F x int = (F int(1:3:end)+diag(abs(q elem(1:3:end)))*...
228 sign(F int(1:3:end)))*10ˆ0;
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229 F y int = (F int(2:3:end)+diag(abs(q elem(2:3:end)))*...
230 sign(F int(2:3:end)))*10ˆ0;
231 N = [l*F x int(1)+m*F y int(1); l*F x int(2)+m*F y int(2)];
232 S = [-m*F x int(1)+l*F y int(1); -m*F x int(2)+l*F y int(2)];
233 M z int = F int(3:3:end)*10ˆ0;
234

235 strains = B*U elem;
236 epsilon(n) = strains(1);
237 gamma(n) = strains(2);
238 kappa(n) = strains(3);
239

240 element = [n; n];
241 node = [elements(n,1); elements(n,2)];
242 table(element,node,N,S,M z int)
243

244 x 1 = x i-m*S(1)*10ˆ-2;
245 y 1 = y i+l*S(1)*10ˆ-2;
246 x 2 = x 1+(x j-x i);
247 y 2 = y 1+(y j-y i);
248

249 x 3 = x i-m*M z int(1)*10ˆ-5;
250 y 3 = y i+l*M z int(1)*10ˆ-5;
251 x 4 = x j-m*abs(M z int(2))*sign(M z int(1))*10ˆ-5;
252 y 4 = y j+l*abs(M z int(2))*sign(M z int(1))*10ˆ-5;
253

254 matrix S = [x i y i x 1 y 1; x 1 y 1 x 2 y 2;
255 x 2 y 2 x j y j]; %coordinates S-line
256 matrix M = [x i y i x 3 y 3; x 3 y 3 x 4 y 4;
257 x 4 y 4 x j y j]; %coordinates M-line
258

259 X S = [matrix S(:,1) matrix S(:,3)];
260 Y S = [matrix S(:,2) matrix S(:,4)];
261 plot(X S,Y S,'Color',[1 0.5 0],'LineWidth',2) %S-line
262 X M = [matrix M(:,1) matrix M(:,3)];
263 Y M = [matrix M(:,2) matrix M(:,4)];
264 plot(X M,Y M,'Color',[0.5 0 0.5],'LineWidth',2) %M-line
265 end
266

267 for n = 1:numelem
268 line undef = line([matrix 1(n,1),matrix 1(n,3)],...
269 [matrix 1(n,2),matrix 1(n,4)]);
270 line undef.LineStyle = '--';
271 line undef.LineWidth = 0.75;
272 line undef.Color = 'k';
273 text((matrix 1(n,1)+matrix 1(n,3))/2,...
274 (matrix 1(n,2)+matrix 1(n,4))/2,...
275 ['E #' num2str(n)],'Color','r');
276 end
277

278 for n = 1:numnode
279 scatter(nodes(n,1),nodes(n,2),'k');
280 text(nodes(n,1),nodes(n,2),['N #' num2str(n)],'Color','r');
281 end
282

283 set(gca,'xtick',[])
284 set(gca,'ytick',[])
285 title('S-line and M-line')
286

287 hold off
288

289 %% SECTION 10
290 % Non-graphical output: displacements, stresses and strains
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291

292 node = reshape(1:numnode,numnode,1);
293 element = reshape(1:numelem,numelem,1);
294

295 u = U(1:3:end);
296 v = U(2:3:end);
297 theta = U(3:3:end);
298

299 F point = boundaries(1:end,2)-q glob; F point(isnan(F point)) = 0;
300 F x = F point(1:3:end)*10ˆ0;
301 F y = F point(2:3:end)*10ˆ0;
302 T z = F point(3:3:end)*10ˆ0;
303

304 q x = q glob(1:3:end)*10ˆ0;
305 q y = q glob(2:3:end)*10ˆ0;
306

307 R = zeros(3*numnode,1); R(vector b) = F ext(vector b);
308 R x = R(1:3:end)*10ˆ0;
309 R y = R(2:3:end)*10ˆ0;
310 M z ext = R(3:3:end)*10ˆ0;
311

312 table(node,u,v,theta,F x,F y,T z,q x,q y,R x,R y,M z ext)
313 table(element,epsilon,gamma,kappa)
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Appendix C

FramesQuadratic2d.m

1 %% SECTION 1
2 % Load input and setup empty vectors and matrices
3

4 structure = 'beam 02 04.xlsx';
5

6 nodes = xlsread(structure,1);
7 elements = xlsread(structure,2);
8 boundaries = xlsread(structure,3);
9 numnode = size(nodes,1);

10 numelem = size(elements,1);
11

12 k = zeros(3*numnode,3*numnode); %global stiffness matrix
13 U = zeros(3*numnode,1); %global displacements of the nodes
14 q glob = zeros(3*numnode,1); %global distributed force vector
15

16 epsilon = zeros(numelem,1); %axial strain
17 gamma = zeros(numelem,1); %shear strain
18 kappa = zeros(numelem,1); %bending strain
19

20 %% SECTION 2
21 % Constructing k and q glob
22

23 for n = 1:numelem/2
24 x i = nodes(elements(2*n-1,1),1);
25 y i = nodes(elements(2*n-1,1),2);
26 x k = nodes(elements(2*n,2),1);
27 y k = nodes(elements(2*n,2),2);
28

29 L = sqrt((x k-x i)ˆ2+(y k-y i)ˆ2);
30 l = (x k-x i)/L;
31 m = (y k-y i)/L;
32

33 E = elements(2*n-1,3);
34 G = E/(2*(1+0.3));
35 A = elements(2*n-1,4);
36 I = elements(2*n-1,5);
37

38 s i = 0;
39 s a = (-1+sqrt(3))/(2*sqrt(3))*L;
40 % first integration point
41 s b = (1+sqrt(3))/(2*sqrt(3))*L;
42 % second integration point
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43 L 1 a = (s a-s i)/L;
44 % natural coordinate of first integration point
45 L 1 b = (s b-s i)/L;
46 % natural coordinate of second integration point
47

48 N i a = 1-3*L 1 a+2*L 1 aˆ2; N i b = 1-3*L 1 b+2*L 1 bˆ2;
49 N j a = 4*L 1 a-4*L 1 aˆ2; N j b = 4*L 1 b-4*L 1 bˆ2;
50 N k a = -L 1 a+2*L 1 aˆ2; N k b = -L 1 b+2*L 1 bˆ2;
51

52 dN i a = (-3+4*L 1 a)/L; dN i b = (-3+4*L 1 b)/L;
53 dN j a = (4-8*L 1 a)/L; dN j b = (4-8*L 1 b)/L;
54 dN k a = (-1+4*L 1 a)/L; dN k b = (-1+4*L 1 b)/L;
55

56 lambda = zeros(9,9);
57 lambda(1:3,1:3) = [l m 0; -m l 0; 0 0 1];
58 lambda(4:6,4:6) = [l m 0; -m l 0; 0 0 1];
59 lambda(7:9,7:9) = [l m 0; -m l 0; 0 0 1];
60

61 entries = [3*elements(2*n-1,1)-2; 3*elements(2*n-1,1)-1;...
62 3*elements(2*n-1,1);...
63 3*elements(2*n-1,2)-2; 3*elements(2*n-1,2)-1;
64 3*elements(2*n-1,2);...
65 3*elements(2*n,2)-2; 3*elements(2*n,2)-1;...
66 3*elements(2*n,2)];
67

68 q = [elements(2*n-1,6); elements(2*n-1,7); 0];
69

70 N a = [N i a 0 0 N j a 0 0 N k a 0 0;...
71 0 N i a 0 0 N j a 0 0 N k a 0;...
72 0 0 N i a 0 0 N j a 0 0 N k a];
73 N b = [N i b 0 0 N j b 0 0 N k b 0 0;...
74 0 N i b 0 0 N j b 0 0 N k b 0;...
75 0 0 N i b 0 0 N j b 0 0 N k b];
76

77 B a = [dN i a 0 0 dN j a 0 0 dN k a 0 0;...
78 0 dN i a -N i a 0 dN j a -N j a 0 dN k a -N k a;...
79 0 0 dN i a 0 0 dN j a 0 0 dN k a]*lambda;
80 B b = [dN i b 0 0 dN j b 0 0 dN k b 0 0;...
81 0 dN i b -N i b 0 dN j b -N j b 0 dN k b -N k b;...
82 0 0 dN i b 0 0 dN j b 0 0 dN k b]*lambda;
83

84 D = [E*A 0 0; 0 G*A 0; 0 0 E*I];
85

86 k(entries,entries) = k(entries,entries)+...
87 transpose(B a)*D*B a*L/2+...
88 transpose(B b)*D*B b*L/2;
89 q glob(entries) = q glob(entries)+...
90 transpose(N a)*q*L/2+...
91 transpose(N b)*q*L/2;
92 end
93

94 %% SECTION 3
95 % Rearranging and partitioning k
96 % [k 11 k 12; k 21 k 22]*{U 1; U 2} = {F 1; F 2}
97 % U 1 and F 2 -> unknown degrees of freedom and
98 % unknown nodal stresses
99 % U 2 and F 1 -> known degrees of freedom and

100 % known nodal stresses
101

102 vector = zeros(3*numnode,1); %index vector
103 vector a = zeros(3*numnode,1); %first part of the index vector
104 vector b = zeros(3*numnode,1); %second part of the index vector
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105 counter = 0;
106 for n = 1:3*numnode
107 if boundaries(n,1) ~= 0
108 vector a(n) = n;
109 counter = counter+1;
110 else
111 vector b(n) = n;
112 end
113 end
114 vector a = vector a(vector a~=0);
115 vector(1:counter) = vector a;
116 vector b = vector b(vector b~=0);
117 vector(counter+1:3*numnode) = vector b;
118

119 matrix = k(vector,vector); %rearranged stiffness matrix
120

121 k 11 = matrix(1:counter,1:counter);
122 k 12 = matrix(1:counter,counter+1:3*numnode);
123 k 21 = matrix(counter+1:3*numnode,1:counter);
124 k 22 = matrix(counter+1:3*numnode,counter+1:3*numnode);
125

126 %% SECTION 4
127 % Determining U and F ext
128 % [k 11]*{U 1}+[k 12]*{U 2} = {F 1}
129 % [k 21]*{U 1}+[k 22]*{U 2} = {F 2}
130

131 U 2 = zeros(3*numnode-counter,1);
132 F 1 = boundaries(vector a,2)+q glob(vector a);
133 U 1 = k 11\(F 1-k 12*U 2); %[k]*{U} = {F} -> {U} = [k]\{F}
134 F 2 = k 21*U 1+k 22*U 2;
135

136 U(vector a) = U 1;
137 boundaries(vector a,2) = F 1;
138 F ext = boundaries(1:end,2);
139 F ext(isnan(F ext)) = F 2-q glob(vector b);
140

141 %% SECTION 5
142 % Merger of 'nodes' and 'elements'
143 % Row-format: [x i,y i,x j,y j]
144

145 matrix 1 = zeros(numelem,4);
146 for p = 1:numelem
147 matrix 1(p,[1 2]) = nodes(elements(p,1),:);
148 matrix 1(p,[3 4]) = nodes(elements(p,2),:);
149 end
150

151 %% SECTION 6
152 % Coordinates of displaced nodes
153 % In format of 'nodes'
154

155 vector dx = U(1:3:end)*10ˆ3;
156 vector dy = U(2:3:end)*10ˆ3;
157

158 disnodes(1:numnode,1) = nodes(1:numnode,1) + vector dx;
159 disnodes(1:numnode,2) = nodes(1:numnode,2) + vector dy;
160

161 %% SECTION 7
162 % Merger of 'disnodes' and 'elements'
163 % Row-format: [x i,y i,x j,y j]
164

165 matrix 2 = zeros(numelem,4);
166 for p = 1:numelem
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167 matrix 2(p,[1 2]) = disnodes(elements(p,1),:);
168 matrix 2(p,[3 4]) = disnodes(elements(p,2),:);
169 end
170

171 %% SECTION 8
172 % Graphical output: deformed structure
173

174 figure
175 hold on
176

177 label = zeros(numelem,1);
178 label(1:2:end) = transpose(1:numelem/2);
179 label(2:2:end) = transpose(1:numelem/2);
180

181 for n = 1:numelem
182 line undef = line([matrix 1(n,1),matrix 1(n,3)],...
183 [matrix 1(n,2),matrix 1(n,4)]);
184 line undef.LineStyle = '--';
185 line undef.LineWidth = 0.75;
186 line undef.Color = 'k';
187 text((matrix 1(n,1)+matrix 1(n,3))/2,...
188 (matrix 1(n,2)+matrix 1(n,4))/2,...
189 ['E #' num2str(label(n))],'Color','r');
190 end
191

192 for n = 1:numelem
193 line def = line([matrix 2(n,1),matrix 2(n,3)],...
194 [matrix 2(n,2),matrix 2(n,4)]);
195 line def.LineStyle = '-';
196 line def.LineWidth = 0.75;
197 line def.Color = 'k';
198 end
199

200 for n = 1:numnode
201 scatter(nodes(n,1),nodes(n,2),'k');
202 scatter(disnodes(n,1),disnodes(n,2),'k');
203 text(nodes(n,1),nodes(n,2),['N #' num2str(n)],'Color','r');
204 end
205

206 xlabel('x-coordinate [mm]');
207 ylabel('y-coordinate [mm]');
208 title('Deformed structure, amplification = 10ˆ3');
209 grid on
210

211 hold off
212

213 %% SECTION 9
214 % Graphical and non-graphical output: N, S and M z int
215 % [k elem]*{U elem} = {F int} with {U elem} = {U(entries)}
216

217 figure
218 hold on
219

220 for n = 1:numelem/2
221 x i = nodes(elements(2*n-1,1),1);
222 y i = nodes(elements(2*n-1,1),2);
223 x k = nodes(elements(2*n,2),1);
224 y k = nodes(elements(2*n,2),2);
225

226 L = sqrt((x k-x i)ˆ2+(y k-y i)ˆ2);
227 l = (x k-x i)/L;
228 m = (y k-y i)/L;

109



229

230 E = elements(2*n-1,3);
231 G = E/(2*(1+0.3));
232 A = elements(2*n-1,4);
233 I = elements(2*n-1,5);
234

235 s i = 0;
236 s a = (-1+sqrt(3))/(2*sqrt(3))*L;
237 % first integration point
238 s b = (1+sqrt(3))/(2*sqrt(3))*L;
239 % second integration point
240 L 1 a = (s a-s i)/L;
241 % natural coordinate of first integration point
242 L 1 b = (s b-s i)/L;
243 % natural coordinate of second integration point
244

245 N i a = 1-3*L 1 a+2*L 1 aˆ2; N i b = 1-3*L 1 b+2*L 1 bˆ2;
246 N j a = 4*L 1 a-4*L 1 aˆ2; N j b = 4*L 1 b-4*L 1 bˆ2;
247 N k a = -L 1 a+2*L 1 aˆ2; N k b = -L 1 b+2*L 1 bˆ2;
248

249 dN i a = (-3+4*L 1 a)/L; dN i b = (-3+4*L 1 b)/L;
250 dN j a = (4-8*L 1 a)/L; dN j b = (4-8*L 1 b)/L;
251 dN k a = (-1+4*L 1 a)/L; dN k b = (-1+4*L 1 b)/L;
252

253 lambda = zeros(9,9);
254 lambda(1:3,1:3) = [l m 0; -m l 0; 0 0 1];
255 lambda(4:6,4:6) = [l m 0; -m l 0; 0 0 1];
256 lambda(7:9,7:9) = [l m 0; -m l 0; 0 0 1];
257

258 entries = [3*elements(2*n-1,1)-2; 3*elements(2*n-1,1)-1;...
259 3*elements(2*n-1,1);...
260 3*elements(2*n-1,2)-2; 3*elements(2*n-1,2)-1;
261 3*elements(2*n-1,2);...
262 3*elements(2*n,2)-2; 3*elements(2*n,2)-1;...
263 3*elements(2*n,2)];
264

265 q = [elements(2*n-1,6); elements(2*n-1,7); 0];
266

267 N a = [N i a 0 0 N j a 0 0 N k a 0 0;...
268 0 N i a 0 0 N j a 0 0 N k a 0;...
269 0 0 N i a 0 0 N j a 0 0 N k a];
270 N b = [N i b 0 0 N j b 0 0 N k b 0 0;...
271 0 N i b 0 0 N j b 0 0 N k b 0;...
272 0 0 N i b 0 0 N j b 0 0 N k b];
273

274 B a = [dN i a 0 0 dN j a 0 0 dN k a 0 0;...
275 0 dN i a -N i a 0 dN j a -N j a 0 dN k a -N k a;...
276 0 0 dN i a 0 0 dN j a 0 0 dN k a]*lambda;
277 B b = [dN i b 0 0 dN j b 0 0 dN k b 0 0;...
278 0 dN i b -N i b 0 dN j b -N j b 0 dN k b -N k b;...
279 0 0 dN i b 0 0 dN j b 0 0 dN k b]*lambda;
280

281 D = [E*A 0 0; 0 G*A 0; 0 0 E*I];
282

283 k elem = transpose(B a)*D*B a*L/2+...
284 transpose(B b)*D*B b*L/2;
285 q elem = transpose(N a)*q*L/2+...
286 transpose(N b)*q*L/2;
287

288 U elem = U(entries);
289 F int = k elem*U elem;
290
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291 F x int = F int(1:3:end)*10ˆ0;
292 % +diag(abs(q elem(1:3:end)))*sign(F int(1:3:end));
293 % Does not contribute to the interpretation of
294 % the shear force distribution!
295 F y int = F int(2:3:end)*10ˆ0;
296 % +diag(abs(q elem(2:3:end)))*sign(F int(2:3:end));
297 % Does not contribute to the interpretation of
298 % the shear force distribution!
299 N = [l*F x int(1)+m*F y int(1); l*F x int(2)+m*F y int(2);...
300 l*F x int(3)+m*F y int(3)];
301 S = [-m*F x int(1)+l*F y int(1); -m*F x int(2)+l*F y int(2);...
302 -m*F x int(3)+l*F y int(3)];
303 M z int = F int(3:3:end)*10ˆ0;
304

305 strains a = B a*U elem;
306 strains b = B b*U elem;
307 epsilon(2*n-1) = strains a(1); epsilon(2*n) = strains b(1);
308 gamma(2*n-1) = strains a(2); gamma(2*n) = strains b(2);
309 kappa(2*n-1) = strains a(3); kappa(2*n) = strains b(3);
310

311 element = [n; n; n];
312 node = [elements(2*n-1,1); elements(2*n-1,2); elements(2*n,2)];
313 table(element,node,N,S,M z int)
314

315 x 1 = x i-m*S(1)*10ˆ-2; y 1 = y i+l*S(1)*10ˆ-2;
316 x 2 = x 1+(x k-x i)/2; y 2 = y 1+(y k-y i)/2;
317 x 3 = x 2-m*S(2)*10ˆ-2; y 3 = y 2+l*S(2)*10ˆ-2;
318 x 4 = x 3+(x k-x i)/2; y 4 = y 3+(y k-y i)/2;
319

320 x 5 = x i-m*M z int(1)*10ˆ-5;
321 y 5 = y i+l*M z int(1)*10ˆ-5;
322 x 6 = x k-m*abs(M z int(3))*sign(M z int(1))*10ˆ-5;
323 y 6 = y k+l*abs(M z int(3))*sign(M z int(1))*10ˆ-5;
324

325 matrix S = [x i y i x 1 y 1; x 1 y 1 x 2 y 2;
326 x 2 y 2 x 3 y 3; x 3 y 3 x 4 y 4;
327 x 4 y 4 x k y k]; %coordinates S-line
328 matrix M = [x i y i x 5 y 5; x 5 y 5 x 6 y 6;
329 x 6 y 6 x k y k]; %coordinates M-line
330

331 X S = [matrix S(:,1) matrix S(:,3)];
332 Y S = [matrix S(:,2) matrix S(:,4)];
333 plot(X S,Y S,'Color',[1 0.5 0],'LineWidth',2) %S-line
334 X M = [matrix M(:,1) matrix M(:,3)];
335 Y M = [matrix M(:,2) matrix M(:,4)];
336 plot(X M,Y M,'Color',[0.5 0 0.5],'LineWidth',2) %M-line
337 end
338

339 label = zeros(numelem,1);
340 label(1:2:end) = transpose(1:numelem/2);
341 label(2:2:end) = transpose(1:numelem/2);
342

343 for n = 1:numelem
344 line undef = line([matrix 1(n,1),matrix 1(n,3)],...
345 [matrix 1(n,2),matrix 1(n,4)]);
346 line undef.LineStyle = '--';
347 line undef.LineWidth = 0.75;
348 line undef.Color = 'k';
349 text((matrix 1(n,1)+matrix 1(n,3))/2,...
350 (matrix 1(n,2)+matrix 1(n,4))/2,...
351 ['E #' num2str(label(n))],'Color','r');
352 end
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353

354 for n = 1:numnode
355 scatter(nodes(n,1),nodes(n,2),'k');
356 text(nodes(n,1),nodes(n,2),['N #' num2str(n)],'Color','r');
357 end
358

359 set(gca,'xtick',[])
360 set(gca,'ytick',[])
361 title('S-line and M-line')
362

363 hold off
364

365 %% SECTION 10
366 % Non-graphical output: displacements, stresses and strains
367

368 node = reshape(1:numnode,numnode,1);
369 element = label;
370 integration point = zeros(numelem,1);
371 integration point(1:2:end) = 1;
372 integration point(2:2:end) = 2;
373

374 u = U(1:3:end);
375 v = U(2:3:end);
376 theta = U(3:3:end);
377

378 F point = boundaries(1:end,2)-q glob; F point(isnan(F point)) = 0;
379 F x = F point(1:3:end)*10ˆ0;
380 F y = F point(2:3:end)*10ˆ0;
381 T z = F point(3:3:end)*10ˆ0;
382

383 q x = q glob(1:3:end)*10ˆ0;
384 q y = q glob(2:3:end)*10ˆ0;
385

386 R = zeros(3*numnode,1); R(vector b) = F ext(vector b);
387 R x = R(1:3:end)*10ˆ0;
388 R y = R(2:3:end)*10ˆ0;
389 M z ext = R(3:3:end)*10ˆ0;
390

391 table(node,u,v,theta,F x,F y,T z,q x,q y,R x,R y,M z ext)
392 table(element,integration point,epsilon,gamma,kappa)
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